Loading...
1// SPDX-License-Identifier: GPL-2.0+
2//
3// Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
4
5#include <linux/io.h>
6#include <linux/rtc.h>
7#include <linux/module.h>
8#include <linux/slab.h>
9#include <linux/interrupt.h>
10#include <linux/platform_device.h>
11#include <linux/pm_wakeirq.h>
12#include <linux/clk.h>
13#include <linux/of.h>
14
15#define RTC_INPUT_CLK_32768HZ (0x00 << 5)
16#define RTC_INPUT_CLK_32000HZ (0x01 << 5)
17#define RTC_INPUT_CLK_38400HZ (0x02 << 5)
18
19#define RTC_SW_BIT (1 << 0)
20#define RTC_ALM_BIT (1 << 2)
21#define RTC_1HZ_BIT (1 << 4)
22#define RTC_2HZ_BIT (1 << 7)
23#define RTC_SAM0_BIT (1 << 8)
24#define RTC_SAM1_BIT (1 << 9)
25#define RTC_SAM2_BIT (1 << 10)
26#define RTC_SAM3_BIT (1 << 11)
27#define RTC_SAM4_BIT (1 << 12)
28#define RTC_SAM5_BIT (1 << 13)
29#define RTC_SAM6_BIT (1 << 14)
30#define RTC_SAM7_BIT (1 << 15)
31#define PIT_ALL_ON (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
32 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
33 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
34
35#define RTC_ENABLE_BIT (1 << 7)
36
37#define MAX_PIE_NUM 9
38#define MAX_PIE_FREQ 512
39
40#define MXC_RTC_TIME 0
41#define MXC_RTC_ALARM 1
42
43#define RTC_HOURMIN 0x00 /* 32bit rtc hour/min counter reg */
44#define RTC_SECOND 0x04 /* 32bit rtc seconds counter reg */
45#define RTC_ALRM_HM 0x08 /* 32bit rtc alarm hour/min reg */
46#define RTC_ALRM_SEC 0x0C /* 32bit rtc alarm seconds reg */
47#define RTC_RTCCTL 0x10 /* 32bit rtc control reg */
48#define RTC_RTCISR 0x14 /* 32bit rtc interrupt status reg */
49#define RTC_RTCIENR 0x18 /* 32bit rtc interrupt enable reg */
50#define RTC_STPWCH 0x1C /* 32bit rtc stopwatch min reg */
51#define RTC_DAYR 0x20 /* 32bit rtc days counter reg */
52#define RTC_DAYALARM 0x24 /* 32bit rtc day alarm reg */
53#define RTC_TEST1 0x28 /* 32bit rtc test reg 1 */
54#define RTC_TEST2 0x2C /* 32bit rtc test reg 2 */
55#define RTC_TEST3 0x30 /* 32bit rtc test reg 3 */
56
57enum imx_rtc_type {
58 IMX1_RTC,
59 IMX21_RTC,
60};
61
62struct rtc_plat_data {
63 struct rtc_device *rtc;
64 void __iomem *ioaddr;
65 int irq;
66 struct clk *clk_ref;
67 struct clk *clk_ipg;
68 struct rtc_time g_rtc_alarm;
69 enum imx_rtc_type devtype;
70};
71
72static const struct of_device_id imx_rtc_dt_ids[] = {
73 { .compatible = "fsl,imx1-rtc", .data = (const void *)IMX1_RTC },
74 { .compatible = "fsl,imx21-rtc", .data = (const void *)IMX21_RTC },
75 {}
76};
77MODULE_DEVICE_TABLE(of, imx_rtc_dt_ids);
78
79static inline int is_imx1_rtc(struct rtc_plat_data *data)
80{
81 return data->devtype == IMX1_RTC;
82}
83
84/*
85 * This function is used to obtain the RTC time or the alarm value in
86 * second.
87 */
88static time64_t get_alarm_or_time(struct device *dev, int time_alarm)
89{
90 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
91 void __iomem *ioaddr = pdata->ioaddr;
92 u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
93
94 switch (time_alarm) {
95 case MXC_RTC_TIME:
96 day = readw(ioaddr + RTC_DAYR);
97 hr_min = readw(ioaddr + RTC_HOURMIN);
98 sec = readw(ioaddr + RTC_SECOND);
99 break;
100 case MXC_RTC_ALARM:
101 day = readw(ioaddr + RTC_DAYALARM);
102 hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
103 sec = readw(ioaddr + RTC_ALRM_SEC);
104 break;
105 }
106
107 hr = hr_min >> 8;
108 min = hr_min & 0xff;
109
110 return ((((time64_t)day * 24 + hr) * 60) + min) * 60 + sec;
111}
112
113/*
114 * This function sets the RTC alarm value or the time value.
115 */
116static void set_alarm_or_time(struct device *dev, int time_alarm, time64_t time)
117{
118 u32 tod, day, hr, min, sec, temp;
119 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
120 void __iomem *ioaddr = pdata->ioaddr;
121
122 day = div_s64_rem(time, 86400, &tod);
123
124 /* time is within a day now */
125 hr = tod / 3600;
126 tod -= hr * 3600;
127
128 /* time is within an hour now */
129 min = tod / 60;
130 sec = tod - min * 60;
131
132 temp = (hr << 8) + min;
133
134 switch (time_alarm) {
135 case MXC_RTC_TIME:
136 writew(day, ioaddr + RTC_DAYR);
137 writew(sec, ioaddr + RTC_SECOND);
138 writew(temp, ioaddr + RTC_HOURMIN);
139 break;
140 case MXC_RTC_ALARM:
141 writew(day, ioaddr + RTC_DAYALARM);
142 writew(sec, ioaddr + RTC_ALRM_SEC);
143 writew(temp, ioaddr + RTC_ALRM_HM);
144 break;
145 }
146}
147
148/*
149 * This function updates the RTC alarm registers and then clears all the
150 * interrupt status bits.
151 */
152static void rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
153{
154 time64_t time;
155 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
156 void __iomem *ioaddr = pdata->ioaddr;
157
158 time = rtc_tm_to_time64(alrm);
159
160 /* clear all the interrupt status bits */
161 writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
162 set_alarm_or_time(dev, MXC_RTC_ALARM, time);
163}
164
165static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
166 unsigned int enabled)
167{
168 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
169 void __iomem *ioaddr = pdata->ioaddr;
170 u32 reg;
171 unsigned long flags;
172
173 spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
174 reg = readw(ioaddr + RTC_RTCIENR);
175
176 if (enabled)
177 reg |= bit;
178 else
179 reg &= ~bit;
180
181 writew(reg, ioaddr + RTC_RTCIENR);
182 spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
183}
184
185/* This function is the RTC interrupt service routine. */
186static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
187{
188 struct platform_device *pdev = dev_id;
189 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
190 void __iomem *ioaddr = pdata->ioaddr;
191 u32 status;
192 u32 events = 0;
193
194 spin_lock(&pdata->rtc->irq_lock);
195 status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
196 /* clear interrupt sources */
197 writew(status, ioaddr + RTC_RTCISR);
198
199 /* update irq data & counter */
200 if (status & RTC_ALM_BIT) {
201 events |= (RTC_AF | RTC_IRQF);
202 /* RTC alarm should be one-shot */
203 mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
204 }
205
206 if (status & PIT_ALL_ON)
207 events |= (RTC_PF | RTC_IRQF);
208
209 rtc_update_irq(pdata->rtc, 1, events);
210 spin_unlock(&pdata->rtc->irq_lock);
211
212 return IRQ_HANDLED;
213}
214
215static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
216{
217 mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
218 return 0;
219}
220
221/*
222 * This function reads the current RTC time into tm in Gregorian date.
223 */
224static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
225{
226 time64_t val;
227
228 /* Avoid roll-over from reading the different registers */
229 do {
230 val = get_alarm_or_time(dev, MXC_RTC_TIME);
231 } while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
232
233 rtc_time64_to_tm(val, tm);
234
235 return 0;
236}
237
238/*
239 * This function sets the internal RTC time based on tm in Gregorian date.
240 */
241static int mxc_rtc_set_time(struct device *dev, struct rtc_time *tm)
242{
243 time64_t time = rtc_tm_to_time64(tm);
244
245 /* Avoid roll-over from reading the different registers */
246 do {
247 set_alarm_or_time(dev, MXC_RTC_TIME, time);
248 } while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
249
250 return 0;
251}
252
253/*
254 * This function reads the current alarm value into the passed in 'alrm'
255 * argument. It updates the alrm's pending field value based on the whether
256 * an alarm interrupt occurs or not.
257 */
258static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
259{
260 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
261 void __iomem *ioaddr = pdata->ioaddr;
262
263 rtc_time64_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
264 alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
265
266 return 0;
267}
268
269/*
270 * This function sets the RTC alarm based on passed in alrm.
271 */
272static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
273{
274 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
275
276 rtc_update_alarm(dev, &alrm->time);
277
278 memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
279 mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
280
281 return 0;
282}
283
284/* RTC layer */
285static const struct rtc_class_ops mxc_rtc_ops = {
286 .read_time = mxc_rtc_read_time,
287 .set_time = mxc_rtc_set_time,
288 .read_alarm = mxc_rtc_read_alarm,
289 .set_alarm = mxc_rtc_set_alarm,
290 .alarm_irq_enable = mxc_rtc_alarm_irq_enable,
291};
292
293static int mxc_rtc_probe(struct platform_device *pdev)
294{
295 struct rtc_device *rtc;
296 struct rtc_plat_data *pdata = NULL;
297 u32 reg;
298 unsigned long rate;
299 int ret;
300
301 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
302 if (!pdata)
303 return -ENOMEM;
304
305 pdata->devtype = (uintptr_t)of_device_get_match_data(&pdev->dev);
306
307 pdata->ioaddr = devm_platform_ioremap_resource(pdev, 0);
308 if (IS_ERR(pdata->ioaddr))
309 return PTR_ERR(pdata->ioaddr);
310
311 rtc = devm_rtc_allocate_device(&pdev->dev);
312 if (IS_ERR(rtc))
313 return PTR_ERR(rtc);
314
315 pdata->rtc = rtc;
316 rtc->ops = &mxc_rtc_ops;
317 if (is_imx1_rtc(pdata)) {
318 struct rtc_time tm;
319
320 /* 9bit days + hours minutes seconds */
321 rtc->range_max = (1 << 9) * 86400 - 1;
322
323 /*
324 * Set the start date as beginning of the current year. This can
325 * be overridden using device tree.
326 */
327 rtc_time64_to_tm(ktime_get_real_seconds(), &tm);
328 rtc->start_secs = mktime64(tm.tm_year, 1, 1, 0, 0, 0);
329 rtc->set_start_time = true;
330 } else {
331 /* 16bit days + hours minutes seconds */
332 rtc->range_max = (1 << 16) * 86400ULL - 1;
333 }
334
335 pdata->clk_ipg = devm_clk_get_enabled(&pdev->dev, "ipg");
336 if (IS_ERR(pdata->clk_ipg)) {
337 dev_err(&pdev->dev, "unable to get ipg clock!\n");
338 return PTR_ERR(pdata->clk_ipg);
339 }
340
341 pdata->clk_ref = devm_clk_get_enabled(&pdev->dev, "ref");
342 if (IS_ERR(pdata->clk_ref)) {
343 dev_err(&pdev->dev, "unable to get ref clock!\n");
344 return PTR_ERR(pdata->clk_ref);
345 }
346
347 rate = clk_get_rate(pdata->clk_ref);
348
349 if (rate == 32768)
350 reg = RTC_INPUT_CLK_32768HZ;
351 else if (rate == 32000)
352 reg = RTC_INPUT_CLK_32000HZ;
353 else if (rate == 38400)
354 reg = RTC_INPUT_CLK_38400HZ;
355 else {
356 dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
357 return -EINVAL;
358 }
359
360 reg |= RTC_ENABLE_BIT;
361 writew(reg, (pdata->ioaddr + RTC_RTCCTL));
362 if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
363 dev_err(&pdev->dev, "hardware module can't be enabled!\n");
364 return -EIO;
365 }
366
367 platform_set_drvdata(pdev, pdata);
368
369 /* Configure and enable the RTC */
370 pdata->irq = platform_get_irq(pdev, 0);
371
372 if (pdata->irq >= 0 &&
373 devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
374 IRQF_SHARED, pdev->name, pdev) < 0) {
375 dev_warn(&pdev->dev, "interrupt not available.\n");
376 pdata->irq = -1;
377 }
378
379 if (pdata->irq >= 0) {
380 device_init_wakeup(&pdev->dev, 1);
381 ret = dev_pm_set_wake_irq(&pdev->dev, pdata->irq);
382 if (ret)
383 dev_err(&pdev->dev, "failed to enable irq wake\n");
384 }
385
386 ret = devm_rtc_register_device(rtc);
387
388 return ret;
389}
390
391static struct platform_driver mxc_rtc_driver = {
392 .driver = {
393 .name = "mxc_rtc",
394 .of_match_table = imx_rtc_dt_ids,
395 },
396 .probe = mxc_rtc_probe,
397};
398
399module_platform_driver(mxc_rtc_driver)
400
401MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
402MODULE_DESCRIPTION("RTC driver for Freescale MXC");
403MODULE_LICENSE("GPL");
404
1/*
2 * Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
3 *
4 * The code contained herein is licensed under the GNU General Public
5 * License. You may obtain a copy of the GNU General Public License
6 * Version 2 or later at the following locations:
7 *
8 * http://www.opensource.org/licenses/gpl-license.html
9 * http://www.gnu.org/copyleft/gpl.html
10 */
11
12#include <linux/io.h>
13#include <linux/rtc.h>
14#include <linux/module.h>
15#include <linux/slab.h>
16#include <linux/interrupt.h>
17#include <linux/platform_device.h>
18#include <linux/clk.h>
19#include <linux/of.h>
20#include <linux/of_device.h>
21
22#define RTC_INPUT_CLK_32768HZ (0x00 << 5)
23#define RTC_INPUT_CLK_32000HZ (0x01 << 5)
24#define RTC_INPUT_CLK_38400HZ (0x02 << 5)
25
26#define RTC_SW_BIT (1 << 0)
27#define RTC_ALM_BIT (1 << 2)
28#define RTC_1HZ_BIT (1 << 4)
29#define RTC_2HZ_BIT (1 << 7)
30#define RTC_SAM0_BIT (1 << 8)
31#define RTC_SAM1_BIT (1 << 9)
32#define RTC_SAM2_BIT (1 << 10)
33#define RTC_SAM3_BIT (1 << 11)
34#define RTC_SAM4_BIT (1 << 12)
35#define RTC_SAM5_BIT (1 << 13)
36#define RTC_SAM6_BIT (1 << 14)
37#define RTC_SAM7_BIT (1 << 15)
38#define PIT_ALL_ON (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
39 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
40 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
41
42#define RTC_ENABLE_BIT (1 << 7)
43
44#define MAX_PIE_NUM 9
45#define MAX_PIE_FREQ 512
46
47#define MXC_RTC_TIME 0
48#define MXC_RTC_ALARM 1
49
50#define RTC_HOURMIN 0x00 /* 32bit rtc hour/min counter reg */
51#define RTC_SECOND 0x04 /* 32bit rtc seconds counter reg */
52#define RTC_ALRM_HM 0x08 /* 32bit rtc alarm hour/min reg */
53#define RTC_ALRM_SEC 0x0C /* 32bit rtc alarm seconds reg */
54#define RTC_RTCCTL 0x10 /* 32bit rtc control reg */
55#define RTC_RTCISR 0x14 /* 32bit rtc interrupt status reg */
56#define RTC_RTCIENR 0x18 /* 32bit rtc interrupt enable reg */
57#define RTC_STPWCH 0x1C /* 32bit rtc stopwatch min reg */
58#define RTC_DAYR 0x20 /* 32bit rtc days counter reg */
59#define RTC_DAYALARM 0x24 /* 32bit rtc day alarm reg */
60#define RTC_TEST1 0x28 /* 32bit rtc test reg 1 */
61#define RTC_TEST2 0x2C /* 32bit rtc test reg 2 */
62#define RTC_TEST3 0x30 /* 32bit rtc test reg 3 */
63
64enum imx_rtc_type {
65 IMX1_RTC,
66 IMX21_RTC,
67};
68
69struct rtc_plat_data {
70 struct rtc_device *rtc;
71 void __iomem *ioaddr;
72 int irq;
73 struct clk *clk_ref;
74 struct clk *clk_ipg;
75 struct rtc_time g_rtc_alarm;
76 enum imx_rtc_type devtype;
77};
78
79static const struct platform_device_id imx_rtc_devtype[] = {
80 {
81 .name = "imx1-rtc",
82 .driver_data = IMX1_RTC,
83 }, {
84 .name = "imx21-rtc",
85 .driver_data = IMX21_RTC,
86 }, {
87 /* sentinel */
88 }
89};
90MODULE_DEVICE_TABLE(platform, imx_rtc_devtype);
91
92#ifdef CONFIG_OF
93static const struct of_device_id imx_rtc_dt_ids[] = {
94 { .compatible = "fsl,imx1-rtc", .data = (const void *)IMX1_RTC },
95 { .compatible = "fsl,imx21-rtc", .data = (const void *)IMX21_RTC },
96 {}
97};
98MODULE_DEVICE_TABLE(of, imx_rtc_dt_ids);
99#endif
100
101static inline int is_imx1_rtc(struct rtc_plat_data *data)
102{
103 return data->devtype == IMX1_RTC;
104}
105
106/*
107 * This function is used to obtain the RTC time or the alarm value in
108 * second.
109 */
110static time64_t get_alarm_or_time(struct device *dev, int time_alarm)
111{
112 struct platform_device *pdev = to_platform_device(dev);
113 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
114 void __iomem *ioaddr = pdata->ioaddr;
115 u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
116
117 switch (time_alarm) {
118 case MXC_RTC_TIME:
119 day = readw(ioaddr + RTC_DAYR);
120 hr_min = readw(ioaddr + RTC_HOURMIN);
121 sec = readw(ioaddr + RTC_SECOND);
122 break;
123 case MXC_RTC_ALARM:
124 day = readw(ioaddr + RTC_DAYALARM);
125 hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
126 sec = readw(ioaddr + RTC_ALRM_SEC);
127 break;
128 }
129
130 hr = hr_min >> 8;
131 min = hr_min & 0xff;
132
133 return ((((time64_t)day * 24 + hr) * 60) + min) * 60 + sec;
134}
135
136/*
137 * This function sets the RTC alarm value or the time value.
138 */
139static void set_alarm_or_time(struct device *dev, int time_alarm, time64_t time)
140{
141 u32 tod, day, hr, min, sec, temp;
142 struct platform_device *pdev = to_platform_device(dev);
143 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
144 void __iomem *ioaddr = pdata->ioaddr;
145
146 day = div_s64_rem(time, 86400, &tod);
147
148 /* time is within a day now */
149 hr = tod / 3600;
150 tod -= hr * 3600;
151
152 /* time is within an hour now */
153 min = tod / 60;
154 sec = tod - min * 60;
155
156 temp = (hr << 8) + min;
157
158 switch (time_alarm) {
159 case MXC_RTC_TIME:
160 writew(day, ioaddr + RTC_DAYR);
161 writew(sec, ioaddr + RTC_SECOND);
162 writew(temp, ioaddr + RTC_HOURMIN);
163 break;
164 case MXC_RTC_ALARM:
165 writew(day, ioaddr + RTC_DAYALARM);
166 writew(sec, ioaddr + RTC_ALRM_SEC);
167 writew(temp, ioaddr + RTC_ALRM_HM);
168 break;
169 }
170}
171
172/*
173 * This function updates the RTC alarm registers and then clears all the
174 * interrupt status bits.
175 */
176static void rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
177{
178 time64_t time;
179 struct platform_device *pdev = to_platform_device(dev);
180 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
181 void __iomem *ioaddr = pdata->ioaddr;
182
183 time = rtc_tm_to_time64(alrm);
184
185 /* clear all the interrupt status bits */
186 writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
187 set_alarm_or_time(dev, MXC_RTC_ALARM, time);
188}
189
190static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
191 unsigned int enabled)
192{
193 struct platform_device *pdev = to_platform_device(dev);
194 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
195 void __iomem *ioaddr = pdata->ioaddr;
196 u32 reg;
197
198 spin_lock_irq(&pdata->rtc->irq_lock);
199 reg = readw(ioaddr + RTC_RTCIENR);
200
201 if (enabled)
202 reg |= bit;
203 else
204 reg &= ~bit;
205
206 writew(reg, ioaddr + RTC_RTCIENR);
207 spin_unlock_irq(&pdata->rtc->irq_lock);
208}
209
210/* This function is the RTC interrupt service routine. */
211static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
212{
213 struct platform_device *pdev = dev_id;
214 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
215 void __iomem *ioaddr = pdata->ioaddr;
216 unsigned long flags;
217 u32 status;
218 u32 events = 0;
219
220 spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
221 status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
222 /* clear interrupt sources */
223 writew(status, ioaddr + RTC_RTCISR);
224
225 /* update irq data & counter */
226 if (status & RTC_ALM_BIT) {
227 events |= (RTC_AF | RTC_IRQF);
228 /* RTC alarm should be one-shot */
229 mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
230 }
231
232 if (status & PIT_ALL_ON)
233 events |= (RTC_PF | RTC_IRQF);
234
235 rtc_update_irq(pdata->rtc, 1, events);
236 spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
237
238 return IRQ_HANDLED;
239}
240
241static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
242{
243 mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
244 return 0;
245}
246
247/*
248 * This function reads the current RTC time into tm in Gregorian date.
249 */
250static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
251{
252 time64_t val;
253
254 /* Avoid roll-over from reading the different registers */
255 do {
256 val = get_alarm_or_time(dev, MXC_RTC_TIME);
257 } while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
258
259 rtc_time64_to_tm(val, tm);
260
261 return 0;
262}
263
264/*
265 * This function sets the internal RTC time based on tm in Gregorian date.
266 */
267static int mxc_rtc_set_mmss(struct device *dev, time64_t time)
268{
269 struct platform_device *pdev = to_platform_device(dev);
270 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
271
272 /*
273 * TTC_DAYR register is 9-bit in MX1 SoC, save time and day of year only
274 */
275 if (is_imx1_rtc(pdata)) {
276 struct rtc_time tm;
277
278 rtc_time64_to_tm(time, &tm);
279 tm.tm_year = 70;
280 time = rtc_tm_to_time64(&tm);
281 }
282
283 /* Avoid roll-over from reading the different registers */
284 do {
285 set_alarm_or_time(dev, MXC_RTC_TIME, time);
286 } while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
287
288 return 0;
289}
290
291/*
292 * This function reads the current alarm value into the passed in 'alrm'
293 * argument. It updates the alrm's pending field value based on the whether
294 * an alarm interrupt occurs or not.
295 */
296static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
297{
298 struct platform_device *pdev = to_platform_device(dev);
299 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
300 void __iomem *ioaddr = pdata->ioaddr;
301
302 rtc_time64_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
303 alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
304
305 return 0;
306}
307
308/*
309 * This function sets the RTC alarm based on passed in alrm.
310 */
311static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
312{
313 struct platform_device *pdev = to_platform_device(dev);
314 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
315
316 rtc_update_alarm(dev, &alrm->time);
317
318 memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
319 mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
320
321 return 0;
322}
323
324/* RTC layer */
325static const struct rtc_class_ops mxc_rtc_ops = {
326 .read_time = mxc_rtc_read_time,
327 .set_mmss64 = mxc_rtc_set_mmss,
328 .read_alarm = mxc_rtc_read_alarm,
329 .set_alarm = mxc_rtc_set_alarm,
330 .alarm_irq_enable = mxc_rtc_alarm_irq_enable,
331};
332
333static int mxc_rtc_probe(struct platform_device *pdev)
334{
335 struct resource *res;
336 struct rtc_device *rtc;
337 struct rtc_plat_data *pdata = NULL;
338 u32 reg;
339 unsigned long rate;
340 int ret;
341 const struct of_device_id *of_id;
342
343 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
344 if (!pdata)
345 return -ENOMEM;
346
347 of_id = of_match_device(imx_rtc_dt_ids, &pdev->dev);
348 if (of_id)
349 pdata->devtype = (enum imx_rtc_type)of_id->data;
350 else
351 pdata->devtype = pdev->id_entry->driver_data;
352
353 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
354 pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
355 if (IS_ERR(pdata->ioaddr))
356 return PTR_ERR(pdata->ioaddr);
357
358 pdata->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
359 if (IS_ERR(pdata->clk_ipg)) {
360 dev_err(&pdev->dev, "unable to get ipg clock!\n");
361 return PTR_ERR(pdata->clk_ipg);
362 }
363
364 ret = clk_prepare_enable(pdata->clk_ipg);
365 if (ret)
366 return ret;
367
368 pdata->clk_ref = devm_clk_get(&pdev->dev, "ref");
369 if (IS_ERR(pdata->clk_ref)) {
370 dev_err(&pdev->dev, "unable to get ref clock!\n");
371 ret = PTR_ERR(pdata->clk_ref);
372 goto exit_put_clk_ipg;
373 }
374
375 ret = clk_prepare_enable(pdata->clk_ref);
376 if (ret)
377 goto exit_put_clk_ipg;
378
379 rate = clk_get_rate(pdata->clk_ref);
380
381 if (rate == 32768)
382 reg = RTC_INPUT_CLK_32768HZ;
383 else if (rate == 32000)
384 reg = RTC_INPUT_CLK_32000HZ;
385 else if (rate == 38400)
386 reg = RTC_INPUT_CLK_38400HZ;
387 else {
388 dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
389 ret = -EINVAL;
390 goto exit_put_clk_ref;
391 }
392
393 reg |= RTC_ENABLE_BIT;
394 writew(reg, (pdata->ioaddr + RTC_RTCCTL));
395 if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
396 dev_err(&pdev->dev, "hardware module can't be enabled!\n");
397 ret = -EIO;
398 goto exit_put_clk_ref;
399 }
400
401 platform_set_drvdata(pdev, pdata);
402
403 /* Configure and enable the RTC */
404 pdata->irq = platform_get_irq(pdev, 0);
405
406 if (pdata->irq >= 0 &&
407 devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
408 IRQF_SHARED, pdev->name, pdev) < 0) {
409 dev_warn(&pdev->dev, "interrupt not available.\n");
410 pdata->irq = -1;
411 }
412
413 if (pdata->irq >= 0)
414 device_init_wakeup(&pdev->dev, 1);
415
416 rtc = devm_rtc_device_register(&pdev->dev, pdev->name, &mxc_rtc_ops,
417 THIS_MODULE);
418 if (IS_ERR(rtc)) {
419 ret = PTR_ERR(rtc);
420 goto exit_put_clk_ref;
421 }
422
423 pdata->rtc = rtc;
424
425 return 0;
426
427exit_put_clk_ref:
428 clk_disable_unprepare(pdata->clk_ref);
429exit_put_clk_ipg:
430 clk_disable_unprepare(pdata->clk_ipg);
431
432 return ret;
433}
434
435static int mxc_rtc_remove(struct platform_device *pdev)
436{
437 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
438
439 clk_disable_unprepare(pdata->clk_ref);
440 clk_disable_unprepare(pdata->clk_ipg);
441
442 return 0;
443}
444
445#ifdef CONFIG_PM_SLEEP
446static int mxc_rtc_suspend(struct device *dev)
447{
448 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
449
450 if (device_may_wakeup(dev))
451 enable_irq_wake(pdata->irq);
452
453 return 0;
454}
455
456static int mxc_rtc_resume(struct device *dev)
457{
458 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
459
460 if (device_may_wakeup(dev))
461 disable_irq_wake(pdata->irq);
462
463 return 0;
464}
465#endif
466
467static SIMPLE_DEV_PM_OPS(mxc_rtc_pm_ops, mxc_rtc_suspend, mxc_rtc_resume);
468
469static struct platform_driver mxc_rtc_driver = {
470 .driver = {
471 .name = "mxc_rtc",
472 .of_match_table = of_match_ptr(imx_rtc_dt_ids),
473 .pm = &mxc_rtc_pm_ops,
474 },
475 .id_table = imx_rtc_devtype,
476 .probe = mxc_rtc_probe,
477 .remove = mxc_rtc_remove,
478};
479
480module_platform_driver(mxc_rtc_driver)
481
482MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
483MODULE_DESCRIPTION("RTC driver for Freescale MXC");
484MODULE_LICENSE("GPL");
485