Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2014-2015 Broadcom Corporation
  4 * Copyright 2014 Linaro Limited
 
 
 
 
 
 
 
 
 
  5 */
  6
  7#include <linux/cpumask.h>
  8#include <linux/delay.h>
  9#include <linux/errno.h>
 10#include <linux/init.h>
 11#include <linux/io.h>
 12#include <linux/irqchip/irq-bcm2836.h>
 13#include <linux/jiffies.h>
 14#include <linux/of.h>
 15#include <linux/of_address.h>
 16#include <linux/sched.h>
 17#include <linux/sched/clock.h>
 18#include <linux/smp.h>
 19
 20#include <asm/cacheflush.h>
 21#include <asm/smp.h>
 22#include <asm/smp_plat.h>
 23#include <asm/smp_scu.h>
 24
 25#include "platsmp.h"
 26
 27/* Size of mapped Cortex A9 SCU address space */
 28#define CORTEX_A9_SCU_SIZE	0x58
 29
 30#define SECONDARY_TIMEOUT_NS	NSEC_PER_MSEC	/* 1 msec (in nanoseconds) */
 31#define BOOT_ADDR_CPUID_MASK	0x3
 32
 33/* Name of device node property defining secondary boot register location */
 34#define OF_SECONDARY_BOOT	"secondary-boot-reg"
 35#define MPIDR_CPUID_BITMASK	0x3
 36
 
 
 
 37/*
 38 * Enable the Cortex A9 Snoop Control Unit
 39 *
 40 * By the time this is called we already know there are multiple
 41 * cores present.  We assume we're running on a Cortex A9 processor,
 42 * so any trouble getting the base address register or getting the
 43 * SCU base is a problem.
 44 *
 45 * Return 0 if successful or an error code otherwise.
 46 */
 47static int __init scu_a9_enable(void)
 48{
 49	unsigned long config_base;
 50	void __iomem *scu_base;
 51
 52	if (!scu_a9_has_base()) {
 53		pr_err("no configuration base address register!\n");
 54		return -ENXIO;
 55	}
 56
 57	/* Config base address register value is zero for uniprocessor */
 58	config_base = scu_a9_get_base();
 59	if (!config_base) {
 60		pr_err("hardware reports only one core\n");
 61		return -ENOENT;
 62	}
 63
 64	scu_base = ioremap((phys_addr_t)config_base, CORTEX_A9_SCU_SIZE);
 65	if (!scu_base) {
 66		pr_err("failed to remap config base (%lu/%u) for SCU\n",
 67			config_base, CORTEX_A9_SCU_SIZE);
 68		return -ENOMEM;
 69	}
 70
 71	scu_enable(scu_base);
 72
 73	iounmap(scu_base);	/* That's the last we'll need of this */
 74
 75	return 0;
 76}
 77
 78static u32 secondary_boot_addr_for(unsigned int cpu)
 79{
 80	u32 secondary_boot_addr = 0;
 81	struct device_node *cpu_node = of_get_cpu_node(cpu, NULL);
 82
 83        if (!cpu_node) {
 84		pr_err("Failed to find device tree node for CPU%u\n", cpu);
 85		return 0;
 86	}
 87
 88	if (of_property_read_u32(cpu_node,
 89				 OF_SECONDARY_BOOT,
 90				 &secondary_boot_addr))
 91		pr_err("required secondary boot register not specified for CPU%u\n",
 92			cpu);
 93
 94	of_node_put(cpu_node);
 95
 96	return secondary_boot_addr;
 97}
 98
 99static int nsp_write_lut(unsigned int cpu)
100{
101	void __iomem *sku_rom_lut;
102	phys_addr_t secondary_startup_phy;
103	const u32 secondary_boot_addr = secondary_boot_addr_for(cpu);
104
105	if (!secondary_boot_addr)
 
106		return -EINVAL;
 
107
108	sku_rom_lut = ioremap((phys_addr_t)secondary_boot_addr,
109				      sizeof(phys_addr_t));
110	if (!sku_rom_lut) {
111		pr_warn("unable to ioremap SKU-ROM LUT register for cpu %u\n", cpu);
112		return -ENOMEM;
113	}
114
115	secondary_startup_phy = __pa_symbol(secondary_startup);
116	BUG_ON(secondary_startup_phy > (phys_addr_t)U32_MAX);
117
118	writel_relaxed(secondary_startup_phy, sku_rom_lut);
119
120	/* Ensure the write is visible to the secondary core */
121	smp_wmb();
122
123	iounmap(sku_rom_lut);
124
125	return 0;
126}
127
128static void __init bcm_smp_prepare_cpus(unsigned int max_cpus)
129{
130	const cpumask_t only_cpu_0 = { CPU_BITS_CPU0 };
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131
132	/* Enable the SCU on Cortex A9 based SoCs */
133	if (scu_a9_enable()) {
 
 
 
 
 
 
 
 
 
134		/* Update the CPU present map to reflect uniprocessor mode */
135		pr_warn("failed to enable A9 SCU - disabling SMP\n");
136		init_cpu_present(&only_cpu_0);
137	}
138}
139
140/*
141 * The ROM code has the secondary cores looping, waiting for an event.
142 * When an event occurs each core examines the bottom two bits of the
143 * secondary boot register.  When a core finds those bits contain its
144 * own core id, it performs initialization, including computing its boot
145 * address by clearing the boot register value's bottom two bits.  The
146 * core signals that it is beginning its execution by writing its boot
147 * address back to the secondary boot register, and finally jumps to
148 * that address.
149 *
150 * So to start a core executing we need to:
151 * - Encode the (hardware) CPU id with the bottom bits of the secondary
152 *   start address.
153 * - Write that value into the secondary boot register.
154 * - Generate an event to wake up the secondary CPU(s).
155 * - Wait for the secondary boot register to be re-written, which
156 *   indicates the secondary core has started.
157 */
158static int kona_boot_secondary(unsigned int cpu, struct task_struct *idle)
159{
160	void __iomem *boot_reg;
161	phys_addr_t boot_func;
162	u64 start_clock;
163	u32 cpu_id;
164	u32 boot_val;
165	bool timeout = false;
166	const u32 secondary_boot_addr = secondary_boot_addr_for(cpu);
167
168	cpu_id = cpu_logical_map(cpu);
169	if (cpu_id & ~BOOT_ADDR_CPUID_MASK) {
170		pr_err("bad cpu id (%u > %u)\n", cpu_id, BOOT_ADDR_CPUID_MASK);
171		return -EINVAL;
172	}
173
174	if (!secondary_boot_addr)
 
175		return -EINVAL;
 
176
177	boot_reg = ioremap((phys_addr_t)secondary_boot_addr,
178				   sizeof(phys_addr_t));
179	if (!boot_reg) {
180		pr_err("unable to map boot register for cpu %u\n", cpu_id);
181		return -ENOMEM;
182	}
183
184	/*
185	 * Secondary cores will start in secondary_startup(),
186	 * defined in "arch/arm/kernel/head.S"
187	 */
188	boot_func = __pa_symbol(secondary_startup);
189	BUG_ON(boot_func & BOOT_ADDR_CPUID_MASK);
190	BUG_ON(boot_func > (phys_addr_t)U32_MAX);
191
192	/* The core to start is encoded in the low bits */
193	boot_val = (u32)boot_func | cpu_id;
194	writel_relaxed(boot_val, boot_reg);
195
196	sev();
197
198	/* The low bits will be cleared once the core has started */
199	start_clock = local_clock();
200	while (!timeout && readl_relaxed(boot_reg) == boot_val)
201		timeout = local_clock() - start_clock > SECONDARY_TIMEOUT_NS;
202
203	iounmap(boot_reg);
204
205	if (!timeout)
206		return 0;
207
208	pr_err("timeout waiting for cpu %u to start\n", cpu_id);
209
210	return -ENXIO;
211}
212
213/* Cluster Dormant Control command to bring CPU into a running state */
214#define CDC_CMD			6
215#define CDC_CMD_OFFSET		0
216#define CDC_CMD_REG(cpu)	(CDC_CMD_OFFSET + 4*(cpu))
217
218/*
219 * BCM23550 has a Cluster Dormant Control block that keeps the core in
220 * idle state. A command needs to be sent to the block to bring the CPU
221 * into running state.
222 */
223static int bcm23550_boot_secondary(unsigned int cpu, struct task_struct *idle)
224{
225	void __iomem *cdc_base;
226	struct device_node *dn;
227	char *name;
228	int ret;
229
230	/* Make sure a CDC node exists before booting the
231	 * secondary core.
232	 */
233	name = "brcm,bcm23550-cdc";
234	dn = of_find_compatible_node(NULL, NULL, name);
235	if (!dn) {
236		pr_err("unable to find cdc node\n");
237		return -ENODEV;
238	}
239
240	cdc_base = of_iomap(dn, 0);
241	of_node_put(dn);
242
243	if (!cdc_base) {
244		pr_err("unable to remap cdc base register\n");
245		return -ENOMEM;
246	}
247
248	/* Boot the secondary core */
249	ret = kona_boot_secondary(cpu, idle);
250	if (ret)
251		goto out;
252
253	/* Bring this CPU to RUN state so that nIRQ nFIQ
254	 * signals are unblocked.
255	 */
256	writel_relaxed(CDC_CMD, cdc_base + CDC_CMD_REG(cpu));
257
258out:
259	iounmap(cdc_base);
260
261	return ret;
262}
263
264static int nsp_boot_secondary(unsigned int cpu, struct task_struct *idle)
265{
266	int ret;
267
268	/*
269	 * After wake up, secondary core branches to the startup
270	 * address programmed at SKU ROM LUT location.
271	 */
272	ret = nsp_write_lut(cpu);
273	if (ret) {
274		pr_err("unable to write startup addr to SKU ROM LUT\n");
275		goto out;
276	}
277
278	/* Send a CPU wakeup interrupt to the secondary core */
279	arch_send_wakeup_ipi_mask(cpumask_of(cpu));
280
281out:
282	return ret;
283}
284
285static int bcm2836_boot_secondary(unsigned int cpu, struct task_struct *idle)
286{
287	void __iomem *intc_base;
288	struct device_node *dn;
289	char *name;
290
291	name = "brcm,bcm2836-l1-intc";
292	dn = of_find_compatible_node(NULL, NULL, name);
293	if (!dn) {
294		pr_err("unable to find intc node\n");
295		return -ENODEV;
296	}
297
298	intc_base = of_iomap(dn, 0);
299	of_node_put(dn);
300
301	if (!intc_base) {
302		pr_err("unable to remap intc base register\n");
303		return -ENOMEM;
304	}
305
306	writel(virt_to_phys(secondary_startup),
307	       intc_base + LOCAL_MAILBOX3_SET0 + 16 * cpu);
308
309	dsb(sy);
310	sev();
311
312	iounmap(intc_base);
313
314	return 0;
315}
316
317static const struct smp_operations kona_smp_ops __initconst = {
318	.smp_prepare_cpus	= bcm_smp_prepare_cpus,
319	.smp_boot_secondary	= kona_boot_secondary,
320};
321CPU_METHOD_OF_DECLARE(bcm_smp_bcm281xx, "brcm,bcm11351-cpu-method",
322			&kona_smp_ops);
323
324static const struct smp_operations bcm23550_smp_ops __initconst = {
325	.smp_boot_secondary	= bcm23550_boot_secondary,
326};
327CPU_METHOD_OF_DECLARE(bcm_smp_bcm23550, "brcm,bcm23550",
328			&bcm23550_smp_ops);
329
330static const struct smp_operations nsp_smp_ops __initconst = {
331	.smp_prepare_cpus	= bcm_smp_prepare_cpus,
332	.smp_boot_secondary	= nsp_boot_secondary,
333};
334CPU_METHOD_OF_DECLARE(bcm_smp_nsp, "brcm,bcm-nsp-smp", &nsp_smp_ops);
335
336const struct smp_operations bcm2836_smp_ops __initconst = {
337	.smp_boot_secondary	= bcm2836_boot_secondary,
338};
339CPU_METHOD_OF_DECLARE(bcm_smp_bcm2836, "brcm,bcm2836-smp", &bcm2836_smp_ops);
v4.6
 
  1/*
  2 * Copyright (C) 2014-2015 Broadcom Corporation
  3 * Copyright 2014 Linaro Limited
  4 *
  5 * This program is free software; you can redistribute it and/or
  6 * modify it under the terms of the GNU General Public License as
  7 * published by the Free Software Foundation version 2.
  8 *
  9 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 10 * kind, whether express or implied; without even the implied warranty
 11 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 */
 14
 15#include <linux/cpumask.h>
 16#include <linux/delay.h>
 17#include <linux/errno.h>
 18#include <linux/init.h>
 19#include <linux/io.h>
 
 20#include <linux/jiffies.h>
 21#include <linux/of.h>
 
 22#include <linux/sched.h>
 
 23#include <linux/smp.h>
 24
 25#include <asm/cacheflush.h>
 26#include <asm/smp.h>
 27#include <asm/smp_plat.h>
 28#include <asm/smp_scu.h>
 29
 
 
 30/* Size of mapped Cortex A9 SCU address space */
 31#define CORTEX_A9_SCU_SIZE	0x58
 32
 33#define SECONDARY_TIMEOUT_NS	NSEC_PER_MSEC	/* 1 msec (in nanoseconds) */
 34#define BOOT_ADDR_CPUID_MASK	0x3
 35
 36/* Name of device node property defining secondary boot register location */
 37#define OF_SECONDARY_BOOT	"secondary-boot-reg"
 38#define MPIDR_CPUID_BITMASK	0x3
 39
 40/* I/O address of register used to coordinate secondary core startup */
 41static u32	secondary_boot_addr;
 42
 43/*
 44 * Enable the Cortex A9 Snoop Control Unit
 45 *
 46 * By the time this is called we already know there are multiple
 47 * cores present.  We assume we're running on a Cortex A9 processor,
 48 * so any trouble getting the base address register or getting the
 49 * SCU base is a problem.
 50 *
 51 * Return 0 if successful or an error code otherwise.
 52 */
 53static int __init scu_a9_enable(void)
 54{
 55	unsigned long config_base;
 56	void __iomem *scu_base;
 57
 58	if (!scu_a9_has_base()) {
 59		pr_err("no configuration base address register!\n");
 60		return -ENXIO;
 61	}
 62
 63	/* Config base address register value is zero for uniprocessor */
 64	config_base = scu_a9_get_base();
 65	if (!config_base) {
 66		pr_err("hardware reports only one core\n");
 67		return -ENOENT;
 68	}
 69
 70	scu_base = ioremap((phys_addr_t)config_base, CORTEX_A9_SCU_SIZE);
 71	if (!scu_base) {
 72		pr_err("failed to remap config base (%lu/%u) for SCU\n",
 73			config_base, CORTEX_A9_SCU_SIZE);
 74		return -ENOMEM;
 75	}
 76
 77	scu_enable(scu_base);
 78
 79	iounmap(scu_base);	/* That's the last we'll need of this */
 80
 81	return 0;
 82}
 83
 84static int nsp_write_lut(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 85{
 86	void __iomem *sku_rom_lut;
 87	phys_addr_t secondary_startup_phy;
 
 88
 89	if (!secondary_boot_addr) {
 90		pr_warn("required secondary boot register not specified\n");
 91		return -EINVAL;
 92	}
 93
 94	sku_rom_lut = ioremap_nocache((phys_addr_t)secondary_boot_addr,
 95						sizeof(secondary_boot_addr));
 96	if (!sku_rom_lut) {
 97		pr_warn("unable to ioremap SKU-ROM LUT register\n");
 98		return -ENOMEM;
 99	}
100
101	secondary_startup_phy = virt_to_phys(secondary_startup);
102	BUG_ON(secondary_startup_phy > (phys_addr_t)U32_MAX);
103
104	writel_relaxed(secondary_startup_phy, sku_rom_lut);
105
106	/* Ensure the write is visible to the secondary core */
107	smp_wmb();
108
109	iounmap(sku_rom_lut);
110
111	return 0;
112}
113
114static void __init bcm_smp_prepare_cpus(unsigned int max_cpus)
115{
116	static cpumask_t only_cpu_0 = { CPU_BITS_CPU0 };
117	struct device_node *cpus_node = NULL;
118	struct device_node *cpu_node = NULL;
119	int ret;
120
121	/*
122	 * This function is only called via smp_ops->smp_prepare_cpu().
123	 * That only happens if a "/cpus" device tree node exists
124	 * and has an "enable-method" property that selects the SMP
125	 * operations defined herein.
126	 */
127	cpus_node = of_find_node_by_path("/cpus");
128	if (!cpus_node)
129		return;
130
131	for_each_child_of_node(cpus_node, cpu_node) {
132		u32 cpuid;
133
134		if (of_node_cmp(cpu_node->type, "cpu"))
135			continue;
136
137		if (of_property_read_u32(cpu_node, "reg", &cpuid)) {
138			pr_debug("%s: missing reg property\n",
139				     cpu_node->full_name);
140			ret = -ENOENT;
141			goto out;
142		}
143
144		/*
145		 * "secondary-boot-reg" property should be defined only
146		 * for secondary cpu
147		 */
148		if ((cpuid & MPIDR_CPUID_BITMASK) == 1) {
149			/*
150			 * Our secondary enable method requires a
151			 * "secondary-boot-reg" property to specify a register
152			 * address used to request the ROM code boot a secondary
153			 * core. If we have any trouble getting this we fall
154			 * back to uniprocessor mode.
155			 */
156			if (of_property_read_u32(cpu_node,
157						OF_SECONDARY_BOOT,
158						&secondary_boot_addr)) {
159				pr_warn("%s: no" OF_SECONDARY_BOOT "property\n",
160					cpu_node->name);
161				ret = -ENOENT;
162				goto out;
163			}
164		}
165	}
166
167	/*
168	 * Enable the SCU on Cortex A9 based SoCs. If -ENOENT is
169	 * returned, the SoC reported a uniprocessor configuration.
170	 * We bail on any other error.
171	 */
172	ret = scu_a9_enable();
173out:
174	of_node_put(cpu_node);
175	of_node_put(cpus_node);
176
177	if (ret) {
178		/* Update the CPU present map to reflect uniprocessor mode */
179		pr_warn("disabling SMP\n");
180		init_cpu_present(&only_cpu_0);
181	}
182}
183
184/*
185 * The ROM code has the secondary cores looping, waiting for an event.
186 * When an event occurs each core examines the bottom two bits of the
187 * secondary boot register.  When a core finds those bits contain its
188 * own core id, it performs initialization, including computing its boot
189 * address by clearing the boot register value's bottom two bits.  The
190 * core signals that it is beginning its execution by writing its boot
191 * address back to the secondary boot register, and finally jumps to
192 * that address.
193 *
194 * So to start a core executing we need to:
195 * - Encode the (hardware) CPU id with the bottom bits of the secondary
196 *   start address.
197 * - Write that value into the secondary boot register.
198 * - Generate an event to wake up the secondary CPU(s).
199 * - Wait for the secondary boot register to be re-written, which
200 *   indicates the secondary core has started.
201 */
202static int kona_boot_secondary(unsigned int cpu, struct task_struct *idle)
203{
204	void __iomem *boot_reg;
205	phys_addr_t boot_func;
206	u64 start_clock;
207	u32 cpu_id;
208	u32 boot_val;
209	bool timeout = false;
 
210
211	cpu_id = cpu_logical_map(cpu);
212	if (cpu_id & ~BOOT_ADDR_CPUID_MASK) {
213		pr_err("bad cpu id (%u > %u)\n", cpu_id, BOOT_ADDR_CPUID_MASK);
214		return -EINVAL;
215	}
216
217	if (!secondary_boot_addr) {
218		pr_err("required secondary boot register not specified\n");
219		return -EINVAL;
220	}
221
222	boot_reg = ioremap_nocache(
223			(phys_addr_t)secondary_boot_addr, sizeof(u32));
224	if (!boot_reg) {
225		pr_err("unable to map boot register for cpu %u\n", cpu_id);
226		return -ENOMEM;
227	}
228
229	/*
230	 * Secondary cores will start in secondary_startup(),
231	 * defined in "arch/arm/kernel/head.S"
232	 */
233	boot_func = virt_to_phys(secondary_startup);
234	BUG_ON(boot_func & BOOT_ADDR_CPUID_MASK);
235	BUG_ON(boot_func > (phys_addr_t)U32_MAX);
236
237	/* The core to start is encoded in the low bits */
238	boot_val = (u32)boot_func | cpu_id;
239	writel_relaxed(boot_val, boot_reg);
240
241	sev();
242
243	/* The low bits will be cleared once the core has started */
244	start_clock = local_clock();
245	while (!timeout && readl_relaxed(boot_reg) == boot_val)
246		timeout = local_clock() - start_clock > SECONDARY_TIMEOUT_NS;
247
248	iounmap(boot_reg);
249
250	if (!timeout)
251		return 0;
252
253	pr_err("timeout waiting for cpu %u to start\n", cpu_id);
254
255	return -ENXIO;
256}
257
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
258static int nsp_boot_secondary(unsigned int cpu, struct task_struct *idle)
259{
260	int ret;
261
262	/*
263	 * After wake up, secondary core branches to the startup
264	 * address programmed at SKU ROM LUT location.
265	 */
266	ret = nsp_write_lut();
267	if (ret) {
268		pr_err("unable to write startup addr to SKU ROM LUT\n");
269		goto out;
270	}
271
272	/* Send a CPU wakeup interrupt to the secondary core */
273	arch_send_wakeup_ipi_mask(cpumask_of(cpu));
274
275out:
276	return ret;
277}
278
279static const struct smp_operations bcm_smp_ops __initconst = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
280	.smp_prepare_cpus	= bcm_smp_prepare_cpus,
281	.smp_boot_secondary	= kona_boot_secondary,
282};
283CPU_METHOD_OF_DECLARE(bcm_smp_bcm281xx, "brcm,bcm11351-cpu-method",
284			&bcm_smp_ops);
 
 
 
 
 
 
285
286static const struct smp_operations nsp_smp_ops __initconst = {
287	.smp_prepare_cpus	= bcm_smp_prepare_cpus,
288	.smp_boot_secondary	= nsp_boot_secondary,
289};
290CPU_METHOD_OF_DECLARE(bcm_smp_nsp, "brcm,bcm-nsp-smp", &nsp_smp_ops);