Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
   1/*
   2 * Intel Running Average Power Limit (RAPL) Driver
   3 * Copyright (c) 2013, Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * You should have received a copy of the GNU General Public License along with
  15 * this program; if not, write to the Free Software Foundation, Inc.
  16 *
  17 */
  18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  19
  20#include <linux/kernel.h>
  21#include <linux/module.h>
  22#include <linux/list.h>
  23#include <linux/types.h>
  24#include <linux/device.h>
  25#include <linux/slab.h>
  26#include <linux/log2.h>
  27#include <linux/bitmap.h>
  28#include <linux/delay.h>
  29#include <linux/sysfs.h>
  30#include <linux/cpu.h>
  31#include <linux/powercap.h>
  32#include <linux/suspend.h>
  33#include <asm/iosf_mbi.h>
  34
  35#include <asm/processor.h>
  36#include <asm/cpu_device_id.h>
  37#include <asm/intel-family.h>
  38
  39/* Local defines */
  40#define MSR_PLATFORM_POWER_LIMIT	0x0000065C
  41
  42/* bitmasks for RAPL MSRs, used by primitive access functions */
  43#define ENERGY_STATUS_MASK      0xffffffff
  44
  45#define POWER_LIMIT1_MASK       0x7FFF
  46#define POWER_LIMIT1_ENABLE     BIT(15)
  47#define POWER_LIMIT1_CLAMP      BIT(16)
  48
  49#define POWER_LIMIT2_MASK       (0x7FFFULL<<32)
  50#define POWER_LIMIT2_ENABLE     BIT_ULL(47)
  51#define POWER_LIMIT2_CLAMP      BIT_ULL(48)
  52#define POWER_PACKAGE_LOCK      BIT_ULL(63)
  53#define POWER_PP_LOCK           BIT(31)
  54
  55#define TIME_WINDOW1_MASK       (0x7FULL<<17)
  56#define TIME_WINDOW2_MASK       (0x7FULL<<49)
  57
  58#define POWER_UNIT_OFFSET	0
  59#define POWER_UNIT_MASK		0x0F
  60
  61#define ENERGY_UNIT_OFFSET	0x08
  62#define ENERGY_UNIT_MASK	0x1F00
  63
  64#define TIME_UNIT_OFFSET	0x10
  65#define TIME_UNIT_MASK		0xF0000
  66
  67#define POWER_INFO_MAX_MASK     (0x7fffULL<<32)
  68#define POWER_INFO_MIN_MASK     (0x7fffULL<<16)
  69#define POWER_INFO_MAX_TIME_WIN_MASK     (0x3fULL<<48)
  70#define POWER_INFO_THERMAL_SPEC_MASK     0x7fff
  71
  72#define PERF_STATUS_THROTTLE_TIME_MASK 0xffffffff
  73#define PP_POLICY_MASK         0x1F
  74
  75/* Non HW constants */
  76#define RAPL_PRIMITIVE_DERIVED       BIT(1) /* not from raw data */
  77#define RAPL_PRIMITIVE_DUMMY         BIT(2)
  78
  79#define TIME_WINDOW_MAX_MSEC 40000
  80#define TIME_WINDOW_MIN_MSEC 250
  81#define ENERGY_UNIT_SCALE    1000 /* scale from driver unit to powercap unit */
  82enum unit_type {
  83	ARBITRARY_UNIT, /* no translation */
  84	POWER_UNIT,
  85	ENERGY_UNIT,
  86	TIME_UNIT,
  87};
  88
  89enum rapl_domain_type {
  90	RAPL_DOMAIN_PACKAGE, /* entire package/socket */
  91	RAPL_DOMAIN_PP0, /* core power plane */
  92	RAPL_DOMAIN_PP1, /* graphics uncore */
  93	RAPL_DOMAIN_DRAM,/* DRAM control_type */
  94	RAPL_DOMAIN_PLATFORM, /* PSys control_type */
  95	RAPL_DOMAIN_MAX,
  96};
  97
  98enum rapl_domain_msr_id {
  99	RAPL_DOMAIN_MSR_LIMIT,
 100	RAPL_DOMAIN_MSR_STATUS,
 101	RAPL_DOMAIN_MSR_PERF,
 102	RAPL_DOMAIN_MSR_POLICY,
 103	RAPL_DOMAIN_MSR_INFO,
 104	RAPL_DOMAIN_MSR_MAX,
 105};
 106
 107/* per domain data, some are optional */
 108enum rapl_primitives {
 109	ENERGY_COUNTER,
 110	POWER_LIMIT1,
 111	POWER_LIMIT2,
 112	FW_LOCK,
 113
 114	PL1_ENABLE,  /* power limit 1, aka long term */
 115	PL1_CLAMP,   /* allow frequency to go below OS request */
 116	PL2_ENABLE,  /* power limit 2, aka short term, instantaneous */
 117	PL2_CLAMP,
 118
 119	TIME_WINDOW1, /* long term */
 120	TIME_WINDOW2, /* short term */
 121	THERMAL_SPEC_POWER,
 122	MAX_POWER,
 123
 124	MIN_POWER,
 125	MAX_TIME_WINDOW,
 126	THROTTLED_TIME,
 127	PRIORITY_LEVEL,
 128
 129	/* below are not raw primitive data */
 130	AVERAGE_POWER,
 131	NR_RAPL_PRIMITIVES,
 132};
 133
 134#define NR_RAW_PRIMITIVES (NR_RAPL_PRIMITIVES - 2)
 135
 136/* Can be expanded to include events, etc.*/
 137struct rapl_domain_data {
 138	u64 primitives[NR_RAPL_PRIMITIVES];
 139	unsigned long timestamp;
 140};
 141
 142struct msrl_action {
 143	u32 msr_no;
 144	u64 clear_mask;
 145	u64 set_mask;
 146	int err;
 147};
 148
 149#define	DOMAIN_STATE_INACTIVE           BIT(0)
 150#define	DOMAIN_STATE_POWER_LIMIT_SET    BIT(1)
 151#define DOMAIN_STATE_BIOS_LOCKED        BIT(2)
 152
 153#define NR_POWER_LIMITS (2)
 154struct rapl_power_limit {
 155	struct powercap_zone_constraint *constraint;
 156	int prim_id; /* primitive ID used to enable */
 157	struct rapl_domain *domain;
 158	const char *name;
 159	u64 last_power_limit;
 160};
 161
 162static const char pl1_name[] = "long_term";
 163static const char pl2_name[] = "short_term";
 164
 165struct rapl_package;
 166struct rapl_domain {
 167	const char *name;
 168	enum rapl_domain_type id;
 169	int msrs[RAPL_DOMAIN_MSR_MAX];
 170	struct powercap_zone power_zone;
 171	struct rapl_domain_data rdd;
 172	struct rapl_power_limit rpl[NR_POWER_LIMITS];
 173	u64 attr_map; /* track capabilities */
 174	unsigned int state;
 175	unsigned int domain_energy_unit;
 176	struct rapl_package *rp;
 177};
 178#define power_zone_to_rapl_domain(_zone) \
 179	container_of(_zone, struct rapl_domain, power_zone)
 180
 181
 182/* Each physical package contains multiple domains, these are the common
 183 * data across RAPL domains within a package.
 184 */
 185struct rapl_package {
 186	unsigned int id; /* physical package/socket id */
 187	unsigned int nr_domains;
 188	unsigned long domain_map; /* bit map of active domains */
 189	unsigned int power_unit;
 190	unsigned int energy_unit;
 191	unsigned int time_unit;
 192	struct rapl_domain *domains; /* array of domains, sized at runtime */
 193	struct powercap_zone *power_zone; /* keep track of parent zone */
 194	unsigned long power_limit_irq; /* keep track of package power limit
 195					* notify interrupt enable status.
 196					*/
 197	struct list_head plist;
 198	int lead_cpu; /* one active cpu per package for access */
 199	/* Track active cpus */
 200	struct cpumask cpumask;
 201};
 202
 203struct rapl_defaults {
 204	u8 floor_freq_reg_addr;
 205	int (*check_unit)(struct rapl_package *rp, int cpu);
 206	void (*set_floor_freq)(struct rapl_domain *rd, bool mode);
 207	u64 (*compute_time_window)(struct rapl_package *rp, u64 val,
 208				bool to_raw);
 209	unsigned int dram_domain_energy_unit;
 210};
 211static struct rapl_defaults *rapl_defaults;
 212
 213/* Sideband MBI registers */
 214#define IOSF_CPU_POWER_BUDGET_CTL_BYT (0x2)
 215#define IOSF_CPU_POWER_BUDGET_CTL_TNG (0xdf)
 216
 217#define PACKAGE_PLN_INT_SAVED   BIT(0)
 218#define MAX_PRIM_NAME (32)
 219
 220/* per domain data. used to describe individual knobs such that access function
 221 * can be consolidated into one instead of many inline functions.
 222 */
 223struct rapl_primitive_info {
 224	const char *name;
 225	u64 mask;
 226	int shift;
 227	enum rapl_domain_msr_id id;
 228	enum unit_type unit;
 229	u32 flag;
 230};
 231
 232#define PRIMITIVE_INFO_INIT(p, m, s, i, u, f) {	\
 233		.name = #p,			\
 234		.mask = m,			\
 235		.shift = s,			\
 236		.id = i,			\
 237		.unit = u,			\
 238		.flag = f			\
 239	}
 240
 241static void rapl_init_domains(struct rapl_package *rp);
 242static int rapl_read_data_raw(struct rapl_domain *rd,
 243			enum rapl_primitives prim,
 244			bool xlate, u64 *data);
 245static int rapl_write_data_raw(struct rapl_domain *rd,
 246			enum rapl_primitives prim,
 247			unsigned long long value);
 248static u64 rapl_unit_xlate(struct rapl_domain *rd,
 249			enum unit_type type, u64 value,
 250			int to_raw);
 251static void package_power_limit_irq_save(struct rapl_package *rp);
 252
 253static LIST_HEAD(rapl_packages); /* guarded by CPU hotplug lock */
 254
 255static const char * const rapl_domain_names[] = {
 256	"package",
 257	"core",
 258	"uncore",
 259	"dram",
 260	"psys",
 261};
 262
 263static struct powercap_control_type *control_type; /* PowerCap Controller */
 264static struct rapl_domain *platform_rapl_domain; /* Platform (PSys) domain */
 265
 266/* caller to ensure CPU hotplug lock is held */
 267static struct rapl_package *find_package_by_id(int id)
 268{
 269	struct rapl_package *rp;
 270
 271	list_for_each_entry(rp, &rapl_packages, plist) {
 272		if (rp->id == id)
 273			return rp;
 274	}
 275
 276	return NULL;
 277}
 278
 279static int get_energy_counter(struct powercap_zone *power_zone, u64 *energy_raw)
 280{
 281	struct rapl_domain *rd;
 282	u64 energy_now;
 283
 284	/* prevent CPU hotplug, make sure the RAPL domain does not go
 285	 * away while reading the counter.
 286	 */
 287	get_online_cpus();
 288	rd = power_zone_to_rapl_domain(power_zone);
 289
 290	if (!rapl_read_data_raw(rd, ENERGY_COUNTER, true, &energy_now)) {
 291		*energy_raw = energy_now;
 292		put_online_cpus();
 293
 294		return 0;
 295	}
 296	put_online_cpus();
 297
 298	return -EIO;
 299}
 300
 301static int get_max_energy_counter(struct powercap_zone *pcd_dev, u64 *energy)
 302{
 303	struct rapl_domain *rd = power_zone_to_rapl_domain(pcd_dev);
 304
 305	*energy = rapl_unit_xlate(rd, ENERGY_UNIT, ENERGY_STATUS_MASK, 0);
 306	return 0;
 307}
 308
 309static int release_zone(struct powercap_zone *power_zone)
 310{
 311	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
 312	struct rapl_package *rp = rd->rp;
 313
 314	/* package zone is the last zone of a package, we can free
 315	 * memory here since all children has been unregistered.
 316	 */
 317	if (rd->id == RAPL_DOMAIN_PACKAGE) {
 318		kfree(rd);
 319		rp->domains = NULL;
 320	}
 321
 322	return 0;
 323
 324}
 325
 326static int find_nr_power_limit(struct rapl_domain *rd)
 327{
 328	int i, nr_pl = 0;
 329
 330	for (i = 0; i < NR_POWER_LIMITS; i++) {
 331		if (rd->rpl[i].name)
 332			nr_pl++;
 333	}
 334
 335	return nr_pl;
 336}
 337
 338static int set_domain_enable(struct powercap_zone *power_zone, bool mode)
 339{
 340	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
 341
 342	if (rd->state & DOMAIN_STATE_BIOS_LOCKED)
 343		return -EACCES;
 344
 345	get_online_cpus();
 346	rapl_write_data_raw(rd, PL1_ENABLE, mode);
 347	if (rapl_defaults->set_floor_freq)
 348		rapl_defaults->set_floor_freq(rd, mode);
 349	put_online_cpus();
 350
 351	return 0;
 352}
 353
 354static int get_domain_enable(struct powercap_zone *power_zone, bool *mode)
 355{
 356	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
 357	u64 val;
 358
 359	if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
 360		*mode = false;
 361		return 0;
 362	}
 363	get_online_cpus();
 364	if (rapl_read_data_raw(rd, PL1_ENABLE, true, &val)) {
 365		put_online_cpus();
 366		return -EIO;
 367	}
 368	*mode = val;
 369	put_online_cpus();
 370
 371	return 0;
 372}
 373
 374/* per RAPL domain ops, in the order of rapl_domain_type */
 375static const struct powercap_zone_ops zone_ops[] = {
 376	/* RAPL_DOMAIN_PACKAGE */
 377	{
 378		.get_energy_uj = get_energy_counter,
 379		.get_max_energy_range_uj = get_max_energy_counter,
 380		.release = release_zone,
 381		.set_enable = set_domain_enable,
 382		.get_enable = get_domain_enable,
 383	},
 384	/* RAPL_DOMAIN_PP0 */
 385	{
 386		.get_energy_uj = get_energy_counter,
 387		.get_max_energy_range_uj = get_max_energy_counter,
 388		.release = release_zone,
 389		.set_enable = set_domain_enable,
 390		.get_enable = get_domain_enable,
 391	},
 392	/* RAPL_DOMAIN_PP1 */
 393	{
 394		.get_energy_uj = get_energy_counter,
 395		.get_max_energy_range_uj = get_max_energy_counter,
 396		.release = release_zone,
 397		.set_enable = set_domain_enable,
 398		.get_enable = get_domain_enable,
 399	},
 400	/* RAPL_DOMAIN_DRAM */
 401	{
 402		.get_energy_uj = get_energy_counter,
 403		.get_max_energy_range_uj = get_max_energy_counter,
 404		.release = release_zone,
 405		.set_enable = set_domain_enable,
 406		.get_enable = get_domain_enable,
 407	},
 408	/* RAPL_DOMAIN_PLATFORM */
 409	{
 410		.get_energy_uj = get_energy_counter,
 411		.get_max_energy_range_uj = get_max_energy_counter,
 412		.release = release_zone,
 413		.set_enable = set_domain_enable,
 414		.get_enable = get_domain_enable,
 415	},
 416};
 417
 418
 419/*
 420 * Constraint index used by powercap can be different than power limit (PL)
 421 * index in that some  PLs maybe missing due to non-existant MSRs. So we
 422 * need to convert here by finding the valid PLs only (name populated).
 423 */
 424static int contraint_to_pl(struct rapl_domain *rd, int cid)
 425{
 426	int i, j;
 427
 428	for (i = 0, j = 0; i < NR_POWER_LIMITS; i++) {
 429		if ((rd->rpl[i].name) && j++ == cid) {
 430			pr_debug("%s: index %d\n", __func__, i);
 431			return i;
 432		}
 433	}
 434	pr_err("Cannot find matching power limit for constraint %d\n", cid);
 435
 436	return -EINVAL;
 437}
 438
 439static int set_power_limit(struct powercap_zone *power_zone, int cid,
 440			u64 power_limit)
 441{
 442	struct rapl_domain *rd;
 443	struct rapl_package *rp;
 444	int ret = 0;
 445	int id;
 446
 447	get_online_cpus();
 448	rd = power_zone_to_rapl_domain(power_zone);
 449	id = contraint_to_pl(rd, cid);
 450	if (id < 0) {
 451		ret = id;
 452		goto set_exit;
 453	}
 454
 455	rp = rd->rp;
 456
 457	if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
 458		dev_warn(&power_zone->dev, "%s locked by BIOS, monitoring only\n",
 459			rd->name);
 460		ret = -EACCES;
 461		goto set_exit;
 462	}
 463
 464	switch (rd->rpl[id].prim_id) {
 465	case PL1_ENABLE:
 466		rapl_write_data_raw(rd, POWER_LIMIT1, power_limit);
 467		break;
 468	case PL2_ENABLE:
 469		rapl_write_data_raw(rd, POWER_LIMIT2, power_limit);
 470		break;
 471	default:
 472		ret = -EINVAL;
 473	}
 474	if (!ret)
 475		package_power_limit_irq_save(rp);
 476set_exit:
 477	put_online_cpus();
 478	return ret;
 479}
 480
 481static int get_current_power_limit(struct powercap_zone *power_zone, int cid,
 482					u64 *data)
 483{
 484	struct rapl_domain *rd;
 485	u64 val;
 486	int prim;
 487	int ret = 0;
 488	int id;
 489
 490	get_online_cpus();
 491	rd = power_zone_to_rapl_domain(power_zone);
 492	id = contraint_to_pl(rd, cid);
 493	if (id < 0) {
 494		ret = id;
 495		goto get_exit;
 496	}
 497
 498	switch (rd->rpl[id].prim_id) {
 499	case PL1_ENABLE:
 500		prim = POWER_LIMIT1;
 501		break;
 502	case PL2_ENABLE:
 503		prim = POWER_LIMIT2;
 504		break;
 505	default:
 506		put_online_cpus();
 507		return -EINVAL;
 508	}
 509	if (rapl_read_data_raw(rd, prim, true, &val))
 510		ret = -EIO;
 511	else
 512		*data = val;
 513
 514get_exit:
 515	put_online_cpus();
 516
 517	return ret;
 518}
 519
 520static int set_time_window(struct powercap_zone *power_zone, int cid,
 521								u64 window)
 522{
 523	struct rapl_domain *rd;
 524	int ret = 0;
 525	int id;
 526
 527	get_online_cpus();
 528	rd = power_zone_to_rapl_domain(power_zone);
 529	id = contraint_to_pl(rd, cid);
 530	if (id < 0) {
 531		ret = id;
 532		goto set_time_exit;
 533	}
 534
 535	switch (rd->rpl[id].prim_id) {
 536	case PL1_ENABLE:
 537		rapl_write_data_raw(rd, TIME_WINDOW1, window);
 538		break;
 539	case PL2_ENABLE:
 540		rapl_write_data_raw(rd, TIME_WINDOW2, window);
 541		break;
 542	default:
 543		ret = -EINVAL;
 544	}
 545
 546set_time_exit:
 547	put_online_cpus();
 548	return ret;
 549}
 550
 551static int get_time_window(struct powercap_zone *power_zone, int cid, u64 *data)
 552{
 553	struct rapl_domain *rd;
 554	u64 val;
 555	int ret = 0;
 556	int id;
 557
 558	get_online_cpus();
 559	rd = power_zone_to_rapl_domain(power_zone);
 560	id = contraint_to_pl(rd, cid);
 561	if (id < 0) {
 562		ret = id;
 563		goto get_time_exit;
 564	}
 565
 566	switch (rd->rpl[id].prim_id) {
 567	case PL1_ENABLE:
 568		ret = rapl_read_data_raw(rd, TIME_WINDOW1, true, &val);
 569		break;
 570	case PL2_ENABLE:
 571		ret = rapl_read_data_raw(rd, TIME_WINDOW2, true, &val);
 572		break;
 573	default:
 574		put_online_cpus();
 575		return -EINVAL;
 576	}
 577	if (!ret)
 578		*data = val;
 579
 580get_time_exit:
 581	put_online_cpus();
 582
 583	return ret;
 584}
 585
 586static const char *get_constraint_name(struct powercap_zone *power_zone, int cid)
 587{
 588	struct rapl_domain *rd;
 589	int id;
 590
 591	rd = power_zone_to_rapl_domain(power_zone);
 592	id = contraint_to_pl(rd, cid);
 593	if (id >= 0)
 594		return rd->rpl[id].name;
 595
 596	return NULL;
 597}
 598
 599
 600static int get_max_power(struct powercap_zone *power_zone, int id,
 601					u64 *data)
 602{
 603	struct rapl_domain *rd;
 604	u64 val;
 605	int prim;
 606	int ret = 0;
 607
 608	get_online_cpus();
 609	rd = power_zone_to_rapl_domain(power_zone);
 610	switch (rd->rpl[id].prim_id) {
 611	case PL1_ENABLE:
 612		prim = THERMAL_SPEC_POWER;
 613		break;
 614	case PL2_ENABLE:
 615		prim = MAX_POWER;
 616		break;
 617	default:
 618		put_online_cpus();
 619		return -EINVAL;
 620	}
 621	if (rapl_read_data_raw(rd, prim, true, &val))
 622		ret = -EIO;
 623	else
 624		*data = val;
 625
 626	put_online_cpus();
 627
 628	return ret;
 629}
 630
 631static const struct powercap_zone_constraint_ops constraint_ops = {
 632	.set_power_limit_uw = set_power_limit,
 633	.get_power_limit_uw = get_current_power_limit,
 634	.set_time_window_us = set_time_window,
 635	.get_time_window_us = get_time_window,
 636	.get_max_power_uw = get_max_power,
 637	.get_name = get_constraint_name,
 638};
 639
 640/* called after domain detection and package level data are set */
 641static void rapl_init_domains(struct rapl_package *rp)
 642{
 643	int i;
 644	struct rapl_domain *rd = rp->domains;
 645
 646	for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
 647		unsigned int mask = rp->domain_map & (1 << i);
 648		switch (mask) {
 649		case BIT(RAPL_DOMAIN_PACKAGE):
 650			rd->name = rapl_domain_names[RAPL_DOMAIN_PACKAGE];
 651			rd->id = RAPL_DOMAIN_PACKAGE;
 652			rd->msrs[0] = MSR_PKG_POWER_LIMIT;
 653			rd->msrs[1] = MSR_PKG_ENERGY_STATUS;
 654			rd->msrs[2] = MSR_PKG_PERF_STATUS;
 655			rd->msrs[3] = 0;
 656			rd->msrs[4] = MSR_PKG_POWER_INFO;
 657			rd->rpl[0].prim_id = PL1_ENABLE;
 658			rd->rpl[0].name = pl1_name;
 659			rd->rpl[1].prim_id = PL2_ENABLE;
 660			rd->rpl[1].name = pl2_name;
 661			break;
 662		case BIT(RAPL_DOMAIN_PP0):
 663			rd->name = rapl_domain_names[RAPL_DOMAIN_PP0];
 664			rd->id = RAPL_DOMAIN_PP0;
 665			rd->msrs[0] = MSR_PP0_POWER_LIMIT;
 666			rd->msrs[1] = MSR_PP0_ENERGY_STATUS;
 667			rd->msrs[2] = 0;
 668			rd->msrs[3] = MSR_PP0_POLICY;
 669			rd->msrs[4] = 0;
 670			rd->rpl[0].prim_id = PL1_ENABLE;
 671			rd->rpl[0].name = pl1_name;
 672			break;
 673		case BIT(RAPL_DOMAIN_PP1):
 674			rd->name = rapl_domain_names[RAPL_DOMAIN_PP1];
 675			rd->id = RAPL_DOMAIN_PP1;
 676			rd->msrs[0] = MSR_PP1_POWER_LIMIT;
 677			rd->msrs[1] = MSR_PP1_ENERGY_STATUS;
 678			rd->msrs[2] = 0;
 679			rd->msrs[3] = MSR_PP1_POLICY;
 680			rd->msrs[4] = 0;
 681			rd->rpl[0].prim_id = PL1_ENABLE;
 682			rd->rpl[0].name = pl1_name;
 683			break;
 684		case BIT(RAPL_DOMAIN_DRAM):
 685			rd->name = rapl_domain_names[RAPL_DOMAIN_DRAM];
 686			rd->id = RAPL_DOMAIN_DRAM;
 687			rd->msrs[0] = MSR_DRAM_POWER_LIMIT;
 688			rd->msrs[1] = MSR_DRAM_ENERGY_STATUS;
 689			rd->msrs[2] = MSR_DRAM_PERF_STATUS;
 690			rd->msrs[3] = 0;
 691			rd->msrs[4] = MSR_DRAM_POWER_INFO;
 692			rd->rpl[0].prim_id = PL1_ENABLE;
 693			rd->rpl[0].name = pl1_name;
 694			rd->domain_energy_unit =
 695				rapl_defaults->dram_domain_energy_unit;
 696			if (rd->domain_energy_unit)
 697				pr_info("DRAM domain energy unit %dpj\n",
 698					rd->domain_energy_unit);
 699			break;
 700		}
 701		if (mask) {
 702			rd->rp = rp;
 703			rd++;
 704		}
 705	}
 706}
 707
 708static u64 rapl_unit_xlate(struct rapl_domain *rd, enum unit_type type,
 709			u64 value, int to_raw)
 710{
 711	u64 units = 1;
 712	struct rapl_package *rp = rd->rp;
 713	u64 scale = 1;
 714
 715	switch (type) {
 716	case POWER_UNIT:
 717		units = rp->power_unit;
 718		break;
 719	case ENERGY_UNIT:
 720		scale = ENERGY_UNIT_SCALE;
 721		/* per domain unit takes precedence */
 722		if (rd->domain_energy_unit)
 723			units = rd->domain_energy_unit;
 724		else
 725			units = rp->energy_unit;
 726		break;
 727	case TIME_UNIT:
 728		return rapl_defaults->compute_time_window(rp, value, to_raw);
 729	case ARBITRARY_UNIT:
 730	default:
 731		return value;
 732	};
 733
 734	if (to_raw)
 735		return div64_u64(value, units) * scale;
 736
 737	value *= units;
 738
 739	return div64_u64(value, scale);
 740}
 741
 742/* in the order of enum rapl_primitives */
 743static struct rapl_primitive_info rpi[] = {
 744	/* name, mask, shift, msr index, unit divisor */
 745	PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
 746				RAPL_DOMAIN_MSR_STATUS, ENERGY_UNIT, 0),
 747	PRIMITIVE_INFO_INIT(POWER_LIMIT1, POWER_LIMIT1_MASK, 0,
 748				RAPL_DOMAIN_MSR_LIMIT, POWER_UNIT, 0),
 749	PRIMITIVE_INFO_INIT(POWER_LIMIT2, POWER_LIMIT2_MASK, 32,
 750				RAPL_DOMAIN_MSR_LIMIT, POWER_UNIT, 0),
 751	PRIMITIVE_INFO_INIT(FW_LOCK, POWER_PP_LOCK, 31,
 752				RAPL_DOMAIN_MSR_LIMIT, ARBITRARY_UNIT, 0),
 753	PRIMITIVE_INFO_INIT(PL1_ENABLE, POWER_LIMIT1_ENABLE, 15,
 754				RAPL_DOMAIN_MSR_LIMIT, ARBITRARY_UNIT, 0),
 755	PRIMITIVE_INFO_INIT(PL1_CLAMP, POWER_LIMIT1_CLAMP, 16,
 756				RAPL_DOMAIN_MSR_LIMIT, ARBITRARY_UNIT, 0),
 757	PRIMITIVE_INFO_INIT(PL2_ENABLE, POWER_LIMIT2_ENABLE, 47,
 758				RAPL_DOMAIN_MSR_LIMIT, ARBITRARY_UNIT, 0),
 759	PRIMITIVE_INFO_INIT(PL2_CLAMP, POWER_LIMIT2_CLAMP, 48,
 760				RAPL_DOMAIN_MSR_LIMIT, ARBITRARY_UNIT, 0),
 761	PRIMITIVE_INFO_INIT(TIME_WINDOW1, TIME_WINDOW1_MASK, 17,
 762				RAPL_DOMAIN_MSR_LIMIT, TIME_UNIT, 0),
 763	PRIMITIVE_INFO_INIT(TIME_WINDOW2, TIME_WINDOW2_MASK, 49,
 764				RAPL_DOMAIN_MSR_LIMIT, TIME_UNIT, 0),
 765	PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, POWER_INFO_THERMAL_SPEC_MASK,
 766				0, RAPL_DOMAIN_MSR_INFO, POWER_UNIT, 0),
 767	PRIMITIVE_INFO_INIT(MAX_POWER, POWER_INFO_MAX_MASK, 32,
 768				RAPL_DOMAIN_MSR_INFO, POWER_UNIT, 0),
 769	PRIMITIVE_INFO_INIT(MIN_POWER, POWER_INFO_MIN_MASK, 16,
 770				RAPL_DOMAIN_MSR_INFO, POWER_UNIT, 0),
 771	PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, POWER_INFO_MAX_TIME_WIN_MASK, 48,
 772				RAPL_DOMAIN_MSR_INFO, TIME_UNIT, 0),
 773	PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
 774				RAPL_DOMAIN_MSR_PERF, TIME_UNIT, 0),
 775	PRIMITIVE_INFO_INIT(PRIORITY_LEVEL, PP_POLICY_MASK, 0,
 776				RAPL_DOMAIN_MSR_POLICY, ARBITRARY_UNIT, 0),
 777	/* non-hardware */
 778	PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, POWER_UNIT,
 779				RAPL_PRIMITIVE_DERIVED),
 780	{NULL, 0, 0, 0},
 781};
 782
 783/* Read primitive data based on its related struct rapl_primitive_info.
 784 * if xlate flag is set, return translated data based on data units, i.e.
 785 * time, energy, and power.
 786 * RAPL MSRs are non-architectual and are laid out not consistently across
 787 * domains. Here we use primitive info to allow writing consolidated access
 788 * functions.
 789 * For a given primitive, it is processed by MSR mask and shift. Unit conversion
 790 * is pre-assigned based on RAPL unit MSRs read at init time.
 791 * 63-------------------------- 31--------------------------- 0
 792 * |                           xxxxx (mask)                   |
 793 * |                                |<- shift ----------------|
 794 * 63-------------------------- 31--------------------------- 0
 795 */
 796static int rapl_read_data_raw(struct rapl_domain *rd,
 797			enum rapl_primitives prim,
 798			bool xlate, u64 *data)
 799{
 800	u64 value, final;
 801	u32 msr;
 802	struct rapl_primitive_info *rp = &rpi[prim];
 803	int cpu;
 804
 805	if (!rp->name || rp->flag & RAPL_PRIMITIVE_DUMMY)
 806		return -EINVAL;
 807
 808	msr = rd->msrs[rp->id];
 809	if (!msr)
 810		return -EINVAL;
 811
 812	cpu = rd->rp->lead_cpu;
 813
 814	/* special-case package domain, which uses a different bit*/
 815	if (prim == FW_LOCK && rd->id == RAPL_DOMAIN_PACKAGE) {
 816		rp->mask = POWER_PACKAGE_LOCK;
 817		rp->shift = 63;
 818	}
 819	/* non-hardware data are collected by the polling thread */
 820	if (rp->flag & RAPL_PRIMITIVE_DERIVED) {
 821		*data = rd->rdd.primitives[prim];
 822		return 0;
 823	}
 824
 825	if (rdmsrl_safe_on_cpu(cpu, msr, &value)) {
 826		pr_debug("failed to read msr 0x%x on cpu %d\n", msr, cpu);
 827		return -EIO;
 828	}
 829
 830	final = value & rp->mask;
 831	final = final >> rp->shift;
 832	if (xlate)
 833		*data = rapl_unit_xlate(rd, rp->unit, final, 0);
 834	else
 835		*data = final;
 836
 837	return 0;
 838}
 839
 840
 841static int msrl_update_safe(u32 msr_no, u64 clear_mask, u64 set_mask)
 842{
 843	int err;
 844	u64 val;
 845
 846	err = rdmsrl_safe(msr_no, &val);
 847	if (err)
 848		goto out;
 849
 850	val &= ~clear_mask;
 851	val |= set_mask;
 852
 853	err = wrmsrl_safe(msr_no, val);
 854
 855out:
 856	return err;
 857}
 858
 859static void msrl_update_func(void *info)
 860{
 861	struct msrl_action *ma = info;
 862
 863	ma->err = msrl_update_safe(ma->msr_no, ma->clear_mask, ma->set_mask);
 864}
 865
 866/* Similar use of primitive info in the read counterpart */
 867static int rapl_write_data_raw(struct rapl_domain *rd,
 868			enum rapl_primitives prim,
 869			unsigned long long value)
 870{
 871	struct rapl_primitive_info *rp = &rpi[prim];
 872	int cpu;
 873	u64 bits;
 874	struct msrl_action ma;
 875	int ret;
 876
 877	cpu = rd->rp->lead_cpu;
 878	bits = rapl_unit_xlate(rd, rp->unit, value, 1);
 879	bits <<= rp->shift;
 880	bits &= rp->mask;
 881
 882	memset(&ma, 0, sizeof(ma));
 883
 884	ma.msr_no = rd->msrs[rp->id];
 885	ma.clear_mask = rp->mask;
 886	ma.set_mask = bits;
 887
 888	ret = smp_call_function_single(cpu, msrl_update_func, &ma, 1);
 889	if (ret)
 890		WARN_ON_ONCE(ret);
 891	else
 892		ret = ma.err;
 893
 894	return ret;
 895}
 896
 897/*
 898 * Raw RAPL data stored in MSRs are in certain scales. We need to
 899 * convert them into standard units based on the units reported in
 900 * the RAPL unit MSRs. This is specific to CPUs as the method to
 901 * calculate units differ on different CPUs.
 902 * We convert the units to below format based on CPUs.
 903 * i.e.
 904 * energy unit: picoJoules  : Represented in picoJoules by default
 905 * power unit : microWatts  : Represented in milliWatts by default
 906 * time unit  : microseconds: Represented in seconds by default
 907 */
 908static int rapl_check_unit_core(struct rapl_package *rp, int cpu)
 909{
 910	u64 msr_val;
 911	u32 value;
 912
 913	if (rdmsrl_safe_on_cpu(cpu, MSR_RAPL_POWER_UNIT, &msr_val)) {
 914		pr_err("Failed to read power unit MSR 0x%x on CPU %d, exit.\n",
 915			MSR_RAPL_POWER_UNIT, cpu);
 916		return -ENODEV;
 917	}
 918
 919	value = (msr_val & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
 920	rp->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
 921
 922	value = (msr_val & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
 923	rp->power_unit = 1000000 / (1 << value);
 924
 925	value = (msr_val & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
 926	rp->time_unit = 1000000 / (1 << value);
 927
 928	pr_debug("Core CPU package %d energy=%dpJ, time=%dus, power=%duW\n",
 929		rp->id, rp->energy_unit, rp->time_unit, rp->power_unit);
 930
 931	return 0;
 932}
 933
 934static int rapl_check_unit_atom(struct rapl_package *rp, int cpu)
 935{
 936	u64 msr_val;
 937	u32 value;
 938
 939	if (rdmsrl_safe_on_cpu(cpu, MSR_RAPL_POWER_UNIT, &msr_val)) {
 940		pr_err("Failed to read power unit MSR 0x%x on CPU %d, exit.\n",
 941			MSR_RAPL_POWER_UNIT, cpu);
 942		return -ENODEV;
 943	}
 944	value = (msr_val & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
 945	rp->energy_unit = ENERGY_UNIT_SCALE * 1 << value;
 946
 947	value = (msr_val & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
 948	rp->power_unit = (1 << value) * 1000;
 949
 950	value = (msr_val & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
 951	rp->time_unit = 1000000 / (1 << value);
 952
 953	pr_debug("Atom package %d energy=%dpJ, time=%dus, power=%duW\n",
 954		rp->id, rp->energy_unit, rp->time_unit, rp->power_unit);
 955
 956	return 0;
 957}
 958
 959static void power_limit_irq_save_cpu(void *info)
 960{
 961	u32 l, h = 0;
 962	struct rapl_package *rp = (struct rapl_package *)info;
 963
 964	/* save the state of PLN irq mask bit before disabling it */
 965	rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
 966	if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) {
 967		rp->power_limit_irq = l & PACKAGE_THERM_INT_PLN_ENABLE;
 968		rp->power_limit_irq |= PACKAGE_PLN_INT_SAVED;
 969	}
 970	l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
 971	wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
 972}
 973
 974
 975/* REVISIT:
 976 * When package power limit is set artificially low by RAPL, LVT
 977 * thermal interrupt for package power limit should be ignored
 978 * since we are not really exceeding the real limit. The intention
 979 * is to avoid excessive interrupts while we are trying to save power.
 980 * A useful feature might be routing the package_power_limit interrupt
 981 * to userspace via eventfd. once we have a usecase, this is simple
 982 * to do by adding an atomic notifier.
 983 */
 984
 985static void package_power_limit_irq_save(struct rapl_package *rp)
 986{
 987	if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
 988		return;
 989
 990	smp_call_function_single(rp->lead_cpu, power_limit_irq_save_cpu, rp, 1);
 991}
 992
 993/*
 994 * Restore per package power limit interrupt enable state. Called from cpu
 995 * hotplug code on package removal.
 996 */
 997static void package_power_limit_irq_restore(struct rapl_package *rp)
 998{
 999	u32 l, h;
1000
1001	if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
1002		return;
1003
1004	/* irq enable state not saved, nothing to restore */
1005	if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED))
1006		return;
1007
1008	rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
1009
1010	if (rp->power_limit_irq & PACKAGE_THERM_INT_PLN_ENABLE)
1011		l |= PACKAGE_THERM_INT_PLN_ENABLE;
1012	else
1013		l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
1014
1015	wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
1016}
1017
1018static void set_floor_freq_default(struct rapl_domain *rd, bool mode)
1019{
1020	int nr_powerlimit = find_nr_power_limit(rd);
1021
1022	/* always enable clamp such that p-state can go below OS requested
1023	 * range. power capping priority over guranteed frequency.
1024	 */
1025	rapl_write_data_raw(rd, PL1_CLAMP, mode);
1026
1027	/* some domains have pl2 */
1028	if (nr_powerlimit > 1) {
1029		rapl_write_data_raw(rd, PL2_ENABLE, mode);
1030		rapl_write_data_raw(rd, PL2_CLAMP, mode);
1031	}
1032}
1033
1034static void set_floor_freq_atom(struct rapl_domain *rd, bool enable)
1035{
1036	static u32 power_ctrl_orig_val;
1037	u32 mdata;
1038
1039	if (!rapl_defaults->floor_freq_reg_addr) {
1040		pr_err("Invalid floor frequency config register\n");
1041		return;
1042	}
1043
1044	if (!power_ctrl_orig_val)
1045		iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_CR_READ,
1046			      rapl_defaults->floor_freq_reg_addr,
1047			      &power_ctrl_orig_val);
1048	mdata = power_ctrl_orig_val;
1049	if (enable) {
1050		mdata &= ~(0x7f << 8);
1051		mdata |= 1 << 8;
1052	}
1053	iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_CR_WRITE,
1054		       rapl_defaults->floor_freq_reg_addr, mdata);
1055}
1056
1057static u64 rapl_compute_time_window_core(struct rapl_package *rp, u64 value,
1058					bool to_raw)
1059{
1060	u64 f, y; /* fraction and exp. used for time unit */
1061
1062	/*
1063	 * Special processing based on 2^Y*(1+F/4), refer
1064	 * to Intel Software Developer's manual Vol.3B: CH 14.9.3.
1065	 */
1066	if (!to_raw) {
1067		f = (value & 0x60) >> 5;
1068		y = value & 0x1f;
1069		value = (1 << y) * (4 + f) * rp->time_unit / 4;
1070	} else {
1071		do_div(value, rp->time_unit);
1072		y = ilog2(value);
1073		f = div64_u64(4 * (value - (1 << y)), 1 << y);
1074		value = (y & 0x1f) | ((f & 0x3) << 5);
1075	}
1076	return value;
1077}
1078
1079static u64 rapl_compute_time_window_atom(struct rapl_package *rp, u64 value,
1080					bool to_raw)
1081{
1082	/*
1083	 * Atom time unit encoding is straight forward val * time_unit,
1084	 * where time_unit is default to 1 sec. Never 0.
1085	 */
1086	if (!to_raw)
1087		return (value) ? value *= rp->time_unit : rp->time_unit;
1088	else
1089		value = div64_u64(value, rp->time_unit);
1090
1091	return value;
1092}
1093
1094static const struct rapl_defaults rapl_defaults_core = {
1095	.floor_freq_reg_addr = 0,
1096	.check_unit = rapl_check_unit_core,
1097	.set_floor_freq = set_floor_freq_default,
1098	.compute_time_window = rapl_compute_time_window_core,
1099};
1100
1101static const struct rapl_defaults rapl_defaults_hsw_server = {
1102	.check_unit = rapl_check_unit_core,
1103	.set_floor_freq = set_floor_freq_default,
1104	.compute_time_window = rapl_compute_time_window_core,
1105	.dram_domain_energy_unit = 15300,
1106};
1107
1108static const struct rapl_defaults rapl_defaults_byt = {
1109	.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_BYT,
1110	.check_unit = rapl_check_unit_atom,
1111	.set_floor_freq = set_floor_freq_atom,
1112	.compute_time_window = rapl_compute_time_window_atom,
1113};
1114
1115static const struct rapl_defaults rapl_defaults_tng = {
1116	.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_TNG,
1117	.check_unit = rapl_check_unit_atom,
1118	.set_floor_freq = set_floor_freq_atom,
1119	.compute_time_window = rapl_compute_time_window_atom,
1120};
1121
1122static const struct rapl_defaults rapl_defaults_ann = {
1123	.floor_freq_reg_addr = 0,
1124	.check_unit = rapl_check_unit_atom,
1125	.set_floor_freq = NULL,
1126	.compute_time_window = rapl_compute_time_window_atom,
1127};
1128
1129static const struct rapl_defaults rapl_defaults_cht = {
1130	.floor_freq_reg_addr = 0,
1131	.check_unit = rapl_check_unit_atom,
1132	.set_floor_freq = NULL,
1133	.compute_time_window = rapl_compute_time_window_atom,
1134};
1135
1136#define RAPL_CPU(_model, _ops) {			\
1137		.vendor = X86_VENDOR_INTEL,		\
1138		.family = 6,				\
1139		.model = _model,			\
1140		.driver_data = (kernel_ulong_t)&_ops,	\
1141		}
1142
1143static const struct x86_cpu_id rapl_ids[] __initconst = {
1144	RAPL_CPU(INTEL_FAM6_SANDYBRIDGE,	rapl_defaults_core),
1145	RAPL_CPU(INTEL_FAM6_SANDYBRIDGE_X,	rapl_defaults_core),
1146
1147	RAPL_CPU(INTEL_FAM6_IVYBRIDGE,		rapl_defaults_core),
1148	RAPL_CPU(INTEL_FAM6_IVYBRIDGE_X,	rapl_defaults_core),
1149
1150	RAPL_CPU(INTEL_FAM6_HASWELL_CORE,	rapl_defaults_core),
1151	RAPL_CPU(INTEL_FAM6_HASWELL_ULT,	rapl_defaults_core),
1152	RAPL_CPU(INTEL_FAM6_HASWELL_GT3E,	rapl_defaults_core),
1153	RAPL_CPU(INTEL_FAM6_HASWELL_X,		rapl_defaults_hsw_server),
1154
1155	RAPL_CPU(INTEL_FAM6_BROADWELL_CORE,	rapl_defaults_core),
1156	RAPL_CPU(INTEL_FAM6_BROADWELL_GT3E,	rapl_defaults_core),
1157	RAPL_CPU(INTEL_FAM6_BROADWELL_XEON_D,	rapl_defaults_core),
1158	RAPL_CPU(INTEL_FAM6_BROADWELL_X,	rapl_defaults_hsw_server),
1159
1160	RAPL_CPU(INTEL_FAM6_SKYLAKE_DESKTOP,	rapl_defaults_core),
1161	RAPL_CPU(INTEL_FAM6_SKYLAKE_MOBILE,	rapl_defaults_core),
1162	RAPL_CPU(INTEL_FAM6_SKYLAKE_X,		rapl_defaults_hsw_server),
1163	RAPL_CPU(INTEL_FAM6_KABYLAKE_MOBILE,	rapl_defaults_core),
1164	RAPL_CPU(INTEL_FAM6_KABYLAKE_DESKTOP,	rapl_defaults_core),
1165	RAPL_CPU(INTEL_FAM6_CANNONLAKE_MOBILE,	rapl_defaults_core),
1166
1167	RAPL_CPU(INTEL_FAM6_ATOM_SILVERMONT1,	rapl_defaults_byt),
1168	RAPL_CPU(INTEL_FAM6_ATOM_AIRMONT,	rapl_defaults_cht),
1169	RAPL_CPU(INTEL_FAM6_ATOM_MERRIFIELD,	rapl_defaults_tng),
1170	RAPL_CPU(INTEL_FAM6_ATOM_MOOREFIELD,	rapl_defaults_ann),
1171	RAPL_CPU(INTEL_FAM6_ATOM_GOLDMONT,	rapl_defaults_core),
1172	RAPL_CPU(INTEL_FAM6_ATOM_GEMINI_LAKE,	rapl_defaults_core),
1173	RAPL_CPU(INTEL_FAM6_ATOM_DENVERTON,	rapl_defaults_core),
1174
1175	RAPL_CPU(INTEL_FAM6_XEON_PHI_KNL,	rapl_defaults_hsw_server),
1176	RAPL_CPU(INTEL_FAM6_XEON_PHI_KNM,	rapl_defaults_hsw_server),
1177	{}
1178};
1179MODULE_DEVICE_TABLE(x86cpu, rapl_ids);
1180
1181/* Read once for all raw primitive data for domains */
1182static void rapl_update_domain_data(struct rapl_package *rp)
1183{
1184	int dmn, prim;
1185	u64 val;
1186
1187	for (dmn = 0; dmn < rp->nr_domains; dmn++) {
1188		pr_debug("update package %d domain %s data\n", rp->id,
1189			 rp->domains[dmn].name);
1190		/* exclude non-raw primitives */
1191		for (prim = 0; prim < NR_RAW_PRIMITIVES; prim++) {
1192			if (!rapl_read_data_raw(&rp->domains[dmn], prim,
1193						rpi[prim].unit, &val))
1194				rp->domains[dmn].rdd.primitives[prim] =	val;
1195		}
1196	}
1197
1198}
1199
1200static void rapl_unregister_powercap(void)
1201{
1202	if (platform_rapl_domain) {
1203		powercap_unregister_zone(control_type,
1204					 &platform_rapl_domain->power_zone);
1205		kfree(platform_rapl_domain);
1206	}
1207	powercap_unregister_control_type(control_type);
1208}
1209
1210static int rapl_package_register_powercap(struct rapl_package *rp)
1211{
1212	struct rapl_domain *rd;
1213	char dev_name[17]; /* max domain name = 7 + 1 + 8 for int + 1 for null*/
1214	struct powercap_zone *power_zone = NULL;
1215	int nr_pl, ret;
1216
1217	/* Update the domain data of the new package */
1218	rapl_update_domain_data(rp);
1219
1220	/* first we register package domain as the parent zone*/
1221	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1222		if (rd->id == RAPL_DOMAIN_PACKAGE) {
1223			nr_pl = find_nr_power_limit(rd);
1224			pr_debug("register socket %d package domain %s\n",
1225				rp->id, rd->name);
1226			memset(dev_name, 0, sizeof(dev_name));
1227			snprintf(dev_name, sizeof(dev_name), "%s-%d",
1228				rd->name, rp->id);
1229			power_zone = powercap_register_zone(&rd->power_zone,
1230							control_type,
1231							dev_name, NULL,
1232							&zone_ops[rd->id],
1233							nr_pl,
1234							&constraint_ops);
1235			if (IS_ERR(power_zone)) {
1236				pr_debug("failed to register package, %d\n",
1237					rp->id);
1238				return PTR_ERR(power_zone);
1239			}
1240			/* track parent zone in per package/socket data */
1241			rp->power_zone = power_zone;
1242			/* done, only one package domain per socket */
1243			break;
1244		}
1245	}
1246	if (!power_zone) {
1247		pr_err("no package domain found, unknown topology!\n");
1248		return -ENODEV;
1249	}
1250	/* now register domains as children of the socket/package*/
1251	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1252		if (rd->id == RAPL_DOMAIN_PACKAGE)
1253			continue;
1254		/* number of power limits per domain varies */
1255		nr_pl = find_nr_power_limit(rd);
1256		power_zone = powercap_register_zone(&rd->power_zone,
1257						control_type, rd->name,
1258						rp->power_zone,
1259						&zone_ops[rd->id], nr_pl,
1260						&constraint_ops);
1261
1262		if (IS_ERR(power_zone)) {
1263			pr_debug("failed to register power_zone, %d:%s:%s\n",
1264				rp->id, rd->name, dev_name);
1265			ret = PTR_ERR(power_zone);
1266			goto err_cleanup;
1267		}
1268	}
1269	return 0;
1270
1271err_cleanup:
1272	/*
1273	 * Clean up previously initialized domains within the package if we
1274	 * failed after the first domain setup.
1275	 */
1276	while (--rd >= rp->domains) {
1277		pr_debug("unregister package %d domain %s\n", rp->id, rd->name);
1278		powercap_unregister_zone(control_type, &rd->power_zone);
1279	}
1280
1281	return ret;
1282}
1283
1284static int __init rapl_register_psys(void)
1285{
1286	struct rapl_domain *rd;
1287	struct powercap_zone *power_zone;
1288	u64 val;
1289
1290	if (rdmsrl_safe_on_cpu(0, MSR_PLATFORM_ENERGY_STATUS, &val) || !val)
1291		return -ENODEV;
1292
1293	if (rdmsrl_safe_on_cpu(0, MSR_PLATFORM_POWER_LIMIT, &val) || !val)
1294		return -ENODEV;
1295
1296	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
1297	if (!rd)
1298		return -ENOMEM;
1299
1300	rd->name = rapl_domain_names[RAPL_DOMAIN_PLATFORM];
1301	rd->id = RAPL_DOMAIN_PLATFORM;
1302	rd->msrs[0] = MSR_PLATFORM_POWER_LIMIT;
1303	rd->msrs[1] = MSR_PLATFORM_ENERGY_STATUS;
1304	rd->rpl[0].prim_id = PL1_ENABLE;
1305	rd->rpl[0].name = pl1_name;
1306	rd->rpl[1].prim_id = PL2_ENABLE;
1307	rd->rpl[1].name = pl2_name;
1308	rd->rp = find_package_by_id(0);
1309
1310	power_zone = powercap_register_zone(&rd->power_zone, control_type,
1311					    "psys", NULL,
1312					    &zone_ops[RAPL_DOMAIN_PLATFORM],
1313					    2, &constraint_ops);
1314
1315	if (IS_ERR(power_zone)) {
1316		kfree(rd);
1317		return PTR_ERR(power_zone);
1318	}
1319
1320	platform_rapl_domain = rd;
1321
1322	return 0;
1323}
1324
1325static int __init rapl_register_powercap(void)
1326{
1327	control_type = powercap_register_control_type(NULL, "intel-rapl", NULL);
1328	if (IS_ERR(control_type)) {
1329		pr_debug("failed to register powercap control_type.\n");
1330		return PTR_ERR(control_type);
1331	}
1332	return 0;
1333}
1334
1335static int rapl_check_domain(int cpu, int domain)
1336{
1337	unsigned msr;
1338	u64 val = 0;
1339
1340	switch (domain) {
1341	case RAPL_DOMAIN_PACKAGE:
1342		msr = MSR_PKG_ENERGY_STATUS;
1343		break;
1344	case RAPL_DOMAIN_PP0:
1345		msr = MSR_PP0_ENERGY_STATUS;
1346		break;
1347	case RAPL_DOMAIN_PP1:
1348		msr = MSR_PP1_ENERGY_STATUS;
1349		break;
1350	case RAPL_DOMAIN_DRAM:
1351		msr = MSR_DRAM_ENERGY_STATUS;
1352		break;
1353	case RAPL_DOMAIN_PLATFORM:
1354		/* PSYS(PLATFORM) is not a CPU domain, so avoid printng error */
1355		return -EINVAL;
1356	default:
1357		pr_err("invalid domain id %d\n", domain);
1358		return -EINVAL;
1359	}
1360	/* make sure domain counters are available and contains non-zero
1361	 * values, otherwise skip it.
1362	 */
1363	if (rdmsrl_safe_on_cpu(cpu, msr, &val) || !val)
1364		return -ENODEV;
1365
1366	return 0;
1367}
1368
1369
1370/*
1371 * Check if power limits are available. Two cases when they are not available:
1372 * 1. Locked by BIOS, in this case we still provide read-only access so that
1373 *    users can see what limit is set by the BIOS.
1374 * 2. Some CPUs make some domains monitoring only which means PLx MSRs may not
1375 *    exist at all. In this case, we do not show the contraints in powercap.
1376 *
1377 * Called after domains are detected and initialized.
1378 */
1379static void rapl_detect_powerlimit(struct rapl_domain *rd)
1380{
1381	u64 val64;
1382	int i;
1383
1384	/* check if the domain is locked by BIOS, ignore if MSR doesn't exist */
1385	if (!rapl_read_data_raw(rd, FW_LOCK, false, &val64)) {
1386		if (val64) {
1387			pr_info("RAPL package %d domain %s locked by BIOS\n",
1388				rd->rp->id, rd->name);
1389			rd->state |= DOMAIN_STATE_BIOS_LOCKED;
1390		}
1391	}
1392	/* check if power limit MSRs exists, otherwise domain is monitoring only */
1393	for (i = 0; i < NR_POWER_LIMITS; i++) {
1394		int prim = rd->rpl[i].prim_id;
1395		if (rapl_read_data_raw(rd, prim, false, &val64))
1396			rd->rpl[i].name = NULL;
1397	}
1398}
1399
1400/* Detect active and valid domains for the given CPU, caller must
1401 * ensure the CPU belongs to the targeted package and CPU hotlug is disabled.
1402 */
1403static int rapl_detect_domains(struct rapl_package *rp, int cpu)
1404{
1405	struct rapl_domain *rd;
1406	int i;
1407
1408	for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
1409		/* use physical package id to read counters */
1410		if (!rapl_check_domain(cpu, i)) {
1411			rp->domain_map |= 1 << i;
1412			pr_info("Found RAPL domain %s\n", rapl_domain_names[i]);
1413		}
1414	}
1415	rp->nr_domains = bitmap_weight(&rp->domain_map,	RAPL_DOMAIN_MAX);
1416	if (!rp->nr_domains) {
1417		pr_debug("no valid rapl domains found in package %d\n", rp->id);
1418		return -ENODEV;
1419	}
1420	pr_debug("found %d domains on package %d\n", rp->nr_domains, rp->id);
1421
1422	rp->domains = kcalloc(rp->nr_domains + 1, sizeof(struct rapl_domain),
1423			GFP_KERNEL);
1424	if (!rp->domains)
1425		return -ENOMEM;
1426
1427	rapl_init_domains(rp);
1428
1429	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++)
1430		rapl_detect_powerlimit(rd);
1431
1432	return 0;
1433}
1434
1435/* called from CPU hotplug notifier, hotplug lock held */
1436static void rapl_remove_package(struct rapl_package *rp)
1437{
1438	struct rapl_domain *rd, *rd_package = NULL;
1439
1440	package_power_limit_irq_restore(rp);
1441
1442	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1443		rapl_write_data_raw(rd, PL1_ENABLE, 0);
1444		rapl_write_data_raw(rd, PL1_CLAMP, 0);
1445		if (find_nr_power_limit(rd) > 1) {
1446			rapl_write_data_raw(rd, PL2_ENABLE, 0);
1447			rapl_write_data_raw(rd, PL2_CLAMP, 0);
1448		}
1449		if (rd->id == RAPL_DOMAIN_PACKAGE) {
1450			rd_package = rd;
1451			continue;
1452		}
1453		pr_debug("remove package, undo power limit on %d: %s\n",
1454			 rp->id, rd->name);
1455		powercap_unregister_zone(control_type, &rd->power_zone);
1456	}
1457	/* do parent zone last */
1458	powercap_unregister_zone(control_type, &rd_package->power_zone);
1459	list_del(&rp->plist);
1460	kfree(rp);
1461}
1462
1463/* called from CPU hotplug notifier, hotplug lock held */
1464static struct rapl_package *rapl_add_package(int cpu, int pkgid)
1465{
1466	struct rapl_package *rp;
1467	int ret;
1468
1469	rp = kzalloc(sizeof(struct rapl_package), GFP_KERNEL);
1470	if (!rp)
1471		return ERR_PTR(-ENOMEM);
1472
1473	/* add the new package to the list */
1474	rp->id = pkgid;
1475	rp->lead_cpu = cpu;
1476
1477	/* check if the package contains valid domains */
1478	if (rapl_detect_domains(rp, cpu) ||
1479		rapl_defaults->check_unit(rp, cpu)) {
1480		ret = -ENODEV;
1481		goto err_free_package;
1482	}
1483	ret = rapl_package_register_powercap(rp);
1484	if (!ret) {
1485		INIT_LIST_HEAD(&rp->plist);
1486		list_add(&rp->plist, &rapl_packages);
1487		return rp;
1488	}
1489
1490err_free_package:
1491	kfree(rp->domains);
1492	kfree(rp);
1493	return ERR_PTR(ret);
1494}
1495
1496/* Handles CPU hotplug on multi-socket systems.
1497 * If a CPU goes online as the first CPU of the physical package
1498 * we add the RAPL package to the system. Similarly, when the last
1499 * CPU of the package is removed, we remove the RAPL package and its
1500 * associated domains. Cooling devices are handled accordingly at
1501 * per-domain level.
1502 */
1503static int rapl_cpu_online(unsigned int cpu)
1504{
1505	int pkgid = topology_physical_package_id(cpu);
1506	struct rapl_package *rp;
1507
1508	rp = find_package_by_id(pkgid);
1509	if (!rp) {
1510		rp = rapl_add_package(cpu, pkgid);
1511		if (IS_ERR(rp))
1512			return PTR_ERR(rp);
1513	}
1514	cpumask_set_cpu(cpu, &rp->cpumask);
1515	return 0;
1516}
1517
1518static int rapl_cpu_down_prep(unsigned int cpu)
1519{
1520	int pkgid = topology_physical_package_id(cpu);
1521	struct rapl_package *rp;
1522	int lead_cpu;
1523
1524	rp = find_package_by_id(pkgid);
1525	if (!rp)
1526		return 0;
1527
1528	cpumask_clear_cpu(cpu, &rp->cpumask);
1529	lead_cpu = cpumask_first(&rp->cpumask);
1530	if (lead_cpu >= nr_cpu_ids)
1531		rapl_remove_package(rp);
1532	else if (rp->lead_cpu == cpu)
1533		rp->lead_cpu = lead_cpu;
1534	return 0;
1535}
1536
1537static enum cpuhp_state pcap_rapl_online;
1538
1539static void power_limit_state_save(void)
1540{
1541	struct rapl_package *rp;
1542	struct rapl_domain *rd;
1543	int nr_pl, ret, i;
1544
1545	get_online_cpus();
1546	list_for_each_entry(rp, &rapl_packages, plist) {
1547		if (!rp->power_zone)
1548			continue;
1549		rd = power_zone_to_rapl_domain(rp->power_zone);
1550		nr_pl = find_nr_power_limit(rd);
1551		for (i = 0; i < nr_pl; i++) {
1552			switch (rd->rpl[i].prim_id) {
1553			case PL1_ENABLE:
1554				ret = rapl_read_data_raw(rd,
1555						POWER_LIMIT1,
1556						true,
1557						&rd->rpl[i].last_power_limit);
1558				if (ret)
1559					rd->rpl[i].last_power_limit = 0;
1560				break;
1561			case PL2_ENABLE:
1562				ret = rapl_read_data_raw(rd,
1563						POWER_LIMIT2,
1564						true,
1565						&rd->rpl[i].last_power_limit);
1566				if (ret)
1567					rd->rpl[i].last_power_limit = 0;
1568				break;
1569			}
1570		}
1571	}
1572	put_online_cpus();
1573}
1574
1575static void power_limit_state_restore(void)
1576{
1577	struct rapl_package *rp;
1578	struct rapl_domain *rd;
1579	int nr_pl, i;
1580
1581	get_online_cpus();
1582	list_for_each_entry(rp, &rapl_packages, plist) {
1583		if (!rp->power_zone)
1584			continue;
1585		rd = power_zone_to_rapl_domain(rp->power_zone);
1586		nr_pl = find_nr_power_limit(rd);
1587		for (i = 0; i < nr_pl; i++) {
1588			switch (rd->rpl[i].prim_id) {
1589			case PL1_ENABLE:
1590				if (rd->rpl[i].last_power_limit)
1591					rapl_write_data_raw(rd,
1592						POWER_LIMIT1,
1593						rd->rpl[i].last_power_limit);
1594				break;
1595			case PL2_ENABLE:
1596				if (rd->rpl[i].last_power_limit)
1597					rapl_write_data_raw(rd,
1598						POWER_LIMIT2,
1599						rd->rpl[i].last_power_limit);
1600				break;
1601			}
1602		}
1603	}
1604	put_online_cpus();
1605}
1606
1607static int rapl_pm_callback(struct notifier_block *nb,
1608	unsigned long mode, void *_unused)
1609{
1610	switch (mode) {
1611	case PM_SUSPEND_PREPARE:
1612		power_limit_state_save();
1613		break;
1614	case PM_POST_SUSPEND:
1615		power_limit_state_restore();
1616		break;
1617	}
1618	return NOTIFY_OK;
1619}
1620
1621static struct notifier_block rapl_pm_notifier = {
1622	.notifier_call = rapl_pm_callback,
1623};
1624
1625static int __init rapl_init(void)
1626{
1627	const struct x86_cpu_id *id;
1628	int ret;
1629
1630	id = x86_match_cpu(rapl_ids);
1631	if (!id) {
1632		pr_err("driver does not support CPU family %d model %d\n",
1633			boot_cpu_data.x86, boot_cpu_data.x86_model);
1634
1635		return -ENODEV;
1636	}
1637
1638	rapl_defaults = (struct rapl_defaults *)id->driver_data;
1639
1640	ret = rapl_register_powercap();
1641	if (ret)
1642		return ret;
1643
1644	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powercap/rapl:online",
1645				rapl_cpu_online, rapl_cpu_down_prep);
1646	if (ret < 0)
1647		goto err_unreg;
1648	pcap_rapl_online = ret;
1649
1650	/* Don't bail out if PSys is not supported */
1651	rapl_register_psys();
1652
1653	ret = register_pm_notifier(&rapl_pm_notifier);
1654	if (ret)
1655		goto err_unreg_all;
1656
1657	return 0;
1658
1659err_unreg_all:
1660	cpuhp_remove_state(pcap_rapl_online);
1661
1662err_unreg:
1663	rapl_unregister_powercap();
1664	return ret;
1665}
1666
1667static void __exit rapl_exit(void)
1668{
1669	unregister_pm_notifier(&rapl_pm_notifier);
1670	cpuhp_remove_state(pcap_rapl_online);
1671	rapl_unregister_powercap();
1672}
1673
1674module_init(rapl_init);
1675module_exit(rapl_exit);
1676
1677MODULE_DESCRIPTION("Driver for Intel RAPL (Running Average Power Limit)");
1678MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@intel.com>");
1679MODULE_LICENSE("GPL v2");