Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2011-2015 Daniel Schwierzeck <daniel.schwierzeck@gmail.com>
4 * Copyright (C) 2016 Hauke Mehrtens <hauke@hauke-m.de>
5 */
6
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/of.h>
10#include <linux/platform_device.h>
11#include <linux/clk.h>
12#include <linux/io.h>
13#include <linux/delay.h>
14#include <linux/interrupt.h>
15#include <linux/sched.h>
16#include <linux/completion.h>
17#include <linux/spinlock.h>
18#include <linux/err.h>
19#include <linux/pm_runtime.h>
20#include <linux/spi/spi.h>
21
22#ifdef CONFIG_LANTIQ
23#include <lantiq_soc.h>
24#endif
25
26#define LTQ_SPI_RX_IRQ_NAME "spi_rx"
27#define LTQ_SPI_TX_IRQ_NAME "spi_tx"
28#define LTQ_SPI_ERR_IRQ_NAME "spi_err"
29#define LTQ_SPI_FRM_IRQ_NAME "spi_frm"
30
31#define LTQ_SPI_CLC 0x00
32#define LTQ_SPI_PISEL 0x04
33#define LTQ_SPI_ID 0x08
34#define LTQ_SPI_CON 0x10
35#define LTQ_SPI_STAT 0x14
36#define LTQ_SPI_WHBSTATE 0x18
37#define LTQ_SPI_TB 0x20
38#define LTQ_SPI_RB 0x24
39#define LTQ_SPI_RXFCON 0x30
40#define LTQ_SPI_TXFCON 0x34
41#define LTQ_SPI_FSTAT 0x38
42#define LTQ_SPI_BRT 0x40
43#define LTQ_SPI_BRSTAT 0x44
44#define LTQ_SPI_SFCON 0x60
45#define LTQ_SPI_SFSTAT 0x64
46#define LTQ_SPI_GPOCON 0x70
47#define LTQ_SPI_GPOSTAT 0x74
48#define LTQ_SPI_FPGO 0x78
49#define LTQ_SPI_RXREQ 0x80
50#define LTQ_SPI_RXCNT 0x84
51#define LTQ_SPI_DMACON 0xec
52#define LTQ_SPI_IRNEN 0xf4
53
54#define LTQ_SPI_CLC_SMC_S 16 /* Clock divider for sleep mode */
55#define LTQ_SPI_CLC_SMC_M (0xFF << LTQ_SPI_CLC_SMC_S)
56#define LTQ_SPI_CLC_RMC_S 8 /* Clock divider for normal run mode */
57#define LTQ_SPI_CLC_RMC_M (0xFF << LTQ_SPI_CLC_RMC_S)
58#define LTQ_SPI_CLC_DISS BIT(1) /* Disable status bit */
59#define LTQ_SPI_CLC_DISR BIT(0) /* Disable request bit */
60
61#define LTQ_SPI_ID_TXFS_S 24 /* Implemented TX FIFO size */
62#define LTQ_SPI_ID_RXFS_S 16 /* Implemented RX FIFO size */
63#define LTQ_SPI_ID_MOD_S 8 /* Module ID */
64#define LTQ_SPI_ID_MOD_M (0xff << LTQ_SPI_ID_MOD_S)
65#define LTQ_SPI_ID_CFG_S 5 /* DMA interface support */
66#define LTQ_SPI_ID_CFG_M (1 << LTQ_SPI_ID_CFG_S)
67#define LTQ_SPI_ID_REV_M 0x1F /* Hardware revision number */
68
69#define LTQ_SPI_CON_BM_S 16 /* Data width selection */
70#define LTQ_SPI_CON_BM_M (0x1F << LTQ_SPI_CON_BM_S)
71#define LTQ_SPI_CON_EM BIT(24) /* Echo mode */
72#define LTQ_SPI_CON_IDLE BIT(23) /* Idle bit value */
73#define LTQ_SPI_CON_ENBV BIT(22) /* Enable byte valid control */
74#define LTQ_SPI_CON_RUEN BIT(12) /* Receive underflow error enable */
75#define LTQ_SPI_CON_TUEN BIT(11) /* Transmit underflow error enable */
76#define LTQ_SPI_CON_AEN BIT(10) /* Abort error enable */
77#define LTQ_SPI_CON_REN BIT(9) /* Receive overflow error enable */
78#define LTQ_SPI_CON_TEN BIT(8) /* Transmit overflow error enable */
79#define LTQ_SPI_CON_LB BIT(7) /* Loopback control */
80#define LTQ_SPI_CON_PO BIT(6) /* Clock polarity control */
81#define LTQ_SPI_CON_PH BIT(5) /* Clock phase control */
82#define LTQ_SPI_CON_HB BIT(4) /* Heading control */
83#define LTQ_SPI_CON_RXOFF BIT(1) /* Switch receiver off */
84#define LTQ_SPI_CON_TXOFF BIT(0) /* Switch transmitter off */
85
86#define LTQ_SPI_STAT_RXBV_S 28
87#define LTQ_SPI_STAT_RXBV_M (0x7 << LTQ_SPI_STAT_RXBV_S)
88#define LTQ_SPI_STAT_BSY BIT(13) /* Busy flag */
89#define LTQ_SPI_STAT_RUE BIT(12) /* Receive underflow error flag */
90#define LTQ_SPI_STAT_TUE BIT(11) /* Transmit underflow error flag */
91#define LTQ_SPI_STAT_AE BIT(10) /* Abort error flag */
92#define LTQ_SPI_STAT_RE BIT(9) /* Receive error flag */
93#define LTQ_SPI_STAT_TE BIT(8) /* Transmit error flag */
94#define LTQ_SPI_STAT_ME BIT(7) /* Mode error flag */
95#define LTQ_SPI_STAT_MS BIT(1) /* Host/target select bit */
96#define LTQ_SPI_STAT_EN BIT(0) /* Enable bit */
97#define LTQ_SPI_STAT_ERRORS (LTQ_SPI_STAT_ME | LTQ_SPI_STAT_TE | \
98 LTQ_SPI_STAT_RE | LTQ_SPI_STAT_AE | \
99 LTQ_SPI_STAT_TUE | LTQ_SPI_STAT_RUE)
100
101#define LTQ_SPI_WHBSTATE_SETTUE BIT(15) /* Set transmit underflow error flag */
102#define LTQ_SPI_WHBSTATE_SETAE BIT(14) /* Set abort error flag */
103#define LTQ_SPI_WHBSTATE_SETRE BIT(13) /* Set receive error flag */
104#define LTQ_SPI_WHBSTATE_SETTE BIT(12) /* Set transmit error flag */
105#define LTQ_SPI_WHBSTATE_CLRTUE BIT(11) /* Clear transmit underflow error flag */
106#define LTQ_SPI_WHBSTATE_CLRAE BIT(10) /* Clear abort error flag */
107#define LTQ_SPI_WHBSTATE_CLRRE BIT(9) /* Clear receive error flag */
108#define LTQ_SPI_WHBSTATE_CLRTE BIT(8) /* Clear transmit error flag */
109#define LTQ_SPI_WHBSTATE_SETME BIT(7) /* Set mode error flag */
110#define LTQ_SPI_WHBSTATE_CLRME BIT(6) /* Clear mode error flag */
111#define LTQ_SPI_WHBSTATE_SETRUE BIT(5) /* Set receive underflow error flag */
112#define LTQ_SPI_WHBSTATE_CLRRUE BIT(4) /* Clear receive underflow error flag */
113#define LTQ_SPI_WHBSTATE_SETMS BIT(3) /* Set host select bit */
114#define LTQ_SPI_WHBSTATE_CLRMS BIT(2) /* Clear host select bit */
115#define LTQ_SPI_WHBSTATE_SETEN BIT(1) /* Set enable bit (operational mode) */
116#define LTQ_SPI_WHBSTATE_CLREN BIT(0) /* Clear enable bit (config mode */
117#define LTQ_SPI_WHBSTATE_CLR_ERRORS (LTQ_SPI_WHBSTATE_CLRRUE | \
118 LTQ_SPI_WHBSTATE_CLRME | \
119 LTQ_SPI_WHBSTATE_CLRTE | \
120 LTQ_SPI_WHBSTATE_CLRRE | \
121 LTQ_SPI_WHBSTATE_CLRAE | \
122 LTQ_SPI_WHBSTATE_CLRTUE)
123
124#define LTQ_SPI_RXFCON_RXFITL_S 8 /* FIFO interrupt trigger level */
125#define LTQ_SPI_RXFCON_RXFLU BIT(1) /* FIFO flush */
126#define LTQ_SPI_RXFCON_RXFEN BIT(0) /* FIFO enable */
127
128#define LTQ_SPI_TXFCON_TXFITL_S 8 /* FIFO interrupt trigger level */
129#define LTQ_SPI_TXFCON_TXFLU BIT(1) /* FIFO flush */
130#define LTQ_SPI_TXFCON_TXFEN BIT(0) /* FIFO enable */
131
132#define LTQ_SPI_FSTAT_RXFFL_S 0
133#define LTQ_SPI_FSTAT_TXFFL_S 8
134
135#define LTQ_SPI_GPOCON_ISCSBN_S 8
136#define LTQ_SPI_GPOCON_INVOUTN_S 0
137
138#define LTQ_SPI_FGPO_SETOUTN_S 8
139#define LTQ_SPI_FGPO_CLROUTN_S 0
140
141#define LTQ_SPI_RXREQ_RXCNT_M 0xFFFF /* Receive count value */
142#define LTQ_SPI_RXCNT_TODO_M 0xFFFF /* Receive to-do value */
143
144#define LTQ_SPI_IRNEN_TFI BIT(4) /* TX finished interrupt */
145#define LTQ_SPI_IRNEN_F BIT(3) /* Frame end interrupt request */
146#define LTQ_SPI_IRNEN_E BIT(2) /* Error end interrupt request */
147#define LTQ_SPI_IRNEN_T_XWAY BIT(1) /* Transmit end interrupt request */
148#define LTQ_SPI_IRNEN_R_XWAY BIT(0) /* Receive end interrupt request */
149#define LTQ_SPI_IRNEN_R_XRX BIT(1) /* Transmit end interrupt request */
150#define LTQ_SPI_IRNEN_T_XRX BIT(0) /* Receive end interrupt request */
151#define LTQ_SPI_IRNEN_ALL 0x1F
152
153struct lantiq_ssc_spi;
154
155struct lantiq_ssc_hwcfg {
156 int (*cfg_irq)(struct platform_device *pdev, struct lantiq_ssc_spi *spi);
157 unsigned int irnen_r;
158 unsigned int irnen_t;
159 unsigned int irncr;
160 unsigned int irnicr;
161 bool irq_ack;
162 u32 fifo_size_mask;
163};
164
165struct lantiq_ssc_spi {
166 struct spi_controller *host;
167 struct device *dev;
168 void __iomem *regbase;
169 struct clk *spi_clk;
170 struct clk *fpi_clk;
171 const struct lantiq_ssc_hwcfg *hwcfg;
172
173 spinlock_t lock;
174 struct workqueue_struct *wq;
175 struct work_struct work;
176
177 const u8 *tx;
178 u8 *rx;
179 unsigned int tx_todo;
180 unsigned int rx_todo;
181 unsigned int bits_per_word;
182 unsigned int speed_hz;
183 unsigned int tx_fifo_size;
184 unsigned int rx_fifo_size;
185 unsigned int base_cs;
186 unsigned int fdx_tx_level;
187};
188
189static u32 lantiq_ssc_readl(const struct lantiq_ssc_spi *spi, u32 reg)
190{
191 return __raw_readl(spi->regbase + reg);
192}
193
194static void lantiq_ssc_writel(const struct lantiq_ssc_spi *spi, u32 val,
195 u32 reg)
196{
197 __raw_writel(val, spi->regbase + reg);
198}
199
200static void lantiq_ssc_maskl(const struct lantiq_ssc_spi *spi, u32 clr,
201 u32 set, u32 reg)
202{
203 u32 val = __raw_readl(spi->regbase + reg);
204
205 val &= ~clr;
206 val |= set;
207 __raw_writel(val, spi->regbase + reg);
208}
209
210static unsigned int tx_fifo_level(const struct lantiq_ssc_spi *spi)
211{
212 const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
213 u32 fstat = lantiq_ssc_readl(spi, LTQ_SPI_FSTAT);
214
215 return (fstat >> LTQ_SPI_FSTAT_TXFFL_S) & hwcfg->fifo_size_mask;
216}
217
218static unsigned int rx_fifo_level(const struct lantiq_ssc_spi *spi)
219{
220 const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
221 u32 fstat = lantiq_ssc_readl(spi, LTQ_SPI_FSTAT);
222
223 return (fstat >> LTQ_SPI_FSTAT_RXFFL_S) & hwcfg->fifo_size_mask;
224}
225
226static unsigned int tx_fifo_free(const struct lantiq_ssc_spi *spi)
227{
228 return spi->tx_fifo_size - tx_fifo_level(spi);
229}
230
231static void rx_fifo_reset(const struct lantiq_ssc_spi *spi)
232{
233 u32 val = spi->rx_fifo_size << LTQ_SPI_RXFCON_RXFITL_S;
234
235 val |= LTQ_SPI_RXFCON_RXFEN | LTQ_SPI_RXFCON_RXFLU;
236 lantiq_ssc_writel(spi, val, LTQ_SPI_RXFCON);
237}
238
239static void tx_fifo_reset(const struct lantiq_ssc_spi *spi)
240{
241 u32 val = 1 << LTQ_SPI_TXFCON_TXFITL_S;
242
243 val |= LTQ_SPI_TXFCON_TXFEN | LTQ_SPI_TXFCON_TXFLU;
244 lantiq_ssc_writel(spi, val, LTQ_SPI_TXFCON);
245}
246
247static void rx_fifo_flush(const struct lantiq_ssc_spi *spi)
248{
249 lantiq_ssc_maskl(spi, 0, LTQ_SPI_RXFCON_RXFLU, LTQ_SPI_RXFCON);
250}
251
252static void tx_fifo_flush(const struct lantiq_ssc_spi *spi)
253{
254 lantiq_ssc_maskl(spi, 0, LTQ_SPI_TXFCON_TXFLU, LTQ_SPI_TXFCON);
255}
256
257static void hw_enter_config_mode(const struct lantiq_ssc_spi *spi)
258{
259 lantiq_ssc_writel(spi, LTQ_SPI_WHBSTATE_CLREN, LTQ_SPI_WHBSTATE);
260}
261
262static void hw_enter_active_mode(const struct lantiq_ssc_spi *spi)
263{
264 lantiq_ssc_writel(spi, LTQ_SPI_WHBSTATE_SETEN, LTQ_SPI_WHBSTATE);
265}
266
267static void hw_setup_speed_hz(const struct lantiq_ssc_spi *spi,
268 unsigned int max_speed_hz)
269{
270 u32 spi_clk, brt;
271
272 /*
273 * SPI module clock is derived from FPI bus clock dependent on
274 * divider value in CLC.RMS which is always set to 1.
275 *
276 * f_SPI
277 * baudrate = --------------
278 * 2 * (BR + 1)
279 */
280 spi_clk = clk_get_rate(spi->fpi_clk) / 2;
281
282 if (max_speed_hz > spi_clk)
283 brt = 0;
284 else
285 brt = spi_clk / max_speed_hz - 1;
286
287 if (brt > 0xFFFF)
288 brt = 0xFFFF;
289
290 dev_dbg(spi->dev, "spi_clk %u, max_speed_hz %u, brt %u\n",
291 spi_clk, max_speed_hz, brt);
292
293 lantiq_ssc_writel(spi, brt, LTQ_SPI_BRT);
294}
295
296static void hw_setup_bits_per_word(const struct lantiq_ssc_spi *spi,
297 unsigned int bits_per_word)
298{
299 u32 bm;
300
301 /* CON.BM value = bits_per_word - 1 */
302 bm = (bits_per_word - 1) << LTQ_SPI_CON_BM_S;
303
304 lantiq_ssc_maskl(spi, LTQ_SPI_CON_BM_M, bm, LTQ_SPI_CON);
305}
306
307static void hw_setup_clock_mode(const struct lantiq_ssc_spi *spi,
308 unsigned int mode)
309{
310 u32 con_set = 0, con_clr = 0;
311
312 /*
313 * SPI mode mapping in CON register:
314 * Mode CPOL CPHA CON.PO CON.PH
315 * 0 0 0 0 1
316 * 1 0 1 0 0
317 * 2 1 0 1 1
318 * 3 1 1 1 0
319 */
320 if (mode & SPI_CPHA)
321 con_clr |= LTQ_SPI_CON_PH;
322 else
323 con_set |= LTQ_SPI_CON_PH;
324
325 if (mode & SPI_CPOL)
326 con_set |= LTQ_SPI_CON_PO | LTQ_SPI_CON_IDLE;
327 else
328 con_clr |= LTQ_SPI_CON_PO | LTQ_SPI_CON_IDLE;
329
330 /* Set heading control */
331 if (mode & SPI_LSB_FIRST)
332 con_clr |= LTQ_SPI_CON_HB;
333 else
334 con_set |= LTQ_SPI_CON_HB;
335
336 /* Set loopback mode */
337 if (mode & SPI_LOOP)
338 con_set |= LTQ_SPI_CON_LB;
339 else
340 con_clr |= LTQ_SPI_CON_LB;
341
342 lantiq_ssc_maskl(spi, con_clr, con_set, LTQ_SPI_CON);
343}
344
345static void lantiq_ssc_hw_init(const struct lantiq_ssc_spi *spi)
346{
347 const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
348
349 /*
350 * Set clock divider for run mode to 1 to
351 * run at same frequency as FPI bus
352 */
353 lantiq_ssc_writel(spi, 1 << LTQ_SPI_CLC_RMC_S, LTQ_SPI_CLC);
354
355 /* Put controller into config mode */
356 hw_enter_config_mode(spi);
357
358 /* Clear error flags */
359 lantiq_ssc_maskl(spi, 0, LTQ_SPI_WHBSTATE_CLR_ERRORS, LTQ_SPI_WHBSTATE);
360
361 /* Enable error checking, disable TX/RX */
362 lantiq_ssc_writel(spi, LTQ_SPI_CON_RUEN | LTQ_SPI_CON_AEN |
363 LTQ_SPI_CON_TEN | LTQ_SPI_CON_REN | LTQ_SPI_CON_TXOFF |
364 LTQ_SPI_CON_RXOFF, LTQ_SPI_CON);
365
366 /* Setup default SPI mode */
367 hw_setup_bits_per_word(spi, spi->bits_per_word);
368 hw_setup_clock_mode(spi, SPI_MODE_0);
369
370 /* Enable host mode and clear error flags */
371 lantiq_ssc_writel(spi, LTQ_SPI_WHBSTATE_SETMS |
372 LTQ_SPI_WHBSTATE_CLR_ERRORS,
373 LTQ_SPI_WHBSTATE);
374
375 /* Reset GPIO/CS registers */
376 lantiq_ssc_writel(spi, 0, LTQ_SPI_GPOCON);
377 lantiq_ssc_writel(spi, 0xFF00, LTQ_SPI_FPGO);
378
379 /* Enable and flush FIFOs */
380 rx_fifo_reset(spi);
381 tx_fifo_reset(spi);
382
383 /* Enable interrupts */
384 lantiq_ssc_writel(spi, hwcfg->irnen_t | hwcfg->irnen_r |
385 LTQ_SPI_IRNEN_E, LTQ_SPI_IRNEN);
386}
387
388static int lantiq_ssc_setup(struct spi_device *spidev)
389{
390 struct spi_controller *host = spidev->controller;
391 struct lantiq_ssc_spi *spi = spi_controller_get_devdata(host);
392 unsigned int cs = spi_get_chipselect(spidev, 0);
393 u32 gpocon;
394
395 /* GPIOs are used for CS */
396 if (spi_get_csgpiod(spidev, 0))
397 return 0;
398
399 dev_dbg(spi->dev, "using internal chipselect %u\n", cs);
400
401 if (cs < spi->base_cs) {
402 dev_err(spi->dev,
403 "chipselect %i too small (min %i)\n", cs, spi->base_cs);
404 return -EINVAL;
405 }
406
407 /* set GPO pin to CS mode */
408 gpocon = 1 << ((cs - spi->base_cs) + LTQ_SPI_GPOCON_ISCSBN_S);
409
410 /* invert GPO pin */
411 if (spidev->mode & SPI_CS_HIGH)
412 gpocon |= 1 << (cs - spi->base_cs);
413
414 lantiq_ssc_maskl(spi, 0, gpocon, LTQ_SPI_GPOCON);
415
416 return 0;
417}
418
419static int lantiq_ssc_prepare_message(struct spi_controller *host,
420 struct spi_message *message)
421{
422 struct lantiq_ssc_spi *spi = spi_controller_get_devdata(host);
423
424 hw_enter_config_mode(spi);
425 hw_setup_clock_mode(spi, message->spi->mode);
426 hw_enter_active_mode(spi);
427
428 return 0;
429}
430
431static void hw_setup_transfer(struct lantiq_ssc_spi *spi,
432 struct spi_device *spidev, struct spi_transfer *t)
433{
434 unsigned int speed_hz = t->speed_hz;
435 unsigned int bits_per_word = t->bits_per_word;
436 u32 con;
437
438 if (bits_per_word != spi->bits_per_word ||
439 speed_hz != spi->speed_hz) {
440 hw_enter_config_mode(spi);
441 hw_setup_speed_hz(spi, speed_hz);
442 hw_setup_bits_per_word(spi, bits_per_word);
443 hw_enter_active_mode(spi);
444
445 spi->speed_hz = speed_hz;
446 spi->bits_per_word = bits_per_word;
447 }
448
449 /* Configure transmitter and receiver */
450 con = lantiq_ssc_readl(spi, LTQ_SPI_CON);
451 if (t->tx_buf)
452 con &= ~LTQ_SPI_CON_TXOFF;
453 else
454 con |= LTQ_SPI_CON_TXOFF;
455
456 if (t->rx_buf)
457 con &= ~LTQ_SPI_CON_RXOFF;
458 else
459 con |= LTQ_SPI_CON_RXOFF;
460
461 lantiq_ssc_writel(spi, con, LTQ_SPI_CON);
462}
463
464static int lantiq_ssc_unprepare_message(struct spi_controller *host,
465 struct spi_message *message)
466{
467 struct lantiq_ssc_spi *spi = spi_controller_get_devdata(host);
468
469 flush_workqueue(spi->wq);
470
471 /* Disable transmitter and receiver while idle */
472 lantiq_ssc_maskl(spi, 0, LTQ_SPI_CON_TXOFF | LTQ_SPI_CON_RXOFF,
473 LTQ_SPI_CON);
474
475 return 0;
476}
477
478static void tx_fifo_write(struct lantiq_ssc_spi *spi)
479{
480 const u8 *tx8;
481 const u16 *tx16;
482 const u32 *tx32;
483 u32 data;
484 unsigned int tx_free = tx_fifo_free(spi);
485
486 spi->fdx_tx_level = 0;
487 while (spi->tx_todo && tx_free) {
488 switch (spi->bits_per_word) {
489 case 2 ... 8:
490 tx8 = spi->tx;
491 data = *tx8;
492 spi->tx_todo--;
493 spi->tx++;
494 break;
495 case 16:
496 tx16 = (u16 *) spi->tx;
497 data = *tx16;
498 spi->tx_todo -= 2;
499 spi->tx += 2;
500 break;
501 case 32:
502 tx32 = (u32 *) spi->tx;
503 data = *tx32;
504 spi->tx_todo -= 4;
505 spi->tx += 4;
506 break;
507 default:
508 WARN_ON(1);
509 data = 0;
510 break;
511 }
512
513 lantiq_ssc_writel(spi, data, LTQ_SPI_TB);
514 tx_free--;
515 spi->fdx_tx_level++;
516 }
517}
518
519static void rx_fifo_read_full_duplex(struct lantiq_ssc_spi *spi)
520{
521 u8 *rx8;
522 u16 *rx16;
523 u32 *rx32;
524 u32 data;
525 unsigned int rx_fill = rx_fifo_level(spi);
526
527 /*
528 * Wait until all expected data to be shifted in.
529 * Otherwise, rx overrun may occur.
530 */
531 while (rx_fill != spi->fdx_tx_level)
532 rx_fill = rx_fifo_level(spi);
533
534 while (rx_fill) {
535 data = lantiq_ssc_readl(spi, LTQ_SPI_RB);
536
537 switch (spi->bits_per_word) {
538 case 2 ... 8:
539 rx8 = spi->rx;
540 *rx8 = data;
541 spi->rx_todo--;
542 spi->rx++;
543 break;
544 case 16:
545 rx16 = (u16 *) spi->rx;
546 *rx16 = data;
547 spi->rx_todo -= 2;
548 spi->rx += 2;
549 break;
550 case 32:
551 rx32 = (u32 *) spi->rx;
552 *rx32 = data;
553 spi->rx_todo -= 4;
554 spi->rx += 4;
555 break;
556 default:
557 WARN_ON(1);
558 break;
559 }
560
561 rx_fill--;
562 }
563}
564
565static void rx_fifo_read_half_duplex(struct lantiq_ssc_spi *spi)
566{
567 u32 data, *rx32;
568 u8 *rx8;
569 unsigned int rxbv, shift;
570 unsigned int rx_fill = rx_fifo_level(spi);
571
572 /*
573 * In RX-only mode the bits per word value is ignored by HW. A value
574 * of 32 is used instead. Thus all 4 bytes per FIFO must be read.
575 * If remaining RX bytes are less than 4, the FIFO must be read
576 * differently. The amount of received and valid bytes is indicated
577 * by STAT.RXBV register value.
578 */
579 while (rx_fill) {
580 if (spi->rx_todo < 4) {
581 rxbv = (lantiq_ssc_readl(spi, LTQ_SPI_STAT) &
582 LTQ_SPI_STAT_RXBV_M) >> LTQ_SPI_STAT_RXBV_S;
583 data = lantiq_ssc_readl(spi, LTQ_SPI_RB);
584
585 shift = (rxbv - 1) * 8;
586 rx8 = spi->rx;
587
588 while (rxbv) {
589 *rx8++ = (data >> shift) & 0xFF;
590 rxbv--;
591 shift -= 8;
592 spi->rx_todo--;
593 spi->rx++;
594 }
595 } else {
596 data = lantiq_ssc_readl(spi, LTQ_SPI_RB);
597 rx32 = (u32 *) spi->rx;
598
599 *rx32++ = data;
600 spi->rx_todo -= 4;
601 spi->rx += 4;
602 }
603 rx_fill--;
604 }
605}
606
607static void rx_request(struct lantiq_ssc_spi *spi)
608{
609 unsigned int rxreq, rxreq_max;
610
611 /*
612 * To avoid receive overflows at high clocks it is better to request
613 * only the amount of bytes that fits into all FIFOs. This value
614 * depends on the FIFO size implemented in hardware.
615 */
616 rxreq = spi->rx_todo;
617 rxreq_max = spi->rx_fifo_size * 4;
618 if (rxreq > rxreq_max)
619 rxreq = rxreq_max;
620
621 lantiq_ssc_writel(spi, rxreq, LTQ_SPI_RXREQ);
622}
623
624static irqreturn_t lantiq_ssc_xmit_interrupt(int irq, void *data)
625{
626 struct lantiq_ssc_spi *spi = data;
627 const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
628 u32 val = lantiq_ssc_readl(spi, hwcfg->irncr);
629
630 spin_lock(&spi->lock);
631 if (hwcfg->irq_ack)
632 lantiq_ssc_writel(spi, val, hwcfg->irncr);
633
634 if (spi->tx) {
635 if (spi->rx && spi->rx_todo)
636 rx_fifo_read_full_duplex(spi);
637
638 if (spi->tx_todo)
639 tx_fifo_write(spi);
640 else if (!tx_fifo_level(spi))
641 goto completed;
642 } else if (spi->rx) {
643 if (spi->rx_todo) {
644 rx_fifo_read_half_duplex(spi);
645
646 if (spi->rx_todo)
647 rx_request(spi);
648 else
649 goto completed;
650 } else {
651 goto completed;
652 }
653 }
654
655 spin_unlock(&spi->lock);
656 return IRQ_HANDLED;
657
658completed:
659 queue_work(spi->wq, &spi->work);
660 spin_unlock(&spi->lock);
661
662 return IRQ_HANDLED;
663}
664
665static irqreturn_t lantiq_ssc_err_interrupt(int irq, void *data)
666{
667 struct lantiq_ssc_spi *spi = data;
668 const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
669 u32 stat = lantiq_ssc_readl(spi, LTQ_SPI_STAT);
670 u32 val = lantiq_ssc_readl(spi, hwcfg->irncr);
671
672 if (!(stat & LTQ_SPI_STAT_ERRORS))
673 return IRQ_NONE;
674
675 spin_lock(&spi->lock);
676 if (hwcfg->irq_ack)
677 lantiq_ssc_writel(spi, val, hwcfg->irncr);
678
679 if (stat & LTQ_SPI_STAT_RUE)
680 dev_err(spi->dev, "receive underflow error\n");
681 if (stat & LTQ_SPI_STAT_TUE)
682 dev_err(spi->dev, "transmit underflow error\n");
683 if (stat & LTQ_SPI_STAT_AE)
684 dev_err(spi->dev, "abort error\n");
685 if (stat & LTQ_SPI_STAT_RE)
686 dev_err(spi->dev, "receive overflow error\n");
687 if (stat & LTQ_SPI_STAT_TE)
688 dev_err(spi->dev, "transmit overflow error\n");
689 if (stat & LTQ_SPI_STAT_ME)
690 dev_err(spi->dev, "mode error\n");
691
692 /* Clear error flags */
693 lantiq_ssc_maskl(spi, 0, LTQ_SPI_WHBSTATE_CLR_ERRORS, LTQ_SPI_WHBSTATE);
694
695 /* set bad status so it can be retried */
696 if (spi->host->cur_msg)
697 spi->host->cur_msg->status = -EIO;
698 queue_work(spi->wq, &spi->work);
699 spin_unlock(&spi->lock);
700
701 return IRQ_HANDLED;
702}
703
704static irqreturn_t intel_lgm_ssc_isr(int irq, void *data)
705{
706 struct lantiq_ssc_spi *spi = data;
707 const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
708 u32 val = lantiq_ssc_readl(spi, hwcfg->irncr);
709
710 if (!(val & LTQ_SPI_IRNEN_ALL))
711 return IRQ_NONE;
712
713 if (val & LTQ_SPI_IRNEN_E)
714 return lantiq_ssc_err_interrupt(irq, data);
715
716 if ((val & hwcfg->irnen_t) || (val & hwcfg->irnen_r))
717 return lantiq_ssc_xmit_interrupt(irq, data);
718
719 return IRQ_HANDLED;
720}
721
722static int transfer_start(struct lantiq_ssc_spi *spi, struct spi_device *spidev,
723 struct spi_transfer *t)
724{
725 unsigned long flags;
726
727 spin_lock_irqsave(&spi->lock, flags);
728
729 spi->tx = t->tx_buf;
730 spi->rx = t->rx_buf;
731
732 if (t->tx_buf) {
733 spi->tx_todo = t->len;
734
735 /* initially fill TX FIFO */
736 tx_fifo_write(spi);
737 }
738
739 if (spi->rx) {
740 spi->rx_todo = t->len;
741
742 /* start shift clock in RX-only mode */
743 if (!spi->tx)
744 rx_request(spi);
745 }
746
747 spin_unlock_irqrestore(&spi->lock, flags);
748
749 return t->len;
750}
751
752/*
753 * The driver only gets an interrupt when the FIFO is empty, but there
754 * is an additional shift register from which the data is written to
755 * the wire. We get the last interrupt when the controller starts to
756 * write the last word to the wire, not when it is finished. Do busy
757 * waiting till it finishes.
758 */
759static void lantiq_ssc_bussy_work(struct work_struct *work)
760{
761 struct lantiq_ssc_spi *spi;
762 unsigned long long timeout = 8LL * 1000LL;
763 unsigned long end;
764
765 spi = container_of(work, typeof(*spi), work);
766
767 do_div(timeout, spi->speed_hz);
768 timeout += timeout + 100; /* some tolerance */
769
770 end = jiffies + msecs_to_jiffies(timeout);
771 do {
772 u32 stat = lantiq_ssc_readl(spi, LTQ_SPI_STAT);
773
774 if (!(stat & LTQ_SPI_STAT_BSY)) {
775 spi_finalize_current_transfer(spi->host);
776 return;
777 }
778
779 cond_resched();
780 } while (!time_after_eq(jiffies, end));
781
782 if (spi->host->cur_msg)
783 spi->host->cur_msg->status = -EIO;
784 spi_finalize_current_transfer(spi->host);
785}
786
787static void lantiq_ssc_handle_err(struct spi_controller *host,
788 struct spi_message *message)
789{
790 struct lantiq_ssc_spi *spi = spi_controller_get_devdata(host);
791
792 /* flush FIFOs on timeout */
793 rx_fifo_flush(spi);
794 tx_fifo_flush(spi);
795}
796
797static void lantiq_ssc_set_cs(struct spi_device *spidev, bool enable)
798{
799 struct lantiq_ssc_spi *spi = spi_controller_get_devdata(spidev->controller);
800 unsigned int cs = spi_get_chipselect(spidev, 0);
801 u32 fgpo;
802
803 if (!!(spidev->mode & SPI_CS_HIGH) == enable)
804 fgpo = (1 << (cs - spi->base_cs));
805 else
806 fgpo = (1 << (cs - spi->base_cs + LTQ_SPI_FGPO_SETOUTN_S));
807
808 lantiq_ssc_writel(spi, fgpo, LTQ_SPI_FPGO);
809}
810
811static int lantiq_ssc_transfer_one(struct spi_controller *host,
812 struct spi_device *spidev,
813 struct spi_transfer *t)
814{
815 struct lantiq_ssc_spi *spi = spi_controller_get_devdata(host);
816
817 hw_setup_transfer(spi, spidev, t);
818
819 return transfer_start(spi, spidev, t);
820}
821
822static int intel_lgm_cfg_irq(struct platform_device *pdev, struct lantiq_ssc_spi *spi)
823{
824 int irq;
825
826 irq = platform_get_irq(pdev, 0);
827 if (irq < 0)
828 return irq;
829
830 return devm_request_irq(&pdev->dev, irq, intel_lgm_ssc_isr, 0, "spi", spi);
831}
832
833static int lantiq_cfg_irq(struct platform_device *pdev, struct lantiq_ssc_spi *spi)
834{
835 int irq, err;
836
837 irq = platform_get_irq_byname(pdev, LTQ_SPI_RX_IRQ_NAME);
838 if (irq < 0)
839 return irq;
840
841 err = devm_request_irq(&pdev->dev, irq, lantiq_ssc_xmit_interrupt,
842 0, LTQ_SPI_RX_IRQ_NAME, spi);
843 if (err)
844 return err;
845
846 irq = platform_get_irq_byname(pdev, LTQ_SPI_TX_IRQ_NAME);
847 if (irq < 0)
848 return irq;
849
850 err = devm_request_irq(&pdev->dev, irq, lantiq_ssc_xmit_interrupt,
851 0, LTQ_SPI_TX_IRQ_NAME, spi);
852
853 if (err)
854 return err;
855
856 irq = platform_get_irq_byname(pdev, LTQ_SPI_ERR_IRQ_NAME);
857 if (irq < 0)
858 return irq;
859
860 err = devm_request_irq(&pdev->dev, irq, lantiq_ssc_err_interrupt,
861 0, LTQ_SPI_ERR_IRQ_NAME, spi);
862 return err;
863}
864
865static const struct lantiq_ssc_hwcfg lantiq_ssc_xway = {
866 .cfg_irq = lantiq_cfg_irq,
867 .irnen_r = LTQ_SPI_IRNEN_R_XWAY,
868 .irnen_t = LTQ_SPI_IRNEN_T_XWAY,
869 .irnicr = 0xF8,
870 .irncr = 0xFC,
871 .fifo_size_mask = GENMASK(5, 0),
872 .irq_ack = false,
873};
874
875static const struct lantiq_ssc_hwcfg lantiq_ssc_xrx = {
876 .cfg_irq = lantiq_cfg_irq,
877 .irnen_r = LTQ_SPI_IRNEN_R_XRX,
878 .irnen_t = LTQ_SPI_IRNEN_T_XRX,
879 .irnicr = 0xF8,
880 .irncr = 0xFC,
881 .fifo_size_mask = GENMASK(5, 0),
882 .irq_ack = false,
883};
884
885static const struct lantiq_ssc_hwcfg intel_ssc_lgm = {
886 .cfg_irq = intel_lgm_cfg_irq,
887 .irnen_r = LTQ_SPI_IRNEN_R_XRX,
888 .irnen_t = LTQ_SPI_IRNEN_T_XRX,
889 .irnicr = 0xFC,
890 .irncr = 0xF8,
891 .fifo_size_mask = GENMASK(7, 0),
892 .irq_ack = true,
893};
894
895static const struct of_device_id lantiq_ssc_match[] = {
896 { .compatible = "lantiq,ase-spi", .data = &lantiq_ssc_xway, },
897 { .compatible = "lantiq,falcon-spi", .data = &lantiq_ssc_xrx, },
898 { .compatible = "lantiq,xrx100-spi", .data = &lantiq_ssc_xrx, },
899 { .compatible = "intel,lgm-spi", .data = &intel_ssc_lgm, },
900 {},
901};
902MODULE_DEVICE_TABLE(of, lantiq_ssc_match);
903
904static int lantiq_ssc_probe(struct platform_device *pdev)
905{
906 struct device *dev = &pdev->dev;
907 struct spi_controller *host;
908 struct lantiq_ssc_spi *spi;
909 const struct lantiq_ssc_hwcfg *hwcfg;
910 u32 id, supports_dma, revision;
911 unsigned int num_cs;
912 int err;
913
914 hwcfg = of_device_get_match_data(dev);
915
916 host = spi_alloc_host(dev, sizeof(struct lantiq_ssc_spi));
917 if (!host)
918 return -ENOMEM;
919
920 spi = spi_controller_get_devdata(host);
921 spi->host = host;
922 spi->dev = dev;
923 spi->hwcfg = hwcfg;
924 platform_set_drvdata(pdev, spi);
925 spi->regbase = devm_platform_ioremap_resource(pdev, 0);
926 if (IS_ERR(spi->regbase)) {
927 err = PTR_ERR(spi->regbase);
928 goto err_host_put;
929 }
930
931 err = hwcfg->cfg_irq(pdev, spi);
932 if (err)
933 goto err_host_put;
934
935 spi->spi_clk = devm_clk_get_enabled(dev, "gate");
936 if (IS_ERR(spi->spi_clk)) {
937 err = PTR_ERR(spi->spi_clk);
938 goto err_host_put;
939 }
940
941 /*
942 * Use the old clk_get_fpi() function on Lantiq platform, till it
943 * supports common clk.
944 */
945#if defined(CONFIG_LANTIQ) && !defined(CONFIG_COMMON_CLK)
946 spi->fpi_clk = clk_get_fpi();
947#else
948 spi->fpi_clk = clk_get(dev, "freq");
949#endif
950 if (IS_ERR(spi->fpi_clk)) {
951 err = PTR_ERR(spi->fpi_clk);
952 goto err_host_put;
953 }
954
955 num_cs = 8;
956 of_property_read_u32(pdev->dev.of_node, "num-cs", &num_cs);
957
958 spi->base_cs = 1;
959 of_property_read_u32(pdev->dev.of_node, "base-cs", &spi->base_cs);
960
961 spin_lock_init(&spi->lock);
962 spi->bits_per_word = 8;
963 spi->speed_hz = 0;
964
965 host->dev.of_node = pdev->dev.of_node;
966 host->num_chipselect = num_cs;
967 host->use_gpio_descriptors = true;
968 host->setup = lantiq_ssc_setup;
969 host->set_cs = lantiq_ssc_set_cs;
970 host->handle_err = lantiq_ssc_handle_err;
971 host->prepare_message = lantiq_ssc_prepare_message;
972 host->unprepare_message = lantiq_ssc_unprepare_message;
973 host->transfer_one = lantiq_ssc_transfer_one;
974 host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST | SPI_CS_HIGH |
975 SPI_LOOP;
976 host->bits_per_word_mask = SPI_BPW_RANGE_MASK(2, 8) |
977 SPI_BPW_MASK(16) | SPI_BPW_MASK(32);
978
979 spi->wq = alloc_ordered_workqueue(dev_name(dev), WQ_MEM_RECLAIM);
980 if (!spi->wq) {
981 err = -ENOMEM;
982 goto err_clk_put;
983 }
984 INIT_WORK(&spi->work, lantiq_ssc_bussy_work);
985
986 id = lantiq_ssc_readl(spi, LTQ_SPI_ID);
987 spi->tx_fifo_size = (id >> LTQ_SPI_ID_TXFS_S) & hwcfg->fifo_size_mask;
988 spi->rx_fifo_size = (id >> LTQ_SPI_ID_RXFS_S) & hwcfg->fifo_size_mask;
989 supports_dma = (id & LTQ_SPI_ID_CFG_M) >> LTQ_SPI_ID_CFG_S;
990 revision = id & LTQ_SPI_ID_REV_M;
991
992 lantiq_ssc_hw_init(spi);
993
994 dev_info(dev,
995 "Lantiq SSC SPI controller (Rev %i, TXFS %u, RXFS %u, DMA %u)\n",
996 revision, spi->tx_fifo_size, spi->rx_fifo_size, supports_dma);
997
998 err = devm_spi_register_controller(dev, host);
999 if (err) {
1000 dev_err(dev, "failed to register spi host\n");
1001 goto err_wq_destroy;
1002 }
1003
1004 return 0;
1005
1006err_wq_destroy:
1007 destroy_workqueue(spi->wq);
1008err_clk_put:
1009 clk_put(spi->fpi_clk);
1010err_host_put:
1011 spi_controller_put(host);
1012
1013 return err;
1014}
1015
1016static void lantiq_ssc_remove(struct platform_device *pdev)
1017{
1018 struct lantiq_ssc_spi *spi = platform_get_drvdata(pdev);
1019
1020 lantiq_ssc_writel(spi, 0, LTQ_SPI_IRNEN);
1021 lantiq_ssc_writel(spi, 0, LTQ_SPI_CLC);
1022 rx_fifo_flush(spi);
1023 tx_fifo_flush(spi);
1024 hw_enter_config_mode(spi);
1025
1026 destroy_workqueue(spi->wq);
1027 clk_put(spi->fpi_clk);
1028}
1029
1030static struct platform_driver lantiq_ssc_driver = {
1031 .probe = lantiq_ssc_probe,
1032 .remove = lantiq_ssc_remove,
1033 .driver = {
1034 .name = "spi-lantiq-ssc",
1035 .of_match_table = lantiq_ssc_match,
1036 },
1037};
1038module_platform_driver(lantiq_ssc_driver);
1039
1040MODULE_DESCRIPTION("Lantiq SSC SPI controller driver");
1041MODULE_AUTHOR("Daniel Schwierzeck <daniel.schwierzeck@gmail.com>");
1042MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
1043MODULE_LICENSE("GPL");
1044MODULE_ALIAS("platform:spi-lantiq-ssc");
1/*
2 * Copyright (C) 2011-2015 Daniel Schwierzeck <daniel.schwierzeck@gmail.com>
3 * Copyright (C) 2016 Hauke Mehrtens <hauke@hauke-m.de>
4 *
5 * This program is free software; you can distribute it and/or modify it
6 * under the terms of the GNU General Public License (Version 2) as
7 * published by the Free Software Foundation.
8 */
9
10#include <linux/kernel.h>
11#include <linux/module.h>
12#include <linux/of_device.h>
13#include <linux/clk.h>
14#include <linux/io.h>
15#include <linux/delay.h>
16#include <linux/interrupt.h>
17#include <linux/sched.h>
18#include <linux/completion.h>
19#include <linux/spinlock.h>
20#include <linux/err.h>
21#include <linux/gpio.h>
22#include <linux/pm_runtime.h>
23#include <linux/spi/spi.h>
24
25#ifdef CONFIG_LANTIQ
26#include <lantiq_soc.h>
27#endif
28
29#define LTQ_SPI_RX_IRQ_NAME "spi_rx"
30#define LTQ_SPI_TX_IRQ_NAME "spi_tx"
31#define LTQ_SPI_ERR_IRQ_NAME "spi_err"
32#define LTQ_SPI_FRM_IRQ_NAME "spi_frm"
33
34#define LTQ_SPI_CLC 0x00
35#define LTQ_SPI_PISEL 0x04
36#define LTQ_SPI_ID 0x08
37#define LTQ_SPI_CON 0x10
38#define LTQ_SPI_STAT 0x14
39#define LTQ_SPI_WHBSTATE 0x18
40#define LTQ_SPI_TB 0x20
41#define LTQ_SPI_RB 0x24
42#define LTQ_SPI_RXFCON 0x30
43#define LTQ_SPI_TXFCON 0x34
44#define LTQ_SPI_FSTAT 0x38
45#define LTQ_SPI_BRT 0x40
46#define LTQ_SPI_BRSTAT 0x44
47#define LTQ_SPI_SFCON 0x60
48#define LTQ_SPI_SFSTAT 0x64
49#define LTQ_SPI_GPOCON 0x70
50#define LTQ_SPI_GPOSTAT 0x74
51#define LTQ_SPI_FPGO 0x78
52#define LTQ_SPI_RXREQ 0x80
53#define LTQ_SPI_RXCNT 0x84
54#define LTQ_SPI_DMACON 0xec
55#define LTQ_SPI_IRNEN 0xf4
56#define LTQ_SPI_IRNICR 0xf8
57#define LTQ_SPI_IRNCR 0xfc
58
59#define LTQ_SPI_CLC_SMC_S 16 /* Clock divider for sleep mode */
60#define LTQ_SPI_CLC_SMC_M (0xFF << LTQ_SPI_CLC_SMC_S)
61#define LTQ_SPI_CLC_RMC_S 8 /* Clock divider for normal run mode */
62#define LTQ_SPI_CLC_RMC_M (0xFF << LTQ_SPI_CLC_RMC_S)
63#define LTQ_SPI_CLC_DISS BIT(1) /* Disable status bit */
64#define LTQ_SPI_CLC_DISR BIT(0) /* Disable request bit */
65
66#define LTQ_SPI_ID_TXFS_S 24 /* Implemented TX FIFO size */
67#define LTQ_SPI_ID_TXFS_M (0x3F << LTQ_SPI_ID_TXFS_S)
68#define LTQ_SPI_ID_RXFS_S 16 /* Implemented RX FIFO size */
69#define LTQ_SPI_ID_RXFS_M (0x3F << LTQ_SPI_ID_RXFS_S)
70#define LTQ_SPI_ID_MOD_S 8 /* Module ID */
71#define LTQ_SPI_ID_MOD_M (0xff << LTQ_SPI_ID_MOD_S)
72#define LTQ_SPI_ID_CFG_S 5 /* DMA interface support */
73#define LTQ_SPI_ID_CFG_M (1 << LTQ_SPI_ID_CFG_S)
74#define LTQ_SPI_ID_REV_M 0x1F /* Hardware revision number */
75
76#define LTQ_SPI_CON_BM_S 16 /* Data width selection */
77#define LTQ_SPI_CON_BM_M (0x1F << LTQ_SPI_CON_BM_S)
78#define LTQ_SPI_CON_EM BIT(24) /* Echo mode */
79#define LTQ_SPI_CON_IDLE BIT(23) /* Idle bit value */
80#define LTQ_SPI_CON_ENBV BIT(22) /* Enable byte valid control */
81#define LTQ_SPI_CON_RUEN BIT(12) /* Receive underflow error enable */
82#define LTQ_SPI_CON_TUEN BIT(11) /* Transmit underflow error enable */
83#define LTQ_SPI_CON_AEN BIT(10) /* Abort error enable */
84#define LTQ_SPI_CON_REN BIT(9) /* Receive overflow error enable */
85#define LTQ_SPI_CON_TEN BIT(8) /* Transmit overflow error enable */
86#define LTQ_SPI_CON_LB BIT(7) /* Loopback control */
87#define LTQ_SPI_CON_PO BIT(6) /* Clock polarity control */
88#define LTQ_SPI_CON_PH BIT(5) /* Clock phase control */
89#define LTQ_SPI_CON_HB BIT(4) /* Heading control */
90#define LTQ_SPI_CON_RXOFF BIT(1) /* Switch receiver off */
91#define LTQ_SPI_CON_TXOFF BIT(0) /* Switch transmitter off */
92
93#define LTQ_SPI_STAT_RXBV_S 28
94#define LTQ_SPI_STAT_RXBV_M (0x7 << LTQ_SPI_STAT_RXBV_S)
95#define LTQ_SPI_STAT_BSY BIT(13) /* Busy flag */
96#define LTQ_SPI_STAT_RUE BIT(12) /* Receive underflow error flag */
97#define LTQ_SPI_STAT_TUE BIT(11) /* Transmit underflow error flag */
98#define LTQ_SPI_STAT_AE BIT(10) /* Abort error flag */
99#define LTQ_SPI_STAT_RE BIT(9) /* Receive error flag */
100#define LTQ_SPI_STAT_TE BIT(8) /* Transmit error flag */
101#define LTQ_SPI_STAT_ME BIT(7) /* Mode error flag */
102#define LTQ_SPI_STAT_MS BIT(1) /* Master/slave select bit */
103#define LTQ_SPI_STAT_EN BIT(0) /* Enable bit */
104#define LTQ_SPI_STAT_ERRORS (LTQ_SPI_STAT_ME | LTQ_SPI_STAT_TE | \
105 LTQ_SPI_STAT_RE | LTQ_SPI_STAT_AE | \
106 LTQ_SPI_STAT_TUE | LTQ_SPI_STAT_RUE)
107
108#define LTQ_SPI_WHBSTATE_SETTUE BIT(15) /* Set transmit underflow error flag */
109#define LTQ_SPI_WHBSTATE_SETAE BIT(14) /* Set abort error flag */
110#define LTQ_SPI_WHBSTATE_SETRE BIT(13) /* Set receive error flag */
111#define LTQ_SPI_WHBSTATE_SETTE BIT(12) /* Set transmit error flag */
112#define LTQ_SPI_WHBSTATE_CLRTUE BIT(11) /* Clear transmit underflow error flag */
113#define LTQ_SPI_WHBSTATE_CLRAE BIT(10) /* Clear abort error flag */
114#define LTQ_SPI_WHBSTATE_CLRRE BIT(9) /* Clear receive error flag */
115#define LTQ_SPI_WHBSTATE_CLRTE BIT(8) /* Clear transmit error flag */
116#define LTQ_SPI_WHBSTATE_SETME BIT(7) /* Set mode error flag */
117#define LTQ_SPI_WHBSTATE_CLRME BIT(6) /* Clear mode error flag */
118#define LTQ_SPI_WHBSTATE_SETRUE BIT(5) /* Set receive underflow error flag */
119#define LTQ_SPI_WHBSTATE_CLRRUE BIT(4) /* Clear receive underflow error flag */
120#define LTQ_SPI_WHBSTATE_SETMS BIT(3) /* Set master select bit */
121#define LTQ_SPI_WHBSTATE_CLRMS BIT(2) /* Clear master select bit */
122#define LTQ_SPI_WHBSTATE_SETEN BIT(1) /* Set enable bit (operational mode) */
123#define LTQ_SPI_WHBSTATE_CLREN BIT(0) /* Clear enable bit (config mode */
124#define LTQ_SPI_WHBSTATE_CLR_ERRORS (LTQ_SPI_WHBSTATE_CLRRUE | \
125 LTQ_SPI_WHBSTATE_CLRME | \
126 LTQ_SPI_WHBSTATE_CLRTE | \
127 LTQ_SPI_WHBSTATE_CLRRE | \
128 LTQ_SPI_WHBSTATE_CLRAE | \
129 LTQ_SPI_WHBSTATE_CLRTUE)
130
131#define LTQ_SPI_RXFCON_RXFITL_S 8 /* FIFO interrupt trigger level */
132#define LTQ_SPI_RXFCON_RXFITL_M (0x3F << LTQ_SPI_RXFCON_RXFITL_S)
133#define LTQ_SPI_RXFCON_RXFLU BIT(1) /* FIFO flush */
134#define LTQ_SPI_RXFCON_RXFEN BIT(0) /* FIFO enable */
135
136#define LTQ_SPI_TXFCON_TXFITL_S 8 /* FIFO interrupt trigger level */
137#define LTQ_SPI_TXFCON_TXFITL_M (0x3F << LTQ_SPI_TXFCON_TXFITL_S)
138#define LTQ_SPI_TXFCON_TXFLU BIT(1) /* FIFO flush */
139#define LTQ_SPI_TXFCON_TXFEN BIT(0) /* FIFO enable */
140
141#define LTQ_SPI_FSTAT_RXFFL_S 0
142#define LTQ_SPI_FSTAT_RXFFL_M (0x3f << LTQ_SPI_FSTAT_RXFFL_S)
143#define LTQ_SPI_FSTAT_TXFFL_S 8
144#define LTQ_SPI_FSTAT_TXFFL_M (0x3f << LTQ_SPI_FSTAT_TXFFL_S)
145
146#define LTQ_SPI_GPOCON_ISCSBN_S 8
147#define LTQ_SPI_GPOCON_INVOUTN_S 0
148
149#define LTQ_SPI_FGPO_SETOUTN_S 8
150#define LTQ_SPI_FGPO_CLROUTN_S 0
151
152#define LTQ_SPI_RXREQ_RXCNT_M 0xFFFF /* Receive count value */
153#define LTQ_SPI_RXCNT_TODO_M 0xFFFF /* Recevie to-do value */
154
155#define LTQ_SPI_IRNEN_TFI BIT(4) /* TX finished interrupt */
156#define LTQ_SPI_IRNEN_F BIT(3) /* Frame end interrupt request */
157#define LTQ_SPI_IRNEN_E BIT(2) /* Error end interrupt request */
158#define LTQ_SPI_IRNEN_T_XWAY BIT(1) /* Transmit end interrupt request */
159#define LTQ_SPI_IRNEN_R_XWAY BIT(0) /* Receive end interrupt request */
160#define LTQ_SPI_IRNEN_R_XRX BIT(1) /* Transmit end interrupt request */
161#define LTQ_SPI_IRNEN_T_XRX BIT(0) /* Receive end interrupt request */
162#define LTQ_SPI_IRNEN_ALL 0x1F
163
164struct lantiq_ssc_hwcfg {
165 unsigned int irnen_r;
166 unsigned int irnen_t;
167};
168
169struct lantiq_ssc_spi {
170 struct spi_master *master;
171 struct device *dev;
172 void __iomem *regbase;
173 struct clk *spi_clk;
174 struct clk *fpi_clk;
175 const struct lantiq_ssc_hwcfg *hwcfg;
176
177 spinlock_t lock;
178 struct workqueue_struct *wq;
179 struct work_struct work;
180
181 const u8 *tx;
182 u8 *rx;
183 unsigned int tx_todo;
184 unsigned int rx_todo;
185 unsigned int bits_per_word;
186 unsigned int speed_hz;
187 unsigned int tx_fifo_size;
188 unsigned int rx_fifo_size;
189 unsigned int base_cs;
190};
191
192static u32 lantiq_ssc_readl(const struct lantiq_ssc_spi *spi, u32 reg)
193{
194 return __raw_readl(spi->regbase + reg);
195}
196
197static void lantiq_ssc_writel(const struct lantiq_ssc_spi *spi, u32 val,
198 u32 reg)
199{
200 __raw_writel(val, spi->regbase + reg);
201}
202
203static void lantiq_ssc_maskl(const struct lantiq_ssc_spi *spi, u32 clr,
204 u32 set, u32 reg)
205{
206 u32 val = __raw_readl(spi->regbase + reg);
207
208 val &= ~clr;
209 val |= set;
210 __raw_writel(val, spi->regbase + reg);
211}
212
213static unsigned int tx_fifo_level(const struct lantiq_ssc_spi *spi)
214{
215 u32 fstat = lantiq_ssc_readl(spi, LTQ_SPI_FSTAT);
216
217 return (fstat & LTQ_SPI_FSTAT_TXFFL_M) >> LTQ_SPI_FSTAT_TXFFL_S;
218}
219
220static unsigned int rx_fifo_level(const struct lantiq_ssc_spi *spi)
221{
222 u32 fstat = lantiq_ssc_readl(spi, LTQ_SPI_FSTAT);
223
224 return fstat & LTQ_SPI_FSTAT_RXFFL_M;
225}
226
227static unsigned int tx_fifo_free(const struct lantiq_ssc_spi *spi)
228{
229 return spi->tx_fifo_size - tx_fifo_level(spi);
230}
231
232static void rx_fifo_reset(const struct lantiq_ssc_spi *spi)
233{
234 u32 val = spi->rx_fifo_size << LTQ_SPI_RXFCON_RXFITL_S;
235
236 val |= LTQ_SPI_RXFCON_RXFEN | LTQ_SPI_RXFCON_RXFLU;
237 lantiq_ssc_writel(spi, val, LTQ_SPI_RXFCON);
238}
239
240static void tx_fifo_reset(const struct lantiq_ssc_spi *spi)
241{
242 u32 val = 1 << LTQ_SPI_TXFCON_TXFITL_S;
243
244 val |= LTQ_SPI_TXFCON_TXFEN | LTQ_SPI_TXFCON_TXFLU;
245 lantiq_ssc_writel(spi, val, LTQ_SPI_TXFCON);
246}
247
248static void rx_fifo_flush(const struct lantiq_ssc_spi *spi)
249{
250 lantiq_ssc_maskl(spi, 0, LTQ_SPI_RXFCON_RXFLU, LTQ_SPI_RXFCON);
251}
252
253static void tx_fifo_flush(const struct lantiq_ssc_spi *spi)
254{
255 lantiq_ssc_maskl(spi, 0, LTQ_SPI_TXFCON_TXFLU, LTQ_SPI_TXFCON);
256}
257
258static void hw_enter_config_mode(const struct lantiq_ssc_spi *spi)
259{
260 lantiq_ssc_writel(spi, LTQ_SPI_WHBSTATE_CLREN, LTQ_SPI_WHBSTATE);
261}
262
263static void hw_enter_active_mode(const struct lantiq_ssc_spi *spi)
264{
265 lantiq_ssc_writel(spi, LTQ_SPI_WHBSTATE_SETEN, LTQ_SPI_WHBSTATE);
266}
267
268static void hw_setup_speed_hz(const struct lantiq_ssc_spi *spi,
269 unsigned int max_speed_hz)
270{
271 u32 spi_clk, brt;
272
273 /*
274 * SPI module clock is derived from FPI bus clock dependent on
275 * divider value in CLC.RMS which is always set to 1.
276 *
277 * f_SPI
278 * baudrate = --------------
279 * 2 * (BR + 1)
280 */
281 spi_clk = clk_get_rate(spi->fpi_clk) / 2;
282
283 if (max_speed_hz > spi_clk)
284 brt = 0;
285 else
286 brt = spi_clk / max_speed_hz - 1;
287
288 if (brt > 0xFFFF)
289 brt = 0xFFFF;
290
291 dev_dbg(spi->dev, "spi_clk %u, max_speed_hz %u, brt %u\n",
292 spi_clk, max_speed_hz, brt);
293
294 lantiq_ssc_writel(spi, brt, LTQ_SPI_BRT);
295}
296
297static void hw_setup_bits_per_word(const struct lantiq_ssc_spi *spi,
298 unsigned int bits_per_word)
299{
300 u32 bm;
301
302 /* CON.BM value = bits_per_word - 1 */
303 bm = (bits_per_word - 1) << LTQ_SPI_CON_BM_S;
304
305 lantiq_ssc_maskl(spi, LTQ_SPI_CON_BM_M, bm, LTQ_SPI_CON);
306}
307
308static void hw_setup_clock_mode(const struct lantiq_ssc_spi *spi,
309 unsigned int mode)
310{
311 u32 con_set = 0, con_clr = 0;
312
313 /*
314 * SPI mode mapping in CON register:
315 * Mode CPOL CPHA CON.PO CON.PH
316 * 0 0 0 0 1
317 * 1 0 1 0 0
318 * 2 1 0 1 1
319 * 3 1 1 1 0
320 */
321 if (mode & SPI_CPHA)
322 con_clr |= LTQ_SPI_CON_PH;
323 else
324 con_set |= LTQ_SPI_CON_PH;
325
326 if (mode & SPI_CPOL)
327 con_set |= LTQ_SPI_CON_PO | LTQ_SPI_CON_IDLE;
328 else
329 con_clr |= LTQ_SPI_CON_PO | LTQ_SPI_CON_IDLE;
330
331 /* Set heading control */
332 if (mode & SPI_LSB_FIRST)
333 con_clr |= LTQ_SPI_CON_HB;
334 else
335 con_set |= LTQ_SPI_CON_HB;
336
337 /* Set loopback mode */
338 if (mode & SPI_LOOP)
339 con_set |= LTQ_SPI_CON_LB;
340 else
341 con_clr |= LTQ_SPI_CON_LB;
342
343 lantiq_ssc_maskl(spi, con_clr, con_set, LTQ_SPI_CON);
344}
345
346static void lantiq_ssc_hw_init(const struct lantiq_ssc_spi *spi)
347{
348 const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
349
350 /*
351 * Set clock divider for run mode to 1 to
352 * run at same frequency as FPI bus
353 */
354 lantiq_ssc_writel(spi, 1 << LTQ_SPI_CLC_RMC_S, LTQ_SPI_CLC);
355
356 /* Put controller into config mode */
357 hw_enter_config_mode(spi);
358
359 /* Clear error flags */
360 lantiq_ssc_maskl(spi, 0, LTQ_SPI_WHBSTATE_CLR_ERRORS, LTQ_SPI_WHBSTATE);
361
362 /* Enable error checking, disable TX/RX */
363 lantiq_ssc_writel(spi, LTQ_SPI_CON_RUEN | LTQ_SPI_CON_AEN |
364 LTQ_SPI_CON_TEN | LTQ_SPI_CON_REN | LTQ_SPI_CON_TXOFF |
365 LTQ_SPI_CON_RXOFF, LTQ_SPI_CON);
366
367 /* Setup default SPI mode */
368 hw_setup_bits_per_word(spi, spi->bits_per_word);
369 hw_setup_clock_mode(spi, SPI_MODE_0);
370
371 /* Enable master mode and clear error flags */
372 lantiq_ssc_writel(spi, LTQ_SPI_WHBSTATE_SETMS |
373 LTQ_SPI_WHBSTATE_CLR_ERRORS,
374 LTQ_SPI_WHBSTATE);
375
376 /* Reset GPIO/CS registers */
377 lantiq_ssc_writel(spi, 0, LTQ_SPI_GPOCON);
378 lantiq_ssc_writel(spi, 0xFF00, LTQ_SPI_FPGO);
379
380 /* Enable and flush FIFOs */
381 rx_fifo_reset(spi);
382 tx_fifo_reset(spi);
383
384 /* Enable interrupts */
385 lantiq_ssc_writel(spi, hwcfg->irnen_t | hwcfg->irnen_r |
386 LTQ_SPI_IRNEN_E, LTQ_SPI_IRNEN);
387}
388
389static int lantiq_ssc_setup(struct spi_device *spidev)
390{
391 struct spi_master *master = spidev->master;
392 struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
393 unsigned int cs = spidev->chip_select;
394 u32 gpocon;
395
396 /* GPIOs are used for CS */
397 if (gpio_is_valid(spidev->cs_gpio))
398 return 0;
399
400 dev_dbg(spi->dev, "using internal chipselect %u\n", cs);
401
402 if (cs < spi->base_cs) {
403 dev_err(spi->dev,
404 "chipselect %i too small (min %i)\n", cs, spi->base_cs);
405 return -EINVAL;
406 }
407
408 /* set GPO pin to CS mode */
409 gpocon = 1 << ((cs - spi->base_cs) + LTQ_SPI_GPOCON_ISCSBN_S);
410
411 /* invert GPO pin */
412 if (spidev->mode & SPI_CS_HIGH)
413 gpocon |= 1 << (cs - spi->base_cs);
414
415 lantiq_ssc_maskl(spi, 0, gpocon, LTQ_SPI_GPOCON);
416
417 return 0;
418}
419
420static int lantiq_ssc_prepare_message(struct spi_master *master,
421 struct spi_message *message)
422{
423 struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
424
425 hw_enter_config_mode(spi);
426 hw_setup_clock_mode(spi, message->spi->mode);
427 hw_enter_active_mode(spi);
428
429 return 0;
430}
431
432static void hw_setup_transfer(struct lantiq_ssc_spi *spi,
433 struct spi_device *spidev, struct spi_transfer *t)
434{
435 unsigned int speed_hz = t->speed_hz;
436 unsigned int bits_per_word = t->bits_per_word;
437 u32 con;
438
439 if (bits_per_word != spi->bits_per_word ||
440 speed_hz != spi->speed_hz) {
441 hw_enter_config_mode(spi);
442 hw_setup_speed_hz(spi, speed_hz);
443 hw_setup_bits_per_word(spi, bits_per_word);
444 hw_enter_active_mode(spi);
445
446 spi->speed_hz = speed_hz;
447 spi->bits_per_word = bits_per_word;
448 }
449
450 /* Configure transmitter and receiver */
451 con = lantiq_ssc_readl(spi, LTQ_SPI_CON);
452 if (t->tx_buf)
453 con &= ~LTQ_SPI_CON_TXOFF;
454 else
455 con |= LTQ_SPI_CON_TXOFF;
456
457 if (t->rx_buf)
458 con &= ~LTQ_SPI_CON_RXOFF;
459 else
460 con |= LTQ_SPI_CON_RXOFF;
461
462 lantiq_ssc_writel(spi, con, LTQ_SPI_CON);
463}
464
465static int lantiq_ssc_unprepare_message(struct spi_master *master,
466 struct spi_message *message)
467{
468 struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
469
470 flush_workqueue(spi->wq);
471
472 /* Disable transmitter and receiver while idle */
473 lantiq_ssc_maskl(spi, 0, LTQ_SPI_CON_TXOFF | LTQ_SPI_CON_RXOFF,
474 LTQ_SPI_CON);
475
476 return 0;
477}
478
479static void tx_fifo_write(struct lantiq_ssc_spi *spi)
480{
481 const u8 *tx8;
482 const u16 *tx16;
483 const u32 *tx32;
484 u32 data;
485 unsigned int tx_free = tx_fifo_free(spi);
486
487 while (spi->tx_todo && tx_free) {
488 switch (spi->bits_per_word) {
489 case 2 ... 8:
490 tx8 = spi->tx;
491 data = *tx8;
492 spi->tx_todo--;
493 spi->tx++;
494 break;
495 case 16:
496 tx16 = (u16 *) spi->tx;
497 data = *tx16;
498 spi->tx_todo -= 2;
499 spi->tx += 2;
500 break;
501 case 32:
502 tx32 = (u32 *) spi->tx;
503 data = *tx32;
504 spi->tx_todo -= 4;
505 spi->tx += 4;
506 break;
507 default:
508 WARN_ON(1);
509 data = 0;
510 break;
511 }
512
513 lantiq_ssc_writel(spi, data, LTQ_SPI_TB);
514 tx_free--;
515 }
516}
517
518static void rx_fifo_read_full_duplex(struct lantiq_ssc_spi *spi)
519{
520 u8 *rx8;
521 u16 *rx16;
522 u32 *rx32;
523 u32 data;
524 unsigned int rx_fill = rx_fifo_level(spi);
525
526 while (rx_fill) {
527 data = lantiq_ssc_readl(spi, LTQ_SPI_RB);
528
529 switch (spi->bits_per_word) {
530 case 2 ... 8:
531 rx8 = spi->rx;
532 *rx8 = data;
533 spi->rx_todo--;
534 spi->rx++;
535 break;
536 case 16:
537 rx16 = (u16 *) spi->rx;
538 *rx16 = data;
539 spi->rx_todo -= 2;
540 spi->rx += 2;
541 break;
542 case 32:
543 rx32 = (u32 *) spi->rx;
544 *rx32 = data;
545 spi->rx_todo -= 4;
546 spi->rx += 4;
547 break;
548 default:
549 WARN_ON(1);
550 break;
551 }
552
553 rx_fill--;
554 }
555}
556
557static void rx_fifo_read_half_duplex(struct lantiq_ssc_spi *spi)
558{
559 u32 data, *rx32;
560 u8 *rx8;
561 unsigned int rxbv, shift;
562 unsigned int rx_fill = rx_fifo_level(spi);
563
564 /*
565 * In RX-only mode the bits per word value is ignored by HW. A value
566 * of 32 is used instead. Thus all 4 bytes per FIFO must be read.
567 * If remaining RX bytes are less than 4, the FIFO must be read
568 * differently. The amount of received and valid bytes is indicated
569 * by STAT.RXBV register value.
570 */
571 while (rx_fill) {
572 if (spi->rx_todo < 4) {
573 rxbv = (lantiq_ssc_readl(spi, LTQ_SPI_STAT) &
574 LTQ_SPI_STAT_RXBV_M) >> LTQ_SPI_STAT_RXBV_S;
575 data = lantiq_ssc_readl(spi, LTQ_SPI_RB);
576
577 shift = (rxbv - 1) * 8;
578 rx8 = spi->rx;
579
580 while (rxbv) {
581 *rx8++ = (data >> shift) & 0xFF;
582 rxbv--;
583 shift -= 8;
584 spi->rx_todo--;
585 spi->rx++;
586 }
587 } else {
588 data = lantiq_ssc_readl(spi, LTQ_SPI_RB);
589 rx32 = (u32 *) spi->rx;
590
591 *rx32++ = data;
592 spi->rx_todo -= 4;
593 spi->rx += 4;
594 }
595 rx_fill--;
596 }
597}
598
599static void rx_request(struct lantiq_ssc_spi *spi)
600{
601 unsigned int rxreq, rxreq_max;
602
603 /*
604 * To avoid receive overflows at high clocks it is better to request
605 * only the amount of bytes that fits into all FIFOs. This value
606 * depends on the FIFO size implemented in hardware.
607 */
608 rxreq = spi->rx_todo;
609 rxreq_max = spi->rx_fifo_size * 4;
610 if (rxreq > rxreq_max)
611 rxreq = rxreq_max;
612
613 lantiq_ssc_writel(spi, rxreq, LTQ_SPI_RXREQ);
614}
615
616static irqreturn_t lantiq_ssc_xmit_interrupt(int irq, void *data)
617{
618 struct lantiq_ssc_spi *spi = data;
619
620 if (spi->tx) {
621 if (spi->rx && spi->rx_todo)
622 rx_fifo_read_full_duplex(spi);
623
624 if (spi->tx_todo)
625 tx_fifo_write(spi);
626 else if (!tx_fifo_level(spi))
627 goto completed;
628 } else if (spi->rx) {
629 if (spi->rx_todo) {
630 rx_fifo_read_half_duplex(spi);
631
632 if (spi->rx_todo)
633 rx_request(spi);
634 else
635 goto completed;
636 } else {
637 goto completed;
638 }
639 }
640
641 return IRQ_HANDLED;
642
643completed:
644 queue_work(spi->wq, &spi->work);
645
646 return IRQ_HANDLED;
647}
648
649static irqreturn_t lantiq_ssc_err_interrupt(int irq, void *data)
650{
651 struct lantiq_ssc_spi *spi = data;
652 u32 stat = lantiq_ssc_readl(spi, LTQ_SPI_STAT);
653
654 if (!(stat & LTQ_SPI_STAT_ERRORS))
655 return IRQ_NONE;
656
657 if (stat & LTQ_SPI_STAT_RUE)
658 dev_err(spi->dev, "receive underflow error\n");
659 if (stat & LTQ_SPI_STAT_TUE)
660 dev_err(spi->dev, "transmit underflow error\n");
661 if (stat & LTQ_SPI_STAT_AE)
662 dev_err(spi->dev, "abort error\n");
663 if (stat & LTQ_SPI_STAT_RE)
664 dev_err(spi->dev, "receive overflow error\n");
665 if (stat & LTQ_SPI_STAT_TE)
666 dev_err(spi->dev, "transmit overflow error\n");
667 if (stat & LTQ_SPI_STAT_ME)
668 dev_err(spi->dev, "mode error\n");
669
670 /* Clear error flags */
671 lantiq_ssc_maskl(spi, 0, LTQ_SPI_WHBSTATE_CLR_ERRORS, LTQ_SPI_WHBSTATE);
672
673 /* set bad status so it can be retried */
674 if (spi->master->cur_msg)
675 spi->master->cur_msg->status = -EIO;
676 queue_work(spi->wq, &spi->work);
677
678 return IRQ_HANDLED;
679}
680
681static int transfer_start(struct lantiq_ssc_spi *spi, struct spi_device *spidev,
682 struct spi_transfer *t)
683{
684 unsigned long flags;
685
686 spin_lock_irqsave(&spi->lock, flags);
687
688 spi->tx = t->tx_buf;
689 spi->rx = t->rx_buf;
690
691 if (t->tx_buf) {
692 spi->tx_todo = t->len;
693
694 /* initially fill TX FIFO */
695 tx_fifo_write(spi);
696 }
697
698 if (spi->rx) {
699 spi->rx_todo = t->len;
700
701 /* start shift clock in RX-only mode */
702 if (!spi->tx)
703 rx_request(spi);
704 }
705
706 spin_unlock_irqrestore(&spi->lock, flags);
707
708 return t->len;
709}
710
711/*
712 * The driver only gets an interrupt when the FIFO is empty, but there
713 * is an additional shift register from which the data is written to
714 * the wire. We get the last interrupt when the controller starts to
715 * write the last word to the wire, not when it is finished. Do busy
716 * waiting till it finishes.
717 */
718static void lantiq_ssc_bussy_work(struct work_struct *work)
719{
720 struct lantiq_ssc_spi *spi;
721 unsigned long long timeout = 8LL * 1000LL;
722 unsigned long end;
723
724 spi = container_of(work, typeof(*spi), work);
725
726 do_div(timeout, spi->speed_hz);
727 timeout += timeout + 100; /* some tolerance */
728
729 end = jiffies + msecs_to_jiffies(timeout);
730 do {
731 u32 stat = lantiq_ssc_readl(spi, LTQ_SPI_STAT);
732
733 if (!(stat & LTQ_SPI_STAT_BSY)) {
734 spi_finalize_current_transfer(spi->master);
735 return;
736 }
737
738 cond_resched();
739 } while (!time_after_eq(jiffies, end));
740
741 if (spi->master->cur_msg)
742 spi->master->cur_msg->status = -EIO;
743 spi_finalize_current_transfer(spi->master);
744}
745
746static void lantiq_ssc_handle_err(struct spi_master *master,
747 struct spi_message *message)
748{
749 struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
750
751 /* flush FIFOs on timeout */
752 rx_fifo_flush(spi);
753 tx_fifo_flush(spi);
754}
755
756static void lantiq_ssc_set_cs(struct spi_device *spidev, bool enable)
757{
758 struct lantiq_ssc_spi *spi = spi_master_get_devdata(spidev->master);
759 unsigned int cs = spidev->chip_select;
760 u32 fgpo;
761
762 if (!!(spidev->mode & SPI_CS_HIGH) == enable)
763 fgpo = (1 << (cs - spi->base_cs));
764 else
765 fgpo = (1 << (cs - spi->base_cs + LTQ_SPI_FGPO_SETOUTN_S));
766
767 lantiq_ssc_writel(spi, fgpo, LTQ_SPI_FPGO);
768}
769
770static int lantiq_ssc_transfer_one(struct spi_master *master,
771 struct spi_device *spidev,
772 struct spi_transfer *t)
773{
774 struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
775
776 hw_setup_transfer(spi, spidev, t);
777
778 return transfer_start(spi, spidev, t);
779}
780
781static const struct lantiq_ssc_hwcfg lantiq_ssc_xway = {
782 .irnen_r = LTQ_SPI_IRNEN_R_XWAY,
783 .irnen_t = LTQ_SPI_IRNEN_T_XWAY,
784};
785
786static const struct lantiq_ssc_hwcfg lantiq_ssc_xrx = {
787 .irnen_r = LTQ_SPI_IRNEN_R_XRX,
788 .irnen_t = LTQ_SPI_IRNEN_T_XRX,
789};
790
791static const struct of_device_id lantiq_ssc_match[] = {
792 { .compatible = "lantiq,ase-spi", .data = &lantiq_ssc_xway, },
793 { .compatible = "lantiq,falcon-spi", .data = &lantiq_ssc_xrx, },
794 { .compatible = "lantiq,xrx100-spi", .data = &lantiq_ssc_xrx, },
795 {},
796};
797MODULE_DEVICE_TABLE(of, lantiq_ssc_match);
798
799static int lantiq_ssc_probe(struct platform_device *pdev)
800{
801 struct device *dev = &pdev->dev;
802 struct spi_master *master;
803 struct resource *res;
804 struct lantiq_ssc_spi *spi;
805 const struct lantiq_ssc_hwcfg *hwcfg;
806 const struct of_device_id *match;
807 int err, rx_irq, tx_irq, err_irq;
808 u32 id, supports_dma, revision;
809 unsigned int num_cs;
810
811 match = of_match_device(lantiq_ssc_match, dev);
812 if (!match) {
813 dev_err(dev, "no device match\n");
814 return -EINVAL;
815 }
816 hwcfg = match->data;
817
818 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
819 if (!res) {
820 dev_err(dev, "failed to get resources\n");
821 return -ENXIO;
822 }
823
824 rx_irq = platform_get_irq_byname(pdev, LTQ_SPI_RX_IRQ_NAME);
825 if (rx_irq < 0) {
826 dev_err(dev, "failed to get %s\n", LTQ_SPI_RX_IRQ_NAME);
827 return -ENXIO;
828 }
829
830 tx_irq = platform_get_irq_byname(pdev, LTQ_SPI_TX_IRQ_NAME);
831 if (tx_irq < 0) {
832 dev_err(dev, "failed to get %s\n", LTQ_SPI_TX_IRQ_NAME);
833 return -ENXIO;
834 }
835
836 err_irq = platform_get_irq_byname(pdev, LTQ_SPI_ERR_IRQ_NAME);
837 if (err_irq < 0) {
838 dev_err(dev, "failed to get %s\n", LTQ_SPI_ERR_IRQ_NAME);
839 return -ENXIO;
840 }
841
842 master = spi_alloc_master(dev, sizeof(struct lantiq_ssc_spi));
843 if (!master)
844 return -ENOMEM;
845
846 spi = spi_master_get_devdata(master);
847 spi->master = master;
848 spi->dev = dev;
849 spi->hwcfg = hwcfg;
850 platform_set_drvdata(pdev, spi);
851
852 spi->regbase = devm_ioremap_resource(dev, res);
853 if (IS_ERR(spi->regbase)) {
854 err = PTR_ERR(spi->regbase);
855 goto err_master_put;
856 }
857
858 err = devm_request_irq(dev, rx_irq, lantiq_ssc_xmit_interrupt,
859 0, LTQ_SPI_RX_IRQ_NAME, spi);
860 if (err)
861 goto err_master_put;
862
863 err = devm_request_irq(dev, tx_irq, lantiq_ssc_xmit_interrupt,
864 0, LTQ_SPI_TX_IRQ_NAME, spi);
865 if (err)
866 goto err_master_put;
867
868 err = devm_request_irq(dev, err_irq, lantiq_ssc_err_interrupt,
869 0, LTQ_SPI_ERR_IRQ_NAME, spi);
870 if (err)
871 goto err_master_put;
872
873 spi->spi_clk = devm_clk_get(dev, "gate");
874 if (IS_ERR(spi->spi_clk)) {
875 err = PTR_ERR(spi->spi_clk);
876 goto err_master_put;
877 }
878 err = clk_prepare_enable(spi->spi_clk);
879 if (err)
880 goto err_master_put;
881
882 /*
883 * Use the old clk_get_fpi() function on Lantiq platform, till it
884 * supports common clk.
885 */
886#if defined(CONFIG_LANTIQ) && !defined(CONFIG_COMMON_CLK)
887 spi->fpi_clk = clk_get_fpi();
888#else
889 spi->fpi_clk = clk_get(dev, "freq");
890#endif
891 if (IS_ERR(spi->fpi_clk)) {
892 err = PTR_ERR(spi->fpi_clk);
893 goto err_clk_disable;
894 }
895
896 num_cs = 8;
897 of_property_read_u32(pdev->dev.of_node, "num-cs", &num_cs);
898
899 spi->base_cs = 1;
900 of_property_read_u32(pdev->dev.of_node, "base-cs", &spi->base_cs);
901
902 spin_lock_init(&spi->lock);
903 spi->bits_per_word = 8;
904 spi->speed_hz = 0;
905
906 master->dev.of_node = pdev->dev.of_node;
907 master->num_chipselect = num_cs;
908 master->setup = lantiq_ssc_setup;
909 master->set_cs = lantiq_ssc_set_cs;
910 master->handle_err = lantiq_ssc_handle_err;
911 master->prepare_message = lantiq_ssc_prepare_message;
912 master->unprepare_message = lantiq_ssc_unprepare_message;
913 master->transfer_one = lantiq_ssc_transfer_one;
914 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST | SPI_CS_HIGH |
915 SPI_LOOP;
916 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(2, 8) |
917 SPI_BPW_MASK(16) | SPI_BPW_MASK(32);
918
919 spi->wq = alloc_ordered_workqueue(dev_name(dev), 0);
920 if (!spi->wq) {
921 err = -ENOMEM;
922 goto err_clk_put;
923 }
924 INIT_WORK(&spi->work, lantiq_ssc_bussy_work);
925
926 id = lantiq_ssc_readl(spi, LTQ_SPI_ID);
927 spi->tx_fifo_size = (id & LTQ_SPI_ID_TXFS_M) >> LTQ_SPI_ID_TXFS_S;
928 spi->rx_fifo_size = (id & LTQ_SPI_ID_RXFS_M) >> LTQ_SPI_ID_RXFS_S;
929 supports_dma = (id & LTQ_SPI_ID_CFG_M) >> LTQ_SPI_ID_CFG_S;
930 revision = id & LTQ_SPI_ID_REV_M;
931
932 lantiq_ssc_hw_init(spi);
933
934 dev_info(dev,
935 "Lantiq SSC SPI controller (Rev %i, TXFS %u, RXFS %u, DMA %u)\n",
936 revision, spi->tx_fifo_size, spi->rx_fifo_size, supports_dma);
937
938 err = devm_spi_register_master(dev, master);
939 if (err) {
940 dev_err(dev, "failed to register spi_master\n");
941 goto err_wq_destroy;
942 }
943
944 return 0;
945
946err_wq_destroy:
947 destroy_workqueue(spi->wq);
948err_clk_put:
949 clk_put(spi->fpi_clk);
950err_clk_disable:
951 clk_disable_unprepare(spi->spi_clk);
952err_master_put:
953 spi_master_put(master);
954
955 return err;
956}
957
958static int lantiq_ssc_remove(struct platform_device *pdev)
959{
960 struct lantiq_ssc_spi *spi = platform_get_drvdata(pdev);
961
962 lantiq_ssc_writel(spi, 0, LTQ_SPI_IRNEN);
963 lantiq_ssc_writel(spi, 0, LTQ_SPI_CLC);
964 rx_fifo_flush(spi);
965 tx_fifo_flush(spi);
966 hw_enter_config_mode(spi);
967
968 destroy_workqueue(spi->wq);
969 clk_disable_unprepare(spi->spi_clk);
970 clk_put(spi->fpi_clk);
971
972 return 0;
973}
974
975static struct platform_driver lantiq_ssc_driver = {
976 .probe = lantiq_ssc_probe,
977 .remove = lantiq_ssc_remove,
978 .driver = {
979 .name = "spi-lantiq-ssc",
980 .of_match_table = lantiq_ssc_match,
981 },
982};
983module_platform_driver(lantiq_ssc_driver);
984
985MODULE_DESCRIPTION("Lantiq SSC SPI controller driver");
986MODULE_AUTHOR("Daniel Schwierzeck <daniel.schwierzeck@gmail.com>");
987MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
988MODULE_LICENSE("GPL");
989MODULE_ALIAS("platform:spi-lantiq-ssc");