Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Module-based API test facility for ww_mutexes
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  4 */
  5
  6#include <linux/kernel.h>
  7
  8#include <linux/completion.h>
  9#include <linux/delay.h>
 10#include <linux/kthread.h>
 11#include <linux/module.h>
 12#include <linux/prandom.h>
 13#include <linux/slab.h>
 14#include <linux/ww_mutex.h>
 15
 16static DEFINE_WD_CLASS(ww_class);
 17struct workqueue_struct *wq;
 18
 19#ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
 20#define ww_acquire_init_noinject(a, b) do { \
 21		ww_acquire_init((a), (b)); \
 22		(a)->deadlock_inject_countdown = ~0U; \
 23	} while (0)
 24#else
 25#define ww_acquire_init_noinject(a, b) ww_acquire_init((a), (b))
 26#endif
 27
 28struct test_mutex {
 29	struct work_struct work;
 30	struct ww_mutex mutex;
 31	struct completion ready, go, done;
 32	unsigned int flags;
 33};
 34
 35#define TEST_MTX_SPIN BIT(0)
 36#define TEST_MTX_TRY BIT(1)
 37#define TEST_MTX_CTX BIT(2)
 38#define __TEST_MTX_LAST BIT(3)
 39
 40static void test_mutex_work(struct work_struct *work)
 41{
 42	struct test_mutex *mtx = container_of(work, typeof(*mtx), work);
 43
 44	complete(&mtx->ready);
 45	wait_for_completion(&mtx->go);
 46
 47	if (mtx->flags & TEST_MTX_TRY) {
 48		while (!ww_mutex_trylock(&mtx->mutex, NULL))
 49			cond_resched();
 50	} else {
 51		ww_mutex_lock(&mtx->mutex, NULL);
 52	}
 53	complete(&mtx->done);
 54	ww_mutex_unlock(&mtx->mutex);
 55}
 56
 57static int __test_mutex(unsigned int flags)
 58{
 59#define TIMEOUT (HZ / 16)
 60	struct test_mutex mtx;
 61	struct ww_acquire_ctx ctx;
 62	int ret;
 63
 64	ww_mutex_init(&mtx.mutex, &ww_class);
 65	if (flags & TEST_MTX_CTX)
 66		ww_acquire_init(&ctx, &ww_class);
 67
 68	INIT_WORK_ONSTACK(&mtx.work, test_mutex_work);
 69	init_completion(&mtx.ready);
 70	init_completion(&mtx.go);
 71	init_completion(&mtx.done);
 72	mtx.flags = flags;
 73
 74	schedule_work(&mtx.work);
 75
 76	wait_for_completion(&mtx.ready);
 77	ww_mutex_lock(&mtx.mutex, (flags & TEST_MTX_CTX) ? &ctx : NULL);
 78	complete(&mtx.go);
 79	if (flags & TEST_MTX_SPIN) {
 80		unsigned long timeout = jiffies + TIMEOUT;
 81
 82		ret = 0;
 83		do {
 84			if (completion_done(&mtx.done)) {
 85				ret = -EINVAL;
 86				break;
 87			}
 88			cond_resched();
 89		} while (time_before(jiffies, timeout));
 90	} else {
 91		ret = wait_for_completion_timeout(&mtx.done, TIMEOUT);
 92	}
 93	ww_mutex_unlock(&mtx.mutex);
 94	if (flags & TEST_MTX_CTX)
 95		ww_acquire_fini(&ctx);
 96
 97	if (ret) {
 98		pr_err("%s(flags=%x): mutual exclusion failure\n",
 99		       __func__, flags);
100		ret = -EINVAL;
101	}
102
103	flush_work(&mtx.work);
104	destroy_work_on_stack(&mtx.work);
105	return ret;
106#undef TIMEOUT
107}
108
109static int test_mutex(void)
110{
111	int ret;
112	int i;
113
114	for (i = 0; i < __TEST_MTX_LAST; i++) {
115		ret = __test_mutex(i);
116		if (ret)
117			return ret;
118	}
119
120	return 0;
121}
122
123static int test_aa(bool trylock)
124{
125	struct ww_mutex mutex;
126	struct ww_acquire_ctx ctx;
127	int ret;
128	const char *from = trylock ? "trylock" : "lock";
129
130	ww_mutex_init(&mutex, &ww_class);
131	ww_acquire_init(&ctx, &ww_class);
132
133	if (!trylock) {
134		ret = ww_mutex_lock(&mutex, &ctx);
135		if (ret) {
136			pr_err("%s: initial lock failed!\n", __func__);
137			goto out;
138		}
139	} else {
140		ret = !ww_mutex_trylock(&mutex, &ctx);
141		if (ret) {
142			pr_err("%s: initial trylock failed!\n", __func__);
143			goto out;
144		}
145	}
146
147	if (ww_mutex_trylock(&mutex, NULL))  {
148		pr_err("%s: trylocked itself without context from %s!\n", __func__, from);
149		ww_mutex_unlock(&mutex);
150		ret = -EINVAL;
151		goto out;
152	}
153
154	if (ww_mutex_trylock(&mutex, &ctx))  {
155		pr_err("%s: trylocked itself with context from %s!\n", __func__, from);
156		ww_mutex_unlock(&mutex);
157		ret = -EINVAL;
158		goto out;
159	}
160
161	ret = ww_mutex_lock(&mutex, &ctx);
162	if (ret != -EALREADY) {
163		pr_err("%s: missed deadlock for recursing, ret=%d from %s\n",
164		       __func__, ret, from);
165		if (!ret)
166			ww_mutex_unlock(&mutex);
167		ret = -EINVAL;
168		goto out;
169	}
170
171	ww_mutex_unlock(&mutex);
172	ret = 0;
173out:
 
174	ww_acquire_fini(&ctx);
175	return ret;
176}
177
178struct test_abba {
179	struct work_struct work;
180	struct ww_mutex a_mutex;
181	struct ww_mutex b_mutex;
182	struct completion a_ready;
183	struct completion b_ready;
184	bool resolve, trylock;
185	int result;
186};
187
188static void test_abba_work(struct work_struct *work)
189{
190	struct test_abba *abba = container_of(work, typeof(*abba), work);
191	struct ww_acquire_ctx ctx;
192	int err;
193
194	ww_acquire_init_noinject(&ctx, &ww_class);
195	if (!abba->trylock)
196		ww_mutex_lock(&abba->b_mutex, &ctx);
197	else
198		WARN_ON(!ww_mutex_trylock(&abba->b_mutex, &ctx));
199
200	WARN_ON(READ_ONCE(abba->b_mutex.ctx) != &ctx);
201
202	complete(&abba->b_ready);
203	wait_for_completion(&abba->a_ready);
204
205	err = ww_mutex_lock(&abba->a_mutex, &ctx);
206	if (abba->resolve && err == -EDEADLK) {
207		ww_mutex_unlock(&abba->b_mutex);
208		ww_mutex_lock_slow(&abba->a_mutex, &ctx);
209		err = ww_mutex_lock(&abba->b_mutex, &ctx);
210	}
211
212	if (!err)
213		ww_mutex_unlock(&abba->a_mutex);
214	ww_mutex_unlock(&abba->b_mutex);
215	ww_acquire_fini(&ctx);
216
217	abba->result = err;
218}
219
220static int test_abba(bool trylock, bool resolve)
221{
222	struct test_abba abba;
223	struct ww_acquire_ctx ctx;
224	int err, ret;
225
226	ww_mutex_init(&abba.a_mutex, &ww_class);
227	ww_mutex_init(&abba.b_mutex, &ww_class);
228	INIT_WORK_ONSTACK(&abba.work, test_abba_work);
229	init_completion(&abba.a_ready);
230	init_completion(&abba.b_ready);
231	abba.trylock = trylock;
232	abba.resolve = resolve;
233
234	schedule_work(&abba.work);
235
236	ww_acquire_init_noinject(&ctx, &ww_class);
237	if (!trylock)
238		ww_mutex_lock(&abba.a_mutex, &ctx);
239	else
240		WARN_ON(!ww_mutex_trylock(&abba.a_mutex, &ctx));
241
242	WARN_ON(READ_ONCE(abba.a_mutex.ctx) != &ctx);
243
244	complete(&abba.a_ready);
245	wait_for_completion(&abba.b_ready);
246
247	err = ww_mutex_lock(&abba.b_mutex, &ctx);
248	if (resolve && err == -EDEADLK) {
249		ww_mutex_unlock(&abba.a_mutex);
250		ww_mutex_lock_slow(&abba.b_mutex, &ctx);
251		err = ww_mutex_lock(&abba.a_mutex, &ctx);
252	}
253
254	if (!err)
255		ww_mutex_unlock(&abba.b_mutex);
256	ww_mutex_unlock(&abba.a_mutex);
257	ww_acquire_fini(&ctx);
258
259	flush_work(&abba.work);
260	destroy_work_on_stack(&abba.work);
261
262	ret = 0;
263	if (resolve) {
264		if (err || abba.result) {
265			pr_err("%s: failed to resolve ABBA deadlock, A err=%d, B err=%d\n",
266			       __func__, err, abba.result);
267			ret = -EINVAL;
268		}
269	} else {
270		if (err != -EDEADLK && abba.result != -EDEADLK) {
271			pr_err("%s: missed ABBA deadlock, A err=%d, B err=%d\n",
272			       __func__, err, abba.result);
273			ret = -EINVAL;
274		}
275	}
276	return ret;
277}
278
279struct test_cycle {
280	struct work_struct work;
281	struct ww_mutex a_mutex;
282	struct ww_mutex *b_mutex;
283	struct completion *a_signal;
284	struct completion b_signal;
285	int result;
286};
287
288static void test_cycle_work(struct work_struct *work)
289{
290	struct test_cycle *cycle = container_of(work, typeof(*cycle), work);
291	struct ww_acquire_ctx ctx;
292	int err, erra = 0;
293
294	ww_acquire_init_noinject(&ctx, &ww_class);
295	ww_mutex_lock(&cycle->a_mutex, &ctx);
296
297	complete(cycle->a_signal);
298	wait_for_completion(&cycle->b_signal);
299
300	err = ww_mutex_lock(cycle->b_mutex, &ctx);
301	if (err == -EDEADLK) {
302		err = 0;
303		ww_mutex_unlock(&cycle->a_mutex);
304		ww_mutex_lock_slow(cycle->b_mutex, &ctx);
305		erra = ww_mutex_lock(&cycle->a_mutex, &ctx);
306	}
307
308	if (!err)
309		ww_mutex_unlock(cycle->b_mutex);
310	if (!erra)
311		ww_mutex_unlock(&cycle->a_mutex);
312	ww_acquire_fini(&ctx);
313
314	cycle->result = err ?: erra;
315}
316
317static int __test_cycle(unsigned int nthreads)
318{
319	struct test_cycle *cycles;
320	unsigned int n, last = nthreads - 1;
321	int ret;
322
323	cycles = kmalloc_array(nthreads, sizeof(*cycles), GFP_KERNEL);
324	if (!cycles)
325		return -ENOMEM;
326
327	for (n = 0; n < nthreads; n++) {
328		struct test_cycle *cycle = &cycles[n];
329
330		ww_mutex_init(&cycle->a_mutex, &ww_class);
331		if (n == last)
332			cycle->b_mutex = &cycles[0].a_mutex;
333		else
334			cycle->b_mutex = &cycles[n + 1].a_mutex;
335
336		if (n == 0)
337			cycle->a_signal = &cycles[last].b_signal;
338		else
339			cycle->a_signal = &cycles[n - 1].b_signal;
340		init_completion(&cycle->b_signal);
341
342		INIT_WORK(&cycle->work, test_cycle_work);
343		cycle->result = 0;
344	}
345
346	for (n = 0; n < nthreads; n++)
347		queue_work(wq, &cycles[n].work);
348
349	flush_workqueue(wq);
350
351	ret = 0;
352	for (n = 0; n < nthreads; n++) {
353		struct test_cycle *cycle = &cycles[n];
354
355		if (!cycle->result)
356			continue;
357
358		pr_err("cyclic deadlock not resolved, ret[%d/%d] = %d\n",
359		       n, nthreads, cycle->result);
360		ret = -EINVAL;
361		break;
362	}
363
364	for (n = 0; n < nthreads; n++)
365		ww_mutex_destroy(&cycles[n].a_mutex);
366	kfree(cycles);
367	return ret;
368}
369
370static int test_cycle(unsigned int ncpus)
371{
372	unsigned int n;
373	int ret;
374
375	for (n = 2; n <= ncpus + 1; n++) {
376		ret = __test_cycle(n);
377		if (ret)
378			return ret;
379	}
380
381	return 0;
382}
383
384struct stress {
385	struct work_struct work;
386	struct ww_mutex *locks;
387	unsigned long timeout;
388	int nlocks;
389};
390
391struct rnd_state rng;
392DEFINE_SPINLOCK(rng_lock);
393
394static inline u32 prandom_u32_below(u32 ceil)
395{
396	u32 ret;
397
398	spin_lock(&rng_lock);
399	ret = prandom_u32_state(&rng) % ceil;
400	spin_unlock(&rng_lock);
401	return ret;
402}
403
404static int *get_random_order(int count)
405{
406	int *order;
407	int n, r;
408
409	order = kmalloc_array(count, sizeof(*order), GFP_KERNEL);
410	if (!order)
411		return order;
412
413	for (n = 0; n < count; n++)
414		order[n] = n;
415
416	for (n = count - 1; n > 1; n--) {
417		r = prandom_u32_below(n + 1);
418		if (r != n)
419			swap(order[n], order[r]);
 
 
 
420	}
421
422	return order;
423}
424
425static void dummy_load(struct stress *stress)
426{
427	usleep_range(1000, 2000);
428}
429
430static void stress_inorder_work(struct work_struct *work)
431{
432	struct stress *stress = container_of(work, typeof(*stress), work);
433	const int nlocks = stress->nlocks;
434	struct ww_mutex *locks = stress->locks;
435	struct ww_acquire_ctx ctx;
436	int *order;
437
438	order = get_random_order(nlocks);
439	if (!order)
440		return;
441
442	do {
443		int contended = -1;
444		int n, err;
445
446		ww_acquire_init(&ctx, &ww_class);
447retry:
448		err = 0;
449		for (n = 0; n < nlocks; n++) {
450			if (n == contended)
451				continue;
452
453			err = ww_mutex_lock(&locks[order[n]], &ctx);
454			if (err < 0)
455				break;
456		}
457		if (!err)
458			dummy_load(stress);
459
460		if (contended > n)
461			ww_mutex_unlock(&locks[order[contended]]);
462		contended = n;
463		while (n--)
464			ww_mutex_unlock(&locks[order[n]]);
465
466		if (err == -EDEADLK) {
467			if (!time_after(jiffies, stress->timeout)) {
468				ww_mutex_lock_slow(&locks[order[contended]], &ctx);
469				goto retry;
470			}
471		}
472
473		ww_acquire_fini(&ctx);
474		if (err) {
475			pr_err_once("stress (%s) failed with %d\n",
476				    __func__, err);
477			break;
478		}
 
 
479	} while (!time_after(jiffies, stress->timeout));
480
481	kfree(order);
 
482}
483
484struct reorder_lock {
485	struct list_head link;
486	struct ww_mutex *lock;
487};
488
489static void stress_reorder_work(struct work_struct *work)
490{
491	struct stress *stress = container_of(work, typeof(*stress), work);
492	LIST_HEAD(locks);
493	struct ww_acquire_ctx ctx;
494	struct reorder_lock *ll, *ln;
495	int *order;
496	int n, err;
497
498	order = get_random_order(stress->nlocks);
499	if (!order)
500		return;
501
502	for (n = 0; n < stress->nlocks; n++) {
503		ll = kmalloc(sizeof(*ll), GFP_KERNEL);
504		if (!ll)
505			goto out;
506
507		ll->lock = &stress->locks[order[n]];
508		list_add(&ll->link, &locks);
509	}
510	kfree(order);
511	order = NULL;
512
513	do {
514		ww_acquire_init(&ctx, &ww_class);
515
516		list_for_each_entry(ll, &locks, link) {
517			err = ww_mutex_lock(ll->lock, &ctx);
518			if (!err)
519				continue;
520
521			ln = ll;
522			list_for_each_entry_continue_reverse(ln, &locks, link)
523				ww_mutex_unlock(ln->lock);
524
525			if (err != -EDEADLK) {
526				pr_err_once("stress (%s) failed with %d\n",
527					    __func__, err);
528				break;
529			}
530
531			ww_mutex_lock_slow(ll->lock, &ctx);
532			list_move(&ll->link, &locks); /* restarts iteration */
533		}
534
535		dummy_load(stress);
536		list_for_each_entry(ll, &locks, link)
537			ww_mutex_unlock(ll->lock);
538
539		ww_acquire_fini(&ctx);
540	} while (!time_after(jiffies, stress->timeout));
541
542out:
543	list_for_each_entry_safe(ll, ln, &locks, link)
544		kfree(ll);
545	kfree(order);
 
546}
547
548static void stress_one_work(struct work_struct *work)
549{
550	struct stress *stress = container_of(work, typeof(*stress), work);
551	const int nlocks = stress->nlocks;
552	struct ww_mutex *lock = stress->locks + get_random_u32_below(nlocks);
553	int err;
554
555	do {
556		err = ww_mutex_lock(lock, NULL);
557		if (!err) {
558			dummy_load(stress);
559			ww_mutex_unlock(lock);
560		} else {
561			pr_err_once("stress (%s) failed with %d\n",
562				    __func__, err);
563			break;
564		}
565	} while (!time_after(jiffies, stress->timeout));
 
 
566}
567
568#define STRESS_INORDER BIT(0)
569#define STRESS_REORDER BIT(1)
570#define STRESS_ONE BIT(2)
571#define STRESS_ALL (STRESS_INORDER | STRESS_REORDER | STRESS_ONE)
572
573static int stress(int nlocks, int nthreads, unsigned int flags)
574{
575	struct ww_mutex *locks;
576	struct stress *stress_array;
577	int n, count;
578
579	locks = kmalloc_array(nlocks, sizeof(*locks), GFP_KERNEL);
580	if (!locks)
581		return -ENOMEM;
582
583	stress_array = kmalloc_array(nthreads, sizeof(*stress_array),
584				     GFP_KERNEL);
585	if (!stress_array) {
586		kfree(locks);
587		return -ENOMEM;
588	}
589
590	for (n = 0; n < nlocks; n++)
591		ww_mutex_init(&locks[n], &ww_class);
592
593	count = 0;
594	for (n = 0; nthreads; n++) {
595		struct stress *stress;
596		void (*fn)(struct work_struct *work);
597
598		fn = NULL;
599		switch (n & 3) {
600		case 0:
601			if (flags & STRESS_INORDER)
602				fn = stress_inorder_work;
603			break;
604		case 1:
605			if (flags & STRESS_REORDER)
606				fn = stress_reorder_work;
607			break;
608		case 2:
609			if (flags & STRESS_ONE)
610				fn = stress_one_work;
611			break;
612		}
613
614		if (!fn)
615			continue;
616
617		stress = &stress_array[count++];
 
 
618
619		INIT_WORK(&stress->work, fn);
620		stress->locks = locks;
621		stress->nlocks = nlocks;
622		stress->timeout = jiffies + 2*HZ;
623
624		queue_work(wq, &stress->work);
625		nthreads--;
626	}
627
628	flush_workqueue(wq);
629
630	for (n = 0; n < nlocks; n++)
631		ww_mutex_destroy(&locks[n]);
632	kfree(stress_array);
633	kfree(locks);
634
635	return 0;
636}
637
638static int __init test_ww_mutex_init(void)
639{
640	int ncpus = num_online_cpus();
641	int ret, i;
642
643	printk(KERN_INFO "Beginning ww mutex selftests\n");
644
645	prandom_seed_state(&rng, get_random_u64());
646
647	wq = alloc_workqueue("test-ww_mutex", WQ_UNBOUND, 0);
648	if (!wq)
649		return -ENOMEM;
650
651	ret = test_mutex();
652	if (ret)
653		return ret;
654
655	ret = test_aa(false);
656	if (ret)
657		return ret;
658
659	ret = test_aa(true);
660	if (ret)
661		return ret;
662
663	for (i = 0; i < 4; i++) {
664		ret = test_abba(i & 1, i & 2);
665		if (ret)
666			return ret;
667	}
668
669	ret = test_cycle(ncpus);
670	if (ret)
671		return ret;
672
673	ret = stress(16, 2*ncpus, STRESS_INORDER);
674	if (ret)
675		return ret;
676
677	ret = stress(16, 2*ncpus, STRESS_REORDER);
678	if (ret)
679		return ret;
680
681	ret = stress(2046, hweight32(STRESS_ALL)*ncpus, STRESS_ALL);
682	if (ret)
683		return ret;
684
685	printk(KERN_INFO "All ww mutex selftests passed\n");
686	return 0;
687}
688
689static void __exit test_ww_mutex_exit(void)
690{
691	destroy_workqueue(wq);
692}
693
694module_init(test_ww_mutex_init);
695module_exit(test_ww_mutex_exit);
696
697MODULE_LICENSE("GPL");
698MODULE_AUTHOR("Intel Corporation");
699MODULE_DESCRIPTION("API test facility for ww_mutexes");
v4.17
 
  1/*
  2 * Module-based API test facility for ww_mutexes
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License as published by
  6 * the Free Software Foundation; either version 2 of the License, or
  7 * (at your option) any later version.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, you can access it online at
 16 * http://www.gnu.org/licenses/gpl-2.0.html.
 17 */
 18
 19#include <linux/kernel.h>
 20
 21#include <linux/completion.h>
 22#include <linux/delay.h>
 23#include <linux/kthread.h>
 24#include <linux/module.h>
 25#include <linux/random.h>
 26#include <linux/slab.h>
 27#include <linux/ww_mutex.h>
 28
 29static DEFINE_WW_CLASS(ww_class);
 30struct workqueue_struct *wq;
 31
 
 
 
 
 
 
 
 
 
 32struct test_mutex {
 33	struct work_struct work;
 34	struct ww_mutex mutex;
 35	struct completion ready, go, done;
 36	unsigned int flags;
 37};
 38
 39#define TEST_MTX_SPIN BIT(0)
 40#define TEST_MTX_TRY BIT(1)
 41#define TEST_MTX_CTX BIT(2)
 42#define __TEST_MTX_LAST BIT(3)
 43
 44static void test_mutex_work(struct work_struct *work)
 45{
 46	struct test_mutex *mtx = container_of(work, typeof(*mtx), work);
 47
 48	complete(&mtx->ready);
 49	wait_for_completion(&mtx->go);
 50
 51	if (mtx->flags & TEST_MTX_TRY) {
 52		while (!ww_mutex_trylock(&mtx->mutex))
 53			cond_resched();
 54	} else {
 55		ww_mutex_lock(&mtx->mutex, NULL);
 56	}
 57	complete(&mtx->done);
 58	ww_mutex_unlock(&mtx->mutex);
 59}
 60
 61static int __test_mutex(unsigned int flags)
 62{
 63#define TIMEOUT (HZ / 16)
 64	struct test_mutex mtx;
 65	struct ww_acquire_ctx ctx;
 66	int ret;
 67
 68	ww_mutex_init(&mtx.mutex, &ww_class);
 69	ww_acquire_init(&ctx, &ww_class);
 
 70
 71	INIT_WORK_ONSTACK(&mtx.work, test_mutex_work);
 72	init_completion(&mtx.ready);
 73	init_completion(&mtx.go);
 74	init_completion(&mtx.done);
 75	mtx.flags = flags;
 76
 77	schedule_work(&mtx.work);
 78
 79	wait_for_completion(&mtx.ready);
 80	ww_mutex_lock(&mtx.mutex, (flags & TEST_MTX_CTX) ? &ctx : NULL);
 81	complete(&mtx.go);
 82	if (flags & TEST_MTX_SPIN) {
 83		unsigned long timeout = jiffies + TIMEOUT;
 84
 85		ret = 0;
 86		do {
 87			if (completion_done(&mtx.done)) {
 88				ret = -EINVAL;
 89				break;
 90			}
 91			cond_resched();
 92		} while (time_before(jiffies, timeout));
 93	} else {
 94		ret = wait_for_completion_timeout(&mtx.done, TIMEOUT);
 95	}
 96	ww_mutex_unlock(&mtx.mutex);
 97	ww_acquire_fini(&ctx);
 
 98
 99	if (ret) {
100		pr_err("%s(flags=%x): mutual exclusion failure\n",
101		       __func__, flags);
102		ret = -EINVAL;
103	}
104
105	flush_work(&mtx.work);
106	destroy_work_on_stack(&mtx.work);
107	return ret;
108#undef TIMEOUT
109}
110
111static int test_mutex(void)
112{
113	int ret;
114	int i;
115
116	for (i = 0; i < __TEST_MTX_LAST; i++) {
117		ret = __test_mutex(i);
118		if (ret)
119			return ret;
120	}
121
122	return 0;
123}
124
125static int test_aa(void)
126{
127	struct ww_mutex mutex;
128	struct ww_acquire_ctx ctx;
129	int ret;
 
130
131	ww_mutex_init(&mutex, &ww_class);
132	ww_acquire_init(&ctx, &ww_class);
133
134	ww_mutex_lock(&mutex, &ctx);
 
 
 
 
 
 
 
 
 
 
 
 
135
136	if (ww_mutex_trylock(&mutex))  {
137		pr_err("%s: trylocked itself!\n", __func__);
 
 
 
 
 
 
 
138		ww_mutex_unlock(&mutex);
139		ret = -EINVAL;
140		goto out;
141	}
142
143	ret = ww_mutex_lock(&mutex, &ctx);
144	if (ret != -EALREADY) {
145		pr_err("%s: missed deadlock for recursing, ret=%d\n",
146		       __func__, ret);
147		if (!ret)
148			ww_mutex_unlock(&mutex);
149		ret = -EINVAL;
150		goto out;
151	}
152
 
153	ret = 0;
154out:
155	ww_mutex_unlock(&mutex);
156	ww_acquire_fini(&ctx);
157	return ret;
158}
159
160struct test_abba {
161	struct work_struct work;
162	struct ww_mutex a_mutex;
163	struct ww_mutex b_mutex;
164	struct completion a_ready;
165	struct completion b_ready;
166	bool resolve;
167	int result;
168};
169
170static void test_abba_work(struct work_struct *work)
171{
172	struct test_abba *abba = container_of(work, typeof(*abba), work);
173	struct ww_acquire_ctx ctx;
174	int err;
175
176	ww_acquire_init(&ctx, &ww_class);
177	ww_mutex_lock(&abba->b_mutex, &ctx);
 
 
 
 
 
178
179	complete(&abba->b_ready);
180	wait_for_completion(&abba->a_ready);
181
182	err = ww_mutex_lock(&abba->a_mutex, &ctx);
183	if (abba->resolve && err == -EDEADLK) {
184		ww_mutex_unlock(&abba->b_mutex);
185		ww_mutex_lock_slow(&abba->a_mutex, &ctx);
186		err = ww_mutex_lock(&abba->b_mutex, &ctx);
187	}
188
189	if (!err)
190		ww_mutex_unlock(&abba->a_mutex);
191	ww_mutex_unlock(&abba->b_mutex);
192	ww_acquire_fini(&ctx);
193
194	abba->result = err;
195}
196
197static int test_abba(bool resolve)
198{
199	struct test_abba abba;
200	struct ww_acquire_ctx ctx;
201	int err, ret;
202
203	ww_mutex_init(&abba.a_mutex, &ww_class);
204	ww_mutex_init(&abba.b_mutex, &ww_class);
205	INIT_WORK_ONSTACK(&abba.work, test_abba_work);
206	init_completion(&abba.a_ready);
207	init_completion(&abba.b_ready);
 
208	abba.resolve = resolve;
209
210	schedule_work(&abba.work);
211
212	ww_acquire_init(&ctx, &ww_class);
213	ww_mutex_lock(&abba.a_mutex, &ctx);
 
 
 
 
 
214
215	complete(&abba.a_ready);
216	wait_for_completion(&abba.b_ready);
217
218	err = ww_mutex_lock(&abba.b_mutex, &ctx);
219	if (resolve && err == -EDEADLK) {
220		ww_mutex_unlock(&abba.a_mutex);
221		ww_mutex_lock_slow(&abba.b_mutex, &ctx);
222		err = ww_mutex_lock(&abba.a_mutex, &ctx);
223	}
224
225	if (!err)
226		ww_mutex_unlock(&abba.b_mutex);
227	ww_mutex_unlock(&abba.a_mutex);
228	ww_acquire_fini(&ctx);
229
230	flush_work(&abba.work);
231	destroy_work_on_stack(&abba.work);
232
233	ret = 0;
234	if (resolve) {
235		if (err || abba.result) {
236			pr_err("%s: failed to resolve ABBA deadlock, A err=%d, B err=%d\n",
237			       __func__, err, abba.result);
238			ret = -EINVAL;
239		}
240	} else {
241		if (err != -EDEADLK && abba.result != -EDEADLK) {
242			pr_err("%s: missed ABBA deadlock, A err=%d, B err=%d\n",
243			       __func__, err, abba.result);
244			ret = -EINVAL;
245		}
246	}
247	return ret;
248}
249
250struct test_cycle {
251	struct work_struct work;
252	struct ww_mutex a_mutex;
253	struct ww_mutex *b_mutex;
254	struct completion *a_signal;
255	struct completion b_signal;
256	int result;
257};
258
259static void test_cycle_work(struct work_struct *work)
260{
261	struct test_cycle *cycle = container_of(work, typeof(*cycle), work);
262	struct ww_acquire_ctx ctx;
263	int err;
264
265	ww_acquire_init(&ctx, &ww_class);
266	ww_mutex_lock(&cycle->a_mutex, &ctx);
267
268	complete(cycle->a_signal);
269	wait_for_completion(&cycle->b_signal);
270
271	err = ww_mutex_lock(cycle->b_mutex, &ctx);
272	if (err == -EDEADLK) {
 
273		ww_mutex_unlock(&cycle->a_mutex);
274		ww_mutex_lock_slow(cycle->b_mutex, &ctx);
275		err = ww_mutex_lock(&cycle->a_mutex, &ctx);
276	}
277
278	if (!err)
279		ww_mutex_unlock(cycle->b_mutex);
280	ww_mutex_unlock(&cycle->a_mutex);
 
281	ww_acquire_fini(&ctx);
282
283	cycle->result = err;
284}
285
286static int __test_cycle(unsigned int nthreads)
287{
288	struct test_cycle *cycles;
289	unsigned int n, last = nthreads - 1;
290	int ret;
291
292	cycles = kmalloc_array(nthreads, sizeof(*cycles), GFP_KERNEL);
293	if (!cycles)
294		return -ENOMEM;
295
296	for (n = 0; n < nthreads; n++) {
297		struct test_cycle *cycle = &cycles[n];
298
299		ww_mutex_init(&cycle->a_mutex, &ww_class);
300		if (n == last)
301			cycle->b_mutex = &cycles[0].a_mutex;
302		else
303			cycle->b_mutex = &cycles[n + 1].a_mutex;
304
305		if (n == 0)
306			cycle->a_signal = &cycles[last].b_signal;
307		else
308			cycle->a_signal = &cycles[n - 1].b_signal;
309		init_completion(&cycle->b_signal);
310
311		INIT_WORK(&cycle->work, test_cycle_work);
312		cycle->result = 0;
313	}
314
315	for (n = 0; n < nthreads; n++)
316		queue_work(wq, &cycles[n].work);
317
318	flush_workqueue(wq);
319
320	ret = 0;
321	for (n = 0; n < nthreads; n++) {
322		struct test_cycle *cycle = &cycles[n];
323
324		if (!cycle->result)
325			continue;
326
327		pr_err("cylic deadlock not resolved, ret[%d/%d] = %d\n",
328		       n, nthreads, cycle->result);
329		ret = -EINVAL;
330		break;
331	}
332
333	for (n = 0; n < nthreads; n++)
334		ww_mutex_destroy(&cycles[n].a_mutex);
335	kfree(cycles);
336	return ret;
337}
338
339static int test_cycle(unsigned int ncpus)
340{
341	unsigned int n;
342	int ret;
343
344	for (n = 2; n <= ncpus + 1; n++) {
345		ret = __test_cycle(n);
346		if (ret)
347			return ret;
348	}
349
350	return 0;
351}
352
353struct stress {
354	struct work_struct work;
355	struct ww_mutex *locks;
356	unsigned long timeout;
357	int nlocks;
358};
359
 
 
 
 
 
 
 
 
 
 
 
 
 
360static int *get_random_order(int count)
361{
362	int *order;
363	int n, r, tmp;
364
365	order = kmalloc_array(count, sizeof(*order), GFP_KERNEL);
366	if (!order)
367		return order;
368
369	for (n = 0; n < count; n++)
370		order[n] = n;
371
372	for (n = count - 1; n > 1; n--) {
373		r = get_random_int() % (n + 1);
374		if (r != n) {
375			tmp = order[n];
376			order[n] = order[r];
377			order[r] = tmp;
378		}
379	}
380
381	return order;
382}
383
384static void dummy_load(struct stress *stress)
385{
386	usleep_range(1000, 2000);
387}
388
389static void stress_inorder_work(struct work_struct *work)
390{
391	struct stress *stress = container_of(work, typeof(*stress), work);
392	const int nlocks = stress->nlocks;
393	struct ww_mutex *locks = stress->locks;
394	struct ww_acquire_ctx ctx;
395	int *order;
396
397	order = get_random_order(nlocks);
398	if (!order)
399		return;
400
401	do {
402		int contended = -1;
403		int n, err;
404
405		ww_acquire_init(&ctx, &ww_class);
406retry:
407		err = 0;
408		for (n = 0; n < nlocks; n++) {
409			if (n == contended)
410				continue;
411
412			err = ww_mutex_lock(&locks[order[n]], &ctx);
413			if (err < 0)
414				break;
415		}
416		if (!err)
417			dummy_load(stress);
418
419		if (contended > n)
420			ww_mutex_unlock(&locks[order[contended]]);
421		contended = n;
422		while (n--)
423			ww_mutex_unlock(&locks[order[n]]);
424
425		if (err == -EDEADLK) {
426			ww_mutex_lock_slow(&locks[order[contended]], &ctx);
427			goto retry;
 
 
428		}
429
 
430		if (err) {
431			pr_err_once("stress (%s) failed with %d\n",
432				    __func__, err);
433			break;
434		}
435
436		ww_acquire_fini(&ctx);
437	} while (!time_after(jiffies, stress->timeout));
438
439	kfree(order);
440	kfree(stress);
441}
442
443struct reorder_lock {
444	struct list_head link;
445	struct ww_mutex *lock;
446};
447
448static void stress_reorder_work(struct work_struct *work)
449{
450	struct stress *stress = container_of(work, typeof(*stress), work);
451	LIST_HEAD(locks);
452	struct ww_acquire_ctx ctx;
453	struct reorder_lock *ll, *ln;
454	int *order;
455	int n, err;
456
457	order = get_random_order(stress->nlocks);
458	if (!order)
459		return;
460
461	for (n = 0; n < stress->nlocks; n++) {
462		ll = kmalloc(sizeof(*ll), GFP_KERNEL);
463		if (!ll)
464			goto out;
465
466		ll->lock = &stress->locks[order[n]];
467		list_add(&ll->link, &locks);
468	}
469	kfree(order);
470	order = NULL;
471
472	do {
473		ww_acquire_init(&ctx, &ww_class);
474
475		list_for_each_entry(ll, &locks, link) {
476			err = ww_mutex_lock(ll->lock, &ctx);
477			if (!err)
478				continue;
479
480			ln = ll;
481			list_for_each_entry_continue_reverse(ln, &locks, link)
482				ww_mutex_unlock(ln->lock);
483
484			if (err != -EDEADLK) {
485				pr_err_once("stress (%s) failed with %d\n",
486					    __func__, err);
487				break;
488			}
489
490			ww_mutex_lock_slow(ll->lock, &ctx);
491			list_move(&ll->link, &locks); /* restarts iteration */
492		}
493
494		dummy_load(stress);
495		list_for_each_entry(ll, &locks, link)
496			ww_mutex_unlock(ll->lock);
497
498		ww_acquire_fini(&ctx);
499	} while (!time_after(jiffies, stress->timeout));
500
501out:
502	list_for_each_entry_safe(ll, ln, &locks, link)
503		kfree(ll);
504	kfree(order);
505	kfree(stress);
506}
507
508static void stress_one_work(struct work_struct *work)
509{
510	struct stress *stress = container_of(work, typeof(*stress), work);
511	const int nlocks = stress->nlocks;
512	struct ww_mutex *lock = stress->locks + (get_random_int() % nlocks);
513	int err;
514
515	do {
516		err = ww_mutex_lock(lock, NULL);
517		if (!err) {
518			dummy_load(stress);
519			ww_mutex_unlock(lock);
520		} else {
521			pr_err_once("stress (%s) failed with %d\n",
522				    __func__, err);
523			break;
524		}
525	} while (!time_after(jiffies, stress->timeout));
526
527	kfree(stress);
528}
529
530#define STRESS_INORDER BIT(0)
531#define STRESS_REORDER BIT(1)
532#define STRESS_ONE BIT(2)
533#define STRESS_ALL (STRESS_INORDER | STRESS_REORDER | STRESS_ONE)
534
535static int stress(int nlocks, int nthreads, unsigned int flags)
536{
537	struct ww_mutex *locks;
538	int n;
 
539
540	locks = kmalloc_array(nlocks, sizeof(*locks), GFP_KERNEL);
541	if (!locks)
542		return -ENOMEM;
543
 
 
 
 
 
 
 
544	for (n = 0; n < nlocks; n++)
545		ww_mutex_init(&locks[n], &ww_class);
546
 
547	for (n = 0; nthreads; n++) {
548		struct stress *stress;
549		void (*fn)(struct work_struct *work);
550
551		fn = NULL;
552		switch (n & 3) {
553		case 0:
554			if (flags & STRESS_INORDER)
555				fn = stress_inorder_work;
556			break;
557		case 1:
558			if (flags & STRESS_REORDER)
559				fn = stress_reorder_work;
560			break;
561		case 2:
562			if (flags & STRESS_ONE)
563				fn = stress_one_work;
564			break;
565		}
566
567		if (!fn)
568			continue;
569
570		stress = kmalloc(sizeof(*stress), GFP_KERNEL);
571		if (!stress)
572			break;
573
574		INIT_WORK(&stress->work, fn);
575		stress->locks = locks;
576		stress->nlocks = nlocks;
577		stress->timeout = jiffies + 2*HZ;
578
579		queue_work(wq, &stress->work);
580		nthreads--;
581	}
582
583	flush_workqueue(wq);
584
585	for (n = 0; n < nlocks; n++)
586		ww_mutex_destroy(&locks[n]);
 
587	kfree(locks);
588
589	return 0;
590}
591
592static int __init test_ww_mutex_init(void)
593{
594	int ncpus = num_online_cpus();
595	int ret;
 
 
 
 
596
597	wq = alloc_workqueue("test-ww_mutex", WQ_UNBOUND, 0);
598	if (!wq)
599		return -ENOMEM;
600
601	ret = test_mutex();
602	if (ret)
603		return ret;
604
605	ret = test_aa();
606	if (ret)
607		return ret;
608
609	ret = test_abba(false);
610	if (ret)
611		return ret;
612
613	ret = test_abba(true);
614	if (ret)
615		return ret;
 
 
616
617	ret = test_cycle(ncpus);
618	if (ret)
619		return ret;
620
621	ret = stress(16, 2*ncpus, STRESS_INORDER);
622	if (ret)
623		return ret;
624
625	ret = stress(16, 2*ncpus, STRESS_REORDER);
626	if (ret)
627		return ret;
628
629	ret = stress(4095, hweight32(STRESS_ALL)*ncpus, STRESS_ALL);
630	if (ret)
631		return ret;
632
 
633	return 0;
634}
635
636static void __exit test_ww_mutex_exit(void)
637{
638	destroy_workqueue(wq);
639}
640
641module_init(test_ww_mutex_init);
642module_exit(test_ww_mutex_exit);
643
644MODULE_LICENSE("GPL");
645MODULE_AUTHOR("Intel Corporation");