Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Driver for Cirrus Logic EP93xx SPI controller.
  4 *
  5 * Copyright (C) 2010-2011 Mika Westerberg
  6 *
  7 * Explicit FIFO handling code was inspired by amba-pl022 driver.
  8 *
  9 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
 10 *
 11 * For more information about the SPI controller see documentation on Cirrus
 12 * Logic web site:
 13 *     https://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
 
 
 
 
 14 */
 15
 16#include <linux/io.h>
 17#include <linux/clk.h>
 18#include <linux/err.h>
 19#include <linux/delay.h>
 20#include <linux/device.h>
 21#include <linux/dma-direction.h>
 22#include <linux/dma-mapping.h>
 23#include <linux/dmaengine.h>
 24#include <linux/bitops.h>
 25#include <linux/interrupt.h>
 26#include <linux/module.h>
 27#include <linux/property.h>
 28#include <linux/platform_device.h>
 29#include <linux/sched.h>
 30#include <linux/scatterlist.h>
 
 31#include <linux/spi/spi.h>
 32
 
 
 
 33#define SSPCR0			0x0000
 34#define SSPCR0_SPO		BIT(6)
 35#define SSPCR0_SPH		BIT(7)
 36#define SSPCR0_SCR_SHIFT	8
 37
 38#define SSPCR1			0x0004
 39#define SSPCR1_RIE		BIT(0)
 40#define SSPCR1_TIE		BIT(1)
 41#define SSPCR1_RORIE		BIT(2)
 42#define SSPCR1_LBM		BIT(3)
 43#define SSPCR1_SSE		BIT(4)
 44#define SSPCR1_MS		BIT(5)
 45#define SSPCR1_SOD		BIT(6)
 46
 47#define SSPDR			0x0008
 48
 49#define SSPSR			0x000c
 50#define SSPSR_TFE		BIT(0)
 51#define SSPSR_TNF		BIT(1)
 52#define SSPSR_RNE		BIT(2)
 53#define SSPSR_RFF		BIT(3)
 54#define SSPSR_BSY		BIT(4)
 55#define SSPCPSR			0x0010
 56
 57#define SSPIIR			0x0014
 58#define SSPIIR_RIS		BIT(0)
 59#define SSPIIR_TIS		BIT(1)
 60#define SSPIIR_RORIS		BIT(2)
 61#define SSPICR			SSPIIR
 62
 63/* timeout in milliseconds */
 64#define SPI_TIMEOUT		5
 65/* maximum depth of RX/TX FIFO */
 66#define SPI_FIFO_SIZE		8
 67
 68/**
 69 * struct ep93xx_spi - EP93xx SPI controller structure
 70 * @clk: clock for the controller
 71 * @mmio: pointer to ioremap()'d registers
 72 * @sspdr_phys: physical address of the SSPDR register
 73 * @tx: current byte in transfer to transmit
 74 * @rx: current byte in transfer to receive
 75 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
 76 *              frame decreases this level and sending one frame increases it.
 77 * @dma_rx: RX DMA channel
 78 * @dma_tx: TX DMA channel
 
 
 79 * @rx_sgt: sg table for RX transfers
 80 * @tx_sgt: sg table for TX transfers
 81 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
 82 *            the client
 83 */
 84struct ep93xx_spi {
 85	struct clk			*clk;
 86	void __iomem			*mmio;
 87	unsigned long			sspdr_phys;
 88	size_t				tx;
 89	size_t				rx;
 90	size_t				fifo_level;
 91	struct dma_chan			*dma_rx;
 92	struct dma_chan			*dma_tx;
 
 
 93	struct sg_table			rx_sgt;
 94	struct sg_table			tx_sgt;
 95	void				*zeropage;
 96};
 97
 98/* converts bits per word to CR0.DSS value */
 99#define bits_per_word_to_dss(bpw)	((bpw) - 1)
100
101/**
102 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
103 * @host: SPI host
104 * @rate: desired SPI output clock rate
105 * @div_cpsr: pointer to return the cpsr (pre-scaler) divider
106 * @div_scr: pointer to return the scr divider
107 */
108static int ep93xx_spi_calc_divisors(struct spi_controller *host,
109				    u32 rate, u8 *div_cpsr, u8 *div_scr)
110{
111	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
112	unsigned long spi_clk_rate = clk_get_rate(espi->clk);
113	int cpsr, scr;
114
115	/*
116	 * Make sure that max value is between values supported by the
117	 * controller.
118	 */
119	rate = clamp(rate, host->min_speed_hz, host->max_speed_hz);
120
121	/*
122	 * Calculate divisors so that we can get speed according the
123	 * following formula:
124	 *	rate = spi_clock_rate / (cpsr * (1 + scr))
125	 *
126	 * cpsr must be even number and starts from 2, scr can be any number
127	 * between 0 and 255.
128	 */
129	for (cpsr = 2; cpsr <= 254; cpsr += 2) {
130		for (scr = 0; scr <= 255; scr++) {
131			if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
132				*div_scr = (u8)scr;
133				*div_cpsr = (u8)cpsr;
134				return 0;
135			}
136		}
137	}
138
139	return -EINVAL;
140}
141
142static int ep93xx_spi_chip_setup(struct spi_controller *host,
143				 struct spi_device *spi,
144				 struct spi_transfer *xfer)
145{
146	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
147	u8 dss = bits_per_word_to_dss(xfer->bits_per_word);
148	u8 div_cpsr = 0;
149	u8 div_scr = 0;
150	u16 cr0;
151	int err;
152
153	err = ep93xx_spi_calc_divisors(host, xfer->speed_hz,
154				       &div_cpsr, &div_scr);
155	if (err)
156		return err;
157
158	cr0 = div_scr << SSPCR0_SCR_SHIFT;
159	if (spi->mode & SPI_CPOL)
160		cr0 |= SSPCR0_SPO;
161	if (spi->mode & SPI_CPHA)
162		cr0 |= SSPCR0_SPH;
163	cr0 |= dss;
164
165	dev_dbg(&host->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
166		spi->mode, div_cpsr, div_scr, dss);
167	dev_dbg(&host->dev, "setup: cr0 %#x\n", cr0);
168
169	writel(div_cpsr, espi->mmio + SSPCPSR);
170	writel(cr0, espi->mmio + SSPCR0);
171
172	return 0;
173}
174
175static void ep93xx_do_write(struct spi_controller *host)
176{
177	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
178	struct spi_transfer *xfer = host->cur_msg->state;
179	u32 val = 0;
180
181	if (xfer->bits_per_word > 8) {
182		if (xfer->tx_buf)
183			val = ((u16 *)xfer->tx_buf)[espi->tx];
184		espi->tx += 2;
185	} else {
186		if (xfer->tx_buf)
187			val = ((u8 *)xfer->tx_buf)[espi->tx];
188		espi->tx += 1;
189	}
190	writel(val, espi->mmio + SSPDR);
191}
192
193static void ep93xx_do_read(struct spi_controller *host)
194{
195	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
196	struct spi_transfer *xfer = host->cur_msg->state;
197	u32 val;
198
199	val = readl(espi->mmio + SSPDR);
200	if (xfer->bits_per_word > 8) {
201		if (xfer->rx_buf)
202			((u16 *)xfer->rx_buf)[espi->rx] = val;
203		espi->rx += 2;
204	} else {
205		if (xfer->rx_buf)
206			((u8 *)xfer->rx_buf)[espi->rx] = val;
207		espi->rx += 1;
208	}
209}
210
211/**
212 * ep93xx_spi_read_write() - perform next RX/TX transfer
213 * @host: SPI host
214 *
215 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
216 * called several times, the whole transfer will be completed. Returns
217 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
218 *
219 * When this function is finished, RX FIFO should be empty and TX FIFO should be
220 * full.
221 */
222static int ep93xx_spi_read_write(struct spi_controller *host)
223{
224	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
225	struct spi_transfer *xfer = host->cur_msg->state;
226
227	/* read as long as RX FIFO has frames in it */
228	while ((readl(espi->mmio + SSPSR) & SSPSR_RNE)) {
229		ep93xx_do_read(host);
230		espi->fifo_level--;
231	}
232
233	/* write as long as TX FIFO has room */
234	while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < xfer->len) {
235		ep93xx_do_write(host);
236		espi->fifo_level++;
237	}
238
239	if (espi->rx == xfer->len)
240		return 0;
241
242	return -EINPROGRESS;
243}
244
245static enum dma_transfer_direction
246ep93xx_dma_data_to_trans_dir(enum dma_data_direction dir)
247{
248	switch (dir) {
249	case DMA_TO_DEVICE:
250		return DMA_MEM_TO_DEV;
251	case DMA_FROM_DEVICE:
252		return DMA_DEV_TO_MEM;
253	default:
254		return DMA_TRANS_NONE;
255	}
256}
257
258/**
259 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
260 * @host: SPI host
261 * @dir: DMA transfer direction
262 *
263 * Function configures the DMA, maps the buffer and prepares the DMA
264 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
265 * in case of failure.
266 */
267static struct dma_async_tx_descriptor *
268ep93xx_spi_dma_prepare(struct spi_controller *host,
269		       enum dma_data_direction dir)
270{
271	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
272	struct spi_transfer *xfer = host->cur_msg->state;
273	struct dma_async_tx_descriptor *txd;
274	enum dma_slave_buswidth buswidth;
275	struct dma_slave_config conf;
276	struct scatterlist *sg;
277	struct sg_table *sgt;
278	struct dma_chan *chan;
279	const void *buf, *pbuf;
280	size_t len = xfer->len;
281	int i, ret, nents;
282
283	if (xfer->bits_per_word > 8)
284		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
285	else
286		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
287
288	memset(&conf, 0, sizeof(conf));
289	conf.direction = ep93xx_dma_data_to_trans_dir(dir);
290
291	if (dir == DMA_FROM_DEVICE) {
292		chan = espi->dma_rx;
293		buf = xfer->rx_buf;
294		sgt = &espi->rx_sgt;
295
296		conf.src_addr = espi->sspdr_phys;
297		conf.src_addr_width = buswidth;
298	} else {
299		chan = espi->dma_tx;
300		buf = xfer->tx_buf;
301		sgt = &espi->tx_sgt;
302
303		conf.dst_addr = espi->sspdr_phys;
304		conf.dst_addr_width = buswidth;
305	}
306
307	ret = dmaengine_slave_config(chan, &conf);
308	if (ret)
309		return ERR_PTR(ret);
310
311	/*
312	 * We need to split the transfer into PAGE_SIZE'd chunks. This is
313	 * because we are using @espi->zeropage to provide a zero RX buffer
314	 * for the TX transfers and we have only allocated one page for that.
315	 *
316	 * For performance reasons we allocate a new sg_table only when
317	 * needed. Otherwise we will re-use the current one. Eventually the
318	 * last sg_table is released in ep93xx_spi_release_dma().
319	 */
320
321	nents = DIV_ROUND_UP(len, PAGE_SIZE);
322	if (nents != sgt->nents) {
323		sg_free_table(sgt);
324
325		ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
326		if (ret)
327			return ERR_PTR(ret);
328	}
329
330	pbuf = buf;
331	for_each_sg(sgt->sgl, sg, sgt->nents, i) {
332		size_t bytes = min_t(size_t, len, PAGE_SIZE);
333
334		if (buf) {
335			sg_set_page(sg, virt_to_page(pbuf), bytes,
336				    offset_in_page(pbuf));
337		} else {
338			sg_set_page(sg, virt_to_page(espi->zeropage),
339				    bytes, 0);
340		}
341
342		pbuf += bytes;
343		len -= bytes;
344	}
345
346	if (WARN_ON(len)) {
347		dev_warn(&host->dev, "len = %zu expected 0!\n", len);
348		return ERR_PTR(-EINVAL);
349	}
350
351	nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
352	if (!nents)
353		return ERR_PTR(-ENOMEM);
354
355	txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, conf.direction,
356				      DMA_CTRL_ACK);
357	if (!txd) {
358		dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
359		return ERR_PTR(-ENOMEM);
360	}
361	return txd;
362}
363
364/**
365 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
366 * @host: SPI host
367 * @dir: DMA transfer direction
368 *
369 * Function finishes with the DMA transfer. After this, the DMA buffer is
370 * unmapped.
371 */
372static void ep93xx_spi_dma_finish(struct spi_controller *host,
373				  enum dma_data_direction dir)
374{
375	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
376	struct dma_chan *chan;
377	struct sg_table *sgt;
378
379	if (dir == DMA_FROM_DEVICE) {
380		chan = espi->dma_rx;
381		sgt = &espi->rx_sgt;
382	} else {
383		chan = espi->dma_tx;
384		sgt = &espi->tx_sgt;
385	}
386
387	dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
388}
389
390static void ep93xx_spi_dma_callback(void *callback_param)
391{
392	struct spi_controller *host = callback_param;
393
394	ep93xx_spi_dma_finish(host, DMA_TO_DEVICE);
395	ep93xx_spi_dma_finish(host, DMA_FROM_DEVICE);
396
397	spi_finalize_current_transfer(host);
398}
399
400static int ep93xx_spi_dma_transfer(struct spi_controller *host)
401{
402	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
403	struct dma_async_tx_descriptor *rxd, *txd;
404
405	rxd = ep93xx_spi_dma_prepare(host, DMA_FROM_DEVICE);
406	if (IS_ERR(rxd)) {
407		dev_err(&host->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
408		return PTR_ERR(rxd);
409	}
410
411	txd = ep93xx_spi_dma_prepare(host, DMA_TO_DEVICE);
412	if (IS_ERR(txd)) {
413		ep93xx_spi_dma_finish(host, DMA_FROM_DEVICE);
414		dev_err(&host->dev, "DMA TX failed: %ld\n", PTR_ERR(txd));
415		return PTR_ERR(txd);
416	}
417
418	/* We are ready when RX is done */
419	rxd->callback = ep93xx_spi_dma_callback;
420	rxd->callback_param = host;
421
422	/* Now submit both descriptors and start DMA */
423	dmaengine_submit(rxd);
424	dmaengine_submit(txd);
425
426	dma_async_issue_pending(espi->dma_rx);
427	dma_async_issue_pending(espi->dma_tx);
428
429	/* signal that we need to wait for completion */
430	return 1;
431}
432
433static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
434{
435	struct spi_controller *host = dev_id;
436	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
437	u32 val;
438
439	/*
440	 * If we got ROR (receive overrun) interrupt we know that something is
441	 * wrong. Just abort the message.
442	 */
443	if (readl(espi->mmio + SSPIIR) & SSPIIR_RORIS) {
444		/* clear the overrun interrupt */
445		writel(0, espi->mmio + SSPICR);
446		dev_warn(&host->dev,
447			 "receive overrun, aborting the message\n");
448		host->cur_msg->status = -EIO;
449	} else {
450		/*
451		 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
452		 * simply execute next data transfer.
453		 */
454		if (ep93xx_spi_read_write(host)) {
455			/*
456			 * In normal case, there still is some processing left
457			 * for current transfer. Let's wait for the next
458			 * interrupt then.
459			 */
460			return IRQ_HANDLED;
461		}
462	}
463
464	/*
465	 * Current transfer is finished, either with error or with success. In
466	 * any case we disable interrupts and notify the worker to handle
467	 * any post-processing of the message.
468	 */
469	val = readl(espi->mmio + SSPCR1);
470	val &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
471	writel(val, espi->mmio + SSPCR1);
472
473	spi_finalize_current_transfer(host);
474
475	return IRQ_HANDLED;
476}
477
478static int ep93xx_spi_transfer_one(struct spi_controller *host,
479				   struct spi_device *spi,
480				   struct spi_transfer *xfer)
481{
482	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
483	u32 val;
484	int ret;
485
486	ret = ep93xx_spi_chip_setup(host, spi, xfer);
487	if (ret) {
488		dev_err(&host->dev, "failed to setup chip for transfer\n");
489		return ret;
490	}
491
492	host->cur_msg->state = xfer;
493	espi->rx = 0;
494	espi->tx = 0;
495
496	/*
497	 * There is no point of setting up DMA for the transfers which will
498	 * fit into the FIFO and can be transferred with a single interrupt.
499	 * So in these cases we will be using PIO and don't bother for DMA.
500	 */
501	if (espi->dma_rx && xfer->len > SPI_FIFO_SIZE)
502		return ep93xx_spi_dma_transfer(host);
503
504	/* Using PIO so prime the TX FIFO and enable interrupts */
505	ep93xx_spi_read_write(host);
506
507	val = readl(espi->mmio + SSPCR1);
508	val |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
509	writel(val, espi->mmio + SSPCR1);
510
511	/* signal that we need to wait for completion */
512	return 1;
513}
514
515static int ep93xx_spi_prepare_message(struct spi_controller *host,
516				      struct spi_message *msg)
517{
518	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
519	unsigned long timeout;
520
521	/*
522	 * Just to be sure: flush any data from RX FIFO.
523	 */
524	timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
525	while (readl(espi->mmio + SSPSR) & SSPSR_RNE) {
526		if (time_after(jiffies, timeout)) {
527			dev_warn(&host->dev,
528				 "timeout while flushing RX FIFO\n");
529			return -ETIMEDOUT;
530		}
531		readl(espi->mmio + SSPDR);
532	}
533
534	/*
535	 * We explicitly handle FIFO level. This way we don't have to check TX
536	 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
537	 */
538	espi->fifo_level = 0;
539
540	return 0;
541}
542
543static int ep93xx_spi_prepare_hardware(struct spi_controller *host)
544{
545	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
546	u32 val;
547	int ret;
548
549	ret = clk_prepare_enable(espi->clk);
550	if (ret)
551		return ret;
552
553	val = readl(espi->mmio + SSPCR1);
554	val |= SSPCR1_SSE;
555	writel(val, espi->mmio + SSPCR1);
556
557	return 0;
558}
559
560static int ep93xx_spi_unprepare_hardware(struct spi_controller *host)
561{
562	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
563	u32 val;
564
565	val = readl(espi->mmio + SSPCR1);
566	val &= ~SSPCR1_SSE;
567	writel(val, espi->mmio + SSPCR1);
568
569	clk_disable_unprepare(espi->clk);
570
571	return 0;
572}
573
574static int ep93xx_spi_setup_dma(struct device *dev, struct ep93xx_spi *espi)
 
 
 
 
 
 
 
 
 
575{
 
576	int ret;
577
578	espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
579	if (!espi->zeropage)
580		return -ENOMEM;
581
582	espi->dma_rx = dma_request_chan(dev, "rx");
583	if (IS_ERR(espi->dma_rx)) {
584		ret = dev_err_probe(dev, PTR_ERR(espi->dma_rx), "rx DMA setup failed");
 
 
 
 
 
 
 
 
585		goto fail_free_page;
586	}
587
588	espi->dma_tx = dma_request_chan(dev, "tx");
589	if (IS_ERR(espi->dma_tx)) {
590		ret = dev_err_probe(dev, PTR_ERR(espi->dma_tx), "tx DMA setup failed");
 
 
 
 
 
591		goto fail_release_rx;
592	}
593
594	return 0;
595
596fail_release_rx:
597	dma_release_channel(espi->dma_rx);
598	espi->dma_rx = NULL;
599fail_free_page:
600	free_page((unsigned long)espi->zeropage);
601
602	return ret;
603}
604
605static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
606{
607	if (espi->dma_rx) {
608		dma_release_channel(espi->dma_rx);
609		sg_free_table(&espi->rx_sgt);
610	}
611	if (espi->dma_tx) {
612		dma_release_channel(espi->dma_tx);
613		sg_free_table(&espi->tx_sgt);
614	}
615
616	if (espi->zeropage)
617		free_page((unsigned long)espi->zeropage);
618}
619
620static int ep93xx_spi_probe(struct platform_device *pdev)
621{
622	struct spi_controller *host;
 
623	struct ep93xx_spi *espi;
624	struct resource *res;
625	int irq;
626	int error;
 
 
 
 
 
 
 
627
628	irq = platform_get_irq(pdev, 0);
629	if (irq < 0)
630		return irq;
 
 
631
632	host = spi_alloc_host(&pdev->dev, sizeof(*espi));
633	if (!host)
 
 
 
 
 
 
634		return -ENOMEM;
635
636	host->use_gpio_descriptors = true;
637	host->prepare_transfer_hardware = ep93xx_spi_prepare_hardware;
638	host->unprepare_transfer_hardware = ep93xx_spi_unprepare_hardware;
639	host->prepare_message = ep93xx_spi_prepare_message;
640	host->transfer_one = ep93xx_spi_transfer_one;
641	host->bus_num = pdev->id;
642	host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
643	host->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
644	/*
645	 * The SPI core will count the number of GPIO descriptors to figure
646	 * out the number of chip selects available on the platform.
647	 */
648	host->num_chipselect = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
649
650	platform_set_drvdata(pdev, host);
651
652	espi = spi_controller_get_devdata(host);
653
654	espi->clk = devm_clk_get(&pdev->dev, NULL);
655	if (IS_ERR(espi->clk)) {
656		dev_err(&pdev->dev, "unable to get spi clock\n");
657		error = PTR_ERR(espi->clk);
658		goto fail_release_host;
659	}
660
661	/*
662	 * Calculate maximum and minimum supported clock rates
663	 * for the controller.
664	 */
665	host->max_speed_hz = clk_get_rate(espi->clk) / 2;
666	host->min_speed_hz = clk_get_rate(espi->clk) / (254 * 256);
 
 
667
668	espi->mmio = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
669	if (IS_ERR(espi->mmio)) {
670		error = PTR_ERR(espi->mmio);
671		goto fail_release_host;
672	}
673	espi->sspdr_phys = res->start + SSPDR;
674
675	error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
676				0, "ep93xx-spi", host);
677	if (error) {
678		dev_err(&pdev->dev, "failed to request irq\n");
679		goto fail_release_host;
680	}
681
682	error = ep93xx_spi_setup_dma(&pdev->dev, espi);
683	if (error == -EPROBE_DEFER)
684		goto fail_release_host;
685
686	if (error)
687		dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
688
689	/* make sure that the hardware is disabled */
690	writel(0, espi->mmio + SSPCR1);
691
692	device_set_node(&host->dev, dev_fwnode(&pdev->dev));
693	error = devm_spi_register_controller(&pdev->dev, host);
694	if (error) {
695		dev_err(&pdev->dev, "failed to register SPI host\n");
696		goto fail_free_dma;
697	}
698
699	dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
700		 (unsigned long)res->start, irq);
701
702	return 0;
703
704fail_free_dma:
705	ep93xx_spi_release_dma(espi);
706fail_release_host:
707	spi_controller_put(host);
708
709	return error;
710}
711
712static void ep93xx_spi_remove(struct platform_device *pdev)
713{
714	struct spi_controller *host = platform_get_drvdata(pdev);
715	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
716
717	ep93xx_spi_release_dma(espi);
718}
719
720static const struct of_device_id ep93xx_spi_of_ids[] = {
721	{ .compatible = "cirrus,ep9301-spi" },
722	{ /* sentinel */ }
723};
724MODULE_DEVICE_TABLE(of, ep93xx_spi_of_ids);
725
726static struct platform_driver ep93xx_spi_driver = {
727	.driver		= {
728		.name	= "ep93xx-spi",
729		.of_match_table = ep93xx_spi_of_ids,
730	},
731	.probe		= ep93xx_spi_probe,
732	.remove		= ep93xx_spi_remove,
733};
734module_platform_driver(ep93xx_spi_driver);
735
736MODULE_DESCRIPTION("EP93xx SPI Controller driver");
737MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
738MODULE_LICENSE("GPL");
739MODULE_ALIAS("platform:ep93xx-spi");
v4.17
 
  1/*
  2 * Driver for Cirrus Logic EP93xx SPI controller.
  3 *
  4 * Copyright (C) 2010-2011 Mika Westerberg
  5 *
  6 * Explicit FIFO handling code was inspired by amba-pl022 driver.
  7 *
  8 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
  9 *
 10 * For more information about the SPI controller see documentation on Cirrus
 11 * Logic web site:
 12 *     http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
 13 *
 14 * This program is free software; you can redistribute it and/or modify
 15 * it under the terms of the GNU General Public License version 2 as
 16 * published by the Free Software Foundation.
 17 */
 18
 19#include <linux/io.h>
 20#include <linux/clk.h>
 21#include <linux/err.h>
 22#include <linux/delay.h>
 23#include <linux/device.h>
 
 
 24#include <linux/dmaengine.h>
 25#include <linux/bitops.h>
 26#include <linux/interrupt.h>
 27#include <linux/module.h>
 
 28#include <linux/platform_device.h>
 29#include <linux/sched.h>
 30#include <linux/scatterlist.h>
 31#include <linux/gpio.h>
 32#include <linux/spi/spi.h>
 33
 34#include <linux/platform_data/dma-ep93xx.h>
 35#include <linux/platform_data/spi-ep93xx.h>
 36
 37#define SSPCR0			0x0000
 38#define SSPCR0_MODE_SHIFT	6
 
 39#define SSPCR0_SCR_SHIFT	8
 40
 41#define SSPCR1			0x0004
 42#define SSPCR1_RIE		BIT(0)
 43#define SSPCR1_TIE		BIT(1)
 44#define SSPCR1_RORIE		BIT(2)
 45#define SSPCR1_LBM		BIT(3)
 46#define SSPCR1_SSE		BIT(4)
 47#define SSPCR1_MS		BIT(5)
 48#define SSPCR1_SOD		BIT(6)
 49
 50#define SSPDR			0x0008
 51
 52#define SSPSR			0x000c
 53#define SSPSR_TFE		BIT(0)
 54#define SSPSR_TNF		BIT(1)
 55#define SSPSR_RNE		BIT(2)
 56#define SSPSR_RFF		BIT(3)
 57#define SSPSR_BSY		BIT(4)
 58#define SSPCPSR			0x0010
 59
 60#define SSPIIR			0x0014
 61#define SSPIIR_RIS		BIT(0)
 62#define SSPIIR_TIS		BIT(1)
 63#define SSPIIR_RORIS		BIT(2)
 64#define SSPICR			SSPIIR
 65
 66/* timeout in milliseconds */
 67#define SPI_TIMEOUT		5
 68/* maximum depth of RX/TX FIFO */
 69#define SPI_FIFO_SIZE		8
 70
 71/**
 72 * struct ep93xx_spi - EP93xx SPI controller structure
 73 * @clk: clock for the controller
 74 * @mmio: pointer to ioremap()'d registers
 75 * @sspdr_phys: physical address of the SSPDR register
 76 * @tx: current byte in transfer to transmit
 77 * @rx: current byte in transfer to receive
 78 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
 79 *              frame decreases this level and sending one frame increases it.
 80 * @dma_rx: RX DMA channel
 81 * @dma_tx: TX DMA channel
 82 * @dma_rx_data: RX parameters passed to the DMA engine
 83 * @dma_tx_data: TX parameters passed to the DMA engine
 84 * @rx_sgt: sg table for RX transfers
 85 * @tx_sgt: sg table for TX transfers
 86 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
 87 *            the client
 88 */
 89struct ep93xx_spi {
 90	struct clk			*clk;
 91	void __iomem			*mmio;
 92	unsigned long			sspdr_phys;
 93	size_t				tx;
 94	size_t				rx;
 95	size_t				fifo_level;
 96	struct dma_chan			*dma_rx;
 97	struct dma_chan			*dma_tx;
 98	struct ep93xx_dma_data		dma_rx_data;
 99	struct ep93xx_dma_data		dma_tx_data;
100	struct sg_table			rx_sgt;
101	struct sg_table			tx_sgt;
102	void				*zeropage;
103};
104
105/* converts bits per word to CR0.DSS value */
106#define bits_per_word_to_dss(bpw)	((bpw) - 1)
107
108/**
109 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
110 * @master: SPI master
111 * @rate: desired SPI output clock rate
112 * @div_cpsr: pointer to return the cpsr (pre-scaler) divider
113 * @div_scr: pointer to return the scr divider
114 */
115static int ep93xx_spi_calc_divisors(struct spi_master *master,
116				    u32 rate, u8 *div_cpsr, u8 *div_scr)
117{
118	struct ep93xx_spi *espi = spi_master_get_devdata(master);
119	unsigned long spi_clk_rate = clk_get_rate(espi->clk);
120	int cpsr, scr;
121
122	/*
123	 * Make sure that max value is between values supported by the
124	 * controller.
125	 */
126	rate = clamp(rate, master->min_speed_hz, master->max_speed_hz);
127
128	/*
129	 * Calculate divisors so that we can get speed according the
130	 * following formula:
131	 *	rate = spi_clock_rate / (cpsr * (1 + scr))
132	 *
133	 * cpsr must be even number and starts from 2, scr can be any number
134	 * between 0 and 255.
135	 */
136	for (cpsr = 2; cpsr <= 254; cpsr += 2) {
137		for (scr = 0; scr <= 255; scr++) {
138			if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
139				*div_scr = (u8)scr;
140				*div_cpsr = (u8)cpsr;
141				return 0;
142			}
143		}
144	}
145
146	return -EINVAL;
147}
148
149static int ep93xx_spi_chip_setup(struct spi_master *master,
150				 struct spi_device *spi,
151				 struct spi_transfer *xfer)
152{
153	struct ep93xx_spi *espi = spi_master_get_devdata(master);
154	u8 dss = bits_per_word_to_dss(xfer->bits_per_word);
155	u8 div_cpsr = 0;
156	u8 div_scr = 0;
157	u16 cr0;
158	int err;
159
160	err = ep93xx_spi_calc_divisors(master, xfer->speed_hz,
161				       &div_cpsr, &div_scr);
162	if (err)
163		return err;
164
165	cr0 = div_scr << SSPCR0_SCR_SHIFT;
166	cr0 |= (spi->mode & (SPI_CPHA | SPI_CPOL)) << SSPCR0_MODE_SHIFT;
 
 
 
167	cr0 |= dss;
168
169	dev_dbg(&master->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
170		spi->mode, div_cpsr, div_scr, dss);
171	dev_dbg(&master->dev, "setup: cr0 %#x\n", cr0);
172
173	writel(div_cpsr, espi->mmio + SSPCPSR);
174	writel(cr0, espi->mmio + SSPCR0);
175
176	return 0;
177}
178
179static void ep93xx_do_write(struct spi_master *master)
180{
181	struct ep93xx_spi *espi = spi_master_get_devdata(master);
182	struct spi_transfer *xfer = master->cur_msg->state;
183	u32 val = 0;
184
185	if (xfer->bits_per_word > 8) {
186		if (xfer->tx_buf)
187			val = ((u16 *)xfer->tx_buf)[espi->tx];
188		espi->tx += 2;
189	} else {
190		if (xfer->tx_buf)
191			val = ((u8 *)xfer->tx_buf)[espi->tx];
192		espi->tx += 1;
193	}
194	writel(val, espi->mmio + SSPDR);
195}
196
197static void ep93xx_do_read(struct spi_master *master)
198{
199	struct ep93xx_spi *espi = spi_master_get_devdata(master);
200	struct spi_transfer *xfer = master->cur_msg->state;
201	u32 val;
202
203	val = readl(espi->mmio + SSPDR);
204	if (xfer->bits_per_word > 8) {
205		if (xfer->rx_buf)
206			((u16 *)xfer->rx_buf)[espi->rx] = val;
207		espi->rx += 2;
208	} else {
209		if (xfer->rx_buf)
210			((u8 *)xfer->rx_buf)[espi->rx] = val;
211		espi->rx += 1;
212	}
213}
214
215/**
216 * ep93xx_spi_read_write() - perform next RX/TX transfer
217 * @espi: ep93xx SPI controller struct
218 *
219 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
220 * called several times, the whole transfer will be completed. Returns
221 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
222 *
223 * When this function is finished, RX FIFO should be empty and TX FIFO should be
224 * full.
225 */
226static int ep93xx_spi_read_write(struct spi_master *master)
227{
228	struct ep93xx_spi *espi = spi_master_get_devdata(master);
229	struct spi_transfer *xfer = master->cur_msg->state;
230
231	/* read as long as RX FIFO has frames in it */
232	while ((readl(espi->mmio + SSPSR) & SSPSR_RNE)) {
233		ep93xx_do_read(master);
234		espi->fifo_level--;
235	}
236
237	/* write as long as TX FIFO has room */
238	while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < xfer->len) {
239		ep93xx_do_write(master);
240		espi->fifo_level++;
241	}
242
243	if (espi->rx == xfer->len)
244		return 0;
245
246	return -EINPROGRESS;
247}
248
 
 
 
 
 
 
 
 
 
 
 
 
 
249/**
250 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
251 * @master: SPI master
252 * @dir: DMA transfer direction
253 *
254 * Function configures the DMA, maps the buffer and prepares the DMA
255 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
256 * in case of failure.
257 */
258static struct dma_async_tx_descriptor *
259ep93xx_spi_dma_prepare(struct spi_master *master,
260		       enum dma_transfer_direction dir)
261{
262	struct ep93xx_spi *espi = spi_master_get_devdata(master);
263	struct spi_transfer *xfer = master->cur_msg->state;
264	struct dma_async_tx_descriptor *txd;
265	enum dma_slave_buswidth buswidth;
266	struct dma_slave_config conf;
267	struct scatterlist *sg;
268	struct sg_table *sgt;
269	struct dma_chan *chan;
270	const void *buf, *pbuf;
271	size_t len = xfer->len;
272	int i, ret, nents;
273
274	if (xfer->bits_per_word > 8)
275		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
276	else
277		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
278
279	memset(&conf, 0, sizeof(conf));
280	conf.direction = dir;
281
282	if (dir == DMA_DEV_TO_MEM) {
283		chan = espi->dma_rx;
284		buf = xfer->rx_buf;
285		sgt = &espi->rx_sgt;
286
287		conf.src_addr = espi->sspdr_phys;
288		conf.src_addr_width = buswidth;
289	} else {
290		chan = espi->dma_tx;
291		buf = xfer->tx_buf;
292		sgt = &espi->tx_sgt;
293
294		conf.dst_addr = espi->sspdr_phys;
295		conf.dst_addr_width = buswidth;
296	}
297
298	ret = dmaengine_slave_config(chan, &conf);
299	if (ret)
300		return ERR_PTR(ret);
301
302	/*
303	 * We need to split the transfer into PAGE_SIZE'd chunks. This is
304	 * because we are using @espi->zeropage to provide a zero RX buffer
305	 * for the TX transfers and we have only allocated one page for that.
306	 *
307	 * For performance reasons we allocate a new sg_table only when
308	 * needed. Otherwise we will re-use the current one. Eventually the
309	 * last sg_table is released in ep93xx_spi_release_dma().
310	 */
311
312	nents = DIV_ROUND_UP(len, PAGE_SIZE);
313	if (nents != sgt->nents) {
314		sg_free_table(sgt);
315
316		ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
317		if (ret)
318			return ERR_PTR(ret);
319	}
320
321	pbuf = buf;
322	for_each_sg(sgt->sgl, sg, sgt->nents, i) {
323		size_t bytes = min_t(size_t, len, PAGE_SIZE);
324
325		if (buf) {
326			sg_set_page(sg, virt_to_page(pbuf), bytes,
327				    offset_in_page(pbuf));
328		} else {
329			sg_set_page(sg, virt_to_page(espi->zeropage),
330				    bytes, 0);
331		}
332
333		pbuf += bytes;
334		len -= bytes;
335	}
336
337	if (WARN_ON(len)) {
338		dev_warn(&master->dev, "len = %zu expected 0!\n", len);
339		return ERR_PTR(-EINVAL);
340	}
341
342	nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
343	if (!nents)
344		return ERR_PTR(-ENOMEM);
345
346	txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir, DMA_CTRL_ACK);
 
347	if (!txd) {
348		dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
349		return ERR_PTR(-ENOMEM);
350	}
351	return txd;
352}
353
354/**
355 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
356 * @master: SPI master
357 * @dir: DMA transfer direction
358 *
359 * Function finishes with the DMA transfer. After this, the DMA buffer is
360 * unmapped.
361 */
362static void ep93xx_spi_dma_finish(struct spi_master *master,
363				  enum dma_transfer_direction dir)
364{
365	struct ep93xx_spi *espi = spi_master_get_devdata(master);
366	struct dma_chan *chan;
367	struct sg_table *sgt;
368
369	if (dir == DMA_DEV_TO_MEM) {
370		chan = espi->dma_rx;
371		sgt = &espi->rx_sgt;
372	} else {
373		chan = espi->dma_tx;
374		sgt = &espi->tx_sgt;
375	}
376
377	dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
378}
379
380static void ep93xx_spi_dma_callback(void *callback_param)
381{
382	struct spi_master *master = callback_param;
383
384	ep93xx_spi_dma_finish(master, DMA_MEM_TO_DEV);
385	ep93xx_spi_dma_finish(master, DMA_DEV_TO_MEM);
386
387	spi_finalize_current_transfer(master);
388}
389
390static int ep93xx_spi_dma_transfer(struct spi_master *master)
391{
392	struct ep93xx_spi *espi = spi_master_get_devdata(master);
393	struct dma_async_tx_descriptor *rxd, *txd;
394
395	rxd = ep93xx_spi_dma_prepare(master, DMA_DEV_TO_MEM);
396	if (IS_ERR(rxd)) {
397		dev_err(&master->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
398		return PTR_ERR(rxd);
399	}
400
401	txd = ep93xx_spi_dma_prepare(master, DMA_MEM_TO_DEV);
402	if (IS_ERR(txd)) {
403		ep93xx_spi_dma_finish(master, DMA_DEV_TO_MEM);
404		dev_err(&master->dev, "DMA TX failed: %ld\n", PTR_ERR(txd));
405		return PTR_ERR(txd);
406	}
407
408	/* We are ready when RX is done */
409	rxd->callback = ep93xx_spi_dma_callback;
410	rxd->callback_param = master;
411
412	/* Now submit both descriptors and start DMA */
413	dmaengine_submit(rxd);
414	dmaengine_submit(txd);
415
416	dma_async_issue_pending(espi->dma_rx);
417	dma_async_issue_pending(espi->dma_tx);
418
419	/* signal that we need to wait for completion */
420	return 1;
421}
422
423static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
424{
425	struct spi_master *master = dev_id;
426	struct ep93xx_spi *espi = spi_master_get_devdata(master);
427	u32 val;
428
429	/*
430	 * If we got ROR (receive overrun) interrupt we know that something is
431	 * wrong. Just abort the message.
432	 */
433	if (readl(espi->mmio + SSPIIR) & SSPIIR_RORIS) {
434		/* clear the overrun interrupt */
435		writel(0, espi->mmio + SSPICR);
436		dev_warn(&master->dev,
437			 "receive overrun, aborting the message\n");
438		master->cur_msg->status = -EIO;
439	} else {
440		/*
441		 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
442		 * simply execute next data transfer.
443		 */
444		if (ep93xx_spi_read_write(master)) {
445			/*
446			 * In normal case, there still is some processing left
447			 * for current transfer. Let's wait for the next
448			 * interrupt then.
449			 */
450			return IRQ_HANDLED;
451		}
452	}
453
454	/*
455	 * Current transfer is finished, either with error or with success. In
456	 * any case we disable interrupts and notify the worker to handle
457	 * any post-processing of the message.
458	 */
459	val = readl(espi->mmio + SSPCR1);
460	val &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
461	writel(val, espi->mmio + SSPCR1);
462
463	spi_finalize_current_transfer(master);
464
465	return IRQ_HANDLED;
466}
467
468static int ep93xx_spi_transfer_one(struct spi_master *master,
469				   struct spi_device *spi,
470				   struct spi_transfer *xfer)
471{
472	struct ep93xx_spi *espi = spi_master_get_devdata(master);
473	u32 val;
474	int ret;
475
476	ret = ep93xx_spi_chip_setup(master, spi, xfer);
477	if (ret) {
478		dev_err(&master->dev, "failed to setup chip for transfer\n");
479		return ret;
480	}
481
482	master->cur_msg->state = xfer;
483	espi->rx = 0;
484	espi->tx = 0;
485
486	/*
487	 * There is no point of setting up DMA for the transfers which will
488	 * fit into the FIFO and can be transferred with a single interrupt.
489	 * So in these cases we will be using PIO and don't bother for DMA.
490	 */
491	if (espi->dma_rx && xfer->len > SPI_FIFO_SIZE)
492		return ep93xx_spi_dma_transfer(master);
493
494	/* Using PIO so prime the TX FIFO and enable interrupts */
495	ep93xx_spi_read_write(master);
496
497	val = readl(espi->mmio + SSPCR1);
498	val |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
499	writel(val, espi->mmio + SSPCR1);
500
501	/* signal that we need to wait for completion */
502	return 1;
503}
504
505static int ep93xx_spi_prepare_message(struct spi_master *master,
506				      struct spi_message *msg)
507{
508	struct ep93xx_spi *espi = spi_master_get_devdata(master);
509	unsigned long timeout;
510
511	/*
512	 * Just to be sure: flush any data from RX FIFO.
513	 */
514	timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
515	while (readl(espi->mmio + SSPSR) & SSPSR_RNE) {
516		if (time_after(jiffies, timeout)) {
517			dev_warn(&master->dev,
518				 "timeout while flushing RX FIFO\n");
519			return -ETIMEDOUT;
520		}
521		readl(espi->mmio + SSPDR);
522	}
523
524	/*
525	 * We explicitly handle FIFO level. This way we don't have to check TX
526	 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
527	 */
528	espi->fifo_level = 0;
529
530	return 0;
531}
532
533static int ep93xx_spi_prepare_hardware(struct spi_master *master)
534{
535	struct ep93xx_spi *espi = spi_master_get_devdata(master);
536	u32 val;
537	int ret;
538
539	ret = clk_enable(espi->clk);
540	if (ret)
541		return ret;
542
543	val = readl(espi->mmio + SSPCR1);
544	val |= SSPCR1_SSE;
545	writel(val, espi->mmio + SSPCR1);
546
547	return 0;
548}
549
550static int ep93xx_spi_unprepare_hardware(struct spi_master *master)
551{
552	struct ep93xx_spi *espi = spi_master_get_devdata(master);
553	u32 val;
554
555	val = readl(espi->mmio + SSPCR1);
556	val &= ~SSPCR1_SSE;
557	writel(val, espi->mmio + SSPCR1);
558
559	clk_disable(espi->clk);
560
561	return 0;
562}
563
564static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
565{
566	if (ep93xx_dma_chan_is_m2p(chan))
567		return false;
568
569	chan->private = filter_param;
570	return true;
571}
572
573static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
574{
575	dma_cap_mask_t mask;
576	int ret;
577
578	espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
579	if (!espi->zeropage)
580		return -ENOMEM;
581
582	dma_cap_zero(mask);
583	dma_cap_set(DMA_SLAVE, mask);
584
585	espi->dma_rx_data.port = EP93XX_DMA_SSP;
586	espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
587	espi->dma_rx_data.name = "ep93xx-spi-rx";
588
589	espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
590					   &espi->dma_rx_data);
591	if (!espi->dma_rx) {
592		ret = -ENODEV;
593		goto fail_free_page;
594	}
595
596	espi->dma_tx_data.port = EP93XX_DMA_SSP;
597	espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
598	espi->dma_tx_data.name = "ep93xx-spi-tx";
599
600	espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
601					   &espi->dma_tx_data);
602	if (!espi->dma_tx) {
603		ret = -ENODEV;
604		goto fail_release_rx;
605	}
606
607	return 0;
608
609fail_release_rx:
610	dma_release_channel(espi->dma_rx);
611	espi->dma_rx = NULL;
612fail_free_page:
613	free_page((unsigned long)espi->zeropage);
614
615	return ret;
616}
617
618static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
619{
620	if (espi->dma_rx) {
621		dma_release_channel(espi->dma_rx);
622		sg_free_table(&espi->rx_sgt);
623	}
624	if (espi->dma_tx) {
625		dma_release_channel(espi->dma_tx);
626		sg_free_table(&espi->tx_sgt);
627	}
628
629	if (espi->zeropage)
630		free_page((unsigned long)espi->zeropage);
631}
632
633static int ep93xx_spi_probe(struct platform_device *pdev)
634{
635	struct spi_master *master;
636	struct ep93xx_spi_info *info;
637	struct ep93xx_spi *espi;
638	struct resource *res;
639	int irq;
640	int error;
641	int i;
642
643	info = dev_get_platdata(&pdev->dev);
644	if (!info) {
645		dev_err(&pdev->dev, "missing platform data\n");
646		return -EINVAL;
647	}
648
649	irq = platform_get_irq(pdev, 0);
650	if (irq < 0) {
651		dev_err(&pdev->dev, "failed to get irq resources\n");
652		return -EBUSY;
653	}
654
655	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
656	if (!res) {
657		dev_err(&pdev->dev, "unable to get iomem resource\n");
658		return -ENODEV;
659	}
660
661	master = spi_alloc_master(&pdev->dev, sizeof(*espi));
662	if (!master)
663		return -ENOMEM;
664
665	master->prepare_transfer_hardware = ep93xx_spi_prepare_hardware;
666	master->unprepare_transfer_hardware = ep93xx_spi_unprepare_hardware;
667	master->prepare_message = ep93xx_spi_prepare_message;
668	master->transfer_one = ep93xx_spi_transfer_one;
669	master->bus_num = pdev->id;
670	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
671	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
672
673	master->num_chipselect = info->num_chipselect;
674	master->cs_gpios = devm_kzalloc(&master->dev,
675					sizeof(int) * master->num_chipselect,
676					GFP_KERNEL);
677	if (!master->cs_gpios) {
678		error = -ENOMEM;
679		goto fail_release_master;
680	}
681
682	for (i = 0; i < master->num_chipselect; i++) {
683		master->cs_gpios[i] = info->chipselect[i];
684
685		if (!gpio_is_valid(master->cs_gpios[i]))
686			continue;
687
688		error = devm_gpio_request_one(&pdev->dev, master->cs_gpios[i],
689					      GPIOF_OUT_INIT_HIGH,
690					      "ep93xx-spi");
691		if (error) {
692			dev_err(&pdev->dev, "could not request cs gpio %d\n",
693				master->cs_gpios[i]);
694			goto fail_release_master;
695		}
696	}
697
698	platform_set_drvdata(pdev, master);
699
700	espi = spi_master_get_devdata(master);
701
702	espi->clk = devm_clk_get(&pdev->dev, NULL);
703	if (IS_ERR(espi->clk)) {
704		dev_err(&pdev->dev, "unable to get spi clock\n");
705		error = PTR_ERR(espi->clk);
706		goto fail_release_master;
707	}
708
709	/*
710	 * Calculate maximum and minimum supported clock rates
711	 * for the controller.
712	 */
713	master->max_speed_hz = clk_get_rate(espi->clk) / 2;
714	master->min_speed_hz = clk_get_rate(espi->clk) / (254 * 256);
715
716	espi->sspdr_phys = res->start + SSPDR;
717
718	espi->mmio = devm_ioremap_resource(&pdev->dev, res);
719	if (IS_ERR(espi->mmio)) {
720		error = PTR_ERR(espi->mmio);
721		goto fail_release_master;
722	}
 
723
724	error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
725				0, "ep93xx-spi", master);
726	if (error) {
727		dev_err(&pdev->dev, "failed to request irq\n");
728		goto fail_release_master;
729	}
730
731	if (info->use_dma && ep93xx_spi_setup_dma(espi))
 
 
 
 
732		dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
733
734	/* make sure that the hardware is disabled */
735	writel(0, espi->mmio + SSPCR1);
736
737	error = devm_spi_register_master(&pdev->dev, master);
 
738	if (error) {
739		dev_err(&pdev->dev, "failed to register SPI master\n");
740		goto fail_free_dma;
741	}
742
743	dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
744		 (unsigned long)res->start, irq);
745
746	return 0;
747
748fail_free_dma:
749	ep93xx_spi_release_dma(espi);
750fail_release_master:
751	spi_master_put(master);
752
753	return error;
754}
755
756static int ep93xx_spi_remove(struct platform_device *pdev)
757{
758	struct spi_master *master = platform_get_drvdata(pdev);
759	struct ep93xx_spi *espi = spi_master_get_devdata(master);
760
761	ep93xx_spi_release_dma(espi);
 
762
763	return 0;
764}
 
 
 
765
766static struct platform_driver ep93xx_spi_driver = {
767	.driver		= {
768		.name	= "ep93xx-spi",
 
769	},
770	.probe		= ep93xx_spi_probe,
771	.remove		= ep93xx_spi_remove,
772};
773module_platform_driver(ep93xx_spi_driver);
774
775MODULE_DESCRIPTION("EP93xx SPI Controller driver");
776MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
777MODULE_LICENSE("GPL");
778MODULE_ALIAS("platform:ep93xx-spi");