Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * PXA2xx SPI DMA engine support.
  4 *
  5 * Copyright (C) 2013, 2021 Intel Corporation
  6 * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
 
 
 
 
  7 */
  8
  9#include <linux/atomic.h>
 10#include <linux/dev_printk.h>
 11#include <linux/dma-mapping.h>
 12#include <linux/dmaengine.h>
 13#include <linux/errno.h>
 14#include <linux/irqreturn.h>
 15#include <linux/scatterlist.h>
 16#include <linux/string.h>
 17#include <linux/types.h>
 18
 19#include <linux/spi/spi.h>
 
 20
 21#include "spi-pxa2xx.h"
 22
 23struct device;
 24
 25static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data,
 26					     bool error)
 27{
 28	struct spi_message *msg = drv_data->controller->cur_msg;
 29
 30	/*
 31	 * It is possible that one CPU is handling ROR interrupt and other
 32	 * just gets DMA completion. Calling pump_transfers() twice for the
 33	 * same transfer leads to problems thus we prevent concurrent calls
 34	 * by using dma_running.
 35	 */
 36	if (atomic_dec_and_test(&drv_data->dma_running)) {
 37		/*
 38		 * If the other CPU is still handling the ROR interrupt we
 39		 * might not know about the error yet. So we re-check the
 40		 * ROR bit here before we clear the status register.
 41		 */
 42		if (!error)
 43			error = read_SSSR_bits(drv_data, drv_data->mask_sr) & SSSR_ROR;
 
 
 
 44
 45		/* Clear status & disable interrupts */
 46		clear_SSCR1_bits(drv_data, drv_data->dma_cr1);
 
 
 47		write_SSSR_CS(drv_data, drv_data->clear_sr);
 48		if (!pxa25x_ssp_comp(drv_data))
 49			pxa2xx_spi_write(drv_data, SSTO, 0);
 50
 51		if (error) {
 
 
 
 52			/* In case we got an error we disable the SSP now */
 53			pxa_ssp_disable(drv_data->ssp);
 54			msg->status = -EIO;
 
 
 
 55		}
 56
 57		spi_finalize_current_transfer(drv_data->controller);
 58	}
 59}
 60
 61static void pxa2xx_spi_dma_callback(void *data)
 62{
 63	pxa2xx_spi_dma_transfer_complete(data, false);
 64}
 65
 66static struct dma_async_tx_descriptor *
 67pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data,
 68			   enum dma_transfer_direction dir,
 69			   struct spi_transfer *xfer)
 70{
 
 
 
 71	enum dma_slave_buswidth width;
 72	struct dma_slave_config cfg;
 73	struct dma_chan *chan;
 74	struct sg_table *sgt;
 75	int ret;
 76
 77	switch (drv_data->n_bytes) {
 78	case 1:
 79		width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 80		break;
 81	case 2:
 82		width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 83		break;
 84	default:
 85		width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 86		break;
 87	}
 88
 89	memset(&cfg, 0, sizeof(cfg));
 90	cfg.direction = dir;
 91
 92	if (dir == DMA_MEM_TO_DEV) {
 93		cfg.dst_addr = drv_data->ssp->phys_base + SSDR;
 94		cfg.dst_addr_width = width;
 95		cfg.dst_maxburst = drv_data->controller_info->dma_burst_size;
 96
 97		sgt = &xfer->tx_sg;
 98		chan = drv_data->controller->dma_tx;
 99	} else {
100		cfg.src_addr = drv_data->ssp->phys_base + SSDR;
101		cfg.src_addr_width = width;
102		cfg.src_maxburst = drv_data->controller_info->dma_burst_size;
103
104		sgt = &xfer->rx_sg;
105		chan = drv_data->controller->dma_rx;
106	}
107
108	ret = dmaengine_slave_config(chan, &cfg);
109	if (ret) {
110		dev_warn(drv_data->ssp->dev, "DMA slave config failed\n");
111		return NULL;
112	}
113
114	return dmaengine_prep_slave_sg(chan, sgt->sgl, sgt->nents, dir,
115				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
116}
117
118irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data)
119{
120	u32 status;
121
122	status = read_SSSR_bits(drv_data, drv_data->mask_sr);
123	if (status & SSSR_ROR) {
124		dev_err(drv_data->ssp->dev, "FIFO overrun\n");
125
126		dmaengine_terminate_async(drv_data->controller->dma_rx);
127		dmaengine_terminate_async(drv_data->controller->dma_tx);
128
129		pxa2xx_spi_dma_transfer_complete(drv_data, true);
130		return IRQ_HANDLED;
131	}
132
133	return IRQ_NONE;
134}
135
136int pxa2xx_spi_dma_prepare(struct driver_data *drv_data,
137			   struct spi_transfer *xfer)
138{
139	struct dma_async_tx_descriptor *tx_desc, *rx_desc;
140	int err;
141
142	tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV, xfer);
143	if (!tx_desc) {
144		dev_err(drv_data->ssp->dev, "failed to get DMA TX descriptor\n");
 
145		err = -EBUSY;
146		goto err_tx;
147	}
148
149	rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM, xfer);
150	if (!rx_desc) {
151		dev_err(drv_data->ssp->dev, "failed to get DMA RX descriptor\n");
 
152		err = -EBUSY;
153		goto err_rx;
154	}
155
156	/* We are ready when RX completes */
157	rx_desc->callback = pxa2xx_spi_dma_callback;
158	rx_desc->callback_param = drv_data;
159
160	dmaengine_submit(rx_desc);
161	dmaengine_submit(tx_desc);
162	return 0;
163
164err_rx:
165	dmaengine_terminate_async(drv_data->controller->dma_tx);
166err_tx:
167	return err;
168}
169
170void pxa2xx_spi_dma_start(struct driver_data *drv_data)
171{
172	dma_async_issue_pending(drv_data->controller->dma_rx);
173	dma_async_issue_pending(drv_data->controller->dma_tx);
174
175	atomic_set(&drv_data->dma_running, 1);
176}
177
178void pxa2xx_spi_dma_stop(struct driver_data *drv_data)
179{
180	atomic_set(&drv_data->dma_running, 0);
181	dmaengine_terminate_sync(drv_data->controller->dma_rx);
182	dmaengine_terminate_sync(drv_data->controller->dma_tx);
183}
184
185int pxa2xx_spi_dma_setup(struct driver_data *drv_data)
186{
187	struct pxa2xx_spi_controller *pdata = drv_data->controller_info;
188	struct spi_controller *controller = drv_data->controller;
189	struct device *dev = drv_data->ssp->dev;
190	dma_cap_mask_t mask;
191
192	dma_cap_zero(mask);
193	dma_cap_set(DMA_SLAVE, mask);
194
195	controller->dma_tx = dma_request_slave_channel_compat(mask,
196				pdata->dma_filter, pdata->tx_param, dev, "tx");
197	if (!controller->dma_tx)
198		return -ENODEV;
199
200	controller->dma_rx = dma_request_slave_channel_compat(mask,
201				pdata->dma_filter, pdata->rx_param, dev, "rx");
202	if (!controller->dma_rx) {
203		dma_release_channel(controller->dma_tx);
204		controller->dma_tx = NULL;
205		return -ENODEV;
206	}
207
208	return 0;
209}
210
211void pxa2xx_spi_dma_release(struct driver_data *drv_data)
212{
213	struct spi_controller *controller = drv_data->controller;
214
215	if (controller->dma_rx) {
216		dmaengine_terminate_sync(controller->dma_rx);
217		dma_release_channel(controller->dma_rx);
218		controller->dma_rx = NULL;
219	}
220	if (controller->dma_tx) {
221		dmaengine_terminate_sync(controller->dma_tx);
222		dma_release_channel(controller->dma_tx);
223		controller->dma_tx = NULL;
224	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
225}
v4.17
 
  1/*
  2 * PXA2xx SPI DMA engine support.
  3 *
  4 * Copyright (C) 2013, Intel Corporation
  5 * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 */
 11
 12#include <linux/device.h>
 
 13#include <linux/dma-mapping.h>
 14#include <linux/dmaengine.h>
 15#include <linux/pxa2xx_ssp.h>
 
 16#include <linux/scatterlist.h>
 17#include <linux/sizes.h>
 
 
 18#include <linux/spi/spi.h>
 19#include <linux/spi/pxa2xx_spi.h>
 20
 21#include "spi-pxa2xx.h"
 22
 
 
 23static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data,
 24					     bool error)
 25{
 26	struct spi_message *msg = drv_data->master->cur_msg;
 27
 28	/*
 29	 * It is possible that one CPU is handling ROR interrupt and other
 30	 * just gets DMA completion. Calling pump_transfers() twice for the
 31	 * same transfer leads to problems thus we prevent concurrent calls
 32	 * by using ->dma_running.
 33	 */
 34	if (atomic_dec_and_test(&drv_data->dma_running)) {
 35		/*
 36		 * If the other CPU is still handling the ROR interrupt we
 37		 * might not know about the error yet. So we re-check the
 38		 * ROR bit here before we clear the status register.
 39		 */
 40		if (!error) {
 41			u32 status = pxa2xx_spi_read(drv_data, SSSR)
 42				     & drv_data->mask_sr;
 43			error = status & SSSR_ROR;
 44		}
 45
 46		/* Clear status & disable interrupts */
 47		pxa2xx_spi_write(drv_data, SSCR1,
 48				 pxa2xx_spi_read(drv_data, SSCR1)
 49				 & ~drv_data->dma_cr1);
 50		write_SSSR_CS(drv_data, drv_data->clear_sr);
 51		if (!pxa25x_ssp_comp(drv_data))
 52			pxa2xx_spi_write(drv_data, SSTO, 0);
 53
 54		if (!error) {
 55			msg->actual_length += drv_data->len;
 56			msg->state = pxa2xx_spi_next_transfer(drv_data);
 57		} else {
 58			/* In case we got an error we disable the SSP now */
 59			pxa2xx_spi_write(drv_data, SSCR0,
 60					 pxa2xx_spi_read(drv_data, SSCR0)
 61					 & ~SSCR0_SSE);
 62
 63			msg->state = ERROR_STATE;
 64		}
 65
 66		tasklet_schedule(&drv_data->pump_transfers);
 67	}
 68}
 69
 70static void pxa2xx_spi_dma_callback(void *data)
 71{
 72	pxa2xx_spi_dma_transfer_complete(data, false);
 73}
 74
 75static struct dma_async_tx_descriptor *
 76pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data,
 77			   enum dma_transfer_direction dir)
 
 78{
 79	struct chip_data *chip =
 80		spi_get_ctldata(drv_data->master->cur_msg->spi);
 81	struct spi_transfer *xfer = drv_data->cur_transfer;
 82	enum dma_slave_buswidth width;
 83	struct dma_slave_config cfg;
 84	struct dma_chan *chan;
 85	struct sg_table *sgt;
 86	int ret;
 87
 88	switch (drv_data->n_bytes) {
 89	case 1:
 90		width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 91		break;
 92	case 2:
 93		width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 94		break;
 95	default:
 96		width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 97		break;
 98	}
 99
100	memset(&cfg, 0, sizeof(cfg));
101	cfg.direction = dir;
102
103	if (dir == DMA_MEM_TO_DEV) {
104		cfg.dst_addr = drv_data->ssdr_physical;
105		cfg.dst_addr_width = width;
106		cfg.dst_maxburst = chip->dma_burst_size;
107
108		sgt = &xfer->tx_sg;
109		chan = drv_data->master->dma_tx;
110	} else {
111		cfg.src_addr = drv_data->ssdr_physical;
112		cfg.src_addr_width = width;
113		cfg.src_maxburst = chip->dma_burst_size;
114
115		sgt = &xfer->rx_sg;
116		chan = drv_data->master->dma_rx;
117	}
118
119	ret = dmaengine_slave_config(chan, &cfg);
120	if (ret) {
121		dev_warn(&drv_data->pdev->dev, "DMA slave config failed\n");
122		return NULL;
123	}
124
125	return dmaengine_prep_slave_sg(chan, sgt->sgl, sgt->nents, dir,
126				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
127}
128
129irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data)
130{
131	u32 status;
132
133	status = pxa2xx_spi_read(drv_data, SSSR) & drv_data->mask_sr;
134	if (status & SSSR_ROR) {
135		dev_err(&drv_data->pdev->dev, "FIFO overrun\n");
136
137		dmaengine_terminate_async(drv_data->master->dma_rx);
138		dmaengine_terminate_async(drv_data->master->dma_tx);
139
140		pxa2xx_spi_dma_transfer_complete(drv_data, true);
141		return IRQ_HANDLED;
142	}
143
144	return IRQ_NONE;
145}
146
147int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, u32 dma_burst)
 
148{
149	struct dma_async_tx_descriptor *tx_desc, *rx_desc;
150	int err;
151
152	tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV);
153	if (!tx_desc) {
154		dev_err(&drv_data->pdev->dev,
155			"failed to get DMA TX descriptor\n");
156		err = -EBUSY;
157		goto err_tx;
158	}
159
160	rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM);
161	if (!rx_desc) {
162		dev_err(&drv_data->pdev->dev,
163			"failed to get DMA RX descriptor\n");
164		err = -EBUSY;
165		goto err_rx;
166	}
167
168	/* We are ready when RX completes */
169	rx_desc->callback = pxa2xx_spi_dma_callback;
170	rx_desc->callback_param = drv_data;
171
172	dmaengine_submit(rx_desc);
173	dmaengine_submit(tx_desc);
174	return 0;
175
176err_rx:
177	dmaengine_terminate_async(drv_data->master->dma_tx);
178err_tx:
179	return err;
180}
181
182void pxa2xx_spi_dma_start(struct driver_data *drv_data)
183{
184	dma_async_issue_pending(drv_data->master->dma_rx);
185	dma_async_issue_pending(drv_data->master->dma_tx);
186
187	atomic_set(&drv_data->dma_running, 1);
188}
189
 
 
 
 
 
 
 
190int pxa2xx_spi_dma_setup(struct driver_data *drv_data)
191{
192	struct pxa2xx_spi_master *pdata = drv_data->master_info;
193	struct device *dev = &drv_data->pdev->dev;
194	struct spi_controller *master = drv_data->master;
195	dma_cap_mask_t mask;
196
197	dma_cap_zero(mask);
198	dma_cap_set(DMA_SLAVE, mask);
199
200	master->dma_tx = dma_request_slave_channel_compat(mask,
201				pdata->dma_filter, pdata->tx_param, dev, "tx");
202	if (!master->dma_tx)
203		return -ENODEV;
204
205	master->dma_rx = dma_request_slave_channel_compat(mask,
206				pdata->dma_filter, pdata->rx_param, dev, "rx");
207	if (!master->dma_rx) {
208		dma_release_channel(master->dma_tx);
209		master->dma_tx = NULL;
210		return -ENODEV;
211	}
212
213	return 0;
214}
215
216void pxa2xx_spi_dma_release(struct driver_data *drv_data)
217{
218	struct spi_controller *master = drv_data->master;
219
220	if (master->dma_rx) {
221		dmaengine_terminate_sync(master->dma_rx);
222		dma_release_channel(master->dma_rx);
223		master->dma_rx = NULL;
224	}
225	if (master->dma_tx) {
226		dmaengine_terminate_sync(master->dma_tx);
227		dma_release_channel(master->dma_tx);
228		master->dma_tx = NULL;
229	}
230}
231
232int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
233					   struct spi_device *spi,
234					   u8 bits_per_word, u32 *burst_code,
235					   u32 *threshold)
236{
237	struct pxa2xx_spi_chip *chip_info = spi->controller_data;
238
239	/*
240	 * If the DMA burst size is given in chip_info we use that,
241	 * otherwise we use the default. Also we use the default FIFO
242	 * thresholds for now.
243	 */
244	*burst_code = chip_info ? chip_info->dma_burst_size : 1;
245	*threshold = SSCR1_RxTresh(RX_THRESH_DFLT)
246		   | SSCR1_TxTresh(TX_THRESH_DFLT);
247
248	return 0;
249}