Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
   4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
   5 *
   6 * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
 
 
 
 
   7 */
   8
   9#include <linux/clk.h>
  10#include <linux/clk-provider.h>
  11#include <linux/clk/clk-conf.h>
  12#include <linux/module.h>
  13#include <linux/mutex.h>
  14#include <linux/spinlock.h>
  15#include <linux/err.h>
  16#include <linux/list.h>
  17#include <linux/slab.h>
  18#include <linux/of.h>
  19#include <linux/device.h>
  20#include <linux/init.h>
  21#include <linux/pm_runtime.h>
  22#include <linux/sched.h>
  23#include <linux/clkdev.h>
  24
  25#include "clk.h"
  26
  27static DEFINE_SPINLOCK(enable_lock);
  28static DEFINE_MUTEX(prepare_lock);
  29
  30static struct task_struct *prepare_owner;
  31static struct task_struct *enable_owner;
  32
  33static int prepare_refcnt;
  34static int enable_refcnt;
  35
  36static HLIST_HEAD(clk_root_list);
  37static HLIST_HEAD(clk_orphan_list);
  38static LIST_HEAD(clk_notifier_list);
  39
  40/* List of registered clks that use runtime PM */
  41static HLIST_HEAD(clk_rpm_list);
  42static DEFINE_MUTEX(clk_rpm_list_lock);
  43
  44static const struct hlist_head *all_lists[] = {
  45	&clk_root_list,
  46	&clk_orphan_list,
  47	NULL,
  48};
  49
  50/***    private data structures    ***/
  51
  52struct clk_parent_map {
  53	const struct clk_hw	*hw;
  54	struct clk_core		*core;
  55	const char		*fw_name;
  56	const char		*name;
  57	int			index;
  58};
  59
  60struct clk_core {
  61	const char		*name;
  62	const struct clk_ops	*ops;
  63	struct clk_hw		*hw;
  64	struct module		*owner;
  65	struct device		*dev;
  66	struct hlist_node	rpm_node;
  67	struct device_node	*of_node;
  68	struct clk_core		*parent;
  69	struct clk_parent_map	*parents;
 
  70	u8			num_parents;
  71	u8			new_parent_index;
  72	unsigned long		rate;
  73	unsigned long		req_rate;
  74	unsigned long		new_rate;
  75	struct clk_core		*new_parent;
  76	struct clk_core		*new_child;
  77	unsigned long		flags;
  78	bool			orphan;
  79	bool			rpm_enabled;
  80	unsigned int		enable_count;
  81	unsigned int		prepare_count;
  82	unsigned int		protect_count;
  83	unsigned long		min_rate;
  84	unsigned long		max_rate;
  85	unsigned long		accuracy;
  86	int			phase;
  87	struct clk_duty		duty;
  88	struct hlist_head	children;
  89	struct hlist_node	child_node;
  90	struct hlist_head	clks;
  91	unsigned int		notifier_count;
  92#ifdef CONFIG_DEBUG_FS
  93	struct dentry		*dentry;
  94	struct hlist_node	debug_node;
  95#endif
  96	struct kref		ref;
  97};
  98
  99#define CREATE_TRACE_POINTS
 100#include <trace/events/clk.h>
 101
 102struct clk {
 103	struct clk_core	*core;
 104	struct device *dev;
 105	const char *dev_id;
 106	const char *con_id;
 107	unsigned long min_rate;
 108	unsigned long max_rate;
 109	unsigned int exclusive_count;
 110	struct hlist_node clks_node;
 111};
 112
 113/***           runtime pm          ***/
 114static int clk_pm_runtime_get(struct clk_core *core)
 115{
 116	if (!core->rpm_enabled)
 117		return 0;
 118
 119	return pm_runtime_resume_and_get(core->dev);
 120}
 121
 122static void clk_pm_runtime_put(struct clk_core *core)
 123{
 124	if (!core->rpm_enabled)
 125		return;
 126
 127	pm_runtime_put_sync(core->dev);
 128}
 129
 130/**
 131 * clk_pm_runtime_get_all() - Runtime "get" all clk provider devices
 132 *
 133 * Call clk_pm_runtime_get() on all runtime PM enabled clks in the clk tree so
 134 * that disabling unused clks avoids a deadlock where a device is runtime PM
 135 * resuming/suspending and the runtime PM callback is trying to grab the
 136 * prepare_lock for something like clk_prepare_enable() while
 137 * clk_disable_unused_subtree() holds the prepare_lock and is trying to runtime
 138 * PM resume/suspend the device as well.
 139 *
 140 * Context: Acquires the 'clk_rpm_list_lock' and returns with the lock held on
 141 * success. Otherwise the lock is released on failure.
 142 *
 143 * Return: 0 on success, negative errno otherwise.
 144 */
 145static int clk_pm_runtime_get_all(void)
 146{
 147	int ret;
 148	struct clk_core *core, *failed;
 149
 150	/*
 151	 * Grab the list lock to prevent any new clks from being registered
 152	 * or unregistered until clk_pm_runtime_put_all().
 153	 */
 154	mutex_lock(&clk_rpm_list_lock);
 155
 156	/*
 157	 * Runtime PM "get" all the devices that are needed for the clks
 158	 * currently registered. Do this without holding the prepare_lock, to
 159	 * avoid the deadlock.
 160	 */
 161	hlist_for_each_entry(core, &clk_rpm_list, rpm_node) {
 162		ret = clk_pm_runtime_get(core);
 163		if (ret) {
 164			failed = core;
 165			pr_err("clk: Failed to runtime PM get '%s' for clk '%s'\n",
 166			       dev_name(failed->dev), failed->name);
 167			goto err;
 168		}
 169	}
 170
 171	return 0;
 172
 173err:
 174	hlist_for_each_entry(core, &clk_rpm_list, rpm_node) {
 175		if (core == failed)
 176			break;
 177
 178		clk_pm_runtime_put(core);
 179	}
 180	mutex_unlock(&clk_rpm_list_lock);
 181
 182	return ret;
 183}
 184
 185/**
 186 * clk_pm_runtime_put_all() - Runtime "put" all clk provider devices
 187 *
 188 * Put the runtime PM references taken in clk_pm_runtime_get_all() and release
 189 * the 'clk_rpm_list_lock'.
 190 */
 191static void clk_pm_runtime_put_all(void)
 192{
 193	struct clk_core *core;
 194
 195	hlist_for_each_entry(core, &clk_rpm_list, rpm_node)
 196		clk_pm_runtime_put(core);
 197	mutex_unlock(&clk_rpm_list_lock);
 198}
 199
 200static void clk_pm_runtime_init(struct clk_core *core)
 201{
 202	struct device *dev = core->dev;
 203
 204	if (dev && pm_runtime_enabled(dev)) {
 205		core->rpm_enabled = true;
 206
 207		mutex_lock(&clk_rpm_list_lock);
 208		hlist_add_head(&core->rpm_node, &clk_rpm_list);
 209		mutex_unlock(&clk_rpm_list_lock);
 210	}
 211}
 212
 213/***           locking             ***/
 214static void clk_prepare_lock(void)
 215{
 216	if (!mutex_trylock(&prepare_lock)) {
 217		if (prepare_owner == current) {
 218			prepare_refcnt++;
 219			return;
 220		}
 221		mutex_lock(&prepare_lock);
 222	}
 223	WARN_ON_ONCE(prepare_owner != NULL);
 224	WARN_ON_ONCE(prepare_refcnt != 0);
 225	prepare_owner = current;
 226	prepare_refcnt = 1;
 227}
 228
 229static void clk_prepare_unlock(void)
 230{
 231	WARN_ON_ONCE(prepare_owner != current);
 232	WARN_ON_ONCE(prepare_refcnt == 0);
 233
 234	if (--prepare_refcnt)
 235		return;
 236	prepare_owner = NULL;
 237	mutex_unlock(&prepare_lock);
 238}
 239
 240static unsigned long clk_enable_lock(void)
 241	__acquires(enable_lock)
 242{
 243	unsigned long flags;
 244
 245	/*
 246	 * On UP systems, spin_trylock_irqsave() always returns true, even if
 247	 * we already hold the lock. So, in that case, we rely only on
 248	 * reference counting.
 249	 */
 250	if (!IS_ENABLED(CONFIG_SMP) ||
 251	    !spin_trylock_irqsave(&enable_lock, flags)) {
 252		if (enable_owner == current) {
 253			enable_refcnt++;
 254			__acquire(enable_lock);
 255			if (!IS_ENABLED(CONFIG_SMP))
 256				local_save_flags(flags);
 257			return flags;
 258		}
 259		spin_lock_irqsave(&enable_lock, flags);
 260	}
 261	WARN_ON_ONCE(enable_owner != NULL);
 262	WARN_ON_ONCE(enable_refcnt != 0);
 263	enable_owner = current;
 264	enable_refcnt = 1;
 265	return flags;
 266}
 267
 268static void clk_enable_unlock(unsigned long flags)
 269	__releases(enable_lock)
 270{
 271	WARN_ON_ONCE(enable_owner != current);
 272	WARN_ON_ONCE(enable_refcnt == 0);
 273
 274	if (--enable_refcnt) {
 275		__release(enable_lock);
 276		return;
 277	}
 278	enable_owner = NULL;
 279	spin_unlock_irqrestore(&enable_lock, flags);
 280}
 281
 282static bool clk_core_rate_is_protected(struct clk_core *core)
 283{
 284	return core->protect_count;
 285}
 286
 287static bool clk_core_is_prepared(struct clk_core *core)
 288{
 289	bool ret = false;
 290
 291	/*
 292	 * .is_prepared is optional for clocks that can prepare
 293	 * fall back to software usage counter if it is missing
 294	 */
 295	if (!core->ops->is_prepared)
 296		return core->prepare_count;
 297
 298	if (!clk_pm_runtime_get(core)) {
 299		ret = core->ops->is_prepared(core->hw);
 300		clk_pm_runtime_put(core);
 301	}
 302
 303	return ret;
 304}
 305
 306static bool clk_core_is_enabled(struct clk_core *core)
 307{
 308	bool ret = false;
 309
 310	/*
 311	 * .is_enabled is only mandatory for clocks that gate
 312	 * fall back to software usage counter if .is_enabled is missing
 313	 */
 314	if (!core->ops->is_enabled)
 315		return core->enable_count;
 316
 317	/*
 318	 * Check if clock controller's device is runtime active before
 319	 * calling .is_enabled callback. If not, assume that clock is
 320	 * disabled, because we might be called from atomic context, from
 321	 * which pm_runtime_get() is not allowed.
 322	 * This function is called mainly from clk_disable_unused_subtree,
 323	 * which ensures proper runtime pm activation of controller before
 324	 * taking enable spinlock, but the below check is needed if one tries
 325	 * to call it from other places.
 326	 */
 327	if (core->rpm_enabled) {
 328		pm_runtime_get_noresume(core->dev);
 329		if (!pm_runtime_active(core->dev)) {
 330			ret = false;
 331			goto done;
 332		}
 
 
 
 
 
 
 
 
 
 333	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 334
 335	/*
 336	 * This could be called with the enable lock held, or from atomic
 337	 * context. If the parent isn't enabled already, we can't do
 338	 * anything here. We can also assume this clock isn't enabled.
 339	 */
 340	if ((core->flags & CLK_OPS_PARENT_ENABLE) && core->parent)
 341		if (!clk_core_is_enabled(core->parent)) {
 342			ret = false;
 343			goto done;
 344		}
 
 
 
 345
 346	ret = core->ops->is_enabled(core->hw);
 347done:
 348	if (core->rpm_enabled)
 349		pm_runtime_put(core->dev);
 350
 351	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 352}
 
 353
 354/***    helper functions   ***/
 355
 356const char *__clk_get_name(const struct clk *clk)
 357{
 358	return !clk ? NULL : clk->core->name;
 359}
 360EXPORT_SYMBOL_GPL(__clk_get_name);
 361
 362const char *clk_hw_get_name(const struct clk_hw *hw)
 363{
 364	return hw->core->name;
 365}
 366EXPORT_SYMBOL_GPL(clk_hw_get_name);
 367
 368struct clk_hw *__clk_get_hw(struct clk *clk)
 369{
 370	return !clk ? NULL : clk->core->hw;
 371}
 372EXPORT_SYMBOL_GPL(__clk_get_hw);
 373
 374unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
 375{
 376	return hw->core->num_parents;
 377}
 378EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
 379
 380struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
 381{
 382	return hw->core->parent ? hw->core->parent->hw : NULL;
 383}
 384EXPORT_SYMBOL_GPL(clk_hw_get_parent);
 385
 386static struct clk_core *__clk_lookup_subtree(const char *name,
 387					     struct clk_core *core)
 388{
 389	struct clk_core *child;
 390	struct clk_core *ret;
 391
 392	if (!strcmp(core->name, name))
 393		return core;
 394
 395	hlist_for_each_entry(child, &core->children, child_node) {
 396		ret = __clk_lookup_subtree(name, child);
 397		if (ret)
 398			return ret;
 399	}
 400
 401	return NULL;
 402}
 403
 404static struct clk_core *clk_core_lookup(const char *name)
 405{
 406	struct clk_core *root_clk;
 407	struct clk_core *ret;
 408
 409	if (!name)
 410		return NULL;
 411
 412	/* search the 'proper' clk tree first */
 413	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
 414		ret = __clk_lookup_subtree(name, root_clk);
 415		if (ret)
 416			return ret;
 417	}
 418
 419	/* if not found, then search the orphan tree */
 420	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
 421		ret = __clk_lookup_subtree(name, root_clk);
 422		if (ret)
 423			return ret;
 424	}
 425
 426	return NULL;
 427}
 428
 429#ifdef CONFIG_OF
 430static int of_parse_clkspec(const struct device_node *np, int index,
 431			    const char *name, struct of_phandle_args *out_args);
 432static struct clk_hw *
 433of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
 434#else
 435static inline int of_parse_clkspec(const struct device_node *np, int index,
 436				   const char *name,
 437				   struct of_phandle_args *out_args)
 438{
 439	return -ENOENT;
 440}
 441static inline struct clk_hw *
 442of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
 443{
 444	return ERR_PTR(-ENOENT);
 445}
 446#endif
 447
 448/**
 449 * clk_core_get - Find the clk_core parent of a clk
 450 * @core: clk to find parent of
 451 * @p_index: parent index to search for
 452 *
 453 * This is the preferred method for clk providers to find the parent of a
 454 * clk when that parent is external to the clk controller. The parent_names
 455 * array is indexed and treated as a local name matching a string in the device
 456 * node's 'clock-names' property or as the 'con_id' matching the device's
 457 * dev_name() in a clk_lookup. This allows clk providers to use their own
 458 * namespace instead of looking for a globally unique parent string.
 459 *
 460 * For example the following DT snippet would allow a clock registered by the
 461 * clock-controller@c001 that has a clk_init_data::parent_data array
 462 * with 'xtal' in the 'name' member to find the clock provided by the
 463 * clock-controller@f00abcd without needing to get the globally unique name of
 464 * the xtal clk.
 465 *
 466 *      parent: clock-controller@f00abcd {
 467 *              reg = <0xf00abcd 0xabcd>;
 468 *              #clock-cells = <0>;
 469 *      };
 470 *
 471 *      clock-controller@c001 {
 472 *              reg = <0xc001 0xf00d>;
 473 *              clocks = <&parent>;
 474 *              clock-names = "xtal";
 475 *              #clock-cells = <1>;
 476 *      };
 477 *
 478 * Returns: -ENOENT when the provider can't be found or the clk doesn't
 479 * exist in the provider or the name can't be found in the DT node or
 480 * in a clkdev lookup. NULL when the provider knows about the clk but it
 481 * isn't provided on this system.
 482 * A valid clk_core pointer when the clk can be found in the provider.
 483 */
 484static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
 485{
 486	const char *name = core->parents[p_index].fw_name;
 487	int index = core->parents[p_index].index;
 488	struct clk_hw *hw = ERR_PTR(-ENOENT);
 489	struct device *dev = core->dev;
 490	const char *dev_id = dev ? dev_name(dev) : NULL;
 491	struct device_node *np = core->of_node;
 492	struct of_phandle_args clkspec;
 493
 494	if (np && (name || index >= 0) &&
 495	    !of_parse_clkspec(np, index, name, &clkspec)) {
 496		hw = of_clk_get_hw_from_clkspec(&clkspec);
 497		of_node_put(clkspec.np);
 498	} else if (name) {
 499		/*
 500		 * If the DT search above couldn't find the provider fallback to
 501		 * looking up via clkdev based clk_lookups.
 502		 */
 503		hw = clk_find_hw(dev_id, name);
 504	}
 505
 506	if (IS_ERR(hw))
 507		return ERR_CAST(hw);
 508
 509	if (!hw)
 510		return NULL;
 511
 512	return hw->core;
 513}
 514
 515static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
 516{
 517	struct clk_parent_map *entry = &core->parents[index];
 518	struct clk_core *parent;
 519
 520	if (entry->hw) {
 521		parent = entry->hw->core;
 522	} else {
 523		parent = clk_core_get(core, index);
 524		if (PTR_ERR(parent) == -ENOENT && entry->name)
 525			parent = clk_core_lookup(entry->name);
 526	}
 527
 528	/*
 529	 * We have a direct reference but it isn't registered yet?
 530	 * Orphan it and let clk_reparent() update the orphan status
 531	 * when the parent is registered.
 532	 */
 533	if (!parent)
 534		parent = ERR_PTR(-EPROBE_DEFER);
 535
 536	/* Only cache it if it's not an error */
 537	if (!IS_ERR(parent))
 538		entry->core = parent;
 539}
 540
 541static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
 542							 u8 index)
 543{
 544	if (!core || index >= core->num_parents || !core->parents)
 545		return NULL;
 546
 547	if (!core->parents[index].core)
 548		clk_core_fill_parent_index(core, index);
 
 549
 550	return core->parents[index].core;
 551}
 552
 553struct clk_hw *
 554clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
 555{
 556	struct clk_core *parent;
 557
 558	parent = clk_core_get_parent_by_index(hw->core, index);
 559
 560	return !parent ? NULL : parent->hw;
 561}
 562EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
 563
 564unsigned int __clk_get_enable_count(struct clk *clk)
 565{
 566	return !clk ? 0 : clk->core->enable_count;
 567}
 568
 569static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
 570{
 571	if (!core)
 572		return 0;
 573
 574	if (!core->num_parents || core->parent)
 575		return core->rate;
 
 
 576
 577	/*
 578	 * Clk must have a parent because num_parents > 0 but the parent isn't
 579	 * known yet. Best to return 0 as the rate of this clk until we can
 580	 * properly recalc the rate based on the parent's rate.
 581	 */
 582	return 0;
 
 
 
 
 583}
 584
 585unsigned long clk_hw_get_rate(const struct clk_hw *hw)
 586{
 587	return clk_core_get_rate_nolock(hw->core);
 588}
 589EXPORT_SYMBOL_GPL(clk_hw_get_rate);
 590
 591static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
 592{
 593	if (!core)
 594		return 0;
 595
 596	return core->accuracy;
 597}
 598
 
 
 
 
 
 
 599unsigned long clk_hw_get_flags(const struct clk_hw *hw)
 600{
 601	return hw->core->flags;
 602}
 603EXPORT_SYMBOL_GPL(clk_hw_get_flags);
 604
 605bool clk_hw_is_prepared(const struct clk_hw *hw)
 606{
 607	return clk_core_is_prepared(hw->core);
 608}
 609EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
 610
 611bool clk_hw_is_enabled(const struct clk_hw *hw)
 612{
 613	return clk_core_is_enabled(hw->core);
 614}
 615EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
 616
 617bool __clk_is_enabled(struct clk *clk)
 618{
 619	if (!clk)
 620		return false;
 621
 622	return clk_core_is_enabled(clk->core);
 623}
 624EXPORT_SYMBOL_GPL(__clk_is_enabled);
 625
 626static bool mux_is_better_rate(unsigned long rate, unsigned long now,
 627			   unsigned long best, unsigned long flags)
 628{
 629	if (flags & CLK_MUX_ROUND_CLOSEST)
 630		return abs(now - rate) < abs(best - rate);
 631
 632	return now <= rate && now > best;
 633}
 634
 635static void clk_core_init_rate_req(struct clk_core * const core,
 636				   struct clk_rate_request *req,
 637				   unsigned long rate);
 638
 639static int clk_core_round_rate_nolock(struct clk_core *core,
 640				      struct clk_rate_request *req);
 641
 642static bool clk_core_has_parent(struct clk_core *core, const struct clk_core *parent)
 643{
 644	struct clk_core *tmp;
 645	unsigned int i;
 646
 647	/* Optimize for the case where the parent is already the parent. */
 648	if (core->parent == parent)
 649		return true;
 650
 651	for (i = 0; i < core->num_parents; i++) {
 652		tmp = clk_core_get_parent_by_index(core, i);
 653		if (!tmp)
 654			continue;
 655
 656		if (tmp == parent)
 657			return true;
 658	}
 659
 660	return false;
 661}
 662
 663static void
 664clk_core_forward_rate_req(struct clk_core *core,
 665			  const struct clk_rate_request *old_req,
 666			  struct clk_core *parent,
 667			  struct clk_rate_request *req,
 668			  unsigned long parent_rate)
 669{
 670	if (WARN_ON(!clk_core_has_parent(core, parent)))
 671		return;
 672
 673	clk_core_init_rate_req(parent, req, parent_rate);
 674
 675	if (req->min_rate < old_req->min_rate)
 676		req->min_rate = old_req->min_rate;
 677
 678	if (req->max_rate > old_req->max_rate)
 679		req->max_rate = old_req->max_rate;
 680}
 681
 682static int
 683clk_core_determine_rate_no_reparent(struct clk_hw *hw,
 684				    struct clk_rate_request *req)
 685{
 686	struct clk_core *core = hw->core;
 687	struct clk_core *parent = core->parent;
 688	unsigned long best;
 689	int ret;
 690
 691	if (core->flags & CLK_SET_RATE_PARENT) {
 692		struct clk_rate_request parent_req;
 693
 694		if (!parent) {
 695			req->rate = 0;
 696			return 0;
 697		}
 698
 699		clk_core_forward_rate_req(core, req, parent, &parent_req,
 700					  req->rate);
 701
 702		trace_clk_rate_request_start(&parent_req);
 703
 704		ret = clk_core_round_rate_nolock(parent, &parent_req);
 705		if (ret)
 706			return ret;
 707
 708		trace_clk_rate_request_done(&parent_req);
 709
 710		best = parent_req.rate;
 711	} else if (parent) {
 712		best = clk_core_get_rate_nolock(parent);
 713	} else {
 714		best = clk_core_get_rate_nolock(core);
 715	}
 716
 717	req->best_parent_rate = best;
 718	req->rate = best;
 719
 720	return 0;
 721}
 722
 723int clk_mux_determine_rate_flags(struct clk_hw *hw,
 724				 struct clk_rate_request *req,
 725				 unsigned long flags)
 726{
 727	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
 728	int i, num_parents, ret;
 729	unsigned long best = 0;
 
 730
 731	/* if NO_REPARENT flag set, pass through to current parent */
 732	if (core->flags & CLK_SET_RATE_NO_REPARENT)
 733		return clk_core_determine_rate_no_reparent(hw, req);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 734
 735	/* find the parent that can provide the fastest rate <= rate */
 736	num_parents = core->num_parents;
 737	for (i = 0; i < num_parents; i++) {
 738		unsigned long parent_rate;
 739
 740		parent = clk_core_get_parent_by_index(core, i);
 741		if (!parent)
 742			continue;
 743
 744		if (core->flags & CLK_SET_RATE_PARENT) {
 745			struct clk_rate_request parent_req;
 746
 747			clk_core_forward_rate_req(core, req, parent, &parent_req, req->rate);
 748
 749			trace_clk_rate_request_start(&parent_req);
 750
 751			ret = clk_core_round_rate_nolock(parent, &parent_req);
 752			if (ret)
 753				continue;
 754
 755			trace_clk_rate_request_done(&parent_req);
 756
 757			parent_rate = parent_req.rate;
 758		} else {
 759			parent_rate = clk_core_get_rate_nolock(parent);
 760		}
 761
 762		if (mux_is_better_rate(req->rate, parent_rate,
 763				       best, flags)) {
 764			best_parent = parent;
 765			best = parent_rate;
 766		}
 767	}
 768
 769	if (!best_parent)
 770		return -EINVAL;
 771
 772	req->best_parent_hw = best_parent->hw;
 
 
 773	req->best_parent_rate = best;
 774	req->rate = best;
 775
 776	return 0;
 777}
 778EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
 779
 780struct clk *__clk_lookup(const char *name)
 781{
 782	struct clk_core *core = clk_core_lookup(name);
 783
 784	return !core ? NULL : core->hw->clk;
 785}
 786
 787static void clk_core_get_boundaries(struct clk_core *core,
 788				    unsigned long *min_rate,
 789				    unsigned long *max_rate)
 790{
 791	struct clk *clk_user;
 792
 793	lockdep_assert_held(&prepare_lock);
 794
 795	*min_rate = core->min_rate;
 796	*max_rate = core->max_rate;
 797
 798	hlist_for_each_entry(clk_user, &core->clks, clks_node)
 799		*min_rate = max(*min_rate, clk_user->min_rate);
 800
 801	hlist_for_each_entry(clk_user, &core->clks, clks_node)
 802		*max_rate = min(*max_rate, clk_user->max_rate);
 803}
 804
 805/*
 806 * clk_hw_get_rate_range() - returns the clock rate range for a hw clk
 807 * @hw: the hw clk we want to get the range from
 808 * @min_rate: pointer to the variable that will hold the minimum
 809 * @max_rate: pointer to the variable that will hold the maximum
 810 *
 811 * Fills the @min_rate and @max_rate variables with the minimum and
 812 * maximum that clock can reach.
 813 */
 814void clk_hw_get_rate_range(struct clk_hw *hw, unsigned long *min_rate,
 815			   unsigned long *max_rate)
 816{
 817	clk_core_get_boundaries(hw->core, min_rate, max_rate);
 818}
 819EXPORT_SYMBOL_GPL(clk_hw_get_rate_range);
 820
 821static bool clk_core_check_boundaries(struct clk_core *core,
 822				      unsigned long min_rate,
 823				      unsigned long max_rate)
 824{
 825	struct clk *user;
 826
 827	lockdep_assert_held(&prepare_lock);
 828
 829	if (min_rate > core->max_rate || max_rate < core->min_rate)
 830		return false;
 831
 832	hlist_for_each_entry(user, &core->clks, clks_node)
 833		if (min_rate > user->max_rate || max_rate < user->min_rate)
 834			return false;
 835
 836	return true;
 837}
 838
 839void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
 840			   unsigned long max_rate)
 841{
 842	hw->core->min_rate = min_rate;
 843	hw->core->max_rate = max_rate;
 844}
 845EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
 846
 847/*
 848 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
 849 * @hw: mux type clk to determine rate on
 850 * @req: rate request, also used to return preferred parent and frequencies
 851 *
 852 * Helper for finding best parent to provide a given frequency. This can be used
 853 * directly as a determine_rate callback (e.g. for a mux), or from a more
 854 * complex clock that may combine a mux with other operations.
 855 *
 856 * Returns: 0 on success, -EERROR value on error
 857 */
 858int __clk_mux_determine_rate(struct clk_hw *hw,
 859			     struct clk_rate_request *req)
 860{
 861	return clk_mux_determine_rate_flags(hw, req, 0);
 862}
 863EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
 864
 865int __clk_mux_determine_rate_closest(struct clk_hw *hw,
 866				     struct clk_rate_request *req)
 867{
 868	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
 869}
 870EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
 871
 872/*
 873 * clk_hw_determine_rate_no_reparent - clk_ops::determine_rate implementation for a clk that doesn't reparent
 874 * @hw: mux type clk to determine rate on
 875 * @req: rate request, also used to return preferred frequency
 876 *
 877 * Helper for finding best parent rate to provide a given frequency.
 878 * This can be used directly as a determine_rate callback (e.g. for a
 879 * mux), or from a more complex clock that may combine a mux with other
 880 * operations.
 881 *
 882 * Returns: 0 on success, -EERROR value on error
 883 */
 884int clk_hw_determine_rate_no_reparent(struct clk_hw *hw,
 885				      struct clk_rate_request *req)
 886{
 887	return clk_core_determine_rate_no_reparent(hw, req);
 888}
 889EXPORT_SYMBOL_GPL(clk_hw_determine_rate_no_reparent);
 890
 891/***        clk api        ***/
 892
 893static void clk_core_rate_unprotect(struct clk_core *core)
 894{
 895	lockdep_assert_held(&prepare_lock);
 896
 897	if (!core)
 898		return;
 899
 900	if (WARN(core->protect_count == 0,
 901	    "%s already unprotected\n", core->name))
 902		return;
 903
 904	if (--core->protect_count > 0)
 905		return;
 906
 907	clk_core_rate_unprotect(core->parent);
 908}
 909
 910static int clk_core_rate_nuke_protect(struct clk_core *core)
 911{
 912	int ret;
 913
 914	lockdep_assert_held(&prepare_lock);
 915
 916	if (!core)
 917		return -EINVAL;
 918
 919	if (core->protect_count == 0)
 920		return 0;
 921
 922	ret = core->protect_count;
 923	core->protect_count = 1;
 924	clk_core_rate_unprotect(core);
 925
 926	return ret;
 927}
 928
 929/**
 930 * clk_rate_exclusive_put - release exclusivity over clock rate control
 931 * @clk: the clk over which the exclusivity is released
 932 *
 933 * clk_rate_exclusive_put() completes a critical section during which a clock
 934 * consumer cannot tolerate any other consumer making any operation on the
 935 * clock which could result in a rate change or rate glitch. Exclusive clocks
 936 * cannot have their rate changed, either directly or indirectly due to changes
 937 * further up the parent chain of clocks. As a result, clocks up parent chain
 938 * also get under exclusive control of the calling consumer.
 939 *
 940 * If exlusivity is claimed more than once on clock, even by the same consumer,
 941 * the rate effectively gets locked as exclusivity can't be preempted.
 942 *
 943 * Calls to clk_rate_exclusive_put() must be balanced with calls to
 944 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
 945 * error status.
 946 */
 947void clk_rate_exclusive_put(struct clk *clk)
 948{
 949	if (!clk)
 950		return;
 951
 952	clk_prepare_lock();
 953
 954	/*
 955	 * if there is something wrong with this consumer protect count, stop
 956	 * here before messing with the provider
 957	 */
 958	if (WARN_ON(clk->exclusive_count <= 0))
 959		goto out;
 960
 961	clk_core_rate_unprotect(clk->core);
 962	clk->exclusive_count--;
 963out:
 964	clk_prepare_unlock();
 965}
 966EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
 967
 968static void clk_core_rate_protect(struct clk_core *core)
 969{
 970	lockdep_assert_held(&prepare_lock);
 971
 972	if (!core)
 973		return;
 974
 975	if (core->protect_count == 0)
 976		clk_core_rate_protect(core->parent);
 977
 978	core->protect_count++;
 979}
 980
 981static void clk_core_rate_restore_protect(struct clk_core *core, int count)
 982{
 983	lockdep_assert_held(&prepare_lock);
 984
 985	if (!core)
 986		return;
 987
 988	if (count == 0)
 989		return;
 990
 991	clk_core_rate_protect(core);
 992	core->protect_count = count;
 993}
 994
 995/**
 996 * clk_rate_exclusive_get - get exclusivity over the clk rate control
 997 * @clk: the clk over which the exclusity of rate control is requested
 998 *
 999 * clk_rate_exclusive_get() begins a critical section during which a clock
1000 * consumer cannot tolerate any other consumer making any operation on the
1001 * clock which could result in a rate change or rate glitch. Exclusive clocks
1002 * cannot have their rate changed, either directly or indirectly due to changes
1003 * further up the parent chain of clocks. As a result, clocks up parent chain
1004 * also get under exclusive control of the calling consumer.
1005 *
1006 * If exlusivity is claimed more than once on clock, even by the same consumer,
1007 * the rate effectively gets locked as exclusivity can't be preempted.
1008 *
1009 * Calls to clk_rate_exclusive_get() should be balanced with calls to
1010 * clk_rate_exclusive_put(). Calls to this function may sleep.
1011 * Returns 0 on success, -EERROR otherwise
1012 */
1013int clk_rate_exclusive_get(struct clk *clk)
1014{
1015	if (!clk)
1016		return 0;
1017
1018	clk_prepare_lock();
1019	clk_core_rate_protect(clk->core);
1020	clk->exclusive_count++;
1021	clk_prepare_unlock();
1022
1023	return 0;
1024}
1025EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
1026
1027static void devm_clk_rate_exclusive_put(void *data)
1028{
1029	struct clk *clk = data;
1030
1031	clk_rate_exclusive_put(clk);
1032}
1033
1034int devm_clk_rate_exclusive_get(struct device *dev, struct clk *clk)
1035{
1036	int ret;
1037
1038	ret = clk_rate_exclusive_get(clk);
1039	if (ret)
1040		return ret;
1041
1042	return devm_add_action_or_reset(dev, devm_clk_rate_exclusive_put, clk);
1043}
1044EXPORT_SYMBOL_GPL(devm_clk_rate_exclusive_get);
1045
1046static void clk_core_unprepare(struct clk_core *core)
1047{
1048	lockdep_assert_held(&prepare_lock);
1049
1050	if (!core)
1051		return;
1052
1053	if (WARN(core->prepare_count == 0,
1054	    "%s already unprepared\n", core->name))
1055		return;
1056
1057	if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
1058	    "Unpreparing critical %s\n", core->name))
1059		return;
1060
1061	if (core->flags & CLK_SET_RATE_GATE)
1062		clk_core_rate_unprotect(core);
1063
1064	if (--core->prepare_count > 0)
1065		return;
1066
1067	WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
1068
1069	trace_clk_unprepare(core);
1070
1071	if (core->ops->unprepare)
1072		core->ops->unprepare(core->hw);
1073
1074	trace_clk_unprepare_complete(core);
1075	clk_core_unprepare(core->parent);
1076	clk_pm_runtime_put(core);
1077}
1078
1079static void clk_core_unprepare_lock(struct clk_core *core)
1080{
1081	clk_prepare_lock();
1082	clk_core_unprepare(core);
1083	clk_prepare_unlock();
1084}
1085
1086/**
1087 * clk_unprepare - undo preparation of a clock source
1088 * @clk: the clk being unprepared
1089 *
1090 * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
1091 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
1092 * if the operation may sleep.  One example is a clk which is accessed over
1093 * I2c.  In the complex case a clk gate operation may require a fast and a slow
1094 * part.  It is this reason that clk_unprepare and clk_disable are not mutually
1095 * exclusive.  In fact clk_disable must be called before clk_unprepare.
1096 */
1097void clk_unprepare(struct clk *clk)
1098{
1099	if (IS_ERR_OR_NULL(clk))
1100		return;
1101
1102	clk_core_unprepare_lock(clk->core);
 
 
1103}
1104EXPORT_SYMBOL_GPL(clk_unprepare);
1105
1106static int clk_core_prepare(struct clk_core *core)
1107{
1108	int ret = 0;
1109
1110	lockdep_assert_held(&prepare_lock);
1111
1112	if (!core)
1113		return 0;
1114
1115	if (core->prepare_count == 0) {
1116		ret = clk_pm_runtime_get(core);
1117		if (ret)
1118			return ret;
1119
1120		ret = clk_core_prepare(core->parent);
1121		if (ret)
1122			goto runtime_put;
1123
1124		trace_clk_prepare(core);
1125
1126		if (core->ops->prepare)
1127			ret = core->ops->prepare(core->hw);
1128
1129		trace_clk_prepare_complete(core);
1130
1131		if (ret)
1132			goto unprepare;
 
 
1133	}
1134
1135	core->prepare_count++;
1136
1137	/*
1138	 * CLK_SET_RATE_GATE is a special case of clock protection
1139	 * Instead of a consumer claiming exclusive rate control, it is
1140	 * actually the provider which prevents any consumer from making any
1141	 * operation which could result in a rate change or rate glitch while
1142	 * the clock is prepared.
1143	 */
1144	if (core->flags & CLK_SET_RATE_GATE)
1145		clk_core_rate_protect(core);
1146
1147	return 0;
1148unprepare:
1149	clk_core_unprepare(core->parent);
1150runtime_put:
1151	clk_pm_runtime_put(core);
1152	return ret;
1153}
1154
1155static int clk_core_prepare_lock(struct clk_core *core)
1156{
1157	int ret;
1158
1159	clk_prepare_lock();
1160	ret = clk_core_prepare(core);
1161	clk_prepare_unlock();
1162
1163	return ret;
1164}
1165
1166/**
1167 * clk_prepare - prepare a clock source
1168 * @clk: the clk being prepared
1169 *
1170 * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
1171 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
1172 * operation may sleep.  One example is a clk which is accessed over I2c.  In
1173 * the complex case a clk ungate operation may require a fast and a slow part.
1174 * It is this reason that clk_prepare and clk_enable are not mutually
1175 * exclusive.  In fact clk_prepare must be called before clk_enable.
1176 * Returns 0 on success, -EERROR otherwise.
1177 */
1178int clk_prepare(struct clk *clk)
1179{
 
 
1180	if (!clk)
1181		return 0;
1182
1183	return clk_core_prepare_lock(clk->core);
 
 
 
 
1184}
1185EXPORT_SYMBOL_GPL(clk_prepare);
1186
1187static void clk_core_disable(struct clk_core *core)
1188{
1189	lockdep_assert_held(&enable_lock);
1190
1191	if (!core)
1192		return;
1193
1194	if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
1195		return;
1196
1197	if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
1198	    "Disabling critical %s\n", core->name))
1199		return;
1200
1201	if (--core->enable_count > 0)
1202		return;
1203
1204	trace_clk_disable(core);
1205
1206	if (core->ops->disable)
1207		core->ops->disable(core->hw);
1208
1209	trace_clk_disable_complete(core);
1210
1211	clk_core_disable(core->parent);
1212}
1213
1214static void clk_core_disable_lock(struct clk_core *core)
1215{
1216	unsigned long flags;
1217
1218	flags = clk_enable_lock();
1219	clk_core_disable(core);
1220	clk_enable_unlock(flags);
1221}
1222
1223/**
1224 * clk_disable - gate a clock
1225 * @clk: the clk being gated
1226 *
1227 * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
1228 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
1229 * clk if the operation is fast and will never sleep.  One example is a
1230 * SoC-internal clk which is controlled via simple register writes.  In the
1231 * complex case a clk gate operation may require a fast and a slow part.  It is
1232 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
1233 * In fact clk_disable must be called before clk_unprepare.
1234 */
1235void clk_disable(struct clk *clk)
1236{
 
 
1237	if (IS_ERR_OR_NULL(clk))
1238		return;
1239
1240	clk_core_disable_lock(clk->core);
 
 
1241}
1242EXPORT_SYMBOL_GPL(clk_disable);
1243
1244static int clk_core_enable(struct clk_core *core)
1245{
1246	int ret = 0;
1247
1248	lockdep_assert_held(&enable_lock);
1249
1250	if (!core)
1251		return 0;
1252
1253	if (WARN(core->prepare_count == 0,
1254	    "Enabling unprepared %s\n", core->name))
1255		return -ESHUTDOWN;
1256
1257	if (core->enable_count == 0) {
1258		ret = clk_core_enable(core->parent);
1259
1260		if (ret)
1261			return ret;
1262
1263		trace_clk_enable(core);
1264
1265		if (core->ops->enable)
1266			ret = core->ops->enable(core->hw);
1267
1268		trace_clk_enable_complete(core);
1269
1270		if (ret) {
1271			clk_core_disable(core->parent);
1272			return ret;
1273		}
1274	}
1275
1276	core->enable_count++;
1277	return 0;
1278}
1279
1280static int clk_core_enable_lock(struct clk_core *core)
1281{
1282	unsigned long flags;
1283	int ret;
1284
1285	flags = clk_enable_lock();
1286	ret = clk_core_enable(core);
1287	clk_enable_unlock(flags);
1288
1289	return ret;
1290}
1291
1292/**
1293 * clk_gate_restore_context - restore context for poweroff
1294 * @hw: the clk_hw pointer of clock whose state is to be restored
1295 *
1296 * The clock gate restore context function enables or disables
1297 * the gate clocks based on the enable_count. This is done in cases
1298 * where the clock context is lost and based on the enable_count
1299 * the clock either needs to be enabled/disabled. This
1300 * helps restore the state of gate clocks.
1301 */
1302void clk_gate_restore_context(struct clk_hw *hw)
1303{
1304	struct clk_core *core = hw->core;
1305
1306	if (core->enable_count)
1307		core->ops->enable(hw);
1308	else
1309		core->ops->disable(hw);
1310}
1311EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1312
1313static int clk_core_save_context(struct clk_core *core)
1314{
1315	struct clk_core *child;
1316	int ret = 0;
1317
1318	hlist_for_each_entry(child, &core->children, child_node) {
1319		ret = clk_core_save_context(child);
1320		if (ret < 0)
1321			return ret;
1322	}
1323
1324	if (core->ops && core->ops->save_context)
1325		ret = core->ops->save_context(core->hw);
1326
1327	return ret;
1328}
1329
1330static void clk_core_restore_context(struct clk_core *core)
1331{
1332	struct clk_core *child;
1333
1334	if (core->ops && core->ops->restore_context)
1335		core->ops->restore_context(core->hw);
1336
1337	hlist_for_each_entry(child, &core->children, child_node)
1338		clk_core_restore_context(child);
1339}
1340
1341/**
1342 * clk_save_context - save clock context for poweroff
1343 *
1344 * Saves the context of the clock register for powerstates in which the
1345 * contents of the registers will be lost. Occurs deep within the suspend
1346 * code.  Returns 0 on success.
1347 */
1348int clk_save_context(void)
1349{
1350	struct clk_core *clk;
1351	int ret;
1352
1353	hlist_for_each_entry(clk, &clk_root_list, child_node) {
1354		ret = clk_core_save_context(clk);
1355		if (ret < 0)
1356			return ret;
1357	}
1358
1359	hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1360		ret = clk_core_save_context(clk);
1361		if (ret < 0)
1362			return ret;
1363	}
1364
1365	return 0;
1366}
1367EXPORT_SYMBOL_GPL(clk_save_context);
1368
1369/**
1370 * clk_restore_context - restore clock context after poweroff
1371 *
1372 * Restore the saved clock context upon resume.
1373 *
1374 */
1375void clk_restore_context(void)
1376{
1377	struct clk_core *core;
1378
1379	hlist_for_each_entry(core, &clk_root_list, child_node)
1380		clk_core_restore_context(core);
1381
1382	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1383		clk_core_restore_context(core);
1384}
1385EXPORT_SYMBOL_GPL(clk_restore_context);
1386
1387/**
1388 * clk_enable - ungate a clock
1389 * @clk: the clk being ungated
1390 *
1391 * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1392 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1393 * if the operation will never sleep.  One example is a SoC-internal clk which
1394 * is controlled via simple register writes.  In the complex case a clk ungate
1395 * operation may require a fast and a slow part.  It is this reason that
1396 * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1397 * must be called before clk_enable.  Returns 0 on success, -EERROR
1398 * otherwise.
1399 */
1400int clk_enable(struct clk *clk)
1401{
1402	if (!clk)
1403		return 0;
1404
1405	return clk_core_enable_lock(clk->core);
1406}
1407EXPORT_SYMBOL_GPL(clk_enable);
1408
1409/**
1410 * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it.
1411 * @clk: clock source
1412 *
1413 * Returns true if clk_prepare() implicitly enables the clock, effectively
1414 * making clk_enable()/clk_disable() no-ops, false otherwise.
1415 *
1416 * This is of interest mainly to power management code where actually
1417 * disabling the clock also requires unpreparing it to have any material
1418 * effect.
1419 *
1420 * Regardless of the value returned here, the caller must always invoke
1421 * clk_enable() or clk_prepare_enable()  and counterparts for usage counts
1422 * to be right.
1423 */
1424bool clk_is_enabled_when_prepared(struct clk *clk)
1425{
1426	return clk && !(clk->core->ops->enable && clk->core->ops->disable);
1427}
1428EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared);
1429
1430static int clk_core_prepare_enable(struct clk_core *core)
1431{
1432	int ret;
1433
1434	ret = clk_core_prepare_lock(core);
1435	if (ret)
1436		return ret;
1437
1438	ret = clk_core_enable_lock(core);
1439	if (ret)
1440		clk_core_unprepare_lock(core);
1441
1442	return ret;
1443}
1444
1445static void clk_core_disable_unprepare(struct clk_core *core)
1446{
1447	clk_core_disable_lock(core);
1448	clk_core_unprepare_lock(core);
1449}
1450
1451static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1452{
1453	struct clk_core *child;
1454
1455	lockdep_assert_held(&prepare_lock);
1456
1457	hlist_for_each_entry(child, &core->children, child_node)
1458		clk_unprepare_unused_subtree(child);
1459
1460	if (core->prepare_count)
1461		return;
1462
1463	if (core->flags & CLK_IGNORE_UNUSED)
1464		return;
1465
1466	if (clk_core_is_prepared(core)) {
1467		trace_clk_unprepare(core);
1468		if (core->ops->unprepare_unused)
1469			core->ops->unprepare_unused(core->hw);
1470		else if (core->ops->unprepare)
1471			core->ops->unprepare(core->hw);
1472		trace_clk_unprepare_complete(core);
1473	}
1474}
1475
1476static void __init clk_disable_unused_subtree(struct clk_core *core)
1477{
1478	struct clk_core *child;
1479	unsigned long flags;
1480
1481	lockdep_assert_held(&prepare_lock);
1482
1483	hlist_for_each_entry(child, &core->children, child_node)
1484		clk_disable_unused_subtree(child);
1485
1486	if (core->flags & CLK_OPS_PARENT_ENABLE)
1487		clk_core_prepare_enable(core->parent);
1488
1489	flags = clk_enable_lock();
1490
1491	if (core->enable_count)
1492		goto unlock_out;
1493
1494	if (core->flags & CLK_IGNORE_UNUSED)
1495		goto unlock_out;
1496
1497	/*
1498	 * some gate clocks have special needs during the disable-unused
1499	 * sequence.  call .disable_unused if available, otherwise fall
1500	 * back to .disable
1501	 */
1502	if (clk_core_is_enabled(core)) {
1503		trace_clk_disable(core);
1504		if (core->ops->disable_unused)
1505			core->ops->disable_unused(core->hw);
1506		else if (core->ops->disable)
1507			core->ops->disable(core->hw);
1508		trace_clk_disable_complete(core);
1509	}
1510
1511unlock_out:
1512	clk_enable_unlock(flags);
1513	if (core->flags & CLK_OPS_PARENT_ENABLE)
1514		clk_core_disable_unprepare(core->parent);
1515}
1516
1517static bool clk_ignore_unused __initdata;
1518static int __init clk_ignore_unused_setup(char *__unused)
1519{
1520	clk_ignore_unused = true;
1521	return 1;
1522}
1523__setup("clk_ignore_unused", clk_ignore_unused_setup);
1524
1525static int __init clk_disable_unused(void)
1526{
1527	struct clk_core *core;
1528	int ret;
1529
1530	if (clk_ignore_unused) {
1531		pr_warn("clk: Not disabling unused clocks\n");
1532		return 0;
1533	}
1534
1535	pr_info("clk: Disabling unused clocks\n");
1536
1537	ret = clk_pm_runtime_get_all();
1538	if (ret)
1539		return ret;
1540	/*
1541	 * Grab the prepare lock to keep the clk topology stable while iterating
1542	 * over clks.
1543	 */
1544	clk_prepare_lock();
1545
1546	hlist_for_each_entry(core, &clk_root_list, child_node)
1547		clk_disable_unused_subtree(core);
1548
1549	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1550		clk_disable_unused_subtree(core);
1551
1552	hlist_for_each_entry(core, &clk_root_list, child_node)
1553		clk_unprepare_unused_subtree(core);
1554
1555	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1556		clk_unprepare_unused_subtree(core);
1557
1558	clk_prepare_unlock();
1559
1560	clk_pm_runtime_put_all();
 
 
1561
1562	return 0;
1563}
1564late_initcall_sync(clk_disable_unused);
1565
1566static int clk_core_determine_round_nolock(struct clk_core *core,
1567					   struct clk_rate_request *req)
1568{
 
1569	long rate;
1570
1571	lockdep_assert_held(&prepare_lock);
1572
1573	if (!core)
1574		return 0;
1575
1576	/*
1577	 * Some clock providers hand-craft their clk_rate_requests and
1578	 * might not fill min_rate and max_rate.
1579	 *
1580	 * If it's the case, clamping the rate is equivalent to setting
1581	 * the rate to 0 which is bad. Skip the clamping but complain so
1582	 * that it gets fixed, hopefully.
1583	 */
1584	if (!req->min_rate && !req->max_rate)
1585		pr_warn("%s: %s: clk_rate_request has initialized min or max rate.\n",
1586			__func__, core->name);
1587	else
1588		req->rate = clamp(req->rate, req->min_rate, req->max_rate);
1589
1590	/*
1591	 * At this point, core protection will be disabled
1592	 * - if the provider is not protected at all
1593	 * - if the calling consumer is the only one which has exclusivity
1594	 *   over the provider
1595	 */
1596	if (clk_core_rate_is_protected(core)) {
1597		req->rate = core->rate;
1598	} else if (core->ops->determine_rate) {
1599		return core->ops->determine_rate(core->hw, req);
1600	} else if (core->ops->round_rate) {
1601		rate = core->ops->round_rate(core->hw, req->rate,
1602					     &req->best_parent_rate);
1603		if (rate < 0)
1604			return rate;
1605
1606		req->rate = rate;
1607	} else {
1608		return -EINVAL;
1609	}
1610
1611	return 0;
1612}
1613
1614static void clk_core_init_rate_req(struct clk_core * const core,
1615				   struct clk_rate_request *req,
1616				   unsigned long rate)
1617{
1618	struct clk_core *parent;
1619
1620	if (WARN_ON(!req))
1621		return;
1622
1623	memset(req, 0, sizeof(*req));
1624	req->max_rate = ULONG_MAX;
1625
1626	if (!core)
1627		return;
1628
1629	req->core = core;
1630	req->rate = rate;
1631	clk_core_get_boundaries(core, &req->min_rate, &req->max_rate);
1632
1633	parent = core->parent;
1634	if (parent) {
1635		req->best_parent_hw = parent->hw;
1636		req->best_parent_rate = parent->rate;
1637	} else {
1638		req->best_parent_hw = NULL;
1639		req->best_parent_rate = 0;
1640	}
1641}
1642
1643/**
1644 * clk_hw_init_rate_request - Initializes a clk_rate_request
1645 * @hw: the clk for which we want to submit a rate request
1646 * @req: the clk_rate_request structure we want to initialise
1647 * @rate: the rate which is to be requested
1648 *
1649 * Initializes a clk_rate_request structure to submit to
1650 * __clk_determine_rate() or similar functions.
1651 */
1652void clk_hw_init_rate_request(const struct clk_hw *hw,
1653			      struct clk_rate_request *req,
1654			      unsigned long rate)
1655{
1656	if (WARN_ON(!hw || !req))
1657		return;
1658
1659	clk_core_init_rate_req(hw->core, req, rate);
1660}
1661EXPORT_SYMBOL_GPL(clk_hw_init_rate_request);
1662
1663/**
1664 * clk_hw_forward_rate_request - Forwards a clk_rate_request to a clock's parent
1665 * @hw: the original clock that got the rate request
1666 * @old_req: the original clk_rate_request structure we want to forward
1667 * @parent: the clk we want to forward @old_req to
1668 * @req: the clk_rate_request structure we want to initialise
1669 * @parent_rate: The rate which is to be requested to @parent
1670 *
1671 * Initializes a clk_rate_request structure to submit to a clock parent
1672 * in __clk_determine_rate() or similar functions.
1673 */
1674void clk_hw_forward_rate_request(const struct clk_hw *hw,
1675				 const struct clk_rate_request *old_req,
1676				 const struct clk_hw *parent,
1677				 struct clk_rate_request *req,
1678				 unsigned long parent_rate)
1679{
1680	if (WARN_ON(!hw || !old_req || !parent || !req))
1681		return;
1682
1683	clk_core_forward_rate_req(hw->core, old_req,
1684				  parent->core, req,
1685				  parent_rate);
1686}
1687EXPORT_SYMBOL_GPL(clk_hw_forward_rate_request);
1688
1689static bool clk_core_can_round(struct clk_core * const core)
1690{
1691	return core->ops->determine_rate || core->ops->round_rate;
1692}
1693
1694static int clk_core_round_rate_nolock(struct clk_core *core,
1695				      struct clk_rate_request *req)
1696{
1697	int ret;
1698
1699	lockdep_assert_held(&prepare_lock);
1700
1701	if (!core) {
1702		req->rate = 0;
1703		return 0;
1704	}
1705
1706	if (clk_core_can_round(core))
1707		return clk_core_determine_round_nolock(core, req);
1708
1709	if (core->flags & CLK_SET_RATE_PARENT) {
1710		struct clk_rate_request parent_req;
1711
1712		clk_core_forward_rate_req(core, req, core->parent, &parent_req, req->rate);
1713
1714		trace_clk_rate_request_start(&parent_req);
1715
1716		ret = clk_core_round_rate_nolock(core->parent, &parent_req);
1717		if (ret)
1718			return ret;
1719
1720		trace_clk_rate_request_done(&parent_req);
1721
1722		req->best_parent_rate = parent_req.rate;
1723		req->rate = parent_req.rate;
1724
1725		return 0;
 
 
 
 
1726	}
1727
1728	req->rate = core->rate;
1729	return 0;
1730}
1731
1732/**
1733 * __clk_determine_rate - get the closest rate actually supported by a clock
1734 * @hw: determine the rate of this clock
1735 * @req: target rate request
 
 
1736 *
1737 * Useful for clk_ops such as .set_rate and .determine_rate.
1738 */
1739int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1740{
1741	if (!hw) {
1742		req->rate = 0;
1743		return 0;
1744	}
1745
1746	return clk_core_round_rate_nolock(hw->core, req);
1747}
1748EXPORT_SYMBOL_GPL(__clk_determine_rate);
1749
1750/**
1751 * clk_hw_round_rate() - round the given rate for a hw clk
1752 * @hw: the hw clk for which we are rounding a rate
1753 * @rate: the rate which is to be rounded
1754 *
1755 * Takes in a rate as input and rounds it to a rate that the clk can actually
1756 * use.
1757 *
1758 * Context: prepare_lock must be held.
1759 *          For clk providers to call from within clk_ops such as .round_rate,
1760 *          .determine_rate.
1761 *
1762 * Return: returns rounded rate of hw clk if clk supports round_rate operation
1763 *         else returns the parent rate.
1764 */
1765unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1766{
1767	int ret;
1768	struct clk_rate_request req;
1769
1770	clk_core_init_rate_req(hw->core, &req, rate);
1771
1772	trace_clk_rate_request_start(&req);
1773
1774	ret = clk_core_round_rate_nolock(hw->core, &req);
1775	if (ret)
1776		return 0;
1777
1778	trace_clk_rate_request_done(&req);
1779
1780	return req.rate;
1781}
1782EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1783
1784/**
1785 * clk_round_rate - round the given rate for a clk
1786 * @clk: the clk for which we are rounding a rate
1787 * @rate: the rate which is to be rounded
1788 *
1789 * Takes in a rate as input and rounds it to a rate that the clk can actually
1790 * use which is then returned.  If clk doesn't support round_rate operation
1791 * then the parent rate is returned.
1792 */
1793long clk_round_rate(struct clk *clk, unsigned long rate)
1794{
1795	struct clk_rate_request req;
1796	int ret;
1797
1798	if (!clk)
1799		return 0;
1800
1801	clk_prepare_lock();
1802
1803	if (clk->exclusive_count)
1804		clk_core_rate_unprotect(clk->core);
1805
1806	clk_core_init_rate_req(clk->core, &req, rate);
1807
1808	trace_clk_rate_request_start(&req);
1809
1810	ret = clk_core_round_rate_nolock(clk->core, &req);
1811
1812	trace_clk_rate_request_done(&req);
1813
1814	if (clk->exclusive_count)
1815		clk_core_rate_protect(clk->core);
1816
1817	clk_prepare_unlock();
1818
1819	if (ret)
1820		return ret;
1821
1822	return req.rate;
1823}
1824EXPORT_SYMBOL_GPL(clk_round_rate);
1825
1826/**
1827 * __clk_notify - call clk notifier chain
1828 * @core: clk that is changing rate
1829 * @msg: clk notifier type (see include/linux/clk.h)
1830 * @old_rate: old clk rate
1831 * @new_rate: new clk rate
1832 *
1833 * Triggers a notifier call chain on the clk rate-change notification
1834 * for 'clk'.  Passes a pointer to the struct clk and the previous
1835 * and current rates to the notifier callback.  Intended to be called by
1836 * internal clock code only.  Returns NOTIFY_DONE from the last driver
1837 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1838 * a driver returns that.
1839 */
1840static int __clk_notify(struct clk_core *core, unsigned long msg,
1841		unsigned long old_rate, unsigned long new_rate)
1842{
1843	struct clk_notifier *cn;
1844	struct clk_notifier_data cnd;
1845	int ret = NOTIFY_DONE;
1846
1847	cnd.old_rate = old_rate;
1848	cnd.new_rate = new_rate;
1849
1850	list_for_each_entry(cn, &clk_notifier_list, node) {
1851		if (cn->clk->core == core) {
1852			cnd.clk = cn->clk;
1853			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1854					&cnd);
1855			if (ret & NOTIFY_STOP_MASK)
1856				return ret;
1857		}
1858	}
1859
1860	return ret;
1861}
1862
1863/**
1864 * __clk_recalc_accuracies
1865 * @core: first clk in the subtree
1866 *
1867 * Walks the subtree of clks starting with clk and recalculates accuracies as
1868 * it goes.  Note that if a clk does not implement the .recalc_accuracy
1869 * callback then it is assumed that the clock will take on the accuracy of its
1870 * parent.
1871 */
1872static void __clk_recalc_accuracies(struct clk_core *core)
1873{
1874	unsigned long parent_accuracy = 0;
1875	struct clk_core *child;
1876
1877	lockdep_assert_held(&prepare_lock);
1878
1879	if (core->parent)
1880		parent_accuracy = core->parent->accuracy;
1881
1882	if (core->ops->recalc_accuracy)
1883		core->accuracy = core->ops->recalc_accuracy(core->hw,
1884							  parent_accuracy);
1885	else
1886		core->accuracy = parent_accuracy;
1887
1888	hlist_for_each_entry(child, &core->children, child_node)
1889		__clk_recalc_accuracies(child);
1890}
1891
1892static long clk_core_get_accuracy_recalc(struct clk_core *core)
1893{
 
 
 
1894	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1895		__clk_recalc_accuracies(core);
1896
1897	return clk_core_get_accuracy_no_lock(core);
 
 
 
1898}
1899
1900/**
1901 * clk_get_accuracy - return the accuracy of clk
1902 * @clk: the clk whose accuracy is being returned
1903 *
1904 * Simply returns the cached accuracy of the clk, unless
1905 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1906 * issued.
1907 * If clk is NULL then returns 0.
1908 */
1909long clk_get_accuracy(struct clk *clk)
1910{
1911	long accuracy;
1912
1913	if (!clk)
1914		return 0;
1915
1916	clk_prepare_lock();
1917	accuracy = clk_core_get_accuracy_recalc(clk->core);
1918	clk_prepare_unlock();
1919
1920	return accuracy;
1921}
1922EXPORT_SYMBOL_GPL(clk_get_accuracy);
1923
1924static unsigned long clk_recalc(struct clk_core *core,
1925				unsigned long parent_rate)
1926{
1927	unsigned long rate = parent_rate;
1928
1929	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1930		rate = core->ops->recalc_rate(core->hw, parent_rate);
1931		clk_pm_runtime_put(core);
1932	}
1933	return rate;
1934}
1935
1936/**
1937 * __clk_recalc_rates
1938 * @core: first clk in the subtree
1939 * @update_req: Whether req_rate should be updated with the new rate
1940 * @msg: notification type (see include/linux/clk.h)
1941 *
1942 * Walks the subtree of clks starting with clk and recalculates rates as it
1943 * goes.  Note that if a clk does not implement the .recalc_rate callback then
1944 * it is assumed that the clock will take on the rate of its parent.
1945 *
1946 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1947 * if necessary.
1948 */
1949static void __clk_recalc_rates(struct clk_core *core, bool update_req,
1950			       unsigned long msg)
1951{
1952	unsigned long old_rate;
1953	unsigned long parent_rate = 0;
1954	struct clk_core *child;
1955
1956	lockdep_assert_held(&prepare_lock);
1957
1958	old_rate = core->rate;
1959
1960	if (core->parent)
1961		parent_rate = core->parent->rate;
1962
1963	core->rate = clk_recalc(core, parent_rate);
1964	if (update_req)
1965		core->req_rate = core->rate;
1966
1967	/*
1968	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1969	 * & ABORT_RATE_CHANGE notifiers
1970	 */
1971	if (core->notifier_count && msg)
1972		__clk_notify(core, msg, old_rate, core->rate);
1973
1974	hlist_for_each_entry(child, &core->children, child_node)
1975		__clk_recalc_rates(child, update_req, msg);
1976}
1977
1978static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
1979{
 
 
 
 
1980	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1981		__clk_recalc_rates(core, false, 0);
1982
1983	return clk_core_get_rate_nolock(core);
 
 
 
1984}
1985
1986/**
1987 * clk_get_rate - return the rate of clk
1988 * @clk: the clk whose rate is being returned
1989 *
1990 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1991 * is set, which means a recalc_rate will be issued. Can be called regardless of
1992 * the clock enabledness. If clk is NULL, or if an error occurred, then returns
1993 * 0.
1994 */
1995unsigned long clk_get_rate(struct clk *clk)
1996{
1997	unsigned long rate;
1998
1999	if (!clk)
2000		return 0;
2001
2002	clk_prepare_lock();
2003	rate = clk_core_get_rate_recalc(clk->core);
2004	clk_prepare_unlock();
2005
2006	return rate;
2007}
2008EXPORT_SYMBOL_GPL(clk_get_rate);
2009
2010static int clk_fetch_parent_index(struct clk_core *core,
2011				  struct clk_core *parent)
2012{
2013	int i;
2014
2015	if (!parent)
2016		return -EINVAL;
2017
2018	for (i = 0; i < core->num_parents; i++) {
2019		/* Found it first try! */
2020		if (core->parents[i].core == parent)
2021			return i;
2022
2023		/* Something else is here, so keep looking */
2024		if (core->parents[i].core)
2025			continue;
2026
2027		/* Maybe core hasn't been cached but the hw is all we know? */
2028		if (core->parents[i].hw) {
2029			if (core->parents[i].hw == parent->hw)
2030				break;
2031
2032			/* Didn't match, but we're expecting a clk_hw */
2033			continue;
2034		}
2035
2036		/* Maybe it hasn't been cached (clk_set_parent() path) */
2037		if (parent == clk_core_get(core, i))
2038			break;
2039
2040		/* Fallback to comparing globally unique names */
2041		if (core->parents[i].name &&
2042		    !strcmp(parent->name, core->parents[i].name))
2043			break;
2044	}
2045
2046	if (i == core->num_parents)
2047		return -EINVAL;
2048
2049	core->parents[i].core = parent;
2050	return i;
2051}
2052
2053/**
2054 * clk_hw_get_parent_index - return the index of the parent clock
2055 * @hw: clk_hw associated with the clk being consumed
2056 *
2057 * Fetches and returns the index of parent clock. Returns -EINVAL if the given
2058 * clock does not have a current parent.
2059 */
2060int clk_hw_get_parent_index(struct clk_hw *hw)
2061{
2062	struct clk_hw *parent = clk_hw_get_parent(hw);
2063
2064	if (WARN_ON(parent == NULL))
2065		return -EINVAL;
2066
2067	return clk_fetch_parent_index(hw->core, parent->core);
2068}
2069EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
2070
2071/*
2072 * Update the orphan status of @core and all its children.
2073 */
2074static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
2075{
2076	struct clk_core *child;
2077
2078	core->orphan = is_orphan;
2079
2080	hlist_for_each_entry(child, &core->children, child_node)
2081		clk_core_update_orphan_status(child, is_orphan);
2082}
2083
2084static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
2085{
2086	bool was_orphan = core->orphan;
2087
2088	hlist_del(&core->child_node);
2089
2090	if (new_parent) {
2091		bool becomes_orphan = new_parent->orphan;
2092
2093		/* avoid duplicate POST_RATE_CHANGE notifications */
2094		if (new_parent->new_child == core)
2095			new_parent->new_child = NULL;
2096
2097		hlist_add_head(&core->child_node, &new_parent->children);
2098
2099		if (was_orphan != becomes_orphan)
2100			clk_core_update_orphan_status(core, becomes_orphan);
2101	} else {
2102		hlist_add_head(&core->child_node, &clk_orphan_list);
2103		if (!was_orphan)
2104			clk_core_update_orphan_status(core, true);
2105	}
2106
2107	core->parent = new_parent;
2108}
2109
2110static struct clk_core *__clk_set_parent_before(struct clk_core *core,
2111					   struct clk_core *parent)
2112{
2113	unsigned long flags;
2114	struct clk_core *old_parent = core->parent;
2115
2116	/*
2117	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
2118	 *
2119	 * 2. Migrate prepare state between parents and prevent race with
2120	 * clk_enable().
2121	 *
2122	 * If the clock is not prepared, then a race with
2123	 * clk_enable/disable() is impossible since we already have the
2124	 * prepare lock (future calls to clk_enable() need to be preceded by
2125	 * a clk_prepare()).
2126	 *
2127	 * If the clock is prepared, migrate the prepared state to the new
2128	 * parent and also protect against a race with clk_enable() by
2129	 * forcing the clock and the new parent on.  This ensures that all
2130	 * future calls to clk_enable() are practically NOPs with respect to
2131	 * hardware and software states.
2132	 *
2133	 * See also: Comment for clk_set_parent() below.
2134	 */
2135
2136	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
2137	if (core->flags & CLK_OPS_PARENT_ENABLE) {
2138		clk_core_prepare_enable(old_parent);
2139		clk_core_prepare_enable(parent);
2140	}
2141
2142	/* migrate prepare count if > 0 */
2143	if (core->prepare_count) {
2144		clk_core_prepare_enable(parent);
2145		clk_core_enable_lock(core);
 
 
 
2146	}
2147
2148	/* update the clk tree topology */
2149	flags = clk_enable_lock();
2150	clk_reparent(core, parent);
2151	clk_enable_unlock(flags);
2152
2153	return old_parent;
2154}
2155
2156static void __clk_set_parent_after(struct clk_core *core,
2157				   struct clk_core *parent,
2158				   struct clk_core *old_parent)
2159{
 
 
2160	/*
2161	 * Finish the migration of prepare state and undo the changes done
2162	 * for preventing a race with clk_enable().
2163	 */
2164	if (core->prepare_count) {
2165		clk_core_disable_lock(core);
2166		clk_core_disable_unprepare(old_parent);
2167	}
2168
2169	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
2170	if (core->flags & CLK_OPS_PARENT_ENABLE) {
2171		clk_core_disable_unprepare(parent);
2172		clk_core_disable_unprepare(old_parent);
2173	}
2174}
2175
2176static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
2177			    u8 p_index)
2178{
2179	unsigned long flags;
2180	int ret = 0;
2181	struct clk_core *old_parent;
2182
2183	old_parent = __clk_set_parent_before(core, parent);
2184
2185	trace_clk_set_parent(core, parent);
2186
2187	/* change clock input source */
2188	if (parent && core->ops->set_parent)
2189		ret = core->ops->set_parent(core->hw, p_index);
2190
2191	trace_clk_set_parent_complete(core, parent);
2192
2193	if (ret) {
2194		flags = clk_enable_lock();
2195		clk_reparent(core, old_parent);
2196		clk_enable_unlock(flags);
2197
2198		__clk_set_parent_after(core, old_parent, parent);
2199
2200		return ret;
2201	}
2202
2203	__clk_set_parent_after(core, parent, old_parent);
2204
2205	return 0;
2206}
2207
2208/**
2209 * __clk_speculate_rates
2210 * @core: first clk in the subtree
2211 * @parent_rate: the "future" rate of clk's parent
2212 *
2213 * Walks the subtree of clks starting with clk, speculating rates as it
2214 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
2215 *
2216 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
2217 * pre-rate change notifications and returns early if no clks in the
2218 * subtree have subscribed to the notifications.  Note that if a clk does not
2219 * implement the .recalc_rate callback then it is assumed that the clock will
2220 * take on the rate of its parent.
2221 */
2222static int __clk_speculate_rates(struct clk_core *core,
2223				 unsigned long parent_rate)
2224{
2225	struct clk_core *child;
2226	unsigned long new_rate;
2227	int ret = NOTIFY_DONE;
2228
2229	lockdep_assert_held(&prepare_lock);
2230
2231	new_rate = clk_recalc(core, parent_rate);
2232
2233	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
2234	if (core->notifier_count)
2235		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
2236
2237	if (ret & NOTIFY_STOP_MASK) {
2238		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
2239				__func__, core->name, ret);
2240		goto out;
2241	}
2242
2243	hlist_for_each_entry(child, &core->children, child_node) {
2244		ret = __clk_speculate_rates(child, new_rate);
2245		if (ret & NOTIFY_STOP_MASK)
2246			break;
2247	}
2248
2249out:
2250	return ret;
2251}
2252
2253static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
2254			     struct clk_core *new_parent, u8 p_index)
2255{
2256	struct clk_core *child;
2257
2258	core->new_rate = new_rate;
2259	core->new_parent = new_parent;
2260	core->new_parent_index = p_index;
2261	/* include clk in new parent's PRE_RATE_CHANGE notifications */
2262	core->new_child = NULL;
2263	if (new_parent && new_parent != core->parent)
2264		new_parent->new_child = core;
2265
2266	hlist_for_each_entry(child, &core->children, child_node) {
2267		child->new_rate = clk_recalc(child, new_rate);
2268		clk_calc_subtree(child, child->new_rate, NULL, 0);
2269	}
2270}
2271
2272/*
2273 * calculate the new rates returning the topmost clock that has to be
2274 * changed.
2275 */
2276static struct clk_core *clk_calc_new_rates(struct clk_core *core,
2277					   unsigned long rate)
2278{
2279	struct clk_core *top = core;
2280	struct clk_core *old_parent, *parent;
2281	unsigned long best_parent_rate = 0;
2282	unsigned long new_rate;
2283	unsigned long min_rate;
2284	unsigned long max_rate;
2285	int p_index = 0;
2286	long ret;
2287
2288	/* sanity */
2289	if (IS_ERR_OR_NULL(core))
2290		return NULL;
2291
2292	/* save parent rate, if it exists */
2293	parent = old_parent = core->parent;
2294	if (parent)
2295		best_parent_rate = parent->rate;
2296
2297	clk_core_get_boundaries(core, &min_rate, &max_rate);
2298
2299	/* find the closest rate and parent clk/rate */
2300	if (clk_core_can_round(core)) {
2301		struct clk_rate_request req;
2302
2303		clk_core_init_rate_req(core, &req, rate);
2304
2305		trace_clk_rate_request_start(&req);
 
 
 
 
 
 
 
2306
2307		ret = clk_core_determine_round_nolock(core, &req);
2308		if (ret < 0)
2309			return NULL;
2310
2311		trace_clk_rate_request_done(&req);
2312
2313		best_parent_rate = req.best_parent_rate;
2314		new_rate = req.rate;
2315		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
 
 
 
 
 
2316
 
2317		if (new_rate < min_rate || new_rate > max_rate)
2318			return NULL;
2319	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
2320		/* pass-through clock without adjustable parent */
2321		core->new_rate = core->rate;
2322		return NULL;
2323	} else {
2324		/* pass-through clock with adjustable parent */
2325		top = clk_calc_new_rates(parent, rate);
2326		new_rate = parent->new_rate;
2327		goto out;
2328	}
2329
2330	/* some clocks must be gated to change parent */
2331	if (parent != old_parent &&
2332	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
2333		pr_debug("%s: %s not gated but wants to reparent\n",
2334			 __func__, core->name);
2335		return NULL;
2336	}
2337
2338	/* try finding the new parent index */
2339	if (parent && core->num_parents > 1) {
2340		p_index = clk_fetch_parent_index(core, parent);
2341		if (p_index < 0) {
2342			pr_debug("%s: clk %s can not be parent of clk %s\n",
2343				 __func__, parent->name, core->name);
2344			return NULL;
2345		}
2346	}
2347
2348	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
2349	    best_parent_rate != parent->rate)
2350		top = clk_calc_new_rates(parent, best_parent_rate);
2351
2352out:
2353	clk_calc_subtree(core, new_rate, parent, p_index);
2354
2355	return top;
2356}
2357
2358/*
2359 * Notify about rate changes in a subtree. Always walk down the whole tree
2360 * so that in case of an error we can walk down the whole tree again and
2361 * abort the change.
2362 */
2363static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
2364						  unsigned long event)
2365{
2366	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
2367	int ret = NOTIFY_DONE;
2368
2369	if (core->rate == core->new_rate)
2370		return NULL;
2371
2372	if (core->notifier_count) {
2373		ret = __clk_notify(core, event, core->rate, core->new_rate);
2374		if (ret & NOTIFY_STOP_MASK)
2375			fail_clk = core;
2376	}
2377
2378	hlist_for_each_entry(child, &core->children, child_node) {
2379		/* Skip children who will be reparented to another clock */
2380		if (child->new_parent && child->new_parent != core)
2381			continue;
2382		tmp_clk = clk_propagate_rate_change(child, event);
2383		if (tmp_clk)
2384			fail_clk = tmp_clk;
2385	}
2386
2387	/* handle the new child who might not be in core->children yet */
2388	if (core->new_child) {
2389		tmp_clk = clk_propagate_rate_change(core->new_child, event);
2390		if (tmp_clk)
2391			fail_clk = tmp_clk;
2392	}
2393
2394	return fail_clk;
2395}
2396
2397/*
2398 * walk down a subtree and set the new rates notifying the rate
2399 * change on the way
2400 */
2401static void clk_change_rate(struct clk_core *core)
2402{
2403	struct clk_core *child;
2404	struct hlist_node *tmp;
2405	unsigned long old_rate;
2406	unsigned long best_parent_rate = 0;
2407	bool skip_set_rate = false;
2408	struct clk_core *old_parent;
2409	struct clk_core *parent = NULL;
2410
2411	old_rate = core->rate;
2412
2413	if (core->new_parent) {
2414		parent = core->new_parent;
2415		best_parent_rate = core->new_parent->rate;
2416	} else if (core->parent) {
2417		parent = core->parent;
2418		best_parent_rate = core->parent->rate;
2419	}
2420
2421	if (clk_pm_runtime_get(core))
2422		return;
2423
2424	if (core->flags & CLK_SET_RATE_UNGATE) {
 
 
2425		clk_core_prepare(core);
2426		clk_core_enable_lock(core);
 
 
2427	}
2428
2429	if (core->new_parent && core->new_parent != core->parent) {
2430		old_parent = __clk_set_parent_before(core, core->new_parent);
2431		trace_clk_set_parent(core, core->new_parent);
2432
2433		if (core->ops->set_rate_and_parent) {
2434			skip_set_rate = true;
2435			core->ops->set_rate_and_parent(core->hw, core->new_rate,
2436					best_parent_rate,
2437					core->new_parent_index);
2438		} else if (core->ops->set_parent) {
2439			core->ops->set_parent(core->hw, core->new_parent_index);
2440		}
2441
2442		trace_clk_set_parent_complete(core, core->new_parent);
2443		__clk_set_parent_after(core, core->new_parent, old_parent);
2444	}
2445
2446	if (core->flags & CLK_OPS_PARENT_ENABLE)
2447		clk_core_prepare_enable(parent);
2448
2449	trace_clk_set_rate(core, core->new_rate);
2450
2451	if (!skip_set_rate && core->ops->set_rate)
2452		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2453
2454	trace_clk_set_rate_complete(core, core->new_rate);
2455
2456	core->rate = clk_recalc(core, best_parent_rate);
2457
2458	if (core->flags & CLK_SET_RATE_UNGATE) {
2459		clk_core_disable_lock(core);
 
 
 
 
2460		clk_core_unprepare(core);
2461	}
2462
2463	if (core->flags & CLK_OPS_PARENT_ENABLE)
2464		clk_core_disable_unprepare(parent);
2465
2466	if (core->notifier_count && old_rate != core->rate)
2467		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2468
2469	if (core->flags & CLK_RECALC_NEW_RATES)
2470		(void)clk_calc_new_rates(core, core->new_rate);
2471
2472	/*
2473	 * Use safe iteration, as change_rate can actually swap parents
2474	 * for certain clock types.
2475	 */
2476	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2477		/* Skip children who will be reparented to another clock */
2478		if (child->new_parent && child->new_parent != core)
2479			continue;
2480		clk_change_rate(child);
2481	}
2482
2483	/* handle the new child who might not be in core->children yet */
2484	if (core->new_child)
2485		clk_change_rate(core->new_child);
2486
2487	clk_pm_runtime_put(core);
2488}
2489
2490static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2491						     unsigned long req_rate)
2492{
2493	int ret, cnt;
2494	struct clk_rate_request req;
2495
2496	lockdep_assert_held(&prepare_lock);
2497
2498	if (!core)
2499		return 0;
2500
2501	/* simulate what the rate would be if it could be freely set */
2502	cnt = clk_core_rate_nuke_protect(core);
2503	if (cnt < 0)
2504		return cnt;
2505
2506	clk_core_init_rate_req(core, &req, req_rate);
2507
2508	trace_clk_rate_request_start(&req);
2509
2510	ret = clk_core_round_rate_nolock(core, &req);
2511
2512	trace_clk_rate_request_done(&req);
2513
2514	/* restore the protection */
2515	clk_core_rate_restore_protect(core, cnt);
2516
2517	return ret ? 0 : req.rate;
2518}
2519
2520static int clk_core_set_rate_nolock(struct clk_core *core,
2521				    unsigned long req_rate)
2522{
2523	struct clk_core *top, *fail_clk;
2524	unsigned long rate;
2525	int ret;
2526
2527	if (!core)
2528		return 0;
2529
2530	rate = clk_core_req_round_rate_nolock(core, req_rate);
2531
2532	/* bail early if nothing to do */
2533	if (rate == clk_core_get_rate_nolock(core))
2534		return 0;
2535
2536	/* fail on a direct rate set of a protected provider */
2537	if (clk_core_rate_is_protected(core))
2538		return -EBUSY;
2539
2540	/* calculate new rates and get the topmost changed clock */
2541	top = clk_calc_new_rates(core, req_rate);
2542	if (!top)
2543		return -EINVAL;
2544
2545	ret = clk_pm_runtime_get(core);
2546	if (ret)
2547		return ret;
2548
2549	/* notify that we are about to change rates */
2550	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2551	if (fail_clk) {
2552		pr_debug("%s: failed to set %s rate\n", __func__,
2553				fail_clk->name);
2554		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2555		ret = -EBUSY;
2556		goto err;
2557	}
2558
2559	/* change the rates */
2560	clk_change_rate(top);
2561
2562	core->req_rate = req_rate;
2563err:
2564	clk_pm_runtime_put(core);
2565
2566	return ret;
2567}
2568
2569/**
2570 * clk_set_rate - specify a new rate for clk
2571 * @clk: the clk whose rate is being changed
2572 * @rate: the new rate for clk
2573 *
2574 * In the simplest case clk_set_rate will only adjust the rate of clk.
2575 *
2576 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2577 * propagate up to clk's parent; whether or not this happens depends on the
2578 * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
2579 * after calling .round_rate then upstream parent propagation is ignored.  If
2580 * *parent_rate comes back with a new rate for clk's parent then we propagate
2581 * up to clk's parent and set its rate.  Upward propagation will continue
2582 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2583 * .round_rate stops requesting changes to clk's parent_rate.
2584 *
2585 * Rate changes are accomplished via tree traversal that also recalculates the
2586 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2587 *
2588 * Returns 0 on success, -EERROR otherwise.
2589 */
2590int clk_set_rate(struct clk *clk, unsigned long rate)
2591{
2592	int ret;
2593
2594	if (!clk)
2595		return 0;
2596
2597	/* prevent racing with updates to the clock topology */
2598	clk_prepare_lock();
2599
2600	if (clk->exclusive_count)
2601		clk_core_rate_unprotect(clk->core);
2602
2603	ret = clk_core_set_rate_nolock(clk->core, rate);
2604
2605	if (clk->exclusive_count)
2606		clk_core_rate_protect(clk->core);
2607
2608	clk_prepare_unlock();
2609
2610	return ret;
2611}
2612EXPORT_SYMBOL_GPL(clk_set_rate);
2613
2614/**
2615 * clk_set_rate_exclusive - specify a new rate and get exclusive control
2616 * @clk: the clk whose rate is being changed
2617 * @rate: the new rate for clk
2618 *
2619 * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2620 * within a critical section
2621 *
2622 * This can be used initially to ensure that at least 1 consumer is
2623 * satisfied when several consumers are competing for exclusivity over the
2624 * same clock provider.
2625 *
2626 * The exclusivity is not applied if setting the rate failed.
2627 *
2628 * Calls to clk_rate_exclusive_get() should be balanced with calls to
2629 * clk_rate_exclusive_put().
2630 *
2631 * Returns 0 on success, -EERROR otherwise.
2632 */
2633int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2634{
2635	int ret;
2636
2637	if (!clk)
2638		return 0;
2639
2640	/* prevent racing with updates to the clock topology */
2641	clk_prepare_lock();
2642
2643	/*
2644	 * The temporary protection removal is not here, on purpose
2645	 * This function is meant to be used instead of clk_rate_protect,
2646	 * so before the consumer code path protect the clock provider
2647	 */
2648
2649	ret = clk_core_set_rate_nolock(clk->core, rate);
2650	if (!ret) {
2651		clk_core_rate_protect(clk->core);
2652		clk->exclusive_count++;
2653	}
2654
2655	clk_prepare_unlock();
2656
2657	return ret;
2658}
2659EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2660
2661static int clk_set_rate_range_nolock(struct clk *clk,
2662				     unsigned long min,
2663				     unsigned long max)
2664{
2665	int ret = 0;
2666	unsigned long old_min, old_max, rate;
2667
2668	lockdep_assert_held(&prepare_lock);
2669
2670	if (!clk)
2671		return 0;
2672
2673	trace_clk_set_rate_range(clk->core, min, max);
2674
2675	if (min > max) {
2676		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2677		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2678		       min, max);
2679		return -EINVAL;
2680	}
2681
2682	if (clk->exclusive_count)
2683		clk_core_rate_unprotect(clk->core);
2684
2685	/* Save the current values in case we need to rollback the change */
2686	old_min = clk->min_rate;
2687	old_max = clk->max_rate;
2688	clk->min_rate = min;
2689	clk->max_rate = max;
2690
2691	if (!clk_core_check_boundaries(clk->core, min, max)) {
2692		ret = -EINVAL;
2693		goto out;
2694	}
2695
2696	rate = clk->core->req_rate;
2697	if (clk->core->flags & CLK_GET_RATE_NOCACHE)
2698		rate = clk_core_get_rate_recalc(clk->core);
2699
2700	/*
2701	 * Since the boundaries have been changed, let's give the
2702	 * opportunity to the provider to adjust the clock rate based on
2703	 * the new boundaries.
2704	 *
2705	 * We also need to handle the case where the clock is currently
2706	 * outside of the boundaries. Clamping the last requested rate
2707	 * to the current minimum and maximum will also handle this.
2708	 *
2709	 * FIXME:
2710	 * There is a catch. It may fail for the usual reason (clock
2711	 * broken, clock protected, etc) but also because:
2712	 * - round_rate() was not favorable and fell on the wrong
2713	 *   side of the boundary
2714	 * - the determine_rate() callback does not really check for
2715	 *   this corner case when determining the rate
2716	 */
2717	rate = clamp(rate, min, max);
2718	ret = clk_core_set_rate_nolock(clk->core, rate);
2719	if (ret) {
2720		/* rollback the changes */
2721		clk->min_rate = old_min;
2722		clk->max_rate = old_max;
2723	}
2724
2725out:
2726	if (clk->exclusive_count)
2727		clk_core_rate_protect(clk->core);
2728
2729	return ret;
2730}
2731
2732/**
2733 * clk_set_rate_range - set a rate range for a clock source
2734 * @clk: clock source
2735 * @min: desired minimum clock rate in Hz, inclusive
2736 * @max: desired maximum clock rate in Hz, inclusive
2737 *
2738 * Return: 0 for success or negative errno on failure.
2739 */
2740int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2741{
2742	int ret;
2743
2744	if (!clk)
2745		return 0;
2746
2747	clk_prepare_lock();
2748
2749	ret = clk_set_rate_range_nolock(clk, min, max);
 
 
 
 
2750
2751	clk_prepare_unlock();
2752
2753	return ret;
2754}
2755EXPORT_SYMBOL_GPL(clk_set_rate_range);
2756
2757/**
2758 * clk_set_min_rate - set a minimum clock rate for a clock source
2759 * @clk: clock source
2760 * @rate: desired minimum clock rate in Hz, inclusive
2761 *
2762 * Returns success (0) or negative errno.
2763 */
2764int clk_set_min_rate(struct clk *clk, unsigned long rate)
2765{
2766	if (!clk)
2767		return 0;
2768
2769	trace_clk_set_min_rate(clk->core, rate);
2770
2771	return clk_set_rate_range(clk, rate, clk->max_rate);
2772}
2773EXPORT_SYMBOL_GPL(clk_set_min_rate);
2774
2775/**
2776 * clk_set_max_rate - set a maximum clock rate for a clock source
2777 * @clk: clock source
2778 * @rate: desired maximum clock rate in Hz, inclusive
2779 *
2780 * Returns success (0) or negative errno.
2781 */
2782int clk_set_max_rate(struct clk *clk, unsigned long rate)
2783{
2784	if (!clk)
2785		return 0;
2786
2787	trace_clk_set_max_rate(clk->core, rate);
2788
2789	return clk_set_rate_range(clk, clk->min_rate, rate);
2790}
2791EXPORT_SYMBOL_GPL(clk_set_max_rate);
2792
2793/**
2794 * clk_get_parent - return the parent of a clk
2795 * @clk: the clk whose parent gets returned
2796 *
2797 * Simply returns clk->parent.  Returns NULL if clk is NULL.
2798 */
2799struct clk *clk_get_parent(struct clk *clk)
2800{
2801	struct clk *parent;
2802
2803	if (!clk)
2804		return NULL;
2805
2806	clk_prepare_lock();
2807	/* TODO: Create a per-user clk and change callers to call clk_put */
2808	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2809	clk_prepare_unlock();
2810
2811	return parent;
2812}
2813EXPORT_SYMBOL_GPL(clk_get_parent);
2814
2815static struct clk_core *__clk_init_parent(struct clk_core *core)
2816{
2817	u8 index = 0;
2818
2819	if (core->num_parents > 1 && core->ops->get_parent)
2820		index = core->ops->get_parent(core->hw);
2821
2822	return clk_core_get_parent_by_index(core, index);
2823}
2824
2825static void clk_core_reparent(struct clk_core *core,
2826				  struct clk_core *new_parent)
2827{
2828	clk_reparent(core, new_parent);
2829	__clk_recalc_accuracies(core);
2830	__clk_recalc_rates(core, true, POST_RATE_CHANGE);
2831}
2832
2833void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2834{
2835	if (!hw)
2836		return;
2837
2838	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2839}
2840
2841/**
2842 * clk_has_parent - check if a clock is a possible parent for another
2843 * @clk: clock source
2844 * @parent: parent clock source
2845 *
2846 * This function can be used in drivers that need to check that a clock can be
2847 * the parent of another without actually changing the parent.
2848 *
2849 * Returns true if @parent is a possible parent for @clk, false otherwise.
2850 */
2851bool clk_has_parent(const struct clk *clk, const struct clk *parent)
2852{
 
 
 
2853	/* NULL clocks should be nops, so return success if either is NULL. */
2854	if (!clk || !parent)
2855		return true;
2856
2857	return clk_core_has_parent(clk->core, parent->core);
 
 
 
 
 
 
 
 
 
 
 
2858}
2859EXPORT_SYMBOL_GPL(clk_has_parent);
2860
2861static int clk_core_set_parent_nolock(struct clk_core *core,
2862				      struct clk_core *parent)
2863{
2864	int ret = 0;
2865	int p_index = 0;
2866	unsigned long p_rate = 0;
2867
2868	lockdep_assert_held(&prepare_lock);
2869
2870	if (!core)
2871		return 0;
2872
 
 
 
2873	if (core->parent == parent)
2874		return 0;
2875
2876	/* verify ops for multi-parent clks */
2877	if (core->num_parents > 1 && !core->ops->set_parent)
2878		return -EPERM;
 
 
2879
2880	/* check that we are allowed to re-parent if the clock is in use */
2881	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2882		return -EBUSY;
2883
2884	if (clk_core_rate_is_protected(core))
2885		return -EBUSY;
2886
2887	/* try finding the new parent index */
2888	if (parent) {
2889		p_index = clk_fetch_parent_index(core, parent);
2890		if (p_index < 0) {
2891			pr_debug("%s: clk %s can not be parent of clk %s\n",
2892					__func__, parent->name, core->name);
2893			return p_index;
 
2894		}
2895		p_rate = parent->rate;
2896	}
2897
2898	ret = clk_pm_runtime_get(core);
2899	if (ret)
2900		return ret;
2901
2902	/* propagate PRE_RATE_CHANGE notifications */
2903	ret = __clk_speculate_rates(core, p_rate);
2904
2905	/* abort if a driver objects */
2906	if (ret & NOTIFY_STOP_MASK)
2907		goto runtime_put;
2908
2909	/* do the re-parent */
2910	ret = __clk_set_parent(core, parent, p_index);
2911
2912	/* propagate rate an accuracy recalculation accordingly */
2913	if (ret) {
2914		__clk_recalc_rates(core, true, ABORT_RATE_CHANGE);
2915	} else {
2916		__clk_recalc_rates(core, true, POST_RATE_CHANGE);
2917		__clk_recalc_accuracies(core);
2918	}
2919
2920runtime_put:
2921	clk_pm_runtime_put(core);
2922
2923	return ret;
2924}
2925
2926int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2927{
2928	return clk_core_set_parent_nolock(hw->core, parent->core);
2929}
2930EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2931
2932/**
2933 * clk_set_parent - switch the parent of a mux clk
2934 * @clk: the mux clk whose input we are switching
2935 * @parent: the new input to clk
2936 *
2937 * Re-parent clk to use parent as its new input source.  If clk is in
2938 * prepared state, the clk will get enabled for the duration of this call. If
2939 * that's not acceptable for a specific clk (Eg: the consumer can't handle
2940 * that, the reparenting is glitchy in hardware, etc), use the
2941 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2942 *
2943 * After successfully changing clk's parent clk_set_parent will update the
2944 * clk topology, sysfs topology and propagate rate recalculation via
2945 * __clk_recalc_rates.
2946 *
2947 * Returns 0 on success, -EERROR otherwise.
2948 */
2949int clk_set_parent(struct clk *clk, struct clk *parent)
2950{
2951	int ret;
2952
2953	if (!clk)
2954		return 0;
2955
2956	clk_prepare_lock();
2957
2958	if (clk->exclusive_count)
2959		clk_core_rate_unprotect(clk->core);
2960
2961	ret = clk_core_set_parent_nolock(clk->core,
2962					 parent ? parent->core : NULL);
2963
2964	if (clk->exclusive_count)
2965		clk_core_rate_protect(clk->core);
2966
2967	clk_prepare_unlock();
2968
2969	return ret;
2970}
2971EXPORT_SYMBOL_GPL(clk_set_parent);
2972
2973static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2974{
2975	int ret = -EINVAL;
2976
2977	lockdep_assert_held(&prepare_lock);
2978
2979	if (!core)
2980		return 0;
2981
2982	if (clk_core_rate_is_protected(core))
2983		return -EBUSY;
2984
2985	trace_clk_set_phase(core, degrees);
2986
2987	if (core->ops->set_phase) {
2988		ret = core->ops->set_phase(core->hw, degrees);
2989		if (!ret)
2990			core->phase = degrees;
2991	}
2992
2993	trace_clk_set_phase_complete(core, degrees);
2994
2995	return ret;
2996}
2997
2998/**
2999 * clk_set_phase - adjust the phase shift of a clock signal
3000 * @clk: clock signal source
3001 * @degrees: number of degrees the signal is shifted
3002 *
3003 * Shifts the phase of a clock signal by the specified
3004 * degrees. Returns 0 on success, -EERROR otherwise.
3005 *
3006 * This function makes no distinction about the input or reference
3007 * signal that we adjust the clock signal phase against. For example
3008 * phase locked-loop clock signal generators we may shift phase with
3009 * respect to feedback clock signal input, but for other cases the
3010 * clock phase may be shifted with respect to some other, unspecified
3011 * signal.
3012 *
3013 * Additionally the concept of phase shift does not propagate through
3014 * the clock tree hierarchy, which sets it apart from clock rates and
3015 * clock accuracy. A parent clock phase attribute does not have an
3016 * impact on the phase attribute of a child clock.
3017 */
3018int clk_set_phase(struct clk *clk, int degrees)
3019{
3020	int ret;
3021
3022	if (!clk)
3023		return 0;
3024
3025	/* sanity check degrees */
3026	degrees %= 360;
3027	if (degrees < 0)
3028		degrees += 360;
3029
3030	clk_prepare_lock();
3031
3032	if (clk->exclusive_count)
3033		clk_core_rate_unprotect(clk->core);
 
3034
3035	ret = clk_core_set_phase_nolock(clk->core, degrees);
3036
3037	if (clk->exclusive_count)
3038		clk_core_rate_protect(clk->core);
3039
 
 
 
 
 
 
3040	clk_prepare_unlock();
3041
3042	return ret;
3043}
3044EXPORT_SYMBOL_GPL(clk_set_phase);
3045
3046static int clk_core_get_phase(struct clk_core *core)
3047{
3048	int ret;
3049
3050	lockdep_assert_held(&prepare_lock);
3051	if (!core->ops->get_phase)
3052		return 0;
3053
3054	/* Always try to update cached phase if possible */
3055	ret = core->ops->get_phase(core->hw);
3056	if (ret >= 0)
3057		core->phase = ret;
3058
3059	return ret;
3060}
3061
3062/**
3063 * clk_get_phase - return the phase shift of a clock signal
3064 * @clk: clock signal source
3065 *
3066 * Returns the phase shift of a clock node in degrees, otherwise returns
3067 * -EERROR.
3068 */
3069int clk_get_phase(struct clk *clk)
3070{
3071	int ret;
3072
3073	if (!clk)
3074		return 0;
3075
3076	clk_prepare_lock();
3077	ret = clk_core_get_phase(clk->core);
3078	clk_prepare_unlock();
3079
3080	return ret;
3081}
3082EXPORT_SYMBOL_GPL(clk_get_phase);
3083
3084static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
3085{
3086	/* Assume a default value of 50% */
3087	core->duty.num = 1;
3088	core->duty.den = 2;
3089}
3090
3091static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
3092
3093static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
3094{
3095	struct clk_duty *duty = &core->duty;
3096	int ret = 0;
3097
3098	if (!core->ops->get_duty_cycle)
3099		return clk_core_update_duty_cycle_parent_nolock(core);
3100
3101	ret = core->ops->get_duty_cycle(core->hw, duty);
3102	if (ret)
3103		goto reset;
3104
3105	/* Don't trust the clock provider too much */
3106	if (duty->den == 0 || duty->num > duty->den) {
3107		ret = -EINVAL;
3108		goto reset;
3109	}
3110
3111	return 0;
3112
3113reset:
3114	clk_core_reset_duty_cycle_nolock(core);
3115	return ret;
3116}
3117
3118static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
3119{
3120	int ret = 0;
3121
3122	if (core->parent &&
3123	    core->flags & CLK_DUTY_CYCLE_PARENT) {
3124		ret = clk_core_update_duty_cycle_nolock(core->parent);
3125		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
3126	} else {
3127		clk_core_reset_duty_cycle_nolock(core);
3128	}
3129
3130	return ret;
3131}
3132
3133static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
3134						 struct clk_duty *duty);
3135
3136static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
3137					  struct clk_duty *duty)
3138{
3139	int ret;
3140
3141	lockdep_assert_held(&prepare_lock);
3142
3143	if (clk_core_rate_is_protected(core))
3144		return -EBUSY;
3145
3146	trace_clk_set_duty_cycle(core, duty);
3147
3148	if (!core->ops->set_duty_cycle)
3149		return clk_core_set_duty_cycle_parent_nolock(core, duty);
3150
3151	ret = core->ops->set_duty_cycle(core->hw, duty);
3152	if (!ret)
3153		memcpy(&core->duty, duty, sizeof(*duty));
3154
3155	trace_clk_set_duty_cycle_complete(core, duty);
3156
3157	return ret;
3158}
3159
3160static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
3161						 struct clk_duty *duty)
3162{
3163	int ret = 0;
3164
3165	if (core->parent &&
3166	    core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
3167		ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
3168		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
3169	}
3170
3171	return ret;
3172}
3173
3174/**
3175 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
3176 * @clk: clock signal source
3177 * @num: numerator of the duty cycle ratio to be applied
3178 * @den: denominator of the duty cycle ratio to be applied
3179 *
3180 * Apply the duty cycle ratio if the ratio is valid and the clock can
3181 * perform this operation
3182 *
3183 * Returns (0) on success, a negative errno otherwise.
3184 */
3185int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
3186{
3187	int ret;
3188	struct clk_duty duty;
3189
3190	if (!clk)
3191		return 0;
3192
3193	/* sanity check the ratio */
3194	if (den == 0 || num > den)
3195		return -EINVAL;
3196
3197	duty.num = num;
3198	duty.den = den;
3199
3200	clk_prepare_lock();
3201
3202	if (clk->exclusive_count)
3203		clk_core_rate_unprotect(clk->core);
3204
3205	ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
3206
3207	if (clk->exclusive_count)
3208		clk_core_rate_protect(clk->core);
3209
3210	clk_prepare_unlock();
3211
3212	return ret;
3213}
3214EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
3215
3216static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
3217					  unsigned int scale)
3218{
3219	struct clk_duty *duty = &core->duty;
3220	int ret;
3221
3222	clk_prepare_lock();
3223
3224	ret = clk_core_update_duty_cycle_nolock(core);
3225	if (!ret)
3226		ret = mult_frac(scale, duty->num, duty->den);
3227
3228	clk_prepare_unlock();
3229
3230	return ret;
3231}
3232
3233/**
3234 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
3235 * @clk: clock signal source
3236 * @scale: scaling factor to be applied to represent the ratio as an integer
3237 *
3238 * Returns the duty cycle ratio of a clock node multiplied by the provided
3239 * scaling factor, or negative errno on error.
3240 */
3241int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
3242{
3243	if (!clk)
3244		return 0;
3245
3246	return clk_core_get_scaled_duty_cycle(clk->core, scale);
3247}
3248EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
3249
3250/**
3251 * clk_is_match - check if two clk's point to the same hardware clock
3252 * @p: clk compared against q
3253 * @q: clk compared against p
3254 *
3255 * Returns true if the two struct clk pointers both point to the same hardware
3256 * clock node. Put differently, returns true if struct clk *p and struct clk *q
3257 * share the same struct clk_core object.
3258 *
3259 * Returns false otherwise. Note that two NULL clks are treated as matching.
3260 */
3261bool clk_is_match(const struct clk *p, const struct clk *q)
3262{
3263	/* trivial case: identical struct clk's or both NULL */
3264	if (p == q)
3265		return true;
3266
3267	/* true if clk->core pointers match. Avoid dereferencing garbage */
3268	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
3269		if (p->core == q->core)
3270			return true;
3271
3272	return false;
3273}
3274EXPORT_SYMBOL_GPL(clk_is_match);
3275
3276/***        debugfs support        ***/
3277
3278#ifdef CONFIG_DEBUG_FS
3279#include <linux/debugfs.h>
3280
3281static struct dentry *rootdir;
3282static int inited = 0;
3283static DEFINE_MUTEX(clk_debug_lock);
3284static HLIST_HEAD(clk_debug_list);
3285
 
 
 
 
 
 
3286static struct hlist_head *orphan_list[] = {
3287	&clk_orphan_list,
3288	NULL,
3289};
3290
3291static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
3292				 int level)
3293{
3294	int phase;
3295	struct clk *clk_user;
3296	int multi_node = 0;
3297
3298	seq_printf(s, "%*s%-*s %-7d %-8d %-8d %-11lu %-10lu ",
3299		   level * 3 + 1, "",
3300		   35 - level * 3, c->name,
3301		   c->enable_count, c->prepare_count, c->protect_count,
3302		   clk_core_get_rate_recalc(c),
3303		   clk_core_get_accuracy_recalc(c));
3304
3305	phase = clk_core_get_phase(c);
3306	if (phase >= 0)
3307		seq_printf(s, "%-5d", phase);
3308	else
3309		seq_puts(s, "-----");
3310
3311	seq_printf(s, " %-6d", clk_core_get_scaled_duty_cycle(c, 100000));
3312
3313	if (c->ops->is_enabled)
3314		seq_printf(s, " %5c ", clk_core_is_enabled(c) ? 'Y' : 'N');
3315	else if (!c->ops->enable)
3316		seq_printf(s, " %5c ", 'Y');
3317	else
3318		seq_printf(s, " %5c ", '?');
3319
3320	hlist_for_each_entry(clk_user, &c->clks, clks_node) {
3321		seq_printf(s, "%*s%-*s  %-25s\n",
3322			   level * 3 + 2 + 105 * multi_node, "",
3323			   30,
3324			   clk_user->dev_id ? clk_user->dev_id : "deviceless",
3325			   clk_user->con_id ? clk_user->con_id : "no_connection_id");
3326
3327		multi_node = 1;
3328	}
3329
3330}
3331
3332static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
3333				     int level)
3334{
3335	struct clk_core *child;
3336
 
 
 
3337	clk_summary_show_one(s, c, level);
3338
3339	hlist_for_each_entry(child, &c->children, child_node)
3340		clk_summary_show_subtree(s, child, level + 1);
3341}
3342
3343static int clk_summary_show(struct seq_file *s, void *data)
3344{
3345	struct clk_core *c;
3346	struct hlist_head **lists = s->private;
3347	int ret;
3348
3349	seq_puts(s, "                                 enable  prepare  protect                                duty  hardware                            connection\n");
3350	seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle    enable   consumer                         id\n");
3351	seq_puts(s, "---------------------------------------------------------------------------------------------------------------------------------------------\n");
3352
3353	ret = clk_pm_runtime_get_all();
3354	if (ret)
3355		return ret;
3356
3357	clk_prepare_lock();
3358
3359	for (; *lists; lists++)
3360		hlist_for_each_entry(c, *lists, child_node)
3361			clk_summary_show_subtree(s, c, 0);
3362
3363	clk_prepare_unlock();
3364	clk_pm_runtime_put_all();
3365
3366	return 0;
3367}
3368DEFINE_SHOW_ATTRIBUTE(clk_summary);
3369
3370static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
 
3371{
3372	int phase;
3373	unsigned long min_rate, max_rate;
 
 
 
 
 
 
 
3374
3375	clk_core_get_boundaries(c, &min_rate, &max_rate);
 
 
 
3376
3377	/* This should be JSON format, i.e. elements separated with a comma */
3378	seq_printf(s, "\"%s\": { ", c->name);
3379	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
3380	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
3381	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
3382	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c));
3383	seq_printf(s, "\"min_rate\": %lu,", min_rate);
3384	seq_printf(s, "\"max_rate\": %lu,", max_rate);
3385	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c));
3386	phase = clk_core_get_phase(c);
3387	if (phase >= 0)
3388		seq_printf(s, "\"phase\": %d,", phase);
3389	seq_printf(s, "\"duty_cycle\": %u",
3390		   clk_core_get_scaled_duty_cycle(c, 100000));
3391}
3392
3393static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
3394{
3395	struct clk_core *child;
3396
 
 
 
3397	clk_dump_one(s, c, level);
3398
3399	hlist_for_each_entry(child, &c->children, child_node) {
3400		seq_putc(s, ',');
3401		clk_dump_subtree(s, child, level + 1);
3402	}
3403
3404	seq_putc(s, '}');
3405}
3406
3407static int clk_dump_show(struct seq_file *s, void *data)
3408{
3409	struct clk_core *c;
3410	bool first_node = true;
3411	struct hlist_head **lists = s->private;
3412	int ret;
3413
3414	ret = clk_pm_runtime_get_all();
3415	if (ret)
3416		return ret;
3417
3418	seq_putc(s, '{');
3419
3420	clk_prepare_lock();
3421
3422	for (; *lists; lists++) {
3423		hlist_for_each_entry(c, *lists, child_node) {
3424			if (!first_node)
3425				seq_putc(s, ',');
3426			first_node = false;
3427			clk_dump_subtree(s, c, 0);
3428		}
3429	}
3430
3431	clk_prepare_unlock();
3432	clk_pm_runtime_put_all();
3433
3434	seq_puts(s, "}\n");
3435	return 0;
3436}
3437DEFINE_SHOW_ATTRIBUTE(clk_dump);
3438
3439#undef CLOCK_ALLOW_WRITE_DEBUGFS
3440#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3441/*
3442 * This can be dangerous, therefore don't provide any real compile time
3443 * configuration option for this feature.
3444 * People who want to use this will need to modify the source code directly.
3445 */
3446static int clk_rate_set(void *data, u64 val)
3447{
3448	struct clk_core *core = data;
3449	int ret;
3450
3451	clk_prepare_lock();
3452	ret = clk_core_set_rate_nolock(core, val);
3453	clk_prepare_unlock();
3454
3455	return ret;
3456}
3457
3458#define clk_rate_mode	0644
3459
3460static int clk_phase_set(void *data, u64 val)
3461{
3462	struct clk_core *core = data;
3463	int degrees = do_div(val, 360);
3464	int ret;
3465
3466	clk_prepare_lock();
3467	ret = clk_core_set_phase_nolock(core, degrees);
3468	clk_prepare_unlock();
3469
3470	return ret;
3471}
3472
3473#define clk_phase_mode	0644
3474
3475static int clk_prepare_enable_set(void *data, u64 val)
3476{
3477	struct clk_core *core = data;
3478	int ret = 0;
3479
3480	if (val)
3481		ret = clk_prepare_enable(core->hw->clk);
3482	else
3483		clk_disable_unprepare(core->hw->clk);
3484
3485	return ret;
3486}
3487
3488static int clk_prepare_enable_get(void *data, u64 *val)
3489{
3490	struct clk_core *core = data;
3491
3492	*val = core->enable_count && core->prepare_count;
3493	return 0;
3494}
3495
3496DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get,
3497			 clk_prepare_enable_set, "%llu\n");
3498
3499#else
3500#define clk_rate_set	NULL
3501#define clk_rate_mode	0444
3502
3503#define clk_phase_set	NULL
3504#define clk_phase_mode	0644
3505#endif
3506
3507static int clk_rate_get(void *data, u64 *val)
3508{
3509	struct clk_core *core = data;
3510
3511	clk_prepare_lock();
3512	*val = clk_core_get_rate_recalc(core);
3513	clk_prepare_unlock();
3514
3515	return 0;
3516}
3517
3518DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3519
3520static int clk_phase_get(void *data, u64 *val)
3521{
3522	struct clk_core *core = data;
3523
3524	*val = core->phase;
3525	return 0;
3526}
3527
3528DEFINE_DEBUGFS_ATTRIBUTE(clk_phase_fops, clk_phase_get, clk_phase_set, "%llu\n");
3529
3530static const struct {
3531	unsigned long flag;
3532	const char *name;
3533} clk_flags[] = {
3534#define ENTRY(f) { f, #f }
3535	ENTRY(CLK_SET_RATE_GATE),
3536	ENTRY(CLK_SET_PARENT_GATE),
3537	ENTRY(CLK_SET_RATE_PARENT),
3538	ENTRY(CLK_IGNORE_UNUSED),
3539	ENTRY(CLK_GET_RATE_NOCACHE),
3540	ENTRY(CLK_SET_RATE_NO_REPARENT),
3541	ENTRY(CLK_GET_ACCURACY_NOCACHE),
3542	ENTRY(CLK_RECALC_NEW_RATES),
3543	ENTRY(CLK_SET_RATE_UNGATE),
3544	ENTRY(CLK_IS_CRITICAL),
3545	ENTRY(CLK_OPS_PARENT_ENABLE),
3546	ENTRY(CLK_DUTY_CYCLE_PARENT),
3547#undef ENTRY
3548};
3549
3550static int clk_flags_show(struct seq_file *s, void *data)
3551{
3552	struct clk_core *core = s->private;
3553	unsigned long flags = core->flags;
3554	unsigned int i;
3555
3556	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3557		if (flags & clk_flags[i].flag) {
3558			seq_printf(s, "%s\n", clk_flags[i].name);
3559			flags &= ~clk_flags[i].flag;
3560		}
3561	}
3562	if (flags) {
3563		/* Unknown flags */
3564		seq_printf(s, "0x%lx\n", flags);
3565	}
3566
3567	return 0;
3568}
3569DEFINE_SHOW_ATTRIBUTE(clk_flags);
3570
3571static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3572				 unsigned int i, char terminator)
3573{
3574	struct clk_core *parent;
3575	const char *name = NULL;
3576
3577	/*
3578	 * Go through the following options to fetch a parent's name.
3579	 *
3580	 * 1. Fetch the registered parent clock and use its name
3581	 * 2. Use the global (fallback) name if specified
3582	 * 3. Use the local fw_name if provided
3583	 * 4. Fetch parent clock's clock-output-name if DT index was set
3584	 *
3585	 * This may still fail in some cases, such as when the parent is
3586	 * specified directly via a struct clk_hw pointer, but it isn't
3587	 * registered (yet).
3588	 */
3589	parent = clk_core_get_parent_by_index(core, i);
3590	if (parent) {
3591		seq_puts(s, parent->name);
3592	} else if (core->parents[i].name) {
3593		seq_puts(s, core->parents[i].name);
3594	} else if (core->parents[i].fw_name) {
3595		seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3596	} else {
3597		if (core->parents[i].index >= 0)
3598			name = of_clk_get_parent_name(core->of_node, core->parents[i].index);
3599		if (!name)
3600			name = "(missing)";
3601
3602		seq_puts(s, name);
3603	}
3604
3605	seq_putc(s, terminator);
3606}
3607
3608static int possible_parents_show(struct seq_file *s, void *data)
3609{
3610	struct clk_core *core = s->private;
3611	int i;
3612
3613	for (i = 0; i < core->num_parents - 1; i++)
3614		possible_parent_show(s, core, i, ' ');
3615
3616	possible_parent_show(s, core, i, '\n');
3617
3618	return 0;
3619}
3620DEFINE_SHOW_ATTRIBUTE(possible_parents);
3621
3622static int current_parent_show(struct seq_file *s, void *data)
3623{
3624	struct clk_core *core = s->private;
3625
3626	if (core->parent)
3627		seq_printf(s, "%s\n", core->parent->name);
3628
3629	return 0;
3630}
3631DEFINE_SHOW_ATTRIBUTE(current_parent);
3632
3633#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3634static ssize_t current_parent_write(struct file *file, const char __user *ubuf,
3635				    size_t count, loff_t *ppos)
3636{
3637	struct seq_file *s = file->private_data;
3638	struct clk_core *core = s->private;
3639	struct clk_core *parent;
3640	u8 idx;
3641	int err;
3642
3643	err = kstrtou8_from_user(ubuf, count, 0, &idx);
3644	if (err < 0)
3645		return err;
3646
3647	parent = clk_core_get_parent_by_index(core, idx);
3648	if (!parent)
3649		return -ENOENT;
3650
3651	clk_prepare_lock();
3652	err = clk_core_set_parent_nolock(core, parent);
3653	clk_prepare_unlock();
3654	if (err)
3655		return err;
3656
3657	return count;
3658}
3659
3660static const struct file_operations current_parent_rw_fops = {
3661	.open		= current_parent_open,
3662	.write		= current_parent_write,
3663	.read		= seq_read,
3664	.llseek		= seq_lseek,
3665	.release	= single_release,
3666};
3667#endif
3668
3669static int clk_duty_cycle_show(struct seq_file *s, void *data)
3670{
3671	struct clk_core *core = s->private;
3672	struct clk_duty *duty = &core->duty;
3673
3674	seq_printf(s, "%u/%u\n", duty->num, duty->den);
3675
3676	return 0;
3677}
3678DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3679
3680static int clk_min_rate_show(struct seq_file *s, void *data)
3681{
3682	struct clk_core *core = s->private;
3683	unsigned long min_rate, max_rate;
3684
3685	clk_prepare_lock();
3686	clk_core_get_boundaries(core, &min_rate, &max_rate);
3687	clk_prepare_unlock();
3688	seq_printf(s, "%lu\n", min_rate);
3689
3690	return 0;
3691}
3692DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3693
3694static int clk_max_rate_show(struct seq_file *s, void *data)
3695{
3696	struct clk_core *core = s->private;
3697	unsigned long min_rate, max_rate;
3698
3699	clk_prepare_lock();
3700	clk_core_get_boundaries(core, &min_rate, &max_rate);
3701	clk_prepare_unlock();
3702	seq_printf(s, "%lu\n", max_rate);
3703
3704	return 0;
3705}
3706DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3707
3708static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3709{
3710	struct dentry *root;
3711
3712	if (!core || !pdentry)
3713		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3714
3715	root = debugfs_create_dir(core->name, pdentry);
3716	core->dentry = root;
 
 
 
3717
3718	debugfs_create_file("clk_rate", clk_rate_mode, root, core,
3719			    &clk_rate_fops);
3720	debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3721	debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3722	debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3723	debugfs_create_file("clk_phase", clk_phase_mode, root, core,
3724			    &clk_phase_fops);
3725	debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3726	debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3727	debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3728	debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3729	debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3730	debugfs_create_file("clk_duty_cycle", 0444, root, core,
3731			    &clk_duty_cycle_fops);
3732#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3733	debugfs_create_file("clk_prepare_enable", 0644, root, core,
3734			    &clk_prepare_enable_fops);
3735
3736	if (core->num_parents > 1)
3737		debugfs_create_file("clk_parent", 0644, root, core,
3738				    &current_parent_rw_fops);
3739	else
3740#endif
3741	if (core->num_parents > 0)
3742		debugfs_create_file("clk_parent", 0444, root, core,
3743				    &current_parent_fops);
3744
3745	if (core->num_parents > 1)
3746		debugfs_create_file("clk_possible_parents", 0444, root, core,
3747				    &possible_parents_fops);
3748
3749	if (core->ops->debug_init)
3750		core->ops->debug_init(core->hw, core->dentry);
 
 
 
3751}
3752
3753/**
3754 * clk_debug_register - add a clk node to the debugfs clk directory
3755 * @core: the clk being added to the debugfs clk directory
3756 *
3757 * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3758 * initialized.  Otherwise it bails out early since the debugfs clk directory
3759 * will be created lazily by clk_debug_init as part of a late_initcall.
3760 */
3761static void clk_debug_register(struct clk_core *core)
3762{
 
 
3763	mutex_lock(&clk_debug_lock);
3764	hlist_add_head(&core->debug_node, &clk_debug_list);
3765	if (inited)
3766		clk_debug_create_one(core, rootdir);
 
 
 
 
3767	mutex_unlock(&clk_debug_lock);
 
 
3768}
3769
3770 /**
3771 * clk_debug_unregister - remove a clk node from the debugfs clk directory
3772 * @core: the clk being removed from the debugfs clk directory
3773 *
3774 * Dynamically removes a clk and all its child nodes from the
3775 * debugfs clk directory if clk->dentry points to debugfs created by
3776 * clk_debug_register in __clk_core_init.
3777 */
3778static void clk_debug_unregister(struct clk_core *core)
3779{
3780	mutex_lock(&clk_debug_lock);
3781	hlist_del_init(&core->debug_node);
3782	debugfs_remove_recursive(core->dentry);
3783	core->dentry = NULL;
3784	mutex_unlock(&clk_debug_lock);
3785}
3786
 
 
 
 
 
 
 
 
 
 
 
 
 
3787/**
3788 * clk_debug_init - lazily populate the debugfs clk directory
3789 *
3790 * clks are often initialized very early during boot before memory can be
3791 * dynamically allocated and well before debugfs is setup. This function
3792 * populates the debugfs clk directory once at boot-time when we know that
3793 * debugfs is setup. It should only be called once at boot-time, all other clks
3794 * added dynamically will be done so with clk_debug_register.
3795 */
3796static int __init clk_debug_init(void)
3797{
3798	struct clk_core *core;
3799
3800#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3801	pr_warn("\n");
3802	pr_warn("********************************************************************\n");
3803	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3804	pr_warn("**                                                                **\n");
3805	pr_warn("**  WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n");
3806	pr_warn("**                                                                **\n");
3807	pr_warn("** This means that this kernel is built to expose clk operations  **\n");
3808	pr_warn("** such as parent or rate setting, enabling, disabling, etc.      **\n");
3809	pr_warn("** to userspace, which may compromise security on your system.    **\n");
3810	pr_warn("**                                                                **\n");
3811	pr_warn("** If you see this message and you are not debugging the          **\n");
3812	pr_warn("** kernel, report this immediately to your vendor!                **\n");
3813	pr_warn("**                                                                **\n");
3814	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3815	pr_warn("********************************************************************\n");
3816#endif
3817
3818	rootdir = debugfs_create_dir("clk", NULL);
3819
3820	debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3821			    &clk_summary_fops);
3822	debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3823			    &clk_dump_fops);
3824	debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3825			    &clk_summary_fops);
3826	debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3827			    &clk_dump_fops);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3828
3829	mutex_lock(&clk_debug_lock);
3830	hlist_for_each_entry(core, &clk_debug_list, debug_node)
3831		clk_debug_create_one(core, rootdir);
3832
3833	inited = 1;
3834	mutex_unlock(&clk_debug_lock);
3835
3836	return 0;
3837}
3838late_initcall(clk_debug_init);
3839#else
3840static inline void clk_debug_register(struct clk_core *core) { }
3841static inline void clk_debug_unregister(struct clk_core *core)
 
3842{
3843}
3844#endif
3845
3846static void clk_core_reparent_orphans_nolock(void)
3847{
3848	struct clk_core *orphan;
3849	struct hlist_node *tmp2;
3850
3851	/*
3852	 * walk the list of orphan clocks and reparent any that newly finds a
3853	 * parent.
3854	 */
3855	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3856		struct clk_core *parent = __clk_init_parent(orphan);
3857
3858		/*
3859		 * We need to use __clk_set_parent_before() and _after() to
3860		 * properly migrate any prepare/enable count of the orphan
3861		 * clock. This is important for CLK_IS_CRITICAL clocks, which
3862		 * are enabled during init but might not have a parent yet.
3863		 */
3864		if (parent) {
3865			/* update the clk tree topology */
3866			__clk_set_parent_before(orphan, parent);
3867			__clk_set_parent_after(orphan, parent, NULL);
3868			__clk_recalc_accuracies(orphan);
3869			__clk_recalc_rates(orphan, true, 0);
3870
3871			/*
3872			 * __clk_init_parent() will set the initial req_rate to
3873			 * 0 if the clock doesn't have clk_ops::recalc_rate and
3874			 * is an orphan when it's registered.
3875			 *
3876			 * 'req_rate' is used by clk_set_rate_range() and
3877			 * clk_put() to trigger a clk_set_rate() call whenever
3878			 * the boundaries are modified. Let's make sure
3879			 * 'req_rate' is set to something non-zero so that
3880			 * clk_set_rate_range() doesn't drop the frequency.
3881			 */
3882			orphan->req_rate = orphan->rate;
3883		}
3884	}
3885}
 
3886
3887/**
3888 * __clk_core_init - initialize the data structures in a struct clk_core
3889 * @core:	clk_core being initialized
3890 *
3891 * Initializes the lists in struct clk_core, queries the hardware for the
3892 * parent and rate and sets them both.
3893 */
3894static int __clk_core_init(struct clk_core *core)
3895{
3896	int ret;
3897	struct clk_core *parent;
 
3898	unsigned long rate;
3899	int phase;
3900
3901	clk_prepare_lock();
3902
3903	/*
3904	 * Set hw->core after grabbing the prepare_lock to synchronize with
3905	 * callers of clk_core_fill_parent_index() where we treat hw->core
3906	 * being NULL as the clk not being registered yet. This is crucial so
3907	 * that clks aren't parented until their parent is fully registered.
3908	 */
3909	core->hw->core = core;
3910
3911	ret = clk_pm_runtime_get(core);
3912	if (ret)
3913		goto unlock;
3914
3915	/* check to see if a clock with this name is already registered */
3916	if (clk_core_lookup(core->name)) {
3917		pr_debug("%s: clk %s already initialized\n",
3918				__func__, core->name);
3919		ret = -EEXIST;
3920		goto out;
3921	}
3922
3923	/* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
3924	if (core->ops->set_rate &&
3925	    !((core->ops->round_rate || core->ops->determine_rate) &&
3926	      core->ops->recalc_rate)) {
3927		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3928		       __func__, core->name);
3929		ret = -EINVAL;
3930		goto out;
3931	}
3932
3933	if (core->ops->set_parent && !core->ops->get_parent) {
3934		pr_err("%s: %s must implement .get_parent & .set_parent\n",
3935		       __func__, core->name);
3936		ret = -EINVAL;
3937		goto out;
3938	}
3939
3940	if (core->ops->set_parent && !core->ops->determine_rate) {
3941		pr_err("%s: %s must implement .set_parent & .determine_rate\n",
3942			__func__, core->name);
3943		ret = -EINVAL;
3944		goto out;
3945	}
3946
3947	if (core->num_parents > 1 && !core->ops->get_parent) {
3948		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3949		       __func__, core->name);
3950		ret = -EINVAL;
3951		goto out;
3952	}
3953
3954	if (core->ops->set_rate_and_parent &&
3955			!(core->ops->set_parent && core->ops->set_rate)) {
3956		pr_err("%s: %s must implement .set_parent & .set_rate\n",
3957				__func__, core->name);
3958		ret = -EINVAL;
3959		goto out;
3960	}
3961
3962	/*
3963	 * optional platform-specific magic
3964	 *
3965	 * The .init callback is not used by any of the basic clock types, but
3966	 * exists for weird hardware that must perform initialization magic for
3967	 * CCF to get an accurate view of clock for any other callbacks. It may
3968	 * also be used needs to perform dynamic allocations. Such allocation
3969	 * must be freed in the terminate() callback.
3970	 * This callback shall not be used to initialize the parameters state,
3971	 * such as rate, parent, etc ...
3972	 *
3973	 * If it exist, this callback should called before any other callback of
3974	 * the clock
3975	 */
3976	if (core->ops->init) {
3977		ret = core->ops->init(core->hw);
3978		if (ret)
3979			goto out;
3980	}
3981
3982	parent = core->parent = __clk_init_parent(core);
3983
3984	/*
3985	 * Populate core->parent if parent has already been clk_core_init'd. If
3986	 * parent has not yet been clk_core_init'd then place clk in the orphan
3987	 * list.  If clk doesn't have any parents then place it in the root
3988	 * clk list.
3989	 *
3990	 * Every time a new clk is clk_init'd then we walk the list of orphan
3991	 * clocks and re-parent any that are children of the clock currently
3992	 * being clk_init'd.
3993	 */
3994	if (parent) {
3995		hlist_add_head(&core->child_node, &parent->children);
3996		core->orphan = parent->orphan;
 
3997	} else if (!core->num_parents) {
3998		hlist_add_head(&core->child_node, &clk_root_list);
3999		core->orphan = false;
4000	} else {
4001		hlist_add_head(&core->child_node, &clk_orphan_list);
4002		core->orphan = true;
4003	}
4004
4005	/*
4006	 * Set clk's accuracy.  The preferred method is to use
4007	 * .recalc_accuracy. For simple clocks and lazy developers the default
4008	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
4009	 * parent (or is orphaned) then accuracy is set to zero (perfect
4010	 * clock).
4011	 */
4012	if (core->ops->recalc_accuracy)
4013		core->accuracy = core->ops->recalc_accuracy(core->hw,
4014					clk_core_get_accuracy_no_lock(parent));
4015	else if (parent)
4016		core->accuracy = parent->accuracy;
4017	else
4018		core->accuracy = 0;
4019
4020	/*
4021	 * Set clk's phase by clk_core_get_phase() caching the phase.
4022	 * Since a phase is by definition relative to its parent, just
4023	 * query the current clock phase, or just assume it's in phase.
4024	 */
4025	phase = clk_core_get_phase(core);
4026	if (phase < 0) {
4027		ret = phase;
4028		pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
4029			core->name);
4030		goto out;
4031	}
4032
4033	/*
4034	 * Set clk's duty cycle.
4035	 */
4036	clk_core_update_duty_cycle_nolock(core);
4037
4038	/*
4039	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
4040	 * simple clocks and lazy developers the default fallback is to use the
4041	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
4042	 * then rate is set to zero.
4043	 */
4044	if (core->ops->recalc_rate)
4045		rate = core->ops->recalc_rate(core->hw,
4046				clk_core_get_rate_nolock(parent));
4047	else if (parent)
4048		rate = parent->rate;
4049	else
4050		rate = 0;
4051	core->rate = core->req_rate = rate;
4052
4053	/*
4054	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
4055	 * don't get accidentally disabled when walking the orphan tree and
4056	 * reparenting clocks
4057	 */
4058	if (core->flags & CLK_IS_CRITICAL) {
4059		ret = clk_core_prepare(core);
4060		if (ret) {
4061			pr_warn("%s: critical clk '%s' failed to prepare\n",
4062			       __func__, core->name);
4063			goto out;
4064		}
4065
4066		ret = clk_core_enable_lock(core);
4067		if (ret) {
4068			pr_warn("%s: critical clk '%s' failed to enable\n",
4069			       __func__, core->name);
4070			clk_core_unprepare(core);
4071			goto out;
4072		}
4073	}
4074
4075	clk_core_reparent_orphans_nolock();
4076out:
4077	clk_pm_runtime_put(core);
4078unlock:
4079	if (ret) {
4080		hlist_del_init(&core->child_node);
4081		core->hw->core = NULL;
4082	}
 
 
4083
 
 
4084	clk_prepare_unlock();
4085
4086	if (!ret)
4087		clk_debug_register(core);
4088
4089	return ret;
4090}
4091
4092/**
4093 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
4094 * @core: clk to add consumer to
4095 * @clk: consumer to link to a clk
4096 */
4097static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
4098{
4099	clk_prepare_lock();
4100	hlist_add_head(&clk->clks_node, &core->clks);
4101	clk_prepare_unlock();
4102}
4103
4104/**
4105 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
4106 * @clk: consumer to unlink
4107 */
4108static void clk_core_unlink_consumer(struct clk *clk)
4109{
4110	lockdep_assert_held(&prepare_lock);
4111	hlist_del(&clk->clks_node);
4112}
4113
4114/**
4115 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
4116 * @core: clk to allocate a consumer for
4117 * @dev_id: string describing device name
4118 * @con_id: connection ID string on device
4119 *
4120 * Returns: clk consumer left unlinked from the consumer list
4121 */
4122static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
4123			     const char *con_id)
4124{
4125	struct clk *clk;
4126
 
 
 
 
4127	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
4128	if (!clk)
4129		return ERR_PTR(-ENOMEM);
4130
4131	clk->core = core;
4132	clk->dev_id = dev_id;
4133	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
4134	clk->max_rate = ULONG_MAX;
4135
4136	return clk;
4137}
 
4138
4139/**
4140 * free_clk - Free a clk consumer
4141 * @clk: clk consumer to free
4142 *
4143 * Note, this assumes the clk has been unlinked from the clk_core consumer
4144 * list.
4145 */
4146static void free_clk(struct clk *clk)
4147{
4148	kfree_const(clk->con_id);
4149	kfree(clk);
4150}
4151
4152/**
4153 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
4154 * a clk_hw
4155 * @dev: clk consumer device
4156 * @hw: clk_hw associated with the clk being consumed
4157 * @dev_id: string describing device name
4158 * @con_id: connection ID string on device
4159 *
4160 * This is the main function used to create a clk pointer for use by clk
4161 * consumers. It connects a consumer to the clk_core and clk_hw structures
4162 * used by the framework and clk provider respectively.
4163 */
4164struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
4165			      const char *dev_id, const char *con_id)
4166{
4167	struct clk *clk;
4168	struct clk_core *core;
4169
4170	/* This is to allow this function to be chained to others */
4171	if (IS_ERR_OR_NULL(hw))
4172		return ERR_CAST(hw);
4173
4174	core = hw->core;
4175	clk = alloc_clk(core, dev_id, con_id);
4176	if (IS_ERR(clk))
4177		return clk;
4178	clk->dev = dev;
4179
4180	if (!try_module_get(core->owner)) {
4181		free_clk(clk);
4182		return ERR_PTR(-ENOENT);
4183	}
4184
4185	kref_get(&core->ref);
4186	clk_core_link_consumer(core, clk);
4187
4188	return clk;
4189}
4190
4191/**
4192 * clk_hw_get_clk - get clk consumer given an clk_hw
4193 * @hw: clk_hw associated with the clk being consumed
4194 * @con_id: connection ID string on device
4195 *
4196 * Returns: new clk consumer
4197 * This is the function to be used by providers which need
4198 * to get a consumer clk and act on the clock element
4199 * Calls to this function must be balanced with calls clk_put()
 
4200 */
4201struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id)
4202{
4203	struct device *dev = hw->core->dev;
4204	const char *name = dev ? dev_name(dev) : NULL;
4205
4206	return clk_hw_create_clk(dev, hw, name, con_id);
4207}
4208EXPORT_SYMBOL(clk_hw_get_clk);
4209
4210static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
4211{
4212	const char *dst;
4213
4214	if (!src) {
4215		if (must_exist)
4216			return -EINVAL;
4217		return 0;
4218	}
4219
4220	*dst_p = dst = kstrdup_const(src, GFP_KERNEL);
4221	if (!dst)
4222		return -ENOMEM;
4223
4224	return 0;
4225}
4226
4227static int clk_core_populate_parent_map(struct clk_core *core,
4228					const struct clk_init_data *init)
4229{
4230	u8 num_parents = init->num_parents;
4231	const char * const *parent_names = init->parent_names;
4232	const struct clk_hw **parent_hws = init->parent_hws;
4233	const struct clk_parent_data *parent_data = init->parent_data;
4234	int i, ret = 0;
4235	struct clk_parent_map *parents, *parent;
4236
4237	if (!num_parents)
4238		return 0;
4239
4240	/*
4241	 * Avoid unnecessary string look-ups of clk_core's possible parents by
4242	 * having a cache of names/clk_hw pointers to clk_core pointers.
4243	 */
4244	parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
4245	core->parents = parents;
4246	if (!parents)
4247		return -ENOMEM;
4248
4249	/* Copy everything over because it might be __initdata */
4250	for (i = 0, parent = parents; i < num_parents; i++, parent++) {
4251		parent->index = -1;
4252		if (parent_names) {
4253			/* throw a WARN if any entries are NULL */
4254			WARN(!parent_names[i],
4255				"%s: invalid NULL in %s's .parent_names\n",
4256				__func__, core->name);
4257			ret = clk_cpy_name(&parent->name, parent_names[i],
4258					   true);
4259		} else if (parent_data) {
4260			parent->hw = parent_data[i].hw;
4261			parent->index = parent_data[i].index;
4262			ret = clk_cpy_name(&parent->fw_name,
4263					   parent_data[i].fw_name, false);
4264			if (!ret)
4265				ret = clk_cpy_name(&parent->name,
4266						   parent_data[i].name,
4267						   false);
4268		} else if (parent_hws) {
4269			parent->hw = parent_hws[i];
4270		} else {
4271			ret = -EINVAL;
4272			WARN(1, "Must specify parents if num_parents > 0\n");
4273		}
4274
4275		if (ret) {
4276			do {
4277				kfree_const(parents[i].name);
4278				kfree_const(parents[i].fw_name);
4279			} while (--i >= 0);
4280			kfree(parents);
4281
4282			return ret;
4283		}
4284	}
4285
4286	return 0;
4287}
4288
4289static void clk_core_free_parent_map(struct clk_core *core)
4290{
4291	int i = core->num_parents;
4292
4293	if (!core->num_parents)
4294		return;
4295
4296	while (--i >= 0) {
4297		kfree_const(core->parents[i].name);
4298		kfree_const(core->parents[i].fw_name);
4299	}
4300
4301	kfree(core->parents);
4302}
4303
4304/* Free memory allocated for a struct clk_core */
4305static void __clk_release(struct kref *ref)
4306{
4307	struct clk_core *core = container_of(ref, struct clk_core, ref);
4308
4309	if (core->rpm_enabled) {
4310		mutex_lock(&clk_rpm_list_lock);
4311		hlist_del(&core->rpm_node);
4312		mutex_unlock(&clk_rpm_list_lock);
4313	}
4314
4315	clk_core_free_parent_map(core);
4316	kfree_const(core->name);
4317	kfree(core);
4318}
4319
4320static struct clk *
4321__clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
4322{
4323	int ret;
4324	struct clk_core *core;
4325	const struct clk_init_data *init = hw->init;
4326
4327	/*
4328	 * The init data is not supposed to be used outside of registration path.
4329	 * Set it to NULL so that provider drivers can't use it either and so that
4330	 * we catch use of hw->init early on in the core.
4331	 */
4332	hw->init = NULL;
4333
4334	core = kzalloc(sizeof(*core), GFP_KERNEL);
4335	if (!core) {
4336		ret = -ENOMEM;
4337		goto fail_out;
4338	}
4339
4340	kref_init(&core->ref);
4341
4342	core->name = kstrdup_const(init->name, GFP_KERNEL);
4343	if (!core->name) {
4344		ret = -ENOMEM;
4345		goto fail_name;
4346	}
4347
4348	if (WARN_ON(!init->ops)) {
4349		ret = -EINVAL;
4350		goto fail_ops;
4351	}
4352	core->ops = init->ops;
4353
4354	core->dev = dev;
4355	clk_pm_runtime_init(core);
4356	core->of_node = np;
4357	if (dev && dev->driver)
4358		core->owner = dev->driver->owner;
4359	core->hw = hw;
4360	core->flags = init->flags;
4361	core->num_parents = init->num_parents;
4362	core->min_rate = 0;
4363	core->max_rate = ULONG_MAX;
 
4364
4365	ret = clk_core_populate_parent_map(core, init);
4366	if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4367		goto fail_parents;
 
4368
4369	INIT_HLIST_HEAD(&core->clks);
4370
4371	/*
4372	 * Don't call clk_hw_create_clk() here because that would pin the
4373	 * provider module to itself and prevent it from ever being removed.
4374	 */
4375	hw->clk = alloc_clk(core, NULL, NULL);
4376	if (IS_ERR(hw->clk)) {
4377		ret = PTR_ERR(hw->clk);
4378		goto fail_create_clk;
4379	}
4380
4381	clk_core_link_consumer(core, hw->clk);
4382
4383	ret = __clk_core_init(core);
4384	if (!ret)
4385		return hw->clk;
4386
4387	clk_prepare_lock();
4388	clk_core_unlink_consumer(hw->clk);
4389	clk_prepare_unlock();
4390
4391	free_clk(hw->clk);
4392	hw->clk = NULL;
4393
4394fail_create_clk:
4395fail_parents:
4396fail_ops:
 
 
 
 
 
 
4397fail_name:
4398	kref_put(&core->ref, __clk_release);
4399fail_out:
4400	return ERR_PTR(ret);
4401}
 
4402
4403/**
4404 * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
4405 * @dev: Device to get device node of
4406 *
4407 * Return: device node pointer of @dev, or the device node pointer of
4408 * @dev->parent if dev doesn't have a device node, or NULL if neither
4409 * @dev or @dev->parent have a device node.
4410 */
4411static struct device_node *dev_or_parent_of_node(struct device *dev)
4412{
4413	struct device_node *np;
4414
4415	if (!dev)
4416		return NULL;
4417
4418	np = dev_of_node(dev);
4419	if (!np)
4420		np = dev_of_node(dev->parent);
4421
4422	return np;
4423}
4424
4425/**
4426 * clk_register - allocate a new clock, register it and return an opaque cookie
4427 * @dev: device that is registering this clock
4428 * @hw: link to hardware-specific clock data
4429 *
4430 * clk_register is the *deprecated* interface for populating the clock tree with
4431 * new clock nodes. Use clk_hw_register() instead.
4432 *
4433 * Returns: a pointer to the newly allocated struct clk which
4434 * cannot be dereferenced by driver code but may be used in conjunction with the
4435 * rest of the clock API.  In the event of an error clk_register will return an
4436 * error code; drivers must test for an error code after calling clk_register.
4437 */
4438struct clk *clk_register(struct device *dev, struct clk_hw *hw)
4439{
4440	return __clk_register(dev, dev_or_parent_of_node(dev), hw);
4441}
4442EXPORT_SYMBOL_GPL(clk_register);
4443
4444/**
4445 * clk_hw_register - register a clk_hw and return an error code
4446 * @dev: device that is registering this clock
4447 * @hw: link to hardware-specific clock data
4448 *
4449 * clk_hw_register is the primary interface for populating the clock tree with
4450 * new clock nodes. It returns an integer equal to zero indicating success or
4451 * less than zero indicating failure. Drivers must test for an error code after
4452 * calling clk_hw_register().
4453 */
4454int clk_hw_register(struct device *dev, struct clk_hw *hw)
4455{
4456	return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
4457			       hw));
4458}
4459EXPORT_SYMBOL_GPL(clk_hw_register);
4460
4461/*
4462 * of_clk_hw_register - register a clk_hw and return an error code
4463 * @node: device_node of device that is registering this clock
4464 * @hw: link to hardware-specific clock data
4465 *
4466 * of_clk_hw_register() is the primary interface for populating the clock tree
4467 * with new clock nodes when a struct device is not available, but a struct
4468 * device_node is. It returns an integer equal to zero indicating success or
4469 * less than zero indicating failure. Drivers must test for an error code after
4470 * calling of_clk_hw_register().
4471 */
4472int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
4473{
4474	return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
4475}
4476EXPORT_SYMBOL_GPL(of_clk_hw_register);
4477
4478/*
4479 * Empty clk_ops for unregistered clocks. These are used temporarily
4480 * after clk_unregister() was called on a clock and until last clock
4481 * consumer calls clk_put() and the struct clk object is freed.
4482 */
4483static int clk_nodrv_prepare_enable(struct clk_hw *hw)
4484{
4485	return -ENXIO;
4486}
4487
4488static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
4489{
4490	WARN_ON_ONCE(1);
4491}
4492
4493static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
4494					unsigned long parent_rate)
4495{
4496	return -ENXIO;
4497}
4498
4499static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
4500{
4501	return -ENXIO;
4502}
4503
4504static int clk_nodrv_determine_rate(struct clk_hw *hw,
4505				    struct clk_rate_request *req)
4506{
4507	return -ENXIO;
4508}
4509
4510static const struct clk_ops clk_nodrv_ops = {
4511	.enable		= clk_nodrv_prepare_enable,
4512	.disable	= clk_nodrv_disable_unprepare,
4513	.prepare	= clk_nodrv_prepare_enable,
4514	.unprepare	= clk_nodrv_disable_unprepare,
4515	.determine_rate	= clk_nodrv_determine_rate,
4516	.set_rate	= clk_nodrv_set_rate,
4517	.set_parent	= clk_nodrv_set_parent,
4518};
4519
4520static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
4521						const struct clk_core *target)
4522{
4523	int i;
4524	struct clk_core *child;
4525
4526	for (i = 0; i < root->num_parents; i++)
4527		if (root->parents[i].core == target)
4528			root->parents[i].core = NULL;
4529
4530	hlist_for_each_entry(child, &root->children, child_node)
4531		clk_core_evict_parent_cache_subtree(child, target);
4532}
4533
4534/* Remove this clk from all parent caches */
4535static void clk_core_evict_parent_cache(struct clk_core *core)
4536{
4537	const struct hlist_head **lists;
4538	struct clk_core *root;
4539
4540	lockdep_assert_held(&prepare_lock);
4541
4542	for (lists = all_lists; *lists; lists++)
4543		hlist_for_each_entry(root, *lists, child_node)
4544			clk_core_evict_parent_cache_subtree(root, core);
4545
4546}
4547
4548/**
4549 * clk_unregister - unregister a currently registered clock
4550 * @clk: clock to unregister
4551 */
4552void clk_unregister(struct clk *clk)
4553{
4554	unsigned long flags;
4555	const struct clk_ops *ops;
4556
4557	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4558		return;
4559
4560	clk_debug_unregister(clk->core);
4561
4562	clk_prepare_lock();
4563
4564	ops = clk->core->ops;
4565	if (ops == &clk_nodrv_ops) {
4566		pr_err("%s: unregistered clock: %s\n", __func__,
4567		       clk->core->name);
4568		clk_prepare_unlock();
4569		return;
4570	}
4571	/*
4572	 * Assign empty clock ops for consumers that might still hold
4573	 * a reference to this clock.
4574	 */
4575	flags = clk_enable_lock();
4576	clk->core->ops = &clk_nodrv_ops;
4577	clk_enable_unlock(flags);
4578
4579	if (ops->terminate)
4580		ops->terminate(clk->core->hw);
4581
4582	if (!hlist_empty(&clk->core->children)) {
4583		struct clk_core *child;
4584		struct hlist_node *t;
4585
4586		/* Reparent all children to the orphan list. */
4587		hlist_for_each_entry_safe(child, t, &clk->core->children,
4588					  child_node)
4589			clk_core_set_parent_nolock(child, NULL);
4590	}
4591
4592	clk_core_evict_parent_cache(clk->core);
4593
4594	hlist_del_init(&clk->core->child_node);
4595
4596	if (clk->core->prepare_count)
4597		pr_warn("%s: unregistering prepared clock: %s\n",
4598					__func__, clk->core->name);
4599
4600	if (clk->core->protect_count)
4601		pr_warn("%s: unregistering protected clock: %s\n",
4602					__func__, clk->core->name);
4603	clk_prepare_unlock();
4604
4605	kref_put(&clk->core->ref, __clk_release);
4606	free_clk(clk);
 
4607}
4608EXPORT_SYMBOL_GPL(clk_unregister);
4609
4610/**
4611 * clk_hw_unregister - unregister a currently registered clk_hw
4612 * @hw: hardware-specific clock data to unregister
4613 */
4614void clk_hw_unregister(struct clk_hw *hw)
4615{
4616	clk_unregister(hw->clk);
4617}
4618EXPORT_SYMBOL_GPL(clk_hw_unregister);
4619
4620static void devm_clk_unregister_cb(struct device *dev, void *res)
4621{
4622	clk_unregister(*(struct clk **)res);
4623}
4624
4625static void devm_clk_hw_unregister_cb(struct device *dev, void *res)
4626{
4627	clk_hw_unregister(*(struct clk_hw **)res);
4628}
4629
4630/**
4631 * devm_clk_register - resource managed clk_register()
4632 * @dev: device that is registering this clock
4633 * @hw: link to hardware-specific clock data
4634 *
4635 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4636 *
4637 * Clocks returned from this function are automatically clk_unregister()ed on
4638 * driver detach. See clk_register() for more information.
4639 */
4640struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4641{
4642	struct clk *clk;
4643	struct clk **clkp;
4644
4645	clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL);
4646	if (!clkp)
4647		return ERR_PTR(-ENOMEM);
4648
4649	clk = clk_register(dev, hw);
4650	if (!IS_ERR(clk)) {
4651		*clkp = clk;
4652		devres_add(dev, clkp);
4653	} else {
4654		devres_free(clkp);
4655	}
4656
4657	return clk;
4658}
4659EXPORT_SYMBOL_GPL(devm_clk_register);
4660
4661/**
4662 * devm_clk_hw_register - resource managed clk_hw_register()
4663 * @dev: device that is registering this clock
4664 * @hw: link to hardware-specific clock data
4665 *
4666 * Managed clk_hw_register(). Clocks registered by this function are
4667 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4668 * for more information.
4669 */
4670int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4671{
4672	struct clk_hw **hwp;
4673	int ret;
4674
4675	hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL);
4676	if (!hwp)
4677		return -ENOMEM;
4678
4679	ret = clk_hw_register(dev, hw);
4680	if (!ret) {
4681		*hwp = hw;
4682		devres_add(dev, hwp);
4683	} else {
4684		devres_free(hwp);
4685	}
4686
4687	return ret;
4688}
4689EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4690
4691static void devm_clk_release(struct device *dev, void *res)
4692{
4693	clk_put(*(struct clk **)res);
 
 
 
4694}
4695
4696/**
4697 * devm_clk_hw_get_clk - resource managed clk_hw_get_clk()
4698 * @dev: device that is registering this clock
4699 * @hw: clk_hw associated with the clk being consumed
4700 * @con_id: connection ID string on device
4701 *
4702 * Managed clk_hw_get_clk(). Clocks got with this function are
4703 * automatically clk_put() on driver detach. See clk_put()
4704 * for more information.
4705 */
4706struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw,
4707				const char *con_id)
4708{
4709	struct clk *clk;
4710	struct clk **clkp;
4711
4712	/* This should not happen because it would mean we have drivers
4713	 * passing around clk_hw pointers instead of having the caller use
4714	 * proper clk_get() style APIs
4715	 */
4716	WARN_ON_ONCE(dev != hw->core->dev);
4717
4718	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4719	if (!clkp)
4720		return ERR_PTR(-ENOMEM);
4721
4722	clk = clk_hw_get_clk(hw, con_id);
4723	if (!IS_ERR(clk)) {
4724		*clkp = clk;
4725		devres_add(dev, clkp);
4726	} else {
4727		devres_free(clkp);
4728	}
4729
4730	return clk;
4731}
4732EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk);
4733
4734/*
4735 * clkdev helpers
4736 */
 
 
 
 
 
 
 
 
 
 
 
 
4737
4738void __clk_put(struct clk *clk)
4739{
4740	struct module *owner;
4741
4742	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4743		return;
4744
4745	clk_prepare_lock();
4746
4747	/*
4748	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4749	 * given user should be balanced with calls to clk_rate_exclusive_put()
4750	 * and by that same consumer
4751	 */
4752	if (WARN_ON(clk->exclusive_count)) {
4753		/* We voiced our concern, let's sanitize the situation */
4754		clk->core->protect_count -= (clk->exclusive_count - 1);
4755		clk_core_rate_unprotect(clk->core);
4756		clk->exclusive_count = 0;
4757	}
4758
4759	clk_core_unlink_consumer(clk);
4760
4761	/* If we had any boundaries on that clock, let's drop them. */
4762	if (clk->min_rate > 0 || clk->max_rate < ULONG_MAX)
4763		clk_set_rate_range_nolock(clk, 0, ULONG_MAX);
4764
4765	clk_prepare_unlock();
4766
4767	owner = clk->core->owner;
4768	kref_put(&clk->core->ref, __clk_release);
4769	module_put(owner);
4770	free_clk(clk);
 
4771}
4772
4773/***        clk rate change notifiers        ***/
4774
4775/**
4776 * clk_notifier_register - add a clk rate change notifier
4777 * @clk: struct clk * to watch
4778 * @nb: struct notifier_block * with callback info
4779 *
4780 * Request notification when clk's rate changes.  This uses an SRCU
4781 * notifier because we want it to block and notifier unregistrations are
4782 * uncommon.  The callbacks associated with the notifier must not
4783 * re-enter into the clk framework by calling any top-level clk APIs;
4784 * this will cause a nested prepare_lock mutex.
4785 *
4786 * In all notification cases (pre, post and abort rate change) the original
4787 * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4788 * and the new frequency is passed via struct clk_notifier_data.new_rate.
4789 *
4790 * clk_notifier_register() must be called from non-atomic context.
4791 * Returns -EINVAL if called with null arguments, -ENOMEM upon
4792 * allocation failure; otherwise, passes along the return value of
4793 * srcu_notifier_chain_register().
4794 */
4795int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4796{
4797	struct clk_notifier *cn;
4798	int ret = -ENOMEM;
4799
4800	if (!clk || !nb)
4801		return -EINVAL;
4802
4803	clk_prepare_lock();
4804
4805	/* search the list of notifiers for this clk */
4806	list_for_each_entry(cn, &clk_notifier_list, node)
4807		if (cn->clk == clk)
4808			goto found;
4809
4810	/* if clk wasn't in the notifier list, allocate new clk_notifier */
4811	cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4812	if (!cn)
4813		goto out;
 
4814
4815	cn->clk = clk;
4816	srcu_init_notifier_head(&cn->notifier_head);
4817
4818	list_add(&cn->node, &clk_notifier_list);
 
4819
4820found:
4821	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4822
4823	clk->core->notifier_count++;
4824
4825out:
4826	clk_prepare_unlock();
4827
4828	return ret;
4829}
4830EXPORT_SYMBOL_GPL(clk_notifier_register);
4831
4832/**
4833 * clk_notifier_unregister - remove a clk rate change notifier
4834 * @clk: struct clk *
4835 * @nb: struct notifier_block * with callback info
4836 *
4837 * Request no further notification for changes to 'clk' and frees memory
4838 * allocated in clk_notifier_register.
4839 *
4840 * Returns -EINVAL if called with null arguments; otherwise, passes
4841 * along the return value of srcu_notifier_chain_unregister().
4842 */
4843int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4844{
4845	struct clk_notifier *cn;
4846	int ret = -ENOENT;
4847
4848	if (!clk || !nb)
4849		return -EINVAL;
4850
4851	clk_prepare_lock();
4852
4853	list_for_each_entry(cn, &clk_notifier_list, node) {
4854		if (cn->clk == clk) {
4855			ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4856
4857			clk->core->notifier_count--;
4858
4859			/* XXX the notifier code should handle this better */
4860			if (!cn->notifier_head.head) {
4861				srcu_cleanup_notifier_head(&cn->notifier_head);
4862				list_del(&cn->node);
4863				kfree(cn);
4864			}
4865			break;
4866		}
4867	}
4868
4869	clk_prepare_unlock();
 
4870
4871	return ret;
4872}
4873EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4874
4875struct clk_notifier_devres {
4876	struct clk *clk;
4877	struct notifier_block *nb;
4878};
4879
4880static void devm_clk_notifier_release(struct device *dev, void *res)
4881{
4882	struct clk_notifier_devres *devres = res;
4883
4884	clk_notifier_unregister(devres->clk, devres->nb);
4885}
4886
4887int devm_clk_notifier_register(struct device *dev, struct clk *clk,
4888			       struct notifier_block *nb)
4889{
4890	struct clk_notifier_devres *devres;
4891	int ret;
4892
4893	devres = devres_alloc(devm_clk_notifier_release,
4894			      sizeof(*devres), GFP_KERNEL);
4895
4896	if (!devres)
4897		return -ENOMEM;
4898
4899	ret = clk_notifier_register(clk, nb);
4900	if (!ret) {
4901		devres->clk = clk;
4902		devres->nb = nb;
4903		devres_add(dev, devres);
4904	} else {
4905		devres_free(devres);
4906	}
4907
 
 
4908	return ret;
4909}
4910EXPORT_SYMBOL_GPL(devm_clk_notifier_register);
4911
4912#ifdef CONFIG_OF
4913static void clk_core_reparent_orphans(void)
4914{
4915	clk_prepare_lock();
4916	clk_core_reparent_orphans_nolock();
4917	clk_prepare_unlock();
4918}
4919
4920/**
4921 * struct of_clk_provider - Clock provider registration structure
4922 * @link: Entry in global list of clock providers
4923 * @node: Pointer to device tree node of clock provider
4924 * @get: Get clock callback.  Returns NULL or a struct clk for the
4925 *       given clock specifier
4926 * @get_hw: Get clk_hw callback.  Returns NULL, ERR_PTR or a
4927 *       struct clk_hw for the given clock specifier
4928 * @data: context pointer to be passed into @get callback
4929 */
4930struct of_clk_provider {
4931	struct list_head link;
4932
4933	struct device_node *node;
4934	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4935	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4936	void *data;
4937};
4938
4939extern struct of_device_id __clk_of_table;
4940static const struct of_device_id __clk_of_table_sentinel
4941	__used __section("__clk_of_table_end");
4942
4943static LIST_HEAD(of_clk_providers);
4944static DEFINE_MUTEX(of_clk_mutex);
4945
4946struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4947				     void *data)
4948{
4949	return data;
4950}
4951EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4952
4953struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4954{
4955	return data;
4956}
4957EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4958
4959struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4960{
4961	struct clk_onecell_data *clk_data = data;
4962	unsigned int idx = clkspec->args[0];
4963
4964	if (idx >= clk_data->clk_num) {
4965		pr_err("%s: invalid clock index %u\n", __func__, idx);
4966		return ERR_PTR(-EINVAL);
4967	}
4968
4969	return clk_data->clks[idx];
4970}
4971EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4972
4973struct clk_hw *
4974of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4975{
4976	struct clk_hw_onecell_data *hw_data = data;
4977	unsigned int idx = clkspec->args[0];
4978
4979	if (idx >= hw_data->num) {
4980		pr_err("%s: invalid index %u\n", __func__, idx);
4981		return ERR_PTR(-EINVAL);
4982	}
4983
4984	return hw_data->hws[idx];
4985}
4986EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4987
4988/**
4989 * of_clk_add_provider() - Register a clock provider for a node
4990 * @np: Device node pointer associated with clock provider
4991 * @clk_src_get: callback for decoding clock
4992 * @data: context pointer for @clk_src_get callback.
4993 *
4994 * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
4995 */
4996int of_clk_add_provider(struct device_node *np,
4997			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4998						   void *data),
4999			void *data)
5000{
5001	struct of_clk_provider *cp;
5002	int ret;
5003
5004	if (!np)
5005		return 0;
5006
5007	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
5008	if (!cp)
5009		return -ENOMEM;
5010
5011	cp->node = of_node_get(np);
5012	cp->data = data;
5013	cp->get = clk_src_get;
5014
5015	mutex_lock(&of_clk_mutex);
5016	list_add(&cp->link, &of_clk_providers);
5017	mutex_unlock(&of_clk_mutex);
5018	pr_debug("Added clock from %pOF\n", np);
5019
5020	clk_core_reparent_orphans();
5021
5022	ret = of_clk_set_defaults(np, true);
5023	if (ret < 0)
5024		of_clk_del_provider(np);
5025
5026	fwnode_dev_initialized(&np->fwnode, true);
5027
5028	return ret;
5029}
5030EXPORT_SYMBOL_GPL(of_clk_add_provider);
5031
5032/**
5033 * of_clk_add_hw_provider() - Register a clock provider for a node
5034 * @np: Device node pointer associated with clock provider
5035 * @get: callback for decoding clk_hw
5036 * @data: context pointer for @get callback.
5037 */
5038int of_clk_add_hw_provider(struct device_node *np,
5039			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
5040						 void *data),
5041			   void *data)
5042{
5043	struct of_clk_provider *cp;
5044	int ret;
5045
5046	if (!np)
5047		return 0;
5048
5049	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
5050	if (!cp)
5051		return -ENOMEM;
5052
5053	cp->node = of_node_get(np);
5054	cp->data = data;
5055	cp->get_hw = get;
5056
5057	mutex_lock(&of_clk_mutex);
5058	list_add(&cp->link, &of_clk_providers);
5059	mutex_unlock(&of_clk_mutex);
5060	pr_debug("Added clk_hw provider from %pOF\n", np);
5061
5062	clk_core_reparent_orphans();
5063
5064	ret = of_clk_set_defaults(np, true);
5065	if (ret < 0)
5066		of_clk_del_provider(np);
5067
5068	fwnode_dev_initialized(&np->fwnode, true);
5069
5070	return ret;
5071}
5072EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
5073
5074static void devm_of_clk_release_provider(struct device *dev, void *res)
5075{
5076	of_clk_del_provider(*(struct device_node **)res);
5077}
5078
5079/*
5080 * We allow a child device to use its parent device as the clock provider node
5081 * for cases like MFD sub-devices where the child device driver wants to use
5082 * devm_*() APIs but not list the device in DT as a sub-node.
5083 */
5084static struct device_node *get_clk_provider_node(struct device *dev)
5085{
5086	struct device_node *np, *parent_np;
5087
5088	np = dev->of_node;
5089	parent_np = dev->parent ? dev->parent->of_node : NULL;
5090
5091	if (!of_property_present(np, "#clock-cells"))
5092		if (of_property_present(parent_np, "#clock-cells"))
5093			np = parent_np;
5094
5095	return np;
5096}
5097
5098/**
5099 * devm_of_clk_add_hw_provider() - Managed clk provider node registration
5100 * @dev: Device acting as the clock provider (used for DT node and lifetime)
5101 * @get: callback for decoding clk_hw
5102 * @data: context pointer for @get callback
5103 *
5104 * Registers clock provider for given device's node. If the device has no DT
5105 * node or if the device node lacks of clock provider information (#clock-cells)
5106 * then the parent device's node is scanned for this information. If parent node
5107 * has the #clock-cells then it is used in registration. Provider is
5108 * automatically released at device exit.
5109 *
5110 * Return: 0 on success or an errno on failure.
5111 */
5112int devm_of_clk_add_hw_provider(struct device *dev,
5113			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
5114					      void *data),
5115			void *data)
5116{
5117	struct device_node **ptr, *np;
5118	int ret;
5119
5120	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
5121			   GFP_KERNEL);
5122	if (!ptr)
5123		return -ENOMEM;
5124
5125	np = get_clk_provider_node(dev);
5126	ret = of_clk_add_hw_provider(np, get, data);
5127	if (!ret) {
5128		*ptr = np;
5129		devres_add(dev, ptr);
5130	} else {
5131		devres_free(ptr);
5132	}
5133
5134	return ret;
5135}
5136EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
5137
5138/**
5139 * of_clk_del_provider() - Remove a previously registered clock provider
5140 * @np: Device node pointer associated with clock provider
5141 */
5142void of_clk_del_provider(struct device_node *np)
5143{
5144	struct of_clk_provider *cp;
5145
5146	if (!np)
5147		return;
5148
5149	mutex_lock(&of_clk_mutex);
5150	list_for_each_entry(cp, &of_clk_providers, link) {
5151		if (cp->node == np) {
5152			list_del(&cp->link);
5153			fwnode_dev_initialized(&np->fwnode, false);
5154			of_node_put(cp->node);
5155			kfree(cp);
5156			break;
5157		}
5158	}
5159	mutex_unlock(&of_clk_mutex);
5160}
5161EXPORT_SYMBOL_GPL(of_clk_del_provider);
5162
5163/**
5164 * of_parse_clkspec() - Parse a DT clock specifier for a given device node
5165 * @np: device node to parse clock specifier from
5166 * @index: index of phandle to parse clock out of. If index < 0, @name is used
5167 * @name: clock name to find and parse. If name is NULL, the index is used
5168 * @out_args: Result of parsing the clock specifier
5169 *
5170 * Parses a device node's "clocks" and "clock-names" properties to find the
5171 * phandle and cells for the index or name that is desired. The resulting clock
5172 * specifier is placed into @out_args, or an errno is returned when there's a
5173 * parsing error. The @index argument is ignored if @name is non-NULL.
5174 *
5175 * Example:
5176 *
5177 * phandle1: clock-controller@1 {
5178 *	#clock-cells = <2>;
5179 * }
5180 *
5181 * phandle2: clock-controller@2 {
5182 *	#clock-cells = <1>;
5183 * }
5184 *
5185 * clock-consumer@3 {
5186 *	clocks = <&phandle1 1 2 &phandle2 3>;
5187 *	clock-names = "name1", "name2";
5188 * }
5189 *
5190 * To get a device_node for `clock-controller@2' node you may call this
5191 * function a few different ways:
5192 *
5193 *   of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
5194 *   of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
5195 *   of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
5196 *
5197 * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
5198 * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
5199 * the "clock-names" property of @np.
5200 */
5201static int of_parse_clkspec(const struct device_node *np, int index,
5202			    const char *name, struct of_phandle_args *out_args)
5203{
5204	int ret = -ENOENT;
5205
5206	/* Walk up the tree of devices looking for a clock property that matches */
5207	while (np) {
5208		/*
5209		 * For named clocks, first look up the name in the
5210		 * "clock-names" property.  If it cannot be found, then index
5211		 * will be an error code and of_parse_phandle_with_args() will
5212		 * return -EINVAL.
5213		 */
5214		if (name)
5215			index = of_property_match_string(np, "clock-names", name);
5216		ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
5217						 index, out_args);
5218		if (!ret)
5219			break;
5220		if (name && index >= 0)
5221			break;
5222
5223		/*
5224		 * No matching clock found on this node.  If the parent node
5225		 * has a "clock-ranges" property, then we can try one of its
5226		 * clocks.
5227		 */
5228		np = np->parent;
5229		if (np && !of_property_present(np, "clock-ranges"))
5230			break;
5231		index = 0;
5232	}
5233
5234	return ret;
5235}
5236
5237static struct clk_hw *
5238__of_clk_get_hw_from_provider(struct of_clk_provider *provider,
5239			      struct of_phandle_args *clkspec)
5240{
5241	struct clk *clk;
5242
5243	if (provider->get_hw)
5244		return provider->get_hw(clkspec, provider->data);
5245
5246	clk = provider->get(clkspec, provider->data);
5247	if (IS_ERR(clk))
5248		return ERR_CAST(clk);
5249	return __clk_get_hw(clk);
5250}
5251
5252static struct clk_hw *
5253of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
5254{
5255	struct of_clk_provider *provider;
5256	struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
5257
5258	if (!clkspec)
5259		return ERR_PTR(-EINVAL);
5260
 
5261	mutex_lock(&of_clk_mutex);
5262	list_for_each_entry(provider, &of_clk_providers, link) {
5263		if (provider->node == clkspec->np) {
5264			hw = __of_clk_get_hw_from_provider(provider, clkspec);
5265			if (!IS_ERR(hw))
5266				break;
 
 
 
 
 
 
 
 
5267		}
5268	}
5269	mutex_unlock(&of_clk_mutex);
5270
5271	return hw;
5272}
5273
5274/**
5275 * of_clk_get_from_provider() - Lookup a clock from a clock provider
5276 * @clkspec: pointer to a clock specifier data structure
5277 *
5278 * This function looks up a struct clk from the registered list of clock
5279 * providers, an input is a clock specifier data structure as returned
5280 * from the of_parse_phandle_with_args() function call.
5281 */
5282struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
5283{
5284	struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
5285
5286	return clk_hw_create_clk(NULL, hw, NULL, __func__);
5287}
5288EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
5289
5290struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
5291			     const char *con_id)
5292{
5293	int ret;
5294	struct clk_hw *hw;
5295	struct of_phandle_args clkspec;
5296
5297	ret = of_parse_clkspec(np, index, con_id, &clkspec);
5298	if (ret)
5299		return ERR_PTR(ret);
5300
5301	hw = of_clk_get_hw_from_clkspec(&clkspec);
5302	of_node_put(clkspec.np);
5303
5304	return hw;
5305}
5306
5307static struct clk *__of_clk_get(struct device_node *np,
5308				int index, const char *dev_id,
5309				const char *con_id)
5310{
5311	struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
5312
5313	return clk_hw_create_clk(NULL, hw, dev_id, con_id);
5314}
5315
5316struct clk *of_clk_get(struct device_node *np, int index)
5317{
5318	return __of_clk_get(np, index, np->full_name, NULL);
5319}
5320EXPORT_SYMBOL(of_clk_get);
5321
5322/**
5323 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
5324 * @np: pointer to clock consumer node
5325 * @name: name of consumer's clock input, or NULL for the first clock reference
5326 *
5327 * This function parses the clocks and clock-names properties,
5328 * and uses them to look up the struct clk from the registered list of clock
5329 * providers.
5330 */
5331struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
5332{
5333	if (!np)
5334		return ERR_PTR(-ENOENT);
5335
5336	return __of_clk_get(np, 0, np->full_name, name);
5337}
5338EXPORT_SYMBOL(of_clk_get_by_name);
5339
5340/**
5341 * of_clk_get_parent_count() - Count the number of clocks a device node has
5342 * @np: device node to count
5343 *
5344 * Returns: The number of clocks that are possible parents of this node
5345 */
5346unsigned int of_clk_get_parent_count(const struct device_node *np)
5347{
5348	int count;
5349
5350	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
5351	if (count < 0)
5352		return 0;
5353
5354	return count;
5355}
5356EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
5357
5358const char *of_clk_get_parent_name(const struct device_node *np, int index)
5359{
5360	struct of_phandle_args clkspec;
 
5361	const char *clk_name;
5362	bool found = false;
5363	u32 pv;
5364	int rc;
5365	int count;
5366	struct clk *clk;
5367
5368	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
5369					&clkspec);
5370	if (rc)
5371		return NULL;
5372
5373	index = clkspec.args_count ? clkspec.args[0] : 0;
5374	count = 0;
5375
5376	/* if there is an indices property, use it to transfer the index
5377	 * specified into an array offset for the clock-output-names property.
5378	 */
5379	of_property_for_each_u32(clkspec.np, "clock-indices", pv) {
5380		if (index == pv) {
5381			index = count;
5382			found = true;
5383			break;
5384		}
5385		count++;
5386	}
5387	/* We went off the end of 'clock-indices' without finding it */
5388	if (of_property_present(clkspec.np, "clock-indices") && !found) {
5389		of_node_put(clkspec.np);
5390		return NULL;
5391	}
5392
5393	if (of_property_read_string_index(clkspec.np, "clock-output-names",
5394					  index,
5395					  &clk_name) < 0) {
5396		/*
5397		 * Best effort to get the name if the clock has been
5398		 * registered with the framework. If the clock isn't
5399		 * registered, we return the node name as the name of
5400		 * the clock as long as #clock-cells = 0.
5401		 */
5402		clk = of_clk_get_from_provider(&clkspec);
5403		if (IS_ERR(clk)) {
5404			if (clkspec.args_count == 0)
5405				clk_name = clkspec.np->name;
5406			else
5407				clk_name = NULL;
5408		} else {
5409			clk_name = __clk_get_name(clk);
5410			clk_put(clk);
5411		}
5412	}
5413
5414
5415	of_node_put(clkspec.np);
5416	return clk_name;
5417}
5418EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
5419
5420/**
5421 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
5422 * number of parents
5423 * @np: Device node pointer associated with clock provider
5424 * @parents: pointer to char array that hold the parents' names
5425 * @size: size of the @parents array
5426 *
5427 * Return: number of parents for the clock node.
5428 */
5429int of_clk_parent_fill(struct device_node *np, const char **parents,
5430		       unsigned int size)
5431{
5432	unsigned int i = 0;
5433
5434	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
5435		i++;
5436
5437	return i;
5438}
5439EXPORT_SYMBOL_GPL(of_clk_parent_fill);
5440
5441struct clock_provider {
5442	void (*clk_init_cb)(struct device_node *);
5443	struct device_node *np;
5444	struct list_head node;
5445};
5446
5447/*
5448 * This function looks for a parent clock. If there is one, then it
5449 * checks that the provider for this parent clock was initialized, in
5450 * this case the parent clock will be ready.
5451 */
5452static int parent_ready(struct device_node *np)
5453{
5454	int i = 0;
5455
5456	while (true) {
5457		struct clk *clk = of_clk_get(np, i);
5458
5459		/* this parent is ready we can check the next one */
5460		if (!IS_ERR(clk)) {
5461			clk_put(clk);
5462			i++;
5463			continue;
5464		}
5465
5466		/* at least one parent is not ready, we exit now */
5467		if (PTR_ERR(clk) == -EPROBE_DEFER)
5468			return 0;
5469
5470		/*
5471		 * Here we make assumption that the device tree is
5472		 * written correctly. So an error means that there is
5473		 * no more parent. As we didn't exit yet, then the
5474		 * previous parent are ready. If there is no clock
5475		 * parent, no need to wait for them, then we can
5476		 * consider their absence as being ready
5477		 */
5478		return 1;
5479	}
5480}
5481
5482/**
5483 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
5484 * @np: Device node pointer associated with clock provider
5485 * @index: clock index
5486 * @flags: pointer to top-level framework flags
5487 *
5488 * Detects if the clock-critical property exists and, if so, sets the
5489 * corresponding CLK_IS_CRITICAL flag.
5490 *
5491 * Do not use this function. It exists only for legacy Device Tree
5492 * bindings, such as the one-clock-per-node style that are outdated.
5493 * Those bindings typically put all clock data into .dts and the Linux
5494 * driver has no clock data, thus making it impossible to set this flag
5495 * correctly from the driver. Only those drivers may call
5496 * of_clk_detect_critical from their setup functions.
5497 *
5498 * Return: error code or zero on success
5499 */
5500int of_clk_detect_critical(struct device_node *np, int index,
5501			   unsigned long *flags)
5502{
5503	uint32_t idx;
5504
5505	if (!np || !flags)
5506		return -EINVAL;
5507
5508	of_property_for_each_u32(np, "clock-critical", idx)
5509		if (index == idx)
5510			*flags |= CLK_IS_CRITICAL;
5511
5512	return 0;
5513}
5514
5515/**
5516 * of_clk_init() - Scan and init clock providers from the DT
5517 * @matches: array of compatible values and init functions for providers.
5518 *
5519 * This function scans the device tree for matching clock providers
5520 * and calls their initialization functions. It also does it by trying
5521 * to follow the dependencies.
5522 */
5523void __init of_clk_init(const struct of_device_id *matches)
5524{
5525	const struct of_device_id *match;
5526	struct device_node *np;
5527	struct clock_provider *clk_provider, *next;
5528	bool is_init_done;
5529	bool force = false;
5530	LIST_HEAD(clk_provider_list);
5531
5532	if (!matches)
5533		matches = &__clk_of_table;
5534
5535	/* First prepare the list of the clocks providers */
5536	for_each_matching_node_and_match(np, matches, &match) {
5537		struct clock_provider *parent;
5538
5539		if (!of_device_is_available(np))
5540			continue;
5541
5542		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
5543		if (!parent) {
5544			list_for_each_entry_safe(clk_provider, next,
5545						 &clk_provider_list, node) {
5546				list_del(&clk_provider->node);
5547				of_node_put(clk_provider->np);
5548				kfree(clk_provider);
5549			}
5550			of_node_put(np);
5551			return;
5552		}
5553
5554		parent->clk_init_cb = match->data;
5555		parent->np = of_node_get(np);
5556		list_add_tail(&parent->node, &clk_provider_list);
5557	}
5558
5559	while (!list_empty(&clk_provider_list)) {
5560		is_init_done = false;
5561		list_for_each_entry_safe(clk_provider, next,
5562					&clk_provider_list, node) {
5563			if (force || parent_ready(clk_provider->np)) {
5564
5565				/* Don't populate platform devices */
5566				of_node_set_flag(clk_provider->np,
5567						 OF_POPULATED);
5568
5569				clk_provider->clk_init_cb(clk_provider->np);
5570				of_clk_set_defaults(clk_provider->np, true);
5571
5572				list_del(&clk_provider->node);
5573				of_node_put(clk_provider->np);
5574				kfree(clk_provider);
5575				is_init_done = true;
5576			}
5577		}
5578
5579		/*
5580		 * We didn't manage to initialize any of the
5581		 * remaining providers during the last loop, so now we
5582		 * initialize all the remaining ones unconditionally
5583		 * in case the clock parent was not mandatory
5584		 */
5585		if (!is_init_done)
5586			force = true;
5587	}
5588}
5589#endif
v4.6
 
   1/*
   2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
   3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License version 2 as
   7 * published by the Free Software Foundation.
   8 *
   9 * Standard functionality for the common clock API.  See Documentation/clk.txt
  10 */
  11
  12#include <linux/clk.h>
  13#include <linux/clk-provider.h>
  14#include <linux/clk/clk-conf.h>
  15#include <linux/module.h>
  16#include <linux/mutex.h>
  17#include <linux/spinlock.h>
  18#include <linux/err.h>
  19#include <linux/list.h>
  20#include <linux/slab.h>
  21#include <linux/of.h>
  22#include <linux/device.h>
  23#include <linux/init.h>
 
  24#include <linux/sched.h>
  25#include <linux/clkdev.h>
  26
  27#include "clk.h"
  28
  29static DEFINE_SPINLOCK(enable_lock);
  30static DEFINE_MUTEX(prepare_lock);
  31
  32static struct task_struct *prepare_owner;
  33static struct task_struct *enable_owner;
  34
  35static int prepare_refcnt;
  36static int enable_refcnt;
  37
  38static HLIST_HEAD(clk_root_list);
  39static HLIST_HEAD(clk_orphan_list);
  40static LIST_HEAD(clk_notifier_list);
  41
 
 
 
 
 
 
 
 
 
 
  42/***    private data structures    ***/
  43
 
 
 
 
 
 
 
 
  44struct clk_core {
  45	const char		*name;
  46	const struct clk_ops	*ops;
  47	struct clk_hw		*hw;
  48	struct module		*owner;
 
 
 
  49	struct clk_core		*parent;
  50	const char		**parent_names;
  51	struct clk_core		**parents;
  52	u8			num_parents;
  53	u8			new_parent_index;
  54	unsigned long		rate;
  55	unsigned long		req_rate;
  56	unsigned long		new_rate;
  57	struct clk_core		*new_parent;
  58	struct clk_core		*new_child;
  59	unsigned long		flags;
  60	bool			orphan;
 
  61	unsigned int		enable_count;
  62	unsigned int		prepare_count;
 
  63	unsigned long		min_rate;
  64	unsigned long		max_rate;
  65	unsigned long		accuracy;
  66	int			phase;
 
  67	struct hlist_head	children;
  68	struct hlist_node	child_node;
  69	struct hlist_head	clks;
  70	unsigned int		notifier_count;
  71#ifdef CONFIG_DEBUG_FS
  72	struct dentry		*dentry;
  73	struct hlist_node	debug_node;
  74#endif
  75	struct kref		ref;
  76};
  77
  78#define CREATE_TRACE_POINTS
  79#include <trace/events/clk.h>
  80
  81struct clk {
  82	struct clk_core	*core;
 
  83	const char *dev_id;
  84	const char *con_id;
  85	unsigned long min_rate;
  86	unsigned long max_rate;
 
  87	struct hlist_node clks_node;
  88};
  89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  90/***           locking             ***/
  91static void clk_prepare_lock(void)
  92{
  93	if (!mutex_trylock(&prepare_lock)) {
  94		if (prepare_owner == current) {
  95			prepare_refcnt++;
  96			return;
  97		}
  98		mutex_lock(&prepare_lock);
  99	}
 100	WARN_ON_ONCE(prepare_owner != NULL);
 101	WARN_ON_ONCE(prepare_refcnt != 0);
 102	prepare_owner = current;
 103	prepare_refcnt = 1;
 104}
 105
 106static void clk_prepare_unlock(void)
 107{
 108	WARN_ON_ONCE(prepare_owner != current);
 109	WARN_ON_ONCE(prepare_refcnt == 0);
 110
 111	if (--prepare_refcnt)
 112		return;
 113	prepare_owner = NULL;
 114	mutex_unlock(&prepare_lock);
 115}
 116
 117static unsigned long clk_enable_lock(void)
 118	__acquires(enable_lock)
 119{
 120	unsigned long flags;
 121
 122	if (!spin_trylock_irqsave(&enable_lock, flags)) {
 
 
 
 
 
 
 123		if (enable_owner == current) {
 124			enable_refcnt++;
 125			__acquire(enable_lock);
 
 
 126			return flags;
 127		}
 128		spin_lock_irqsave(&enable_lock, flags);
 129	}
 130	WARN_ON_ONCE(enable_owner != NULL);
 131	WARN_ON_ONCE(enable_refcnt != 0);
 132	enable_owner = current;
 133	enable_refcnt = 1;
 134	return flags;
 135}
 136
 137static void clk_enable_unlock(unsigned long flags)
 138	__releases(enable_lock)
 139{
 140	WARN_ON_ONCE(enable_owner != current);
 141	WARN_ON_ONCE(enable_refcnt == 0);
 142
 143	if (--enable_refcnt) {
 144		__release(enable_lock);
 145		return;
 146	}
 147	enable_owner = NULL;
 148	spin_unlock_irqrestore(&enable_lock, flags);
 149}
 150
 
 
 
 
 
 151static bool clk_core_is_prepared(struct clk_core *core)
 152{
 
 
 153	/*
 154	 * .is_prepared is optional for clocks that can prepare
 155	 * fall back to software usage counter if it is missing
 156	 */
 157	if (!core->ops->is_prepared)
 158		return core->prepare_count;
 159
 160	return core->ops->is_prepared(core->hw);
 
 
 
 
 
 161}
 162
 163static bool clk_core_is_enabled(struct clk_core *core)
 164{
 
 
 165	/*
 166	 * .is_enabled is only mandatory for clocks that gate
 167	 * fall back to software usage counter if .is_enabled is missing
 168	 */
 169	if (!core->ops->is_enabled)
 170		return core->enable_count;
 171
 172	return core->ops->is_enabled(core->hw);
 173}
 174
 175static void clk_unprepare_unused_subtree(struct clk_core *core)
 176{
 177	struct clk_core *child;
 178
 179	lockdep_assert_held(&prepare_lock);
 180
 181	hlist_for_each_entry(child, &core->children, child_node)
 182		clk_unprepare_unused_subtree(child);
 183
 184	if (core->prepare_count)
 185		return;
 186
 187	if (core->flags & CLK_IGNORE_UNUSED)
 188		return;
 189
 190	if (clk_core_is_prepared(core)) {
 191		trace_clk_unprepare(core);
 192		if (core->ops->unprepare_unused)
 193			core->ops->unprepare_unused(core->hw);
 194		else if (core->ops->unprepare)
 195			core->ops->unprepare(core->hw);
 196		trace_clk_unprepare_complete(core);
 197	}
 198}
 199
 200static void clk_disable_unused_subtree(struct clk_core *core)
 201{
 202	struct clk_core *child;
 203	unsigned long flags;
 204
 205	lockdep_assert_held(&prepare_lock);
 206
 207	hlist_for_each_entry(child, &core->children, child_node)
 208		clk_disable_unused_subtree(child);
 209
 210	flags = clk_enable_lock();
 211
 212	if (core->enable_count)
 213		goto unlock_out;
 214
 215	if (core->flags & CLK_IGNORE_UNUSED)
 216		goto unlock_out;
 217
 218	/*
 219	 * some gate clocks have special needs during the disable-unused
 220	 * sequence.  call .disable_unused if available, otherwise fall
 221	 * back to .disable
 222	 */
 223	if (clk_core_is_enabled(core)) {
 224		trace_clk_disable(core);
 225		if (core->ops->disable_unused)
 226			core->ops->disable_unused(core->hw);
 227		else if (core->ops->disable)
 228			core->ops->disable(core->hw);
 229		trace_clk_disable_complete(core);
 230	}
 231
 232unlock_out:
 233	clk_enable_unlock(flags);
 234}
 
 235
 236static bool clk_ignore_unused;
 237static int __init clk_ignore_unused_setup(char *__unused)
 238{
 239	clk_ignore_unused = true;
 240	return 1;
 241}
 242__setup("clk_ignore_unused", clk_ignore_unused_setup);
 243
 244static int clk_disable_unused(void)
 245{
 246	struct clk_core *core;
 247
 248	if (clk_ignore_unused) {
 249		pr_warn("clk: Not disabling unused clocks\n");
 250		return 0;
 251	}
 252
 253	clk_prepare_lock();
 254
 255	hlist_for_each_entry(core, &clk_root_list, child_node)
 256		clk_disable_unused_subtree(core);
 257
 258	hlist_for_each_entry(core, &clk_orphan_list, child_node)
 259		clk_disable_unused_subtree(core);
 260
 261	hlist_for_each_entry(core, &clk_root_list, child_node)
 262		clk_unprepare_unused_subtree(core);
 263
 264	hlist_for_each_entry(core, &clk_orphan_list, child_node)
 265		clk_unprepare_unused_subtree(core);
 266
 267	clk_prepare_unlock();
 268
 269	return 0;
 270}
 271late_initcall_sync(clk_disable_unused);
 272
 273/***    helper functions   ***/
 274
 275const char *__clk_get_name(const struct clk *clk)
 276{
 277	return !clk ? NULL : clk->core->name;
 278}
 279EXPORT_SYMBOL_GPL(__clk_get_name);
 280
 281const char *clk_hw_get_name(const struct clk_hw *hw)
 282{
 283	return hw->core->name;
 284}
 285EXPORT_SYMBOL_GPL(clk_hw_get_name);
 286
 287struct clk_hw *__clk_get_hw(struct clk *clk)
 288{
 289	return !clk ? NULL : clk->core->hw;
 290}
 291EXPORT_SYMBOL_GPL(__clk_get_hw);
 292
 293unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
 294{
 295	return hw->core->num_parents;
 296}
 297EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
 298
 299struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
 300{
 301	return hw->core->parent ? hw->core->parent->hw : NULL;
 302}
 303EXPORT_SYMBOL_GPL(clk_hw_get_parent);
 304
 305static struct clk_core *__clk_lookup_subtree(const char *name,
 306					     struct clk_core *core)
 307{
 308	struct clk_core *child;
 309	struct clk_core *ret;
 310
 311	if (!strcmp(core->name, name))
 312		return core;
 313
 314	hlist_for_each_entry(child, &core->children, child_node) {
 315		ret = __clk_lookup_subtree(name, child);
 316		if (ret)
 317			return ret;
 318	}
 319
 320	return NULL;
 321}
 322
 323static struct clk_core *clk_core_lookup(const char *name)
 324{
 325	struct clk_core *root_clk;
 326	struct clk_core *ret;
 327
 328	if (!name)
 329		return NULL;
 330
 331	/* search the 'proper' clk tree first */
 332	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
 333		ret = __clk_lookup_subtree(name, root_clk);
 334		if (ret)
 335			return ret;
 336	}
 337
 338	/* if not found, then search the orphan tree */
 339	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
 340		ret = __clk_lookup_subtree(name, root_clk);
 341		if (ret)
 342			return ret;
 343	}
 344
 345	return NULL;
 346}
 347
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 348static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
 349							 u8 index)
 350{
 351	if (!core || index >= core->num_parents)
 352		return NULL;
 353
 354	if (!core->parents[index])
 355		core->parents[index] =
 356				clk_core_lookup(core->parent_names[index]);
 357
 358	return core->parents[index];
 359}
 360
 361struct clk_hw *
 362clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
 363{
 364	struct clk_core *parent;
 365
 366	parent = clk_core_get_parent_by_index(hw->core, index);
 367
 368	return !parent ? NULL : parent->hw;
 369}
 370EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
 371
 372unsigned int __clk_get_enable_count(struct clk *clk)
 373{
 374	return !clk ? 0 : clk->core->enable_count;
 375}
 376
 377static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
 378{
 379	unsigned long ret;
 
 380
 381	if (!core) {
 382		ret = 0;
 383		goto out;
 384	}
 385
 386	ret = core->rate;
 387
 388	if (!core->num_parents)
 389		goto out;
 390
 391	if (!core->parent)
 392		ret = 0;
 393
 394out:
 395	return ret;
 396}
 397
 398unsigned long clk_hw_get_rate(const struct clk_hw *hw)
 399{
 400	return clk_core_get_rate_nolock(hw->core);
 401}
 402EXPORT_SYMBOL_GPL(clk_hw_get_rate);
 403
 404static unsigned long __clk_get_accuracy(struct clk_core *core)
 405{
 406	if (!core)
 407		return 0;
 408
 409	return core->accuracy;
 410}
 411
 412unsigned long __clk_get_flags(struct clk *clk)
 413{
 414	return !clk ? 0 : clk->core->flags;
 415}
 416EXPORT_SYMBOL_GPL(__clk_get_flags);
 417
 418unsigned long clk_hw_get_flags(const struct clk_hw *hw)
 419{
 420	return hw->core->flags;
 421}
 422EXPORT_SYMBOL_GPL(clk_hw_get_flags);
 423
 424bool clk_hw_is_prepared(const struct clk_hw *hw)
 425{
 426	return clk_core_is_prepared(hw->core);
 427}
 
 428
 429bool clk_hw_is_enabled(const struct clk_hw *hw)
 430{
 431	return clk_core_is_enabled(hw->core);
 432}
 
 433
 434bool __clk_is_enabled(struct clk *clk)
 435{
 436	if (!clk)
 437		return false;
 438
 439	return clk_core_is_enabled(clk->core);
 440}
 441EXPORT_SYMBOL_GPL(__clk_is_enabled);
 442
 443static bool mux_is_better_rate(unsigned long rate, unsigned long now,
 444			   unsigned long best, unsigned long flags)
 445{
 446	if (flags & CLK_MUX_ROUND_CLOSEST)
 447		return abs(now - rate) < abs(best - rate);
 448
 449	return now <= rate && now > best;
 450}
 451
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 452static int
 453clk_mux_determine_rate_flags(struct clk_hw *hw, struct clk_rate_request *req,
 454			     unsigned long flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 455{
 456	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
 457	int i, num_parents, ret;
 458	unsigned long best = 0;
 459	struct clk_rate_request parent_req = *req;
 460
 461	/* if NO_REPARENT flag set, pass through to current parent */
 462	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
 463		parent = core->parent;
 464		if (core->flags & CLK_SET_RATE_PARENT) {
 465			ret = __clk_determine_rate(parent ? parent->hw : NULL,
 466						   &parent_req);
 467			if (ret)
 468				return ret;
 469
 470			best = parent_req.rate;
 471		} else if (parent) {
 472			best = clk_core_get_rate_nolock(parent);
 473		} else {
 474			best = clk_core_get_rate_nolock(core);
 475		}
 476
 477		goto out;
 478	}
 479
 480	/* find the parent that can provide the fastest rate <= rate */
 481	num_parents = core->num_parents;
 482	for (i = 0; i < num_parents; i++) {
 
 
 483		parent = clk_core_get_parent_by_index(core, i);
 484		if (!parent)
 485			continue;
 486
 487		if (core->flags & CLK_SET_RATE_PARENT) {
 488			parent_req = *req;
 489			ret = __clk_determine_rate(parent->hw, &parent_req);
 
 
 
 
 
 490			if (ret)
 491				continue;
 
 
 
 
 492		} else {
 493			parent_req.rate = clk_core_get_rate_nolock(parent);
 494		}
 495
 496		if (mux_is_better_rate(req->rate, parent_req.rate,
 497				       best, flags)) {
 498			best_parent = parent;
 499			best = parent_req.rate;
 500		}
 501	}
 502
 503	if (!best_parent)
 504		return -EINVAL;
 505
 506out:
 507	if (best_parent)
 508		req->best_parent_hw = best_parent->hw;
 509	req->best_parent_rate = best;
 510	req->rate = best;
 511
 512	return 0;
 513}
 
 514
 515struct clk *__clk_lookup(const char *name)
 516{
 517	struct clk_core *core = clk_core_lookup(name);
 518
 519	return !core ? NULL : core->hw->clk;
 520}
 521
 522static void clk_core_get_boundaries(struct clk_core *core,
 523				    unsigned long *min_rate,
 524				    unsigned long *max_rate)
 525{
 526	struct clk *clk_user;
 527
 
 
 528	*min_rate = core->min_rate;
 529	*max_rate = core->max_rate;
 530
 531	hlist_for_each_entry(clk_user, &core->clks, clks_node)
 532		*min_rate = max(*min_rate, clk_user->min_rate);
 533
 534	hlist_for_each_entry(clk_user, &core->clks, clks_node)
 535		*max_rate = min(*max_rate, clk_user->max_rate);
 536}
 537
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 538void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
 539			   unsigned long max_rate)
 540{
 541	hw->core->min_rate = min_rate;
 542	hw->core->max_rate = max_rate;
 543}
 544EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
 545
 546/*
 
 
 
 
 547 * Helper for finding best parent to provide a given frequency. This can be used
 548 * directly as a determine_rate callback (e.g. for a mux), or from a more
 549 * complex clock that may combine a mux with other operations.
 
 
 550 */
 551int __clk_mux_determine_rate(struct clk_hw *hw,
 552			     struct clk_rate_request *req)
 553{
 554	return clk_mux_determine_rate_flags(hw, req, 0);
 555}
 556EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
 557
 558int __clk_mux_determine_rate_closest(struct clk_hw *hw,
 559				     struct clk_rate_request *req)
 560{
 561	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
 562}
 563EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
 564
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 565/***        clk api        ***/
 566
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 567static void clk_core_unprepare(struct clk_core *core)
 568{
 569	lockdep_assert_held(&prepare_lock);
 570
 571	if (!core)
 572		return;
 573
 574	if (WARN_ON(core->prepare_count == 0))
 
 575		return;
 576
 
 
 
 
 
 
 
 577	if (--core->prepare_count > 0)
 578		return;
 579
 580	WARN_ON(core->enable_count > 0);
 581
 582	trace_clk_unprepare(core);
 583
 584	if (core->ops->unprepare)
 585		core->ops->unprepare(core->hw);
 586
 587	trace_clk_unprepare_complete(core);
 588	clk_core_unprepare(core->parent);
 
 
 
 
 
 
 
 
 589}
 590
 591/**
 592 * clk_unprepare - undo preparation of a clock source
 593 * @clk: the clk being unprepared
 594 *
 595 * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
 596 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
 597 * if the operation may sleep.  One example is a clk which is accessed over
 598 * I2c.  In the complex case a clk gate operation may require a fast and a slow
 599 * part.  It is this reason that clk_unprepare and clk_disable are not mutually
 600 * exclusive.  In fact clk_disable must be called before clk_unprepare.
 601 */
 602void clk_unprepare(struct clk *clk)
 603{
 604	if (IS_ERR_OR_NULL(clk))
 605		return;
 606
 607	clk_prepare_lock();
 608	clk_core_unprepare(clk->core);
 609	clk_prepare_unlock();
 610}
 611EXPORT_SYMBOL_GPL(clk_unprepare);
 612
 613static int clk_core_prepare(struct clk_core *core)
 614{
 615	int ret = 0;
 616
 617	lockdep_assert_held(&prepare_lock);
 618
 619	if (!core)
 620		return 0;
 621
 622	if (core->prepare_count == 0) {
 
 
 
 
 623		ret = clk_core_prepare(core->parent);
 624		if (ret)
 625			return ret;
 626
 627		trace_clk_prepare(core);
 628
 629		if (core->ops->prepare)
 630			ret = core->ops->prepare(core->hw);
 631
 632		trace_clk_prepare_complete(core);
 633
 634		if (ret) {
 635			clk_core_unprepare(core->parent);
 636			return ret;
 637		}
 638	}
 639
 640	core->prepare_count++;
 641
 
 
 
 
 
 
 
 
 
 
 642	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 643}
 644
 645/**
 646 * clk_prepare - prepare a clock source
 647 * @clk: the clk being prepared
 648 *
 649 * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
 650 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
 651 * operation may sleep.  One example is a clk which is accessed over I2c.  In
 652 * the complex case a clk ungate operation may require a fast and a slow part.
 653 * It is this reason that clk_prepare and clk_enable are not mutually
 654 * exclusive.  In fact clk_prepare must be called before clk_enable.
 655 * Returns 0 on success, -EERROR otherwise.
 656 */
 657int clk_prepare(struct clk *clk)
 658{
 659	int ret;
 660
 661	if (!clk)
 662		return 0;
 663
 664	clk_prepare_lock();
 665	ret = clk_core_prepare(clk->core);
 666	clk_prepare_unlock();
 667
 668	return ret;
 669}
 670EXPORT_SYMBOL_GPL(clk_prepare);
 671
 672static void clk_core_disable(struct clk_core *core)
 673{
 674	lockdep_assert_held(&enable_lock);
 675
 676	if (!core)
 677		return;
 678
 679	if (WARN_ON(core->enable_count == 0))
 
 
 
 
 680		return;
 681
 682	if (--core->enable_count > 0)
 683		return;
 684
 685	trace_clk_disable(core);
 686
 687	if (core->ops->disable)
 688		core->ops->disable(core->hw);
 689
 690	trace_clk_disable_complete(core);
 691
 692	clk_core_disable(core->parent);
 693}
 694
 
 
 
 
 
 
 
 
 
 695/**
 696 * clk_disable - gate a clock
 697 * @clk: the clk being gated
 698 *
 699 * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
 700 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
 701 * clk if the operation is fast and will never sleep.  One example is a
 702 * SoC-internal clk which is controlled via simple register writes.  In the
 703 * complex case a clk gate operation may require a fast and a slow part.  It is
 704 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
 705 * In fact clk_disable must be called before clk_unprepare.
 706 */
 707void clk_disable(struct clk *clk)
 708{
 709	unsigned long flags;
 710
 711	if (IS_ERR_OR_NULL(clk))
 712		return;
 713
 714	flags = clk_enable_lock();
 715	clk_core_disable(clk->core);
 716	clk_enable_unlock(flags);
 717}
 718EXPORT_SYMBOL_GPL(clk_disable);
 719
 720static int clk_core_enable(struct clk_core *core)
 721{
 722	int ret = 0;
 723
 724	lockdep_assert_held(&enable_lock);
 725
 726	if (!core)
 727		return 0;
 728
 729	if (WARN_ON(core->prepare_count == 0))
 
 730		return -ESHUTDOWN;
 731
 732	if (core->enable_count == 0) {
 733		ret = clk_core_enable(core->parent);
 734
 735		if (ret)
 736			return ret;
 737
 738		trace_clk_enable(core);
 739
 740		if (core->ops->enable)
 741			ret = core->ops->enable(core->hw);
 742
 743		trace_clk_enable_complete(core);
 744
 745		if (ret) {
 746			clk_core_disable(core->parent);
 747			return ret;
 748		}
 749	}
 750
 751	core->enable_count++;
 752	return 0;
 753}
 754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 755/**
 756 * clk_enable - ungate a clock
 757 * @clk: the clk being ungated
 758 *
 759 * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
 760 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
 761 * if the operation will never sleep.  One example is a SoC-internal clk which
 762 * is controlled via simple register writes.  In the complex case a clk ungate
 763 * operation may require a fast and a slow part.  It is this reason that
 764 * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
 765 * must be called before clk_enable.  Returns 0 on success, -EERROR
 766 * otherwise.
 767 */
 768int clk_enable(struct clk *clk)
 769{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 770	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 771	int ret;
 772
 773	if (!clk)
 
 774		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 775
 776	flags = clk_enable_lock();
 777	ret = clk_core_enable(clk->core);
 778	clk_enable_unlock(flags);
 779
 780	return ret;
 781}
 782EXPORT_SYMBOL_GPL(clk_enable);
 783
 784static int clk_core_round_rate_nolock(struct clk_core *core,
 785				      struct clk_rate_request *req)
 786{
 787	struct clk_core *parent;
 788	long rate;
 789
 790	lockdep_assert_held(&prepare_lock);
 791
 792	if (!core)
 793		return 0;
 794
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 795	parent = core->parent;
 796	if (parent) {
 797		req->best_parent_hw = parent->hw;
 798		req->best_parent_rate = parent->rate;
 799	} else {
 800		req->best_parent_hw = NULL;
 801		req->best_parent_rate = 0;
 802	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 803
 804	if (core->ops->determine_rate) {
 805		return core->ops->determine_rate(core->hw, req);
 806	} else if (core->ops->round_rate) {
 807		rate = core->ops->round_rate(core->hw, req->rate,
 808					     &req->best_parent_rate);
 809		if (rate < 0)
 810			return rate;
 
 
 
 
 
 
 
 
 811
 812		req->rate = rate;
 813	} else if (core->flags & CLK_SET_RATE_PARENT) {
 814		return clk_core_round_rate_nolock(parent, req);
 815	} else {
 816		req->rate = core->rate;
 817	}
 818
 
 819	return 0;
 820}
 821
 822/**
 823 * __clk_determine_rate - get the closest rate actually supported by a clock
 824 * @hw: determine the rate of this clock
 825 * @rate: target rate
 826 * @min_rate: returned rate must be greater than this rate
 827 * @max_rate: returned rate must be less than this rate
 828 *
 829 * Useful for clk_ops such as .set_rate and .determine_rate.
 830 */
 831int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
 832{
 833	if (!hw) {
 834		req->rate = 0;
 835		return 0;
 836	}
 837
 838	return clk_core_round_rate_nolock(hw->core, req);
 839}
 840EXPORT_SYMBOL_GPL(__clk_determine_rate);
 841
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 842unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
 843{
 844	int ret;
 845	struct clk_rate_request req;
 846
 847	clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
 848	req.rate = rate;
 
 849
 850	ret = clk_core_round_rate_nolock(hw->core, &req);
 851	if (ret)
 852		return 0;
 853
 
 
 854	return req.rate;
 855}
 856EXPORT_SYMBOL_GPL(clk_hw_round_rate);
 857
 858/**
 859 * clk_round_rate - round the given rate for a clk
 860 * @clk: the clk for which we are rounding a rate
 861 * @rate: the rate which is to be rounded
 862 *
 863 * Takes in a rate as input and rounds it to a rate that the clk can actually
 864 * use which is then returned.  If clk doesn't support round_rate operation
 865 * then the parent rate is returned.
 866 */
 867long clk_round_rate(struct clk *clk, unsigned long rate)
 868{
 869	struct clk_rate_request req;
 870	int ret;
 871
 872	if (!clk)
 873		return 0;
 874
 875	clk_prepare_lock();
 876
 877	clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
 878	req.rate = rate;
 
 
 
 
 879
 880	ret = clk_core_round_rate_nolock(clk->core, &req);
 
 
 
 
 
 
 881	clk_prepare_unlock();
 882
 883	if (ret)
 884		return ret;
 885
 886	return req.rate;
 887}
 888EXPORT_SYMBOL_GPL(clk_round_rate);
 889
 890/**
 891 * __clk_notify - call clk notifier chain
 892 * @core: clk that is changing rate
 893 * @msg: clk notifier type (see include/linux/clk.h)
 894 * @old_rate: old clk rate
 895 * @new_rate: new clk rate
 896 *
 897 * Triggers a notifier call chain on the clk rate-change notification
 898 * for 'clk'.  Passes a pointer to the struct clk and the previous
 899 * and current rates to the notifier callback.  Intended to be called by
 900 * internal clock code only.  Returns NOTIFY_DONE from the last driver
 901 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
 902 * a driver returns that.
 903 */
 904static int __clk_notify(struct clk_core *core, unsigned long msg,
 905		unsigned long old_rate, unsigned long new_rate)
 906{
 907	struct clk_notifier *cn;
 908	struct clk_notifier_data cnd;
 909	int ret = NOTIFY_DONE;
 910
 911	cnd.old_rate = old_rate;
 912	cnd.new_rate = new_rate;
 913
 914	list_for_each_entry(cn, &clk_notifier_list, node) {
 915		if (cn->clk->core == core) {
 916			cnd.clk = cn->clk;
 917			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
 918					&cnd);
 
 
 919		}
 920	}
 921
 922	return ret;
 923}
 924
 925/**
 926 * __clk_recalc_accuracies
 927 * @core: first clk in the subtree
 928 *
 929 * Walks the subtree of clks starting with clk and recalculates accuracies as
 930 * it goes.  Note that if a clk does not implement the .recalc_accuracy
 931 * callback then it is assumed that the clock will take on the accuracy of its
 932 * parent.
 933 */
 934static void __clk_recalc_accuracies(struct clk_core *core)
 935{
 936	unsigned long parent_accuracy = 0;
 937	struct clk_core *child;
 938
 939	lockdep_assert_held(&prepare_lock);
 940
 941	if (core->parent)
 942		parent_accuracy = core->parent->accuracy;
 943
 944	if (core->ops->recalc_accuracy)
 945		core->accuracy = core->ops->recalc_accuracy(core->hw,
 946							  parent_accuracy);
 947	else
 948		core->accuracy = parent_accuracy;
 949
 950	hlist_for_each_entry(child, &core->children, child_node)
 951		__clk_recalc_accuracies(child);
 952}
 953
 954static long clk_core_get_accuracy(struct clk_core *core)
 955{
 956	unsigned long accuracy;
 957
 958	clk_prepare_lock();
 959	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
 960		__clk_recalc_accuracies(core);
 961
 962	accuracy = __clk_get_accuracy(core);
 963	clk_prepare_unlock();
 964
 965	return accuracy;
 966}
 967
 968/**
 969 * clk_get_accuracy - return the accuracy of clk
 970 * @clk: the clk whose accuracy is being returned
 971 *
 972 * Simply returns the cached accuracy of the clk, unless
 973 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
 974 * issued.
 975 * If clk is NULL then returns 0.
 976 */
 977long clk_get_accuracy(struct clk *clk)
 978{
 
 
 979	if (!clk)
 980		return 0;
 981
 982	return clk_core_get_accuracy(clk->core);
 
 
 
 
 983}
 984EXPORT_SYMBOL_GPL(clk_get_accuracy);
 985
 986static unsigned long clk_recalc(struct clk_core *core,
 987				unsigned long parent_rate)
 988{
 989	if (core->ops->recalc_rate)
 990		return core->ops->recalc_rate(core->hw, parent_rate);
 991	return parent_rate;
 
 
 
 
 992}
 993
 994/**
 995 * __clk_recalc_rates
 996 * @core: first clk in the subtree
 
 997 * @msg: notification type (see include/linux/clk.h)
 998 *
 999 * Walks the subtree of clks starting with clk and recalculates rates as it
1000 * goes.  Note that if a clk does not implement the .recalc_rate callback then
1001 * it is assumed that the clock will take on the rate of its parent.
1002 *
1003 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1004 * if necessary.
1005 */
1006static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
 
1007{
1008	unsigned long old_rate;
1009	unsigned long parent_rate = 0;
1010	struct clk_core *child;
1011
1012	lockdep_assert_held(&prepare_lock);
1013
1014	old_rate = core->rate;
1015
1016	if (core->parent)
1017		parent_rate = core->parent->rate;
1018
1019	core->rate = clk_recalc(core, parent_rate);
 
 
1020
1021	/*
1022	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1023	 * & ABORT_RATE_CHANGE notifiers
1024	 */
1025	if (core->notifier_count && msg)
1026		__clk_notify(core, msg, old_rate, core->rate);
1027
1028	hlist_for_each_entry(child, &core->children, child_node)
1029		__clk_recalc_rates(child, msg);
1030}
1031
1032static unsigned long clk_core_get_rate(struct clk_core *core)
1033{
1034	unsigned long rate;
1035
1036	clk_prepare_lock();
1037
1038	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1039		__clk_recalc_rates(core, 0);
1040
1041	rate = clk_core_get_rate_nolock(core);
1042	clk_prepare_unlock();
1043
1044	return rate;
1045}
1046
1047/**
1048 * clk_get_rate - return the rate of clk
1049 * @clk: the clk whose rate is being returned
1050 *
1051 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1052 * is set, which means a recalc_rate will be issued.
1053 * If clk is NULL then returns 0.
 
1054 */
1055unsigned long clk_get_rate(struct clk *clk)
1056{
 
 
1057	if (!clk)
1058		return 0;
1059
1060	return clk_core_get_rate(clk->core);
 
 
 
 
1061}
1062EXPORT_SYMBOL_GPL(clk_get_rate);
1063
1064static int clk_fetch_parent_index(struct clk_core *core,
1065				  struct clk_core *parent)
1066{
1067	int i;
1068
1069	if (!parent)
1070		return -EINVAL;
1071
1072	for (i = 0; i < core->num_parents; i++)
1073		if (clk_core_get_parent_by_index(core, i) == parent)
 
1074			return i;
1075
1076	return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1077}
 
1078
1079/*
1080 * Update the orphan status of @core and all its children.
1081 */
1082static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1083{
1084	struct clk_core *child;
1085
1086	core->orphan = is_orphan;
1087
1088	hlist_for_each_entry(child, &core->children, child_node)
1089		clk_core_update_orphan_status(child, is_orphan);
1090}
1091
1092static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1093{
1094	bool was_orphan = core->orphan;
1095
1096	hlist_del(&core->child_node);
1097
1098	if (new_parent) {
1099		bool becomes_orphan = new_parent->orphan;
1100
1101		/* avoid duplicate POST_RATE_CHANGE notifications */
1102		if (new_parent->new_child == core)
1103			new_parent->new_child = NULL;
1104
1105		hlist_add_head(&core->child_node, &new_parent->children);
1106
1107		if (was_orphan != becomes_orphan)
1108			clk_core_update_orphan_status(core, becomes_orphan);
1109	} else {
1110		hlist_add_head(&core->child_node, &clk_orphan_list);
1111		if (!was_orphan)
1112			clk_core_update_orphan_status(core, true);
1113	}
1114
1115	core->parent = new_parent;
1116}
1117
1118static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1119					   struct clk_core *parent)
1120{
1121	unsigned long flags;
1122	struct clk_core *old_parent = core->parent;
1123
1124	/*
1125	 * Migrate prepare state between parents and prevent race with
 
 
1126	 * clk_enable().
1127	 *
1128	 * If the clock is not prepared, then a race with
1129	 * clk_enable/disable() is impossible since we already have the
1130	 * prepare lock (future calls to clk_enable() need to be preceded by
1131	 * a clk_prepare()).
1132	 *
1133	 * If the clock is prepared, migrate the prepared state to the new
1134	 * parent and also protect against a race with clk_enable() by
1135	 * forcing the clock and the new parent on.  This ensures that all
1136	 * future calls to clk_enable() are practically NOPs with respect to
1137	 * hardware and software states.
1138	 *
1139	 * See also: Comment for clk_set_parent() below.
1140	 */
 
 
 
 
 
 
 
 
1141	if (core->prepare_count) {
1142		clk_core_prepare(parent);
1143		flags = clk_enable_lock();
1144		clk_core_enable(parent);
1145		clk_core_enable(core);
1146		clk_enable_unlock(flags);
1147	}
1148
1149	/* update the clk tree topology */
1150	flags = clk_enable_lock();
1151	clk_reparent(core, parent);
1152	clk_enable_unlock(flags);
1153
1154	return old_parent;
1155}
1156
1157static void __clk_set_parent_after(struct clk_core *core,
1158				   struct clk_core *parent,
1159				   struct clk_core *old_parent)
1160{
1161	unsigned long flags;
1162
1163	/*
1164	 * Finish the migration of prepare state and undo the changes done
1165	 * for preventing a race with clk_enable().
1166	 */
1167	if (core->prepare_count) {
1168		flags = clk_enable_lock();
1169		clk_core_disable(core);
1170		clk_core_disable(old_parent);
1171		clk_enable_unlock(flags);
1172		clk_core_unprepare(old_parent);
 
 
 
1173	}
1174}
1175
1176static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1177			    u8 p_index)
1178{
1179	unsigned long flags;
1180	int ret = 0;
1181	struct clk_core *old_parent;
1182
1183	old_parent = __clk_set_parent_before(core, parent);
1184
1185	trace_clk_set_parent(core, parent);
1186
1187	/* change clock input source */
1188	if (parent && core->ops->set_parent)
1189		ret = core->ops->set_parent(core->hw, p_index);
1190
1191	trace_clk_set_parent_complete(core, parent);
1192
1193	if (ret) {
1194		flags = clk_enable_lock();
1195		clk_reparent(core, old_parent);
1196		clk_enable_unlock(flags);
 
1197		__clk_set_parent_after(core, old_parent, parent);
1198
1199		return ret;
1200	}
1201
1202	__clk_set_parent_after(core, parent, old_parent);
1203
1204	return 0;
1205}
1206
1207/**
1208 * __clk_speculate_rates
1209 * @core: first clk in the subtree
1210 * @parent_rate: the "future" rate of clk's parent
1211 *
1212 * Walks the subtree of clks starting with clk, speculating rates as it
1213 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1214 *
1215 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1216 * pre-rate change notifications and returns early if no clks in the
1217 * subtree have subscribed to the notifications.  Note that if a clk does not
1218 * implement the .recalc_rate callback then it is assumed that the clock will
1219 * take on the rate of its parent.
1220 */
1221static int __clk_speculate_rates(struct clk_core *core,
1222				 unsigned long parent_rate)
1223{
1224	struct clk_core *child;
1225	unsigned long new_rate;
1226	int ret = NOTIFY_DONE;
1227
1228	lockdep_assert_held(&prepare_lock);
1229
1230	new_rate = clk_recalc(core, parent_rate);
1231
1232	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1233	if (core->notifier_count)
1234		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1235
1236	if (ret & NOTIFY_STOP_MASK) {
1237		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1238				__func__, core->name, ret);
1239		goto out;
1240	}
1241
1242	hlist_for_each_entry(child, &core->children, child_node) {
1243		ret = __clk_speculate_rates(child, new_rate);
1244		if (ret & NOTIFY_STOP_MASK)
1245			break;
1246	}
1247
1248out:
1249	return ret;
1250}
1251
1252static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1253			     struct clk_core *new_parent, u8 p_index)
1254{
1255	struct clk_core *child;
1256
1257	core->new_rate = new_rate;
1258	core->new_parent = new_parent;
1259	core->new_parent_index = p_index;
1260	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1261	core->new_child = NULL;
1262	if (new_parent && new_parent != core->parent)
1263		new_parent->new_child = core;
1264
1265	hlist_for_each_entry(child, &core->children, child_node) {
1266		child->new_rate = clk_recalc(child, new_rate);
1267		clk_calc_subtree(child, child->new_rate, NULL, 0);
1268	}
1269}
1270
1271/*
1272 * calculate the new rates returning the topmost clock that has to be
1273 * changed.
1274 */
1275static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1276					   unsigned long rate)
1277{
1278	struct clk_core *top = core;
1279	struct clk_core *old_parent, *parent;
1280	unsigned long best_parent_rate = 0;
1281	unsigned long new_rate;
1282	unsigned long min_rate;
1283	unsigned long max_rate;
1284	int p_index = 0;
1285	long ret;
1286
1287	/* sanity */
1288	if (IS_ERR_OR_NULL(core))
1289		return NULL;
1290
1291	/* save parent rate, if it exists */
1292	parent = old_parent = core->parent;
1293	if (parent)
1294		best_parent_rate = parent->rate;
1295
1296	clk_core_get_boundaries(core, &min_rate, &max_rate);
1297
1298	/* find the closest rate and parent clk/rate */
1299	if (core->ops->determine_rate) {
1300		struct clk_rate_request req;
1301
1302		req.rate = rate;
1303		req.min_rate = min_rate;
1304		req.max_rate = max_rate;
1305		if (parent) {
1306			req.best_parent_hw = parent->hw;
1307			req.best_parent_rate = parent->rate;
1308		} else {
1309			req.best_parent_hw = NULL;
1310			req.best_parent_rate = 0;
1311		}
1312
1313		ret = core->ops->determine_rate(core->hw, &req);
1314		if (ret < 0)
1315			return NULL;
1316
 
 
1317		best_parent_rate = req.best_parent_rate;
1318		new_rate = req.rate;
1319		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1320	} else if (core->ops->round_rate) {
1321		ret = core->ops->round_rate(core->hw, rate,
1322					    &best_parent_rate);
1323		if (ret < 0)
1324			return NULL;
1325
1326		new_rate = ret;
1327		if (new_rate < min_rate || new_rate > max_rate)
1328			return NULL;
1329	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1330		/* pass-through clock without adjustable parent */
1331		core->new_rate = core->rate;
1332		return NULL;
1333	} else {
1334		/* pass-through clock with adjustable parent */
1335		top = clk_calc_new_rates(parent, rate);
1336		new_rate = parent->new_rate;
1337		goto out;
1338	}
1339
1340	/* some clocks must be gated to change parent */
1341	if (parent != old_parent &&
1342	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1343		pr_debug("%s: %s not gated but wants to reparent\n",
1344			 __func__, core->name);
1345		return NULL;
1346	}
1347
1348	/* try finding the new parent index */
1349	if (parent && core->num_parents > 1) {
1350		p_index = clk_fetch_parent_index(core, parent);
1351		if (p_index < 0) {
1352			pr_debug("%s: clk %s can not be parent of clk %s\n",
1353				 __func__, parent->name, core->name);
1354			return NULL;
1355		}
1356	}
1357
1358	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1359	    best_parent_rate != parent->rate)
1360		top = clk_calc_new_rates(parent, best_parent_rate);
1361
1362out:
1363	clk_calc_subtree(core, new_rate, parent, p_index);
1364
1365	return top;
1366}
1367
1368/*
1369 * Notify about rate changes in a subtree. Always walk down the whole tree
1370 * so that in case of an error we can walk down the whole tree again and
1371 * abort the change.
1372 */
1373static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1374						  unsigned long event)
1375{
1376	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1377	int ret = NOTIFY_DONE;
1378
1379	if (core->rate == core->new_rate)
1380		return NULL;
1381
1382	if (core->notifier_count) {
1383		ret = __clk_notify(core, event, core->rate, core->new_rate);
1384		if (ret & NOTIFY_STOP_MASK)
1385			fail_clk = core;
1386	}
1387
1388	hlist_for_each_entry(child, &core->children, child_node) {
1389		/* Skip children who will be reparented to another clock */
1390		if (child->new_parent && child->new_parent != core)
1391			continue;
1392		tmp_clk = clk_propagate_rate_change(child, event);
1393		if (tmp_clk)
1394			fail_clk = tmp_clk;
1395	}
1396
1397	/* handle the new child who might not be in core->children yet */
1398	if (core->new_child) {
1399		tmp_clk = clk_propagate_rate_change(core->new_child, event);
1400		if (tmp_clk)
1401			fail_clk = tmp_clk;
1402	}
1403
1404	return fail_clk;
1405}
1406
1407/*
1408 * walk down a subtree and set the new rates notifying the rate
1409 * change on the way
1410 */
1411static void clk_change_rate(struct clk_core *core)
1412{
1413	struct clk_core *child;
1414	struct hlist_node *tmp;
1415	unsigned long old_rate;
1416	unsigned long best_parent_rate = 0;
1417	bool skip_set_rate = false;
1418	struct clk_core *old_parent;
 
1419
1420	old_rate = core->rate;
1421
1422	if (core->new_parent)
 
1423		best_parent_rate = core->new_parent->rate;
1424	else if (core->parent)
 
1425		best_parent_rate = core->parent->rate;
 
 
 
 
1426
1427	if (core->flags & CLK_SET_RATE_UNGATE) {
1428		unsigned long flags;
1429
1430		clk_core_prepare(core);
1431		flags = clk_enable_lock();
1432		clk_core_enable(core);
1433		clk_enable_unlock(flags);
1434	}
1435
1436	if (core->new_parent && core->new_parent != core->parent) {
1437		old_parent = __clk_set_parent_before(core, core->new_parent);
1438		trace_clk_set_parent(core, core->new_parent);
1439
1440		if (core->ops->set_rate_and_parent) {
1441			skip_set_rate = true;
1442			core->ops->set_rate_and_parent(core->hw, core->new_rate,
1443					best_parent_rate,
1444					core->new_parent_index);
1445		} else if (core->ops->set_parent) {
1446			core->ops->set_parent(core->hw, core->new_parent_index);
1447		}
1448
1449		trace_clk_set_parent_complete(core, core->new_parent);
1450		__clk_set_parent_after(core, core->new_parent, old_parent);
1451	}
1452
 
 
 
1453	trace_clk_set_rate(core, core->new_rate);
1454
1455	if (!skip_set_rate && core->ops->set_rate)
1456		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
1457
1458	trace_clk_set_rate_complete(core, core->new_rate);
1459
1460	core->rate = clk_recalc(core, best_parent_rate);
1461
1462	if (core->flags & CLK_SET_RATE_UNGATE) {
1463		unsigned long flags;
1464
1465		flags = clk_enable_lock();
1466		clk_core_disable(core);
1467		clk_enable_unlock(flags);
1468		clk_core_unprepare(core);
1469	}
1470
 
 
 
1471	if (core->notifier_count && old_rate != core->rate)
1472		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
1473
1474	if (core->flags & CLK_RECALC_NEW_RATES)
1475		(void)clk_calc_new_rates(core, core->new_rate);
1476
1477	/*
1478	 * Use safe iteration, as change_rate can actually swap parents
1479	 * for certain clock types.
1480	 */
1481	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
1482		/* Skip children who will be reparented to another clock */
1483		if (child->new_parent && child->new_parent != core)
1484			continue;
1485		clk_change_rate(child);
1486	}
1487
1488	/* handle the new child who might not be in core->children yet */
1489	if (core->new_child)
1490		clk_change_rate(core->new_child);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1491}
1492
1493static int clk_core_set_rate_nolock(struct clk_core *core,
1494				    unsigned long req_rate)
1495{
1496	struct clk_core *top, *fail_clk;
1497	unsigned long rate = req_rate;
1498	int ret = 0;
1499
1500	if (!core)
1501		return 0;
1502
 
 
1503	/* bail early if nothing to do */
1504	if (rate == clk_core_get_rate_nolock(core))
1505		return 0;
1506
1507	if ((core->flags & CLK_SET_RATE_GATE) && core->prepare_count)
 
1508		return -EBUSY;
1509
1510	/* calculate new rates and get the topmost changed clock */
1511	top = clk_calc_new_rates(core, rate);
1512	if (!top)
1513		return -EINVAL;
1514
 
 
 
 
1515	/* notify that we are about to change rates */
1516	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1517	if (fail_clk) {
1518		pr_debug("%s: failed to set %s rate\n", __func__,
1519				fail_clk->name);
1520		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1521		return -EBUSY;
 
1522	}
1523
1524	/* change the rates */
1525	clk_change_rate(top);
1526
1527	core->req_rate = req_rate;
 
 
1528
1529	return ret;
1530}
1531
1532/**
1533 * clk_set_rate - specify a new rate for clk
1534 * @clk: the clk whose rate is being changed
1535 * @rate: the new rate for clk
1536 *
1537 * In the simplest case clk_set_rate will only adjust the rate of clk.
1538 *
1539 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1540 * propagate up to clk's parent; whether or not this happens depends on the
1541 * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
1542 * after calling .round_rate then upstream parent propagation is ignored.  If
1543 * *parent_rate comes back with a new rate for clk's parent then we propagate
1544 * up to clk's parent and set its rate.  Upward propagation will continue
1545 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1546 * .round_rate stops requesting changes to clk's parent_rate.
1547 *
1548 * Rate changes are accomplished via tree traversal that also recalculates the
1549 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1550 *
1551 * Returns 0 on success, -EERROR otherwise.
1552 */
1553int clk_set_rate(struct clk *clk, unsigned long rate)
1554{
1555	int ret;
1556
1557	if (!clk)
1558		return 0;
1559
1560	/* prevent racing with updates to the clock topology */
1561	clk_prepare_lock();
1562
 
 
 
1563	ret = clk_core_set_rate_nolock(clk->core, rate);
1564
 
 
 
1565	clk_prepare_unlock();
1566
1567	return ret;
1568}
1569EXPORT_SYMBOL_GPL(clk_set_rate);
1570
1571/**
1572 * clk_set_rate_range - set a rate range for a clock source
1573 * @clk: clock source
1574 * @min: desired minimum clock rate in Hz, inclusive
1575 * @max: desired maximum clock rate in Hz, inclusive
 
 
 
 
 
 
 
 
 
 
 
1576 *
1577 * Returns success (0) or negative errno.
1578 */
1579int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1580{
1581	int ret = 0;
 
 
 
1582
1583	if (!clk)
1584		return 0;
1585
 
 
1586	if (min > max) {
1587		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
1588		       __func__, clk->core->name, clk->dev_id, clk->con_id,
1589		       min, max);
1590		return -EINVAL;
1591	}
1592
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1593	clk_prepare_lock();
1594
1595	if (min != clk->min_rate || max != clk->max_rate) {
1596		clk->min_rate = min;
1597		clk->max_rate = max;
1598		ret = clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
1599	}
1600
1601	clk_prepare_unlock();
1602
1603	return ret;
1604}
1605EXPORT_SYMBOL_GPL(clk_set_rate_range);
1606
1607/**
1608 * clk_set_min_rate - set a minimum clock rate for a clock source
1609 * @clk: clock source
1610 * @rate: desired minimum clock rate in Hz, inclusive
1611 *
1612 * Returns success (0) or negative errno.
1613 */
1614int clk_set_min_rate(struct clk *clk, unsigned long rate)
1615{
1616	if (!clk)
1617		return 0;
1618
 
 
1619	return clk_set_rate_range(clk, rate, clk->max_rate);
1620}
1621EXPORT_SYMBOL_GPL(clk_set_min_rate);
1622
1623/**
1624 * clk_set_max_rate - set a maximum clock rate for a clock source
1625 * @clk: clock source
1626 * @rate: desired maximum clock rate in Hz, inclusive
1627 *
1628 * Returns success (0) or negative errno.
1629 */
1630int clk_set_max_rate(struct clk *clk, unsigned long rate)
1631{
1632	if (!clk)
1633		return 0;
1634
 
 
1635	return clk_set_rate_range(clk, clk->min_rate, rate);
1636}
1637EXPORT_SYMBOL_GPL(clk_set_max_rate);
1638
1639/**
1640 * clk_get_parent - return the parent of a clk
1641 * @clk: the clk whose parent gets returned
1642 *
1643 * Simply returns clk->parent.  Returns NULL if clk is NULL.
1644 */
1645struct clk *clk_get_parent(struct clk *clk)
1646{
1647	struct clk *parent;
1648
1649	if (!clk)
1650		return NULL;
1651
1652	clk_prepare_lock();
1653	/* TODO: Create a per-user clk and change callers to call clk_put */
1654	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
1655	clk_prepare_unlock();
1656
1657	return parent;
1658}
1659EXPORT_SYMBOL_GPL(clk_get_parent);
1660
1661static struct clk_core *__clk_init_parent(struct clk_core *core)
1662{
1663	u8 index = 0;
1664
1665	if (core->num_parents > 1 && core->ops->get_parent)
1666		index = core->ops->get_parent(core->hw);
1667
1668	return clk_core_get_parent_by_index(core, index);
1669}
1670
1671static void clk_core_reparent(struct clk_core *core,
1672				  struct clk_core *new_parent)
1673{
1674	clk_reparent(core, new_parent);
1675	__clk_recalc_accuracies(core);
1676	__clk_recalc_rates(core, POST_RATE_CHANGE);
1677}
1678
1679void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
1680{
1681	if (!hw)
1682		return;
1683
1684	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
1685}
1686
1687/**
1688 * clk_has_parent - check if a clock is a possible parent for another
1689 * @clk: clock source
1690 * @parent: parent clock source
1691 *
1692 * This function can be used in drivers that need to check that a clock can be
1693 * the parent of another without actually changing the parent.
1694 *
1695 * Returns true if @parent is a possible parent for @clk, false otherwise.
1696 */
1697bool clk_has_parent(struct clk *clk, struct clk *parent)
1698{
1699	struct clk_core *core, *parent_core;
1700	unsigned int i;
1701
1702	/* NULL clocks should be nops, so return success if either is NULL. */
1703	if (!clk || !parent)
1704		return true;
1705
1706	core = clk->core;
1707	parent_core = parent->core;
1708
1709	/* Optimize for the case where the parent is already the parent. */
1710	if (core->parent == parent_core)
1711		return true;
1712
1713	for (i = 0; i < core->num_parents; i++)
1714		if (strcmp(core->parent_names[i], parent_core->name) == 0)
1715			return true;
1716
1717	return false;
1718}
1719EXPORT_SYMBOL_GPL(clk_has_parent);
1720
1721static int clk_core_set_parent(struct clk_core *core, struct clk_core *parent)
 
1722{
1723	int ret = 0;
1724	int p_index = 0;
1725	unsigned long p_rate = 0;
1726
 
 
1727	if (!core)
1728		return 0;
1729
1730	/* prevent racing with updates to the clock topology */
1731	clk_prepare_lock();
1732
1733	if (core->parent == parent)
1734		goto out;
1735
1736	/* verify ops for for multi-parent clks */
1737	if ((core->num_parents > 1) && (!core->ops->set_parent)) {
1738		ret = -ENOSYS;
1739		goto out;
1740	}
1741
1742	/* check that we are allowed to re-parent if the clock is in use */
1743	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1744		ret = -EBUSY;
1745		goto out;
1746	}
 
1747
1748	/* try finding the new parent index */
1749	if (parent) {
1750		p_index = clk_fetch_parent_index(core, parent);
1751		if (p_index < 0) {
1752			pr_debug("%s: clk %s can not be parent of clk %s\n",
1753					__func__, parent->name, core->name);
1754			ret = p_index;
1755			goto out;
1756		}
1757		p_rate = parent->rate;
1758	}
1759
 
 
 
 
1760	/* propagate PRE_RATE_CHANGE notifications */
1761	ret = __clk_speculate_rates(core, p_rate);
1762
1763	/* abort if a driver objects */
1764	if (ret & NOTIFY_STOP_MASK)
1765		goto out;
1766
1767	/* do the re-parent */
1768	ret = __clk_set_parent(core, parent, p_index);
1769
1770	/* propagate rate an accuracy recalculation accordingly */
1771	if (ret) {
1772		__clk_recalc_rates(core, ABORT_RATE_CHANGE);
1773	} else {
1774		__clk_recalc_rates(core, POST_RATE_CHANGE);
1775		__clk_recalc_accuracies(core);
1776	}
1777
1778out:
1779	clk_prepare_unlock();
1780
1781	return ret;
1782}
1783
 
 
 
 
 
 
1784/**
1785 * clk_set_parent - switch the parent of a mux clk
1786 * @clk: the mux clk whose input we are switching
1787 * @parent: the new input to clk
1788 *
1789 * Re-parent clk to use parent as its new input source.  If clk is in
1790 * prepared state, the clk will get enabled for the duration of this call. If
1791 * that's not acceptable for a specific clk (Eg: the consumer can't handle
1792 * that, the reparenting is glitchy in hardware, etc), use the
1793 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
1794 *
1795 * After successfully changing clk's parent clk_set_parent will update the
1796 * clk topology, sysfs topology and propagate rate recalculation via
1797 * __clk_recalc_rates.
1798 *
1799 * Returns 0 on success, -EERROR otherwise.
1800 */
1801int clk_set_parent(struct clk *clk, struct clk *parent)
1802{
 
 
1803	if (!clk)
1804		return 0;
1805
1806	return clk_core_set_parent(clk->core, parent ? parent->core : NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
1807}
1808EXPORT_SYMBOL_GPL(clk_set_parent);
1809
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1810/**
1811 * clk_set_phase - adjust the phase shift of a clock signal
1812 * @clk: clock signal source
1813 * @degrees: number of degrees the signal is shifted
1814 *
1815 * Shifts the phase of a clock signal by the specified
1816 * degrees. Returns 0 on success, -EERROR otherwise.
1817 *
1818 * This function makes no distinction about the input or reference
1819 * signal that we adjust the clock signal phase against. For example
1820 * phase locked-loop clock signal generators we may shift phase with
1821 * respect to feedback clock signal input, but for other cases the
1822 * clock phase may be shifted with respect to some other, unspecified
1823 * signal.
1824 *
1825 * Additionally the concept of phase shift does not propagate through
1826 * the clock tree hierarchy, which sets it apart from clock rates and
1827 * clock accuracy. A parent clock phase attribute does not have an
1828 * impact on the phase attribute of a child clock.
1829 */
1830int clk_set_phase(struct clk *clk, int degrees)
1831{
1832	int ret = -EINVAL;
1833
1834	if (!clk)
1835		return 0;
1836
1837	/* sanity check degrees */
1838	degrees %= 360;
1839	if (degrees < 0)
1840		degrees += 360;
1841
1842	clk_prepare_lock();
1843
1844	/* bail early if nothing to do */
1845	if (degrees == clk->core->phase)
1846		goto out;
1847
1848	trace_clk_set_phase(clk->core, degrees);
1849
1850	if (clk->core->ops->set_phase)
1851		ret = clk->core->ops->set_phase(clk->core->hw, degrees);
1852
1853	trace_clk_set_phase_complete(clk->core, degrees);
1854
1855	if (!ret)
1856		clk->core->phase = degrees;
1857
1858out:
1859	clk_prepare_unlock();
1860
1861	return ret;
1862}
1863EXPORT_SYMBOL_GPL(clk_set_phase);
1864
1865static int clk_core_get_phase(struct clk_core *core)
1866{
1867	int ret;
1868
1869	clk_prepare_lock();
1870	ret = core->phase;
1871	clk_prepare_unlock();
 
 
 
 
 
1872
1873	return ret;
1874}
1875
1876/**
1877 * clk_get_phase - return the phase shift of a clock signal
1878 * @clk: clock signal source
1879 *
1880 * Returns the phase shift of a clock node in degrees, otherwise returns
1881 * -EERROR.
1882 */
1883int clk_get_phase(struct clk *clk)
1884{
 
 
1885	if (!clk)
1886		return 0;
1887
1888	return clk_core_get_phase(clk->core);
 
 
 
 
1889}
1890EXPORT_SYMBOL_GPL(clk_get_phase);
1891
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1892/**
1893 * clk_is_match - check if two clk's point to the same hardware clock
1894 * @p: clk compared against q
1895 * @q: clk compared against p
1896 *
1897 * Returns true if the two struct clk pointers both point to the same hardware
1898 * clock node. Put differently, returns true if struct clk *p and struct clk *q
1899 * share the same struct clk_core object.
1900 *
1901 * Returns false otherwise. Note that two NULL clks are treated as matching.
1902 */
1903bool clk_is_match(const struct clk *p, const struct clk *q)
1904{
1905	/* trivial case: identical struct clk's or both NULL */
1906	if (p == q)
1907		return true;
1908
1909	/* true if clk->core pointers match. Avoid dereferencing garbage */
1910	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
1911		if (p->core == q->core)
1912			return true;
1913
1914	return false;
1915}
1916EXPORT_SYMBOL_GPL(clk_is_match);
1917
1918/***        debugfs support        ***/
1919
1920#ifdef CONFIG_DEBUG_FS
1921#include <linux/debugfs.h>
1922
1923static struct dentry *rootdir;
1924static int inited = 0;
1925static DEFINE_MUTEX(clk_debug_lock);
1926static HLIST_HEAD(clk_debug_list);
1927
1928static struct hlist_head *all_lists[] = {
1929	&clk_root_list,
1930	&clk_orphan_list,
1931	NULL,
1932};
1933
1934static struct hlist_head *orphan_list[] = {
1935	&clk_orphan_list,
1936	NULL,
1937};
1938
1939static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
1940				 int level)
1941{
1942	if (!c)
1943		return;
 
1944
1945	seq_printf(s, "%*s%-*s %11d %12d %11lu %10lu %-3d\n",
1946		   level * 3 + 1, "",
1947		   30 - level * 3, c->name,
1948		   c->enable_count, c->prepare_count, clk_core_get_rate(c),
1949		   clk_core_get_accuracy(c), clk_core_get_phase(c));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1950}
1951
1952static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
1953				     int level)
1954{
1955	struct clk_core *child;
1956
1957	if (!c)
1958		return;
1959
1960	clk_summary_show_one(s, c, level);
1961
1962	hlist_for_each_entry(child, &c->children, child_node)
1963		clk_summary_show_subtree(s, child, level + 1);
1964}
1965
1966static int clk_summary_show(struct seq_file *s, void *data)
1967{
1968	struct clk_core *c;
1969	struct hlist_head **lists = (struct hlist_head **)s->private;
 
1970
1971	seq_puts(s, "   clock                         enable_cnt  prepare_cnt        rate   accuracy   phase\n");
1972	seq_puts(s, "----------------------------------------------------------------------------------------\n");
 
 
 
 
 
1973
1974	clk_prepare_lock();
1975
1976	for (; *lists; lists++)
1977		hlist_for_each_entry(c, *lists, child_node)
1978			clk_summary_show_subtree(s, c, 0);
1979
1980	clk_prepare_unlock();
 
1981
1982	return 0;
1983}
 
1984
1985
1986static int clk_summary_open(struct inode *inode, struct file *file)
1987{
1988	return single_open(file, clk_summary_show, inode->i_private);
1989}
1990
1991static const struct file_operations clk_summary_fops = {
1992	.open		= clk_summary_open,
1993	.read		= seq_read,
1994	.llseek		= seq_lseek,
1995	.release	= single_release,
1996};
1997
1998static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
1999{
2000	if (!c)
2001		return;
2002
2003	/* This should be JSON format, i.e. elements separated with a comma */
2004	seq_printf(s, "\"%s\": { ", c->name);
2005	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2006	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2007	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c));
2008	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c));
2009	seq_printf(s, "\"phase\": %d", clk_core_get_phase(c));
 
 
 
 
 
 
 
2010}
2011
2012static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2013{
2014	struct clk_core *child;
2015
2016	if (!c)
2017		return;
2018
2019	clk_dump_one(s, c, level);
2020
2021	hlist_for_each_entry(child, &c->children, child_node) {
2022		seq_printf(s, ",");
2023		clk_dump_subtree(s, child, level + 1);
2024	}
2025
2026	seq_printf(s, "}");
2027}
2028
2029static int clk_dump(struct seq_file *s, void *data)
2030{
2031	struct clk_core *c;
2032	bool first_node = true;
2033	struct hlist_head **lists = (struct hlist_head **)s->private;
 
 
 
 
 
2034
2035	seq_printf(s, "{");
2036
2037	clk_prepare_lock();
2038
2039	for (; *lists; lists++) {
2040		hlist_for_each_entry(c, *lists, child_node) {
2041			if (!first_node)
2042				seq_puts(s, ",");
2043			first_node = false;
2044			clk_dump_subtree(s, c, 0);
2045		}
2046	}
2047
2048	clk_prepare_unlock();
 
2049
2050	seq_puts(s, "}\n");
2051	return 0;
2052}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2053
 
2054
2055static int clk_dump_open(struct inode *inode, struct file *file)
2056{
2057	return single_open(file, clk_dump, inode->i_private);
 
 
 
2058}
2059
2060static const struct file_operations clk_dump_fops = {
2061	.open		= clk_dump_open,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2062	.read		= seq_read,
2063	.llseek		= seq_lseek,
2064	.release	= single_release,
2065};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2066
2067static int clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
 
 
 
 
 
 
 
 
 
2068{
2069	struct dentry *d;
2070	int ret = -ENOMEM;
2071
2072	if (!core || !pdentry) {
2073		ret = -EINVAL;
2074		goto out;
2075	}
2076
2077	d = debugfs_create_dir(core->name, pdentry);
2078	if (!d)
2079		goto out;
2080
2081	core->dentry = d;
 
 
2082
2083	d = debugfs_create_u32("clk_rate", S_IRUGO, core->dentry,
2084			(u32 *)&core->rate);
2085	if (!d)
2086		goto err_out;
2087
2088	d = debugfs_create_u32("clk_accuracy", S_IRUGO, core->dentry,
2089			(u32 *)&core->accuracy);
2090	if (!d)
2091		goto err_out;
2092
2093	d = debugfs_create_u32("clk_phase", S_IRUGO, core->dentry,
2094			(u32 *)&core->phase);
2095	if (!d)
2096		goto err_out;
2097
2098	d = debugfs_create_x32("clk_flags", S_IRUGO, core->dentry,
2099			(u32 *)&core->flags);
2100	if (!d)
2101		goto err_out;
2102
2103	d = debugfs_create_u32("clk_prepare_count", S_IRUGO, core->dentry,
2104			(u32 *)&core->prepare_count);
2105	if (!d)
2106		goto err_out;
2107
2108	d = debugfs_create_u32("clk_enable_count", S_IRUGO, core->dentry,
2109			(u32 *)&core->enable_count);
2110	if (!d)
2111		goto err_out;
2112
2113	d = debugfs_create_u32("clk_notifier_count", S_IRUGO, core->dentry,
2114			(u32 *)&core->notifier_count);
2115	if (!d)
2116		goto err_out;
2117
2118	if (core->ops->debug_init) {
2119		ret = core->ops->debug_init(core->hw, core->dentry);
2120		if (ret)
2121			goto err_out;
2122	}
2123
2124	ret = 0;
2125	goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2126
2127err_out:
2128	debugfs_remove_recursive(core->dentry);
2129	core->dentry = NULL;
2130out:
2131	return ret;
2132}
2133
2134/**
2135 * clk_debug_register - add a clk node to the debugfs clk directory
2136 * @core: the clk being added to the debugfs clk directory
2137 *
2138 * Dynamically adds a clk to the debugfs clk directory if debugfs has been
2139 * initialized.  Otherwise it bails out early since the debugfs clk directory
2140 * will be created lazily by clk_debug_init as part of a late_initcall.
2141 */
2142static int clk_debug_register(struct clk_core *core)
2143{
2144	int ret = 0;
2145
2146	mutex_lock(&clk_debug_lock);
2147	hlist_add_head(&core->debug_node, &clk_debug_list);
2148
2149	if (!inited)
2150		goto unlock;
2151
2152	ret = clk_debug_create_one(core, rootdir);
2153unlock:
2154	mutex_unlock(&clk_debug_lock);
2155
2156	return ret;
2157}
2158
2159 /**
2160 * clk_debug_unregister - remove a clk node from the debugfs clk directory
2161 * @core: the clk being removed from the debugfs clk directory
2162 *
2163 * Dynamically removes a clk and all its child nodes from the
2164 * debugfs clk directory if clk->dentry points to debugfs created by
2165 * clk_debug_register in __clk_core_init.
2166 */
2167static void clk_debug_unregister(struct clk_core *core)
2168{
2169	mutex_lock(&clk_debug_lock);
2170	hlist_del_init(&core->debug_node);
2171	debugfs_remove_recursive(core->dentry);
2172	core->dentry = NULL;
2173	mutex_unlock(&clk_debug_lock);
2174}
2175
2176struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode,
2177				void *data, const struct file_operations *fops)
2178{
2179	struct dentry *d = NULL;
2180
2181	if (hw->core->dentry)
2182		d = debugfs_create_file(name, mode, hw->core->dentry, data,
2183					fops);
2184
2185	return d;
2186}
2187EXPORT_SYMBOL_GPL(clk_debugfs_add_file);
2188
2189/**
2190 * clk_debug_init - lazily populate the debugfs clk directory
2191 *
2192 * clks are often initialized very early during boot before memory can be
2193 * dynamically allocated and well before debugfs is setup. This function
2194 * populates the debugfs clk directory once at boot-time when we know that
2195 * debugfs is setup. It should only be called once at boot-time, all other clks
2196 * added dynamically will be done so with clk_debug_register.
2197 */
2198static int __init clk_debug_init(void)
2199{
2200	struct clk_core *core;
2201	struct dentry *d;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2202
2203	rootdir = debugfs_create_dir("clk", NULL);
2204
2205	if (!rootdir)
2206		return -ENOMEM;
2207
2208	d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, &all_lists,
2209				&clk_summary_fops);
2210	if (!d)
2211		return -ENOMEM;
2212
2213	d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, &all_lists,
2214				&clk_dump_fops);
2215	if (!d)
2216		return -ENOMEM;
2217
2218	d = debugfs_create_file("clk_orphan_summary", S_IRUGO, rootdir,
2219				&orphan_list, &clk_summary_fops);
2220	if (!d)
2221		return -ENOMEM;
2222
2223	d = debugfs_create_file("clk_orphan_dump", S_IRUGO, rootdir,
2224				&orphan_list, &clk_dump_fops);
2225	if (!d)
2226		return -ENOMEM;
2227
2228	mutex_lock(&clk_debug_lock);
2229	hlist_for_each_entry(core, &clk_debug_list, debug_node)
2230		clk_debug_create_one(core, rootdir);
2231
2232	inited = 1;
2233	mutex_unlock(&clk_debug_lock);
2234
2235	return 0;
2236}
2237late_initcall(clk_debug_init);
2238#else
2239static inline int clk_debug_register(struct clk_core *core) { return 0; }
2240static inline void clk_debug_reparent(struct clk_core *core,
2241				      struct clk_core *new_parent)
2242{
2243}
2244static inline void clk_debug_unregister(struct clk_core *core)
 
 
2245{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2246}
2247#endif
2248
2249/**
2250 * __clk_core_init - initialize the data structures in a struct clk_core
2251 * @core:	clk_core being initialized
2252 *
2253 * Initializes the lists in struct clk_core, queries the hardware for the
2254 * parent and rate and sets them both.
2255 */
2256static int __clk_core_init(struct clk_core *core)
2257{
2258	int i, ret = 0;
2259	struct clk_core *orphan;
2260	struct hlist_node *tmp2;
2261	unsigned long rate;
 
 
 
2262
2263	if (!core)
2264		return -EINVAL;
 
 
 
 
 
2265
2266	clk_prepare_lock();
 
 
2267
2268	/* check to see if a clock with this name is already registered */
2269	if (clk_core_lookup(core->name)) {
2270		pr_debug("%s: clk %s already initialized\n",
2271				__func__, core->name);
2272		ret = -EEXIST;
2273		goto out;
2274	}
2275
2276	/* check that clk_ops are sane.  See Documentation/clk.txt */
2277	if (core->ops->set_rate &&
2278	    !((core->ops->round_rate || core->ops->determine_rate) &&
2279	      core->ops->recalc_rate)) {
2280		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
2281		       __func__, core->name);
2282		ret = -EINVAL;
2283		goto out;
2284	}
2285
2286	if (core->ops->set_parent && !core->ops->get_parent) {
2287		pr_err("%s: %s must implement .get_parent & .set_parent\n",
2288		       __func__, core->name);
2289		ret = -EINVAL;
2290		goto out;
2291	}
2292
 
 
 
 
 
 
 
2293	if (core->num_parents > 1 && !core->ops->get_parent) {
2294		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
2295		       __func__, core->name);
2296		ret = -EINVAL;
2297		goto out;
2298	}
2299
2300	if (core->ops->set_rate_and_parent &&
2301			!(core->ops->set_parent && core->ops->set_rate)) {
2302		pr_err("%s: %s must implement .set_parent & .set_rate\n",
2303				__func__, core->name);
2304		ret = -EINVAL;
2305		goto out;
2306	}
2307
2308	/* throw a WARN if any entries in parent_names are NULL */
2309	for (i = 0; i < core->num_parents; i++)
2310		WARN(!core->parent_names[i],
2311				"%s: invalid NULL in %s's .parent_names\n",
2312				__func__, core->name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2313
2314	core->parent = __clk_init_parent(core);
2315
2316	/*
2317	 * Populate core->parent if parent has already been clk_core_init'd. If
2318	 * parent has not yet been clk_core_init'd then place clk in the orphan
2319	 * list.  If clk doesn't have any parents then place it in the root
2320	 * clk list.
2321	 *
2322	 * Every time a new clk is clk_init'd then we walk the list of orphan
2323	 * clocks and re-parent any that are children of the clock currently
2324	 * being clk_init'd.
2325	 */
2326	if (core->parent) {
2327		hlist_add_head(&core->child_node,
2328				&core->parent->children);
2329		core->orphan = core->parent->orphan;
2330	} else if (!core->num_parents) {
2331		hlist_add_head(&core->child_node, &clk_root_list);
2332		core->orphan = false;
2333	} else {
2334		hlist_add_head(&core->child_node, &clk_orphan_list);
2335		core->orphan = true;
2336	}
2337
2338	/*
2339	 * Set clk's accuracy.  The preferred method is to use
2340	 * .recalc_accuracy. For simple clocks and lazy developers the default
2341	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
2342	 * parent (or is orphaned) then accuracy is set to zero (perfect
2343	 * clock).
2344	 */
2345	if (core->ops->recalc_accuracy)
2346		core->accuracy = core->ops->recalc_accuracy(core->hw,
2347					__clk_get_accuracy(core->parent));
2348	else if (core->parent)
2349		core->accuracy = core->parent->accuracy;
2350	else
2351		core->accuracy = 0;
2352
2353	/*
2354	 * Set clk's phase.
2355	 * Since a phase is by definition relative to its parent, just
2356	 * query the current clock phase, or just assume it's in phase.
2357	 */
2358	if (core->ops->get_phase)
2359		core->phase = core->ops->get_phase(core->hw);
2360	else
2361		core->phase = 0;
 
 
 
 
 
 
 
 
2362
2363	/*
2364	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
2365	 * simple clocks and lazy developers the default fallback is to use the
2366	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
2367	 * then rate is set to zero.
2368	 */
2369	if (core->ops->recalc_rate)
2370		rate = core->ops->recalc_rate(core->hw,
2371				clk_core_get_rate_nolock(core->parent));
2372	else if (core->parent)
2373		rate = core->parent->rate;
2374	else
2375		rate = 0;
2376	core->rate = core->req_rate = rate;
2377
2378	/*
2379	 * walk the list of orphan clocks and reparent any that newly finds a
2380	 * parent.
 
2381	 */
2382	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
2383		struct clk_core *parent = __clk_init_parent(orphan);
 
 
 
 
 
2384
2385		if (parent)
2386			clk_core_reparent(orphan, parent);
 
 
 
 
 
2387	}
2388
2389	/*
2390	 * optional platform-specific magic
2391	 *
2392	 * The .init callback is not used by any of the basic clock types, but
2393	 * exists for weird hardware that must perform initialization magic.
2394	 * Please consider other ways of solving initialization problems before
2395	 * using this callback, as its use is discouraged.
2396	 */
2397	if (core->ops->init)
2398		core->ops->init(core->hw);
2399
2400	kref_init(&core->ref);
2401out:
2402	clk_prepare_unlock();
2403
2404	if (!ret)
2405		clk_debug_register(core);
2406
2407	return ret;
2408}
2409
2410struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2411			     const char *con_id)
2412{
2413	struct clk *clk;
2414
2415	/* This is to allow this function to be chained to others */
2416	if (IS_ERR_OR_NULL(hw))
2417		return (struct clk *) hw;
2418
2419	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
2420	if (!clk)
2421		return ERR_PTR(-ENOMEM);
2422
2423	clk->core = hw->core;
2424	clk->dev_id = dev_id;
2425	clk->con_id = con_id;
2426	clk->max_rate = ULONG_MAX;
2427
2428	clk_prepare_lock();
2429	hlist_add_head(&clk->clks_node, &hw->core->clks);
2430	clk_prepare_unlock();
2431
2432	return clk;
 
 
 
 
 
 
 
 
 
 
2433}
2434
2435void __clk_free_clk(struct clk *clk)
 
 
 
 
 
 
 
 
 
 
 
 
 
2436{
2437	clk_prepare_lock();
2438	hlist_del(&clk->clks_node);
2439	clk_prepare_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2440
2441	kfree(clk);
2442}
2443
2444/**
2445 * clk_register - allocate a new clock, register it and return an opaque cookie
2446 * @dev: device that is registering this clock
2447 * @hw: link to hardware-specific clock data
2448 *
2449 * clk_register is the primary interface for populating the clock tree with new
2450 * clock nodes.  It returns a pointer to the newly allocated struct clk which
2451 * cannot be dereferenced by driver code but may be used in conjunction with the
2452 * rest of the clock API.  In the event of an error clk_register will return an
2453 * error code; drivers must test for an error code after calling clk_register.
2454 */
2455struct clk *clk_register(struct device *dev, struct clk_hw *hw)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2456{
2457	int i, ret;
2458	struct clk_core *core;
 
 
 
 
 
 
 
 
2459
2460	core = kzalloc(sizeof(*core), GFP_KERNEL);
2461	if (!core) {
2462		ret = -ENOMEM;
2463		goto fail_out;
2464	}
2465
2466	core->name = kstrdup_const(hw->init->name, GFP_KERNEL);
 
 
2467	if (!core->name) {
2468		ret = -ENOMEM;
2469		goto fail_name;
2470	}
2471	core->ops = hw->init->ops;
 
 
 
 
 
 
 
 
 
2472	if (dev && dev->driver)
2473		core->owner = dev->driver->owner;
2474	core->hw = hw;
2475	core->flags = hw->init->flags;
2476	core->num_parents = hw->init->num_parents;
2477	core->min_rate = 0;
2478	core->max_rate = ULONG_MAX;
2479	hw->core = core;
2480
2481	/* allocate local copy in case parent_names is __initdata */
2482	core->parent_names = kcalloc(core->num_parents, sizeof(char *),
2483					GFP_KERNEL);
2484
2485	if (!core->parent_names) {
2486		ret = -ENOMEM;
2487		goto fail_parent_names;
2488	}
2489
2490
2491	/* copy each string name in case parent_names is __initdata */
2492	for (i = 0; i < core->num_parents; i++) {
2493		core->parent_names[i] = kstrdup_const(hw->init->parent_names[i],
2494						GFP_KERNEL);
2495		if (!core->parent_names[i]) {
2496			ret = -ENOMEM;
2497			goto fail_parent_names_copy;
2498		}
2499	}
2500
2501	/* avoid unnecessary string look-ups of clk_core's possible parents. */
2502	core->parents = kcalloc(core->num_parents, sizeof(*core->parents),
2503				GFP_KERNEL);
2504	if (!core->parents) {
2505		ret = -ENOMEM;
2506		goto fail_parents;
2507	};
2508
2509	INIT_HLIST_HEAD(&core->clks);
2510
2511	hw->clk = __clk_create_clk(hw, NULL, NULL);
 
 
 
 
2512	if (IS_ERR(hw->clk)) {
2513		ret = PTR_ERR(hw->clk);
2514		goto fail_parents;
2515	}
2516
 
 
2517	ret = __clk_core_init(core);
2518	if (!ret)
2519		return hw->clk;
2520
2521	__clk_free_clk(hw->clk);
 
 
 
 
2522	hw->clk = NULL;
2523
 
2524fail_parents:
2525	kfree(core->parents);
2526fail_parent_names_copy:
2527	while (--i >= 0)
2528		kfree_const(core->parent_names[i]);
2529	kfree(core->parent_names);
2530fail_parent_names:
2531	kfree_const(core->name);
2532fail_name:
2533	kfree(core);
2534fail_out:
2535	return ERR_PTR(ret);
2536}
2537EXPORT_SYMBOL_GPL(clk_register);
2538
2539/* Free memory allocated for a clock. */
2540static void __clk_release(struct kref *ref)
 
 
 
 
 
 
 
2541{
2542	struct clk_core *core = container_of(ref, struct clk_core, ref);
2543	int i = core->num_parents;
 
 
 
 
 
 
 
 
 
2544
2545	lockdep_assert_held(&prepare_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2546
2547	kfree(core->parents);
2548	while (--i >= 0)
2549		kfree_const(core->parent_names[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
2550
2551	kfree(core->parent_names);
2552	kfree_const(core->name);
2553	kfree(core);
 
 
 
 
 
 
 
 
 
 
 
2554}
 
2555
2556/*
2557 * Empty clk_ops for unregistered clocks. These are used temporarily
2558 * after clk_unregister() was called on a clock and until last clock
2559 * consumer calls clk_put() and the struct clk object is freed.
2560 */
2561static int clk_nodrv_prepare_enable(struct clk_hw *hw)
2562{
2563	return -ENXIO;
2564}
2565
2566static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
2567{
2568	WARN_ON_ONCE(1);
2569}
2570
2571static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
2572					unsigned long parent_rate)
2573{
2574	return -ENXIO;
2575}
2576
2577static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
2578{
2579	return -ENXIO;
2580}
2581
 
 
 
 
 
 
2582static const struct clk_ops clk_nodrv_ops = {
2583	.enable		= clk_nodrv_prepare_enable,
2584	.disable	= clk_nodrv_disable_unprepare,
2585	.prepare	= clk_nodrv_prepare_enable,
2586	.unprepare	= clk_nodrv_disable_unprepare,
 
2587	.set_rate	= clk_nodrv_set_rate,
2588	.set_parent	= clk_nodrv_set_parent,
2589};
2590
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2591/**
2592 * clk_unregister - unregister a currently registered clock
2593 * @clk: clock to unregister
2594 */
2595void clk_unregister(struct clk *clk)
2596{
2597	unsigned long flags;
 
2598
2599	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2600		return;
2601
2602	clk_debug_unregister(clk->core);
2603
2604	clk_prepare_lock();
2605
2606	if (clk->core->ops == &clk_nodrv_ops) {
 
2607		pr_err("%s: unregistered clock: %s\n", __func__,
2608		       clk->core->name);
2609		goto unlock;
 
2610	}
2611	/*
2612	 * Assign empty clock ops for consumers that might still hold
2613	 * a reference to this clock.
2614	 */
2615	flags = clk_enable_lock();
2616	clk->core->ops = &clk_nodrv_ops;
2617	clk_enable_unlock(flags);
2618
 
 
 
2619	if (!hlist_empty(&clk->core->children)) {
2620		struct clk_core *child;
2621		struct hlist_node *t;
2622
2623		/* Reparent all children to the orphan list. */
2624		hlist_for_each_entry_safe(child, t, &clk->core->children,
2625					  child_node)
2626			clk_core_set_parent(child, NULL);
2627	}
2628
 
 
2629	hlist_del_init(&clk->core->child_node);
2630
2631	if (clk->core->prepare_count)
2632		pr_warn("%s: unregistering prepared clock: %s\n",
2633					__func__, clk->core->name);
 
 
 
 
 
 
2634	kref_put(&clk->core->ref, __clk_release);
2635unlock:
2636	clk_prepare_unlock();
2637}
2638EXPORT_SYMBOL_GPL(clk_unregister);
2639
2640static void devm_clk_release(struct device *dev, void *res)
 
 
 
 
 
 
 
 
 
 
2641{
2642	clk_unregister(*(struct clk **)res);
2643}
2644
 
 
 
 
 
2645/**
2646 * devm_clk_register - resource managed clk_register()
2647 * @dev: device that is registering this clock
2648 * @hw: link to hardware-specific clock data
2649 *
2650 * Managed clk_register(). Clocks returned from this function are
2651 * automatically clk_unregister()ed on driver detach. See clk_register() for
2652 * more information.
 
2653 */
2654struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
2655{
2656	struct clk *clk;
2657	struct clk **clkp;
2658
2659	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
2660	if (!clkp)
2661		return ERR_PTR(-ENOMEM);
2662
2663	clk = clk_register(dev, hw);
2664	if (!IS_ERR(clk)) {
2665		*clkp = clk;
2666		devres_add(dev, clkp);
2667	} else {
2668		devres_free(clkp);
2669	}
2670
2671	return clk;
2672}
2673EXPORT_SYMBOL_GPL(devm_clk_register);
2674
2675static int devm_clk_match(struct device *dev, void *res, void *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2676{
2677	struct clk *c = res;
2678	if (WARN_ON(!c))
2679		return 0;
2680	return c == data;
2681}
2682
2683/**
2684 * devm_clk_unregister - resource managed clk_unregister()
2685 * @clk: clock to unregister
 
 
2686 *
2687 * Deallocate a clock allocated with devm_clk_register(). Normally
2688 * this function will not need to be called and the resource management
2689 * code will ensure that the resource is freed.
2690 */
2691void devm_clk_unregister(struct device *dev, struct clk *clk)
 
2692{
2693	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2694}
2695EXPORT_SYMBOL_GPL(devm_clk_unregister);
2696
2697/*
2698 * clkdev helpers
2699 */
2700int __clk_get(struct clk *clk)
2701{
2702	struct clk_core *core = !clk ? NULL : clk->core;
2703
2704	if (core) {
2705		if (!try_module_get(core->owner))
2706			return 0;
2707
2708		kref_get(&core->ref);
2709	}
2710	return 1;
2711}
2712
2713void __clk_put(struct clk *clk)
2714{
2715	struct module *owner;
2716
2717	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2718		return;
2719
2720	clk_prepare_lock();
2721
2722	hlist_del(&clk->clks_node);
2723	if (clk->min_rate > clk->core->req_rate ||
2724	    clk->max_rate < clk->core->req_rate)
2725		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
 
 
 
 
 
 
 
2726
2727	owner = clk->core->owner;
2728	kref_put(&clk->core->ref, __clk_release);
 
 
 
2729
2730	clk_prepare_unlock();
2731
 
 
2732	module_put(owner);
2733
2734	kfree(clk);
2735}
2736
2737/***        clk rate change notifiers        ***/
2738
2739/**
2740 * clk_notifier_register - add a clk rate change notifier
2741 * @clk: struct clk * to watch
2742 * @nb: struct notifier_block * with callback info
2743 *
2744 * Request notification when clk's rate changes.  This uses an SRCU
2745 * notifier because we want it to block and notifier unregistrations are
2746 * uncommon.  The callbacks associated with the notifier must not
2747 * re-enter into the clk framework by calling any top-level clk APIs;
2748 * this will cause a nested prepare_lock mutex.
2749 *
2750 * In all notification cases (pre, post and abort rate change) the original
2751 * clock rate is passed to the callback via struct clk_notifier_data.old_rate
2752 * and the new frequency is passed via struct clk_notifier_data.new_rate.
2753 *
2754 * clk_notifier_register() must be called from non-atomic context.
2755 * Returns -EINVAL if called with null arguments, -ENOMEM upon
2756 * allocation failure; otherwise, passes along the return value of
2757 * srcu_notifier_chain_register().
2758 */
2759int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
2760{
2761	struct clk_notifier *cn;
2762	int ret = -ENOMEM;
2763
2764	if (!clk || !nb)
2765		return -EINVAL;
2766
2767	clk_prepare_lock();
2768
2769	/* search the list of notifiers for this clk */
2770	list_for_each_entry(cn, &clk_notifier_list, node)
2771		if (cn->clk == clk)
2772			break;
2773
2774	/* if clk wasn't in the notifier list, allocate new clk_notifier */
2775	if (cn->clk != clk) {
2776		cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
2777		if (!cn)
2778			goto out;
2779
2780		cn->clk = clk;
2781		srcu_init_notifier_head(&cn->notifier_head);
2782
2783		list_add(&cn->node, &clk_notifier_list);
2784	}
2785
 
2786	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
2787
2788	clk->core->notifier_count++;
2789
2790out:
2791	clk_prepare_unlock();
2792
2793	return ret;
2794}
2795EXPORT_SYMBOL_GPL(clk_notifier_register);
2796
2797/**
2798 * clk_notifier_unregister - remove a clk rate change notifier
2799 * @clk: struct clk *
2800 * @nb: struct notifier_block * with callback info
2801 *
2802 * Request no further notification for changes to 'clk' and frees memory
2803 * allocated in clk_notifier_register.
2804 *
2805 * Returns -EINVAL if called with null arguments; otherwise, passes
2806 * along the return value of srcu_notifier_chain_unregister().
2807 */
2808int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
2809{
2810	struct clk_notifier *cn = NULL;
2811	int ret = -EINVAL;
2812
2813	if (!clk || !nb)
2814		return -EINVAL;
2815
2816	clk_prepare_lock();
2817
2818	list_for_each_entry(cn, &clk_notifier_list, node)
2819		if (cn->clk == clk)
 
 
 
 
 
 
 
 
 
 
2820			break;
 
 
2821
2822	if (cn->clk == clk) {
2823		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
2824
2825		clk->core->notifier_count--;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2826
2827		/* XXX the notifier code should handle this better */
2828		if (!cn->notifier_head.head) {
2829			srcu_cleanup_notifier_head(&cn->notifier_head);
2830			list_del(&cn->node);
2831			kfree(cn);
2832		}
 
 
 
 
 
2833
 
 
 
 
 
2834	} else {
2835		ret = -ENOENT;
2836	}
2837
2838	clk_prepare_unlock();
2839
2840	return ret;
2841}
2842EXPORT_SYMBOL_GPL(clk_notifier_unregister);
2843
2844#ifdef CONFIG_OF
 
 
 
 
 
 
 
2845/**
2846 * struct of_clk_provider - Clock provider registration structure
2847 * @link: Entry in global list of clock providers
2848 * @node: Pointer to device tree node of clock provider
2849 * @get: Get clock callback.  Returns NULL or a struct clk for the
2850 *       given clock specifier
 
 
2851 * @data: context pointer to be passed into @get callback
2852 */
2853struct of_clk_provider {
2854	struct list_head link;
2855
2856	struct device_node *node;
2857	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
 
2858	void *data;
2859};
2860
 
2861static const struct of_device_id __clk_of_table_sentinel
2862	__used __section(__clk_of_table_end);
2863
2864static LIST_HEAD(of_clk_providers);
2865static DEFINE_MUTEX(of_clk_mutex);
2866
2867struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
2868				     void *data)
2869{
2870	return data;
2871}
2872EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
2873
 
 
 
 
 
 
2874struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
2875{
2876	struct clk_onecell_data *clk_data = data;
2877	unsigned int idx = clkspec->args[0];
2878
2879	if (idx >= clk_data->clk_num) {
2880		pr_err("%s: invalid clock index %u\n", __func__, idx);
2881		return ERR_PTR(-EINVAL);
2882	}
2883
2884	return clk_data->clks[idx];
2885}
2886EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
2887
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2888/**
2889 * of_clk_add_provider() - Register a clock provider for a node
2890 * @np: Device node pointer associated with clock provider
2891 * @clk_src_get: callback for decoding clock
2892 * @data: context pointer for @clk_src_get callback.
 
 
2893 */
2894int of_clk_add_provider(struct device_node *np,
2895			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
2896						   void *data),
2897			void *data)
2898{
2899	struct of_clk_provider *cp;
2900	int ret;
2901
2902	cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
 
 
 
2903	if (!cp)
2904		return -ENOMEM;
2905
2906	cp->node = of_node_get(np);
2907	cp->data = data;
2908	cp->get = clk_src_get;
2909
2910	mutex_lock(&of_clk_mutex);
2911	list_add(&cp->link, &of_clk_providers);
2912	mutex_unlock(&of_clk_mutex);
2913	pr_debug("Added clock from %s\n", np->full_name);
 
 
2914
2915	ret = of_clk_set_defaults(np, true);
2916	if (ret < 0)
2917		of_clk_del_provider(np);
2918
 
 
2919	return ret;
2920}
2921EXPORT_SYMBOL_GPL(of_clk_add_provider);
2922
2923/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2924 * of_clk_del_provider() - Remove a previously registered clock provider
2925 * @np: Device node pointer associated with clock provider
2926 */
2927void of_clk_del_provider(struct device_node *np)
2928{
2929	struct of_clk_provider *cp;
2930
 
 
 
2931	mutex_lock(&of_clk_mutex);
2932	list_for_each_entry(cp, &of_clk_providers, link) {
2933		if (cp->node == np) {
2934			list_del(&cp->link);
 
2935			of_node_put(cp->node);
2936			kfree(cp);
2937			break;
2938		}
2939	}
2940	mutex_unlock(&of_clk_mutex);
2941}
2942EXPORT_SYMBOL_GPL(of_clk_del_provider);
2943
2944struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec,
2945				       const char *dev_id, const char *con_id)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2946{
2947	struct of_clk_provider *provider;
2948	struct clk *clk = ERR_PTR(-EPROBE_DEFER);
2949
2950	if (!clkspec)
2951		return ERR_PTR(-EINVAL);
2952
2953	/* Check if we have such a provider in our array */
2954	mutex_lock(&of_clk_mutex);
2955	list_for_each_entry(provider, &of_clk_providers, link) {
2956		if (provider->node == clkspec->np)
2957			clk = provider->get(clkspec, provider->data);
2958		if (!IS_ERR(clk)) {
2959			clk = __clk_create_clk(__clk_get_hw(clk), dev_id,
2960					       con_id);
2961
2962			if (!IS_ERR(clk) && !__clk_get(clk)) {
2963				__clk_free_clk(clk);
2964				clk = ERR_PTR(-ENOENT);
2965			}
2966
2967			break;
2968		}
2969	}
2970	mutex_unlock(&of_clk_mutex);
2971
2972	return clk;
2973}
2974
2975/**
2976 * of_clk_get_from_provider() - Lookup a clock from a clock provider
2977 * @clkspec: pointer to a clock specifier data structure
2978 *
2979 * This function looks up a struct clk from the registered list of clock
2980 * providers, an input is a clock specifier data structure as returned
2981 * from the of_parse_phandle_with_args() function call.
2982 */
2983struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
2984{
2985	return __of_clk_get_from_provider(clkspec, NULL, __func__);
 
 
2986}
2987EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
2988
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2989/**
2990 * of_clk_get_parent_count() - Count the number of clocks a device node has
2991 * @np: device node to count
2992 *
2993 * Returns: The number of clocks that are possible parents of this node
2994 */
2995unsigned int of_clk_get_parent_count(struct device_node *np)
2996{
2997	int count;
2998
2999	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
3000	if (count < 0)
3001		return 0;
3002
3003	return count;
3004}
3005EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
3006
3007const char *of_clk_get_parent_name(struct device_node *np, int index)
3008{
3009	struct of_phandle_args clkspec;
3010	struct property *prop;
3011	const char *clk_name;
3012	const __be32 *vp;
3013	u32 pv;
3014	int rc;
3015	int count;
3016	struct clk *clk;
3017
3018	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
3019					&clkspec);
3020	if (rc)
3021		return NULL;
3022
3023	index = clkspec.args_count ? clkspec.args[0] : 0;
3024	count = 0;
3025
3026	/* if there is an indices property, use it to transfer the index
3027	 * specified into an array offset for the clock-output-names property.
3028	 */
3029	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
3030		if (index == pv) {
3031			index = count;
 
3032			break;
3033		}
3034		count++;
3035	}
3036	/* We went off the end of 'clock-indices' without finding it */
3037	if (prop && !vp)
 
3038		return NULL;
 
3039
3040	if (of_property_read_string_index(clkspec.np, "clock-output-names",
3041					  index,
3042					  &clk_name) < 0) {
3043		/*
3044		 * Best effort to get the name if the clock has been
3045		 * registered with the framework. If the clock isn't
3046		 * registered, we return the node name as the name of
3047		 * the clock as long as #clock-cells = 0.
3048		 */
3049		clk = of_clk_get_from_provider(&clkspec);
3050		if (IS_ERR(clk)) {
3051			if (clkspec.args_count == 0)
3052				clk_name = clkspec.np->name;
3053			else
3054				clk_name = NULL;
3055		} else {
3056			clk_name = __clk_get_name(clk);
3057			clk_put(clk);
3058		}
3059	}
3060
3061
3062	of_node_put(clkspec.np);
3063	return clk_name;
3064}
3065EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
3066
3067/**
3068 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
3069 * number of parents
3070 * @np: Device node pointer associated with clock provider
3071 * @parents: pointer to char array that hold the parents' names
3072 * @size: size of the @parents array
3073 *
3074 * Return: number of parents for the clock node.
3075 */
3076int of_clk_parent_fill(struct device_node *np, const char **parents,
3077		       unsigned int size)
3078{
3079	unsigned int i = 0;
3080
3081	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
3082		i++;
3083
3084	return i;
3085}
3086EXPORT_SYMBOL_GPL(of_clk_parent_fill);
3087
3088struct clock_provider {
3089	of_clk_init_cb_t clk_init_cb;
3090	struct device_node *np;
3091	struct list_head node;
3092};
3093
3094/*
3095 * This function looks for a parent clock. If there is one, then it
3096 * checks that the provider for this parent clock was initialized, in
3097 * this case the parent clock will be ready.
3098 */
3099static int parent_ready(struct device_node *np)
3100{
3101	int i = 0;
3102
3103	while (true) {
3104		struct clk *clk = of_clk_get(np, i);
3105
3106		/* this parent is ready we can check the next one */
3107		if (!IS_ERR(clk)) {
3108			clk_put(clk);
3109			i++;
3110			continue;
3111		}
3112
3113		/* at least one parent is not ready, we exit now */
3114		if (PTR_ERR(clk) == -EPROBE_DEFER)
3115			return 0;
3116
3117		/*
3118		 * Here we make assumption that the device tree is
3119		 * written correctly. So an error means that there is
3120		 * no more parent. As we didn't exit yet, then the
3121		 * previous parent are ready. If there is no clock
3122		 * parent, no need to wait for them, then we can
3123		 * consider their absence as being ready
3124		 */
3125		return 1;
3126	}
3127}
3128
3129/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3130 * of_clk_init() - Scan and init clock providers from the DT
3131 * @matches: array of compatible values and init functions for providers.
3132 *
3133 * This function scans the device tree for matching clock providers
3134 * and calls their initialization functions. It also does it by trying
3135 * to follow the dependencies.
3136 */
3137void __init of_clk_init(const struct of_device_id *matches)
3138{
3139	const struct of_device_id *match;
3140	struct device_node *np;
3141	struct clock_provider *clk_provider, *next;
3142	bool is_init_done;
3143	bool force = false;
3144	LIST_HEAD(clk_provider_list);
3145
3146	if (!matches)
3147		matches = &__clk_of_table;
3148
3149	/* First prepare the list of the clocks providers */
3150	for_each_matching_node_and_match(np, matches, &match) {
3151		struct clock_provider *parent;
3152
3153		if (!of_device_is_available(np))
3154			continue;
3155
3156		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
3157		if (!parent) {
3158			list_for_each_entry_safe(clk_provider, next,
3159						 &clk_provider_list, node) {
3160				list_del(&clk_provider->node);
3161				of_node_put(clk_provider->np);
3162				kfree(clk_provider);
3163			}
3164			of_node_put(np);
3165			return;
3166		}
3167
3168		parent->clk_init_cb = match->data;
3169		parent->np = of_node_get(np);
3170		list_add_tail(&parent->node, &clk_provider_list);
3171	}
3172
3173	while (!list_empty(&clk_provider_list)) {
3174		is_init_done = false;
3175		list_for_each_entry_safe(clk_provider, next,
3176					&clk_provider_list, node) {
3177			if (force || parent_ready(clk_provider->np)) {
 
 
 
 
3178
3179				clk_provider->clk_init_cb(clk_provider->np);
3180				of_clk_set_defaults(clk_provider->np, true);
3181
3182				list_del(&clk_provider->node);
3183				of_node_put(clk_provider->np);
3184				kfree(clk_provider);
3185				is_init_done = true;
3186			}
3187		}
3188
3189		/*
3190		 * We didn't manage to initialize any of the
3191		 * remaining providers during the last loop, so now we
3192		 * initialize all the remaining ones unconditionally
3193		 * in case the clock parent was not mandatory
3194		 */
3195		if (!is_init_done)
3196			force = true;
3197	}
3198}
3199#endif