Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
  1/*
  2 * umip.c Emulation for instruction protected by the User-Mode Instruction
  3 * Prevention feature
  4 *
  5 * Copyright (c) 2017, Intel Corporation.
  6 * Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
  7 */
  8
  9#include <linux/uaccess.h>
 10#include <asm/umip.h>
 11#include <asm/traps.h>
 12#include <asm/insn.h>
 13#include <asm/insn-eval.h>
 14#include <linux/ratelimit.h>
 15
 16#undef pr_fmt
 17#define pr_fmt(fmt) "umip: " fmt
 18
 19/** DOC: Emulation for User-Mode Instruction Prevention (UMIP)
 20 *
 21 * User-Mode Instruction Prevention is a security feature present in recent
 22 * x86 processors that, when enabled, prevents a group of instructions (SGDT,
 23 * SIDT, SLDT, SMSW and STR) from being run in user mode by issuing a general
 24 * protection fault if the instruction is executed with CPL > 0.
 25 *
 26 * Rather than relaying to the user space the general protection fault caused by
 27 * the UMIP-protected instructions (in the form of a SIGSEGV signal), it can be
 28 * trapped and emulate the result of such instructions to provide dummy values.
 29 * This allows to both conserve the current kernel behavior and not reveal the
 30 * system resources that UMIP intends to protect (i.e., the locations of the
 31 * global descriptor and interrupt descriptor tables, the segment selectors of
 32 * the local descriptor table, the value of the task state register and the
 33 * contents of the CR0 register).
 34 *
 35 * This emulation is needed because certain applications (e.g., WineHQ and
 36 * DOSEMU2) rely on this subset of instructions to function.
 37 *
 38 * The instructions protected by UMIP can be split in two groups. Those which
 39 * return a kernel memory address (SGDT and SIDT) and those which return a
 40 * value (SLDT, STR and SMSW).
 41 *
 42 * For the instructions that return a kernel memory address, applications
 43 * such as WineHQ rely on the result being located in the kernel memory space,
 44 * not the actual location of the table. The result is emulated as a hard-coded
 45 * value that, lies close to the top of the kernel memory. The limit for the GDT
 46 * and the IDT are set to zero.
 47 *
 48 * The instruction SMSW is emulated to return the value that the register CR0
 49 * has at boot time as set in the head_32.
 50 * SLDT and STR are emulated to return the values that the kernel programmatically
 51 * assigns:
 52 * - SLDT returns (GDT_ENTRY_LDT * 8) if an LDT has been set, 0 if not.
 53 * - STR returns (GDT_ENTRY_TSS * 8).
 54 *
 55 * Emulation is provided for both 32-bit and 64-bit processes.
 56 *
 57 * Care is taken to appropriately emulate the results when segmentation is
 58 * used. That is, rather than relying on USER_DS and USER_CS, the function
 59 * insn_get_addr_ref() inspects the segment descriptor pointed by the
 60 * registers in pt_regs. This ensures that we correctly obtain the segment
 61 * base address and the address and operand sizes even if the user space
 62 * application uses a local descriptor table.
 63 */
 64
 65#define UMIP_DUMMY_GDT_BASE 0xfffffffffffe0000ULL
 66#define UMIP_DUMMY_IDT_BASE 0xffffffffffff0000ULL
 67
 68/*
 69 * The SGDT and SIDT instructions store the contents of the global descriptor
 70 * table and interrupt table registers, respectively. The destination is a
 71 * memory operand of X+2 bytes. X bytes are used to store the base address of
 72 * the table and 2 bytes are used to store the limit. In 32-bit processes X
 73 * has a value of 4, in 64-bit processes X has a value of 8.
 74 */
 75#define UMIP_GDT_IDT_BASE_SIZE_64BIT 8
 76#define UMIP_GDT_IDT_BASE_SIZE_32BIT 4
 77#define UMIP_GDT_IDT_LIMIT_SIZE 2
 78
 79#define	UMIP_INST_SGDT	0	/* 0F 01 /0 */
 80#define	UMIP_INST_SIDT	1	/* 0F 01 /1 */
 81#define	UMIP_INST_SMSW	2	/* 0F 01 /4 */
 82#define	UMIP_INST_SLDT  3       /* 0F 00 /0 */
 83#define	UMIP_INST_STR   4       /* 0F 00 /1 */
 84
 85static const char * const umip_insns[5] = {
 86	[UMIP_INST_SGDT] = "SGDT",
 87	[UMIP_INST_SIDT] = "SIDT",
 88	[UMIP_INST_SMSW] = "SMSW",
 89	[UMIP_INST_SLDT] = "SLDT",
 90	[UMIP_INST_STR] = "STR",
 91};
 92
 93#define umip_pr_err(regs, fmt, ...) \
 94	umip_printk(regs, KERN_ERR, fmt, ##__VA_ARGS__)
 95#define umip_pr_debug(regs, fmt, ...) \
 96	umip_printk(regs, KERN_DEBUG, fmt,  ##__VA_ARGS__)
 97
 98/**
 99 * umip_printk() - Print a rate-limited message
100 * @regs:	Register set with the context in which the warning is printed
101 * @log_level:	Kernel log level to print the message
102 * @fmt:	The text string to print
103 *
104 * Print the text contained in @fmt. The print rate is limited to bursts of 5
105 * messages every two minutes. The purpose of this customized version of
106 * printk() is to print messages when user space processes use any of the
107 * UMIP-protected instructions. Thus, the printed text is prepended with the
108 * task name and process ID number of the current task as well as the
109 * instruction and stack pointers in @regs as seen when entering kernel mode.
110 *
111 * Returns:
112 *
113 * None.
114 */
115static __printf(3, 4)
116void umip_printk(const struct pt_regs *regs, const char *log_level,
117		 const char *fmt, ...)
118{
119	/* Bursts of 5 messages every two minutes */
120	static DEFINE_RATELIMIT_STATE(ratelimit, 2 * 60 * HZ, 5);
121	struct task_struct *tsk = current;
122	struct va_format vaf;
123	va_list args;
124
125	if (!__ratelimit(&ratelimit))
126		return;
127
128	va_start(args, fmt);
129	vaf.fmt = fmt;
130	vaf.va = &args;
131	printk("%s" pr_fmt("%s[%d] ip:%lx sp:%lx: %pV"), log_level, tsk->comm,
132	       task_pid_nr(tsk), regs->ip, regs->sp, &vaf);
133	va_end(args);
134}
135
136/**
137 * identify_insn() - Identify a UMIP-protected instruction
138 * @insn:	Instruction structure with opcode and ModRM byte.
139 *
140 * From the opcode and ModRM.reg in @insn identify, if any, a UMIP-protected
141 * instruction that can be emulated.
142 *
143 * Returns:
144 *
145 * On success, a constant identifying a specific UMIP-protected instruction that
146 * can be emulated.
147 *
148 * -EINVAL on error or when not an UMIP-protected instruction that can be
149 * emulated.
150 */
151static int identify_insn(struct insn *insn)
152{
153	/* By getting modrm we also get the opcode. */
154	insn_get_modrm(insn);
155
156	if (!insn->modrm.nbytes)
157		return -EINVAL;
158
159	/* All the instructions of interest start with 0x0f. */
160	if (insn->opcode.bytes[0] != 0xf)
161		return -EINVAL;
162
163	if (insn->opcode.bytes[1] == 0x1) {
164		switch (X86_MODRM_REG(insn->modrm.value)) {
165		case 0:
166			return UMIP_INST_SGDT;
167		case 1:
168			return UMIP_INST_SIDT;
169		case 4:
170			return UMIP_INST_SMSW;
171		default:
172			return -EINVAL;
173		}
174	} else if (insn->opcode.bytes[1] == 0x0) {
175		if (X86_MODRM_REG(insn->modrm.value) == 0)
176			return UMIP_INST_SLDT;
177		else if (X86_MODRM_REG(insn->modrm.value) == 1)
178			return UMIP_INST_STR;
179		else
180			return -EINVAL;
181	} else {
182		return -EINVAL;
183	}
184}
185
186/**
187 * emulate_umip_insn() - Emulate UMIP instructions and return dummy values
188 * @insn:	Instruction structure with operands
189 * @umip_inst:	A constant indicating the instruction to emulate
190 * @data:	Buffer into which the dummy result is stored
191 * @data_size:	Size of the emulated result
192 * @x86_64:	true if process is 64-bit, false otherwise
193 *
194 * Emulate an instruction protected by UMIP and provide a dummy result. The
195 * result of the emulation is saved in @data. The size of the results depends
196 * on both the instruction and type of operand (register vs memory address).
197 * The size of the result is updated in @data_size. Caller is responsible
198 * of providing a @data buffer of at least UMIP_GDT_IDT_BASE_SIZE +
199 * UMIP_GDT_IDT_LIMIT_SIZE bytes.
200 *
201 * Returns:
202 *
203 * 0 on success, -EINVAL on error while emulating.
204 */
205static int emulate_umip_insn(struct insn *insn, int umip_inst,
206			     unsigned char *data, int *data_size, bool x86_64)
207{
208	if (!data || !data_size || !insn)
209		return -EINVAL;
210	/*
211	 * These two instructions return the base address and limit of the
212	 * global and interrupt descriptor table, respectively. According to the
213	 * Intel Software Development manual, the base address can be 24-bit,
214	 * 32-bit or 64-bit. Limit is always 16-bit. If the operand size is
215	 * 16-bit, the returned value of the base address is supposed to be a
216	 * zero-extended 24-byte number. However, it seems that a 32-byte number
217	 * is always returned irrespective of the operand size.
218	 */
219	if (umip_inst == UMIP_INST_SGDT || umip_inst == UMIP_INST_SIDT) {
220		u64 dummy_base_addr;
221		u16 dummy_limit = 0;
222
223		/* SGDT and SIDT do not use registers operands. */
224		if (X86_MODRM_MOD(insn->modrm.value) == 3)
225			return -EINVAL;
226
227		if (umip_inst == UMIP_INST_SGDT)
228			dummy_base_addr = UMIP_DUMMY_GDT_BASE;
229		else
230			dummy_base_addr = UMIP_DUMMY_IDT_BASE;
231
232		/*
233		 * 64-bit processes use the entire dummy base address.
234		 * 32-bit processes use the lower 32 bits of the base address.
235		 * dummy_base_addr is always 64 bits, but we memcpy the correct
236		 * number of bytes from it to the destination.
237		 */
238		if (x86_64)
239			*data_size = UMIP_GDT_IDT_BASE_SIZE_64BIT;
240		else
241			*data_size = UMIP_GDT_IDT_BASE_SIZE_32BIT;
242
243		memcpy(data + 2, &dummy_base_addr, *data_size);
244
245		*data_size += UMIP_GDT_IDT_LIMIT_SIZE;
246		memcpy(data, &dummy_limit, UMIP_GDT_IDT_LIMIT_SIZE);
247
248	} else if (umip_inst == UMIP_INST_SMSW || umip_inst == UMIP_INST_SLDT ||
249		   umip_inst == UMIP_INST_STR) {
250		unsigned long dummy_value;
251
252		if (umip_inst == UMIP_INST_SMSW) {
253			dummy_value = CR0_STATE;
254		} else if (umip_inst == UMIP_INST_STR) {
255			dummy_value = GDT_ENTRY_TSS * 8;
256		} else if (umip_inst == UMIP_INST_SLDT) {
257#ifdef CONFIG_MODIFY_LDT_SYSCALL
258			down_read(&current->mm->context.ldt_usr_sem);
259			if (current->mm->context.ldt)
260				dummy_value = GDT_ENTRY_LDT * 8;
261			else
262				dummy_value = 0;
263			up_read(&current->mm->context.ldt_usr_sem);
264#else
265			dummy_value = 0;
266#endif
267		}
268
269		/*
270		 * For these 3 instructions, the number
271		 * of bytes to be copied in the result buffer is determined
272		 * by whether the operand is a register or a memory location.
273		 * If operand is a register, return as many bytes as the operand
274		 * size. If operand is memory, return only the two least
275		 * significant bytes.
276		 */
277		if (X86_MODRM_MOD(insn->modrm.value) == 3)
278			*data_size = insn->opnd_bytes;
279		else
280			*data_size = 2;
281
282		memcpy(data, &dummy_value, *data_size);
283	} else {
284		return -EINVAL;
285	}
286
287	return 0;
288}
289
290/**
291 * force_sig_info_umip_fault() - Force a SIGSEGV with SEGV_MAPERR
292 * @addr:	Address that caused the signal
293 * @regs:	Register set containing the instruction pointer
294 *
295 * Force a SIGSEGV signal with SEGV_MAPERR as the error code. This function is
296 * intended to be used to provide a segmentation fault when the result of the
297 * UMIP emulation could not be copied to the user space memory.
298 *
299 * Returns: none
300 */
301static void force_sig_info_umip_fault(void __user *addr, struct pt_regs *regs)
302{
303	struct task_struct *tsk = current;
304
305	tsk->thread.cr2		= (unsigned long)addr;
306	tsk->thread.error_code	= X86_PF_USER | X86_PF_WRITE;
307	tsk->thread.trap_nr	= X86_TRAP_PF;
308
309	force_sig_fault(SIGSEGV, SEGV_MAPERR, addr);
310
311	if (!(show_unhandled_signals && unhandled_signal(tsk, SIGSEGV)))
312		return;
313
314	umip_pr_err(regs, "segfault in emulation. error%x\n",
315		    X86_PF_USER | X86_PF_WRITE);
316}
317
318/**
319 * fixup_umip_exception() - Fixup a general protection fault caused by UMIP
320 * @regs:	Registers as saved when entering the #GP handler
321 *
322 * The instructions SGDT, SIDT, STR, SMSW and SLDT cause a general protection
323 * fault if executed with CPL > 0 (i.e., from user space). This function fixes
324 * the exception up and provides dummy results for SGDT, SIDT and SMSW; STR
325 * and SLDT are not fixed up.
326 *
327 * If operands are memory addresses, results are copied to user-space memory as
328 * indicated by the instruction pointed by eIP using the registers indicated in
329 * the instruction operands. If operands are registers, results are copied into
330 * the context that was saved when entering kernel mode.
331 *
332 * Returns:
333 *
334 * True if emulation was successful; false if not.
335 */
336bool fixup_umip_exception(struct pt_regs *regs)
337{
338	int nr_copied, reg_offset, dummy_data_size, umip_inst;
339	/* 10 bytes is the maximum size of the result of UMIP instructions */
340	unsigned char dummy_data[10] = { 0 };
341	unsigned char buf[MAX_INSN_SIZE];
342	unsigned long *reg_addr;
343	void __user *uaddr;
344	struct insn insn;
345
346	if (!regs)
347		return false;
348
349	/*
350	 * Give up on emulation if fetching the instruction failed. Should a
351	 * page fault or a #GP be issued?
352	 */
353	nr_copied = insn_fetch_from_user(regs, buf);
354	if (nr_copied <= 0)
355		return false;
356
357	if (!insn_decode_from_regs(&insn, regs, buf, nr_copied))
358		return false;
359
360	umip_inst = identify_insn(&insn);
361	if (umip_inst < 0)
362		return false;
363
364	umip_pr_debug(regs, "%s instruction cannot be used by applications.\n",
365			umip_insns[umip_inst]);
366
367	umip_pr_debug(regs, "For now, expensive software emulation returns the result.\n");
368
369	if (emulate_umip_insn(&insn, umip_inst, dummy_data, &dummy_data_size,
370			      user_64bit_mode(regs)))
371		return false;
372
373	/*
374	 * If operand is a register, write result to the copy of the register
375	 * value that was pushed to the stack when entering into kernel mode.
376	 * Upon exit, the value we write will be restored to the actual hardware
377	 * register.
378	 */
379	if (X86_MODRM_MOD(insn.modrm.value) == 3) {
380		reg_offset = insn_get_modrm_rm_off(&insn, regs);
381
382		/*
383		 * Negative values are usually errors. In memory addressing,
384		 * the exception is -EDOM. Since we expect a register operand,
385		 * all negative values are errors.
386		 */
387		if (reg_offset < 0)
388			return false;
389
390		reg_addr = (unsigned long *)((unsigned long)regs + reg_offset);
391		memcpy(reg_addr, dummy_data, dummy_data_size);
392	} else {
393		uaddr = insn_get_addr_ref(&insn, regs);
394		if ((unsigned long)uaddr == -1L)
395			return false;
396
397		nr_copied = copy_to_user(uaddr, dummy_data, dummy_data_size);
398		if (nr_copied  > 0) {
399			/*
400			 * If copy fails, send a signal and tell caller that
401			 * fault was fixed up.
402			 */
403			force_sig_info_umip_fault(uaddr, regs);
404			return true;
405		}
406	}
407
408	/* increase IP to let the program keep going */
409	regs->ip += insn.length;
410	return true;
411}