Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/* Flow Queue PIE discipline
  3 *
  4 * Copyright (C) 2019 Mohit P. Tahiliani <tahiliani@nitk.edu.in>
  5 * Copyright (C) 2019 Sachin D. Patil <sdp.sachin@gmail.com>
  6 * Copyright (C) 2019 V. Saicharan <vsaicharan1998@gmail.com>
  7 * Copyright (C) 2019 Mohit Bhasi <mohitbhasi1998@gmail.com>
  8 * Copyright (C) 2019 Leslie Monis <lesliemonis@gmail.com>
  9 * Copyright (C) 2019 Gautam Ramakrishnan <gautamramk@gmail.com>
 10 */
 11
 12#include <linux/jhash.h>
 13#include <linux/module.h>
 14#include <linux/sizes.h>
 15#include <linux/vmalloc.h>
 16#include <net/pkt_cls.h>
 17#include <net/pie.h>
 18
 19/* Flow Queue PIE
 20 *
 21 * Principles:
 22 *   - Packets are classified on flows.
 23 *   - This is a Stochastic model (as we use a hash, several flows might
 24 *                                 be hashed to the same slot)
 25 *   - Each flow has a PIE managed queue.
 26 *   - Flows are linked onto two (Round Robin) lists,
 27 *     so that new flows have priority on old ones.
 28 *   - For a given flow, packets are not reordered.
 29 *   - Drops during enqueue only.
 30 *   - ECN capability is off by default.
 31 *   - ECN threshold (if ECN is enabled) is at 10% by default.
 32 *   - Uses timestamps to calculate queue delay by default.
 33 */
 34
 35/**
 36 * struct fq_pie_flow - contains data for each flow
 37 * @vars:	pie vars associated with the flow
 38 * @deficit:	number of remaining byte credits
 39 * @backlog:	size of data in the flow
 40 * @qlen:	number of packets in the flow
 41 * @flowchain:	flowchain for the flow
 42 * @head:	first packet in the flow
 43 * @tail:	last packet in the flow
 44 */
 45struct fq_pie_flow {
 46	struct pie_vars vars;
 47	s32 deficit;
 48	u32 backlog;
 49	u32 qlen;
 50	struct list_head flowchain;
 51	struct sk_buff *head;
 52	struct sk_buff *tail;
 53};
 54
 55struct fq_pie_sched_data {
 56	struct tcf_proto __rcu *filter_list; /* optional external classifier */
 57	struct tcf_block *block;
 58	struct fq_pie_flow *flows;
 59	struct Qdisc *sch;
 60	struct list_head old_flows;
 61	struct list_head new_flows;
 62	struct pie_params p_params;
 63	u32 ecn_prob;
 64	u32 flows_cnt;
 65	u32 flows_cursor;
 66	u32 quantum;
 67	u32 memory_limit;
 68	u32 new_flow_count;
 69	u32 memory_usage;
 70	u32 overmemory;
 71	struct pie_stats stats;
 72	struct timer_list adapt_timer;
 73};
 74
 75static unsigned int fq_pie_hash(const struct fq_pie_sched_data *q,
 76				struct sk_buff *skb)
 77{
 78	return reciprocal_scale(skb_get_hash(skb), q->flows_cnt);
 79}
 80
 81static unsigned int fq_pie_classify(struct sk_buff *skb, struct Qdisc *sch,
 82				    int *qerr)
 83{
 84	struct fq_pie_sched_data *q = qdisc_priv(sch);
 85	struct tcf_proto *filter;
 86	struct tcf_result res;
 87	int result;
 88
 89	if (TC_H_MAJ(skb->priority) == sch->handle &&
 90	    TC_H_MIN(skb->priority) > 0 &&
 91	    TC_H_MIN(skb->priority) <= q->flows_cnt)
 92		return TC_H_MIN(skb->priority);
 93
 94	filter = rcu_dereference_bh(q->filter_list);
 95	if (!filter)
 96		return fq_pie_hash(q, skb) + 1;
 97
 98	*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
 99	result = tcf_classify(skb, NULL, filter, &res, false);
100	if (result >= 0) {
101#ifdef CONFIG_NET_CLS_ACT
102		switch (result) {
103		case TC_ACT_STOLEN:
104		case TC_ACT_QUEUED:
105		case TC_ACT_TRAP:
106			*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
107			fallthrough;
108		case TC_ACT_SHOT:
109			return 0;
110		}
111#endif
112		if (TC_H_MIN(res.classid) <= q->flows_cnt)
113			return TC_H_MIN(res.classid);
114	}
115	return 0;
116}
117
118/* add skb to flow queue (tail add) */
119static inline void flow_queue_add(struct fq_pie_flow *flow,
120				  struct sk_buff *skb)
121{
122	if (!flow->head)
123		flow->head = skb;
124	else
125		flow->tail->next = skb;
126	flow->tail = skb;
127	skb->next = NULL;
128}
129
130static int fq_pie_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *sch,
131				struct sk_buff **to_free)
132{
133	struct fq_pie_sched_data *q = qdisc_priv(sch);
134	struct fq_pie_flow *sel_flow;
135	int ret;
136	u8 memory_limited = false;
137	u8 enqueue = false;
138	u32 pkt_len;
139	u32 idx;
140
141	/* Classifies packet into corresponding flow */
142	idx = fq_pie_classify(skb, sch, &ret);
143	if (idx == 0) {
144		if (ret & __NET_XMIT_BYPASS)
145			qdisc_qstats_drop(sch);
146		__qdisc_drop(skb, to_free);
147		return ret;
148	}
149	idx--;
150
151	sel_flow = &q->flows[idx];
152	/* Checks whether adding a new packet would exceed memory limit */
153	get_pie_cb(skb)->mem_usage = skb->truesize;
154	memory_limited = q->memory_usage > q->memory_limit + skb->truesize;
155
156	/* Checks if the qdisc is full */
157	if (unlikely(qdisc_qlen(sch) >= sch->limit)) {
158		q->stats.overlimit++;
159		goto out;
160	} else if (unlikely(memory_limited)) {
161		q->overmemory++;
162	}
163
164	if (!pie_drop_early(sch, &q->p_params, &sel_flow->vars,
165			    sel_flow->backlog, skb->len)) {
166		enqueue = true;
167	} else if (q->p_params.ecn &&
168		   sel_flow->vars.prob <= (MAX_PROB / 100) * q->ecn_prob &&
169		   INET_ECN_set_ce(skb)) {
170		/* If packet is ecn capable, mark it if drop probability
171		 * is lower than the parameter ecn_prob, else drop it.
172		 */
173		q->stats.ecn_mark++;
174		enqueue = true;
175	}
176	if (enqueue) {
177		/* Set enqueue time only when dq_rate_estimator is disabled. */
178		if (!q->p_params.dq_rate_estimator)
179			pie_set_enqueue_time(skb);
180
181		pkt_len = qdisc_pkt_len(skb);
182		q->stats.packets_in++;
183		q->memory_usage += skb->truesize;
184		sch->qstats.backlog += pkt_len;
185		sch->q.qlen++;
186		flow_queue_add(sel_flow, skb);
187		if (list_empty(&sel_flow->flowchain)) {
188			list_add_tail(&sel_flow->flowchain, &q->new_flows);
189			q->new_flow_count++;
190			sel_flow->deficit = q->quantum;
191			sel_flow->qlen = 0;
192			sel_flow->backlog = 0;
193		}
194		sel_flow->qlen++;
195		sel_flow->backlog += pkt_len;
196		return NET_XMIT_SUCCESS;
197	}
198out:
199	q->stats.dropped++;
200	sel_flow->vars.accu_prob = 0;
201	__qdisc_drop(skb, to_free);
202	qdisc_qstats_drop(sch);
203	return NET_XMIT_CN;
204}
205
206static const struct netlink_range_validation fq_pie_q_range = {
207	.min = 1,
208	.max = 1 << 20,
209};
210
211static const struct nla_policy fq_pie_policy[TCA_FQ_PIE_MAX + 1] = {
212	[TCA_FQ_PIE_LIMIT]		= {.type = NLA_U32},
213	[TCA_FQ_PIE_FLOWS]		= {.type = NLA_U32},
214	[TCA_FQ_PIE_TARGET]		= {.type = NLA_U32},
215	[TCA_FQ_PIE_TUPDATE]		= {.type = NLA_U32},
216	[TCA_FQ_PIE_ALPHA]		= {.type = NLA_U32},
217	[TCA_FQ_PIE_BETA]		= {.type = NLA_U32},
218	[TCA_FQ_PIE_QUANTUM]		=
219			NLA_POLICY_FULL_RANGE(NLA_U32, &fq_pie_q_range),
220	[TCA_FQ_PIE_MEMORY_LIMIT]	= {.type = NLA_U32},
221	[TCA_FQ_PIE_ECN_PROB]		= {.type = NLA_U32},
222	[TCA_FQ_PIE_ECN]		= {.type = NLA_U32},
223	[TCA_FQ_PIE_BYTEMODE]		= {.type = NLA_U32},
224	[TCA_FQ_PIE_DQ_RATE_ESTIMATOR]	= {.type = NLA_U32},
225};
226
227static inline struct sk_buff *dequeue_head(struct fq_pie_flow *flow)
228{
229	struct sk_buff *skb = flow->head;
230
231	flow->head = skb->next;
232	skb->next = NULL;
233	return skb;
234}
235
236static struct sk_buff *fq_pie_qdisc_dequeue(struct Qdisc *sch)
237{
238	struct fq_pie_sched_data *q = qdisc_priv(sch);
239	struct sk_buff *skb = NULL;
240	struct fq_pie_flow *flow;
241	struct list_head *head;
242	u32 pkt_len;
243
244begin:
245	head = &q->new_flows;
246	if (list_empty(head)) {
247		head = &q->old_flows;
248		if (list_empty(head))
249			return NULL;
250	}
251
252	flow = list_first_entry(head, struct fq_pie_flow, flowchain);
253	/* Flow has exhausted all its credits */
254	if (flow->deficit <= 0) {
255		flow->deficit += q->quantum;
256		list_move_tail(&flow->flowchain, &q->old_flows);
257		goto begin;
258	}
259
260	if (flow->head) {
261		skb = dequeue_head(flow);
262		pkt_len = qdisc_pkt_len(skb);
263		sch->qstats.backlog -= pkt_len;
264		sch->q.qlen--;
265		qdisc_bstats_update(sch, skb);
266	}
267
268	if (!skb) {
269		/* force a pass through old_flows to prevent starvation */
270		if (head == &q->new_flows && !list_empty(&q->old_flows))
271			list_move_tail(&flow->flowchain, &q->old_flows);
272		else
273			list_del_init(&flow->flowchain);
274		goto begin;
275	}
276
277	flow->qlen--;
278	flow->deficit -= pkt_len;
279	flow->backlog -= pkt_len;
280	q->memory_usage -= get_pie_cb(skb)->mem_usage;
281	pie_process_dequeue(skb, &q->p_params, &flow->vars, flow->backlog);
282	return skb;
283}
284
285static int fq_pie_change(struct Qdisc *sch, struct nlattr *opt,
286			 struct netlink_ext_ack *extack)
287{
288	struct fq_pie_sched_data *q = qdisc_priv(sch);
289	struct nlattr *tb[TCA_FQ_PIE_MAX + 1];
290	unsigned int len_dropped = 0;
291	unsigned int num_dropped = 0;
292	int err;
293
294	err = nla_parse_nested(tb, TCA_FQ_PIE_MAX, opt, fq_pie_policy, extack);
295	if (err < 0)
296		return err;
297
298	sch_tree_lock(sch);
299	if (tb[TCA_FQ_PIE_LIMIT]) {
300		u32 limit = nla_get_u32(tb[TCA_FQ_PIE_LIMIT]);
301
302		WRITE_ONCE(q->p_params.limit, limit);
303		WRITE_ONCE(sch->limit, limit);
304	}
305	if (tb[TCA_FQ_PIE_FLOWS]) {
306		if (q->flows) {
307			NL_SET_ERR_MSG_MOD(extack,
308					   "Number of flows cannot be changed");
309			goto flow_error;
310		}
311		q->flows_cnt = nla_get_u32(tb[TCA_FQ_PIE_FLOWS]);
312		if (!q->flows_cnt || q->flows_cnt > 65536) {
313			NL_SET_ERR_MSG_MOD(extack,
314					   "Number of flows must range in [1..65536]");
315			goto flow_error;
316		}
317	}
318
319	/* convert from microseconds to pschedtime */
320	if (tb[TCA_FQ_PIE_TARGET]) {
321		/* target is in us */
322		u32 target = nla_get_u32(tb[TCA_FQ_PIE_TARGET]);
323
324		/* convert to pschedtime */
325		WRITE_ONCE(q->p_params.target,
326			   PSCHED_NS2TICKS((u64)target * NSEC_PER_USEC));
327	}
328
329	/* tupdate is in jiffies */
330	if (tb[TCA_FQ_PIE_TUPDATE])
331		WRITE_ONCE(q->p_params.tupdate,
332			usecs_to_jiffies(nla_get_u32(tb[TCA_FQ_PIE_TUPDATE])));
333
334	if (tb[TCA_FQ_PIE_ALPHA])
335		WRITE_ONCE(q->p_params.alpha,
336			   nla_get_u32(tb[TCA_FQ_PIE_ALPHA]));
337
338	if (tb[TCA_FQ_PIE_BETA])
339		WRITE_ONCE(q->p_params.beta,
340			   nla_get_u32(tb[TCA_FQ_PIE_BETA]));
341
342	if (tb[TCA_FQ_PIE_QUANTUM])
343		WRITE_ONCE(q->quantum, nla_get_u32(tb[TCA_FQ_PIE_QUANTUM]));
344
345	if (tb[TCA_FQ_PIE_MEMORY_LIMIT])
346		WRITE_ONCE(q->memory_limit,
347			   nla_get_u32(tb[TCA_FQ_PIE_MEMORY_LIMIT]));
348
349	if (tb[TCA_FQ_PIE_ECN_PROB])
350		WRITE_ONCE(q->ecn_prob,
351			   nla_get_u32(tb[TCA_FQ_PIE_ECN_PROB]));
352
353	if (tb[TCA_FQ_PIE_ECN])
354		WRITE_ONCE(q->p_params.ecn,
355			   nla_get_u32(tb[TCA_FQ_PIE_ECN]));
356
357	if (tb[TCA_FQ_PIE_BYTEMODE])
358		WRITE_ONCE(q->p_params.bytemode,
359			   nla_get_u32(tb[TCA_FQ_PIE_BYTEMODE]));
360
361	if (tb[TCA_FQ_PIE_DQ_RATE_ESTIMATOR])
362		WRITE_ONCE(q->p_params.dq_rate_estimator,
363			   nla_get_u32(tb[TCA_FQ_PIE_DQ_RATE_ESTIMATOR]));
364
365	/* Drop excess packets if new limit is lower */
366	while (sch->q.qlen > sch->limit) {
367		struct sk_buff *skb = fq_pie_qdisc_dequeue(sch);
368
369		len_dropped += qdisc_pkt_len(skb);
370		num_dropped += 1;
371		rtnl_kfree_skbs(skb, skb);
372	}
373	qdisc_tree_reduce_backlog(sch, num_dropped, len_dropped);
374
375	sch_tree_unlock(sch);
376	return 0;
377
378flow_error:
379	sch_tree_unlock(sch);
380	return -EINVAL;
381}
382
383static void fq_pie_timer(struct timer_list *t)
384{
385	struct fq_pie_sched_data *q = from_timer(q, t, adapt_timer);
386	unsigned long next, tupdate;
387	struct Qdisc *sch = q->sch;
388	spinlock_t *root_lock; /* to lock qdisc for probability calculations */
389	int max_cnt, i;
390
391	rcu_read_lock();
392	root_lock = qdisc_lock(qdisc_root_sleeping(sch));
393	spin_lock(root_lock);
394
395	/* Limit this expensive loop to 2048 flows per round. */
396	max_cnt = min_t(int, q->flows_cnt - q->flows_cursor, 2048);
397	for (i = 0; i < max_cnt; i++) {
398		pie_calculate_probability(&q->p_params,
399					  &q->flows[q->flows_cursor].vars,
400					  q->flows[q->flows_cursor].backlog);
401		q->flows_cursor++;
402	}
403
404	tupdate = q->p_params.tupdate;
405	next = 0;
406	if (q->flows_cursor >= q->flows_cnt) {
407		q->flows_cursor = 0;
408		next = tupdate;
409	}
410	if (tupdate)
411		mod_timer(&q->adapt_timer, jiffies + next);
412	spin_unlock(root_lock);
413	rcu_read_unlock();
414}
415
416static int fq_pie_init(struct Qdisc *sch, struct nlattr *opt,
417		       struct netlink_ext_ack *extack)
418{
419	struct fq_pie_sched_data *q = qdisc_priv(sch);
420	int err;
421	u32 idx;
422
423	pie_params_init(&q->p_params);
424	sch->limit = 10 * 1024;
425	q->p_params.limit = sch->limit;
426	q->quantum = psched_mtu(qdisc_dev(sch));
427	q->sch = sch;
428	q->ecn_prob = 10;
429	q->flows_cnt = 1024;
430	q->memory_limit = SZ_32M;
431
432	INIT_LIST_HEAD(&q->new_flows);
433	INIT_LIST_HEAD(&q->old_flows);
434	timer_setup(&q->adapt_timer, fq_pie_timer, 0);
435
436	if (opt) {
437		err = fq_pie_change(sch, opt, extack);
438
439		if (err)
440			return err;
441	}
442
443	err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
444	if (err)
445		goto init_failure;
446
447	q->flows = kvcalloc(q->flows_cnt, sizeof(struct fq_pie_flow),
448			    GFP_KERNEL);
449	if (!q->flows) {
450		err = -ENOMEM;
451		goto init_failure;
452	}
453	for (idx = 0; idx < q->flows_cnt; idx++) {
454		struct fq_pie_flow *flow = q->flows + idx;
455
456		INIT_LIST_HEAD(&flow->flowchain);
457		pie_vars_init(&flow->vars);
458	}
459
460	mod_timer(&q->adapt_timer, jiffies + HZ / 2);
461
462	return 0;
463
464init_failure:
465	q->flows_cnt = 0;
466
467	return err;
468}
469
470static int fq_pie_dump(struct Qdisc *sch, struct sk_buff *skb)
471{
472	struct fq_pie_sched_data *q = qdisc_priv(sch);
473	struct nlattr *opts;
474
475	opts = nla_nest_start(skb, TCA_OPTIONS);
476	if (!opts)
477		return -EMSGSIZE;
478
479	/* convert target from pschedtime to us */
480	if (nla_put_u32(skb, TCA_FQ_PIE_LIMIT, READ_ONCE(sch->limit)) ||
481	    nla_put_u32(skb, TCA_FQ_PIE_FLOWS, READ_ONCE(q->flows_cnt)) ||
482	    nla_put_u32(skb, TCA_FQ_PIE_TARGET,
483			((u32)PSCHED_TICKS2NS(READ_ONCE(q->p_params.target))) /
484			NSEC_PER_USEC) ||
485	    nla_put_u32(skb, TCA_FQ_PIE_TUPDATE,
486			jiffies_to_usecs(READ_ONCE(q->p_params.tupdate))) ||
487	    nla_put_u32(skb, TCA_FQ_PIE_ALPHA, READ_ONCE(q->p_params.alpha)) ||
488	    nla_put_u32(skb, TCA_FQ_PIE_BETA, READ_ONCE(q->p_params.beta)) ||
489	    nla_put_u32(skb, TCA_FQ_PIE_QUANTUM, READ_ONCE(q->quantum)) ||
490	    nla_put_u32(skb, TCA_FQ_PIE_MEMORY_LIMIT,
491			READ_ONCE(q->memory_limit)) ||
492	    nla_put_u32(skb, TCA_FQ_PIE_ECN_PROB, READ_ONCE(q->ecn_prob)) ||
493	    nla_put_u32(skb, TCA_FQ_PIE_ECN, READ_ONCE(q->p_params.ecn)) ||
494	    nla_put_u32(skb, TCA_FQ_PIE_BYTEMODE, READ_ONCE(q->p_params.bytemode)) ||
495	    nla_put_u32(skb, TCA_FQ_PIE_DQ_RATE_ESTIMATOR,
496			READ_ONCE(q->p_params.dq_rate_estimator)))
497		goto nla_put_failure;
498
499	return nla_nest_end(skb, opts);
500
501nla_put_failure:
502	nla_nest_cancel(skb, opts);
503	return -EMSGSIZE;
504}
505
506static int fq_pie_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
507{
508	struct fq_pie_sched_data *q = qdisc_priv(sch);
509	struct tc_fq_pie_xstats st = {
510		.packets_in	= q->stats.packets_in,
511		.overlimit	= q->stats.overlimit,
512		.overmemory	= q->overmemory,
513		.dropped	= q->stats.dropped,
514		.ecn_mark	= q->stats.ecn_mark,
515		.new_flow_count = q->new_flow_count,
516		.memory_usage   = q->memory_usage,
517	};
518	struct list_head *pos;
519
520	sch_tree_lock(sch);
521	list_for_each(pos, &q->new_flows)
522		st.new_flows_len++;
523
524	list_for_each(pos, &q->old_flows)
525		st.old_flows_len++;
526	sch_tree_unlock(sch);
527
528	return gnet_stats_copy_app(d, &st, sizeof(st));
529}
530
531static void fq_pie_reset(struct Qdisc *sch)
532{
533	struct fq_pie_sched_data *q = qdisc_priv(sch);
534	u32 idx;
535
536	INIT_LIST_HEAD(&q->new_flows);
537	INIT_LIST_HEAD(&q->old_flows);
538	for (idx = 0; idx < q->flows_cnt; idx++) {
539		struct fq_pie_flow *flow = q->flows + idx;
540
541		/* Removes all packets from flow */
542		rtnl_kfree_skbs(flow->head, flow->tail);
543		flow->head = NULL;
544
545		INIT_LIST_HEAD(&flow->flowchain);
546		pie_vars_init(&flow->vars);
547	}
548}
549
550static void fq_pie_destroy(struct Qdisc *sch)
551{
552	struct fq_pie_sched_data *q = qdisc_priv(sch);
553
554	tcf_block_put(q->block);
555	q->p_params.tupdate = 0;
556	del_timer_sync(&q->adapt_timer);
557	kvfree(q->flows);
558}
559
560static struct Qdisc_ops fq_pie_qdisc_ops __read_mostly = {
561	.id		= "fq_pie",
562	.priv_size	= sizeof(struct fq_pie_sched_data),
563	.enqueue	= fq_pie_qdisc_enqueue,
564	.dequeue	= fq_pie_qdisc_dequeue,
565	.peek		= qdisc_peek_dequeued,
566	.init		= fq_pie_init,
567	.destroy	= fq_pie_destroy,
568	.reset		= fq_pie_reset,
569	.change		= fq_pie_change,
570	.dump		= fq_pie_dump,
571	.dump_stats	= fq_pie_dump_stats,
572	.owner		= THIS_MODULE,
573};
574MODULE_ALIAS_NET_SCH("fq_pie");
575
576static int __init fq_pie_module_init(void)
577{
578	return register_qdisc(&fq_pie_qdisc_ops);
579}
580
581static void __exit fq_pie_module_exit(void)
582{
583	unregister_qdisc(&fq_pie_qdisc_ops);
584}
585
586module_init(fq_pie_module_init);
587module_exit(fq_pie_module_exit);
588
589MODULE_DESCRIPTION("Flow Queue Proportional Integral controller Enhanced (FQ-PIE)");
590MODULE_AUTHOR("Mohit P. Tahiliani");
591MODULE_LICENSE("GPL");