Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * net/sched/sch_tbf.c	Token Bucket Filter queue.
  4 *
 
 
 
 
 
  5 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  6 *		Dmitry Torokhov <dtor@mail.ru> - allow attaching inner qdiscs -
  7 *						 original idea by Martin Devera
 
  8 */
  9
 10#include <linux/module.h>
 11#include <linux/types.h>
 12#include <linux/kernel.h>
 13#include <linux/string.h>
 14#include <linux/errno.h>
 15#include <linux/skbuff.h>
 16#include <net/gso.h>
 17#include <net/netlink.h>
 18#include <net/sch_generic.h>
 19#include <net/pkt_cls.h>
 20#include <net/pkt_sched.h>
 21
 22
 23/*	Simple Token Bucket Filter.
 24	=======================================
 25
 26	SOURCE.
 27	-------
 28
 29	None.
 30
 31	Description.
 32	------------
 33
 34	A data flow obeys TBF with rate R and depth B, if for any
 35	time interval t_i...t_f the number of transmitted bits
 36	does not exceed B + R*(t_f-t_i).
 37
 38	Packetized version of this definition:
 39	The sequence of packets of sizes s_i served at moments t_i
 40	obeys TBF, if for any i<=k:
 41
 42	s_i+....+s_k <= B + R*(t_k - t_i)
 43
 44	Algorithm.
 45	----------
 46
 47	Let N(t_i) be B/R initially and N(t) grow continuously with time as:
 48
 49	N(t+delta) = min{B/R, N(t) + delta}
 50
 51	If the first packet in queue has length S, it may be
 52	transmitted only at the time t_* when S/R <= N(t_*),
 53	and in this case N(t) jumps:
 54
 55	N(t_* + 0) = N(t_* - 0) - S/R.
 56
 57
 58
 59	Actually, QoS requires two TBF to be applied to a data stream.
 60	One of them controls steady state burst size, another
 61	one with rate P (peak rate) and depth M (equal to link MTU)
 62	limits bursts at a smaller time scale.
 63
 64	It is easy to see that P>R, and B>M. If P is infinity, this double
 65	TBF is equivalent to a single one.
 66
 67	When TBF works in reshaping mode, latency is estimated as:
 68
 69	lat = max ((L-B)/R, (L-M)/P)
 70
 71
 72	NOTES.
 73	------
 74
 75	If TBF throttles, it starts a watchdog timer, which will wake it up
 76	when it is ready to transmit.
 77	Note that the minimal timer resolution is 1/HZ.
 78	If no new packets arrive during this period,
 79	or if the device is not awaken by EOI for some previous packet,
 80	TBF can stop its activity for 1/HZ.
 81
 82
 83	This means, that with depth B, the maximal rate is
 84
 85	R_crit = B*HZ
 86
 87	F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes.
 88
 89	Note that the peak rate TBF is much more tough: with MTU 1500
 90	P_crit = 150Kbytes/sec. So, if you need greater peak
 91	rates, use alpha with HZ=1000 :-)
 92
 93	With classful TBF, limit is just kept for backwards compatibility.
 94	It is passed to the default bfifo qdisc - if the inner qdisc is
 95	changed the limit is not effective anymore.
 96*/
 97
 98struct tbf_sched_data {
 99/* Parameters */
100	u32		limit;		/* Maximal length of backlog: bytes */
101	u32		max_size;
102	s64		buffer;		/* Token bucket depth/rate: MUST BE >= MTU/B */
103	s64		mtu;
104	struct psched_ratecfg rate;
105	struct psched_ratecfg peak;
106
107/* Variables */
108	s64	tokens;			/* Current number of B tokens */
109	s64	ptokens;		/* Current number of P tokens */
110	s64	t_c;			/* Time check-point */
111	struct Qdisc	*qdisc;		/* Inner qdisc, default - bfifo queue */
112	struct qdisc_watchdog watchdog;	/* Watchdog timer */
113};
114
115
116/* Time to Length, convert time in ns to length in bytes
117 * to determinate how many bytes can be sent in given time.
118 */
119static u64 psched_ns_t2l(const struct psched_ratecfg *r,
120			 u64 time_in_ns)
121{
122	/* The formula is :
123	 * len = (time_in_ns * r->rate_bytes_ps) / NSEC_PER_SEC
124	 */
125	u64 len = time_in_ns * r->rate_bytes_ps;
126
127	do_div(len, NSEC_PER_SEC);
128
129	if (unlikely(r->linklayer == TC_LINKLAYER_ATM)) {
130		do_div(len, 53);
131		len = len * 48;
132	}
133
134	if (len > r->overhead)
135		len -= r->overhead;
136	else
137		len = 0;
138
139	return len;
140}
141
142static void tbf_offload_change(struct Qdisc *sch)
143{
144	struct tbf_sched_data *q = qdisc_priv(sch);
145	struct net_device *dev = qdisc_dev(sch);
146	struct tc_tbf_qopt_offload qopt;
147
148	if (!tc_can_offload(dev) || !dev->netdev_ops->ndo_setup_tc)
149		return;
150
151	qopt.command = TC_TBF_REPLACE;
152	qopt.handle = sch->handle;
153	qopt.parent = sch->parent;
154	qopt.replace_params.rate = q->rate;
155	qopt.replace_params.max_size = q->max_size;
156	qopt.replace_params.qstats = &sch->qstats;
157
158	dev->netdev_ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TBF, &qopt);
159}
160
161static void tbf_offload_destroy(struct Qdisc *sch)
162{
163	struct net_device *dev = qdisc_dev(sch);
164	struct tc_tbf_qopt_offload qopt;
165
166	if (!tc_can_offload(dev) || !dev->netdev_ops->ndo_setup_tc)
167		return;
168
169	qopt.command = TC_TBF_DESTROY;
170	qopt.handle = sch->handle;
171	qopt.parent = sch->parent;
172	dev->netdev_ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TBF, &qopt);
173}
174
175static int tbf_offload_dump(struct Qdisc *sch)
176{
177	struct tc_tbf_qopt_offload qopt;
178
179	qopt.command = TC_TBF_STATS;
180	qopt.handle = sch->handle;
181	qopt.parent = sch->parent;
182	qopt.stats.bstats = &sch->bstats;
183	qopt.stats.qstats = &sch->qstats;
184
185	return qdisc_offload_dump_helper(sch, TC_SETUP_QDISC_TBF, &qopt);
186}
187
188static void tbf_offload_graft(struct Qdisc *sch, struct Qdisc *new,
189			      struct Qdisc *old, struct netlink_ext_ack *extack)
190{
191	struct tc_tbf_qopt_offload graft_offload = {
192		.handle		= sch->handle,
193		.parent		= sch->parent,
194		.child_handle	= new->handle,
195		.command	= TC_TBF_GRAFT,
196	};
197
198	qdisc_offload_graft_helper(qdisc_dev(sch), sch, new, old,
199				   TC_SETUP_QDISC_TBF, &graft_offload, extack);
200}
201
202/* GSO packet is too big, segment it so that tbf can transmit
203 * each segment in time
204 */
205static int tbf_segment(struct sk_buff *skb, struct Qdisc *sch,
206		       struct sk_buff **to_free)
207{
208	struct tbf_sched_data *q = qdisc_priv(sch);
209	struct sk_buff *segs, *nskb;
210	netdev_features_t features = netif_skb_features(skb);
211	unsigned int len = 0, prev_len = qdisc_pkt_len(skb), seg_len;
212	int ret, nb;
213
214	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
215
216	if (IS_ERR_OR_NULL(segs))
217		return qdisc_drop(skb, sch, to_free);
218
219	nb = 0;
220	skb_list_walk_safe(segs, segs, nskb) {
221		skb_mark_not_on_list(segs);
222		seg_len = segs->len;
223		qdisc_skb_cb(segs)->pkt_len = seg_len;
 
224		ret = qdisc_enqueue(segs, q->qdisc, to_free);
225		if (ret != NET_XMIT_SUCCESS) {
226			if (net_xmit_drop_count(ret))
227				qdisc_qstats_drop(sch);
228		} else {
229			nb++;
230			len += seg_len;
231		}
 
232	}
233	sch->q.qlen += nb;
234	sch->qstats.backlog += len;
235	if (nb > 0) {
236		qdisc_tree_reduce_backlog(sch, 1 - nb, prev_len - len);
237		consume_skb(skb);
238		return NET_XMIT_SUCCESS;
239	}
240
241	kfree_skb(skb);
242	return NET_XMIT_DROP;
243}
244
245static int tbf_enqueue(struct sk_buff *skb, struct Qdisc *sch,
246		       struct sk_buff **to_free)
247{
248	struct tbf_sched_data *q = qdisc_priv(sch);
249	unsigned int len = qdisc_pkt_len(skb);
250	int ret;
251
252	if (qdisc_pkt_len(skb) > q->max_size) {
253		if (skb_is_gso(skb) &&
254		    skb_gso_validate_mac_len(skb, q->max_size))
255			return tbf_segment(skb, sch, to_free);
256		return qdisc_drop(skb, sch, to_free);
257	}
258	ret = qdisc_enqueue(skb, q->qdisc, to_free);
259	if (ret != NET_XMIT_SUCCESS) {
260		if (net_xmit_drop_count(ret))
261			qdisc_qstats_drop(sch);
262		return ret;
263	}
264
265	sch->qstats.backlog += len;
266	sch->q.qlen++;
267	return NET_XMIT_SUCCESS;
268}
269
270static bool tbf_peak_present(const struct tbf_sched_data *q)
271{
272	return q->peak.rate_bytes_ps;
273}
274
275static struct sk_buff *tbf_dequeue(struct Qdisc *sch)
276{
277	struct tbf_sched_data *q = qdisc_priv(sch);
278	struct sk_buff *skb;
279
280	skb = q->qdisc->ops->peek(q->qdisc);
281
282	if (skb) {
283		s64 now;
284		s64 toks;
285		s64 ptoks = 0;
286		unsigned int len = qdisc_pkt_len(skb);
287
288		now = ktime_get_ns();
289		toks = min_t(s64, now - q->t_c, q->buffer);
290
291		if (tbf_peak_present(q)) {
292			ptoks = toks + q->ptokens;
293			if (ptoks > q->mtu)
294				ptoks = q->mtu;
295			ptoks -= (s64) psched_l2t_ns(&q->peak, len);
296		}
297		toks += q->tokens;
298		if (toks > q->buffer)
299			toks = q->buffer;
300		toks -= (s64) psched_l2t_ns(&q->rate, len);
301
302		if ((toks|ptoks) >= 0) {
303			skb = qdisc_dequeue_peeked(q->qdisc);
304			if (unlikely(!skb))
305				return NULL;
306
307			q->t_c = now;
308			q->tokens = toks;
309			q->ptokens = ptoks;
310			qdisc_qstats_backlog_dec(sch, skb);
311			sch->q.qlen--;
312			qdisc_bstats_update(sch, skb);
313			return skb;
314		}
315
316		qdisc_watchdog_schedule_ns(&q->watchdog,
317					   now + max_t(long, -toks, -ptoks));
318
319		/* Maybe we have a shorter packet in the queue,
320		   which can be sent now. It sounds cool,
321		   but, however, this is wrong in principle.
322		   We MUST NOT reorder packets under these circumstances.
323
324		   Really, if we split the flow into independent
325		   subflows, it would be a very good solution.
326		   This is the main idea of all FQ algorithms
327		   (cf. CSZ, HPFQ, HFSC)
328		 */
329
330		qdisc_qstats_overlimit(sch);
331	}
332	return NULL;
333}
334
335static void tbf_reset(struct Qdisc *sch)
336{
337	struct tbf_sched_data *q = qdisc_priv(sch);
338
339	qdisc_reset(q->qdisc);
 
 
340	q->t_c = ktime_get_ns();
341	q->tokens = q->buffer;
342	q->ptokens = q->mtu;
343	qdisc_watchdog_cancel(&q->watchdog);
344}
345
346static const struct nla_policy tbf_policy[TCA_TBF_MAX + 1] = {
347	[TCA_TBF_PARMS]	= { .len = sizeof(struct tc_tbf_qopt) },
348	[TCA_TBF_RTAB]	= { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
349	[TCA_TBF_PTAB]	= { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
350	[TCA_TBF_RATE64]	= { .type = NLA_U64 },
351	[TCA_TBF_PRATE64]	= { .type = NLA_U64 },
352	[TCA_TBF_BURST] = { .type = NLA_U32 },
353	[TCA_TBF_PBURST] = { .type = NLA_U32 },
354};
355
356static int tbf_change(struct Qdisc *sch, struct nlattr *opt,
357		      struct netlink_ext_ack *extack)
358{
359	int err;
360	struct tbf_sched_data *q = qdisc_priv(sch);
361	struct nlattr *tb[TCA_TBF_MAX + 1];
362	struct tc_tbf_qopt *qopt;
363	struct Qdisc *child = NULL;
364	struct Qdisc *old = NULL;
365	struct psched_ratecfg rate;
366	struct psched_ratecfg peak;
367	u64 max_size;
368	s64 buffer, mtu;
369	u64 rate64 = 0, prate64 = 0;
370
371	err = nla_parse_nested_deprecated(tb, TCA_TBF_MAX, opt, tbf_policy,
372					  NULL);
373	if (err < 0)
374		return err;
375
376	err = -EINVAL;
377	if (tb[TCA_TBF_PARMS] == NULL)
378		goto done;
379
380	qopt = nla_data(tb[TCA_TBF_PARMS]);
381	if (qopt->rate.linklayer == TC_LINKLAYER_UNAWARE)
382		qdisc_put_rtab(qdisc_get_rtab(&qopt->rate,
383					      tb[TCA_TBF_RTAB],
384					      NULL));
385
386	if (qopt->peakrate.linklayer == TC_LINKLAYER_UNAWARE)
387			qdisc_put_rtab(qdisc_get_rtab(&qopt->peakrate,
388						      tb[TCA_TBF_PTAB],
389						      NULL));
390
391	buffer = min_t(u64, PSCHED_TICKS2NS(qopt->buffer), ~0U);
392	mtu = min_t(u64, PSCHED_TICKS2NS(qopt->mtu), ~0U);
393
394	if (tb[TCA_TBF_RATE64])
395		rate64 = nla_get_u64(tb[TCA_TBF_RATE64]);
396	psched_ratecfg_precompute(&rate, &qopt->rate, rate64);
397
398	if (tb[TCA_TBF_BURST]) {
399		max_size = nla_get_u32(tb[TCA_TBF_BURST]);
400		buffer = psched_l2t_ns(&rate, max_size);
401	} else {
402		max_size = min_t(u64, psched_ns_t2l(&rate, buffer), ~0U);
403	}
404
405	if (qopt->peakrate.rate) {
406		if (tb[TCA_TBF_PRATE64])
407			prate64 = nla_get_u64(tb[TCA_TBF_PRATE64]);
408		psched_ratecfg_precompute(&peak, &qopt->peakrate, prate64);
409		if (peak.rate_bytes_ps <= rate.rate_bytes_ps) {
410			pr_warn_ratelimited("sch_tbf: peakrate %llu is lower than or equals to rate %llu !\n",
411					peak.rate_bytes_ps, rate.rate_bytes_ps);
412			err = -EINVAL;
413			goto done;
414		}
415
416		if (tb[TCA_TBF_PBURST]) {
417			u32 pburst = nla_get_u32(tb[TCA_TBF_PBURST]);
418			max_size = min_t(u32, max_size, pburst);
419			mtu = psched_l2t_ns(&peak, pburst);
420		} else {
421			max_size = min_t(u64, max_size, psched_ns_t2l(&peak, mtu));
422		}
423	} else {
424		memset(&peak, 0, sizeof(peak));
425	}
426
427	if (max_size < psched_mtu(qdisc_dev(sch)))
428		pr_warn_ratelimited("sch_tbf: burst %llu is lower than device %s mtu (%u) !\n",
429				    max_size, qdisc_dev(sch)->name,
430				    psched_mtu(qdisc_dev(sch)));
431
432	if (!max_size) {
433		err = -EINVAL;
434		goto done;
435	}
436
437	if (q->qdisc != &noop_qdisc) {
438		err = fifo_set_limit(q->qdisc, qopt->limit);
439		if (err)
440			goto done;
441	} else if (qopt->limit > 0) {
442		child = fifo_create_dflt(sch, &bfifo_qdisc_ops, qopt->limit,
443					 extack);
444		if (IS_ERR(child)) {
445			err = PTR_ERR(child);
446			goto done;
447		}
448
449		/* child is fifo, no need to check for noop_qdisc */
450		qdisc_hash_add(child, true);
451	}
452
453	sch_tree_lock(sch);
454	if (child) {
455		qdisc_tree_flush_backlog(q->qdisc);
456		old = q->qdisc;
 
457		q->qdisc = child;
458	}
459	q->limit = qopt->limit;
460	if (tb[TCA_TBF_PBURST])
461		q->mtu = mtu;
462	else
463		q->mtu = PSCHED_TICKS2NS(qopt->mtu);
464	q->max_size = max_size;
465	if (tb[TCA_TBF_BURST])
466		q->buffer = buffer;
467	else
468		q->buffer = PSCHED_TICKS2NS(qopt->buffer);
469	q->tokens = q->buffer;
470	q->ptokens = q->mtu;
471
472	memcpy(&q->rate, &rate, sizeof(struct psched_ratecfg));
473	memcpy(&q->peak, &peak, sizeof(struct psched_ratecfg));
474
475	sch_tree_unlock(sch);
476	qdisc_put(old);
477	err = 0;
478
479	tbf_offload_change(sch);
480done:
481	return err;
482}
483
484static int tbf_init(struct Qdisc *sch, struct nlattr *opt,
485		    struct netlink_ext_ack *extack)
486{
487	struct tbf_sched_data *q = qdisc_priv(sch);
488
489	qdisc_watchdog_init(&q->watchdog, sch);
490	q->qdisc = &noop_qdisc;
491
492	if (!opt)
493		return -EINVAL;
494
495	q->t_c = ktime_get_ns();
496
497	return tbf_change(sch, opt, extack);
498}
499
500static void tbf_destroy(struct Qdisc *sch)
501{
502	struct tbf_sched_data *q = qdisc_priv(sch);
503
504	qdisc_watchdog_cancel(&q->watchdog);
505	tbf_offload_destroy(sch);
506	qdisc_put(q->qdisc);
507}
508
509static int tbf_dump(struct Qdisc *sch, struct sk_buff *skb)
510{
511	struct tbf_sched_data *q = qdisc_priv(sch);
512	struct nlattr *nest;
513	struct tc_tbf_qopt opt;
514	int err;
515
516	err = tbf_offload_dump(sch);
517	if (err)
518		return err;
519
520	nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
521	if (nest == NULL)
522		goto nla_put_failure;
523
524	opt.limit = q->limit;
525	psched_ratecfg_getrate(&opt.rate, &q->rate);
526	if (tbf_peak_present(q))
527		psched_ratecfg_getrate(&opt.peakrate, &q->peak);
528	else
529		memset(&opt.peakrate, 0, sizeof(opt.peakrate));
530	opt.mtu = PSCHED_NS2TICKS(q->mtu);
531	opt.buffer = PSCHED_NS2TICKS(q->buffer);
532	if (nla_put(skb, TCA_TBF_PARMS, sizeof(opt), &opt))
533		goto nla_put_failure;
534	if (q->rate.rate_bytes_ps >= (1ULL << 32) &&
535	    nla_put_u64_64bit(skb, TCA_TBF_RATE64, q->rate.rate_bytes_ps,
536			      TCA_TBF_PAD))
537		goto nla_put_failure;
538	if (tbf_peak_present(q) &&
539	    q->peak.rate_bytes_ps >= (1ULL << 32) &&
540	    nla_put_u64_64bit(skb, TCA_TBF_PRATE64, q->peak.rate_bytes_ps,
541			      TCA_TBF_PAD))
542		goto nla_put_failure;
543
544	return nla_nest_end(skb, nest);
545
546nla_put_failure:
547	nla_nest_cancel(skb, nest);
548	return -1;
549}
550
551static int tbf_dump_class(struct Qdisc *sch, unsigned long cl,
552			  struct sk_buff *skb, struct tcmsg *tcm)
553{
554	struct tbf_sched_data *q = qdisc_priv(sch);
555
556	tcm->tcm_handle |= TC_H_MIN(1);
557	tcm->tcm_info = q->qdisc->handle;
558
559	return 0;
560}
561
562static int tbf_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
563		     struct Qdisc **old, struct netlink_ext_ack *extack)
564{
565	struct tbf_sched_data *q = qdisc_priv(sch);
566
567	if (new == NULL)
568		new = &noop_qdisc;
569
570	*old = qdisc_replace(sch, new, &q->qdisc);
571
572	tbf_offload_graft(sch, new, *old, extack);
573	return 0;
574}
575
576static struct Qdisc *tbf_leaf(struct Qdisc *sch, unsigned long arg)
577{
578	struct tbf_sched_data *q = qdisc_priv(sch);
579	return q->qdisc;
580}
581
582static unsigned long tbf_find(struct Qdisc *sch, u32 classid)
583{
584	return 1;
585}
586
587static void tbf_walk(struct Qdisc *sch, struct qdisc_walker *walker)
588{
589	if (!walker->stop) {
590		tc_qdisc_stats_dump(sch, 1, walker);
 
 
 
 
 
591	}
592}
593
594static const struct Qdisc_class_ops tbf_class_ops = {
595	.graft		=	tbf_graft,
596	.leaf		=	tbf_leaf,
597	.find		=	tbf_find,
598	.walk		=	tbf_walk,
599	.dump		=	tbf_dump_class,
600};
601
602static struct Qdisc_ops tbf_qdisc_ops __read_mostly = {
603	.next		=	NULL,
604	.cl_ops		=	&tbf_class_ops,
605	.id		=	"tbf",
606	.priv_size	=	sizeof(struct tbf_sched_data),
607	.enqueue	=	tbf_enqueue,
608	.dequeue	=	tbf_dequeue,
609	.peek		=	qdisc_peek_dequeued,
610	.init		=	tbf_init,
611	.reset		=	tbf_reset,
612	.destroy	=	tbf_destroy,
613	.change		=	tbf_change,
614	.dump		=	tbf_dump,
615	.owner		=	THIS_MODULE,
616};
617MODULE_ALIAS_NET_SCH("tbf");
618
619static int __init tbf_module_init(void)
620{
621	return register_qdisc(&tbf_qdisc_ops);
622}
623
624static void __exit tbf_module_exit(void)
625{
626	unregister_qdisc(&tbf_qdisc_ops);
627}
628module_init(tbf_module_init)
629module_exit(tbf_module_exit)
630MODULE_LICENSE("GPL");
631MODULE_DESCRIPTION("Token Bucket Filter qdisc");
v4.17
 
  1/*
  2 * net/sched/sch_tbf.c	Token Bucket Filter queue.
  3 *
  4 *		This program is free software; you can redistribute it and/or
  5 *		modify it under the terms of the GNU General Public License
  6 *		as published by the Free Software Foundation; either version
  7 *		2 of the License, or (at your option) any later version.
  8 *
  9 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
 10 *		Dmitry Torokhov <dtor@mail.ru> - allow attaching inner qdiscs -
 11 *						 original idea by Martin Devera
 12 *
 13 */
 14
 15#include <linux/module.h>
 16#include <linux/types.h>
 17#include <linux/kernel.h>
 18#include <linux/string.h>
 19#include <linux/errno.h>
 20#include <linux/skbuff.h>
 
 21#include <net/netlink.h>
 22#include <net/sch_generic.h>
 
 23#include <net/pkt_sched.h>
 24
 25
 26/*	Simple Token Bucket Filter.
 27	=======================================
 28
 29	SOURCE.
 30	-------
 31
 32	None.
 33
 34	Description.
 35	------------
 36
 37	A data flow obeys TBF with rate R and depth B, if for any
 38	time interval t_i...t_f the number of transmitted bits
 39	does not exceed B + R*(t_f-t_i).
 40
 41	Packetized version of this definition:
 42	The sequence of packets of sizes s_i served at moments t_i
 43	obeys TBF, if for any i<=k:
 44
 45	s_i+....+s_k <= B + R*(t_k - t_i)
 46
 47	Algorithm.
 48	----------
 49
 50	Let N(t_i) be B/R initially and N(t) grow continuously with time as:
 51
 52	N(t+delta) = min{B/R, N(t) + delta}
 53
 54	If the first packet in queue has length S, it may be
 55	transmitted only at the time t_* when S/R <= N(t_*),
 56	and in this case N(t) jumps:
 57
 58	N(t_* + 0) = N(t_* - 0) - S/R.
 59
 60
 61
 62	Actually, QoS requires two TBF to be applied to a data stream.
 63	One of them controls steady state burst size, another
 64	one with rate P (peak rate) and depth M (equal to link MTU)
 65	limits bursts at a smaller time scale.
 66
 67	It is easy to see that P>R, and B>M. If P is infinity, this double
 68	TBF is equivalent to a single one.
 69
 70	When TBF works in reshaping mode, latency is estimated as:
 71
 72	lat = max ((L-B)/R, (L-M)/P)
 73
 74
 75	NOTES.
 76	------
 77
 78	If TBF throttles, it starts a watchdog timer, which will wake it up
 79	when it is ready to transmit.
 80	Note that the minimal timer resolution is 1/HZ.
 81	If no new packets arrive during this period,
 82	or if the device is not awaken by EOI for some previous packet,
 83	TBF can stop its activity for 1/HZ.
 84
 85
 86	This means, that with depth B, the maximal rate is
 87
 88	R_crit = B*HZ
 89
 90	F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes.
 91
 92	Note that the peak rate TBF is much more tough: with MTU 1500
 93	P_crit = 150Kbytes/sec. So, if you need greater peak
 94	rates, use alpha with HZ=1000 :-)
 95
 96	With classful TBF, limit is just kept for backwards compatibility.
 97	It is passed to the default bfifo qdisc - if the inner qdisc is
 98	changed the limit is not effective anymore.
 99*/
100
101struct tbf_sched_data {
102/* Parameters */
103	u32		limit;		/* Maximal length of backlog: bytes */
104	u32		max_size;
105	s64		buffer;		/* Token bucket depth/rate: MUST BE >= MTU/B */
106	s64		mtu;
107	struct psched_ratecfg rate;
108	struct psched_ratecfg peak;
109
110/* Variables */
111	s64	tokens;			/* Current number of B tokens */
112	s64	ptokens;		/* Current number of P tokens */
113	s64	t_c;			/* Time check-point */
114	struct Qdisc	*qdisc;		/* Inner qdisc, default - bfifo queue */
115	struct qdisc_watchdog watchdog;	/* Watchdog timer */
116};
117
118
119/* Time to Length, convert time in ns to length in bytes
120 * to determinate how many bytes can be sent in given time.
121 */
122static u64 psched_ns_t2l(const struct psched_ratecfg *r,
123			 u64 time_in_ns)
124{
125	/* The formula is :
126	 * len = (time_in_ns * r->rate_bytes_ps) / NSEC_PER_SEC
127	 */
128	u64 len = time_in_ns * r->rate_bytes_ps;
129
130	do_div(len, NSEC_PER_SEC);
131
132	if (unlikely(r->linklayer == TC_LINKLAYER_ATM)) {
133		do_div(len, 53);
134		len = len * 48;
135	}
136
137	if (len > r->overhead)
138		len -= r->overhead;
139	else
140		len = 0;
141
142	return len;
143}
144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
145/* GSO packet is too big, segment it so that tbf can transmit
146 * each segment in time
147 */
148static int tbf_segment(struct sk_buff *skb, struct Qdisc *sch,
149		       struct sk_buff **to_free)
150{
151	struct tbf_sched_data *q = qdisc_priv(sch);
152	struct sk_buff *segs, *nskb;
153	netdev_features_t features = netif_skb_features(skb);
154	unsigned int len = 0, prev_len = qdisc_pkt_len(skb);
155	int ret, nb;
156
157	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
158
159	if (IS_ERR_OR_NULL(segs))
160		return qdisc_drop(skb, sch, to_free);
161
162	nb = 0;
163	while (segs) {
164		nskb = segs->next;
165		segs->next = NULL;
166		qdisc_skb_cb(segs)->pkt_len = segs->len;
167		len += segs->len;
168		ret = qdisc_enqueue(segs, q->qdisc, to_free);
169		if (ret != NET_XMIT_SUCCESS) {
170			if (net_xmit_drop_count(ret))
171				qdisc_qstats_drop(sch);
172		} else {
173			nb++;
 
174		}
175		segs = nskb;
176	}
177	sch->q.qlen += nb;
178	if (nb > 1)
 
179		qdisc_tree_reduce_backlog(sch, 1 - nb, prev_len - len);
180	consume_skb(skb);
181	return nb > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP;
 
 
 
 
182}
183
184static int tbf_enqueue(struct sk_buff *skb, struct Qdisc *sch,
185		       struct sk_buff **to_free)
186{
187	struct tbf_sched_data *q = qdisc_priv(sch);
 
188	int ret;
189
190	if (qdisc_pkt_len(skb) > q->max_size) {
191		if (skb_is_gso(skb) &&
192		    skb_gso_validate_mac_len(skb, q->max_size))
193			return tbf_segment(skb, sch, to_free);
194		return qdisc_drop(skb, sch, to_free);
195	}
196	ret = qdisc_enqueue(skb, q->qdisc, to_free);
197	if (ret != NET_XMIT_SUCCESS) {
198		if (net_xmit_drop_count(ret))
199			qdisc_qstats_drop(sch);
200		return ret;
201	}
202
203	qdisc_qstats_backlog_inc(sch, skb);
204	sch->q.qlen++;
205	return NET_XMIT_SUCCESS;
206}
207
208static bool tbf_peak_present(const struct tbf_sched_data *q)
209{
210	return q->peak.rate_bytes_ps;
211}
212
213static struct sk_buff *tbf_dequeue(struct Qdisc *sch)
214{
215	struct tbf_sched_data *q = qdisc_priv(sch);
216	struct sk_buff *skb;
217
218	skb = q->qdisc->ops->peek(q->qdisc);
219
220	if (skb) {
221		s64 now;
222		s64 toks;
223		s64 ptoks = 0;
224		unsigned int len = qdisc_pkt_len(skb);
225
226		now = ktime_get_ns();
227		toks = min_t(s64, now - q->t_c, q->buffer);
228
229		if (tbf_peak_present(q)) {
230			ptoks = toks + q->ptokens;
231			if (ptoks > q->mtu)
232				ptoks = q->mtu;
233			ptoks -= (s64) psched_l2t_ns(&q->peak, len);
234		}
235		toks += q->tokens;
236		if (toks > q->buffer)
237			toks = q->buffer;
238		toks -= (s64) psched_l2t_ns(&q->rate, len);
239
240		if ((toks|ptoks) >= 0) {
241			skb = qdisc_dequeue_peeked(q->qdisc);
242			if (unlikely(!skb))
243				return NULL;
244
245			q->t_c = now;
246			q->tokens = toks;
247			q->ptokens = ptoks;
248			qdisc_qstats_backlog_dec(sch, skb);
249			sch->q.qlen--;
250			qdisc_bstats_update(sch, skb);
251			return skb;
252		}
253
254		qdisc_watchdog_schedule_ns(&q->watchdog,
255					   now + max_t(long, -toks, -ptoks));
256
257		/* Maybe we have a shorter packet in the queue,
258		   which can be sent now. It sounds cool,
259		   but, however, this is wrong in principle.
260		   We MUST NOT reorder packets under these circumstances.
261
262		   Really, if we split the flow into independent
263		   subflows, it would be a very good solution.
264		   This is the main idea of all FQ algorithms
265		   (cf. CSZ, HPFQ, HFSC)
266		 */
267
268		qdisc_qstats_overlimit(sch);
269	}
270	return NULL;
271}
272
273static void tbf_reset(struct Qdisc *sch)
274{
275	struct tbf_sched_data *q = qdisc_priv(sch);
276
277	qdisc_reset(q->qdisc);
278	sch->qstats.backlog = 0;
279	sch->q.qlen = 0;
280	q->t_c = ktime_get_ns();
281	q->tokens = q->buffer;
282	q->ptokens = q->mtu;
283	qdisc_watchdog_cancel(&q->watchdog);
284}
285
286static const struct nla_policy tbf_policy[TCA_TBF_MAX + 1] = {
287	[TCA_TBF_PARMS]	= { .len = sizeof(struct tc_tbf_qopt) },
288	[TCA_TBF_RTAB]	= { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
289	[TCA_TBF_PTAB]	= { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
290	[TCA_TBF_RATE64]	= { .type = NLA_U64 },
291	[TCA_TBF_PRATE64]	= { .type = NLA_U64 },
292	[TCA_TBF_BURST] = { .type = NLA_U32 },
293	[TCA_TBF_PBURST] = { .type = NLA_U32 },
294};
295
296static int tbf_change(struct Qdisc *sch, struct nlattr *opt,
297		      struct netlink_ext_ack *extack)
298{
299	int err;
300	struct tbf_sched_data *q = qdisc_priv(sch);
301	struct nlattr *tb[TCA_TBF_MAX + 1];
302	struct tc_tbf_qopt *qopt;
303	struct Qdisc *child = NULL;
 
304	struct psched_ratecfg rate;
305	struct psched_ratecfg peak;
306	u64 max_size;
307	s64 buffer, mtu;
308	u64 rate64 = 0, prate64 = 0;
309
310	err = nla_parse_nested(tb, TCA_TBF_MAX, opt, tbf_policy, NULL);
 
311	if (err < 0)
312		return err;
313
314	err = -EINVAL;
315	if (tb[TCA_TBF_PARMS] == NULL)
316		goto done;
317
318	qopt = nla_data(tb[TCA_TBF_PARMS]);
319	if (qopt->rate.linklayer == TC_LINKLAYER_UNAWARE)
320		qdisc_put_rtab(qdisc_get_rtab(&qopt->rate,
321					      tb[TCA_TBF_RTAB],
322					      NULL));
323
324	if (qopt->peakrate.linklayer == TC_LINKLAYER_UNAWARE)
325			qdisc_put_rtab(qdisc_get_rtab(&qopt->peakrate,
326						      tb[TCA_TBF_PTAB],
327						      NULL));
328
329	buffer = min_t(u64, PSCHED_TICKS2NS(qopt->buffer), ~0U);
330	mtu = min_t(u64, PSCHED_TICKS2NS(qopt->mtu), ~0U);
331
332	if (tb[TCA_TBF_RATE64])
333		rate64 = nla_get_u64(tb[TCA_TBF_RATE64]);
334	psched_ratecfg_precompute(&rate, &qopt->rate, rate64);
335
336	if (tb[TCA_TBF_BURST]) {
337		max_size = nla_get_u32(tb[TCA_TBF_BURST]);
338		buffer = psched_l2t_ns(&rate, max_size);
339	} else {
340		max_size = min_t(u64, psched_ns_t2l(&rate, buffer), ~0U);
341	}
342
343	if (qopt->peakrate.rate) {
344		if (tb[TCA_TBF_PRATE64])
345			prate64 = nla_get_u64(tb[TCA_TBF_PRATE64]);
346		psched_ratecfg_precompute(&peak, &qopt->peakrate, prate64);
347		if (peak.rate_bytes_ps <= rate.rate_bytes_ps) {
348			pr_warn_ratelimited("sch_tbf: peakrate %llu is lower than or equals to rate %llu !\n",
349					peak.rate_bytes_ps, rate.rate_bytes_ps);
350			err = -EINVAL;
351			goto done;
352		}
353
354		if (tb[TCA_TBF_PBURST]) {
355			u32 pburst = nla_get_u32(tb[TCA_TBF_PBURST]);
356			max_size = min_t(u32, max_size, pburst);
357			mtu = psched_l2t_ns(&peak, pburst);
358		} else {
359			max_size = min_t(u64, max_size, psched_ns_t2l(&peak, mtu));
360		}
361	} else {
362		memset(&peak, 0, sizeof(peak));
363	}
364
365	if (max_size < psched_mtu(qdisc_dev(sch)))
366		pr_warn_ratelimited("sch_tbf: burst %llu is lower than device %s mtu (%u) !\n",
367				    max_size, qdisc_dev(sch)->name,
368				    psched_mtu(qdisc_dev(sch)));
369
370	if (!max_size) {
371		err = -EINVAL;
372		goto done;
373	}
374
375	if (q->qdisc != &noop_qdisc) {
376		err = fifo_set_limit(q->qdisc, qopt->limit);
377		if (err)
378			goto done;
379	} else if (qopt->limit > 0) {
380		child = fifo_create_dflt(sch, &bfifo_qdisc_ops, qopt->limit,
381					 extack);
382		if (IS_ERR(child)) {
383			err = PTR_ERR(child);
384			goto done;
385		}
386
387		/* child is fifo, no need to check for noop_qdisc */
388		qdisc_hash_add(child, true);
389	}
390
391	sch_tree_lock(sch);
392	if (child) {
393		qdisc_tree_reduce_backlog(q->qdisc, q->qdisc->q.qlen,
394					  q->qdisc->qstats.backlog);
395		qdisc_destroy(q->qdisc);
396		q->qdisc = child;
397	}
398	q->limit = qopt->limit;
399	if (tb[TCA_TBF_PBURST])
400		q->mtu = mtu;
401	else
402		q->mtu = PSCHED_TICKS2NS(qopt->mtu);
403	q->max_size = max_size;
404	if (tb[TCA_TBF_BURST])
405		q->buffer = buffer;
406	else
407		q->buffer = PSCHED_TICKS2NS(qopt->buffer);
408	q->tokens = q->buffer;
409	q->ptokens = q->mtu;
410
411	memcpy(&q->rate, &rate, sizeof(struct psched_ratecfg));
412	memcpy(&q->peak, &peak, sizeof(struct psched_ratecfg));
413
414	sch_tree_unlock(sch);
 
415	err = 0;
 
 
416done:
417	return err;
418}
419
420static int tbf_init(struct Qdisc *sch, struct nlattr *opt,
421		    struct netlink_ext_ack *extack)
422{
423	struct tbf_sched_data *q = qdisc_priv(sch);
424
425	qdisc_watchdog_init(&q->watchdog, sch);
426	q->qdisc = &noop_qdisc;
427
428	if (!opt)
429		return -EINVAL;
430
431	q->t_c = ktime_get_ns();
432
433	return tbf_change(sch, opt, extack);
434}
435
436static void tbf_destroy(struct Qdisc *sch)
437{
438	struct tbf_sched_data *q = qdisc_priv(sch);
439
440	qdisc_watchdog_cancel(&q->watchdog);
441	qdisc_destroy(q->qdisc);
 
442}
443
444static int tbf_dump(struct Qdisc *sch, struct sk_buff *skb)
445{
446	struct tbf_sched_data *q = qdisc_priv(sch);
447	struct nlattr *nest;
448	struct tc_tbf_qopt opt;
 
449
450	sch->qstats.backlog = q->qdisc->qstats.backlog;
451	nest = nla_nest_start(skb, TCA_OPTIONS);
 
 
 
452	if (nest == NULL)
453		goto nla_put_failure;
454
455	opt.limit = q->limit;
456	psched_ratecfg_getrate(&opt.rate, &q->rate);
457	if (tbf_peak_present(q))
458		psched_ratecfg_getrate(&opt.peakrate, &q->peak);
459	else
460		memset(&opt.peakrate, 0, sizeof(opt.peakrate));
461	opt.mtu = PSCHED_NS2TICKS(q->mtu);
462	opt.buffer = PSCHED_NS2TICKS(q->buffer);
463	if (nla_put(skb, TCA_TBF_PARMS, sizeof(opt), &opt))
464		goto nla_put_failure;
465	if (q->rate.rate_bytes_ps >= (1ULL << 32) &&
466	    nla_put_u64_64bit(skb, TCA_TBF_RATE64, q->rate.rate_bytes_ps,
467			      TCA_TBF_PAD))
468		goto nla_put_failure;
469	if (tbf_peak_present(q) &&
470	    q->peak.rate_bytes_ps >= (1ULL << 32) &&
471	    nla_put_u64_64bit(skb, TCA_TBF_PRATE64, q->peak.rate_bytes_ps,
472			      TCA_TBF_PAD))
473		goto nla_put_failure;
474
475	return nla_nest_end(skb, nest);
476
477nla_put_failure:
478	nla_nest_cancel(skb, nest);
479	return -1;
480}
481
482static int tbf_dump_class(struct Qdisc *sch, unsigned long cl,
483			  struct sk_buff *skb, struct tcmsg *tcm)
484{
485	struct tbf_sched_data *q = qdisc_priv(sch);
486
487	tcm->tcm_handle |= TC_H_MIN(1);
488	tcm->tcm_info = q->qdisc->handle;
489
490	return 0;
491}
492
493static int tbf_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
494		     struct Qdisc **old, struct netlink_ext_ack *extack)
495{
496	struct tbf_sched_data *q = qdisc_priv(sch);
497
498	if (new == NULL)
499		new = &noop_qdisc;
500
501	*old = qdisc_replace(sch, new, &q->qdisc);
 
 
502	return 0;
503}
504
505static struct Qdisc *tbf_leaf(struct Qdisc *sch, unsigned long arg)
506{
507	struct tbf_sched_data *q = qdisc_priv(sch);
508	return q->qdisc;
509}
510
511static unsigned long tbf_find(struct Qdisc *sch, u32 classid)
512{
513	return 1;
514}
515
516static void tbf_walk(struct Qdisc *sch, struct qdisc_walker *walker)
517{
518	if (!walker->stop) {
519		if (walker->count >= walker->skip)
520			if (walker->fn(sch, 1, walker) < 0) {
521				walker->stop = 1;
522				return;
523			}
524		walker->count++;
525	}
526}
527
528static const struct Qdisc_class_ops tbf_class_ops = {
529	.graft		=	tbf_graft,
530	.leaf		=	tbf_leaf,
531	.find		=	tbf_find,
532	.walk		=	tbf_walk,
533	.dump		=	tbf_dump_class,
534};
535
536static struct Qdisc_ops tbf_qdisc_ops __read_mostly = {
537	.next		=	NULL,
538	.cl_ops		=	&tbf_class_ops,
539	.id		=	"tbf",
540	.priv_size	=	sizeof(struct tbf_sched_data),
541	.enqueue	=	tbf_enqueue,
542	.dequeue	=	tbf_dequeue,
543	.peek		=	qdisc_peek_dequeued,
544	.init		=	tbf_init,
545	.reset		=	tbf_reset,
546	.destroy	=	tbf_destroy,
547	.change		=	tbf_change,
548	.dump		=	tbf_dump,
549	.owner		=	THIS_MODULE,
550};
 
551
552static int __init tbf_module_init(void)
553{
554	return register_qdisc(&tbf_qdisc_ops);
555}
556
557static void __exit tbf_module_exit(void)
558{
559	unregister_qdisc(&tbf_qdisc_ops);
560}
561module_init(tbf_module_init)
562module_exit(tbf_module_exit)
563MODULE_LICENSE("GPL");