Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * arch/sh/kernel/smp.c
  4 *
  5 * SMP support for the SuperH processors.
  6 *
  7 * Copyright (C) 2002 - 2010 Paul Mundt
  8 * Copyright (C) 2006 - 2007 Akio Idehara
 
 
 
 
  9 */
 10#include <linux/err.h>
 11#include <linux/cache.h>
 12#include <linux/cpumask.h>
 13#include <linux/delay.h>
 14#include <linux/init.h>
 15#include <linux/spinlock.h>
 16#include <linux/mm.h>
 17#include <linux/module.h>
 18#include <linux/cpu.h>
 19#include <linux/interrupt.h>
 20#include <linux/sched/mm.h>
 21#include <linux/sched/hotplug.h>
 22#include <linux/atomic.h>
 23#include <linux/clockchips.h>
 24#include <linux/profile.h>
 25
 26#include <asm/processor.h>
 27#include <asm/mmu_context.h>
 28#include <asm/smp.h>
 29#include <asm/cacheflush.h>
 30#include <asm/sections.h>
 31#include <asm/setup.h>
 32
 33int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
 34int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
 35
 36struct plat_smp_ops *mp_ops = NULL;
 37
 38/* State of each CPU */
 39DEFINE_PER_CPU(int, cpu_state) = { 0 };
 40
 41void register_smp_ops(struct plat_smp_ops *ops)
 42{
 43	if (mp_ops)
 44		printk(KERN_WARNING "Overriding previously set SMP ops\n");
 45
 46	mp_ops = ops;
 47}
 48
 49static inline void smp_store_cpu_info(unsigned int cpu)
 50{
 51	struct sh_cpuinfo *c = cpu_data + cpu;
 52
 53	memcpy(c, &boot_cpu_data, sizeof(struct sh_cpuinfo));
 54
 55	c->loops_per_jiffy = loops_per_jiffy;
 56}
 57
 58void __init smp_prepare_cpus(unsigned int max_cpus)
 59{
 60	unsigned int cpu = smp_processor_id();
 61
 62	init_new_context(current, &init_mm);
 63	current_thread_info()->cpu = cpu;
 64	mp_ops->prepare_cpus(max_cpus);
 65
 66#ifndef CONFIG_HOTPLUG_CPU
 67	init_cpu_present(cpu_possible_mask);
 68#endif
 69}
 70
 71void __init smp_prepare_boot_cpu(void)
 72{
 73	unsigned int cpu = smp_processor_id();
 74
 75	__cpu_number_map[0] = cpu;
 76	__cpu_logical_map[0] = cpu;
 77
 78	set_cpu_online(cpu, true);
 79	set_cpu_possible(cpu, true);
 80
 81	per_cpu(cpu_state, cpu) = CPU_ONLINE;
 82}
 83
 84#ifdef CONFIG_HOTPLUG_CPU
 85void native_cpu_die(unsigned int cpu)
 86{
 87	unsigned int i;
 88
 89	for (i = 0; i < 10; i++) {
 90		smp_rmb();
 91		if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
 92			if (system_state == SYSTEM_RUNNING)
 93				pr_info("CPU %u is now offline\n", cpu);
 94
 95			return;
 96		}
 97
 98		msleep(100);
 99	}
100
101	pr_err("CPU %u didn't die...\n", cpu);
102}
103
104int native_cpu_disable(unsigned int cpu)
105{
106	return cpu == 0 ? -EPERM : 0;
107}
108
109void play_dead_common(void)
110{
111	idle_task_exit();
112	irq_ctx_exit(raw_smp_processor_id());
113	mb();
114
115	__this_cpu_write(cpu_state, CPU_DEAD);
116	local_irq_disable();
117}
118
119void native_play_dead(void)
120{
121	play_dead_common();
122}
123
124int __cpu_disable(void)
125{
126	unsigned int cpu = smp_processor_id();
127	int ret;
128
129	ret = mp_ops->cpu_disable(cpu);
130	if (ret)
131		return ret;
132
133	/*
134	 * Take this CPU offline.  Once we clear this, we can't return,
135	 * and we must not schedule until we're ready to give up the cpu.
136	 */
137	set_cpu_online(cpu, false);
138
139	/*
140	 * OK - migrate IRQs away from this CPU
141	 */
142	migrate_irqs();
143
144	/*
145	 * Flush user cache and TLB mappings, and then remove this CPU
146	 * from the vm mask set of all processes.
147	 */
148	flush_cache_all();
149#ifdef CONFIG_MMU
150	local_flush_tlb_all();
151#endif
152
153	clear_tasks_mm_cpumask(cpu);
154
155	return 0;
156}
157#else /* ... !CONFIG_HOTPLUG_CPU */
158int native_cpu_disable(unsigned int cpu)
159{
160	return -ENOSYS;
161}
162
163void native_cpu_die(unsigned int cpu)
164{
165	/* We said "no" in __cpu_disable */
166	BUG();
167}
168
169void native_play_dead(void)
170{
171	BUG();
172}
173#endif
174
175static asmlinkage void start_secondary(void)
176{
177	unsigned int cpu = smp_processor_id();
178	struct mm_struct *mm = &init_mm;
179
180	enable_mmu();
181	mmgrab(mm);
182	mmget(mm);
183	current->active_mm = mm;
184#ifdef CONFIG_MMU
185	enter_lazy_tlb(mm, current);
186	local_flush_tlb_all();
187#endif
188
189	per_cpu_trap_init();
190
 
 
191	notify_cpu_starting(cpu);
192
193	local_irq_enable();
194
195	calibrate_delay();
196
197	smp_store_cpu_info(cpu);
198
199	set_cpu_online(cpu, true);
200	per_cpu(cpu_state, cpu) = CPU_ONLINE;
201
202	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
203}
204
205extern struct {
206	unsigned long sp;
207	unsigned long bss_start;
208	unsigned long bss_end;
209	void *start_kernel_fn;
210	void *cpu_init_fn;
211	void *thread_info;
212} stack_start;
213
214int __cpu_up(unsigned int cpu, struct task_struct *tsk)
215{
216	unsigned long timeout;
217
218	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
219
220	/* Fill in data in head.S for secondary cpus */
221	stack_start.sp = tsk->thread.sp;
222	stack_start.thread_info = tsk->stack;
223	stack_start.bss_start = 0; /* don't clear bss for secondary cpus */
224	stack_start.start_kernel_fn = start_secondary;
225
226	flush_icache_range((unsigned long)&stack_start,
227			   (unsigned long)&stack_start + sizeof(stack_start));
228	wmb();
229
230	mp_ops->start_cpu(cpu, (unsigned long)_stext);
231
232	timeout = jiffies + HZ;
233	while (time_before(jiffies, timeout)) {
234		if (cpu_online(cpu))
235			break;
236
237		udelay(10);
238		barrier();
239	}
240
241	if (cpu_online(cpu))
242		return 0;
243
244	return -ENOENT;
245}
246
247void __init smp_cpus_done(unsigned int max_cpus)
248{
249	unsigned long bogosum = 0;
250	int cpu;
251
252	for_each_online_cpu(cpu)
253		bogosum += cpu_data[cpu].loops_per_jiffy;
254
255	printk(KERN_INFO "SMP: Total of %d processors activated "
256	       "(%lu.%02lu BogoMIPS).\n", num_online_cpus(),
257	       bogosum / (500000/HZ),
258	       (bogosum / (5000/HZ)) % 100);
259}
260
261void arch_smp_send_reschedule(int cpu)
262{
263	mp_ops->send_ipi(cpu, SMP_MSG_RESCHEDULE);
264}
265
266void smp_send_stop(void)
267{
268	smp_call_function(stop_this_cpu, 0, 0);
269}
270
271void arch_send_call_function_ipi_mask(const struct cpumask *mask)
272{
273	int cpu;
274
275	for_each_cpu(cpu, mask)
276		mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION);
277}
278
279void arch_send_call_function_single_ipi(int cpu)
280{
281	mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION_SINGLE);
282}
283
284#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
285void tick_broadcast(const struct cpumask *mask)
286{
287	int cpu;
288
289	for_each_cpu(cpu, mask)
290		mp_ops->send_ipi(cpu, SMP_MSG_TIMER);
291}
292
293static void ipi_timer(void)
294{
295	irq_enter();
296	tick_receive_broadcast();
297	irq_exit();
298}
299#endif
300
301void smp_message_recv(unsigned int msg)
302{
303	switch (msg) {
304	case SMP_MSG_FUNCTION:
305		generic_smp_call_function_interrupt();
306		break;
307	case SMP_MSG_RESCHEDULE:
308		scheduler_ipi();
309		break;
310	case SMP_MSG_FUNCTION_SINGLE:
311		generic_smp_call_function_single_interrupt();
312		break;
313#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
314	case SMP_MSG_TIMER:
315		ipi_timer();
316		break;
317#endif
318	default:
319		printk(KERN_WARNING "SMP %d: %s(): unknown IPI %d\n",
320		       smp_processor_id(), __func__, msg);
321		break;
322	}
323}
324
325#ifdef CONFIG_PROFILING
326/* Not really SMP stuff ... */
327int setup_profiling_timer(unsigned int multiplier)
328{
329	return 0;
330}
331#endif
332
333#ifdef CONFIG_MMU
334
335static void flush_tlb_all_ipi(void *info)
336{
337	local_flush_tlb_all();
338}
339
340void flush_tlb_all(void)
341{
342	on_each_cpu(flush_tlb_all_ipi, 0, 1);
343}
344
345static void flush_tlb_mm_ipi(void *mm)
346{
347	local_flush_tlb_mm((struct mm_struct *)mm);
348}
349
350/*
351 * The following tlb flush calls are invoked when old translations are
352 * being torn down, or pte attributes are changing. For single threaded
353 * address spaces, a new context is obtained on the current cpu, and tlb
354 * context on other cpus are invalidated to force a new context allocation
355 * at switch_mm time, should the mm ever be used on other cpus. For
356 * multithreaded address spaces, intercpu interrupts have to be sent.
357 * Another case where intercpu interrupts are required is when the target
358 * mm might be active on another cpu (eg debuggers doing the flushes on
359 * behalf of debugees, kswapd stealing pages from another process etc).
360 * Kanoj 07/00.
361 */
362void flush_tlb_mm(struct mm_struct *mm)
363{
364	preempt_disable();
365
366	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
367		smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1);
368	} else {
369		int i;
370		for_each_online_cpu(i)
371			if (smp_processor_id() != i)
372				cpu_context(i, mm) = 0;
373	}
374	local_flush_tlb_mm(mm);
375
376	preempt_enable();
377}
378
379struct flush_tlb_data {
380	struct vm_area_struct *vma;
381	unsigned long addr1;
382	unsigned long addr2;
383};
384
385static void flush_tlb_range_ipi(void *info)
386{
387	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
388
389	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
390}
391
392void flush_tlb_range(struct vm_area_struct *vma,
393		     unsigned long start, unsigned long end)
394{
395	struct mm_struct *mm = vma->vm_mm;
396
397	preempt_disable();
398	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
399		struct flush_tlb_data fd;
400
401		fd.vma = vma;
402		fd.addr1 = start;
403		fd.addr2 = end;
404		smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1);
405	} else {
406		int i;
407		for_each_online_cpu(i)
408			if (smp_processor_id() != i)
409				cpu_context(i, mm) = 0;
410	}
411	local_flush_tlb_range(vma, start, end);
412	preempt_enable();
413}
414
415static void flush_tlb_kernel_range_ipi(void *info)
416{
417	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
418
419	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
420}
421
422void flush_tlb_kernel_range(unsigned long start, unsigned long end)
423{
424	struct flush_tlb_data fd;
425
426	fd.addr1 = start;
427	fd.addr2 = end;
428	on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1);
429}
430
431static void flush_tlb_page_ipi(void *info)
432{
433	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
434
435	local_flush_tlb_page(fd->vma, fd->addr1);
436}
437
438void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
439{
440	preempt_disable();
441	if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
442	    (current->mm != vma->vm_mm)) {
443		struct flush_tlb_data fd;
444
445		fd.vma = vma;
446		fd.addr1 = page;
447		smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1);
448	} else {
449		int i;
450		for_each_online_cpu(i)
451			if (smp_processor_id() != i)
452				cpu_context(i, vma->vm_mm) = 0;
453	}
454	local_flush_tlb_page(vma, page);
455	preempt_enable();
456}
457
458static void flush_tlb_one_ipi(void *info)
459{
460	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
461	local_flush_tlb_one(fd->addr1, fd->addr2);
462}
463
464void flush_tlb_one(unsigned long asid, unsigned long vaddr)
465{
466	struct flush_tlb_data fd;
467
468	fd.addr1 = asid;
469	fd.addr2 = vaddr;
470
471	smp_call_function(flush_tlb_one_ipi, (void *)&fd, 1);
472	local_flush_tlb_one(asid, vaddr);
473}
474
475#endif
v4.6
 
  1/*
  2 * arch/sh/kernel/smp.c
  3 *
  4 * SMP support for the SuperH processors.
  5 *
  6 * Copyright (C) 2002 - 2010 Paul Mundt
  7 * Copyright (C) 2006 - 2007 Akio Idehara
  8 *
  9 * This file is subject to the terms and conditions of the GNU General Public
 10 * License.  See the file "COPYING" in the main directory of this archive
 11 * for more details.
 12 */
 13#include <linux/err.h>
 14#include <linux/cache.h>
 15#include <linux/cpumask.h>
 16#include <linux/delay.h>
 17#include <linux/init.h>
 18#include <linux/spinlock.h>
 19#include <linux/mm.h>
 20#include <linux/module.h>
 21#include <linux/cpu.h>
 22#include <linux/interrupt.h>
 23#include <linux/sched.h>
 
 24#include <linux/atomic.h>
 25#include <linux/clockchips.h>
 
 
 26#include <asm/processor.h>
 27#include <asm/mmu_context.h>
 28#include <asm/smp.h>
 29#include <asm/cacheflush.h>
 30#include <asm/sections.h>
 31#include <asm/setup.h>
 32
 33int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
 34int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
 35
 36struct plat_smp_ops *mp_ops = NULL;
 37
 38/* State of each CPU */
 39DEFINE_PER_CPU(int, cpu_state) = { 0 };
 40
 41void register_smp_ops(struct plat_smp_ops *ops)
 42{
 43	if (mp_ops)
 44		printk(KERN_WARNING "Overriding previously set SMP ops\n");
 45
 46	mp_ops = ops;
 47}
 48
 49static inline void smp_store_cpu_info(unsigned int cpu)
 50{
 51	struct sh_cpuinfo *c = cpu_data + cpu;
 52
 53	memcpy(c, &boot_cpu_data, sizeof(struct sh_cpuinfo));
 54
 55	c->loops_per_jiffy = loops_per_jiffy;
 56}
 57
 58void __init smp_prepare_cpus(unsigned int max_cpus)
 59{
 60	unsigned int cpu = smp_processor_id();
 61
 62	init_new_context(current, &init_mm);
 63	current_thread_info()->cpu = cpu;
 64	mp_ops->prepare_cpus(max_cpus);
 65
 66#ifndef CONFIG_HOTPLUG_CPU
 67	init_cpu_present(cpu_possible_mask);
 68#endif
 69}
 70
 71void __init smp_prepare_boot_cpu(void)
 72{
 73	unsigned int cpu = smp_processor_id();
 74
 75	__cpu_number_map[0] = cpu;
 76	__cpu_logical_map[0] = cpu;
 77
 78	set_cpu_online(cpu, true);
 79	set_cpu_possible(cpu, true);
 80
 81	per_cpu(cpu_state, cpu) = CPU_ONLINE;
 82}
 83
 84#ifdef CONFIG_HOTPLUG_CPU
 85void native_cpu_die(unsigned int cpu)
 86{
 87	unsigned int i;
 88
 89	for (i = 0; i < 10; i++) {
 90		smp_rmb();
 91		if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
 92			if (system_state == SYSTEM_RUNNING)
 93				pr_info("CPU %u is now offline\n", cpu);
 94
 95			return;
 96		}
 97
 98		msleep(100);
 99	}
100
101	pr_err("CPU %u didn't die...\n", cpu);
102}
103
104int native_cpu_disable(unsigned int cpu)
105{
106	return cpu == 0 ? -EPERM : 0;
107}
108
109void play_dead_common(void)
110{
111	idle_task_exit();
112	irq_ctx_exit(raw_smp_processor_id());
113	mb();
114
115	__this_cpu_write(cpu_state, CPU_DEAD);
116	local_irq_disable();
117}
118
119void native_play_dead(void)
120{
121	play_dead_common();
122}
123
124int __cpu_disable(void)
125{
126	unsigned int cpu = smp_processor_id();
127	int ret;
128
129	ret = mp_ops->cpu_disable(cpu);
130	if (ret)
131		return ret;
132
133	/*
134	 * Take this CPU offline.  Once we clear this, we can't return,
135	 * and we must not schedule until we're ready to give up the cpu.
136	 */
137	set_cpu_online(cpu, false);
138
139	/*
140	 * OK - migrate IRQs away from this CPU
141	 */
142	migrate_irqs();
143
144	/*
145	 * Flush user cache and TLB mappings, and then remove this CPU
146	 * from the vm mask set of all processes.
147	 */
148	flush_cache_all();
149#ifdef CONFIG_MMU
150	local_flush_tlb_all();
151#endif
152
153	clear_tasks_mm_cpumask(cpu);
154
155	return 0;
156}
157#else /* ... !CONFIG_HOTPLUG_CPU */
158int native_cpu_disable(unsigned int cpu)
159{
160	return -ENOSYS;
161}
162
163void native_cpu_die(unsigned int cpu)
164{
165	/* We said "no" in __cpu_disable */
166	BUG();
167}
168
169void native_play_dead(void)
170{
171	BUG();
172}
173#endif
174
175asmlinkage void start_secondary(void)
176{
177	unsigned int cpu = smp_processor_id();
178	struct mm_struct *mm = &init_mm;
179
180	enable_mmu();
181	atomic_inc(&mm->mm_count);
182	atomic_inc(&mm->mm_users);
183	current->active_mm = mm;
184#ifdef CONFIG_MMU
185	enter_lazy_tlb(mm, current);
186	local_flush_tlb_all();
187#endif
188
189	per_cpu_trap_init();
190
191	preempt_disable();
192
193	notify_cpu_starting(cpu);
194
195	local_irq_enable();
196
197	calibrate_delay();
198
199	smp_store_cpu_info(cpu);
200
201	set_cpu_online(cpu, true);
202	per_cpu(cpu_state, cpu) = CPU_ONLINE;
203
204	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
205}
206
207extern struct {
208	unsigned long sp;
209	unsigned long bss_start;
210	unsigned long bss_end;
211	void *start_kernel_fn;
212	void *cpu_init_fn;
213	void *thread_info;
214} stack_start;
215
216int __cpu_up(unsigned int cpu, struct task_struct *tsk)
217{
218	unsigned long timeout;
219
220	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
221
222	/* Fill in data in head.S for secondary cpus */
223	stack_start.sp = tsk->thread.sp;
224	stack_start.thread_info = tsk->stack;
225	stack_start.bss_start = 0; /* don't clear bss for secondary cpus */
226	stack_start.start_kernel_fn = start_secondary;
227
228	flush_icache_range((unsigned long)&stack_start,
229			   (unsigned long)&stack_start + sizeof(stack_start));
230	wmb();
231
232	mp_ops->start_cpu(cpu, (unsigned long)_stext);
233
234	timeout = jiffies + HZ;
235	while (time_before(jiffies, timeout)) {
236		if (cpu_online(cpu))
237			break;
238
239		udelay(10);
240		barrier();
241	}
242
243	if (cpu_online(cpu))
244		return 0;
245
246	return -ENOENT;
247}
248
249void __init smp_cpus_done(unsigned int max_cpus)
250{
251	unsigned long bogosum = 0;
252	int cpu;
253
254	for_each_online_cpu(cpu)
255		bogosum += cpu_data[cpu].loops_per_jiffy;
256
257	printk(KERN_INFO "SMP: Total of %d processors activated "
258	       "(%lu.%02lu BogoMIPS).\n", num_online_cpus(),
259	       bogosum / (500000/HZ),
260	       (bogosum / (5000/HZ)) % 100);
261}
262
263void smp_send_reschedule(int cpu)
264{
265	mp_ops->send_ipi(cpu, SMP_MSG_RESCHEDULE);
266}
267
268void smp_send_stop(void)
269{
270	smp_call_function(stop_this_cpu, 0, 0);
271}
272
273void arch_send_call_function_ipi_mask(const struct cpumask *mask)
274{
275	int cpu;
276
277	for_each_cpu(cpu, mask)
278		mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION);
279}
280
281void arch_send_call_function_single_ipi(int cpu)
282{
283	mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION_SINGLE);
284}
285
286#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
287void tick_broadcast(const struct cpumask *mask)
288{
289	int cpu;
290
291	for_each_cpu(cpu, mask)
292		mp_ops->send_ipi(cpu, SMP_MSG_TIMER);
293}
294
295static void ipi_timer(void)
296{
297	irq_enter();
298	tick_receive_broadcast();
299	irq_exit();
300}
301#endif
302
303void smp_message_recv(unsigned int msg)
304{
305	switch (msg) {
306	case SMP_MSG_FUNCTION:
307		generic_smp_call_function_interrupt();
308		break;
309	case SMP_MSG_RESCHEDULE:
310		scheduler_ipi();
311		break;
312	case SMP_MSG_FUNCTION_SINGLE:
313		generic_smp_call_function_single_interrupt();
314		break;
315#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
316	case SMP_MSG_TIMER:
317		ipi_timer();
318		break;
319#endif
320	default:
321		printk(KERN_WARNING "SMP %d: %s(): unknown IPI %d\n",
322		       smp_processor_id(), __func__, msg);
323		break;
324	}
325}
326
 
327/* Not really SMP stuff ... */
328int setup_profiling_timer(unsigned int multiplier)
329{
330	return 0;
331}
 
332
333#ifdef CONFIG_MMU
334
335static void flush_tlb_all_ipi(void *info)
336{
337	local_flush_tlb_all();
338}
339
340void flush_tlb_all(void)
341{
342	on_each_cpu(flush_tlb_all_ipi, 0, 1);
343}
344
345static void flush_tlb_mm_ipi(void *mm)
346{
347	local_flush_tlb_mm((struct mm_struct *)mm);
348}
349
350/*
351 * The following tlb flush calls are invoked when old translations are
352 * being torn down, or pte attributes are changing. For single threaded
353 * address spaces, a new context is obtained on the current cpu, and tlb
354 * context on other cpus are invalidated to force a new context allocation
355 * at switch_mm time, should the mm ever be used on other cpus. For
356 * multithreaded address spaces, intercpu interrupts have to be sent.
357 * Another case where intercpu interrupts are required is when the target
358 * mm might be active on another cpu (eg debuggers doing the flushes on
359 * behalf of debugees, kswapd stealing pages from another process etc).
360 * Kanoj 07/00.
361 */
362void flush_tlb_mm(struct mm_struct *mm)
363{
364	preempt_disable();
365
366	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
367		smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1);
368	} else {
369		int i;
370		for_each_online_cpu(i)
371			if (smp_processor_id() != i)
372				cpu_context(i, mm) = 0;
373	}
374	local_flush_tlb_mm(mm);
375
376	preempt_enable();
377}
378
379struct flush_tlb_data {
380	struct vm_area_struct *vma;
381	unsigned long addr1;
382	unsigned long addr2;
383};
384
385static void flush_tlb_range_ipi(void *info)
386{
387	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
388
389	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
390}
391
392void flush_tlb_range(struct vm_area_struct *vma,
393		     unsigned long start, unsigned long end)
394{
395	struct mm_struct *mm = vma->vm_mm;
396
397	preempt_disable();
398	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
399		struct flush_tlb_data fd;
400
401		fd.vma = vma;
402		fd.addr1 = start;
403		fd.addr2 = end;
404		smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1);
405	} else {
406		int i;
407		for_each_online_cpu(i)
408			if (smp_processor_id() != i)
409				cpu_context(i, mm) = 0;
410	}
411	local_flush_tlb_range(vma, start, end);
412	preempt_enable();
413}
414
415static void flush_tlb_kernel_range_ipi(void *info)
416{
417	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
418
419	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
420}
421
422void flush_tlb_kernel_range(unsigned long start, unsigned long end)
423{
424	struct flush_tlb_data fd;
425
426	fd.addr1 = start;
427	fd.addr2 = end;
428	on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1);
429}
430
431static void flush_tlb_page_ipi(void *info)
432{
433	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
434
435	local_flush_tlb_page(fd->vma, fd->addr1);
436}
437
438void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
439{
440	preempt_disable();
441	if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
442	    (current->mm != vma->vm_mm)) {
443		struct flush_tlb_data fd;
444
445		fd.vma = vma;
446		fd.addr1 = page;
447		smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1);
448	} else {
449		int i;
450		for_each_online_cpu(i)
451			if (smp_processor_id() != i)
452				cpu_context(i, vma->vm_mm) = 0;
453	}
454	local_flush_tlb_page(vma, page);
455	preempt_enable();
456}
457
458static void flush_tlb_one_ipi(void *info)
459{
460	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
461	local_flush_tlb_one(fd->addr1, fd->addr2);
462}
463
464void flush_tlb_one(unsigned long asid, unsigned long vaddr)
465{
466	struct flush_tlb_data fd;
467
468	fd.addr1 = asid;
469	fd.addr2 = vaddr;
470
471	smp_call_function(flush_tlb_one_ipi, (void *)&fd, 1);
472	local_flush_tlb_one(asid, vaddr);
473}
474
475#endif