Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
   1/*
   2 * VME Bridge Framework
   3 *
   4 * Author: Martyn Welch <martyn.welch@ge.com>
   5 * Copyright 2008 GE Intelligent Platforms Embedded Systems, Inc.
   6 *
   7 * Based on work by Tom Armistead and Ajit Prem
   8 * Copyright 2004 Motorola Inc.
   9 *
  10 * This program is free software; you can redistribute  it and/or modify it
  11 * under  the terms of  the GNU General  Public License as published by the
  12 * Free Software Foundation;  either version 2 of the  License, or (at your
  13 * option) any later version.
  14 */
  15
  16#include <linux/init.h>
  17#include <linux/export.h>
  18#include <linux/mm.h>
  19#include <linux/types.h>
  20#include <linux/kernel.h>
  21#include <linux/errno.h>
  22#include <linux/pci.h>
  23#include <linux/poll.h>
  24#include <linux/highmem.h>
  25#include <linux/interrupt.h>
  26#include <linux/pagemap.h>
  27#include <linux/device.h>
  28#include <linux/dma-mapping.h>
  29#include <linux/syscalls.h>
  30#include <linux/mutex.h>
  31#include <linux/spinlock.h>
  32#include <linux/slab.h>
  33#include <linux/vme.h>
  34
  35#include "vme_bridge.h"
  36
  37/* Bitmask and list of registered buses both protected by common mutex */
  38static unsigned int vme_bus_numbers;
  39static LIST_HEAD(vme_bus_list);
  40static DEFINE_MUTEX(vme_buses_lock);
  41
  42static int __init vme_init(void);
  43
  44static struct vme_dev *dev_to_vme_dev(struct device *dev)
  45{
  46	return container_of(dev, struct vme_dev, dev);
  47}
  48
  49/*
  50 * Find the bridge that the resource is associated with.
  51 */
  52static struct vme_bridge *find_bridge(struct vme_resource *resource)
  53{
  54	/* Get list to search */
  55	switch (resource->type) {
  56	case VME_MASTER:
  57		return list_entry(resource->entry, struct vme_master_resource,
  58			list)->parent;
  59		break;
  60	case VME_SLAVE:
  61		return list_entry(resource->entry, struct vme_slave_resource,
  62			list)->parent;
  63		break;
  64	case VME_DMA:
  65		return list_entry(resource->entry, struct vme_dma_resource,
  66			list)->parent;
  67		break;
  68	case VME_LM:
  69		return list_entry(resource->entry, struct vme_lm_resource,
  70			list)->parent;
  71		break;
  72	default:
  73		printk(KERN_ERR "Unknown resource type\n");
  74		return NULL;
  75		break;
  76	}
  77}
  78
  79/**
  80 * vme_free_consistent - Allocate contiguous memory.
  81 * @resource: Pointer to VME resource.
  82 * @size: Size of allocation required.
  83 * @dma: Pointer to variable to store physical address of allocation.
  84 *
  85 * Allocate a contiguous block of memory for use by the driver. This is used to
  86 * create the buffers for the slave windows.
  87 *
  88 * Return: Virtual address of allocation on success, NULL on failure.
  89 */
  90void *vme_alloc_consistent(struct vme_resource *resource, size_t size,
  91	dma_addr_t *dma)
  92{
  93	struct vme_bridge *bridge;
  94
  95	if (!resource) {
  96		printk(KERN_ERR "No resource\n");
  97		return NULL;
  98	}
  99
 100	bridge = find_bridge(resource);
 101	if (!bridge) {
 102		printk(KERN_ERR "Can't find bridge\n");
 103		return NULL;
 104	}
 105
 106	if (!bridge->parent) {
 107		printk(KERN_ERR "Dev entry NULL for bridge %s\n", bridge->name);
 108		return NULL;
 109	}
 110
 111	if (!bridge->alloc_consistent) {
 112		printk(KERN_ERR "alloc_consistent not supported by bridge %s\n",
 113		       bridge->name);
 114		return NULL;
 115	}
 116
 117	return bridge->alloc_consistent(bridge->parent, size, dma);
 118}
 119EXPORT_SYMBOL(vme_alloc_consistent);
 120
 121/**
 122 * vme_free_consistent - Free previously allocated memory.
 123 * @resource: Pointer to VME resource.
 124 * @size: Size of allocation to free.
 125 * @vaddr: Virtual address of allocation.
 126 * @dma: Physical address of allocation.
 127 *
 128 * Free previously allocated block of contiguous memory.
 129 */
 130void vme_free_consistent(struct vme_resource *resource, size_t size,
 131	void *vaddr, dma_addr_t dma)
 132{
 133	struct vme_bridge *bridge;
 134
 135	if (!resource) {
 136		printk(KERN_ERR "No resource\n");
 137		return;
 138	}
 139
 140	bridge = find_bridge(resource);
 141	if (!bridge) {
 142		printk(KERN_ERR "Can't find bridge\n");
 143		return;
 144	}
 145
 146	if (!bridge->parent) {
 147		printk(KERN_ERR "Dev entry NULL for bridge %s\n", bridge->name);
 148		return;
 149	}
 150
 151	if (!bridge->free_consistent) {
 152		printk(KERN_ERR "free_consistent not supported by bridge %s\n",
 153		       bridge->name);
 154		return;
 155	}
 156
 157	bridge->free_consistent(bridge->parent, size, vaddr, dma);
 158}
 159EXPORT_SYMBOL(vme_free_consistent);
 160
 161/**
 162 * vme_get_size - Helper function returning size of a VME window
 163 * @resource: Pointer to VME slave or master resource.
 164 *
 165 * Determine the size of the VME window provided. This is a helper
 166 * function, wrappering the call to vme_master_get or vme_slave_get
 167 * depending on the type of window resource handed to it.
 168 *
 169 * Return: Size of the window on success, zero on failure.
 170 */
 171size_t vme_get_size(struct vme_resource *resource)
 172{
 173	int enabled, retval;
 174	unsigned long long base, size;
 175	dma_addr_t buf_base;
 176	u32 aspace, cycle, dwidth;
 177
 178	switch (resource->type) {
 179	case VME_MASTER:
 180		retval = vme_master_get(resource, &enabled, &base, &size,
 181			&aspace, &cycle, &dwidth);
 182		if (retval)
 183			return 0;
 184
 185		return size;
 186		break;
 187	case VME_SLAVE:
 188		retval = vme_slave_get(resource, &enabled, &base, &size,
 189			&buf_base, &aspace, &cycle);
 190		if (retval)
 191			return 0;
 192
 193		return size;
 194		break;
 195	case VME_DMA:
 196		return 0;
 197		break;
 198	default:
 199		printk(KERN_ERR "Unknown resource type\n");
 200		return 0;
 201		break;
 202	}
 203}
 204EXPORT_SYMBOL(vme_get_size);
 205
 206int vme_check_window(u32 aspace, unsigned long long vme_base,
 207		     unsigned long long size)
 208{
 209	int retval = 0;
 210
 211	if (vme_base + size < size)
 212		return -EINVAL;
 213
 214	switch (aspace) {
 215	case VME_A16:
 216		if (vme_base + size > VME_A16_MAX)
 217			retval = -EFAULT;
 218		break;
 219	case VME_A24:
 220		if (vme_base + size > VME_A24_MAX)
 221			retval = -EFAULT;
 222		break;
 223	case VME_A32:
 224		if (vme_base + size > VME_A32_MAX)
 225			retval = -EFAULT;
 226		break;
 227	case VME_A64:
 228		/* The VME_A64_MAX limit is actually U64_MAX + 1 */
 229		break;
 230	case VME_CRCSR:
 231		if (vme_base + size > VME_CRCSR_MAX)
 232			retval = -EFAULT;
 233		break;
 234	case VME_USER1:
 235	case VME_USER2:
 236	case VME_USER3:
 237	case VME_USER4:
 238		/* User Defined */
 239		break;
 240	default:
 241		printk(KERN_ERR "Invalid address space\n");
 242		retval = -EINVAL;
 243		break;
 244	}
 245
 246	return retval;
 247}
 248EXPORT_SYMBOL(vme_check_window);
 249
 250static u32 vme_get_aspace(int am)
 251{
 252	switch (am) {
 253	case 0x29:
 254	case 0x2D:
 255		return VME_A16;
 256	case 0x38:
 257	case 0x39:
 258	case 0x3A:
 259	case 0x3B:
 260	case 0x3C:
 261	case 0x3D:
 262	case 0x3E:
 263	case 0x3F:
 264		return VME_A24;
 265	case 0x8:
 266	case 0x9:
 267	case 0xA:
 268	case 0xB:
 269	case 0xC:
 270	case 0xD:
 271	case 0xE:
 272	case 0xF:
 273		return VME_A32;
 274	case 0x0:
 275	case 0x1:
 276	case 0x3:
 277		return VME_A64;
 278	}
 279
 280	return 0;
 281}
 282
 283/**
 284 * vme_slave_request - Request a VME slave window resource.
 285 * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
 286 * @address: Required VME address space.
 287 * @cycle: Required VME data transfer cycle type.
 288 *
 289 * Request use of a VME window resource capable of being set for the requested
 290 * address space and data transfer cycle.
 291 *
 292 * Return: Pointer to VME resource on success, NULL on failure.
 293 */
 294struct vme_resource *vme_slave_request(struct vme_dev *vdev, u32 address,
 295	u32 cycle)
 296{
 297	struct vme_bridge *bridge;
 298	struct list_head *slave_pos = NULL;
 299	struct vme_slave_resource *allocated_image = NULL;
 300	struct vme_slave_resource *slave_image = NULL;
 301	struct vme_resource *resource = NULL;
 302
 303	bridge = vdev->bridge;
 304	if (!bridge) {
 305		printk(KERN_ERR "Can't find VME bus\n");
 306		goto err_bus;
 307	}
 308
 309	/* Loop through slave resources */
 310	list_for_each(slave_pos, &bridge->slave_resources) {
 311		slave_image = list_entry(slave_pos,
 312			struct vme_slave_resource, list);
 313
 314		if (!slave_image) {
 315			printk(KERN_ERR "Registered NULL Slave resource\n");
 316			continue;
 317		}
 318
 319		/* Find an unlocked and compatible image */
 320		mutex_lock(&slave_image->mtx);
 321		if (((slave_image->address_attr & address) == address) &&
 322			((slave_image->cycle_attr & cycle) == cycle) &&
 323			(slave_image->locked == 0)) {
 324
 325			slave_image->locked = 1;
 326			mutex_unlock(&slave_image->mtx);
 327			allocated_image = slave_image;
 328			break;
 329		}
 330		mutex_unlock(&slave_image->mtx);
 331	}
 332
 333	/* No free image */
 334	if (!allocated_image)
 335		goto err_image;
 336
 337	resource = kmalloc(sizeof(*resource), GFP_KERNEL);
 338	if (!resource)
 339		goto err_alloc;
 340
 341	resource->type = VME_SLAVE;
 342	resource->entry = &allocated_image->list;
 343
 344	return resource;
 345
 346err_alloc:
 347	/* Unlock image */
 348	mutex_lock(&slave_image->mtx);
 349	slave_image->locked = 0;
 350	mutex_unlock(&slave_image->mtx);
 351err_image:
 352err_bus:
 353	return NULL;
 354}
 355EXPORT_SYMBOL(vme_slave_request);
 356
 357/**
 358 * vme_slave_set - Set VME slave window configuration.
 359 * @resource: Pointer to VME slave resource.
 360 * @enabled: State to which the window should be configured.
 361 * @vme_base: Base address for the window.
 362 * @size: Size of the VME window.
 363 * @buf_base: Based address of buffer used to provide VME slave window storage.
 364 * @aspace: VME address space for the VME window.
 365 * @cycle: VME data transfer cycle type for the VME window.
 366 *
 367 * Set configuration for provided VME slave window.
 368 *
 369 * Return: Zero on success, -EINVAL if operation is not supported on this
 370 *         device, if an invalid resource has been provided or invalid
 371 *         attributes are provided. Hardware specific errors may also be
 372 *         returned.
 373 */
 374int vme_slave_set(struct vme_resource *resource, int enabled,
 375	unsigned long long vme_base, unsigned long long size,
 376	dma_addr_t buf_base, u32 aspace, u32 cycle)
 377{
 378	struct vme_bridge *bridge = find_bridge(resource);
 379	struct vme_slave_resource *image;
 380	int retval;
 381
 382	if (resource->type != VME_SLAVE) {
 383		printk(KERN_ERR "Not a slave resource\n");
 384		return -EINVAL;
 385	}
 386
 387	image = list_entry(resource->entry, struct vme_slave_resource, list);
 388
 389	if (!bridge->slave_set) {
 390		printk(KERN_ERR "Function not supported\n");
 391		return -ENOSYS;
 392	}
 393
 394	if (!(((image->address_attr & aspace) == aspace) &&
 395		((image->cycle_attr & cycle) == cycle))) {
 396		printk(KERN_ERR "Invalid attributes\n");
 397		return -EINVAL;
 398	}
 399
 400	retval = vme_check_window(aspace, vme_base, size);
 401	if (retval)
 402		return retval;
 403
 404	return bridge->slave_set(image, enabled, vme_base, size, buf_base,
 405		aspace, cycle);
 406}
 407EXPORT_SYMBOL(vme_slave_set);
 408
 409/**
 410 * vme_slave_get - Retrieve VME slave window configuration.
 411 * @resource: Pointer to VME slave resource.
 412 * @enabled: Pointer to variable for storing state.
 413 * @vme_base: Pointer to variable for storing window base address.
 414 * @size: Pointer to variable for storing window size.
 415 * @buf_base: Pointer to variable for storing slave buffer base address.
 416 * @aspace: Pointer to variable for storing VME address space.
 417 * @cycle: Pointer to variable for storing VME data transfer cycle type.
 418 *
 419 * Return configuration for provided VME slave window.
 420 *
 421 * Return: Zero on success, -EINVAL if operation is not supported on this
 422 *         device or if an invalid resource has been provided.
 423 */
 424int vme_slave_get(struct vme_resource *resource, int *enabled,
 425	unsigned long long *vme_base, unsigned long long *size,
 426	dma_addr_t *buf_base, u32 *aspace, u32 *cycle)
 427{
 428	struct vme_bridge *bridge = find_bridge(resource);
 429	struct vme_slave_resource *image;
 430
 431	if (resource->type != VME_SLAVE) {
 432		printk(KERN_ERR "Not a slave resource\n");
 433		return -EINVAL;
 434	}
 435
 436	image = list_entry(resource->entry, struct vme_slave_resource, list);
 437
 438	if (!bridge->slave_get) {
 439		printk(KERN_ERR "vme_slave_get not supported\n");
 440		return -EINVAL;
 441	}
 442
 443	return bridge->slave_get(image, enabled, vme_base, size, buf_base,
 444		aspace, cycle);
 445}
 446EXPORT_SYMBOL(vme_slave_get);
 447
 448/**
 449 * vme_slave_free - Free VME slave window
 450 * @resource: Pointer to VME slave resource.
 451 *
 452 * Free the provided slave resource so that it may be reallocated.
 453 */
 454void vme_slave_free(struct vme_resource *resource)
 455{
 456	struct vme_slave_resource *slave_image;
 457
 458	if (resource->type != VME_SLAVE) {
 459		printk(KERN_ERR "Not a slave resource\n");
 460		return;
 461	}
 462
 463	slave_image = list_entry(resource->entry, struct vme_slave_resource,
 464		list);
 465	if (!slave_image) {
 466		printk(KERN_ERR "Can't find slave resource\n");
 467		return;
 468	}
 469
 470	/* Unlock image */
 471	mutex_lock(&slave_image->mtx);
 472	if (slave_image->locked == 0)
 473		printk(KERN_ERR "Image is already free\n");
 474
 475	slave_image->locked = 0;
 476	mutex_unlock(&slave_image->mtx);
 477
 478	/* Free up resource memory */
 479	kfree(resource);
 480}
 481EXPORT_SYMBOL(vme_slave_free);
 482
 483/**
 484 * vme_master_request - Request a VME master window resource.
 485 * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
 486 * @address: Required VME address space.
 487 * @cycle: Required VME data transfer cycle type.
 488 * @dwidth: Required VME data transfer width.
 489 *
 490 * Request use of a VME window resource capable of being set for the requested
 491 * address space, data transfer cycle and width.
 492 *
 493 * Return: Pointer to VME resource on success, NULL on failure.
 494 */
 495struct vme_resource *vme_master_request(struct vme_dev *vdev, u32 address,
 496	u32 cycle, u32 dwidth)
 497{
 498	struct vme_bridge *bridge;
 499	struct list_head *master_pos = NULL;
 500	struct vme_master_resource *allocated_image = NULL;
 501	struct vme_master_resource *master_image = NULL;
 502	struct vme_resource *resource = NULL;
 503
 504	bridge = vdev->bridge;
 505	if (!bridge) {
 506		printk(KERN_ERR "Can't find VME bus\n");
 507		goto err_bus;
 508	}
 509
 510	/* Loop through master resources */
 511	list_for_each(master_pos, &bridge->master_resources) {
 512		master_image = list_entry(master_pos,
 513			struct vme_master_resource, list);
 514
 515		if (!master_image) {
 516			printk(KERN_WARNING "Registered NULL master resource\n");
 517			continue;
 518		}
 519
 520		/* Find an unlocked and compatible image */
 521		spin_lock(&master_image->lock);
 522		if (((master_image->address_attr & address) == address) &&
 523			((master_image->cycle_attr & cycle) == cycle) &&
 524			((master_image->width_attr & dwidth) == dwidth) &&
 525			(master_image->locked == 0)) {
 526
 527			master_image->locked = 1;
 528			spin_unlock(&master_image->lock);
 529			allocated_image = master_image;
 530			break;
 531		}
 532		spin_unlock(&master_image->lock);
 533	}
 534
 535	/* Check to see if we found a resource */
 536	if (!allocated_image) {
 537		printk(KERN_ERR "Can't find a suitable resource\n");
 538		goto err_image;
 539	}
 540
 541	resource = kmalloc(sizeof(*resource), GFP_KERNEL);
 542	if (!resource)
 543		goto err_alloc;
 544
 545	resource->type = VME_MASTER;
 546	resource->entry = &allocated_image->list;
 547
 548	return resource;
 549
 550err_alloc:
 551	/* Unlock image */
 552	spin_lock(&master_image->lock);
 553	master_image->locked = 0;
 554	spin_unlock(&master_image->lock);
 555err_image:
 556err_bus:
 557	return NULL;
 558}
 559EXPORT_SYMBOL(vme_master_request);
 560
 561/**
 562 * vme_master_set - Set VME master window configuration.
 563 * @resource: Pointer to VME master resource.
 564 * @enabled: State to which the window should be configured.
 565 * @vme_base: Base address for the window.
 566 * @size: Size of the VME window.
 567 * @aspace: VME address space for the VME window.
 568 * @cycle: VME data transfer cycle type for the VME window.
 569 * @dwidth: VME data transfer width for the VME window.
 570 *
 571 * Set configuration for provided VME master window.
 572 *
 573 * Return: Zero on success, -EINVAL if operation is not supported on this
 574 *         device, if an invalid resource has been provided or invalid
 575 *         attributes are provided. Hardware specific errors may also be
 576 *         returned.
 577 */
 578int vme_master_set(struct vme_resource *resource, int enabled,
 579	unsigned long long vme_base, unsigned long long size, u32 aspace,
 580	u32 cycle, u32 dwidth)
 581{
 582	struct vme_bridge *bridge = find_bridge(resource);
 583	struct vme_master_resource *image;
 584	int retval;
 585
 586	if (resource->type != VME_MASTER) {
 587		printk(KERN_ERR "Not a master resource\n");
 588		return -EINVAL;
 589	}
 590
 591	image = list_entry(resource->entry, struct vme_master_resource, list);
 592
 593	if (!bridge->master_set) {
 594		printk(KERN_WARNING "vme_master_set not supported\n");
 595		return -EINVAL;
 596	}
 597
 598	if (!(((image->address_attr & aspace) == aspace) &&
 599		((image->cycle_attr & cycle) == cycle) &&
 600		((image->width_attr & dwidth) == dwidth))) {
 601		printk(KERN_WARNING "Invalid attributes\n");
 602		return -EINVAL;
 603	}
 604
 605	retval = vme_check_window(aspace, vme_base, size);
 606	if (retval)
 607		return retval;
 608
 609	return bridge->master_set(image, enabled, vme_base, size, aspace,
 610		cycle, dwidth);
 611}
 612EXPORT_SYMBOL(vme_master_set);
 613
 614/**
 615 * vme_master_get - Retrieve VME master window configuration.
 616 * @resource: Pointer to VME master resource.
 617 * @enabled: Pointer to variable for storing state.
 618 * @vme_base: Pointer to variable for storing window base address.
 619 * @size: Pointer to variable for storing window size.
 620 * @aspace: Pointer to variable for storing VME address space.
 621 * @cycle: Pointer to variable for storing VME data transfer cycle type.
 622 * @dwidth: Pointer to variable for storing VME data transfer width.
 623 *
 624 * Return configuration for provided VME master window.
 625 *
 626 * Return: Zero on success, -EINVAL if operation is not supported on this
 627 *         device or if an invalid resource has been provided.
 628 */
 629int vme_master_get(struct vme_resource *resource, int *enabled,
 630	unsigned long long *vme_base, unsigned long long *size, u32 *aspace,
 631	u32 *cycle, u32 *dwidth)
 632{
 633	struct vme_bridge *bridge = find_bridge(resource);
 634	struct vme_master_resource *image;
 635
 636	if (resource->type != VME_MASTER) {
 637		printk(KERN_ERR "Not a master resource\n");
 638		return -EINVAL;
 639	}
 640
 641	image = list_entry(resource->entry, struct vme_master_resource, list);
 642
 643	if (!bridge->master_get) {
 644		printk(KERN_WARNING "%s not supported\n", __func__);
 645		return -EINVAL;
 646	}
 647
 648	return bridge->master_get(image, enabled, vme_base, size, aspace,
 649		cycle, dwidth);
 650}
 651EXPORT_SYMBOL(vme_master_get);
 652
 653/**
 654 * vme_master_write - Read data from VME space into a buffer.
 655 * @resource: Pointer to VME master resource.
 656 * @buf: Pointer to buffer where data should be transferred.
 657 * @count: Number of bytes to transfer.
 658 * @offset: Offset into VME master window at which to start transfer.
 659 *
 660 * Perform read of count bytes of data from location on VME bus which maps into
 661 * the VME master window at offset to buf.
 662 *
 663 * Return: Number of bytes read, -EINVAL if resource is not a VME master
 664 *         resource or read operation is not supported. -EFAULT returned if
 665 *         invalid offset is provided. Hardware specific errors may also be
 666 *         returned.
 667 */
 668ssize_t vme_master_read(struct vme_resource *resource, void *buf, size_t count,
 669	loff_t offset)
 670{
 671	struct vme_bridge *bridge = find_bridge(resource);
 672	struct vme_master_resource *image;
 673	size_t length;
 674
 675	if (!bridge->master_read) {
 676		printk(KERN_WARNING "Reading from resource not supported\n");
 677		return -EINVAL;
 678	}
 679
 680	if (resource->type != VME_MASTER) {
 681		printk(KERN_ERR "Not a master resource\n");
 682		return -EINVAL;
 683	}
 684
 685	image = list_entry(resource->entry, struct vme_master_resource, list);
 686
 687	length = vme_get_size(resource);
 688
 689	if (offset > length) {
 690		printk(KERN_WARNING "Invalid Offset\n");
 691		return -EFAULT;
 692	}
 693
 694	if ((offset + count) > length)
 695		count = length - offset;
 696
 697	return bridge->master_read(image, buf, count, offset);
 698
 699}
 700EXPORT_SYMBOL(vme_master_read);
 701
 702/**
 703 * vme_master_write - Write data out to VME space from a buffer.
 704 * @resource: Pointer to VME master resource.
 705 * @buf: Pointer to buffer holding data to transfer.
 706 * @count: Number of bytes to transfer.
 707 * @offset: Offset into VME master window at which to start transfer.
 708 *
 709 * Perform write of count bytes of data from buf to location on VME bus which
 710 * maps into the VME master window at offset.
 711 *
 712 * Return: Number of bytes written, -EINVAL if resource is not a VME master
 713 *         resource or write operation is not supported. -EFAULT returned if
 714 *         invalid offset is provided. Hardware specific errors may also be
 715 *         returned.
 716 */
 717ssize_t vme_master_write(struct vme_resource *resource, void *buf,
 718	size_t count, loff_t offset)
 719{
 720	struct vme_bridge *bridge = find_bridge(resource);
 721	struct vme_master_resource *image;
 722	size_t length;
 723
 724	if (!bridge->master_write) {
 725		printk(KERN_WARNING "Writing to resource not supported\n");
 726		return -EINVAL;
 727	}
 728
 729	if (resource->type != VME_MASTER) {
 730		printk(KERN_ERR "Not a master resource\n");
 731		return -EINVAL;
 732	}
 733
 734	image = list_entry(resource->entry, struct vme_master_resource, list);
 735
 736	length = vme_get_size(resource);
 737
 738	if (offset > length) {
 739		printk(KERN_WARNING "Invalid Offset\n");
 740		return -EFAULT;
 741	}
 742
 743	if ((offset + count) > length)
 744		count = length - offset;
 745
 746	return bridge->master_write(image, buf, count, offset);
 747}
 748EXPORT_SYMBOL(vme_master_write);
 749
 750/**
 751 * vme_master_rmw - Perform read-modify-write cycle.
 752 * @resource: Pointer to VME master resource.
 753 * @mask: Bits to be compared and swapped in operation.
 754 * @compare: Bits to be compared with data read from offset.
 755 * @swap: Bits to be swapped in data read from offset.
 756 * @offset: Offset into VME master window at which to perform operation.
 757 *
 758 * Perform read-modify-write cycle on provided location:
 759 * - Location on VME bus is read.
 760 * - Bits selected by mask are compared with compare.
 761 * - Where a selected bit matches that in compare and are selected in swap,
 762 * the bit is swapped.
 763 * - Result written back to location on VME bus.
 764 *
 765 * Return: Bytes written on success, -EINVAL if resource is not a VME master
 766 *         resource or RMW operation is not supported. Hardware specific
 767 *         errors may also be returned.
 768 */
 769unsigned int vme_master_rmw(struct vme_resource *resource, unsigned int mask,
 770	unsigned int compare, unsigned int swap, loff_t offset)
 771{
 772	struct vme_bridge *bridge = find_bridge(resource);
 773	struct vme_master_resource *image;
 774
 775	if (!bridge->master_rmw) {
 776		printk(KERN_WARNING "Writing to resource not supported\n");
 777		return -EINVAL;
 778	}
 779
 780	if (resource->type != VME_MASTER) {
 781		printk(KERN_ERR "Not a master resource\n");
 782		return -EINVAL;
 783	}
 784
 785	image = list_entry(resource->entry, struct vme_master_resource, list);
 786
 787	return bridge->master_rmw(image, mask, compare, swap, offset);
 788}
 789EXPORT_SYMBOL(vme_master_rmw);
 790
 791/**
 792 * vme_master_mmap - Mmap region of VME master window.
 793 * @resource: Pointer to VME master resource.
 794 * @vma: Pointer to definition of user mapping.
 795 *
 796 * Memory map a region of the VME master window into user space.
 797 *
 798 * Return: Zero on success, -EINVAL if resource is not a VME master
 799 *         resource or -EFAULT if map exceeds window size. Other generic mmap
 800 *         errors may also be returned.
 801 */
 802int vme_master_mmap(struct vme_resource *resource, struct vm_area_struct *vma)
 803{
 804	struct vme_master_resource *image;
 805	phys_addr_t phys_addr;
 806	unsigned long vma_size;
 807
 808	if (resource->type != VME_MASTER) {
 809		pr_err("Not a master resource\n");
 810		return -EINVAL;
 811	}
 812
 813	image = list_entry(resource->entry, struct vme_master_resource, list);
 814	phys_addr = image->bus_resource.start + (vma->vm_pgoff << PAGE_SHIFT);
 815	vma_size = vma->vm_end - vma->vm_start;
 816
 817	if (phys_addr + vma_size > image->bus_resource.end + 1) {
 818		pr_err("Map size cannot exceed the window size\n");
 819		return -EFAULT;
 820	}
 821
 822	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
 823
 824	return vm_iomap_memory(vma, phys_addr, vma->vm_end - vma->vm_start);
 825}
 826EXPORT_SYMBOL(vme_master_mmap);
 827
 828/**
 829 * vme_master_free - Free VME master window
 830 * @resource: Pointer to VME master resource.
 831 *
 832 * Free the provided master resource so that it may be reallocated.
 833 */
 834void vme_master_free(struct vme_resource *resource)
 835{
 836	struct vme_master_resource *master_image;
 837
 838	if (resource->type != VME_MASTER) {
 839		printk(KERN_ERR "Not a master resource\n");
 840		return;
 841	}
 842
 843	master_image = list_entry(resource->entry, struct vme_master_resource,
 844		list);
 845	if (!master_image) {
 846		printk(KERN_ERR "Can't find master resource\n");
 847		return;
 848	}
 849
 850	/* Unlock image */
 851	spin_lock(&master_image->lock);
 852	if (master_image->locked == 0)
 853		printk(KERN_ERR "Image is already free\n");
 854
 855	master_image->locked = 0;
 856	spin_unlock(&master_image->lock);
 857
 858	/* Free up resource memory */
 859	kfree(resource);
 860}
 861EXPORT_SYMBOL(vme_master_free);
 862
 863/**
 864 * vme_dma_request - Request a DMA controller.
 865 * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
 866 * @route: Required src/destination combination.
 867 *
 868 * Request a VME DMA controller with capability to perform transfers bewteen
 869 * requested source/destination combination.
 870 *
 871 * Return: Pointer to VME DMA resource on success, NULL on failure.
 872 */
 873struct vme_resource *vme_dma_request(struct vme_dev *vdev, u32 route)
 874{
 875	struct vme_bridge *bridge;
 876	struct list_head *dma_pos = NULL;
 877	struct vme_dma_resource *allocated_ctrlr = NULL;
 878	struct vme_dma_resource *dma_ctrlr = NULL;
 879	struct vme_resource *resource = NULL;
 880
 881	/* XXX Not checking resource attributes */
 882	printk(KERN_ERR "No VME resource Attribute tests done\n");
 883
 884	bridge = vdev->bridge;
 885	if (!bridge) {
 886		printk(KERN_ERR "Can't find VME bus\n");
 887		goto err_bus;
 888	}
 889
 890	/* Loop through DMA resources */
 891	list_for_each(dma_pos, &bridge->dma_resources) {
 892		dma_ctrlr = list_entry(dma_pos,
 893			struct vme_dma_resource, list);
 894		if (!dma_ctrlr) {
 895			printk(KERN_ERR "Registered NULL DMA resource\n");
 896			continue;
 897		}
 898
 899		/* Find an unlocked and compatible controller */
 900		mutex_lock(&dma_ctrlr->mtx);
 901		if (((dma_ctrlr->route_attr & route) == route) &&
 902			(dma_ctrlr->locked == 0)) {
 903
 904			dma_ctrlr->locked = 1;
 905			mutex_unlock(&dma_ctrlr->mtx);
 906			allocated_ctrlr = dma_ctrlr;
 907			break;
 908		}
 909		mutex_unlock(&dma_ctrlr->mtx);
 910	}
 911
 912	/* Check to see if we found a resource */
 913	if (!allocated_ctrlr)
 914		goto err_ctrlr;
 915
 916	resource = kmalloc(sizeof(*resource), GFP_KERNEL);
 917	if (!resource)
 918		goto err_alloc;
 919
 920	resource->type = VME_DMA;
 921	resource->entry = &allocated_ctrlr->list;
 922
 923	return resource;
 924
 925err_alloc:
 926	/* Unlock image */
 927	mutex_lock(&dma_ctrlr->mtx);
 928	dma_ctrlr->locked = 0;
 929	mutex_unlock(&dma_ctrlr->mtx);
 930err_ctrlr:
 931err_bus:
 932	return NULL;
 933}
 934EXPORT_SYMBOL(vme_dma_request);
 935
 936/**
 937 * vme_new_dma_list - Create new VME DMA list.
 938 * @resource: Pointer to VME DMA resource.
 939 *
 940 * Create a new VME DMA list. It is the responsibility of the user to free
 941 * the list once it is no longer required with vme_dma_list_free().
 942 *
 943 * Return: Pointer to new VME DMA list, NULL on allocation failure or invalid
 944 *         VME DMA resource.
 945 */
 946struct vme_dma_list *vme_new_dma_list(struct vme_resource *resource)
 947{
 948	struct vme_dma_list *dma_list;
 949
 950	if (resource->type != VME_DMA) {
 951		printk(KERN_ERR "Not a DMA resource\n");
 952		return NULL;
 953	}
 954
 955	dma_list = kmalloc(sizeof(*dma_list), GFP_KERNEL);
 956	if (!dma_list)
 957		return NULL;
 958
 959	INIT_LIST_HEAD(&dma_list->entries);
 960	dma_list->parent = list_entry(resource->entry,
 961				      struct vme_dma_resource,
 962				      list);
 963	mutex_init(&dma_list->mtx);
 964
 965	return dma_list;
 966}
 967EXPORT_SYMBOL(vme_new_dma_list);
 968
 969/**
 970 * vme_dma_pattern_attribute - Create "Pattern" type VME DMA list attribute.
 971 * @pattern: Value to use used as pattern
 972 * @type: Type of pattern to be written.
 973 *
 974 * Create VME DMA list attribute for pattern generation. It is the
 975 * responsibility of the user to free used attributes using
 976 * vme_dma_free_attribute().
 977 *
 978 * Return: Pointer to VME DMA attribute, NULL on failure.
 979 */
 980struct vme_dma_attr *vme_dma_pattern_attribute(u32 pattern, u32 type)
 981{
 982	struct vme_dma_attr *attributes;
 983	struct vme_dma_pattern *pattern_attr;
 984
 985	attributes = kmalloc(sizeof(*attributes), GFP_KERNEL);
 986	if (!attributes)
 987		goto err_attr;
 988
 989	pattern_attr = kmalloc(sizeof(*pattern_attr), GFP_KERNEL);
 990	if (!pattern_attr)
 991		goto err_pat;
 992
 993	attributes->type = VME_DMA_PATTERN;
 994	attributes->private = (void *)pattern_attr;
 995
 996	pattern_attr->pattern = pattern;
 997	pattern_attr->type = type;
 998
 999	return attributes;
1000
1001err_pat:
1002	kfree(attributes);
1003err_attr:
1004	return NULL;
1005}
1006EXPORT_SYMBOL(vme_dma_pattern_attribute);
1007
1008/**
1009 * vme_dma_pci_attribute - Create "PCI" type VME DMA list attribute.
1010 * @address: PCI base address for DMA transfer.
1011 *
1012 * Create VME DMA list attribute pointing to a location on PCI for DMA
1013 * transfers. It is the responsibility of the user to free used attributes
1014 * using vme_dma_free_attribute().
1015 *
1016 * Return: Pointer to VME DMA attribute, NULL on failure.
1017 */
1018struct vme_dma_attr *vme_dma_pci_attribute(dma_addr_t address)
1019{
1020	struct vme_dma_attr *attributes;
1021	struct vme_dma_pci *pci_attr;
1022
1023	/* XXX Run some sanity checks here */
1024
1025	attributes = kmalloc(sizeof(*attributes), GFP_KERNEL);
1026	if (!attributes)
1027		goto err_attr;
1028
1029	pci_attr = kmalloc(sizeof(*pci_attr), GFP_KERNEL);
1030	if (!pci_attr)
1031		goto err_pci;
1032
1033	attributes->type = VME_DMA_PCI;
1034	attributes->private = (void *)pci_attr;
1035
1036	pci_attr->address = address;
1037
1038	return attributes;
1039
1040err_pci:
1041	kfree(attributes);
1042err_attr:
1043	return NULL;
1044}
1045EXPORT_SYMBOL(vme_dma_pci_attribute);
1046
1047/**
1048 * vme_dma_vme_attribute - Create "VME" type VME DMA list attribute.
1049 * @address: VME base address for DMA transfer.
1050 * @aspace: VME address space to use for DMA transfer.
1051 * @cycle: VME bus cycle to use for DMA transfer.
1052 * @dwidth: VME data width to use for DMA transfer.
1053 *
1054 * Create VME DMA list attribute pointing to a location on the VME bus for DMA
1055 * transfers. It is the responsibility of the user to free used attributes
1056 * using vme_dma_free_attribute().
1057 *
1058 * Return: Pointer to VME DMA attribute, NULL on failure.
1059 */
1060struct vme_dma_attr *vme_dma_vme_attribute(unsigned long long address,
1061	u32 aspace, u32 cycle, u32 dwidth)
1062{
1063	struct vme_dma_attr *attributes;
1064	struct vme_dma_vme *vme_attr;
1065
1066	attributes = kmalloc(sizeof(*attributes), GFP_KERNEL);
1067	if (!attributes)
1068		goto err_attr;
1069
1070	vme_attr = kmalloc(sizeof(*vme_attr), GFP_KERNEL);
1071	if (!vme_attr)
1072		goto err_vme;
1073
1074	attributes->type = VME_DMA_VME;
1075	attributes->private = (void *)vme_attr;
1076
1077	vme_attr->address = address;
1078	vme_attr->aspace = aspace;
1079	vme_attr->cycle = cycle;
1080	vme_attr->dwidth = dwidth;
1081
1082	return attributes;
1083
1084err_vme:
1085	kfree(attributes);
1086err_attr:
1087	return NULL;
1088}
1089EXPORT_SYMBOL(vme_dma_vme_attribute);
1090
1091/**
1092 * vme_dma_free_attribute - Free DMA list attribute.
1093 * @attributes: Pointer to DMA list attribute.
1094 *
1095 * Free VME DMA list attribute. VME DMA list attributes can be safely freed
1096 * once vme_dma_list_add() has returned.
1097 */
1098void vme_dma_free_attribute(struct vme_dma_attr *attributes)
1099{
1100	kfree(attributes->private);
1101	kfree(attributes);
1102}
1103EXPORT_SYMBOL(vme_dma_free_attribute);
1104
1105/**
1106 * vme_dma_list_add - Add enty to a VME DMA list.
1107 * @list: Pointer to VME list.
1108 * @src: Pointer to DMA list attribute to use as source.
1109 * @dest: Pointer to DMA list attribute to use as destination.
1110 * @count: Number of bytes to transfer.
1111 *
1112 * Add an entry to the provided VME DMA list. Entry requires pointers to source
1113 * and destination DMA attributes and a count.
1114 *
1115 * Please note, the attributes supported as source and destinations for
1116 * transfers are hardware dependent.
1117 *
1118 * Return: Zero on success, -EINVAL if operation is not supported on this
1119 *         device or if the link list has already been submitted for execution.
1120 *         Hardware specific errors also possible.
1121 */
1122int vme_dma_list_add(struct vme_dma_list *list, struct vme_dma_attr *src,
1123	struct vme_dma_attr *dest, size_t count)
1124{
1125	struct vme_bridge *bridge = list->parent->parent;
1126	int retval;
1127
1128	if (!bridge->dma_list_add) {
1129		printk(KERN_WARNING "Link List DMA generation not supported\n");
1130		return -EINVAL;
1131	}
1132
1133	if (!mutex_trylock(&list->mtx)) {
1134		printk(KERN_ERR "Link List already submitted\n");
1135		return -EINVAL;
1136	}
1137
1138	retval = bridge->dma_list_add(list, src, dest, count);
1139
1140	mutex_unlock(&list->mtx);
1141
1142	return retval;
1143}
1144EXPORT_SYMBOL(vme_dma_list_add);
1145
1146/**
1147 * vme_dma_list_exec - Queue a VME DMA list for execution.
1148 * @list: Pointer to VME list.
1149 *
1150 * Queue the provided VME DMA list for execution. The call will return once the
1151 * list has been executed.
1152 *
1153 * Return: Zero on success, -EINVAL if operation is not supported on this
1154 *         device. Hardware specific errors also possible.
1155 */
1156int vme_dma_list_exec(struct vme_dma_list *list)
1157{
1158	struct vme_bridge *bridge = list->parent->parent;
1159	int retval;
1160
1161	if (!bridge->dma_list_exec) {
1162		printk(KERN_ERR "Link List DMA execution not supported\n");
1163		return -EINVAL;
1164	}
1165
1166	mutex_lock(&list->mtx);
1167
1168	retval = bridge->dma_list_exec(list);
1169
1170	mutex_unlock(&list->mtx);
1171
1172	return retval;
1173}
1174EXPORT_SYMBOL(vme_dma_list_exec);
1175
1176/**
1177 * vme_dma_list_free - Free a VME DMA list.
1178 * @list: Pointer to VME list.
1179 *
1180 * Free the provided DMA list and all its entries.
1181 *
1182 * Return: Zero on success, -EINVAL on invalid VME resource, -EBUSY if resource
1183 *         is still in use. Hardware specific errors also possible.
1184 */
1185int vme_dma_list_free(struct vme_dma_list *list)
1186{
1187	struct vme_bridge *bridge = list->parent->parent;
1188	int retval;
1189
1190	if (!bridge->dma_list_empty) {
1191		printk(KERN_WARNING "Emptying of Link Lists not supported\n");
1192		return -EINVAL;
1193	}
1194
1195	if (!mutex_trylock(&list->mtx)) {
1196		printk(KERN_ERR "Link List in use\n");
1197		return -EBUSY;
1198	}
1199
1200	/*
1201	 * Empty out all of the entries from the DMA list. We need to go to the
1202	 * low level driver as DMA entries are driver specific.
1203	 */
1204	retval = bridge->dma_list_empty(list);
1205	if (retval) {
1206		printk(KERN_ERR "Unable to empty link-list entries\n");
1207		mutex_unlock(&list->mtx);
1208		return retval;
1209	}
1210	mutex_unlock(&list->mtx);
1211	kfree(list);
1212
1213	return retval;
1214}
1215EXPORT_SYMBOL(vme_dma_list_free);
1216
1217/**
1218 * vme_dma_free - Free a VME DMA resource.
1219 * @resource: Pointer to VME DMA resource.
1220 *
1221 * Free the provided DMA resource so that it may be reallocated.
1222 *
1223 * Return: Zero on success, -EINVAL on invalid VME resource, -EBUSY if resource
1224 *         is still active.
1225 */
1226int vme_dma_free(struct vme_resource *resource)
1227{
1228	struct vme_dma_resource *ctrlr;
1229
1230	if (resource->type != VME_DMA) {
1231		printk(KERN_ERR "Not a DMA resource\n");
1232		return -EINVAL;
1233	}
1234
1235	ctrlr = list_entry(resource->entry, struct vme_dma_resource, list);
1236
1237	if (!mutex_trylock(&ctrlr->mtx)) {
1238		printk(KERN_ERR "Resource busy, can't free\n");
1239		return -EBUSY;
1240	}
1241
1242	if (!(list_empty(&ctrlr->pending) && list_empty(&ctrlr->running))) {
1243		printk(KERN_WARNING "Resource still processing transfers\n");
1244		mutex_unlock(&ctrlr->mtx);
1245		return -EBUSY;
1246	}
1247
1248	ctrlr->locked = 0;
1249
1250	mutex_unlock(&ctrlr->mtx);
1251
1252	kfree(resource);
1253
1254	return 0;
1255}
1256EXPORT_SYMBOL(vme_dma_free);
1257
1258void vme_bus_error_handler(struct vme_bridge *bridge,
1259			   unsigned long long address, int am)
1260{
1261	struct list_head *handler_pos = NULL;
1262	struct vme_error_handler *handler;
1263	int handler_triggered = 0;
1264	u32 aspace = vme_get_aspace(am);
1265
1266	list_for_each(handler_pos, &bridge->vme_error_handlers) {
1267		handler = list_entry(handler_pos, struct vme_error_handler,
1268				     list);
1269		if ((aspace == handler->aspace) &&
1270		    (address >= handler->start) &&
1271		    (address < handler->end)) {
1272			if (!handler->num_errors)
1273				handler->first_error = address;
1274			if (handler->num_errors != UINT_MAX)
1275				handler->num_errors++;
1276			handler_triggered = 1;
1277		}
1278	}
1279
1280	if (!handler_triggered)
1281		dev_err(bridge->parent,
1282			"Unhandled VME access error at address 0x%llx\n",
1283			address);
1284}
1285EXPORT_SYMBOL(vme_bus_error_handler);
1286
1287struct vme_error_handler *vme_register_error_handler(
1288	struct vme_bridge *bridge, u32 aspace,
1289	unsigned long long address, size_t len)
1290{
1291	struct vme_error_handler *handler;
1292
1293	handler = kmalloc(sizeof(*handler), GFP_ATOMIC);
1294	if (!handler)
1295		return NULL;
1296
1297	handler->aspace = aspace;
1298	handler->start = address;
1299	handler->end = address + len;
1300	handler->num_errors = 0;
1301	handler->first_error = 0;
1302	list_add_tail(&handler->list, &bridge->vme_error_handlers);
1303
1304	return handler;
1305}
1306EXPORT_SYMBOL(vme_register_error_handler);
1307
1308void vme_unregister_error_handler(struct vme_error_handler *handler)
1309{
1310	list_del(&handler->list);
1311	kfree(handler);
1312}
1313EXPORT_SYMBOL(vme_unregister_error_handler);
1314
1315void vme_irq_handler(struct vme_bridge *bridge, int level, int statid)
1316{
1317	void (*call)(int, int, void *);
1318	void *priv_data;
1319
1320	call = bridge->irq[level - 1].callback[statid].func;
1321	priv_data = bridge->irq[level - 1].callback[statid].priv_data;
1322	if (call)
1323		call(level, statid, priv_data);
1324	else
1325		printk(KERN_WARNING "Spurious VME interrupt, level:%x, vector:%x\n",
1326		       level, statid);
1327}
1328EXPORT_SYMBOL(vme_irq_handler);
1329
1330/**
1331 * vme_irq_request - Request a specific VME interrupt.
1332 * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
1333 * @level: Interrupt priority being requested.
1334 * @statid: Interrupt vector being requested.
1335 * @callback: Pointer to callback function called when VME interrupt/vector
1336 *            received.
1337 * @priv_data: Generic pointer that will be passed to the callback function.
1338 *
1339 * Request callback to be attached as a handler for VME interrupts with provided
1340 * level and statid.
1341 *
1342 * Return: Zero on success, -EINVAL on invalid vme device, level or if the
1343 *         function is not supported, -EBUSY if the level/statid combination is
1344 *         already in use. Hardware specific errors also possible.
1345 */
1346int vme_irq_request(struct vme_dev *vdev, int level, int statid,
1347	void (*callback)(int, int, void *),
1348	void *priv_data)
1349{
1350	struct vme_bridge *bridge;
1351
1352	bridge = vdev->bridge;
1353	if (!bridge) {
1354		printk(KERN_ERR "Can't find VME bus\n");
1355		return -EINVAL;
1356	}
1357
1358	if ((level < 1) || (level > 7)) {
1359		printk(KERN_ERR "Invalid interrupt level\n");
1360		return -EINVAL;
1361	}
1362
1363	if (!bridge->irq_set) {
1364		printk(KERN_ERR "Configuring interrupts not supported\n");
1365		return -EINVAL;
1366	}
1367
1368	mutex_lock(&bridge->irq_mtx);
1369
1370	if (bridge->irq[level - 1].callback[statid].func) {
1371		mutex_unlock(&bridge->irq_mtx);
1372		printk(KERN_WARNING "VME Interrupt already taken\n");
1373		return -EBUSY;
1374	}
1375
1376	bridge->irq[level - 1].count++;
1377	bridge->irq[level - 1].callback[statid].priv_data = priv_data;
1378	bridge->irq[level - 1].callback[statid].func = callback;
1379
1380	/* Enable IRQ level */
1381	bridge->irq_set(bridge, level, 1, 1);
1382
1383	mutex_unlock(&bridge->irq_mtx);
1384
1385	return 0;
1386}
1387EXPORT_SYMBOL(vme_irq_request);
1388
1389/**
1390 * vme_irq_free - Free a VME interrupt.
1391 * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
1392 * @level: Interrupt priority of interrupt being freed.
1393 * @statid: Interrupt vector of interrupt being freed.
1394 *
1395 * Remove previously attached callback from VME interrupt priority/vector.
1396 */
1397void vme_irq_free(struct vme_dev *vdev, int level, int statid)
1398{
1399	struct vme_bridge *bridge;
1400
1401	bridge = vdev->bridge;
1402	if (!bridge) {
1403		printk(KERN_ERR "Can't find VME bus\n");
1404		return;
1405	}
1406
1407	if ((level < 1) || (level > 7)) {
1408		printk(KERN_ERR "Invalid interrupt level\n");
1409		return;
1410	}
1411
1412	if (!bridge->irq_set) {
1413		printk(KERN_ERR "Configuring interrupts not supported\n");
1414		return;
1415	}
1416
1417	mutex_lock(&bridge->irq_mtx);
1418
1419	bridge->irq[level - 1].count--;
1420
1421	/* Disable IRQ level if no more interrupts attached at this level*/
1422	if (bridge->irq[level - 1].count == 0)
1423		bridge->irq_set(bridge, level, 0, 1);
1424
1425	bridge->irq[level - 1].callback[statid].func = NULL;
1426	bridge->irq[level - 1].callback[statid].priv_data = NULL;
1427
1428	mutex_unlock(&bridge->irq_mtx);
1429}
1430EXPORT_SYMBOL(vme_irq_free);
1431
1432/**
1433 * vme_irq_generate - Generate VME interrupt.
1434 * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
1435 * @level: Interrupt priority at which to assert the interrupt.
1436 * @statid: Interrupt vector to associate with the interrupt.
1437 *
1438 * Generate a VME interrupt of the provided level and with the provided
1439 * statid.
1440 *
1441 * Return: Zero on success, -EINVAL on invalid vme device, level or if the
1442 *         function is not supported. Hardware specific errors also possible.
1443 */
1444int vme_irq_generate(struct vme_dev *vdev, int level, int statid)
1445{
1446	struct vme_bridge *bridge;
1447
1448	bridge = vdev->bridge;
1449	if (!bridge) {
1450		printk(KERN_ERR "Can't find VME bus\n");
1451		return -EINVAL;
1452	}
1453
1454	if ((level < 1) || (level > 7)) {
1455		printk(KERN_WARNING "Invalid interrupt level\n");
1456		return -EINVAL;
1457	}
1458
1459	if (!bridge->irq_generate) {
1460		printk(KERN_WARNING "Interrupt generation not supported\n");
1461		return -EINVAL;
1462	}
1463
1464	return bridge->irq_generate(bridge, level, statid);
1465}
1466EXPORT_SYMBOL(vme_irq_generate);
1467
1468/**
1469 * vme_lm_request - Request a VME location monitor
1470 * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
1471 *
1472 * Allocate a location monitor resource to the driver. A location monitor
1473 * allows the driver to monitor accesses to a contiguous number of
1474 * addresses on the VME bus.
1475 *
1476 * Return: Pointer to a VME resource on success or NULL on failure.
1477 */
1478struct vme_resource *vme_lm_request(struct vme_dev *vdev)
1479{
1480	struct vme_bridge *bridge;
1481	struct list_head *lm_pos = NULL;
1482	struct vme_lm_resource *allocated_lm = NULL;
1483	struct vme_lm_resource *lm = NULL;
1484	struct vme_resource *resource = NULL;
1485
1486	bridge = vdev->bridge;
1487	if (!bridge) {
1488		printk(KERN_ERR "Can't find VME bus\n");
1489		goto err_bus;
1490	}
1491
1492	/* Loop through LM resources */
1493	list_for_each(lm_pos, &bridge->lm_resources) {
1494		lm = list_entry(lm_pos,
1495			struct vme_lm_resource, list);
1496		if (!lm) {
1497			printk(KERN_ERR "Registered NULL Location Monitor resource\n");
1498			continue;
1499		}
1500
1501		/* Find an unlocked controller */
1502		mutex_lock(&lm->mtx);
1503		if (lm->locked == 0) {
1504			lm->locked = 1;
1505			mutex_unlock(&lm->mtx);
1506			allocated_lm = lm;
1507			break;
1508		}
1509		mutex_unlock(&lm->mtx);
1510	}
1511
1512	/* Check to see if we found a resource */
1513	if (!allocated_lm)
1514		goto err_lm;
1515
1516	resource = kmalloc(sizeof(*resource), GFP_KERNEL);
1517	if (!resource)
1518		goto err_alloc;
1519
1520	resource->type = VME_LM;
1521	resource->entry = &allocated_lm->list;
1522
1523	return resource;
1524
1525err_alloc:
1526	/* Unlock image */
1527	mutex_lock(&lm->mtx);
1528	lm->locked = 0;
1529	mutex_unlock(&lm->mtx);
1530err_lm:
1531err_bus:
1532	return NULL;
1533}
1534EXPORT_SYMBOL(vme_lm_request);
1535
1536/**
1537 * vme_lm_count - Determine number of VME Addresses monitored
1538 * @resource: Pointer to VME location monitor resource.
1539 *
1540 * The number of contiguous addresses monitored is hardware dependent.
1541 * Return the number of contiguous addresses monitored by the
1542 * location monitor.
1543 *
1544 * Return: Count of addresses monitored or -EINVAL when provided with an
1545 *	   invalid location monitor resource.
1546 */
1547int vme_lm_count(struct vme_resource *resource)
1548{
1549	struct vme_lm_resource *lm;
1550
1551	if (resource->type != VME_LM) {
1552		printk(KERN_ERR "Not a Location Monitor resource\n");
1553		return -EINVAL;
1554	}
1555
1556	lm = list_entry(resource->entry, struct vme_lm_resource, list);
1557
1558	return lm->monitors;
1559}
1560EXPORT_SYMBOL(vme_lm_count);
1561
1562/**
1563 * vme_lm_set - Configure location monitor
1564 * @resource: Pointer to VME location monitor resource.
1565 * @lm_base: Base address to monitor.
1566 * @aspace: VME address space to monitor.
1567 * @cycle: VME bus cycle type to monitor.
1568 *
1569 * Set the base address, address space and cycle type of accesses to be
1570 * monitored by the location monitor.
1571 *
1572 * Return: Zero on success, -EINVAL when provided with an invalid location
1573 *	   monitor resource or function is not supported. Hardware specific
1574 *	   errors may also be returned.
1575 */
1576int vme_lm_set(struct vme_resource *resource, unsigned long long lm_base,
1577	u32 aspace, u32 cycle)
1578{
1579	struct vme_bridge *bridge = find_bridge(resource);
1580	struct vme_lm_resource *lm;
1581
1582	if (resource->type != VME_LM) {
1583		printk(KERN_ERR "Not a Location Monitor resource\n");
1584		return -EINVAL;
1585	}
1586
1587	lm = list_entry(resource->entry, struct vme_lm_resource, list);
1588
1589	if (!bridge->lm_set) {
1590		printk(KERN_ERR "vme_lm_set not supported\n");
1591		return -EINVAL;
1592	}
1593
1594	return bridge->lm_set(lm, lm_base, aspace, cycle);
1595}
1596EXPORT_SYMBOL(vme_lm_set);
1597
1598/**
1599 * vme_lm_get - Retrieve location monitor settings
1600 * @resource: Pointer to VME location monitor resource.
1601 * @lm_base: Pointer used to output the base address monitored.
1602 * @aspace: Pointer used to output the address space monitored.
1603 * @cycle: Pointer used to output the VME bus cycle type monitored.
1604 *
1605 * Retrieve the base address, address space and cycle type of accesses to
1606 * be monitored by the location monitor.
1607 *
1608 * Return: Zero on success, -EINVAL when provided with an invalid location
1609 *	   monitor resource or function is not supported. Hardware specific
1610 *	   errors may also be returned.
1611 */
1612int vme_lm_get(struct vme_resource *resource, unsigned long long *lm_base,
1613	u32 *aspace, u32 *cycle)
1614{
1615	struct vme_bridge *bridge = find_bridge(resource);
1616	struct vme_lm_resource *lm;
1617
1618	if (resource->type != VME_LM) {
1619		printk(KERN_ERR "Not a Location Monitor resource\n");
1620		return -EINVAL;
1621	}
1622
1623	lm = list_entry(resource->entry, struct vme_lm_resource, list);
1624
1625	if (!bridge->lm_get) {
1626		printk(KERN_ERR "vme_lm_get not supported\n");
1627		return -EINVAL;
1628	}
1629
1630	return bridge->lm_get(lm, lm_base, aspace, cycle);
1631}
1632EXPORT_SYMBOL(vme_lm_get);
1633
1634/**
1635 * vme_lm_attach - Provide callback for location monitor address
1636 * @resource: Pointer to VME location monitor resource.
1637 * @monitor: Offset to which callback should be attached.
1638 * @callback: Pointer to callback function called when triggered.
1639 * @data: Generic pointer that will be passed to the callback function.
1640 *
1641 * Attach a callback to the specificed offset into the location monitors
1642 * monitored addresses. A generic pointer is provided to allow data to be
1643 * passed to the callback when called.
1644 *
1645 * Return: Zero on success, -EINVAL when provided with an invalid location
1646 *	   monitor resource or function is not supported. Hardware specific
1647 *	   errors may also be returned.
1648 */
1649int vme_lm_attach(struct vme_resource *resource, int monitor,
1650	void (*callback)(void *), void *data)
1651{
1652	struct vme_bridge *bridge = find_bridge(resource);
1653	struct vme_lm_resource *lm;
1654
1655	if (resource->type != VME_LM) {
1656		printk(KERN_ERR "Not a Location Monitor resource\n");
1657		return -EINVAL;
1658	}
1659
1660	lm = list_entry(resource->entry, struct vme_lm_resource, list);
1661
1662	if (!bridge->lm_attach) {
1663		printk(KERN_ERR "vme_lm_attach not supported\n");
1664		return -EINVAL;
1665	}
1666
1667	return bridge->lm_attach(lm, monitor, callback, data);
1668}
1669EXPORT_SYMBOL(vme_lm_attach);
1670
1671/**
1672 * vme_lm_detach - Remove callback for location monitor address
1673 * @resource: Pointer to VME location monitor resource.
1674 * @monitor: Offset to which callback should be removed.
1675 *
1676 * Remove the callback associated with the specificed offset into the
1677 * location monitors monitored addresses.
1678 *
1679 * Return: Zero on success, -EINVAL when provided with an invalid location
1680 *	   monitor resource or function is not supported. Hardware specific
1681 *	   errors may also be returned.
1682 */
1683int vme_lm_detach(struct vme_resource *resource, int monitor)
1684{
1685	struct vme_bridge *bridge = find_bridge(resource);
1686	struct vme_lm_resource *lm;
1687
1688	if (resource->type != VME_LM) {
1689		printk(KERN_ERR "Not a Location Monitor resource\n");
1690		return -EINVAL;
1691	}
1692
1693	lm = list_entry(resource->entry, struct vme_lm_resource, list);
1694
1695	if (!bridge->lm_detach) {
1696		printk(KERN_ERR "vme_lm_detach not supported\n");
1697		return -EINVAL;
1698	}
1699
1700	return bridge->lm_detach(lm, monitor);
1701}
1702EXPORT_SYMBOL(vme_lm_detach);
1703
1704/**
1705 * vme_lm_free - Free allocated VME location monitor
1706 * @resource: Pointer to VME location monitor resource.
1707 *
1708 * Free allocation of a VME location monitor.
1709 *
1710 * WARNING: This function currently expects that any callbacks that have
1711 *          been attached to the location monitor have been removed.
1712 *
1713 * Return: Zero on success, -EINVAL when provided with an invalid location
1714 *	   monitor resource.
1715 */
1716void vme_lm_free(struct vme_resource *resource)
1717{
1718	struct vme_lm_resource *lm;
1719
1720	if (resource->type != VME_LM) {
1721		printk(KERN_ERR "Not a Location Monitor resource\n");
1722		return;
1723	}
1724
1725	lm = list_entry(resource->entry, struct vme_lm_resource, list);
1726
1727	mutex_lock(&lm->mtx);
1728
1729	/* XXX
1730	 * Check to see that there aren't any callbacks still attached, if
1731	 * there are we should probably be detaching them!
1732	 */
1733
1734	lm->locked = 0;
1735
1736	mutex_unlock(&lm->mtx);
1737
1738	kfree(resource);
1739}
1740EXPORT_SYMBOL(vme_lm_free);
1741
1742/**
1743 * vme_slot_num - Retrieve slot ID
1744 * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
1745 *
1746 * Retrieve the slot ID associated with the provided VME device.
1747 *
1748 * Return: The slot ID on success, -EINVAL if VME bridge cannot be determined
1749 *         or the function is not supported. Hardware specific errors may also
1750 *         be returned.
1751 */
1752int vme_slot_num(struct vme_dev *vdev)
1753{
1754	struct vme_bridge *bridge;
1755
1756	bridge = vdev->bridge;
1757	if (!bridge) {
1758		printk(KERN_ERR "Can't find VME bus\n");
1759		return -EINVAL;
1760	}
1761
1762	if (!bridge->slot_get) {
1763		printk(KERN_WARNING "vme_slot_num not supported\n");
1764		return -EINVAL;
1765	}
1766
1767	return bridge->slot_get(bridge);
1768}
1769EXPORT_SYMBOL(vme_slot_num);
1770
1771/**
1772 * vme_bus_num - Retrieve bus number
1773 * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
1774 *
1775 * Retrieve the bus enumeration associated with the provided VME device.
1776 *
1777 * Return: The bus number on success, -EINVAL if VME bridge cannot be
1778 *         determined.
1779 */
1780int vme_bus_num(struct vme_dev *vdev)
1781{
1782	struct vme_bridge *bridge;
1783
1784	bridge = vdev->bridge;
1785	if (!bridge) {
1786		pr_err("Can't find VME bus\n");
1787		return -EINVAL;
1788	}
1789
1790	return bridge->num;
1791}
1792EXPORT_SYMBOL(vme_bus_num);
1793
1794/* - Bridge Registration --------------------------------------------------- */
1795
1796static void vme_dev_release(struct device *dev)
1797{
1798	kfree(dev_to_vme_dev(dev));
1799}
1800
1801/* Common bridge initialization */
1802struct vme_bridge *vme_init_bridge(struct vme_bridge *bridge)
1803{
1804	INIT_LIST_HEAD(&bridge->vme_error_handlers);
1805	INIT_LIST_HEAD(&bridge->master_resources);
1806	INIT_LIST_HEAD(&bridge->slave_resources);
1807	INIT_LIST_HEAD(&bridge->dma_resources);
1808	INIT_LIST_HEAD(&bridge->lm_resources);
1809	mutex_init(&bridge->irq_mtx);
1810
1811	return bridge;
1812}
1813EXPORT_SYMBOL(vme_init_bridge);
1814
1815int vme_register_bridge(struct vme_bridge *bridge)
1816{
1817	int i;
1818	int ret = -1;
1819
1820	mutex_lock(&vme_buses_lock);
1821	for (i = 0; i < sizeof(vme_bus_numbers) * 8; i++) {
1822		if ((vme_bus_numbers & (1 << i)) == 0) {
1823			vme_bus_numbers |= (1 << i);
1824			bridge->num = i;
1825			INIT_LIST_HEAD(&bridge->devices);
1826			list_add_tail(&bridge->bus_list, &vme_bus_list);
1827			ret = 0;
1828			break;
1829		}
1830	}
1831	mutex_unlock(&vme_buses_lock);
1832
1833	return ret;
1834}
1835EXPORT_SYMBOL(vme_register_bridge);
1836
1837void vme_unregister_bridge(struct vme_bridge *bridge)
1838{
1839	struct vme_dev *vdev;
1840	struct vme_dev *tmp;
1841
1842	mutex_lock(&vme_buses_lock);
1843	vme_bus_numbers &= ~(1 << bridge->num);
1844	list_for_each_entry_safe(vdev, tmp, &bridge->devices, bridge_list) {
1845		list_del(&vdev->drv_list);
1846		list_del(&vdev->bridge_list);
1847		device_unregister(&vdev->dev);
1848	}
1849	list_del(&bridge->bus_list);
1850	mutex_unlock(&vme_buses_lock);
1851}
1852EXPORT_SYMBOL(vme_unregister_bridge);
1853
1854/* - Driver Registration --------------------------------------------------- */
1855
1856static int __vme_register_driver_bus(struct vme_driver *drv,
1857	struct vme_bridge *bridge, unsigned int ndevs)
1858{
1859	int err;
1860	unsigned int i;
1861	struct vme_dev *vdev;
1862	struct vme_dev *tmp;
1863
1864	for (i = 0; i < ndevs; i++) {
1865		vdev = kzalloc(sizeof(*vdev), GFP_KERNEL);
1866		if (!vdev) {
1867			err = -ENOMEM;
1868			goto err_devalloc;
1869		}
1870		vdev->num = i;
1871		vdev->bridge = bridge;
1872		vdev->dev.platform_data = drv;
1873		vdev->dev.release = vme_dev_release;
1874		vdev->dev.parent = bridge->parent;
1875		vdev->dev.bus = &vme_bus_type;
1876		dev_set_name(&vdev->dev, "%s.%u-%u", drv->name, bridge->num,
1877			vdev->num);
1878
1879		err = device_register(&vdev->dev);
1880		if (err)
1881			goto err_reg;
1882
1883		if (vdev->dev.platform_data) {
1884			list_add_tail(&vdev->drv_list, &drv->devices);
1885			list_add_tail(&vdev->bridge_list, &bridge->devices);
1886		} else
1887			device_unregister(&vdev->dev);
1888	}
1889	return 0;
1890
1891err_reg:
1892	put_device(&vdev->dev);
1893	kfree(vdev);
1894err_devalloc:
1895	list_for_each_entry_safe(vdev, tmp, &drv->devices, drv_list) {
1896		list_del(&vdev->drv_list);
1897		list_del(&vdev->bridge_list);
1898		device_unregister(&vdev->dev);
1899	}
1900	return err;
1901}
1902
1903static int __vme_register_driver(struct vme_driver *drv, unsigned int ndevs)
1904{
1905	struct vme_bridge *bridge;
1906	int err = 0;
1907
1908	mutex_lock(&vme_buses_lock);
1909	list_for_each_entry(bridge, &vme_bus_list, bus_list) {
1910		/*
1911		 * This cannot cause trouble as we already have vme_buses_lock
1912		 * and if the bridge is removed, it will have to go through
1913		 * vme_unregister_bridge() to do it (which calls remove() on
1914		 * the bridge which in turn tries to acquire vme_buses_lock and
1915		 * will have to wait).
1916		 */
1917		err = __vme_register_driver_bus(drv, bridge, ndevs);
1918		if (err)
1919			break;
1920	}
1921	mutex_unlock(&vme_buses_lock);
1922	return err;
1923}
1924
1925/**
1926 * vme_register_driver - Register a VME driver
1927 * @drv: Pointer to VME driver structure to register.
1928 * @ndevs: Maximum number of devices to allow to be enumerated.
1929 *
1930 * Register a VME device driver with the VME subsystem.
1931 *
1932 * Return: Zero on success, error value on registration failure.
1933 */
1934int vme_register_driver(struct vme_driver *drv, unsigned int ndevs)
1935{
1936	int err;
1937
1938	drv->driver.name = drv->name;
1939	drv->driver.bus = &vme_bus_type;
1940	INIT_LIST_HEAD(&drv->devices);
1941
1942	err = driver_register(&drv->driver);
1943	if (err)
1944		return err;
1945
1946	err = __vme_register_driver(drv, ndevs);
1947	if (err)
1948		driver_unregister(&drv->driver);
1949
1950	return err;
1951}
1952EXPORT_SYMBOL(vme_register_driver);
1953
1954/**
1955 * vme_unregister_driver - Unregister a VME driver
1956 * @drv: Pointer to VME driver structure to unregister.
1957 *
1958 * Unregister a VME device driver from the VME subsystem.
1959 */
1960void vme_unregister_driver(struct vme_driver *drv)
1961{
1962	struct vme_dev *dev, *dev_tmp;
1963
1964	mutex_lock(&vme_buses_lock);
1965	list_for_each_entry_safe(dev, dev_tmp, &drv->devices, drv_list) {
1966		list_del(&dev->drv_list);
1967		list_del(&dev->bridge_list);
1968		device_unregister(&dev->dev);
1969	}
1970	mutex_unlock(&vme_buses_lock);
1971
1972	driver_unregister(&drv->driver);
1973}
1974EXPORT_SYMBOL(vme_unregister_driver);
1975
1976/* - Bus Registration ------------------------------------------------------ */
1977
1978static int vme_bus_match(struct device *dev, struct device_driver *drv)
1979{
1980	struct vme_driver *vme_drv;
1981
1982	vme_drv = container_of(drv, struct vme_driver, driver);
1983
1984	if (dev->platform_data == vme_drv) {
1985		struct vme_dev *vdev = dev_to_vme_dev(dev);
1986
1987		if (vme_drv->match && vme_drv->match(vdev))
1988			return 1;
1989
1990		dev->platform_data = NULL;
1991	}
1992	return 0;
1993}
1994
1995static int vme_bus_probe(struct device *dev)
1996{
1997	struct vme_driver *driver;
1998	struct vme_dev *vdev = dev_to_vme_dev(dev);
1999
2000	driver = dev->platform_data;
2001	if (driver->probe)
2002		return driver->probe(vdev);
2003
2004	return -ENODEV;
2005}
2006
2007static int vme_bus_remove(struct device *dev)
2008{
2009	struct vme_driver *driver;
2010	struct vme_dev *vdev = dev_to_vme_dev(dev);
2011
2012	driver = dev->platform_data;
2013	if (driver->remove)
2014		return driver->remove(vdev);
2015
2016	return -ENODEV;
2017}
2018
2019struct bus_type vme_bus_type = {
2020	.name = "vme",
2021	.match = vme_bus_match,
2022	.probe = vme_bus_probe,
2023	.remove = vme_bus_remove,
2024};
2025EXPORT_SYMBOL(vme_bus_type);
2026
2027static int __init vme_init(void)
2028{
2029	return bus_register(&vme_bus_type);
2030}
2031subsys_initcall(vme_init);