Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
4 *
5 * Copyright (C) 2008-2012 ST-Ericsson AB
6 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
7 *
8 * Author: Linus Walleij <linus.walleij@stericsson.com>
9 *
10 * Initial version inspired by:
11 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
12 * Initial adoption to PL022 by:
13 * Sachin Verma <sachin.verma@st.com>
14 */
15
16#include <linux/init.h>
17#include <linux/module.h>
18#include <linux/device.h>
19#include <linux/ioport.h>
20#include <linux/errno.h>
21#include <linux/interrupt.h>
22#include <linux/spi/spi.h>
23#include <linux/delay.h>
24#include <linux/clk.h>
25#include <linux/err.h>
26#include <linux/amba/bus.h>
27#include <linux/amba/pl022.h>
28#include <linux/io.h>
29#include <linux/slab.h>
30#include <linux/dmaengine.h>
31#include <linux/dma-mapping.h>
32#include <linux/scatterlist.h>
33#include <linux/pm_runtime.h>
34#include <linux/of.h>
35#include <linux/pinctrl/consumer.h>
36
37/*
38 * This macro is used to define some register default values.
39 * reg is masked with mask, the OR:ed with an (again masked)
40 * val shifted sb steps to the left.
41 */
42#define SSP_WRITE_BITS(reg, val, mask, sb) \
43 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
44
45/*
46 * This macro is also used to define some default values.
47 * It will just shift val by sb steps to the left and mask
48 * the result with mask.
49 */
50#define GEN_MASK_BITS(val, mask, sb) \
51 (((val)<<(sb)) & (mask))
52
53#define DRIVE_TX 0
54#define DO_NOT_DRIVE_TX 1
55
56#define DO_NOT_QUEUE_DMA 0
57#define QUEUE_DMA 1
58
59#define RX_TRANSFER 1
60#define TX_TRANSFER 2
61
62/*
63 * Macros to access SSP Registers with their offsets
64 */
65#define SSP_CR0(r) (r + 0x000)
66#define SSP_CR1(r) (r + 0x004)
67#define SSP_DR(r) (r + 0x008)
68#define SSP_SR(r) (r + 0x00C)
69#define SSP_CPSR(r) (r + 0x010)
70#define SSP_IMSC(r) (r + 0x014)
71#define SSP_RIS(r) (r + 0x018)
72#define SSP_MIS(r) (r + 0x01C)
73#define SSP_ICR(r) (r + 0x020)
74#define SSP_DMACR(r) (r + 0x024)
75#define SSP_CSR(r) (r + 0x030) /* vendor extension */
76#define SSP_ITCR(r) (r + 0x080)
77#define SSP_ITIP(r) (r + 0x084)
78#define SSP_ITOP(r) (r + 0x088)
79#define SSP_TDR(r) (r + 0x08C)
80
81#define SSP_PID0(r) (r + 0xFE0)
82#define SSP_PID1(r) (r + 0xFE4)
83#define SSP_PID2(r) (r + 0xFE8)
84#define SSP_PID3(r) (r + 0xFEC)
85
86#define SSP_CID0(r) (r + 0xFF0)
87#define SSP_CID1(r) (r + 0xFF4)
88#define SSP_CID2(r) (r + 0xFF8)
89#define SSP_CID3(r) (r + 0xFFC)
90
91/*
92 * SSP Control Register 0 - SSP_CR0
93 */
94#define SSP_CR0_MASK_DSS (0x0FUL << 0)
95#define SSP_CR0_MASK_FRF (0x3UL << 4)
96#define SSP_CR0_MASK_SPO (0x1UL << 6)
97#define SSP_CR0_MASK_SPH (0x1UL << 7)
98#define SSP_CR0_MASK_SCR (0xFFUL << 8)
99
100/*
101 * The ST version of this block moves som bits
102 * in SSP_CR0 and extends it to 32 bits
103 */
104#define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
105#define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
106#define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
107#define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
108
109/*
110 * SSP Control Register 0 - SSP_CR1
111 */
112#define SSP_CR1_MASK_LBM (0x1UL << 0)
113#define SSP_CR1_MASK_SSE (0x1UL << 1)
114#define SSP_CR1_MASK_MS (0x1UL << 2)
115#define SSP_CR1_MASK_SOD (0x1UL << 3)
116
117/*
118 * The ST version of this block adds some bits
119 * in SSP_CR1
120 */
121#define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
122#define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
123#define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
124#define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
125#define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
126/* This one is only in the PL023 variant */
127#define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
128
129/*
130 * SSP Status Register - SSP_SR
131 */
132#define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
133#define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
134#define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
135#define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
136#define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
137
138/*
139 * SSP Clock Prescale Register - SSP_CPSR
140 */
141#define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
142
143/*
144 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
145 */
146#define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
147#define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
148#define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
149#define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
150
151/*
152 * SSP Raw Interrupt Status Register - SSP_RIS
153 */
154/* Receive Overrun Raw Interrupt status */
155#define SSP_RIS_MASK_RORRIS (0x1UL << 0)
156/* Receive Timeout Raw Interrupt status */
157#define SSP_RIS_MASK_RTRIS (0x1UL << 1)
158/* Receive FIFO Raw Interrupt status */
159#define SSP_RIS_MASK_RXRIS (0x1UL << 2)
160/* Transmit FIFO Raw Interrupt status */
161#define SSP_RIS_MASK_TXRIS (0x1UL << 3)
162
163/*
164 * SSP Masked Interrupt Status Register - SSP_MIS
165 */
166/* Receive Overrun Masked Interrupt status */
167#define SSP_MIS_MASK_RORMIS (0x1UL << 0)
168/* Receive Timeout Masked Interrupt status */
169#define SSP_MIS_MASK_RTMIS (0x1UL << 1)
170/* Receive FIFO Masked Interrupt status */
171#define SSP_MIS_MASK_RXMIS (0x1UL << 2)
172/* Transmit FIFO Masked Interrupt status */
173#define SSP_MIS_MASK_TXMIS (0x1UL << 3)
174
175/*
176 * SSP Interrupt Clear Register - SSP_ICR
177 */
178/* Receive Overrun Raw Clear Interrupt bit */
179#define SSP_ICR_MASK_RORIC (0x1UL << 0)
180/* Receive Timeout Clear Interrupt bit */
181#define SSP_ICR_MASK_RTIC (0x1UL << 1)
182
183/*
184 * SSP DMA Control Register - SSP_DMACR
185 */
186/* Receive DMA Enable bit */
187#define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
188/* Transmit DMA Enable bit */
189#define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
190
191/*
192 * SSP Chip Select Control Register - SSP_CSR
193 * (vendor extension)
194 */
195#define SSP_CSR_CSVALUE_MASK (0x1FUL << 0)
196
197/*
198 * SSP Integration Test control Register - SSP_ITCR
199 */
200#define SSP_ITCR_MASK_ITEN (0x1UL << 0)
201#define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
202
203/*
204 * SSP Integration Test Input Register - SSP_ITIP
205 */
206#define ITIP_MASK_SSPRXD (0x1UL << 0)
207#define ITIP_MASK_SSPFSSIN (0x1UL << 1)
208#define ITIP_MASK_SSPCLKIN (0x1UL << 2)
209#define ITIP_MASK_RXDMAC (0x1UL << 3)
210#define ITIP_MASK_TXDMAC (0x1UL << 4)
211#define ITIP_MASK_SSPTXDIN (0x1UL << 5)
212
213/*
214 * SSP Integration Test output Register - SSP_ITOP
215 */
216#define ITOP_MASK_SSPTXD (0x1UL << 0)
217#define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
218#define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
219#define ITOP_MASK_SSPOEn (0x1UL << 3)
220#define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
221#define ITOP_MASK_RORINTR (0x1UL << 5)
222#define ITOP_MASK_RTINTR (0x1UL << 6)
223#define ITOP_MASK_RXINTR (0x1UL << 7)
224#define ITOP_MASK_TXINTR (0x1UL << 8)
225#define ITOP_MASK_INTR (0x1UL << 9)
226#define ITOP_MASK_RXDMABREQ (0x1UL << 10)
227#define ITOP_MASK_RXDMASREQ (0x1UL << 11)
228#define ITOP_MASK_TXDMABREQ (0x1UL << 12)
229#define ITOP_MASK_TXDMASREQ (0x1UL << 13)
230
231/*
232 * SSP Test Data Register - SSP_TDR
233 */
234#define TDR_MASK_TESTDATA (0xFFFFFFFF)
235
236/*
237 * Message State
238 * we use the spi_message.state (void *) pointer to
239 * hold a single state value, that's why all this
240 * (void *) casting is done here.
241 */
242#define STATE_START ((void *) 0)
243#define STATE_RUNNING ((void *) 1)
244#define STATE_DONE ((void *) 2)
245#define STATE_ERROR ((void *) -1)
246#define STATE_TIMEOUT ((void *) -2)
247
248/*
249 * SSP State - Whether Enabled or Disabled
250 */
251#define SSP_DISABLED (0)
252#define SSP_ENABLED (1)
253
254/*
255 * SSP DMA State - Whether DMA Enabled or Disabled
256 */
257#define SSP_DMA_DISABLED (0)
258#define SSP_DMA_ENABLED (1)
259
260/*
261 * SSP Clock Defaults
262 */
263#define SSP_DEFAULT_CLKRATE 0x2
264#define SSP_DEFAULT_PRESCALE 0x40
265
266/*
267 * SSP Clock Parameter ranges
268 */
269#define CPSDVR_MIN 0x02
270#define CPSDVR_MAX 0xFE
271#define SCR_MIN 0x00
272#define SCR_MAX 0xFF
273
274/*
275 * SSP Interrupt related Macros
276 */
277#define DEFAULT_SSP_REG_IMSC 0x0UL
278#define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
279#define ENABLE_ALL_INTERRUPTS ( \
280 SSP_IMSC_MASK_RORIM | \
281 SSP_IMSC_MASK_RTIM | \
282 SSP_IMSC_MASK_RXIM | \
283 SSP_IMSC_MASK_TXIM \
284)
285
286#define CLEAR_ALL_INTERRUPTS 0x3
287
288#define SPI_POLLING_TIMEOUT 1000
289
290/*
291 * The type of reading going on this chip
292 */
293enum ssp_reading {
294 READING_NULL,
295 READING_U8,
296 READING_U16,
297 READING_U32
298};
299
300/*
301 * The type of writing going on this chip
302 */
303enum ssp_writing {
304 WRITING_NULL,
305 WRITING_U8,
306 WRITING_U16,
307 WRITING_U32
308};
309
310/**
311 * struct vendor_data - vendor-specific config parameters
312 * for PL022 derivates
313 * @fifodepth: depth of FIFOs (both)
314 * @max_bpw: maximum number of bits per word
315 * @unidir: supports unidirection transfers
316 * @extended_cr: 32 bit wide control register 0 with extra
317 * features and extra features in CR1 as found in the ST variants
318 * @pl023: supports a subset of the ST extensions called "PL023"
319 * @loopback: supports loopback mode
320 * @internal_cs_ctrl: supports chip select control register
321 */
322struct vendor_data {
323 int fifodepth;
324 int max_bpw;
325 bool unidir;
326 bool extended_cr;
327 bool pl023;
328 bool loopback;
329 bool internal_cs_ctrl;
330};
331
332/**
333 * struct pl022 - This is the private SSP driver data structure
334 * @adev: AMBA device model hookup
335 * @vendor: vendor data for the IP block
336 * @phybase: the physical memory where the SSP device resides
337 * @virtbase: the virtual memory where the SSP is mapped
338 * @clk: outgoing clock "SPICLK" for the SPI bus
339 * @host: SPI framework hookup
340 * @host_info: controller-specific data from machine setup
341 * @cur_transfer: Pointer to current spi_transfer
342 * @cur_chip: pointer to current clients chip(assigned from controller_state)
343 * @tx: current position in TX buffer to be read
344 * @tx_end: end position in TX buffer to be read
345 * @rx: current position in RX buffer to be written
346 * @rx_end: end position in RX buffer to be written
347 * @read: the type of read currently going on
348 * @write: the type of write currently going on
349 * @exp_fifo_level: expected FIFO level
350 * @rx_lev_trig: receive FIFO watermark level which triggers IRQ
351 * @tx_lev_trig: transmit FIFO watermark level which triggers IRQ
352 * @dma_rx_channel: optional channel for RX DMA
353 * @dma_tx_channel: optional channel for TX DMA
354 * @sgt_rx: scattertable for the RX transfer
355 * @sgt_tx: scattertable for the TX transfer
356 * @dummypage: a dummy page used for driving data on the bus with DMA
357 * @dma_running: indicates whether DMA is in operation
358 * @cur_cs: current chip select index
359 */
360struct pl022 {
361 struct amba_device *adev;
362 struct vendor_data *vendor;
363 resource_size_t phybase;
364 void __iomem *virtbase;
365 struct clk *clk;
366 struct spi_controller *host;
367 struct pl022_ssp_controller *host_info;
368 struct spi_transfer *cur_transfer;
369 struct chip_data *cur_chip;
370 void *tx;
371 void *tx_end;
372 void *rx;
373 void *rx_end;
374 enum ssp_reading read;
375 enum ssp_writing write;
376 u32 exp_fifo_level;
377 enum ssp_rx_level_trig rx_lev_trig;
378 enum ssp_tx_level_trig tx_lev_trig;
379 /* DMA settings */
380#ifdef CONFIG_DMA_ENGINE
381 struct dma_chan *dma_rx_channel;
382 struct dma_chan *dma_tx_channel;
383 struct sg_table sgt_rx;
384 struct sg_table sgt_tx;
385 char *dummypage;
386 bool dma_running;
387#endif
388 int cur_cs;
389};
390
391/**
392 * struct chip_data - To maintain runtime state of SSP for each client chip
393 * @cr0: Value of control register CR0 of SSP - on later ST variants this
394 * register is 32 bits wide rather than just 16
395 * @cr1: Value of control register CR1 of SSP
396 * @dmacr: Value of DMA control Register of SSP
397 * @cpsr: Value of Clock prescale register
398 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
399 * @enable_dma: Whether to enable DMA or not
400 * @read: function ptr to be used to read when doing xfer for this chip
401 * @write: function ptr to be used to write when doing xfer for this chip
402 * @xfer_type: polling/interrupt/DMA
403 *
404 * Runtime state of the SSP controller, maintained per chip,
405 * This would be set according to the current message that would be served
406 */
407struct chip_data {
408 u32 cr0;
409 u16 cr1;
410 u16 dmacr;
411 u16 cpsr;
412 u8 n_bytes;
413 bool enable_dma;
414 enum ssp_reading read;
415 enum ssp_writing write;
416 int xfer_type;
417};
418
419/**
420 * internal_cs_control - Control chip select signals via SSP_CSR.
421 * @pl022: SSP driver private data structure
422 * @enable: select/delect the chip
423 *
424 * Used on controller with internal chip select control via SSP_CSR register
425 * (vendor extension). Each of the 5 LSB in the register controls one chip
426 * select signal.
427 */
428static void internal_cs_control(struct pl022 *pl022, bool enable)
429{
430 u32 tmp;
431
432 tmp = readw(SSP_CSR(pl022->virtbase));
433 if (enable)
434 tmp &= ~BIT(pl022->cur_cs);
435 else
436 tmp |= BIT(pl022->cur_cs);
437 writew(tmp, SSP_CSR(pl022->virtbase));
438}
439
440static void pl022_cs_control(struct spi_device *spi, bool enable)
441{
442 struct pl022 *pl022 = spi_controller_get_devdata(spi->controller);
443 if (pl022->vendor->internal_cs_ctrl)
444 internal_cs_control(pl022, enable);
445}
446
447/**
448 * flush - flush the FIFO to reach a clean state
449 * @pl022: SSP driver private data structure
450 */
451static int flush(struct pl022 *pl022)
452{
453 unsigned long limit = loops_per_jiffy << 1;
454
455 dev_dbg(&pl022->adev->dev, "flush\n");
456 do {
457 while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
458 readw(SSP_DR(pl022->virtbase));
459 } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
460
461 pl022->exp_fifo_level = 0;
462
463 return limit;
464}
465
466/**
467 * restore_state - Load configuration of current chip
468 * @pl022: SSP driver private data structure
469 */
470static void restore_state(struct pl022 *pl022)
471{
472 struct chip_data *chip = pl022->cur_chip;
473
474 if (pl022->vendor->extended_cr)
475 writel(chip->cr0, SSP_CR0(pl022->virtbase));
476 else
477 writew(chip->cr0, SSP_CR0(pl022->virtbase));
478 writew(chip->cr1, SSP_CR1(pl022->virtbase));
479 writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
480 writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
481 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
482 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
483}
484
485/*
486 * Default SSP Register Values
487 */
488#define DEFAULT_SSP_REG_CR0 ( \
489 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
490 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
491 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
492 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
493 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
494)
495
496/* ST versions have slightly different bit layout */
497#define DEFAULT_SSP_REG_CR0_ST ( \
498 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
499 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
500 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
501 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
502 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
503 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
504 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
505)
506
507/* The PL023 version is slightly different again */
508#define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
509 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
510 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
511 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
512 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
513)
514
515#define DEFAULT_SSP_REG_CR1 ( \
516 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
517 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
518 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
519 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
520)
521
522/* ST versions extend this register to use all 16 bits */
523#define DEFAULT_SSP_REG_CR1_ST ( \
524 DEFAULT_SSP_REG_CR1 | \
525 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
526 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
527 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
528 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
529 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
530)
531
532/*
533 * The PL023 variant has further differences: no loopback mode, no microwire
534 * support, and a new clock feedback delay setting.
535 */
536#define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
537 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
538 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
539 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
540 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
541 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
542 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
543 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
544 GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
545)
546
547#define DEFAULT_SSP_REG_CPSR ( \
548 GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
549)
550
551#define DEFAULT_SSP_REG_DMACR (\
552 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
553 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
554)
555
556/**
557 * load_ssp_default_config - Load default configuration for SSP
558 * @pl022: SSP driver private data structure
559 */
560static void load_ssp_default_config(struct pl022 *pl022)
561{
562 if (pl022->vendor->pl023) {
563 writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
564 writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
565 } else if (pl022->vendor->extended_cr) {
566 writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
567 writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
568 } else {
569 writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
570 writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
571 }
572 writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
573 writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
574 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
575 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
576}
577
578/*
579 * This will write to TX and read from RX according to the parameters
580 * set in pl022.
581 */
582static void readwriter(struct pl022 *pl022)
583{
584
585 /*
586 * The FIFO depth is different between primecell variants.
587 * I believe filling in too much in the FIFO might cause
588 * errons in 8bit wide transfers on ARM variants (just 8 words
589 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
590 *
591 * To prevent this issue, the TX FIFO is only filled to the
592 * unused RX FIFO fill length, regardless of what the TX
593 * FIFO status flag indicates.
594 */
595 dev_dbg(&pl022->adev->dev,
596 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
597 __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
598
599 /* Read as much as you can */
600 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
601 && (pl022->rx < pl022->rx_end)) {
602 switch (pl022->read) {
603 case READING_NULL:
604 readw(SSP_DR(pl022->virtbase));
605 break;
606 case READING_U8:
607 *(u8 *) (pl022->rx) =
608 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
609 break;
610 case READING_U16:
611 *(u16 *) (pl022->rx) =
612 (u16) readw(SSP_DR(pl022->virtbase));
613 break;
614 case READING_U32:
615 *(u32 *) (pl022->rx) =
616 readl(SSP_DR(pl022->virtbase));
617 break;
618 }
619 pl022->rx += (pl022->cur_chip->n_bytes);
620 pl022->exp_fifo_level--;
621 }
622 /*
623 * Write as much as possible up to the RX FIFO size
624 */
625 while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
626 && (pl022->tx < pl022->tx_end)) {
627 switch (pl022->write) {
628 case WRITING_NULL:
629 writew(0x0, SSP_DR(pl022->virtbase));
630 break;
631 case WRITING_U8:
632 writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
633 break;
634 case WRITING_U16:
635 writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
636 break;
637 case WRITING_U32:
638 writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
639 break;
640 }
641 pl022->tx += (pl022->cur_chip->n_bytes);
642 pl022->exp_fifo_level++;
643 /*
644 * This inner reader takes care of things appearing in the RX
645 * FIFO as we're transmitting. This will happen a lot since the
646 * clock starts running when you put things into the TX FIFO,
647 * and then things are continuously clocked into the RX FIFO.
648 */
649 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
650 && (pl022->rx < pl022->rx_end)) {
651 switch (pl022->read) {
652 case READING_NULL:
653 readw(SSP_DR(pl022->virtbase));
654 break;
655 case READING_U8:
656 *(u8 *) (pl022->rx) =
657 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
658 break;
659 case READING_U16:
660 *(u16 *) (pl022->rx) =
661 (u16) readw(SSP_DR(pl022->virtbase));
662 break;
663 case READING_U32:
664 *(u32 *) (pl022->rx) =
665 readl(SSP_DR(pl022->virtbase));
666 break;
667 }
668 pl022->rx += (pl022->cur_chip->n_bytes);
669 pl022->exp_fifo_level--;
670 }
671 }
672 /*
673 * When we exit here the TX FIFO should be full and the RX FIFO
674 * should be empty
675 */
676}
677
678/*
679 * This DMA functionality is only compiled in if we have
680 * access to the generic DMA devices/DMA engine.
681 */
682#ifdef CONFIG_DMA_ENGINE
683static void unmap_free_dma_scatter(struct pl022 *pl022)
684{
685 /* Unmap and free the SG tables */
686 dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
687 pl022->sgt_tx.nents, DMA_TO_DEVICE);
688 dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
689 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
690 sg_free_table(&pl022->sgt_rx);
691 sg_free_table(&pl022->sgt_tx);
692}
693
694static void dma_callback(void *data)
695{
696 struct pl022 *pl022 = data;
697
698 BUG_ON(!pl022->sgt_rx.sgl);
699
700#ifdef VERBOSE_DEBUG
701 /*
702 * Optionally dump out buffers to inspect contents, this is
703 * good if you want to convince yourself that the loopback
704 * read/write contents are the same, when adopting to a new
705 * DMA engine.
706 */
707 {
708 struct scatterlist *sg;
709 unsigned int i;
710
711 dma_sync_sg_for_cpu(&pl022->adev->dev,
712 pl022->sgt_rx.sgl,
713 pl022->sgt_rx.nents,
714 DMA_FROM_DEVICE);
715
716 for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
717 dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
718 print_hex_dump(KERN_ERR, "SPI RX: ",
719 DUMP_PREFIX_OFFSET,
720 16,
721 1,
722 sg_virt(sg),
723 sg_dma_len(sg),
724 1);
725 }
726 for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
727 dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
728 print_hex_dump(KERN_ERR, "SPI TX: ",
729 DUMP_PREFIX_OFFSET,
730 16,
731 1,
732 sg_virt(sg),
733 sg_dma_len(sg),
734 1);
735 }
736 }
737#endif
738
739 unmap_free_dma_scatter(pl022);
740
741 spi_finalize_current_transfer(pl022->host);
742}
743
744static void setup_dma_scatter(struct pl022 *pl022,
745 void *buffer,
746 unsigned int length,
747 struct sg_table *sgtab)
748{
749 struct scatterlist *sg;
750 int bytesleft = length;
751 void *bufp = buffer;
752 int mapbytes;
753 int i;
754
755 if (buffer) {
756 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
757 /*
758 * If there are less bytes left than what fits
759 * in the current page (plus page alignment offset)
760 * we just feed in this, else we stuff in as much
761 * as we can.
762 */
763 if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
764 mapbytes = bytesleft;
765 else
766 mapbytes = PAGE_SIZE - offset_in_page(bufp);
767 sg_set_page(sg, virt_to_page(bufp),
768 mapbytes, offset_in_page(bufp));
769 bufp += mapbytes;
770 bytesleft -= mapbytes;
771 dev_dbg(&pl022->adev->dev,
772 "set RX/TX target page @ %p, %d bytes, %d left\n",
773 bufp, mapbytes, bytesleft);
774 }
775 } else {
776 /* Map the dummy buffer on every page */
777 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
778 if (bytesleft < PAGE_SIZE)
779 mapbytes = bytesleft;
780 else
781 mapbytes = PAGE_SIZE;
782 sg_set_page(sg, virt_to_page(pl022->dummypage),
783 mapbytes, 0);
784 bytesleft -= mapbytes;
785 dev_dbg(&pl022->adev->dev,
786 "set RX/TX to dummy page %d bytes, %d left\n",
787 mapbytes, bytesleft);
788
789 }
790 }
791 BUG_ON(bytesleft);
792}
793
794/**
795 * configure_dma - configures the channels for the next transfer
796 * @pl022: SSP driver's private data structure
797 */
798static int configure_dma(struct pl022 *pl022)
799{
800 struct dma_slave_config rx_conf = {
801 .src_addr = SSP_DR(pl022->phybase),
802 .direction = DMA_DEV_TO_MEM,
803 .device_fc = false,
804 };
805 struct dma_slave_config tx_conf = {
806 .dst_addr = SSP_DR(pl022->phybase),
807 .direction = DMA_MEM_TO_DEV,
808 .device_fc = false,
809 };
810 unsigned int pages;
811 int ret;
812 int rx_sglen, tx_sglen;
813 struct dma_chan *rxchan = pl022->dma_rx_channel;
814 struct dma_chan *txchan = pl022->dma_tx_channel;
815 struct dma_async_tx_descriptor *rxdesc;
816 struct dma_async_tx_descriptor *txdesc;
817
818 /* Check that the channels are available */
819 if (!rxchan || !txchan)
820 return -ENODEV;
821
822 /*
823 * If supplied, the DMA burstsize should equal the FIFO trigger level.
824 * Notice that the DMA engine uses one-to-one mapping. Since we can
825 * not trigger on 2 elements this needs explicit mapping rather than
826 * calculation.
827 */
828 switch (pl022->rx_lev_trig) {
829 case SSP_RX_1_OR_MORE_ELEM:
830 rx_conf.src_maxburst = 1;
831 break;
832 case SSP_RX_4_OR_MORE_ELEM:
833 rx_conf.src_maxburst = 4;
834 break;
835 case SSP_RX_8_OR_MORE_ELEM:
836 rx_conf.src_maxburst = 8;
837 break;
838 case SSP_RX_16_OR_MORE_ELEM:
839 rx_conf.src_maxburst = 16;
840 break;
841 case SSP_RX_32_OR_MORE_ELEM:
842 rx_conf.src_maxburst = 32;
843 break;
844 default:
845 rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
846 break;
847 }
848
849 switch (pl022->tx_lev_trig) {
850 case SSP_TX_1_OR_MORE_EMPTY_LOC:
851 tx_conf.dst_maxburst = 1;
852 break;
853 case SSP_TX_4_OR_MORE_EMPTY_LOC:
854 tx_conf.dst_maxburst = 4;
855 break;
856 case SSP_TX_8_OR_MORE_EMPTY_LOC:
857 tx_conf.dst_maxburst = 8;
858 break;
859 case SSP_TX_16_OR_MORE_EMPTY_LOC:
860 tx_conf.dst_maxburst = 16;
861 break;
862 case SSP_TX_32_OR_MORE_EMPTY_LOC:
863 tx_conf.dst_maxburst = 32;
864 break;
865 default:
866 tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
867 break;
868 }
869
870 switch (pl022->read) {
871 case READING_NULL:
872 /* Use the same as for writing */
873 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
874 break;
875 case READING_U8:
876 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
877 break;
878 case READING_U16:
879 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
880 break;
881 case READING_U32:
882 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
883 break;
884 }
885
886 switch (pl022->write) {
887 case WRITING_NULL:
888 /* Use the same as for reading */
889 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
890 break;
891 case WRITING_U8:
892 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
893 break;
894 case WRITING_U16:
895 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
896 break;
897 case WRITING_U32:
898 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
899 break;
900 }
901
902 /* SPI peculiarity: we need to read and write the same width */
903 if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
904 rx_conf.src_addr_width = tx_conf.dst_addr_width;
905 if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
906 tx_conf.dst_addr_width = rx_conf.src_addr_width;
907 BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
908
909 dmaengine_slave_config(rxchan, &rx_conf);
910 dmaengine_slave_config(txchan, &tx_conf);
911
912 /* Create sglists for the transfers */
913 pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
914 dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
915
916 ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
917 if (ret)
918 goto err_alloc_rx_sg;
919
920 ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
921 if (ret)
922 goto err_alloc_tx_sg;
923
924 /* Fill in the scatterlists for the RX+TX buffers */
925 setup_dma_scatter(pl022, pl022->rx,
926 pl022->cur_transfer->len, &pl022->sgt_rx);
927 setup_dma_scatter(pl022, pl022->tx,
928 pl022->cur_transfer->len, &pl022->sgt_tx);
929
930 /* Map DMA buffers */
931 rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
932 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
933 if (!rx_sglen)
934 goto err_rx_sgmap;
935
936 tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
937 pl022->sgt_tx.nents, DMA_TO_DEVICE);
938 if (!tx_sglen)
939 goto err_tx_sgmap;
940
941 /* Send both scatterlists */
942 rxdesc = dmaengine_prep_slave_sg(rxchan,
943 pl022->sgt_rx.sgl,
944 rx_sglen,
945 DMA_DEV_TO_MEM,
946 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
947 if (!rxdesc)
948 goto err_rxdesc;
949
950 txdesc = dmaengine_prep_slave_sg(txchan,
951 pl022->sgt_tx.sgl,
952 tx_sglen,
953 DMA_MEM_TO_DEV,
954 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
955 if (!txdesc)
956 goto err_txdesc;
957
958 /* Put the callback on the RX transfer only, that should finish last */
959 rxdesc->callback = dma_callback;
960 rxdesc->callback_param = pl022;
961
962 /* Submit and fire RX and TX with TX last so we're ready to read! */
963 dmaengine_submit(rxdesc);
964 dmaengine_submit(txdesc);
965 dma_async_issue_pending(rxchan);
966 dma_async_issue_pending(txchan);
967 pl022->dma_running = true;
968
969 return 0;
970
971err_txdesc:
972 dmaengine_terminate_all(txchan);
973err_rxdesc:
974 dmaengine_terminate_all(rxchan);
975 dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
976 pl022->sgt_tx.nents, DMA_TO_DEVICE);
977err_tx_sgmap:
978 dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
979 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
980err_rx_sgmap:
981 sg_free_table(&pl022->sgt_tx);
982err_alloc_tx_sg:
983 sg_free_table(&pl022->sgt_rx);
984err_alloc_rx_sg:
985 return -ENOMEM;
986}
987
988static int pl022_dma_probe(struct pl022 *pl022)
989{
990 dma_cap_mask_t mask;
991
992 /* Try to acquire a generic DMA engine slave channel */
993 dma_cap_zero(mask);
994 dma_cap_set(DMA_SLAVE, mask);
995 /*
996 * We need both RX and TX channels to do DMA, else do none
997 * of them.
998 */
999 pl022->dma_rx_channel = dma_request_channel(mask,
1000 pl022->host_info->dma_filter,
1001 pl022->host_info->dma_rx_param);
1002 if (!pl022->dma_rx_channel) {
1003 dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1004 goto err_no_rxchan;
1005 }
1006
1007 pl022->dma_tx_channel = dma_request_channel(mask,
1008 pl022->host_info->dma_filter,
1009 pl022->host_info->dma_tx_param);
1010 if (!pl022->dma_tx_channel) {
1011 dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1012 goto err_no_txchan;
1013 }
1014
1015 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1016 if (!pl022->dummypage)
1017 goto err_no_dummypage;
1018
1019 dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1020 dma_chan_name(pl022->dma_rx_channel),
1021 dma_chan_name(pl022->dma_tx_channel));
1022
1023 return 0;
1024
1025err_no_dummypage:
1026 dma_release_channel(pl022->dma_tx_channel);
1027err_no_txchan:
1028 dma_release_channel(pl022->dma_rx_channel);
1029 pl022->dma_rx_channel = NULL;
1030err_no_rxchan:
1031 dev_err(&pl022->adev->dev,
1032 "Failed to work in dma mode, work without dma!\n");
1033 return -ENODEV;
1034}
1035
1036static int pl022_dma_autoprobe(struct pl022 *pl022)
1037{
1038 struct device *dev = &pl022->adev->dev;
1039 struct dma_chan *chan;
1040 int err;
1041
1042 /* automatically configure DMA channels from platform, normally using DT */
1043 chan = dma_request_chan(dev, "rx");
1044 if (IS_ERR(chan)) {
1045 err = PTR_ERR(chan);
1046 goto err_no_rxchan;
1047 }
1048
1049 pl022->dma_rx_channel = chan;
1050
1051 chan = dma_request_chan(dev, "tx");
1052 if (IS_ERR(chan)) {
1053 err = PTR_ERR(chan);
1054 goto err_no_txchan;
1055 }
1056
1057 pl022->dma_tx_channel = chan;
1058
1059 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1060 if (!pl022->dummypage) {
1061 err = -ENOMEM;
1062 goto err_no_dummypage;
1063 }
1064
1065 return 0;
1066
1067err_no_dummypage:
1068 dma_release_channel(pl022->dma_tx_channel);
1069 pl022->dma_tx_channel = NULL;
1070err_no_txchan:
1071 dma_release_channel(pl022->dma_rx_channel);
1072 pl022->dma_rx_channel = NULL;
1073err_no_rxchan:
1074 return err;
1075}
1076
1077static void terminate_dma(struct pl022 *pl022)
1078{
1079 if (!pl022->dma_running)
1080 return;
1081
1082 struct dma_chan *rxchan = pl022->dma_rx_channel;
1083 struct dma_chan *txchan = pl022->dma_tx_channel;
1084
1085 dmaengine_terminate_all(rxchan);
1086 dmaengine_terminate_all(txchan);
1087 unmap_free_dma_scatter(pl022);
1088 pl022->dma_running = false;
1089}
1090
1091static void pl022_dma_remove(struct pl022 *pl022)
1092{
1093 terminate_dma(pl022);
1094 if (pl022->dma_tx_channel)
1095 dma_release_channel(pl022->dma_tx_channel);
1096 if (pl022->dma_rx_channel)
1097 dma_release_channel(pl022->dma_rx_channel);
1098 kfree(pl022->dummypage);
1099}
1100
1101#else
1102static inline int configure_dma(struct pl022 *pl022)
1103{
1104 return -ENODEV;
1105}
1106
1107static inline int pl022_dma_autoprobe(struct pl022 *pl022)
1108{
1109 return 0;
1110}
1111
1112static inline int pl022_dma_probe(struct pl022 *pl022)
1113{
1114 return 0;
1115}
1116
1117static inline void terminate_dma(struct pl022 *pl022)
1118{
1119}
1120
1121static inline void pl022_dma_remove(struct pl022 *pl022)
1122{
1123}
1124#endif
1125
1126/**
1127 * pl022_interrupt_handler - Interrupt handler for SSP controller
1128 * @irq: IRQ number
1129 * @dev_id: Local device data
1130 *
1131 * This function handles interrupts generated for an interrupt based transfer.
1132 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1133 * current message's state as STATE_ERROR and schedule the tasklet
1134 * pump_transfers which will do the postprocessing of the current message by
1135 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1136 * more data, and writes data in TX FIFO till it is not full. If we complete
1137 * the transfer we move to the next transfer and schedule the tasklet.
1138 */
1139static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1140{
1141 struct pl022 *pl022 = dev_id;
1142 u16 irq_status = 0;
1143 /* Read the Interrupt Status Register */
1144 irq_status = readw(SSP_MIS(pl022->virtbase));
1145
1146 if (unlikely(!irq_status))
1147 return IRQ_NONE;
1148
1149 /*
1150 * This handles the FIFO interrupts, the timeout
1151 * interrupts are flatly ignored, they cannot be
1152 * trusted.
1153 */
1154 if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1155 /*
1156 * Overrun interrupt - bail out since our Data has been
1157 * corrupted
1158 */
1159 dev_err(&pl022->adev->dev, "FIFO overrun\n");
1160 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1161 dev_err(&pl022->adev->dev,
1162 "RXFIFO is full\n");
1163
1164 /*
1165 * Disable and clear interrupts, disable SSP,
1166 * mark message with bad status so it can be
1167 * retried.
1168 */
1169 writew(DISABLE_ALL_INTERRUPTS,
1170 SSP_IMSC(pl022->virtbase));
1171 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1172 writew((readw(SSP_CR1(pl022->virtbase)) &
1173 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1174 pl022->cur_transfer->error |= SPI_TRANS_FAIL_IO;
1175 spi_finalize_current_transfer(pl022->host);
1176 return IRQ_HANDLED;
1177 }
1178
1179 readwriter(pl022);
1180
1181 if (pl022->tx == pl022->tx_end) {
1182 /* Disable Transmit interrupt, enable receive interrupt */
1183 writew((readw(SSP_IMSC(pl022->virtbase)) &
1184 ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1185 SSP_IMSC(pl022->virtbase));
1186 }
1187
1188 /*
1189 * Since all transactions must write as much as shall be read,
1190 * we can conclude the entire transaction once RX is complete.
1191 * At this point, all TX will always be finished.
1192 */
1193 if (pl022->rx >= pl022->rx_end) {
1194 writew(DISABLE_ALL_INTERRUPTS,
1195 SSP_IMSC(pl022->virtbase));
1196 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1197 if (unlikely(pl022->rx > pl022->rx_end)) {
1198 dev_warn(&pl022->adev->dev, "read %u surplus "
1199 "bytes (did you request an odd "
1200 "number of bytes on a 16bit bus?)\n",
1201 (u32) (pl022->rx - pl022->rx_end));
1202 }
1203 spi_finalize_current_transfer(pl022->host);
1204 return IRQ_HANDLED;
1205 }
1206
1207 return IRQ_HANDLED;
1208}
1209
1210/*
1211 * This sets up the pointers to memory for the next message to
1212 * send out on the SPI bus.
1213 */
1214static int set_up_next_transfer(struct pl022 *pl022,
1215 struct spi_transfer *transfer)
1216{
1217 int residue;
1218
1219 /* Sanity check the message for this bus width */
1220 residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1221 if (unlikely(residue != 0)) {
1222 dev_err(&pl022->adev->dev,
1223 "message of %u bytes to transmit but the current "
1224 "chip bus has a data width of %u bytes!\n",
1225 pl022->cur_transfer->len,
1226 pl022->cur_chip->n_bytes);
1227 dev_err(&pl022->adev->dev, "skipping this message\n");
1228 return -EIO;
1229 }
1230 pl022->tx = (void *)transfer->tx_buf;
1231 pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1232 pl022->rx = (void *)transfer->rx_buf;
1233 pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1234 pl022->write =
1235 pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1236 pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1237 return 0;
1238}
1239
1240static int do_interrupt_dma_transfer(struct pl022 *pl022)
1241{
1242 int ret;
1243
1244 /*
1245 * Default is to enable all interrupts except RX -
1246 * this will be enabled once TX is complete
1247 */
1248 u32 irqflags = (u32)(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM);
1249
1250 ret = set_up_next_transfer(pl022, pl022->cur_transfer);
1251 if (ret)
1252 return ret;
1253
1254 /* If we're using DMA, set up DMA here */
1255 if (pl022->cur_chip->enable_dma) {
1256 /* Configure DMA transfer */
1257 if (configure_dma(pl022)) {
1258 dev_dbg(&pl022->adev->dev,
1259 "configuration of DMA failed, fall back to interrupt mode\n");
1260 goto err_config_dma;
1261 }
1262 /* Disable interrupts in DMA mode, IRQ from DMA controller */
1263 irqflags = DISABLE_ALL_INTERRUPTS;
1264 }
1265err_config_dma:
1266 /* Enable SSP, turn on interrupts */
1267 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1268 SSP_CR1(pl022->virtbase));
1269 writew(irqflags, SSP_IMSC(pl022->virtbase));
1270 return 1;
1271}
1272
1273static void print_current_status(struct pl022 *pl022)
1274{
1275 u32 read_cr0;
1276 u16 read_cr1, read_dmacr, read_sr;
1277
1278 if (pl022->vendor->extended_cr)
1279 read_cr0 = readl(SSP_CR0(pl022->virtbase));
1280 else
1281 read_cr0 = readw(SSP_CR0(pl022->virtbase));
1282 read_cr1 = readw(SSP_CR1(pl022->virtbase));
1283 read_dmacr = readw(SSP_DMACR(pl022->virtbase));
1284 read_sr = readw(SSP_SR(pl022->virtbase));
1285
1286 dev_warn(&pl022->adev->dev, "spi-pl022 CR0: %x\n", read_cr0);
1287 dev_warn(&pl022->adev->dev, "spi-pl022 CR1: %x\n", read_cr1);
1288 dev_warn(&pl022->adev->dev, "spi-pl022 DMACR: %x\n", read_dmacr);
1289 dev_warn(&pl022->adev->dev, "spi-pl022 SR: %x\n", read_sr);
1290 dev_warn(&pl022->adev->dev,
1291 "spi-pl022 exp_fifo_level/fifodepth: %u/%d\n",
1292 pl022->exp_fifo_level,
1293 pl022->vendor->fifodepth);
1294
1295}
1296
1297static int do_polling_transfer(struct pl022 *pl022)
1298{
1299 int ret;
1300 unsigned long time, timeout;
1301
1302 /* Configuration Changing Per Transfer */
1303 ret = set_up_next_transfer(pl022, pl022->cur_transfer);
1304 if (ret)
1305 return ret;
1306 /* Flush FIFOs and enable SSP */
1307 flush(pl022);
1308 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1309 SSP_CR1(pl022->virtbase));
1310
1311 dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1312
1313 timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1314 while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1315 time = jiffies;
1316 readwriter(pl022);
1317 if (time_after(time, timeout)) {
1318 dev_warn(&pl022->adev->dev,
1319 "%s: timeout!\n", __func__);
1320 print_current_status(pl022);
1321 return -ETIMEDOUT;
1322 }
1323 cpu_relax();
1324 }
1325
1326 return 0;
1327}
1328
1329static int pl022_transfer_one(struct spi_controller *host, struct spi_device *spi,
1330 struct spi_transfer *transfer)
1331{
1332 struct pl022 *pl022 = spi_controller_get_devdata(host);
1333
1334 pl022->cur_transfer = transfer;
1335
1336 /* Setup the SPI using the per chip configuration */
1337 pl022->cur_chip = spi_get_ctldata(spi);
1338 pl022->cur_cs = spi_get_chipselect(spi, 0);
1339
1340 restore_state(pl022);
1341 flush(pl022);
1342
1343 if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1344 return do_polling_transfer(pl022);
1345 else
1346 return do_interrupt_dma_transfer(pl022);
1347}
1348
1349static void pl022_handle_err(struct spi_controller *ctlr, struct spi_message *message)
1350{
1351 struct pl022 *pl022 = spi_controller_get_devdata(ctlr);
1352
1353 terminate_dma(pl022);
1354 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
1355 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1356}
1357
1358static int pl022_unprepare_transfer_hardware(struct spi_controller *host)
1359{
1360 struct pl022 *pl022 = spi_controller_get_devdata(host);
1361
1362 /* nothing more to do - disable spi/ssp and power off */
1363 writew((readw(SSP_CR1(pl022->virtbase)) &
1364 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1365
1366 return 0;
1367}
1368
1369static int verify_controller_parameters(struct pl022 *pl022,
1370 struct pl022_config_chip const *chip_info)
1371{
1372 if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1373 || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1374 dev_err(&pl022->adev->dev,
1375 "interface is configured incorrectly\n");
1376 return -EINVAL;
1377 }
1378 if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1379 (!pl022->vendor->unidir)) {
1380 dev_err(&pl022->adev->dev,
1381 "unidirectional mode not supported in this "
1382 "hardware version\n");
1383 return -EINVAL;
1384 }
1385 if ((chip_info->hierarchy != SSP_MASTER)
1386 && (chip_info->hierarchy != SSP_SLAVE)) {
1387 dev_err(&pl022->adev->dev,
1388 "hierarchy is configured incorrectly\n");
1389 return -EINVAL;
1390 }
1391 if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1392 && (chip_info->com_mode != DMA_TRANSFER)
1393 && (chip_info->com_mode != POLLING_TRANSFER)) {
1394 dev_err(&pl022->adev->dev,
1395 "Communication mode is configured incorrectly\n");
1396 return -EINVAL;
1397 }
1398 switch (chip_info->rx_lev_trig) {
1399 case SSP_RX_1_OR_MORE_ELEM:
1400 case SSP_RX_4_OR_MORE_ELEM:
1401 case SSP_RX_8_OR_MORE_ELEM:
1402 /* These are always OK, all variants can handle this */
1403 break;
1404 case SSP_RX_16_OR_MORE_ELEM:
1405 if (pl022->vendor->fifodepth < 16) {
1406 dev_err(&pl022->adev->dev,
1407 "RX FIFO Trigger Level is configured incorrectly\n");
1408 return -EINVAL;
1409 }
1410 break;
1411 case SSP_RX_32_OR_MORE_ELEM:
1412 if (pl022->vendor->fifodepth < 32) {
1413 dev_err(&pl022->adev->dev,
1414 "RX FIFO Trigger Level is configured incorrectly\n");
1415 return -EINVAL;
1416 }
1417 break;
1418 default:
1419 dev_err(&pl022->adev->dev,
1420 "RX FIFO Trigger Level is configured incorrectly\n");
1421 return -EINVAL;
1422 }
1423 switch (chip_info->tx_lev_trig) {
1424 case SSP_TX_1_OR_MORE_EMPTY_LOC:
1425 case SSP_TX_4_OR_MORE_EMPTY_LOC:
1426 case SSP_TX_8_OR_MORE_EMPTY_LOC:
1427 /* These are always OK, all variants can handle this */
1428 break;
1429 case SSP_TX_16_OR_MORE_EMPTY_LOC:
1430 if (pl022->vendor->fifodepth < 16) {
1431 dev_err(&pl022->adev->dev,
1432 "TX FIFO Trigger Level is configured incorrectly\n");
1433 return -EINVAL;
1434 }
1435 break;
1436 case SSP_TX_32_OR_MORE_EMPTY_LOC:
1437 if (pl022->vendor->fifodepth < 32) {
1438 dev_err(&pl022->adev->dev,
1439 "TX FIFO Trigger Level is configured incorrectly\n");
1440 return -EINVAL;
1441 }
1442 break;
1443 default:
1444 dev_err(&pl022->adev->dev,
1445 "TX FIFO Trigger Level is configured incorrectly\n");
1446 return -EINVAL;
1447 }
1448 if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1449 if ((chip_info->ctrl_len < SSP_BITS_4)
1450 || (chip_info->ctrl_len > SSP_BITS_32)) {
1451 dev_err(&pl022->adev->dev,
1452 "CTRL LEN is configured incorrectly\n");
1453 return -EINVAL;
1454 }
1455 if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1456 && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1457 dev_err(&pl022->adev->dev,
1458 "Wait State is configured incorrectly\n");
1459 return -EINVAL;
1460 }
1461 /* Half duplex is only available in the ST Micro version */
1462 if (pl022->vendor->extended_cr) {
1463 if ((chip_info->duplex !=
1464 SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1465 && (chip_info->duplex !=
1466 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1467 dev_err(&pl022->adev->dev,
1468 "Microwire duplex mode is configured incorrectly\n");
1469 return -EINVAL;
1470 }
1471 } else {
1472 if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX) {
1473 dev_err(&pl022->adev->dev,
1474 "Microwire half duplex mode requested,"
1475 " but this is only available in the"
1476 " ST version of PL022\n");
1477 return -EINVAL;
1478 }
1479 }
1480 }
1481 return 0;
1482}
1483
1484static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1485{
1486 return rate / (cpsdvsr * (1 + scr));
1487}
1488
1489static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1490 ssp_clock_params * clk_freq)
1491{
1492 /* Lets calculate the frequency parameters */
1493 u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1494 u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1495 best_scr = 0, tmp, found = 0;
1496
1497 rate = clk_get_rate(pl022->clk);
1498 /* cpsdvscr = 2 & scr 0 */
1499 max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1500 /* cpsdvsr = 254 & scr = 255 */
1501 min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1502
1503 if (freq > max_tclk)
1504 dev_warn(&pl022->adev->dev,
1505 "Max speed that can be programmed is %d Hz, you requested %d\n",
1506 max_tclk, freq);
1507
1508 if (freq < min_tclk) {
1509 dev_err(&pl022->adev->dev,
1510 "Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1511 freq, min_tclk);
1512 return -EINVAL;
1513 }
1514
1515 /*
1516 * best_freq will give closest possible available rate (<= requested
1517 * freq) for all values of scr & cpsdvsr.
1518 */
1519 while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1520 while (scr <= SCR_MAX) {
1521 tmp = spi_rate(rate, cpsdvsr, scr);
1522
1523 if (tmp > freq) {
1524 /* we need lower freq */
1525 scr++;
1526 continue;
1527 }
1528
1529 /*
1530 * If found exact value, mark found and break.
1531 * If found more closer value, update and break.
1532 */
1533 if (tmp > best_freq) {
1534 best_freq = tmp;
1535 best_cpsdvsr = cpsdvsr;
1536 best_scr = scr;
1537
1538 if (tmp == freq)
1539 found = 1;
1540 }
1541 /*
1542 * increased scr will give lower rates, which are not
1543 * required
1544 */
1545 break;
1546 }
1547 cpsdvsr += 2;
1548 scr = SCR_MIN;
1549 }
1550
1551 WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1552 freq);
1553
1554 clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1555 clk_freq->scr = (u8) (best_scr & 0xFF);
1556 dev_dbg(&pl022->adev->dev,
1557 "SSP Target Frequency is: %u, Effective Frequency is %u\n",
1558 freq, best_freq);
1559 dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1560 clk_freq->cpsdvsr, clk_freq->scr);
1561
1562 return 0;
1563}
1564
1565/*
1566 * A piece of default chip info unless the platform
1567 * supplies it.
1568 */
1569static const struct pl022_config_chip pl022_default_chip_info = {
1570 .com_mode = INTERRUPT_TRANSFER,
1571 .iface = SSP_INTERFACE_MOTOROLA_SPI,
1572 .hierarchy = SSP_MASTER,
1573 .slave_tx_disable = DO_NOT_DRIVE_TX,
1574 .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1575 .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1576 .ctrl_len = SSP_BITS_8,
1577 .wait_state = SSP_MWIRE_WAIT_ZERO,
1578 .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1579};
1580
1581/**
1582 * pl022_setup - setup function registered to SPI host framework
1583 * @spi: spi device which is requesting setup
1584 *
1585 * This function is registered to the SPI framework for this SPI host
1586 * controller. If it is the first time when setup is called by this device,
1587 * this function will initialize the runtime state for this chip and save
1588 * the same in the device structure. Else it will update the runtime info
1589 * with the updated chip info. Nothing is really being written to the
1590 * controller hardware here, that is not done until the actual transfer
1591 * commence.
1592 */
1593static int pl022_setup(struct spi_device *spi)
1594{
1595 struct pl022_config_chip const *chip_info;
1596 struct pl022_config_chip chip_info_dt;
1597 struct chip_data *chip;
1598 struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1599 int status = 0;
1600 struct pl022 *pl022 = spi_controller_get_devdata(spi->controller);
1601 unsigned int bits = spi->bits_per_word;
1602 u32 tmp;
1603 struct device_node *np = spi->dev.of_node;
1604
1605 if (!spi->max_speed_hz)
1606 return -EINVAL;
1607
1608 /* Get controller_state if one is supplied */
1609 chip = spi_get_ctldata(spi);
1610
1611 if (chip == NULL) {
1612 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1613 if (!chip)
1614 return -ENOMEM;
1615 dev_dbg(&spi->dev,
1616 "allocated memory for controller's runtime state\n");
1617 }
1618
1619 /* Get controller data if one is supplied */
1620 chip_info = spi->controller_data;
1621
1622 if (chip_info == NULL) {
1623 if (np) {
1624 chip_info_dt = pl022_default_chip_info;
1625
1626 chip_info_dt.hierarchy = SSP_MASTER;
1627 of_property_read_u32(np, "pl022,interface",
1628 &chip_info_dt.iface);
1629 of_property_read_u32(np, "pl022,com-mode",
1630 &chip_info_dt.com_mode);
1631 of_property_read_u32(np, "pl022,rx-level-trig",
1632 &chip_info_dt.rx_lev_trig);
1633 of_property_read_u32(np, "pl022,tx-level-trig",
1634 &chip_info_dt.tx_lev_trig);
1635 of_property_read_u32(np, "pl022,ctrl-len",
1636 &chip_info_dt.ctrl_len);
1637 of_property_read_u32(np, "pl022,wait-state",
1638 &chip_info_dt.wait_state);
1639 of_property_read_u32(np, "pl022,duplex",
1640 &chip_info_dt.duplex);
1641
1642 chip_info = &chip_info_dt;
1643 } else {
1644 chip_info = &pl022_default_chip_info;
1645 /* spi_board_info.controller_data not is supplied */
1646 dev_dbg(&spi->dev,
1647 "using default controller_data settings\n");
1648 }
1649 } else
1650 dev_dbg(&spi->dev,
1651 "using user supplied controller_data settings\n");
1652
1653 /*
1654 * We can override with custom divisors, else we use the board
1655 * frequency setting
1656 */
1657 if ((0 == chip_info->clk_freq.cpsdvsr)
1658 && (0 == chip_info->clk_freq.scr)) {
1659 status = calculate_effective_freq(pl022,
1660 spi->max_speed_hz,
1661 &clk_freq);
1662 if (status < 0)
1663 goto err_config_params;
1664 } else {
1665 memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1666 if ((clk_freq.cpsdvsr % 2) != 0)
1667 clk_freq.cpsdvsr =
1668 clk_freq.cpsdvsr - 1;
1669 }
1670 if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1671 || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1672 status = -EINVAL;
1673 dev_err(&spi->dev,
1674 "cpsdvsr is configured incorrectly\n");
1675 goto err_config_params;
1676 }
1677
1678 status = verify_controller_parameters(pl022, chip_info);
1679 if (status) {
1680 dev_err(&spi->dev, "controller data is incorrect");
1681 goto err_config_params;
1682 }
1683
1684 pl022->rx_lev_trig = chip_info->rx_lev_trig;
1685 pl022->tx_lev_trig = chip_info->tx_lev_trig;
1686
1687 /* Now set controller state based on controller data */
1688 chip->xfer_type = chip_info->com_mode;
1689
1690 /* Check bits per word with vendor specific range */
1691 if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1692 status = -ENOTSUPP;
1693 dev_err(&spi->dev, "illegal data size for this controller!\n");
1694 dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1695 pl022->vendor->max_bpw);
1696 goto err_config_params;
1697 } else if (bits <= 8) {
1698 dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1699 chip->n_bytes = 1;
1700 chip->read = READING_U8;
1701 chip->write = WRITING_U8;
1702 } else if (bits <= 16) {
1703 dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1704 chip->n_bytes = 2;
1705 chip->read = READING_U16;
1706 chip->write = WRITING_U16;
1707 } else {
1708 dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1709 chip->n_bytes = 4;
1710 chip->read = READING_U32;
1711 chip->write = WRITING_U32;
1712 }
1713
1714 /* Now Initialize all register settings required for this chip */
1715 chip->cr0 = 0;
1716 chip->cr1 = 0;
1717 chip->dmacr = 0;
1718 chip->cpsr = 0;
1719 if ((chip_info->com_mode == DMA_TRANSFER)
1720 && ((pl022->host_info)->enable_dma)) {
1721 chip->enable_dma = true;
1722 dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1723 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1724 SSP_DMACR_MASK_RXDMAE, 0);
1725 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1726 SSP_DMACR_MASK_TXDMAE, 1);
1727 } else {
1728 chip->enable_dma = false;
1729 dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1730 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1731 SSP_DMACR_MASK_RXDMAE, 0);
1732 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1733 SSP_DMACR_MASK_TXDMAE, 1);
1734 }
1735
1736 chip->cpsr = clk_freq.cpsdvsr;
1737
1738 /* Special setup for the ST micro extended control registers */
1739 if (pl022->vendor->extended_cr) {
1740 u32 etx;
1741
1742 if (pl022->vendor->pl023) {
1743 /* These bits are only in the PL023 */
1744 SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
1745 SSP_CR1_MASK_FBCLKDEL_ST, 13);
1746 } else {
1747 /* These bits are in the PL022 but not PL023 */
1748 SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
1749 SSP_CR0_MASK_HALFDUP_ST, 5);
1750 SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
1751 SSP_CR0_MASK_CSS_ST, 16);
1752 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1753 SSP_CR0_MASK_FRF_ST, 21);
1754 SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
1755 SSP_CR1_MASK_MWAIT_ST, 6);
1756 }
1757 SSP_WRITE_BITS(chip->cr0, bits - 1,
1758 SSP_CR0_MASK_DSS_ST, 0);
1759
1760 if (spi->mode & SPI_LSB_FIRST) {
1761 tmp = SSP_RX_LSB;
1762 etx = SSP_TX_LSB;
1763 } else {
1764 tmp = SSP_RX_MSB;
1765 etx = SSP_TX_MSB;
1766 }
1767 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
1768 SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
1769 SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
1770 SSP_CR1_MASK_RXIFLSEL_ST, 7);
1771 SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
1772 SSP_CR1_MASK_TXIFLSEL_ST, 10);
1773 } else {
1774 SSP_WRITE_BITS(chip->cr0, bits - 1,
1775 SSP_CR0_MASK_DSS, 0);
1776 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1777 SSP_CR0_MASK_FRF, 4);
1778 }
1779
1780 /* Stuff that is common for all versions */
1781 if (spi->mode & SPI_CPOL)
1782 tmp = SSP_CLK_POL_IDLE_HIGH;
1783 else
1784 tmp = SSP_CLK_POL_IDLE_LOW;
1785 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
1786
1787 if (spi->mode & SPI_CPHA)
1788 tmp = SSP_CLK_SECOND_EDGE;
1789 else
1790 tmp = SSP_CLK_FIRST_EDGE;
1791 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
1792
1793 SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
1794 /* Loopback is available on all versions except PL023 */
1795 if (pl022->vendor->loopback) {
1796 if (spi->mode & SPI_LOOP)
1797 tmp = LOOPBACK_ENABLED;
1798 else
1799 tmp = LOOPBACK_DISABLED;
1800 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
1801 }
1802 SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
1803 SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
1804 SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
1805 3);
1806
1807 /* Save controller_state */
1808 spi_set_ctldata(spi, chip);
1809 return status;
1810 err_config_params:
1811 spi_set_ctldata(spi, NULL);
1812 kfree(chip);
1813 return status;
1814}
1815
1816/**
1817 * pl022_cleanup - cleanup function registered to SPI host framework
1818 * @spi: spi device which is requesting cleanup
1819 *
1820 * This function is registered to the SPI framework for this SPI host
1821 * controller. It will free the runtime state of chip.
1822 */
1823static void pl022_cleanup(struct spi_device *spi)
1824{
1825 struct chip_data *chip = spi_get_ctldata(spi);
1826
1827 spi_set_ctldata(spi, NULL);
1828 kfree(chip);
1829}
1830
1831static struct pl022_ssp_controller *
1832pl022_platform_data_dt_get(struct device *dev)
1833{
1834 struct device_node *np = dev->of_node;
1835 struct pl022_ssp_controller *pd;
1836
1837 if (!np) {
1838 dev_err(dev, "no dt node defined\n");
1839 return NULL;
1840 }
1841
1842 pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
1843 if (!pd)
1844 return NULL;
1845
1846 pd->bus_id = -1;
1847 of_property_read_u32(np, "pl022,autosuspend-delay",
1848 &pd->autosuspend_delay);
1849 pd->rt = of_property_read_bool(np, "pl022,rt");
1850
1851 return pd;
1852}
1853
1854static int pl022_probe(struct amba_device *adev, const struct amba_id *id)
1855{
1856 struct device *dev = &adev->dev;
1857 struct pl022_ssp_controller *platform_info =
1858 dev_get_platdata(&adev->dev);
1859 struct spi_controller *host;
1860 struct pl022 *pl022 = NULL; /*Data for this driver */
1861 int status = 0;
1862
1863 dev_info(&adev->dev,
1864 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
1865 if (!platform_info && IS_ENABLED(CONFIG_OF))
1866 platform_info = pl022_platform_data_dt_get(dev);
1867
1868 if (!platform_info) {
1869 dev_err(dev, "probe: no platform data defined\n");
1870 return -ENODEV;
1871 }
1872
1873 /* Allocate host with space for data */
1874 host = spi_alloc_host(dev, sizeof(struct pl022));
1875 if (host == NULL) {
1876 dev_err(&adev->dev, "probe - cannot alloc SPI host\n");
1877 return -ENOMEM;
1878 }
1879
1880 pl022 = spi_controller_get_devdata(host);
1881 pl022->host = host;
1882 pl022->host_info = platform_info;
1883 pl022->adev = adev;
1884 pl022->vendor = id->data;
1885
1886 /*
1887 * Bus Number Which has been Assigned to this SSP controller
1888 * on this board
1889 */
1890 host->bus_num = platform_info->bus_id;
1891 host->cleanup = pl022_cleanup;
1892 host->setup = pl022_setup;
1893 host->auto_runtime_pm = true;
1894 host->transfer_one = pl022_transfer_one;
1895 host->set_cs = pl022_cs_control;
1896 host->handle_err = pl022_handle_err;
1897 host->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
1898 host->rt = platform_info->rt;
1899 host->dev.of_node = dev->of_node;
1900 host->use_gpio_descriptors = true;
1901
1902 /*
1903 * Supports mode 0-3, loopback, and active low CS. Transfers are
1904 * always MS bit first on the original pl022.
1905 */
1906 host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1907 if (pl022->vendor->extended_cr)
1908 host->mode_bits |= SPI_LSB_FIRST;
1909
1910 dev_dbg(&adev->dev, "BUSNO: %d\n", host->bus_num);
1911
1912 status = amba_request_regions(adev, NULL);
1913 if (status)
1914 goto err_no_ioregion;
1915
1916 pl022->phybase = adev->res.start;
1917 pl022->virtbase = devm_ioremap(dev, adev->res.start,
1918 resource_size(&adev->res));
1919 if (pl022->virtbase == NULL) {
1920 status = -ENOMEM;
1921 goto err_no_ioremap;
1922 }
1923 dev_info(&adev->dev, "mapped registers from %pa to %p\n",
1924 &adev->res.start, pl022->virtbase);
1925
1926 pl022->clk = devm_clk_get_enabled(&adev->dev, NULL);
1927 if (IS_ERR(pl022->clk)) {
1928 status = PTR_ERR(pl022->clk);
1929 dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
1930 goto err_no_clk;
1931 }
1932
1933 /* Disable SSP */
1934 writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
1935 SSP_CR1(pl022->virtbase));
1936 load_ssp_default_config(pl022);
1937
1938 status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
1939 0, "pl022", pl022);
1940 if (status < 0) {
1941 dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
1942 goto err_no_irq;
1943 }
1944
1945 /* Get DMA channels, try autoconfiguration first */
1946 status = pl022_dma_autoprobe(pl022);
1947 if (status == -EPROBE_DEFER) {
1948 dev_dbg(dev, "deferring probe to get DMA channel\n");
1949 goto err_no_irq;
1950 }
1951
1952 /* If that failed, use channels from platform_info */
1953 if (status == 0)
1954 platform_info->enable_dma = 1;
1955 else if (platform_info->enable_dma) {
1956 status = pl022_dma_probe(pl022);
1957 if (status != 0)
1958 platform_info->enable_dma = 0;
1959 }
1960
1961 /* Register with the SPI framework */
1962 amba_set_drvdata(adev, pl022);
1963 status = devm_spi_register_controller(&adev->dev, host);
1964 if (status != 0) {
1965 dev_err_probe(&adev->dev, status,
1966 "problem registering spi host\n");
1967 goto err_spi_register;
1968 }
1969 dev_dbg(dev, "probe succeeded\n");
1970
1971 /* let runtime pm put suspend */
1972 if (platform_info->autosuspend_delay > 0) {
1973 dev_info(&adev->dev,
1974 "will use autosuspend for runtime pm, delay %dms\n",
1975 platform_info->autosuspend_delay);
1976 pm_runtime_set_autosuspend_delay(dev,
1977 platform_info->autosuspend_delay);
1978 pm_runtime_use_autosuspend(dev);
1979 }
1980 pm_runtime_put(dev);
1981
1982 return 0;
1983
1984 err_spi_register:
1985 if (platform_info->enable_dma)
1986 pl022_dma_remove(pl022);
1987 err_no_irq:
1988 err_no_clk:
1989 err_no_ioremap:
1990 amba_release_regions(adev);
1991 err_no_ioregion:
1992 spi_controller_put(host);
1993 return status;
1994}
1995
1996static void
1997pl022_remove(struct amba_device *adev)
1998{
1999 struct pl022 *pl022 = amba_get_drvdata(adev);
2000
2001 if (!pl022)
2002 return;
2003
2004 /*
2005 * undo pm_runtime_put() in probe. I assume that we're not
2006 * accessing the primecell here.
2007 */
2008 pm_runtime_get_noresume(&adev->dev);
2009
2010 load_ssp_default_config(pl022);
2011 if (pl022->host_info->enable_dma)
2012 pl022_dma_remove(pl022);
2013
2014 amba_release_regions(adev);
2015}
2016
2017#ifdef CONFIG_PM_SLEEP
2018static int pl022_suspend(struct device *dev)
2019{
2020 struct pl022 *pl022 = dev_get_drvdata(dev);
2021 int ret;
2022
2023 ret = spi_controller_suspend(pl022->host);
2024 if (ret)
2025 return ret;
2026
2027 ret = pm_runtime_force_suspend(dev);
2028 if (ret) {
2029 spi_controller_resume(pl022->host);
2030 return ret;
2031 }
2032
2033 pinctrl_pm_select_sleep_state(dev);
2034
2035 dev_dbg(dev, "suspended\n");
2036 return 0;
2037}
2038
2039static int pl022_resume(struct device *dev)
2040{
2041 struct pl022 *pl022 = dev_get_drvdata(dev);
2042 int ret;
2043
2044 ret = pm_runtime_force_resume(dev);
2045 if (ret)
2046 dev_err(dev, "problem resuming\n");
2047
2048 /* Start the queue running */
2049 ret = spi_controller_resume(pl022->host);
2050 if (!ret)
2051 dev_dbg(dev, "resumed\n");
2052
2053 return ret;
2054}
2055#endif
2056
2057#ifdef CONFIG_PM
2058static int pl022_runtime_suspend(struct device *dev)
2059{
2060 struct pl022 *pl022 = dev_get_drvdata(dev);
2061
2062 clk_disable_unprepare(pl022->clk);
2063 pinctrl_pm_select_idle_state(dev);
2064
2065 return 0;
2066}
2067
2068static int pl022_runtime_resume(struct device *dev)
2069{
2070 struct pl022 *pl022 = dev_get_drvdata(dev);
2071
2072 pinctrl_pm_select_default_state(dev);
2073 clk_prepare_enable(pl022->clk);
2074
2075 return 0;
2076}
2077#endif
2078
2079static const struct dev_pm_ops pl022_dev_pm_ops = {
2080 SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2081 SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2082};
2083
2084static struct vendor_data vendor_arm = {
2085 .fifodepth = 8,
2086 .max_bpw = 16,
2087 .unidir = false,
2088 .extended_cr = false,
2089 .pl023 = false,
2090 .loopback = true,
2091 .internal_cs_ctrl = false,
2092};
2093
2094static struct vendor_data vendor_st = {
2095 .fifodepth = 32,
2096 .max_bpw = 32,
2097 .unidir = false,
2098 .extended_cr = true,
2099 .pl023 = false,
2100 .loopback = true,
2101 .internal_cs_ctrl = false,
2102};
2103
2104static struct vendor_data vendor_st_pl023 = {
2105 .fifodepth = 32,
2106 .max_bpw = 32,
2107 .unidir = false,
2108 .extended_cr = true,
2109 .pl023 = true,
2110 .loopback = false,
2111 .internal_cs_ctrl = false,
2112};
2113
2114static struct vendor_data vendor_lsi = {
2115 .fifodepth = 8,
2116 .max_bpw = 16,
2117 .unidir = false,
2118 .extended_cr = false,
2119 .pl023 = false,
2120 .loopback = true,
2121 .internal_cs_ctrl = true,
2122};
2123
2124static const struct amba_id pl022_ids[] = {
2125 {
2126 /*
2127 * ARM PL022 variant, this has a 16bit wide
2128 * and 8 locations deep TX/RX FIFO
2129 */
2130 .id = 0x00041022,
2131 .mask = 0x000fffff,
2132 .data = &vendor_arm,
2133 },
2134 {
2135 /*
2136 * ST Micro derivative, this has 32bit wide
2137 * and 32 locations deep TX/RX FIFO
2138 */
2139 .id = 0x01080022,
2140 .mask = 0xffffffff,
2141 .data = &vendor_st,
2142 },
2143 {
2144 /*
2145 * ST-Ericsson derivative "PL023" (this is not
2146 * an official ARM number), this is a PL022 SSP block
2147 * stripped to SPI mode only, it has 32bit wide
2148 * and 32 locations deep TX/RX FIFO but no extended
2149 * CR0/CR1 register
2150 */
2151 .id = 0x00080023,
2152 .mask = 0xffffffff,
2153 .data = &vendor_st_pl023,
2154 },
2155 {
2156 /*
2157 * PL022 variant that has a chip select control register whih
2158 * allows control of 5 output signals nCS[0:4].
2159 */
2160 .id = 0x000b6022,
2161 .mask = 0x000fffff,
2162 .data = &vendor_lsi,
2163 },
2164 { 0, 0 },
2165};
2166
2167MODULE_DEVICE_TABLE(amba, pl022_ids);
2168
2169static struct amba_driver pl022_driver = {
2170 .drv = {
2171 .name = "ssp-pl022",
2172 .pm = &pl022_dev_pm_ops,
2173 },
2174 .id_table = pl022_ids,
2175 .probe = pl022_probe,
2176 .remove = pl022_remove,
2177};
2178
2179static int __init pl022_init(void)
2180{
2181 return amba_driver_register(&pl022_driver);
2182}
2183subsys_initcall(pl022_init);
2184
2185static void __exit pl022_exit(void)
2186{
2187 amba_driver_unregister(&pl022_driver);
2188}
2189module_exit(pl022_exit);
2190
2191MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2192MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2193MODULE_LICENSE("GPL");
1/*
2 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
3 *
4 * Copyright (C) 2008-2012 ST-Ericsson AB
5 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
6 *
7 * Author: Linus Walleij <linus.walleij@stericsson.com>
8 *
9 * Initial version inspired by:
10 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
11 * Initial adoption to PL022 by:
12 * Sachin Verma <sachin.verma@st.com>
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 */
24
25#include <linux/init.h>
26#include <linux/module.h>
27#include <linux/device.h>
28#include <linux/ioport.h>
29#include <linux/errno.h>
30#include <linux/interrupt.h>
31#include <linux/spi/spi.h>
32#include <linux/delay.h>
33#include <linux/clk.h>
34#include <linux/err.h>
35#include <linux/amba/bus.h>
36#include <linux/amba/pl022.h>
37#include <linux/io.h>
38#include <linux/slab.h>
39#include <linux/dmaengine.h>
40#include <linux/dma-mapping.h>
41#include <linux/scatterlist.h>
42#include <linux/pm_runtime.h>
43#include <linux/gpio.h>
44#include <linux/of_gpio.h>
45#include <linux/pinctrl/consumer.h>
46
47/*
48 * This macro is used to define some register default values.
49 * reg is masked with mask, the OR:ed with an (again masked)
50 * val shifted sb steps to the left.
51 */
52#define SSP_WRITE_BITS(reg, val, mask, sb) \
53 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
54
55/*
56 * This macro is also used to define some default values.
57 * It will just shift val by sb steps to the left and mask
58 * the result with mask.
59 */
60#define GEN_MASK_BITS(val, mask, sb) \
61 (((val)<<(sb)) & (mask))
62
63#define DRIVE_TX 0
64#define DO_NOT_DRIVE_TX 1
65
66#define DO_NOT_QUEUE_DMA 0
67#define QUEUE_DMA 1
68
69#define RX_TRANSFER 1
70#define TX_TRANSFER 2
71
72/*
73 * Macros to access SSP Registers with their offsets
74 */
75#define SSP_CR0(r) (r + 0x000)
76#define SSP_CR1(r) (r + 0x004)
77#define SSP_DR(r) (r + 0x008)
78#define SSP_SR(r) (r + 0x00C)
79#define SSP_CPSR(r) (r + 0x010)
80#define SSP_IMSC(r) (r + 0x014)
81#define SSP_RIS(r) (r + 0x018)
82#define SSP_MIS(r) (r + 0x01C)
83#define SSP_ICR(r) (r + 0x020)
84#define SSP_DMACR(r) (r + 0x024)
85#define SSP_CSR(r) (r + 0x030) /* vendor extension */
86#define SSP_ITCR(r) (r + 0x080)
87#define SSP_ITIP(r) (r + 0x084)
88#define SSP_ITOP(r) (r + 0x088)
89#define SSP_TDR(r) (r + 0x08C)
90
91#define SSP_PID0(r) (r + 0xFE0)
92#define SSP_PID1(r) (r + 0xFE4)
93#define SSP_PID2(r) (r + 0xFE8)
94#define SSP_PID3(r) (r + 0xFEC)
95
96#define SSP_CID0(r) (r + 0xFF0)
97#define SSP_CID1(r) (r + 0xFF4)
98#define SSP_CID2(r) (r + 0xFF8)
99#define SSP_CID3(r) (r + 0xFFC)
100
101/*
102 * SSP Control Register 0 - SSP_CR0
103 */
104#define SSP_CR0_MASK_DSS (0x0FUL << 0)
105#define SSP_CR0_MASK_FRF (0x3UL << 4)
106#define SSP_CR0_MASK_SPO (0x1UL << 6)
107#define SSP_CR0_MASK_SPH (0x1UL << 7)
108#define SSP_CR0_MASK_SCR (0xFFUL << 8)
109
110/*
111 * The ST version of this block moves som bits
112 * in SSP_CR0 and extends it to 32 bits
113 */
114#define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
115#define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
116#define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
117#define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
118
119/*
120 * SSP Control Register 0 - SSP_CR1
121 */
122#define SSP_CR1_MASK_LBM (0x1UL << 0)
123#define SSP_CR1_MASK_SSE (0x1UL << 1)
124#define SSP_CR1_MASK_MS (0x1UL << 2)
125#define SSP_CR1_MASK_SOD (0x1UL << 3)
126
127/*
128 * The ST version of this block adds some bits
129 * in SSP_CR1
130 */
131#define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
132#define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
133#define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
134#define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
135#define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
136/* This one is only in the PL023 variant */
137#define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
138
139/*
140 * SSP Status Register - SSP_SR
141 */
142#define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
143#define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
144#define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
145#define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
146#define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
147
148/*
149 * SSP Clock Prescale Register - SSP_CPSR
150 */
151#define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
152
153/*
154 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
155 */
156#define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
157#define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
158#define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
159#define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
160
161/*
162 * SSP Raw Interrupt Status Register - SSP_RIS
163 */
164/* Receive Overrun Raw Interrupt status */
165#define SSP_RIS_MASK_RORRIS (0x1UL << 0)
166/* Receive Timeout Raw Interrupt status */
167#define SSP_RIS_MASK_RTRIS (0x1UL << 1)
168/* Receive FIFO Raw Interrupt status */
169#define SSP_RIS_MASK_RXRIS (0x1UL << 2)
170/* Transmit FIFO Raw Interrupt status */
171#define SSP_RIS_MASK_TXRIS (0x1UL << 3)
172
173/*
174 * SSP Masked Interrupt Status Register - SSP_MIS
175 */
176/* Receive Overrun Masked Interrupt status */
177#define SSP_MIS_MASK_RORMIS (0x1UL << 0)
178/* Receive Timeout Masked Interrupt status */
179#define SSP_MIS_MASK_RTMIS (0x1UL << 1)
180/* Receive FIFO Masked Interrupt status */
181#define SSP_MIS_MASK_RXMIS (0x1UL << 2)
182/* Transmit FIFO Masked Interrupt status */
183#define SSP_MIS_MASK_TXMIS (0x1UL << 3)
184
185/*
186 * SSP Interrupt Clear Register - SSP_ICR
187 */
188/* Receive Overrun Raw Clear Interrupt bit */
189#define SSP_ICR_MASK_RORIC (0x1UL << 0)
190/* Receive Timeout Clear Interrupt bit */
191#define SSP_ICR_MASK_RTIC (0x1UL << 1)
192
193/*
194 * SSP DMA Control Register - SSP_DMACR
195 */
196/* Receive DMA Enable bit */
197#define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
198/* Transmit DMA Enable bit */
199#define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
200
201/*
202 * SSP Chip Select Control Register - SSP_CSR
203 * (vendor extension)
204 */
205#define SSP_CSR_CSVALUE_MASK (0x1FUL << 0)
206
207/*
208 * SSP Integration Test control Register - SSP_ITCR
209 */
210#define SSP_ITCR_MASK_ITEN (0x1UL << 0)
211#define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
212
213/*
214 * SSP Integration Test Input Register - SSP_ITIP
215 */
216#define ITIP_MASK_SSPRXD (0x1UL << 0)
217#define ITIP_MASK_SSPFSSIN (0x1UL << 1)
218#define ITIP_MASK_SSPCLKIN (0x1UL << 2)
219#define ITIP_MASK_RXDMAC (0x1UL << 3)
220#define ITIP_MASK_TXDMAC (0x1UL << 4)
221#define ITIP_MASK_SSPTXDIN (0x1UL << 5)
222
223/*
224 * SSP Integration Test output Register - SSP_ITOP
225 */
226#define ITOP_MASK_SSPTXD (0x1UL << 0)
227#define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
228#define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
229#define ITOP_MASK_SSPOEn (0x1UL << 3)
230#define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
231#define ITOP_MASK_RORINTR (0x1UL << 5)
232#define ITOP_MASK_RTINTR (0x1UL << 6)
233#define ITOP_MASK_RXINTR (0x1UL << 7)
234#define ITOP_MASK_TXINTR (0x1UL << 8)
235#define ITOP_MASK_INTR (0x1UL << 9)
236#define ITOP_MASK_RXDMABREQ (0x1UL << 10)
237#define ITOP_MASK_RXDMASREQ (0x1UL << 11)
238#define ITOP_MASK_TXDMABREQ (0x1UL << 12)
239#define ITOP_MASK_TXDMASREQ (0x1UL << 13)
240
241/*
242 * SSP Test Data Register - SSP_TDR
243 */
244#define TDR_MASK_TESTDATA (0xFFFFFFFF)
245
246/*
247 * Message State
248 * we use the spi_message.state (void *) pointer to
249 * hold a single state value, that's why all this
250 * (void *) casting is done here.
251 */
252#define STATE_START ((void *) 0)
253#define STATE_RUNNING ((void *) 1)
254#define STATE_DONE ((void *) 2)
255#define STATE_ERROR ((void *) -1)
256
257/*
258 * SSP State - Whether Enabled or Disabled
259 */
260#define SSP_DISABLED (0)
261#define SSP_ENABLED (1)
262
263/*
264 * SSP DMA State - Whether DMA Enabled or Disabled
265 */
266#define SSP_DMA_DISABLED (0)
267#define SSP_DMA_ENABLED (1)
268
269/*
270 * SSP Clock Defaults
271 */
272#define SSP_DEFAULT_CLKRATE 0x2
273#define SSP_DEFAULT_PRESCALE 0x40
274
275/*
276 * SSP Clock Parameter ranges
277 */
278#define CPSDVR_MIN 0x02
279#define CPSDVR_MAX 0xFE
280#define SCR_MIN 0x00
281#define SCR_MAX 0xFF
282
283/*
284 * SSP Interrupt related Macros
285 */
286#define DEFAULT_SSP_REG_IMSC 0x0UL
287#define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
288#define ENABLE_ALL_INTERRUPTS ( \
289 SSP_IMSC_MASK_RORIM | \
290 SSP_IMSC_MASK_RTIM | \
291 SSP_IMSC_MASK_RXIM | \
292 SSP_IMSC_MASK_TXIM \
293)
294
295#define CLEAR_ALL_INTERRUPTS 0x3
296
297#define SPI_POLLING_TIMEOUT 1000
298
299/*
300 * The type of reading going on on this chip
301 */
302enum ssp_reading {
303 READING_NULL,
304 READING_U8,
305 READING_U16,
306 READING_U32
307};
308
309/**
310 * The type of writing going on on this chip
311 */
312enum ssp_writing {
313 WRITING_NULL,
314 WRITING_U8,
315 WRITING_U16,
316 WRITING_U32
317};
318
319/**
320 * struct vendor_data - vendor-specific config parameters
321 * for PL022 derivates
322 * @fifodepth: depth of FIFOs (both)
323 * @max_bpw: maximum number of bits per word
324 * @unidir: supports unidirection transfers
325 * @extended_cr: 32 bit wide control register 0 with extra
326 * features and extra features in CR1 as found in the ST variants
327 * @pl023: supports a subset of the ST extensions called "PL023"
328 * @internal_cs_ctrl: supports chip select control register
329 */
330struct vendor_data {
331 int fifodepth;
332 int max_bpw;
333 bool unidir;
334 bool extended_cr;
335 bool pl023;
336 bool loopback;
337 bool internal_cs_ctrl;
338};
339
340/**
341 * struct pl022 - This is the private SSP driver data structure
342 * @adev: AMBA device model hookup
343 * @vendor: vendor data for the IP block
344 * @phybase: the physical memory where the SSP device resides
345 * @virtbase: the virtual memory where the SSP is mapped
346 * @clk: outgoing clock "SPICLK" for the SPI bus
347 * @master: SPI framework hookup
348 * @master_info: controller-specific data from machine setup
349 * @pump_transfers: Tasklet used in Interrupt Transfer mode
350 * @cur_msg: Pointer to current spi_message being processed
351 * @cur_transfer: Pointer to current spi_transfer
352 * @cur_chip: pointer to current clients chip(assigned from controller_state)
353 * @next_msg_cs_active: the next message in the queue has been examined
354 * and it was found that it uses the same chip select as the previous
355 * message, so we left it active after the previous transfer, and it's
356 * active already.
357 * @tx: current position in TX buffer to be read
358 * @tx_end: end position in TX buffer to be read
359 * @rx: current position in RX buffer to be written
360 * @rx_end: end position in RX buffer to be written
361 * @read: the type of read currently going on
362 * @write: the type of write currently going on
363 * @exp_fifo_level: expected FIFO level
364 * @dma_rx_channel: optional channel for RX DMA
365 * @dma_tx_channel: optional channel for TX DMA
366 * @sgt_rx: scattertable for the RX transfer
367 * @sgt_tx: scattertable for the TX transfer
368 * @dummypage: a dummy page used for driving data on the bus with DMA
369 * @cur_cs: current chip select (gpio)
370 * @chipselects: list of chipselects (gpios)
371 */
372struct pl022 {
373 struct amba_device *adev;
374 struct vendor_data *vendor;
375 resource_size_t phybase;
376 void __iomem *virtbase;
377 struct clk *clk;
378 struct spi_master *master;
379 struct pl022_ssp_controller *master_info;
380 /* Message per-transfer pump */
381 struct tasklet_struct pump_transfers;
382 struct spi_message *cur_msg;
383 struct spi_transfer *cur_transfer;
384 struct chip_data *cur_chip;
385 bool next_msg_cs_active;
386 void *tx;
387 void *tx_end;
388 void *rx;
389 void *rx_end;
390 enum ssp_reading read;
391 enum ssp_writing write;
392 u32 exp_fifo_level;
393 enum ssp_rx_level_trig rx_lev_trig;
394 enum ssp_tx_level_trig tx_lev_trig;
395 /* DMA settings */
396#ifdef CONFIG_DMA_ENGINE
397 struct dma_chan *dma_rx_channel;
398 struct dma_chan *dma_tx_channel;
399 struct sg_table sgt_rx;
400 struct sg_table sgt_tx;
401 char *dummypage;
402 bool dma_running;
403#endif
404 int cur_cs;
405 int *chipselects;
406};
407
408/**
409 * struct chip_data - To maintain runtime state of SSP for each client chip
410 * @cr0: Value of control register CR0 of SSP - on later ST variants this
411 * register is 32 bits wide rather than just 16
412 * @cr1: Value of control register CR1 of SSP
413 * @dmacr: Value of DMA control Register of SSP
414 * @cpsr: Value of Clock prescale register
415 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
416 * @enable_dma: Whether to enable DMA or not
417 * @read: function ptr to be used to read when doing xfer for this chip
418 * @write: function ptr to be used to write when doing xfer for this chip
419 * @cs_control: chip select callback provided by chip
420 * @xfer_type: polling/interrupt/DMA
421 *
422 * Runtime state of the SSP controller, maintained per chip,
423 * This would be set according to the current message that would be served
424 */
425struct chip_data {
426 u32 cr0;
427 u16 cr1;
428 u16 dmacr;
429 u16 cpsr;
430 u8 n_bytes;
431 bool enable_dma;
432 enum ssp_reading read;
433 enum ssp_writing write;
434 void (*cs_control) (u32 command);
435 int xfer_type;
436};
437
438/**
439 * null_cs_control - Dummy chip select function
440 * @command: select/delect the chip
441 *
442 * If no chip select function is provided by client this is used as dummy
443 * chip select
444 */
445static void null_cs_control(u32 command)
446{
447 pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
448}
449
450/**
451 * internal_cs_control - Control chip select signals via SSP_CSR.
452 * @pl022: SSP driver private data structure
453 * @command: select/delect the chip
454 *
455 * Used on controller with internal chip select control via SSP_CSR register
456 * (vendor extension). Each of the 5 LSB in the register controls one chip
457 * select signal.
458 */
459static void internal_cs_control(struct pl022 *pl022, u32 command)
460{
461 u32 tmp;
462
463 tmp = readw(SSP_CSR(pl022->virtbase));
464 if (command == SSP_CHIP_SELECT)
465 tmp &= ~BIT(pl022->cur_cs);
466 else
467 tmp |= BIT(pl022->cur_cs);
468 writew(tmp, SSP_CSR(pl022->virtbase));
469}
470
471static void pl022_cs_control(struct pl022 *pl022, u32 command)
472{
473 if (pl022->vendor->internal_cs_ctrl)
474 internal_cs_control(pl022, command);
475 else if (gpio_is_valid(pl022->cur_cs))
476 gpio_set_value(pl022->cur_cs, command);
477 else
478 pl022->cur_chip->cs_control(command);
479}
480
481/**
482 * giveback - current spi_message is over, schedule next message and call
483 * callback of this message. Assumes that caller already
484 * set message->status; dma and pio irqs are blocked
485 * @pl022: SSP driver private data structure
486 */
487static void giveback(struct pl022 *pl022)
488{
489 struct spi_transfer *last_transfer;
490 pl022->next_msg_cs_active = false;
491
492 last_transfer = list_last_entry(&pl022->cur_msg->transfers,
493 struct spi_transfer, transfer_list);
494
495 /* Delay if requested before any change in chip select */
496 if (last_transfer->delay_usecs)
497 /*
498 * FIXME: This runs in interrupt context.
499 * Is this really smart?
500 */
501 udelay(last_transfer->delay_usecs);
502
503 if (!last_transfer->cs_change) {
504 struct spi_message *next_msg;
505
506 /*
507 * cs_change was not set. We can keep the chip select
508 * enabled if there is message in the queue and it is
509 * for the same spi device.
510 *
511 * We cannot postpone this until pump_messages, because
512 * after calling msg->complete (below) the driver that
513 * sent the current message could be unloaded, which
514 * could invalidate the cs_control() callback...
515 */
516 /* get a pointer to the next message, if any */
517 next_msg = spi_get_next_queued_message(pl022->master);
518
519 /*
520 * see if the next and current messages point
521 * to the same spi device.
522 */
523 if (next_msg && next_msg->spi != pl022->cur_msg->spi)
524 next_msg = NULL;
525 if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
526 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
527 else
528 pl022->next_msg_cs_active = true;
529
530 }
531
532 pl022->cur_msg = NULL;
533 pl022->cur_transfer = NULL;
534 pl022->cur_chip = NULL;
535
536 /* disable the SPI/SSP operation */
537 writew((readw(SSP_CR1(pl022->virtbase)) &
538 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
539
540 spi_finalize_current_message(pl022->master);
541}
542
543/**
544 * flush - flush the FIFO to reach a clean state
545 * @pl022: SSP driver private data structure
546 */
547static int flush(struct pl022 *pl022)
548{
549 unsigned long limit = loops_per_jiffy << 1;
550
551 dev_dbg(&pl022->adev->dev, "flush\n");
552 do {
553 while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
554 readw(SSP_DR(pl022->virtbase));
555 } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
556
557 pl022->exp_fifo_level = 0;
558
559 return limit;
560}
561
562/**
563 * restore_state - Load configuration of current chip
564 * @pl022: SSP driver private data structure
565 */
566static void restore_state(struct pl022 *pl022)
567{
568 struct chip_data *chip = pl022->cur_chip;
569
570 if (pl022->vendor->extended_cr)
571 writel(chip->cr0, SSP_CR0(pl022->virtbase));
572 else
573 writew(chip->cr0, SSP_CR0(pl022->virtbase));
574 writew(chip->cr1, SSP_CR1(pl022->virtbase));
575 writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
576 writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
577 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
578 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
579}
580
581/*
582 * Default SSP Register Values
583 */
584#define DEFAULT_SSP_REG_CR0 ( \
585 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
586 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
587 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
588 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
589 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
590)
591
592/* ST versions have slightly different bit layout */
593#define DEFAULT_SSP_REG_CR0_ST ( \
594 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
595 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
596 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
597 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
598 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
599 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
600 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
601)
602
603/* The PL023 version is slightly different again */
604#define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
605 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
606 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
607 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
608 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
609)
610
611#define DEFAULT_SSP_REG_CR1 ( \
612 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
613 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
614 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
615 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
616)
617
618/* ST versions extend this register to use all 16 bits */
619#define DEFAULT_SSP_REG_CR1_ST ( \
620 DEFAULT_SSP_REG_CR1 | \
621 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
622 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
623 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
624 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
625 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
626)
627
628/*
629 * The PL023 variant has further differences: no loopback mode, no microwire
630 * support, and a new clock feedback delay setting.
631 */
632#define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
633 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
634 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
635 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
636 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
637 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
638 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
639 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
640 GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
641)
642
643#define DEFAULT_SSP_REG_CPSR ( \
644 GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
645)
646
647#define DEFAULT_SSP_REG_DMACR (\
648 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
649 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
650)
651
652/**
653 * load_ssp_default_config - Load default configuration for SSP
654 * @pl022: SSP driver private data structure
655 */
656static void load_ssp_default_config(struct pl022 *pl022)
657{
658 if (pl022->vendor->pl023) {
659 writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
660 writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
661 } else if (pl022->vendor->extended_cr) {
662 writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
663 writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
664 } else {
665 writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
666 writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
667 }
668 writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
669 writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
670 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
671 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
672}
673
674/**
675 * This will write to TX and read from RX according to the parameters
676 * set in pl022.
677 */
678static void readwriter(struct pl022 *pl022)
679{
680
681 /*
682 * The FIFO depth is different between primecell variants.
683 * I believe filling in too much in the FIFO might cause
684 * errons in 8bit wide transfers on ARM variants (just 8 words
685 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
686 *
687 * To prevent this issue, the TX FIFO is only filled to the
688 * unused RX FIFO fill length, regardless of what the TX
689 * FIFO status flag indicates.
690 */
691 dev_dbg(&pl022->adev->dev,
692 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
693 __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
694
695 /* Read as much as you can */
696 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
697 && (pl022->rx < pl022->rx_end)) {
698 switch (pl022->read) {
699 case READING_NULL:
700 readw(SSP_DR(pl022->virtbase));
701 break;
702 case READING_U8:
703 *(u8 *) (pl022->rx) =
704 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
705 break;
706 case READING_U16:
707 *(u16 *) (pl022->rx) =
708 (u16) readw(SSP_DR(pl022->virtbase));
709 break;
710 case READING_U32:
711 *(u32 *) (pl022->rx) =
712 readl(SSP_DR(pl022->virtbase));
713 break;
714 }
715 pl022->rx += (pl022->cur_chip->n_bytes);
716 pl022->exp_fifo_level--;
717 }
718 /*
719 * Write as much as possible up to the RX FIFO size
720 */
721 while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
722 && (pl022->tx < pl022->tx_end)) {
723 switch (pl022->write) {
724 case WRITING_NULL:
725 writew(0x0, SSP_DR(pl022->virtbase));
726 break;
727 case WRITING_U8:
728 writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
729 break;
730 case WRITING_U16:
731 writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
732 break;
733 case WRITING_U32:
734 writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
735 break;
736 }
737 pl022->tx += (pl022->cur_chip->n_bytes);
738 pl022->exp_fifo_level++;
739 /*
740 * This inner reader takes care of things appearing in the RX
741 * FIFO as we're transmitting. This will happen a lot since the
742 * clock starts running when you put things into the TX FIFO,
743 * and then things are continuously clocked into the RX FIFO.
744 */
745 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
746 && (pl022->rx < pl022->rx_end)) {
747 switch (pl022->read) {
748 case READING_NULL:
749 readw(SSP_DR(pl022->virtbase));
750 break;
751 case READING_U8:
752 *(u8 *) (pl022->rx) =
753 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
754 break;
755 case READING_U16:
756 *(u16 *) (pl022->rx) =
757 (u16) readw(SSP_DR(pl022->virtbase));
758 break;
759 case READING_U32:
760 *(u32 *) (pl022->rx) =
761 readl(SSP_DR(pl022->virtbase));
762 break;
763 }
764 pl022->rx += (pl022->cur_chip->n_bytes);
765 pl022->exp_fifo_level--;
766 }
767 }
768 /*
769 * When we exit here the TX FIFO should be full and the RX FIFO
770 * should be empty
771 */
772}
773
774/**
775 * next_transfer - Move to the Next transfer in the current spi message
776 * @pl022: SSP driver private data structure
777 *
778 * This function moves though the linked list of spi transfers in the
779 * current spi message and returns with the state of current spi
780 * message i.e whether its last transfer is done(STATE_DONE) or
781 * Next transfer is ready(STATE_RUNNING)
782 */
783static void *next_transfer(struct pl022 *pl022)
784{
785 struct spi_message *msg = pl022->cur_msg;
786 struct spi_transfer *trans = pl022->cur_transfer;
787
788 /* Move to next transfer */
789 if (trans->transfer_list.next != &msg->transfers) {
790 pl022->cur_transfer =
791 list_entry(trans->transfer_list.next,
792 struct spi_transfer, transfer_list);
793 return STATE_RUNNING;
794 }
795 return STATE_DONE;
796}
797
798/*
799 * This DMA functionality is only compiled in if we have
800 * access to the generic DMA devices/DMA engine.
801 */
802#ifdef CONFIG_DMA_ENGINE
803static void unmap_free_dma_scatter(struct pl022 *pl022)
804{
805 /* Unmap and free the SG tables */
806 dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
807 pl022->sgt_tx.nents, DMA_TO_DEVICE);
808 dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
809 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
810 sg_free_table(&pl022->sgt_rx);
811 sg_free_table(&pl022->sgt_tx);
812}
813
814static void dma_callback(void *data)
815{
816 struct pl022 *pl022 = data;
817 struct spi_message *msg = pl022->cur_msg;
818
819 BUG_ON(!pl022->sgt_rx.sgl);
820
821#ifdef VERBOSE_DEBUG
822 /*
823 * Optionally dump out buffers to inspect contents, this is
824 * good if you want to convince yourself that the loopback
825 * read/write contents are the same, when adopting to a new
826 * DMA engine.
827 */
828 {
829 struct scatterlist *sg;
830 unsigned int i;
831
832 dma_sync_sg_for_cpu(&pl022->adev->dev,
833 pl022->sgt_rx.sgl,
834 pl022->sgt_rx.nents,
835 DMA_FROM_DEVICE);
836
837 for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
838 dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
839 print_hex_dump(KERN_ERR, "SPI RX: ",
840 DUMP_PREFIX_OFFSET,
841 16,
842 1,
843 sg_virt(sg),
844 sg_dma_len(sg),
845 1);
846 }
847 for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
848 dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
849 print_hex_dump(KERN_ERR, "SPI TX: ",
850 DUMP_PREFIX_OFFSET,
851 16,
852 1,
853 sg_virt(sg),
854 sg_dma_len(sg),
855 1);
856 }
857 }
858#endif
859
860 unmap_free_dma_scatter(pl022);
861
862 /* Update total bytes transferred */
863 msg->actual_length += pl022->cur_transfer->len;
864 if (pl022->cur_transfer->cs_change)
865 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
866
867 /* Move to next transfer */
868 msg->state = next_transfer(pl022);
869 tasklet_schedule(&pl022->pump_transfers);
870}
871
872static void setup_dma_scatter(struct pl022 *pl022,
873 void *buffer,
874 unsigned int length,
875 struct sg_table *sgtab)
876{
877 struct scatterlist *sg;
878 int bytesleft = length;
879 void *bufp = buffer;
880 int mapbytes;
881 int i;
882
883 if (buffer) {
884 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
885 /*
886 * If there are less bytes left than what fits
887 * in the current page (plus page alignment offset)
888 * we just feed in this, else we stuff in as much
889 * as we can.
890 */
891 if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
892 mapbytes = bytesleft;
893 else
894 mapbytes = PAGE_SIZE - offset_in_page(bufp);
895 sg_set_page(sg, virt_to_page(bufp),
896 mapbytes, offset_in_page(bufp));
897 bufp += mapbytes;
898 bytesleft -= mapbytes;
899 dev_dbg(&pl022->adev->dev,
900 "set RX/TX target page @ %p, %d bytes, %d left\n",
901 bufp, mapbytes, bytesleft);
902 }
903 } else {
904 /* Map the dummy buffer on every page */
905 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
906 if (bytesleft < PAGE_SIZE)
907 mapbytes = bytesleft;
908 else
909 mapbytes = PAGE_SIZE;
910 sg_set_page(sg, virt_to_page(pl022->dummypage),
911 mapbytes, 0);
912 bytesleft -= mapbytes;
913 dev_dbg(&pl022->adev->dev,
914 "set RX/TX to dummy page %d bytes, %d left\n",
915 mapbytes, bytesleft);
916
917 }
918 }
919 BUG_ON(bytesleft);
920}
921
922/**
923 * configure_dma - configures the channels for the next transfer
924 * @pl022: SSP driver's private data structure
925 */
926static int configure_dma(struct pl022 *pl022)
927{
928 struct dma_slave_config rx_conf = {
929 .src_addr = SSP_DR(pl022->phybase),
930 .direction = DMA_DEV_TO_MEM,
931 .device_fc = false,
932 };
933 struct dma_slave_config tx_conf = {
934 .dst_addr = SSP_DR(pl022->phybase),
935 .direction = DMA_MEM_TO_DEV,
936 .device_fc = false,
937 };
938 unsigned int pages;
939 int ret;
940 int rx_sglen, tx_sglen;
941 struct dma_chan *rxchan = pl022->dma_rx_channel;
942 struct dma_chan *txchan = pl022->dma_tx_channel;
943 struct dma_async_tx_descriptor *rxdesc;
944 struct dma_async_tx_descriptor *txdesc;
945
946 /* Check that the channels are available */
947 if (!rxchan || !txchan)
948 return -ENODEV;
949
950 /*
951 * If supplied, the DMA burstsize should equal the FIFO trigger level.
952 * Notice that the DMA engine uses one-to-one mapping. Since we can
953 * not trigger on 2 elements this needs explicit mapping rather than
954 * calculation.
955 */
956 switch (pl022->rx_lev_trig) {
957 case SSP_RX_1_OR_MORE_ELEM:
958 rx_conf.src_maxburst = 1;
959 break;
960 case SSP_RX_4_OR_MORE_ELEM:
961 rx_conf.src_maxburst = 4;
962 break;
963 case SSP_RX_8_OR_MORE_ELEM:
964 rx_conf.src_maxburst = 8;
965 break;
966 case SSP_RX_16_OR_MORE_ELEM:
967 rx_conf.src_maxburst = 16;
968 break;
969 case SSP_RX_32_OR_MORE_ELEM:
970 rx_conf.src_maxburst = 32;
971 break;
972 default:
973 rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
974 break;
975 }
976
977 switch (pl022->tx_lev_trig) {
978 case SSP_TX_1_OR_MORE_EMPTY_LOC:
979 tx_conf.dst_maxburst = 1;
980 break;
981 case SSP_TX_4_OR_MORE_EMPTY_LOC:
982 tx_conf.dst_maxburst = 4;
983 break;
984 case SSP_TX_8_OR_MORE_EMPTY_LOC:
985 tx_conf.dst_maxburst = 8;
986 break;
987 case SSP_TX_16_OR_MORE_EMPTY_LOC:
988 tx_conf.dst_maxburst = 16;
989 break;
990 case SSP_TX_32_OR_MORE_EMPTY_LOC:
991 tx_conf.dst_maxburst = 32;
992 break;
993 default:
994 tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
995 break;
996 }
997
998 switch (pl022->read) {
999 case READING_NULL:
1000 /* Use the same as for writing */
1001 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1002 break;
1003 case READING_U8:
1004 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1005 break;
1006 case READING_U16:
1007 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1008 break;
1009 case READING_U32:
1010 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1011 break;
1012 }
1013
1014 switch (pl022->write) {
1015 case WRITING_NULL:
1016 /* Use the same as for reading */
1017 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1018 break;
1019 case WRITING_U8:
1020 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1021 break;
1022 case WRITING_U16:
1023 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1024 break;
1025 case WRITING_U32:
1026 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1027 break;
1028 }
1029
1030 /* SPI pecularity: we need to read and write the same width */
1031 if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1032 rx_conf.src_addr_width = tx_conf.dst_addr_width;
1033 if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1034 tx_conf.dst_addr_width = rx_conf.src_addr_width;
1035 BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1036
1037 dmaengine_slave_config(rxchan, &rx_conf);
1038 dmaengine_slave_config(txchan, &tx_conf);
1039
1040 /* Create sglists for the transfers */
1041 pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
1042 dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1043
1044 ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
1045 if (ret)
1046 goto err_alloc_rx_sg;
1047
1048 ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1049 if (ret)
1050 goto err_alloc_tx_sg;
1051
1052 /* Fill in the scatterlists for the RX+TX buffers */
1053 setup_dma_scatter(pl022, pl022->rx,
1054 pl022->cur_transfer->len, &pl022->sgt_rx);
1055 setup_dma_scatter(pl022, pl022->tx,
1056 pl022->cur_transfer->len, &pl022->sgt_tx);
1057
1058 /* Map DMA buffers */
1059 rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1060 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1061 if (!rx_sglen)
1062 goto err_rx_sgmap;
1063
1064 tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1065 pl022->sgt_tx.nents, DMA_TO_DEVICE);
1066 if (!tx_sglen)
1067 goto err_tx_sgmap;
1068
1069 /* Send both scatterlists */
1070 rxdesc = dmaengine_prep_slave_sg(rxchan,
1071 pl022->sgt_rx.sgl,
1072 rx_sglen,
1073 DMA_DEV_TO_MEM,
1074 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1075 if (!rxdesc)
1076 goto err_rxdesc;
1077
1078 txdesc = dmaengine_prep_slave_sg(txchan,
1079 pl022->sgt_tx.sgl,
1080 tx_sglen,
1081 DMA_MEM_TO_DEV,
1082 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1083 if (!txdesc)
1084 goto err_txdesc;
1085
1086 /* Put the callback on the RX transfer only, that should finish last */
1087 rxdesc->callback = dma_callback;
1088 rxdesc->callback_param = pl022;
1089
1090 /* Submit and fire RX and TX with TX last so we're ready to read! */
1091 dmaengine_submit(rxdesc);
1092 dmaengine_submit(txdesc);
1093 dma_async_issue_pending(rxchan);
1094 dma_async_issue_pending(txchan);
1095 pl022->dma_running = true;
1096
1097 return 0;
1098
1099err_txdesc:
1100 dmaengine_terminate_all(txchan);
1101err_rxdesc:
1102 dmaengine_terminate_all(rxchan);
1103 dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1104 pl022->sgt_tx.nents, DMA_TO_DEVICE);
1105err_tx_sgmap:
1106 dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1107 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1108err_rx_sgmap:
1109 sg_free_table(&pl022->sgt_tx);
1110err_alloc_tx_sg:
1111 sg_free_table(&pl022->sgt_rx);
1112err_alloc_rx_sg:
1113 return -ENOMEM;
1114}
1115
1116static int pl022_dma_probe(struct pl022 *pl022)
1117{
1118 dma_cap_mask_t mask;
1119
1120 /* Try to acquire a generic DMA engine slave channel */
1121 dma_cap_zero(mask);
1122 dma_cap_set(DMA_SLAVE, mask);
1123 /*
1124 * We need both RX and TX channels to do DMA, else do none
1125 * of them.
1126 */
1127 pl022->dma_rx_channel = dma_request_channel(mask,
1128 pl022->master_info->dma_filter,
1129 pl022->master_info->dma_rx_param);
1130 if (!pl022->dma_rx_channel) {
1131 dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1132 goto err_no_rxchan;
1133 }
1134
1135 pl022->dma_tx_channel = dma_request_channel(mask,
1136 pl022->master_info->dma_filter,
1137 pl022->master_info->dma_tx_param);
1138 if (!pl022->dma_tx_channel) {
1139 dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1140 goto err_no_txchan;
1141 }
1142
1143 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1144 if (!pl022->dummypage)
1145 goto err_no_dummypage;
1146
1147 dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1148 dma_chan_name(pl022->dma_rx_channel),
1149 dma_chan_name(pl022->dma_tx_channel));
1150
1151 return 0;
1152
1153err_no_dummypage:
1154 dma_release_channel(pl022->dma_tx_channel);
1155err_no_txchan:
1156 dma_release_channel(pl022->dma_rx_channel);
1157 pl022->dma_rx_channel = NULL;
1158err_no_rxchan:
1159 dev_err(&pl022->adev->dev,
1160 "Failed to work in dma mode, work without dma!\n");
1161 return -ENODEV;
1162}
1163
1164static int pl022_dma_autoprobe(struct pl022 *pl022)
1165{
1166 struct device *dev = &pl022->adev->dev;
1167 struct dma_chan *chan;
1168 int err;
1169
1170 /* automatically configure DMA channels from platform, normally using DT */
1171 chan = dma_request_slave_channel_reason(dev, "rx");
1172 if (IS_ERR(chan)) {
1173 err = PTR_ERR(chan);
1174 goto err_no_rxchan;
1175 }
1176
1177 pl022->dma_rx_channel = chan;
1178
1179 chan = dma_request_slave_channel_reason(dev, "tx");
1180 if (IS_ERR(chan)) {
1181 err = PTR_ERR(chan);
1182 goto err_no_txchan;
1183 }
1184
1185 pl022->dma_tx_channel = chan;
1186
1187 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1188 if (!pl022->dummypage) {
1189 err = -ENOMEM;
1190 goto err_no_dummypage;
1191 }
1192
1193 return 0;
1194
1195err_no_dummypage:
1196 dma_release_channel(pl022->dma_tx_channel);
1197 pl022->dma_tx_channel = NULL;
1198err_no_txchan:
1199 dma_release_channel(pl022->dma_rx_channel);
1200 pl022->dma_rx_channel = NULL;
1201err_no_rxchan:
1202 return err;
1203}
1204
1205static void terminate_dma(struct pl022 *pl022)
1206{
1207 struct dma_chan *rxchan = pl022->dma_rx_channel;
1208 struct dma_chan *txchan = pl022->dma_tx_channel;
1209
1210 dmaengine_terminate_all(rxchan);
1211 dmaengine_terminate_all(txchan);
1212 unmap_free_dma_scatter(pl022);
1213 pl022->dma_running = false;
1214}
1215
1216static void pl022_dma_remove(struct pl022 *pl022)
1217{
1218 if (pl022->dma_running)
1219 terminate_dma(pl022);
1220 if (pl022->dma_tx_channel)
1221 dma_release_channel(pl022->dma_tx_channel);
1222 if (pl022->dma_rx_channel)
1223 dma_release_channel(pl022->dma_rx_channel);
1224 kfree(pl022->dummypage);
1225}
1226
1227#else
1228static inline int configure_dma(struct pl022 *pl022)
1229{
1230 return -ENODEV;
1231}
1232
1233static inline int pl022_dma_autoprobe(struct pl022 *pl022)
1234{
1235 return 0;
1236}
1237
1238static inline int pl022_dma_probe(struct pl022 *pl022)
1239{
1240 return 0;
1241}
1242
1243static inline void pl022_dma_remove(struct pl022 *pl022)
1244{
1245}
1246#endif
1247
1248/**
1249 * pl022_interrupt_handler - Interrupt handler for SSP controller
1250 *
1251 * This function handles interrupts generated for an interrupt based transfer.
1252 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1253 * current message's state as STATE_ERROR and schedule the tasklet
1254 * pump_transfers which will do the postprocessing of the current message by
1255 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1256 * more data, and writes data in TX FIFO till it is not full. If we complete
1257 * the transfer we move to the next transfer and schedule the tasklet.
1258 */
1259static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1260{
1261 struct pl022 *pl022 = dev_id;
1262 struct spi_message *msg = pl022->cur_msg;
1263 u16 irq_status = 0;
1264
1265 if (unlikely(!msg)) {
1266 dev_err(&pl022->adev->dev,
1267 "bad message state in interrupt handler");
1268 /* Never fail */
1269 return IRQ_HANDLED;
1270 }
1271
1272 /* Read the Interrupt Status Register */
1273 irq_status = readw(SSP_MIS(pl022->virtbase));
1274
1275 if (unlikely(!irq_status))
1276 return IRQ_NONE;
1277
1278 /*
1279 * This handles the FIFO interrupts, the timeout
1280 * interrupts are flatly ignored, they cannot be
1281 * trusted.
1282 */
1283 if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1284 /*
1285 * Overrun interrupt - bail out since our Data has been
1286 * corrupted
1287 */
1288 dev_err(&pl022->adev->dev, "FIFO overrun\n");
1289 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1290 dev_err(&pl022->adev->dev,
1291 "RXFIFO is full\n");
1292
1293 /*
1294 * Disable and clear interrupts, disable SSP,
1295 * mark message with bad status so it can be
1296 * retried.
1297 */
1298 writew(DISABLE_ALL_INTERRUPTS,
1299 SSP_IMSC(pl022->virtbase));
1300 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1301 writew((readw(SSP_CR1(pl022->virtbase)) &
1302 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1303 msg->state = STATE_ERROR;
1304
1305 /* Schedule message queue handler */
1306 tasklet_schedule(&pl022->pump_transfers);
1307 return IRQ_HANDLED;
1308 }
1309
1310 readwriter(pl022);
1311
1312 if (pl022->tx == pl022->tx_end) {
1313 /* Disable Transmit interrupt, enable receive interrupt */
1314 writew((readw(SSP_IMSC(pl022->virtbase)) &
1315 ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1316 SSP_IMSC(pl022->virtbase));
1317 }
1318
1319 /*
1320 * Since all transactions must write as much as shall be read,
1321 * we can conclude the entire transaction once RX is complete.
1322 * At this point, all TX will always be finished.
1323 */
1324 if (pl022->rx >= pl022->rx_end) {
1325 writew(DISABLE_ALL_INTERRUPTS,
1326 SSP_IMSC(pl022->virtbase));
1327 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1328 if (unlikely(pl022->rx > pl022->rx_end)) {
1329 dev_warn(&pl022->adev->dev, "read %u surplus "
1330 "bytes (did you request an odd "
1331 "number of bytes on a 16bit bus?)\n",
1332 (u32) (pl022->rx - pl022->rx_end));
1333 }
1334 /* Update total bytes transferred */
1335 msg->actual_length += pl022->cur_transfer->len;
1336 if (pl022->cur_transfer->cs_change)
1337 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1338 /* Move to next transfer */
1339 msg->state = next_transfer(pl022);
1340 tasklet_schedule(&pl022->pump_transfers);
1341 return IRQ_HANDLED;
1342 }
1343
1344 return IRQ_HANDLED;
1345}
1346
1347/**
1348 * This sets up the pointers to memory for the next message to
1349 * send out on the SPI bus.
1350 */
1351static int set_up_next_transfer(struct pl022 *pl022,
1352 struct spi_transfer *transfer)
1353{
1354 int residue;
1355
1356 /* Sanity check the message for this bus width */
1357 residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1358 if (unlikely(residue != 0)) {
1359 dev_err(&pl022->adev->dev,
1360 "message of %u bytes to transmit but the current "
1361 "chip bus has a data width of %u bytes!\n",
1362 pl022->cur_transfer->len,
1363 pl022->cur_chip->n_bytes);
1364 dev_err(&pl022->adev->dev, "skipping this message\n");
1365 return -EIO;
1366 }
1367 pl022->tx = (void *)transfer->tx_buf;
1368 pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1369 pl022->rx = (void *)transfer->rx_buf;
1370 pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1371 pl022->write =
1372 pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1373 pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1374 return 0;
1375}
1376
1377/**
1378 * pump_transfers - Tasklet function which schedules next transfer
1379 * when running in interrupt or DMA transfer mode.
1380 * @data: SSP driver private data structure
1381 *
1382 */
1383static void pump_transfers(unsigned long data)
1384{
1385 struct pl022 *pl022 = (struct pl022 *) data;
1386 struct spi_message *message = NULL;
1387 struct spi_transfer *transfer = NULL;
1388 struct spi_transfer *previous = NULL;
1389
1390 /* Get current state information */
1391 message = pl022->cur_msg;
1392 transfer = pl022->cur_transfer;
1393
1394 /* Handle for abort */
1395 if (message->state == STATE_ERROR) {
1396 message->status = -EIO;
1397 giveback(pl022);
1398 return;
1399 }
1400
1401 /* Handle end of message */
1402 if (message->state == STATE_DONE) {
1403 message->status = 0;
1404 giveback(pl022);
1405 return;
1406 }
1407
1408 /* Delay if requested at end of transfer before CS change */
1409 if (message->state == STATE_RUNNING) {
1410 previous = list_entry(transfer->transfer_list.prev,
1411 struct spi_transfer,
1412 transfer_list);
1413 if (previous->delay_usecs)
1414 /*
1415 * FIXME: This runs in interrupt context.
1416 * Is this really smart?
1417 */
1418 udelay(previous->delay_usecs);
1419
1420 /* Reselect chip select only if cs_change was requested */
1421 if (previous->cs_change)
1422 pl022_cs_control(pl022, SSP_CHIP_SELECT);
1423 } else {
1424 /* STATE_START */
1425 message->state = STATE_RUNNING;
1426 }
1427
1428 if (set_up_next_transfer(pl022, transfer)) {
1429 message->state = STATE_ERROR;
1430 message->status = -EIO;
1431 giveback(pl022);
1432 return;
1433 }
1434 /* Flush the FIFOs and let's go! */
1435 flush(pl022);
1436
1437 if (pl022->cur_chip->enable_dma) {
1438 if (configure_dma(pl022)) {
1439 dev_dbg(&pl022->adev->dev,
1440 "configuration of DMA failed, fall back to interrupt mode\n");
1441 goto err_config_dma;
1442 }
1443 return;
1444 }
1445
1446err_config_dma:
1447 /* enable all interrupts except RX */
1448 writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1449}
1450
1451static void do_interrupt_dma_transfer(struct pl022 *pl022)
1452{
1453 /*
1454 * Default is to enable all interrupts except RX -
1455 * this will be enabled once TX is complete
1456 */
1457 u32 irqflags = (u32)(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM);
1458
1459 /* Enable target chip, if not already active */
1460 if (!pl022->next_msg_cs_active)
1461 pl022_cs_control(pl022, SSP_CHIP_SELECT);
1462
1463 if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1464 /* Error path */
1465 pl022->cur_msg->state = STATE_ERROR;
1466 pl022->cur_msg->status = -EIO;
1467 giveback(pl022);
1468 return;
1469 }
1470 /* If we're using DMA, set up DMA here */
1471 if (pl022->cur_chip->enable_dma) {
1472 /* Configure DMA transfer */
1473 if (configure_dma(pl022)) {
1474 dev_dbg(&pl022->adev->dev,
1475 "configuration of DMA failed, fall back to interrupt mode\n");
1476 goto err_config_dma;
1477 }
1478 /* Disable interrupts in DMA mode, IRQ from DMA controller */
1479 irqflags = DISABLE_ALL_INTERRUPTS;
1480 }
1481err_config_dma:
1482 /* Enable SSP, turn on interrupts */
1483 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1484 SSP_CR1(pl022->virtbase));
1485 writew(irqflags, SSP_IMSC(pl022->virtbase));
1486}
1487
1488static void do_polling_transfer(struct pl022 *pl022)
1489{
1490 struct spi_message *message = NULL;
1491 struct spi_transfer *transfer = NULL;
1492 struct spi_transfer *previous = NULL;
1493 struct chip_data *chip;
1494 unsigned long time, timeout;
1495
1496 chip = pl022->cur_chip;
1497 message = pl022->cur_msg;
1498
1499 while (message->state != STATE_DONE) {
1500 /* Handle for abort */
1501 if (message->state == STATE_ERROR)
1502 break;
1503 transfer = pl022->cur_transfer;
1504
1505 /* Delay if requested at end of transfer */
1506 if (message->state == STATE_RUNNING) {
1507 previous =
1508 list_entry(transfer->transfer_list.prev,
1509 struct spi_transfer, transfer_list);
1510 if (previous->delay_usecs)
1511 udelay(previous->delay_usecs);
1512 if (previous->cs_change)
1513 pl022_cs_control(pl022, SSP_CHIP_SELECT);
1514 } else {
1515 /* STATE_START */
1516 message->state = STATE_RUNNING;
1517 if (!pl022->next_msg_cs_active)
1518 pl022_cs_control(pl022, SSP_CHIP_SELECT);
1519 }
1520
1521 /* Configuration Changing Per Transfer */
1522 if (set_up_next_transfer(pl022, transfer)) {
1523 /* Error path */
1524 message->state = STATE_ERROR;
1525 break;
1526 }
1527 /* Flush FIFOs and enable SSP */
1528 flush(pl022);
1529 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1530 SSP_CR1(pl022->virtbase));
1531
1532 dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1533
1534 timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1535 while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1536 time = jiffies;
1537 readwriter(pl022);
1538 if (time_after(time, timeout)) {
1539 dev_warn(&pl022->adev->dev,
1540 "%s: timeout!\n", __func__);
1541 message->state = STATE_ERROR;
1542 goto out;
1543 }
1544 cpu_relax();
1545 }
1546
1547 /* Update total byte transferred */
1548 message->actual_length += pl022->cur_transfer->len;
1549 if (pl022->cur_transfer->cs_change)
1550 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1551 /* Move to next transfer */
1552 message->state = next_transfer(pl022);
1553 }
1554out:
1555 /* Handle end of message */
1556 if (message->state == STATE_DONE)
1557 message->status = 0;
1558 else
1559 message->status = -EIO;
1560
1561 giveback(pl022);
1562 return;
1563}
1564
1565static int pl022_transfer_one_message(struct spi_master *master,
1566 struct spi_message *msg)
1567{
1568 struct pl022 *pl022 = spi_master_get_devdata(master);
1569
1570 /* Initial message state */
1571 pl022->cur_msg = msg;
1572 msg->state = STATE_START;
1573
1574 pl022->cur_transfer = list_entry(msg->transfers.next,
1575 struct spi_transfer, transfer_list);
1576
1577 /* Setup the SPI using the per chip configuration */
1578 pl022->cur_chip = spi_get_ctldata(msg->spi);
1579 pl022->cur_cs = pl022->chipselects[msg->spi->chip_select];
1580
1581 restore_state(pl022);
1582 flush(pl022);
1583
1584 if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1585 do_polling_transfer(pl022);
1586 else
1587 do_interrupt_dma_transfer(pl022);
1588
1589 return 0;
1590}
1591
1592static int pl022_unprepare_transfer_hardware(struct spi_master *master)
1593{
1594 struct pl022 *pl022 = spi_master_get_devdata(master);
1595
1596 /* nothing more to do - disable spi/ssp and power off */
1597 writew((readw(SSP_CR1(pl022->virtbase)) &
1598 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1599
1600 return 0;
1601}
1602
1603static int verify_controller_parameters(struct pl022 *pl022,
1604 struct pl022_config_chip const *chip_info)
1605{
1606 if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1607 || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1608 dev_err(&pl022->adev->dev,
1609 "interface is configured incorrectly\n");
1610 return -EINVAL;
1611 }
1612 if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1613 (!pl022->vendor->unidir)) {
1614 dev_err(&pl022->adev->dev,
1615 "unidirectional mode not supported in this "
1616 "hardware version\n");
1617 return -EINVAL;
1618 }
1619 if ((chip_info->hierarchy != SSP_MASTER)
1620 && (chip_info->hierarchy != SSP_SLAVE)) {
1621 dev_err(&pl022->adev->dev,
1622 "hierarchy is configured incorrectly\n");
1623 return -EINVAL;
1624 }
1625 if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1626 && (chip_info->com_mode != DMA_TRANSFER)
1627 && (chip_info->com_mode != POLLING_TRANSFER)) {
1628 dev_err(&pl022->adev->dev,
1629 "Communication mode is configured incorrectly\n");
1630 return -EINVAL;
1631 }
1632 switch (chip_info->rx_lev_trig) {
1633 case SSP_RX_1_OR_MORE_ELEM:
1634 case SSP_RX_4_OR_MORE_ELEM:
1635 case SSP_RX_8_OR_MORE_ELEM:
1636 /* These are always OK, all variants can handle this */
1637 break;
1638 case SSP_RX_16_OR_MORE_ELEM:
1639 if (pl022->vendor->fifodepth < 16) {
1640 dev_err(&pl022->adev->dev,
1641 "RX FIFO Trigger Level is configured incorrectly\n");
1642 return -EINVAL;
1643 }
1644 break;
1645 case SSP_RX_32_OR_MORE_ELEM:
1646 if (pl022->vendor->fifodepth < 32) {
1647 dev_err(&pl022->adev->dev,
1648 "RX FIFO Trigger Level is configured incorrectly\n");
1649 return -EINVAL;
1650 }
1651 break;
1652 default:
1653 dev_err(&pl022->adev->dev,
1654 "RX FIFO Trigger Level is configured incorrectly\n");
1655 return -EINVAL;
1656 }
1657 switch (chip_info->tx_lev_trig) {
1658 case SSP_TX_1_OR_MORE_EMPTY_LOC:
1659 case SSP_TX_4_OR_MORE_EMPTY_LOC:
1660 case SSP_TX_8_OR_MORE_EMPTY_LOC:
1661 /* These are always OK, all variants can handle this */
1662 break;
1663 case SSP_TX_16_OR_MORE_EMPTY_LOC:
1664 if (pl022->vendor->fifodepth < 16) {
1665 dev_err(&pl022->adev->dev,
1666 "TX FIFO Trigger Level is configured incorrectly\n");
1667 return -EINVAL;
1668 }
1669 break;
1670 case SSP_TX_32_OR_MORE_EMPTY_LOC:
1671 if (pl022->vendor->fifodepth < 32) {
1672 dev_err(&pl022->adev->dev,
1673 "TX FIFO Trigger Level is configured incorrectly\n");
1674 return -EINVAL;
1675 }
1676 break;
1677 default:
1678 dev_err(&pl022->adev->dev,
1679 "TX FIFO Trigger Level is configured incorrectly\n");
1680 return -EINVAL;
1681 }
1682 if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1683 if ((chip_info->ctrl_len < SSP_BITS_4)
1684 || (chip_info->ctrl_len > SSP_BITS_32)) {
1685 dev_err(&pl022->adev->dev,
1686 "CTRL LEN is configured incorrectly\n");
1687 return -EINVAL;
1688 }
1689 if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1690 && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1691 dev_err(&pl022->adev->dev,
1692 "Wait State is configured incorrectly\n");
1693 return -EINVAL;
1694 }
1695 /* Half duplex is only available in the ST Micro version */
1696 if (pl022->vendor->extended_cr) {
1697 if ((chip_info->duplex !=
1698 SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1699 && (chip_info->duplex !=
1700 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1701 dev_err(&pl022->adev->dev,
1702 "Microwire duplex mode is configured incorrectly\n");
1703 return -EINVAL;
1704 }
1705 } else {
1706 if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1707 dev_err(&pl022->adev->dev,
1708 "Microwire half duplex mode requested,"
1709 " but this is only available in the"
1710 " ST version of PL022\n");
1711 return -EINVAL;
1712 }
1713 }
1714 return 0;
1715}
1716
1717static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1718{
1719 return rate / (cpsdvsr * (1 + scr));
1720}
1721
1722static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1723 ssp_clock_params * clk_freq)
1724{
1725 /* Lets calculate the frequency parameters */
1726 u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1727 u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1728 best_scr = 0, tmp, found = 0;
1729
1730 rate = clk_get_rate(pl022->clk);
1731 /* cpsdvscr = 2 & scr 0 */
1732 max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1733 /* cpsdvsr = 254 & scr = 255 */
1734 min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1735
1736 if (freq > max_tclk)
1737 dev_warn(&pl022->adev->dev,
1738 "Max speed that can be programmed is %d Hz, you requested %d\n",
1739 max_tclk, freq);
1740
1741 if (freq < min_tclk) {
1742 dev_err(&pl022->adev->dev,
1743 "Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1744 freq, min_tclk);
1745 return -EINVAL;
1746 }
1747
1748 /*
1749 * best_freq will give closest possible available rate (<= requested
1750 * freq) for all values of scr & cpsdvsr.
1751 */
1752 while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1753 while (scr <= SCR_MAX) {
1754 tmp = spi_rate(rate, cpsdvsr, scr);
1755
1756 if (tmp > freq) {
1757 /* we need lower freq */
1758 scr++;
1759 continue;
1760 }
1761
1762 /*
1763 * If found exact value, mark found and break.
1764 * If found more closer value, update and break.
1765 */
1766 if (tmp > best_freq) {
1767 best_freq = tmp;
1768 best_cpsdvsr = cpsdvsr;
1769 best_scr = scr;
1770
1771 if (tmp == freq)
1772 found = 1;
1773 }
1774 /*
1775 * increased scr will give lower rates, which are not
1776 * required
1777 */
1778 break;
1779 }
1780 cpsdvsr += 2;
1781 scr = SCR_MIN;
1782 }
1783
1784 WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1785 freq);
1786
1787 clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1788 clk_freq->scr = (u8) (best_scr & 0xFF);
1789 dev_dbg(&pl022->adev->dev,
1790 "SSP Target Frequency is: %u, Effective Frequency is %u\n",
1791 freq, best_freq);
1792 dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1793 clk_freq->cpsdvsr, clk_freq->scr);
1794
1795 return 0;
1796}
1797
1798/*
1799 * A piece of default chip info unless the platform
1800 * supplies it.
1801 */
1802static const struct pl022_config_chip pl022_default_chip_info = {
1803 .com_mode = POLLING_TRANSFER,
1804 .iface = SSP_INTERFACE_MOTOROLA_SPI,
1805 .hierarchy = SSP_SLAVE,
1806 .slave_tx_disable = DO_NOT_DRIVE_TX,
1807 .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1808 .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1809 .ctrl_len = SSP_BITS_8,
1810 .wait_state = SSP_MWIRE_WAIT_ZERO,
1811 .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1812 .cs_control = null_cs_control,
1813};
1814
1815/**
1816 * pl022_setup - setup function registered to SPI master framework
1817 * @spi: spi device which is requesting setup
1818 *
1819 * This function is registered to the SPI framework for this SPI master
1820 * controller. If it is the first time when setup is called by this device,
1821 * this function will initialize the runtime state for this chip and save
1822 * the same in the device structure. Else it will update the runtime info
1823 * with the updated chip info. Nothing is really being written to the
1824 * controller hardware here, that is not done until the actual transfer
1825 * commence.
1826 */
1827static int pl022_setup(struct spi_device *spi)
1828{
1829 struct pl022_config_chip const *chip_info;
1830 struct pl022_config_chip chip_info_dt;
1831 struct chip_data *chip;
1832 struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1833 int status = 0;
1834 struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1835 unsigned int bits = spi->bits_per_word;
1836 u32 tmp;
1837 struct device_node *np = spi->dev.of_node;
1838
1839 if (!spi->max_speed_hz)
1840 return -EINVAL;
1841
1842 /* Get controller_state if one is supplied */
1843 chip = spi_get_ctldata(spi);
1844
1845 if (chip == NULL) {
1846 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1847 if (!chip)
1848 return -ENOMEM;
1849 dev_dbg(&spi->dev,
1850 "allocated memory for controller's runtime state\n");
1851 }
1852
1853 /* Get controller data if one is supplied */
1854 chip_info = spi->controller_data;
1855
1856 if (chip_info == NULL) {
1857 if (np) {
1858 chip_info_dt = pl022_default_chip_info;
1859
1860 chip_info_dt.hierarchy = SSP_MASTER;
1861 of_property_read_u32(np, "pl022,interface",
1862 &chip_info_dt.iface);
1863 of_property_read_u32(np, "pl022,com-mode",
1864 &chip_info_dt.com_mode);
1865 of_property_read_u32(np, "pl022,rx-level-trig",
1866 &chip_info_dt.rx_lev_trig);
1867 of_property_read_u32(np, "pl022,tx-level-trig",
1868 &chip_info_dt.tx_lev_trig);
1869 of_property_read_u32(np, "pl022,ctrl-len",
1870 &chip_info_dt.ctrl_len);
1871 of_property_read_u32(np, "pl022,wait-state",
1872 &chip_info_dt.wait_state);
1873 of_property_read_u32(np, "pl022,duplex",
1874 &chip_info_dt.duplex);
1875
1876 chip_info = &chip_info_dt;
1877 } else {
1878 chip_info = &pl022_default_chip_info;
1879 /* spi_board_info.controller_data not is supplied */
1880 dev_dbg(&spi->dev,
1881 "using default controller_data settings\n");
1882 }
1883 } else
1884 dev_dbg(&spi->dev,
1885 "using user supplied controller_data settings\n");
1886
1887 /*
1888 * We can override with custom divisors, else we use the board
1889 * frequency setting
1890 */
1891 if ((0 == chip_info->clk_freq.cpsdvsr)
1892 && (0 == chip_info->clk_freq.scr)) {
1893 status = calculate_effective_freq(pl022,
1894 spi->max_speed_hz,
1895 &clk_freq);
1896 if (status < 0)
1897 goto err_config_params;
1898 } else {
1899 memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1900 if ((clk_freq.cpsdvsr % 2) != 0)
1901 clk_freq.cpsdvsr =
1902 clk_freq.cpsdvsr - 1;
1903 }
1904 if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1905 || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1906 status = -EINVAL;
1907 dev_err(&spi->dev,
1908 "cpsdvsr is configured incorrectly\n");
1909 goto err_config_params;
1910 }
1911
1912 status = verify_controller_parameters(pl022, chip_info);
1913 if (status) {
1914 dev_err(&spi->dev, "controller data is incorrect");
1915 goto err_config_params;
1916 }
1917
1918 pl022->rx_lev_trig = chip_info->rx_lev_trig;
1919 pl022->tx_lev_trig = chip_info->tx_lev_trig;
1920
1921 /* Now set controller state based on controller data */
1922 chip->xfer_type = chip_info->com_mode;
1923 if (!chip_info->cs_control) {
1924 chip->cs_control = null_cs_control;
1925 if (!gpio_is_valid(pl022->chipselects[spi->chip_select]))
1926 dev_warn(&spi->dev,
1927 "invalid chip select\n");
1928 } else
1929 chip->cs_control = chip_info->cs_control;
1930
1931 /* Check bits per word with vendor specific range */
1932 if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1933 status = -ENOTSUPP;
1934 dev_err(&spi->dev, "illegal data size for this controller!\n");
1935 dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1936 pl022->vendor->max_bpw);
1937 goto err_config_params;
1938 } else if (bits <= 8) {
1939 dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1940 chip->n_bytes = 1;
1941 chip->read = READING_U8;
1942 chip->write = WRITING_U8;
1943 } else if (bits <= 16) {
1944 dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1945 chip->n_bytes = 2;
1946 chip->read = READING_U16;
1947 chip->write = WRITING_U16;
1948 } else {
1949 dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1950 chip->n_bytes = 4;
1951 chip->read = READING_U32;
1952 chip->write = WRITING_U32;
1953 }
1954
1955 /* Now Initialize all register settings required for this chip */
1956 chip->cr0 = 0;
1957 chip->cr1 = 0;
1958 chip->dmacr = 0;
1959 chip->cpsr = 0;
1960 if ((chip_info->com_mode == DMA_TRANSFER)
1961 && ((pl022->master_info)->enable_dma)) {
1962 chip->enable_dma = true;
1963 dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1964 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1965 SSP_DMACR_MASK_RXDMAE, 0);
1966 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1967 SSP_DMACR_MASK_TXDMAE, 1);
1968 } else {
1969 chip->enable_dma = false;
1970 dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1971 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1972 SSP_DMACR_MASK_RXDMAE, 0);
1973 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1974 SSP_DMACR_MASK_TXDMAE, 1);
1975 }
1976
1977 chip->cpsr = clk_freq.cpsdvsr;
1978
1979 /* Special setup for the ST micro extended control registers */
1980 if (pl022->vendor->extended_cr) {
1981 u32 etx;
1982
1983 if (pl022->vendor->pl023) {
1984 /* These bits are only in the PL023 */
1985 SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
1986 SSP_CR1_MASK_FBCLKDEL_ST, 13);
1987 } else {
1988 /* These bits are in the PL022 but not PL023 */
1989 SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
1990 SSP_CR0_MASK_HALFDUP_ST, 5);
1991 SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
1992 SSP_CR0_MASK_CSS_ST, 16);
1993 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1994 SSP_CR0_MASK_FRF_ST, 21);
1995 SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
1996 SSP_CR1_MASK_MWAIT_ST, 6);
1997 }
1998 SSP_WRITE_BITS(chip->cr0, bits - 1,
1999 SSP_CR0_MASK_DSS_ST, 0);
2000
2001 if (spi->mode & SPI_LSB_FIRST) {
2002 tmp = SSP_RX_LSB;
2003 etx = SSP_TX_LSB;
2004 } else {
2005 tmp = SSP_RX_MSB;
2006 etx = SSP_TX_MSB;
2007 }
2008 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
2009 SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
2010 SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
2011 SSP_CR1_MASK_RXIFLSEL_ST, 7);
2012 SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
2013 SSP_CR1_MASK_TXIFLSEL_ST, 10);
2014 } else {
2015 SSP_WRITE_BITS(chip->cr0, bits - 1,
2016 SSP_CR0_MASK_DSS, 0);
2017 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2018 SSP_CR0_MASK_FRF, 4);
2019 }
2020
2021 /* Stuff that is common for all versions */
2022 if (spi->mode & SPI_CPOL)
2023 tmp = SSP_CLK_POL_IDLE_HIGH;
2024 else
2025 tmp = SSP_CLK_POL_IDLE_LOW;
2026 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
2027
2028 if (spi->mode & SPI_CPHA)
2029 tmp = SSP_CLK_SECOND_EDGE;
2030 else
2031 tmp = SSP_CLK_FIRST_EDGE;
2032 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
2033
2034 SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
2035 /* Loopback is available on all versions except PL023 */
2036 if (pl022->vendor->loopback) {
2037 if (spi->mode & SPI_LOOP)
2038 tmp = LOOPBACK_ENABLED;
2039 else
2040 tmp = LOOPBACK_DISABLED;
2041 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2042 }
2043 SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2044 SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2045 SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
2046 3);
2047
2048 /* Save controller_state */
2049 spi_set_ctldata(spi, chip);
2050 return status;
2051 err_config_params:
2052 spi_set_ctldata(spi, NULL);
2053 kfree(chip);
2054 return status;
2055}
2056
2057/**
2058 * pl022_cleanup - cleanup function registered to SPI master framework
2059 * @spi: spi device which is requesting cleanup
2060 *
2061 * This function is registered to the SPI framework for this SPI master
2062 * controller. It will free the runtime state of chip.
2063 */
2064static void pl022_cleanup(struct spi_device *spi)
2065{
2066 struct chip_data *chip = spi_get_ctldata(spi);
2067
2068 spi_set_ctldata(spi, NULL);
2069 kfree(chip);
2070}
2071
2072static struct pl022_ssp_controller *
2073pl022_platform_data_dt_get(struct device *dev)
2074{
2075 struct device_node *np = dev->of_node;
2076 struct pl022_ssp_controller *pd;
2077 u32 tmp = 0;
2078
2079 if (!np) {
2080 dev_err(dev, "no dt node defined\n");
2081 return NULL;
2082 }
2083
2084 pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
2085 if (!pd)
2086 return NULL;
2087
2088 pd->bus_id = -1;
2089 pd->enable_dma = 1;
2090 of_property_read_u32(np, "num-cs", &tmp);
2091 pd->num_chipselect = tmp;
2092 of_property_read_u32(np, "pl022,autosuspend-delay",
2093 &pd->autosuspend_delay);
2094 pd->rt = of_property_read_bool(np, "pl022,rt");
2095
2096 return pd;
2097}
2098
2099static int pl022_probe(struct amba_device *adev, const struct amba_id *id)
2100{
2101 struct device *dev = &adev->dev;
2102 struct pl022_ssp_controller *platform_info =
2103 dev_get_platdata(&adev->dev);
2104 struct spi_master *master;
2105 struct pl022 *pl022 = NULL; /*Data for this driver */
2106 struct device_node *np = adev->dev.of_node;
2107 int status = 0, i, num_cs;
2108
2109 dev_info(&adev->dev,
2110 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2111 if (!platform_info && IS_ENABLED(CONFIG_OF))
2112 platform_info = pl022_platform_data_dt_get(dev);
2113
2114 if (!platform_info) {
2115 dev_err(dev, "probe: no platform data defined\n");
2116 return -ENODEV;
2117 }
2118
2119 if (platform_info->num_chipselect) {
2120 num_cs = platform_info->num_chipselect;
2121 } else {
2122 dev_err(dev, "probe: no chip select defined\n");
2123 return -ENODEV;
2124 }
2125
2126 /* Allocate master with space for data */
2127 master = spi_alloc_master(dev, sizeof(struct pl022));
2128 if (master == NULL) {
2129 dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2130 return -ENOMEM;
2131 }
2132
2133 pl022 = spi_master_get_devdata(master);
2134 pl022->master = master;
2135 pl022->master_info = platform_info;
2136 pl022->adev = adev;
2137 pl022->vendor = id->data;
2138 pl022->chipselects = devm_kzalloc(dev, num_cs * sizeof(int),
2139 GFP_KERNEL);
2140 if (!pl022->chipselects) {
2141 status = -ENOMEM;
2142 goto err_no_mem;
2143 }
2144
2145 /*
2146 * Bus Number Which has been Assigned to this SSP controller
2147 * on this board
2148 */
2149 master->bus_num = platform_info->bus_id;
2150 master->num_chipselect = num_cs;
2151 master->cleanup = pl022_cleanup;
2152 master->setup = pl022_setup;
2153 master->auto_runtime_pm = true;
2154 master->transfer_one_message = pl022_transfer_one_message;
2155 master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
2156 master->rt = platform_info->rt;
2157 master->dev.of_node = dev->of_node;
2158
2159 if (platform_info->num_chipselect && platform_info->chipselects) {
2160 for (i = 0; i < num_cs; i++)
2161 pl022->chipselects[i] = platform_info->chipselects[i];
2162 } else if (pl022->vendor->internal_cs_ctrl) {
2163 for (i = 0; i < num_cs; i++)
2164 pl022->chipselects[i] = i;
2165 } else if (IS_ENABLED(CONFIG_OF)) {
2166 for (i = 0; i < num_cs; i++) {
2167 int cs_gpio = of_get_named_gpio(np, "cs-gpios", i);
2168
2169 if (cs_gpio == -EPROBE_DEFER) {
2170 status = -EPROBE_DEFER;
2171 goto err_no_gpio;
2172 }
2173
2174 pl022->chipselects[i] = cs_gpio;
2175
2176 if (gpio_is_valid(cs_gpio)) {
2177 if (devm_gpio_request(dev, cs_gpio, "ssp-pl022"))
2178 dev_err(&adev->dev,
2179 "could not request %d gpio\n",
2180 cs_gpio);
2181 else if (gpio_direction_output(cs_gpio, 1))
2182 dev_err(&adev->dev,
2183 "could not set gpio %d as output\n",
2184 cs_gpio);
2185 }
2186 }
2187 }
2188
2189 /*
2190 * Supports mode 0-3, loopback, and active low CS. Transfers are
2191 * always MS bit first on the original pl022.
2192 */
2193 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2194 if (pl022->vendor->extended_cr)
2195 master->mode_bits |= SPI_LSB_FIRST;
2196
2197 dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2198
2199 status = amba_request_regions(adev, NULL);
2200 if (status)
2201 goto err_no_ioregion;
2202
2203 pl022->phybase = adev->res.start;
2204 pl022->virtbase = devm_ioremap(dev, adev->res.start,
2205 resource_size(&adev->res));
2206 if (pl022->virtbase == NULL) {
2207 status = -ENOMEM;
2208 goto err_no_ioremap;
2209 }
2210 dev_info(&adev->dev, "mapped registers from %pa to %p\n",
2211 &adev->res.start, pl022->virtbase);
2212
2213 pl022->clk = devm_clk_get(&adev->dev, NULL);
2214 if (IS_ERR(pl022->clk)) {
2215 status = PTR_ERR(pl022->clk);
2216 dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2217 goto err_no_clk;
2218 }
2219
2220 status = clk_prepare_enable(pl022->clk);
2221 if (status) {
2222 dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2223 goto err_no_clk_en;
2224 }
2225
2226 /* Initialize transfer pump */
2227 tasklet_init(&pl022->pump_transfers, pump_transfers,
2228 (unsigned long)pl022);
2229
2230 /* Disable SSP */
2231 writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2232 SSP_CR1(pl022->virtbase));
2233 load_ssp_default_config(pl022);
2234
2235 status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
2236 0, "pl022", pl022);
2237 if (status < 0) {
2238 dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2239 goto err_no_irq;
2240 }
2241
2242 /* Get DMA channels, try autoconfiguration first */
2243 status = pl022_dma_autoprobe(pl022);
2244 if (status == -EPROBE_DEFER) {
2245 dev_dbg(dev, "deferring probe to get DMA channel\n");
2246 goto err_no_irq;
2247 }
2248
2249 /* If that failed, use channels from platform_info */
2250 if (status == 0)
2251 platform_info->enable_dma = 1;
2252 else if (platform_info->enable_dma) {
2253 status = pl022_dma_probe(pl022);
2254 if (status != 0)
2255 platform_info->enable_dma = 0;
2256 }
2257
2258 /* Register with the SPI framework */
2259 amba_set_drvdata(adev, pl022);
2260 status = devm_spi_register_master(&adev->dev, master);
2261 if (status != 0) {
2262 dev_err(&adev->dev,
2263 "probe - problem registering spi master\n");
2264 goto err_spi_register;
2265 }
2266 dev_dbg(dev, "probe succeeded\n");
2267
2268 /* let runtime pm put suspend */
2269 if (platform_info->autosuspend_delay > 0) {
2270 dev_info(&adev->dev,
2271 "will use autosuspend for runtime pm, delay %dms\n",
2272 platform_info->autosuspend_delay);
2273 pm_runtime_set_autosuspend_delay(dev,
2274 platform_info->autosuspend_delay);
2275 pm_runtime_use_autosuspend(dev);
2276 }
2277 pm_runtime_put(dev);
2278
2279 return 0;
2280
2281 err_spi_register:
2282 if (platform_info->enable_dma)
2283 pl022_dma_remove(pl022);
2284 err_no_irq:
2285 clk_disable_unprepare(pl022->clk);
2286 err_no_clk_en:
2287 err_no_clk:
2288 err_no_ioremap:
2289 amba_release_regions(adev);
2290 err_no_ioregion:
2291 err_no_gpio:
2292 err_no_mem:
2293 spi_master_put(master);
2294 return status;
2295}
2296
2297static int
2298pl022_remove(struct amba_device *adev)
2299{
2300 struct pl022 *pl022 = amba_get_drvdata(adev);
2301
2302 if (!pl022)
2303 return 0;
2304
2305 /*
2306 * undo pm_runtime_put() in probe. I assume that we're not
2307 * accessing the primecell here.
2308 */
2309 pm_runtime_get_noresume(&adev->dev);
2310
2311 load_ssp_default_config(pl022);
2312 if (pl022->master_info->enable_dma)
2313 pl022_dma_remove(pl022);
2314
2315 clk_disable_unprepare(pl022->clk);
2316 amba_release_regions(adev);
2317 tasklet_disable(&pl022->pump_transfers);
2318 return 0;
2319}
2320
2321#ifdef CONFIG_PM_SLEEP
2322static int pl022_suspend(struct device *dev)
2323{
2324 struct pl022 *pl022 = dev_get_drvdata(dev);
2325 int ret;
2326
2327 ret = spi_master_suspend(pl022->master);
2328 if (ret) {
2329 dev_warn(dev, "cannot suspend master\n");
2330 return ret;
2331 }
2332
2333 ret = pm_runtime_force_suspend(dev);
2334 if (ret) {
2335 spi_master_resume(pl022->master);
2336 return ret;
2337 }
2338
2339 pinctrl_pm_select_sleep_state(dev);
2340
2341 dev_dbg(dev, "suspended\n");
2342 return 0;
2343}
2344
2345static int pl022_resume(struct device *dev)
2346{
2347 struct pl022 *pl022 = dev_get_drvdata(dev);
2348 int ret;
2349
2350 ret = pm_runtime_force_resume(dev);
2351 if (ret)
2352 dev_err(dev, "problem resuming\n");
2353
2354 /* Start the queue running */
2355 ret = spi_master_resume(pl022->master);
2356 if (ret)
2357 dev_err(dev, "problem starting queue (%d)\n", ret);
2358 else
2359 dev_dbg(dev, "resumed\n");
2360
2361 return ret;
2362}
2363#endif
2364
2365#ifdef CONFIG_PM
2366static int pl022_runtime_suspend(struct device *dev)
2367{
2368 struct pl022 *pl022 = dev_get_drvdata(dev);
2369
2370 clk_disable_unprepare(pl022->clk);
2371 pinctrl_pm_select_idle_state(dev);
2372
2373 return 0;
2374}
2375
2376static int pl022_runtime_resume(struct device *dev)
2377{
2378 struct pl022 *pl022 = dev_get_drvdata(dev);
2379
2380 pinctrl_pm_select_default_state(dev);
2381 clk_prepare_enable(pl022->clk);
2382
2383 return 0;
2384}
2385#endif
2386
2387static const struct dev_pm_ops pl022_dev_pm_ops = {
2388 SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2389 SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2390};
2391
2392static struct vendor_data vendor_arm = {
2393 .fifodepth = 8,
2394 .max_bpw = 16,
2395 .unidir = false,
2396 .extended_cr = false,
2397 .pl023 = false,
2398 .loopback = true,
2399 .internal_cs_ctrl = false,
2400};
2401
2402static struct vendor_data vendor_st = {
2403 .fifodepth = 32,
2404 .max_bpw = 32,
2405 .unidir = false,
2406 .extended_cr = true,
2407 .pl023 = false,
2408 .loopback = true,
2409 .internal_cs_ctrl = false,
2410};
2411
2412static struct vendor_data vendor_st_pl023 = {
2413 .fifodepth = 32,
2414 .max_bpw = 32,
2415 .unidir = false,
2416 .extended_cr = true,
2417 .pl023 = true,
2418 .loopback = false,
2419 .internal_cs_ctrl = false,
2420};
2421
2422static struct vendor_data vendor_lsi = {
2423 .fifodepth = 8,
2424 .max_bpw = 16,
2425 .unidir = false,
2426 .extended_cr = false,
2427 .pl023 = false,
2428 .loopback = true,
2429 .internal_cs_ctrl = true,
2430};
2431
2432static const struct amba_id pl022_ids[] = {
2433 {
2434 /*
2435 * ARM PL022 variant, this has a 16bit wide
2436 * and 8 locations deep TX/RX FIFO
2437 */
2438 .id = 0x00041022,
2439 .mask = 0x000fffff,
2440 .data = &vendor_arm,
2441 },
2442 {
2443 /*
2444 * ST Micro derivative, this has 32bit wide
2445 * and 32 locations deep TX/RX FIFO
2446 */
2447 .id = 0x01080022,
2448 .mask = 0xffffffff,
2449 .data = &vendor_st,
2450 },
2451 {
2452 /*
2453 * ST-Ericsson derivative "PL023" (this is not
2454 * an official ARM number), this is a PL022 SSP block
2455 * stripped to SPI mode only, it has 32bit wide
2456 * and 32 locations deep TX/RX FIFO but no extended
2457 * CR0/CR1 register
2458 */
2459 .id = 0x00080023,
2460 .mask = 0xffffffff,
2461 .data = &vendor_st_pl023,
2462 },
2463 {
2464 /*
2465 * PL022 variant that has a chip select control register whih
2466 * allows control of 5 output signals nCS[0:4].
2467 */
2468 .id = 0x000b6022,
2469 .mask = 0x000fffff,
2470 .data = &vendor_lsi,
2471 },
2472 { 0, 0 },
2473};
2474
2475MODULE_DEVICE_TABLE(amba, pl022_ids);
2476
2477static struct amba_driver pl022_driver = {
2478 .drv = {
2479 .name = "ssp-pl022",
2480 .pm = &pl022_dev_pm_ops,
2481 },
2482 .id_table = pl022_ids,
2483 .probe = pl022_probe,
2484 .remove = pl022_remove,
2485};
2486
2487static int __init pl022_init(void)
2488{
2489 return amba_driver_register(&pl022_driver);
2490}
2491subsys_initcall(pl022_init);
2492
2493static void __exit pl022_exit(void)
2494{
2495 amba_driver_unregister(&pl022_driver);
2496}
2497module_exit(pl022_exit);
2498
2499MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2500MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2501MODULE_LICENSE("GPL");