Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * TSC frequency enumeration via MSR
  4 *
  5 * Copyright (C) 2013, 2018 Intel Corporation
 
 
 
 
 
 
 
 
 
  6 * Author: Bin Gao <bin.gao@intel.com>
 
 
  7 */
  8
  9#include <linux/kernel.h>
 10#include <linux/thread_info.h>
 11
 12#include <asm/apic.h>
 13#include <asm/cpu_device_id.h>
 14#include <asm/intel-family.h>
 15#include <asm/msr.h>
 16#include <asm/param.h>
 17#include <asm/tsc.h>
 18
 19#define MAX_NUM_FREQS	16 /* 4 bits to select the frequency */
 20
 21/*
 22 * The frequency numbers in the SDM are e.g. 83.3 MHz, which does not contain a
 23 * lot of accuracy which leads to clock drift. As far as we know Bay Trail SoCs
 24 * use a 25 MHz crystal and Cherry Trail uses a 19.2 MHz crystal, the crystal
 25 * is the source clk for a root PLL which outputs 1600 and 100 MHz. It is
 26 * unclear if the root PLL outputs are used directly by the CPU clock PLL or
 27 * if there is another PLL in between.
 28 * This does not matter though, we can model the chain of PLLs as a single PLL
 29 * with a quotient equal to the quotients of all PLLs in the chain multiplied.
 30 * So we can create a simplified model of the CPU clock setup using a reference
 31 * clock of 100 MHz plus a quotient which gets us as close to the frequency
 32 * from the SDM as possible.
 33 * For the 83.3 MHz example from above this would give us 100 MHz * 5 / 6 =
 34 * 83 and 1/3 MHz, which matches exactly what has been measured on actual hw.
 35 */
 36#define TSC_REFERENCE_KHZ 100000
 37
 38struct muldiv {
 39	u32 multiplier;
 40	u32 divider;
 41};
 42
 43/*
 44 * If MSR_PERF_STAT[31] is set, the maximum resolved bus ratio can be
 
 45 * read in MSR_PLATFORM_ID[12:8], otherwise in MSR_PERF_STAT[44:40].
 46 * Unfortunately some Intel Atom SoCs aren't quite compliant to this,
 47 * so we need manually differentiate SoC families. This is what the
 48 * field use_msr_plat does.
 49 */
 50struct freq_desc {
 51	bool use_msr_plat;
 52	struct muldiv muldiv[MAX_NUM_FREQS];
 53	/*
 54	 * Some CPU frequencies in the SDM do not map to known PLL freqs, in
 55	 * that case the muldiv array is empty and the freqs array is used.
 56	 */
 57	u32 freqs[MAX_NUM_FREQS];
 58	u32 mask;
 59};
 60
 61/*
 62 * Penwell and Clovertrail use spread spectrum clock,
 63 * so the freq number is not exactly the same as reported
 64 * by MSR based on SDM.
 65 */
 66static const struct freq_desc freq_desc_pnw = {
 67	.use_msr_plat = false,
 68	.freqs = { 0, 0, 0, 0, 0, 99840, 0, 83200 },
 69	.mask = 0x07,
 70};
 71
 72static const struct freq_desc freq_desc_clv = {
 73	.use_msr_plat = false,
 74	.freqs = { 0, 133200, 0, 0, 0, 99840, 0, 83200 },
 75	.mask = 0x07,
 76};
 77
 78/*
 79 * Bay Trail SDM MSR_FSB_FREQ frequencies simplified PLL model:
 80 *  000:   100 *  5 /  6  =  83.3333 MHz
 81 *  001:   100 *  1 /  1  = 100.0000 MHz
 82 *  010:   100 *  4 /  3  = 133.3333 MHz
 83 *  011:   100 *  7 /  6  = 116.6667 MHz
 84 *  100:   100 *  4 /  5  =  80.0000 MHz
 85 */
 86static const struct freq_desc freq_desc_byt = {
 87	.use_msr_plat = true,
 88	.muldiv = { { 5, 6 }, { 1, 1 }, { 4, 3 }, { 7, 6 },
 89		    { 4, 5 } },
 90	.mask = 0x07,
 91};
 92
 93/*
 94 * Cherry Trail SDM MSR_FSB_FREQ frequencies simplified PLL model:
 95 * 0000:   100 *  5 /  6  =  83.3333 MHz
 96 * 0001:   100 *  1 /  1  = 100.0000 MHz
 97 * 0010:   100 *  4 /  3  = 133.3333 MHz
 98 * 0011:   100 *  7 /  6  = 116.6667 MHz
 99 * 0100:   100 *  4 /  5  =  80.0000 MHz
100 * 0101:   100 * 14 / 15  =  93.3333 MHz
101 * 0110:   100 *  9 / 10  =  90.0000 MHz
102 * 0111:   100 *  8 /  9  =  88.8889 MHz
103 * 1000:   100 *  7 /  8  =  87.5000 MHz
104 */
105static const struct freq_desc freq_desc_cht = {
106	.use_msr_plat = true,
107	.muldiv = { { 5, 6 }, {  1,  1 }, { 4,  3 }, { 7, 6 },
108		    { 4, 5 }, { 14, 15 }, { 9, 10 }, { 8, 9 },
109		    { 7, 8 } },
110	.mask = 0x0f,
111};
112
113/*
114 * Merriefield SDM MSR_FSB_FREQ frequencies simplified PLL model:
115 * 0001:   100 *  1 /  1  = 100.0000 MHz
116 * 0010:   100 *  4 /  3  = 133.3333 MHz
117 */
118static const struct freq_desc freq_desc_tng = {
119	.use_msr_plat = true,
120	.muldiv = { { 0, 0 }, { 1, 1 }, { 4, 3 } },
121	.mask = 0x07,
122};
123
124/*
125 * Moorefield SDM MSR_FSB_FREQ frequencies simplified PLL model:
126 * 0000:   100 *  5 /  6  =  83.3333 MHz
127 * 0001:   100 *  1 /  1  = 100.0000 MHz
128 * 0010:   100 *  4 /  3  = 133.3333 MHz
129 * 0011:   100 *  1 /  1  = 100.0000 MHz
130 */
131static const struct freq_desc freq_desc_ann = {
132	.use_msr_plat = true,
133	.muldiv = { { 5, 6 }, { 1, 1 }, { 4, 3 }, { 1, 1 } },
134	.mask = 0x0f,
135};
136
137/*
138 * 24 MHz crystal? : 24 * 13 / 4 = 78 MHz
139 * Frequency step for Lightning Mountain SoC is fixed to 78 MHz,
140 * so all the frequency entries are 78000.
141 */
142static const struct freq_desc freq_desc_lgm = {
143	.use_msr_plat = true,
144	.freqs = { 78000, 78000, 78000, 78000, 78000, 78000, 78000, 78000,
145		   78000, 78000, 78000, 78000, 78000, 78000, 78000, 78000 },
146	.mask = 0x0f,
147};
148
149static const struct x86_cpu_id tsc_msr_cpu_ids[] = {
150	X86_MATCH_VFM(INTEL_ATOM_SALTWELL_MID,	&freq_desc_pnw),
151	X86_MATCH_VFM(INTEL_ATOM_SALTWELL_TABLET, &freq_desc_clv),
152	X86_MATCH_VFM(INTEL_ATOM_SILVERMONT,	&freq_desc_byt),
153	X86_MATCH_VFM(INTEL_ATOM_SILVERMONT_MID,	&freq_desc_tng),
154	X86_MATCH_VFM(INTEL_ATOM_AIRMONT,	&freq_desc_cht),
155	X86_MATCH_VFM(INTEL_ATOM_AIRMONT_MID,	&freq_desc_ann),
156	X86_MATCH_VFM(INTEL_ATOM_AIRMONT_NP,	&freq_desc_lgm),
157	{}
158};
159
160/*
161 * MSR-based CPU/TSC frequency discovery for certain CPUs.
162 *
163 * Set global "lapic_timer_period" to bus_clock_cycles/jiffy
164 * Return processor base frequency in KHz, or 0 on failure.
165 */
166unsigned long cpu_khz_from_msr(void)
167{
168	u32 lo, hi, ratio, freq, tscref;
169	const struct freq_desc *freq_desc;
170	const struct x86_cpu_id *id;
171	const struct muldiv *md;
172	unsigned long res;
173	int index;
174
175	id = x86_match_cpu(tsc_msr_cpu_ids);
176	if (!id)
177		return 0;
178
179	freq_desc = (struct freq_desc *)id->driver_data;
180	if (freq_desc->use_msr_plat) {
181		rdmsr(MSR_PLATFORM_INFO, lo, hi);
182		ratio = (lo >> 8) & 0xff;
183	} else {
184		rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
185		ratio = (hi >> 8) & 0x1f;
186	}
 
 
 
 
187
188	/* Get FSB FREQ ID */
189	rdmsr(MSR_FSB_FREQ, lo, hi);
190	index = lo & freq_desc->mask;
191	md = &freq_desc->muldiv[index];
192
193	/*
194	 * Note this also catches cases where the index points to an unpopulated
195	 * part of muldiv, in that case the else will set freq and res to 0.
196	 */
197	if (md->divider) {
198		tscref = TSC_REFERENCE_KHZ * md->multiplier;
199		freq = DIV_ROUND_CLOSEST(tscref, md->divider);
200		/*
201		 * Multiplying by ratio before the division has better
202		 * accuracy than just calculating freq * ratio.
203		 */
204		res = DIV_ROUND_CLOSEST(tscref * ratio, md->divider);
205	} else {
206		freq = freq_desc->freqs[index];
207		res = freq * ratio;
208	}
209
210	if (freq == 0)
211		pr_err("Error MSR_FSB_FREQ index %d is unknown\n", index);
212
213#ifdef CONFIG_X86_LOCAL_APIC
214	lapic_timer_period = (freq * 1000) / HZ;
 
215#endif
216
217	/*
218	 * TSC frequency determined by MSR is always considered "known"
219	 * because it is reported by HW.
220	 * Another fact is that on MSR capable platforms, PIT/HPET is
221	 * generally not available so calibration won't work at all.
222	 */
223	setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
224
225	/*
226	 * Unfortunately there is no way for hardware to tell whether the
227	 * TSC is reliable.  We were told by silicon design team that TSC
228	 * on Atom SoCs are always "reliable". TSC is also the only
229	 * reliable clocksource on these SoCs (HPET is either not present
230	 * or not functional) so mark TSC reliable which removes the
231	 * requirement for a watchdog clocksource.
232	 */
233	setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
234
235	return res;
 
 
 
 
236}
v4.6
 
  1/*
  2 * tsc_msr.c - MSR based TSC calibration on Intel Atom SoC platforms.
  3 *
  4 * TSC in Intel Atom SoC runs at a constant rate which can be figured
  5 * by this formula:
  6 * <maximum core-clock to bus-clock ratio> * <maximum resolved frequency>
  7 * See Intel 64 and IA-32 System Programming Guid section 16.12 and 30.11.5
  8 * for details.
  9 * Especially some Intel Atom SoCs don't have PIT(i8254) or HPET, so MSR
 10 * based calibration is the only option.
 11 *
 12 *
 13 * Copyright (C) 2013 Intel Corporation
 14 * Author: Bin Gao <bin.gao@intel.com>
 15 *
 16 * This file is released under the GPLv2.
 17 */
 18
 19#include <linux/kernel.h>
 20#include <asm/processor.h>
 21#include <asm/setup.h>
 22#include <asm/apic.h>
 
 
 
 23#include <asm/param.h>
 
 
 
 24
 25/* CPU reference clock frequency: in KHz */
 26#define FREQ_83		83200
 27#define FREQ_100	99840
 28#define FREQ_133	133200
 29#define FREQ_166	166400
 
 
 
 
 
 
 
 
 
 
 
 30
 31#define MAX_NUM_FREQS	8
 
 
 
 32
 33/*
 34 * According to Intel 64 and IA-32 System Programming Guide,
 35 * if MSR_PERF_STAT[31] is set, the maximum resolved bus ratio can be
 36 * read in MSR_PLATFORM_ID[12:8], otherwise in MSR_PERF_STAT[44:40].
 37 * Unfortunately some Intel Atom SoCs aren't quite compliant to this,
 38 * so we need manually differentiate SoC families. This is what the
 39 * field msr_plat does.
 40 */
 41struct freq_desc {
 42	u8 x86_family;	/* CPU family */
 43	u8 x86_model;	/* model */
 44	u8 msr_plat;	/* 1: use MSR_PLATFORM_INFO, 0: MSR_IA32_PERF_STATUS */
 
 
 
 45	u32 freqs[MAX_NUM_FREQS];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 46};
 47
 48static struct freq_desc freq_desc_tables[] = {
 49	/* PNW */
 50	{ 6, 0x27, 0, { 0, 0, 0, 0, 0, FREQ_100, 0, FREQ_83 } },
 51	/* CLV+ */
 52	{ 6, 0x35, 0, { 0, FREQ_133, 0, 0, 0, FREQ_100, 0, FREQ_83 } },
 53	/* TNG */
 54	{ 6, 0x4a, 1, { 0, FREQ_100, FREQ_133, 0, 0, 0, 0, 0 } },
 55	/* VLV2 */
 56	{ 6, 0x37, 1, { FREQ_83, FREQ_100, FREQ_133, FREQ_166, 0, 0, 0, 0 } },
 57	/* ANN */
 58	{ 6, 0x5a, 1, { FREQ_83, FREQ_100, FREQ_133, FREQ_100, 0, 0, 0, 0 } },
 
 
 
 
 
 
 
 59};
 60
 61static int match_cpu(u8 family, u8 model)
 62{
 63	int i;
 
 
 
 
 
 
 
 64
 65	for (i = 0; i < ARRAY_SIZE(freq_desc_tables); i++) {
 66		if ((family == freq_desc_tables[i].x86_family) &&
 67			(model == freq_desc_tables[i].x86_model))
 68			return i;
 69	}
 
 
 
 
 
 
 
 70
 71	return -1;
 72}
 
 
 
 
 
 
 
 
 
 73
 74/* Map CPU reference clock freq ID(0-7) to CPU reference clock freq(KHz) */
 75#define id_to_freq(cpu_index, freq_id) \
 76	(freq_desc_tables[cpu_index].freqs[freq_id])
 
 
 
 
 
 
 
 77
 78/*
 79 * Do MSR calibration only for known/supported CPUs.
 80 *
 81 * Returns the calibration value or 0 if MSR calibration failed.
 
 82 */
 83unsigned long try_msr_calibrate_tsc(void)
 84{
 85	u32 lo, hi, ratio, freq_id, freq;
 
 
 
 86	unsigned long res;
 87	int cpu_index;
 88
 89	cpu_index = match_cpu(boot_cpu_data.x86, boot_cpu_data.x86_model);
 90	if (cpu_index < 0)
 91		return 0;
 92
 93	if (freq_desc_tables[cpu_index].msr_plat) {
 
 94		rdmsr(MSR_PLATFORM_INFO, lo, hi);
 95		ratio = (lo >> 8) & 0xff;
 96	} else {
 97		rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
 98		ratio = (hi >> 8) & 0x1f;
 99	}
100	pr_info("Maximum core-clock to bus-clock ratio: 0x%x\n", ratio);
101
102	if (!ratio)
103		goto fail;
104
105	/* Get FSB FREQ ID */
106	rdmsr(MSR_FSB_FREQ, lo, hi);
107	freq_id = lo & 0x7;
108	freq = id_to_freq(cpu_index, freq_id);
109	pr_info("Resolved frequency ID: %u, frequency: %u KHz\n",
110				freq_id, freq);
111	if (!freq)
112		goto fail;
113
114	/* TSC frequency = maximum resolved freq * maximum resolved bus ratio */
115	res = freq * ratio;
116	pr_info("TSC runs at %lu KHz\n", res);
 
 
 
 
 
 
 
 
 
 
 
 
117
118#ifdef CONFIG_X86_LOCAL_APIC
119	lapic_timer_frequency = (freq * 1000) / HZ;
120	pr_info("lapic_timer_frequency = %d\n", lapic_timer_frequency);
121#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122	return res;
123
124fail:
125	pr_warn("Fast TSC calibration using MSR failed\n");
126	return 0;
127}