Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Driver for NXP MCR20A 802.15.4 Wireless-PAN Networking controller
   4 *
   5 * Copyright (C) 2018 Xue Liu <liuxuenetmail@gmail.com>
 
 
 
 
 
 
 
 
 
 
   6 */
   7#include <linux/kernel.h>
   8#include <linux/module.h>
   9#include <linux/gpio/consumer.h>
  10#include <linux/spi/spi.h>
  11#include <linux/workqueue.h>
  12#include <linux/interrupt.h>
  13#include <linux/irq.h>
  14#include <linux/skbuff.h>
 
  15#include <linux/regmap.h>
  16#include <linux/ieee802154.h>
  17#include <linux/debugfs.h>
  18
  19#include <net/mac802154.h>
  20#include <net/cfg802154.h>
  21
  22#include <linux/device.h>
  23
  24#include "mcr20a.h"
  25
  26#define	SPI_COMMAND_BUFFER		3
  27
  28#define REGISTER_READ			BIT(7)
  29#define REGISTER_WRITE			(0 << 7)
  30#define REGISTER_ACCESS			(0 << 6)
  31#define PACKET_BUFF_BURST_ACCESS	BIT(6)
  32#define PACKET_BUFF_BYTE_ACCESS		BIT(5)
  33
  34#define MCR20A_WRITE_REG(x)		(x)
  35#define MCR20A_READ_REG(x)		(REGISTER_READ | (x))
  36#define MCR20A_BURST_READ_PACKET_BUF	(0xC0)
  37#define MCR20A_BURST_WRITE_PACKET_BUF	(0x40)
  38
  39#define MCR20A_CMD_REG		0x80
  40#define MCR20A_CMD_REG_MASK	0x3f
  41#define MCR20A_CMD_WRITE	0x40
  42#define MCR20A_CMD_FB		0x20
  43
  44/* Number of Interrupt Request Status Register */
  45#define MCR20A_IRQSTS_NUM 2 /* only IRQ_STS1 and IRQ_STS2 */
  46
  47/* MCR20A CCA Type */
  48enum {
  49	MCR20A_CCA_ED,	  // energy detect - CCA bit not active,
  50			  // not to be used for T and CCCA sequences
  51	MCR20A_CCA_MODE1, // energy detect - CCA bit ACTIVE
  52	MCR20A_CCA_MODE2, // 802.15.4 compliant signal detect - CCA bit ACTIVE
  53	MCR20A_CCA_MODE3
  54};
  55
  56enum {
  57	MCR20A_XCVSEQ_IDLE	= 0x00,
  58	MCR20A_XCVSEQ_RX	= 0x01,
  59	MCR20A_XCVSEQ_TX	= 0x02,
  60	MCR20A_XCVSEQ_CCA	= 0x03,
  61	MCR20A_XCVSEQ_TR	= 0x04,
  62	MCR20A_XCVSEQ_CCCA	= 0x05,
  63};
  64
  65/* IEEE-802.15.4 defined constants (2.4 GHz logical channels) */
  66#define	MCR20A_MIN_CHANNEL	(11)
  67#define	MCR20A_MAX_CHANNEL	(26)
  68#define	MCR20A_CHANNEL_SPACING	(5)
  69
  70/* MCR20A CCA Threshold constans */
  71#define MCR20A_MIN_CCA_THRESHOLD (0x6EU)
  72#define MCR20A_MAX_CCA_THRESHOLD (0x00U)
  73
  74/* version 0C */
  75#define MCR20A_OVERWRITE_VERSION (0x0C)
  76
  77/* MCR20A PLL configurations */
  78static const u8  PLL_INT[16] = {
  79	/* 2405 */ 0x0B,	/* 2410 */ 0x0B,	/* 2415 */ 0x0B,
  80	/* 2420 */ 0x0B,	/* 2425 */ 0x0B,	/* 2430 */ 0x0B,
  81	/* 2435 */ 0x0C,	/* 2440 */ 0x0C,	/* 2445 */ 0x0C,
  82	/* 2450 */ 0x0C,	/* 2455 */ 0x0C,	/* 2460 */ 0x0C,
  83	/* 2465 */ 0x0D,	/* 2470 */ 0x0D,	/* 2475 */ 0x0D,
  84	/* 2480 */ 0x0D
  85};
  86
  87static const u8 PLL_FRAC[16] = {
  88	/* 2405 */ 0x28,	/* 2410 */ 0x50,	/* 2415 */ 0x78,
  89	/* 2420 */ 0xA0,	/* 2425 */ 0xC8,	/* 2430 */ 0xF0,
  90	/* 2435 */ 0x18,	/* 2440 */ 0x40,	/* 2445 */ 0x68,
  91	/* 2450 */ 0x90,	/* 2455 */ 0xB8,	/* 2460 */ 0xE0,
  92	/* 2465 */ 0x08,	/* 2470 */ 0x30,	/* 2475 */ 0x58,
  93	/* 2480 */ 0x80
  94};
  95
  96static const struct reg_sequence mar20a_iar_overwrites[] = {
  97	{ IAR_MISC_PAD_CTRL,	0x02 },
  98	{ IAR_VCO_CTRL1,	0xB3 },
  99	{ IAR_VCO_CTRL2,	0x07 },
 100	{ IAR_PA_TUNING,	0x71 },
 101	{ IAR_CHF_IBUF,		0x2F },
 102	{ IAR_CHF_QBUF,		0x2F },
 103	{ IAR_CHF_IRIN,		0x24 },
 104	{ IAR_CHF_QRIN,		0x24 },
 105	{ IAR_CHF_IL,		0x24 },
 106	{ IAR_CHF_QL,		0x24 },
 107	{ IAR_CHF_CC1,		0x32 },
 108	{ IAR_CHF_CCL,		0x1D },
 109	{ IAR_CHF_CC2,		0x2D },
 110	{ IAR_CHF_IROUT,	0x24 },
 111	{ IAR_CHF_QROUT,	0x24 },
 112	{ IAR_PA_CAL,		0x28 },
 113	{ IAR_AGC_THR1,		0x55 },
 114	{ IAR_AGC_THR2,		0x2D },
 115	{ IAR_ATT_RSSI1,	0x5F },
 116	{ IAR_ATT_RSSI2,	0x8F },
 117	{ IAR_RSSI_OFFSET,	0x61 },
 118	{ IAR_CHF_PMA_GAIN,	0x03 },
 119	{ IAR_CCA1_THRESH,	0x50 },
 120	{ IAR_CORR_NVAL,	0x13 },
 121	{ IAR_ACKDELAY,		0x3D },
 122};
 123
 124#define MCR20A_VALID_CHANNELS (0x07FFF800)
 
 
 
 
 
 125#define MCR20A_MAX_BUF		(127)
 126
 127#define printdev(X) (&X->spi->dev)
 128
 129/* regmap information for Direct Access Register (DAR) access */
 130#define MCR20A_DAR_WRITE	0x01
 131#define MCR20A_DAR_READ		0x00
 132#define MCR20A_DAR_NUMREGS	0x3F
 133
 134/* regmap information for Indirect Access Register (IAR) access */
 135#define MCR20A_IAR_ACCESS	0x80
 136#define MCR20A_IAR_NUMREGS	0xBEFF
 137
 138/* Read/Write SPI Commands for DAR and IAR registers. */
 139#define MCR20A_READSHORT(reg)	((reg) << 1)
 140#define MCR20A_WRITESHORT(reg)	((reg) << 1 | 1)
 141#define MCR20A_READLONG(reg)	(1 << 15 | (reg) << 5)
 142#define MCR20A_WRITELONG(reg)	(1 << 15 | (reg) << 5 | 1 << 4)
 143
 144/* Type definitions for link configuration of instantiable layers  */
 145#define MCR20A_PHY_INDIRECT_QUEUE_SIZE (12)
 146
 147static bool
 148mcr20a_dar_writeable(struct device *dev, unsigned int reg)
 149{
 150	switch (reg) {
 151	case DAR_IRQ_STS1:
 152	case DAR_IRQ_STS2:
 153	case DAR_IRQ_STS3:
 154	case DAR_PHY_CTRL1:
 155	case DAR_PHY_CTRL2:
 156	case DAR_PHY_CTRL3:
 157	case DAR_PHY_CTRL4:
 158	case DAR_SRC_CTRL:
 159	case DAR_SRC_ADDRS_SUM_LSB:
 160	case DAR_SRC_ADDRS_SUM_MSB:
 161	case DAR_T3CMP_LSB:
 162	case DAR_T3CMP_MSB:
 163	case DAR_T3CMP_USB:
 164	case DAR_T2PRIMECMP_LSB:
 165	case DAR_T2PRIMECMP_MSB:
 166	case DAR_T1CMP_LSB:
 167	case DAR_T1CMP_MSB:
 168	case DAR_T1CMP_USB:
 169	case DAR_T2CMP_LSB:
 170	case DAR_T2CMP_MSB:
 171	case DAR_T2CMP_USB:
 172	case DAR_T4CMP_LSB:
 173	case DAR_T4CMP_MSB:
 174	case DAR_T4CMP_USB:
 175	case DAR_PLL_INT0:
 176	case DAR_PLL_FRAC0_LSB:
 177	case DAR_PLL_FRAC0_MSB:
 178	case DAR_PA_PWR:
 179	/* no DAR_ACM */
 180	case DAR_OVERWRITE_VER:
 181	case DAR_CLK_OUT_CTRL:
 182	case DAR_PWR_MODES:
 183		return true;
 184	default:
 185		return false;
 186	}
 187}
 188
 189static bool
 190mcr20a_dar_readable(struct device *dev, unsigned int reg)
 191{
 192	bool rc;
 193
 194	/* all writeable are also readable */
 195	rc = mcr20a_dar_writeable(dev, reg);
 196	if (rc)
 197		return rc;
 198
 199	/* readonly regs */
 200	switch (reg) {
 201	case DAR_RX_FRM_LEN:
 202	case DAR_CCA1_ED_FNL:
 203	case DAR_EVENT_TMR_LSB:
 204	case DAR_EVENT_TMR_MSB:
 205	case DAR_EVENT_TMR_USB:
 206	case DAR_TIMESTAMP_LSB:
 207	case DAR_TIMESTAMP_MSB:
 208	case DAR_TIMESTAMP_USB:
 209	case DAR_SEQ_STATE:
 210	case DAR_LQI_VALUE:
 211	case DAR_RSSI_CCA_CONT:
 212		return true;
 213	default:
 214		return false;
 215	}
 216}
 217
 218static bool
 219mcr20a_dar_volatile(struct device *dev, unsigned int reg)
 220{
 221	/* can be changed during runtime */
 222	switch (reg) {
 223	case DAR_IRQ_STS1:
 224	case DAR_IRQ_STS2:
 225	case DAR_IRQ_STS3:
 226	/* use them in spi_async and regmap so it's volatile */
 227		return true;
 228	default:
 229		return false;
 230	}
 231}
 232
 233static bool
 234mcr20a_dar_precious(struct device *dev, unsigned int reg)
 235{
 236	/* don't clear irq line on read */
 237	switch (reg) {
 238	case DAR_IRQ_STS1:
 239	case DAR_IRQ_STS2:
 240	case DAR_IRQ_STS3:
 241		return true;
 242	default:
 243		return false;
 244	}
 245}
 246
 247static const struct regmap_config mcr20a_dar_regmap = {
 248	.name			= "mcr20a_dar",
 249	.reg_bits		= 8,
 250	.val_bits		= 8,
 251	.write_flag_mask	= REGISTER_ACCESS | REGISTER_WRITE,
 252	.read_flag_mask		= REGISTER_ACCESS | REGISTER_READ,
 253	.cache_type		= REGCACHE_MAPLE,
 254	.writeable_reg		= mcr20a_dar_writeable,
 255	.readable_reg		= mcr20a_dar_readable,
 256	.volatile_reg		= mcr20a_dar_volatile,
 257	.precious_reg		= mcr20a_dar_precious,
 258	.fast_io		= true,
 259	.can_multi_write	= true,
 260};
 261
 262static bool
 263mcr20a_iar_writeable(struct device *dev, unsigned int reg)
 264{
 265	switch (reg) {
 266	case IAR_XTAL_TRIM:
 267	case IAR_PMC_LP_TRIM:
 268	case IAR_MACPANID0_LSB:
 269	case IAR_MACPANID0_MSB:
 270	case IAR_MACSHORTADDRS0_LSB:
 271	case IAR_MACSHORTADDRS0_MSB:
 272	case IAR_MACLONGADDRS0_0:
 273	case IAR_MACLONGADDRS0_8:
 274	case IAR_MACLONGADDRS0_16:
 275	case IAR_MACLONGADDRS0_24:
 276	case IAR_MACLONGADDRS0_32:
 277	case IAR_MACLONGADDRS0_40:
 278	case IAR_MACLONGADDRS0_48:
 279	case IAR_MACLONGADDRS0_56:
 280	case IAR_RX_FRAME_FILTER:
 281	case IAR_PLL_INT1:
 282	case IAR_PLL_FRAC1_LSB:
 283	case IAR_PLL_FRAC1_MSB:
 284	case IAR_MACPANID1_LSB:
 285	case IAR_MACPANID1_MSB:
 286	case IAR_MACSHORTADDRS1_LSB:
 287	case IAR_MACSHORTADDRS1_MSB:
 288	case IAR_MACLONGADDRS1_0:
 289	case IAR_MACLONGADDRS1_8:
 290	case IAR_MACLONGADDRS1_16:
 291	case IAR_MACLONGADDRS1_24:
 292	case IAR_MACLONGADDRS1_32:
 293	case IAR_MACLONGADDRS1_40:
 294	case IAR_MACLONGADDRS1_48:
 295	case IAR_MACLONGADDRS1_56:
 296	case IAR_DUAL_PAN_CTRL:
 297	case IAR_DUAL_PAN_DWELL:
 298	case IAR_CCA1_THRESH:
 299	case IAR_CCA1_ED_OFFSET_COMP:
 300	case IAR_LQI_OFFSET_COMP:
 301	case IAR_CCA_CTRL:
 302	case IAR_CCA2_CORR_PEAKS:
 303	case IAR_CCA2_CORR_THRESH:
 304	case IAR_TMR_PRESCALE:
 305	case IAR_ANT_PAD_CTRL:
 306	case IAR_MISC_PAD_CTRL:
 307	case IAR_BSM_CTRL:
 308	case IAR_RNG:
 309	case IAR_RX_WTR_MARK:
 310	case IAR_SOFT_RESET:
 311	case IAR_TXDELAY:
 312	case IAR_ACKDELAY:
 313	case IAR_CORR_NVAL:
 314	case IAR_ANT_AGC_CTRL:
 315	case IAR_AGC_THR1:
 316	case IAR_AGC_THR2:
 317	case IAR_PA_CAL:
 318	case IAR_ATT_RSSI1:
 319	case IAR_ATT_RSSI2:
 320	case IAR_RSSI_OFFSET:
 321	case IAR_XTAL_CTRL:
 322	case IAR_CHF_PMA_GAIN:
 323	case IAR_CHF_IBUF:
 324	case IAR_CHF_QBUF:
 325	case IAR_CHF_IRIN:
 326	case IAR_CHF_QRIN:
 327	case IAR_CHF_IL:
 328	case IAR_CHF_QL:
 329	case IAR_CHF_CC1:
 330	case IAR_CHF_CCL:
 331	case IAR_CHF_CC2:
 332	case IAR_CHF_IROUT:
 333	case IAR_CHF_QROUT:
 334	case IAR_PA_TUNING:
 335	case IAR_VCO_CTRL1:
 336	case IAR_VCO_CTRL2:
 337		return true;
 338	default:
 339		return false;
 340	}
 341}
 342
 343static bool
 344mcr20a_iar_readable(struct device *dev, unsigned int reg)
 345{
 346	bool rc;
 347
 348	/* all writeable are also readable */
 349	rc = mcr20a_iar_writeable(dev, reg);
 350	if (rc)
 351		return rc;
 352
 353	/* readonly regs */
 354	switch (reg) {
 355	case IAR_PART_ID:
 356	case IAR_DUAL_PAN_STS:
 357	case IAR_RX_BYTE_COUNT:
 358	case IAR_FILTERFAIL_CODE1:
 359	case IAR_FILTERFAIL_CODE2:
 360	case IAR_RSSI:
 361		return true;
 362	default:
 363		return false;
 364	}
 365}
 366
 367static bool
 368mcr20a_iar_volatile(struct device *dev, unsigned int reg)
 369{
 370/* can be changed during runtime */
 371	switch (reg) {
 372	case IAR_DUAL_PAN_STS:
 373	case IAR_RX_BYTE_COUNT:
 374	case IAR_FILTERFAIL_CODE1:
 375	case IAR_FILTERFAIL_CODE2:
 376	case IAR_RSSI:
 377		return true;
 378	default:
 379		return false;
 380	}
 381}
 382
 383static const struct regmap_config mcr20a_iar_regmap = {
 384	.name			= "mcr20a_iar",
 385	.reg_bits		= 16,
 386	.val_bits		= 8,
 387	.write_flag_mask	= REGISTER_ACCESS | REGISTER_WRITE | IAR_INDEX,
 388	.read_flag_mask		= REGISTER_ACCESS | REGISTER_READ  | IAR_INDEX,
 389	.cache_type		= REGCACHE_MAPLE,
 390	.writeable_reg		= mcr20a_iar_writeable,
 391	.readable_reg		= mcr20a_iar_readable,
 392	.volatile_reg		= mcr20a_iar_volatile,
 393	.fast_io		= true,
 394};
 395
 396struct mcr20a_local {
 397	struct spi_device *spi;
 398
 399	struct ieee802154_hw *hw;
 
 400	struct regmap *regmap_dar;
 401	struct regmap *regmap_iar;
 402
 403	u8 *buf;
 404
 405	bool is_tx;
 406
 407	/* for writing tx buffer */
 408	struct spi_message tx_buf_msg;
 409	u8 tx_header[1];
 410	/* burst buffer write command */
 411	struct spi_transfer tx_xfer_header;
 412	u8 tx_len[1];
 413	/* len of tx packet */
 414	struct spi_transfer tx_xfer_len;
 415	/* data of tx packet */
 416	struct spi_transfer tx_xfer_buf;
 417	struct sk_buff *tx_skb;
 418
 419	/* for read length rxfifo */
 420	struct spi_message reg_msg;
 421	u8 reg_cmd[1];
 422	u8 reg_data[MCR20A_IRQSTS_NUM];
 423	struct spi_transfer reg_xfer_cmd;
 424	struct spi_transfer reg_xfer_data;
 425
 426	/* receive handling */
 427	struct spi_message rx_buf_msg;
 428	u8 rx_header[1];
 429	struct spi_transfer rx_xfer_header;
 430	u8 rx_lqi[1];
 431	struct spi_transfer rx_xfer_lqi;
 432	u8 rx_buf[MCR20A_MAX_BUF];
 433	struct spi_transfer rx_xfer_buf;
 434
 435	/* isr handling for reading intstat */
 436	struct spi_message irq_msg;
 437	u8 irq_header[1];
 438	u8 irq_data[MCR20A_IRQSTS_NUM];
 439	struct spi_transfer irq_xfer_data;
 440	struct spi_transfer irq_xfer_header;
 441};
 442
 443static void
 444mcr20a_write_tx_buf_complete(void *context)
 445{
 446	struct mcr20a_local *lp = context;
 447	int ret;
 448
 449	dev_dbg(printdev(lp), "%s\n", __func__);
 450
 451	lp->reg_msg.complete = NULL;
 452	lp->reg_cmd[0]	= MCR20A_WRITE_REG(DAR_PHY_CTRL1);
 453	lp->reg_data[0] = MCR20A_XCVSEQ_TX;
 454	lp->reg_xfer_data.len = 1;
 455
 456	ret = spi_async(lp->spi, &lp->reg_msg);
 457	if (ret)
 458		dev_err(printdev(lp), "failed to set SEQ TX\n");
 459}
 460
 461static int
 462mcr20a_xmit(struct ieee802154_hw *hw, struct sk_buff *skb)
 463{
 464	struct mcr20a_local *lp = hw->priv;
 465
 466	dev_dbg(printdev(lp), "%s\n", __func__);
 467
 468	lp->tx_skb = skb;
 469
 470	print_hex_dump_debug("mcr20a tx: ", DUMP_PREFIX_OFFSET, 16, 1,
 471			     skb->data, skb->len, 0);
 472
 473	lp->is_tx = 1;
 474
 475	lp->reg_msg.complete	= NULL;
 476	lp->reg_cmd[0]		= MCR20A_WRITE_REG(DAR_PHY_CTRL1);
 477	lp->reg_data[0]		= MCR20A_XCVSEQ_IDLE;
 478	lp->reg_xfer_data.len	= 1;
 479
 480	return spi_async(lp->spi, &lp->reg_msg);
 481}
 482
 483static int
 484mcr20a_ed(struct ieee802154_hw *hw, u8 *level)
 485{
 486	WARN_ON(!level);
 487	*level = 0xbe;
 488	return 0;
 489}
 490
 491static int
 492mcr20a_set_channel(struct ieee802154_hw *hw, u8 page, u8 channel)
 493{
 494	struct mcr20a_local *lp = hw->priv;
 495	int ret;
 496
 497	dev_dbg(printdev(lp), "%s\n", __func__);
 498
 499	/* freqency = ((PLL_INT+64) + (PLL_FRAC/65536)) * 32 MHz */
 500	ret = regmap_write(lp->regmap_dar, DAR_PLL_INT0, PLL_INT[channel - 11]);
 501	if (ret)
 502		return ret;
 503	ret = regmap_write(lp->regmap_dar, DAR_PLL_FRAC0_LSB, 0x00);
 504	if (ret)
 505		return ret;
 506	ret = regmap_write(lp->regmap_dar, DAR_PLL_FRAC0_MSB,
 507			   PLL_FRAC[channel - 11]);
 508	if (ret)
 509		return ret;
 510
 511	return 0;
 512}
 513
 514static int
 515mcr20a_start(struct ieee802154_hw *hw)
 516{
 517	struct mcr20a_local *lp = hw->priv;
 518	int ret;
 519
 520	dev_dbg(printdev(lp), "%s\n", __func__);
 521
 522	/* No slotted operation */
 523	dev_dbg(printdev(lp), "no slotted operation\n");
 524	ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL1,
 525				 DAR_PHY_CTRL1_SLOTTED, 0x0);
 526	if (ret < 0)
 527		return ret;
 528
 529	/* enable irq */
 530	enable_irq(lp->spi->irq);
 531
 532	/* Unmask SEQ interrupt */
 533	ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL2,
 534				 DAR_PHY_CTRL2_SEQMSK, 0x0);
 535	if (ret < 0)
 536		return ret;
 537
 538	/* Start the RX sequence */
 539	dev_dbg(printdev(lp), "start the RX sequence\n");
 540	ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL1,
 541				 DAR_PHY_CTRL1_XCVSEQ_MASK, MCR20A_XCVSEQ_RX);
 542	if (ret < 0)
 543		return ret;
 544
 545	return 0;
 546}
 547
 548static void
 549mcr20a_stop(struct ieee802154_hw *hw)
 550{
 551	struct mcr20a_local *lp = hw->priv;
 552
 553	dev_dbg(printdev(lp), "%s\n", __func__);
 554
 555	/* stop all running sequence */
 556	regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL1,
 557			   DAR_PHY_CTRL1_XCVSEQ_MASK, MCR20A_XCVSEQ_IDLE);
 558
 559	/* disable irq */
 560	disable_irq(lp->spi->irq);
 561}
 562
 563static int
 564mcr20a_set_hw_addr_filt(struct ieee802154_hw *hw,
 565			struct ieee802154_hw_addr_filt *filt,
 566			unsigned long changed)
 567{
 568	struct mcr20a_local *lp = hw->priv;
 569
 570	dev_dbg(printdev(lp), "%s\n", __func__);
 571
 572	if (changed & IEEE802154_AFILT_SADDR_CHANGED) {
 573		u16 addr = le16_to_cpu(filt->short_addr);
 574
 575		regmap_write(lp->regmap_iar, IAR_MACSHORTADDRS0_LSB, addr);
 576		regmap_write(lp->regmap_iar, IAR_MACSHORTADDRS0_MSB, addr >> 8);
 577	}
 578
 579	if (changed & IEEE802154_AFILT_PANID_CHANGED) {
 580		u16 pan = le16_to_cpu(filt->pan_id);
 581
 582		regmap_write(lp->regmap_iar, IAR_MACPANID0_LSB, pan);
 583		regmap_write(lp->regmap_iar, IAR_MACPANID0_MSB, pan >> 8);
 584	}
 585
 586	if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) {
 587		u8 addr[8], i;
 588
 589		memcpy(addr, &filt->ieee_addr, 8);
 590		for (i = 0; i < 8; i++)
 591			regmap_write(lp->regmap_iar,
 592				     IAR_MACLONGADDRS0_0 + i, addr[i]);
 593	}
 594
 595	if (changed & IEEE802154_AFILT_PANC_CHANGED) {
 596		if (filt->pan_coord) {
 597			regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
 598					   DAR_PHY_CTRL4_PANCORDNTR0, 0x10);
 599		} else {
 600			regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
 601					   DAR_PHY_CTRL4_PANCORDNTR0, 0x00);
 602		}
 603	}
 604
 605	return 0;
 606}
 607
 608/* -30 dBm to 10 dBm */
 609#define MCR20A_MAX_TX_POWERS 0x14
 610static const s32 mcr20a_powers[MCR20A_MAX_TX_POWERS + 1] = {
 611	-3000, -2800, -2600, -2400, -2200, -2000, -1800, -1600, -1400,
 612	-1200, -1000, -800, -600, -400, -200, 0, 200, 400, 600, 800, 1000
 613};
 614
 615static int
 616mcr20a_set_txpower(struct ieee802154_hw *hw, s32 mbm)
 617{
 618	struct mcr20a_local *lp = hw->priv;
 619	u32 i;
 620
 621	dev_dbg(printdev(lp), "%s(%d)\n", __func__, mbm);
 622
 623	for (i = 0; i < lp->hw->phy->supported.tx_powers_size; i++) {
 624		if (lp->hw->phy->supported.tx_powers[i] == mbm)
 625			return regmap_write(lp->regmap_dar, DAR_PA_PWR,
 626					    ((i + 8) & 0x1F));
 627	}
 628
 629	return -EINVAL;
 630}
 631
 632#define MCR20A_MAX_ED_LEVELS MCR20A_MIN_CCA_THRESHOLD
 633static s32 mcr20a_ed_levels[MCR20A_MAX_ED_LEVELS + 1];
 634
 635static int
 636mcr20a_set_cca_mode(struct ieee802154_hw *hw,
 637		    const struct wpan_phy_cca *cca)
 638{
 639	struct mcr20a_local *lp = hw->priv;
 640	unsigned int cca_mode = 0xff;
 641	bool cca_mode_and = false;
 642	int ret;
 643
 644	dev_dbg(printdev(lp), "%s\n", __func__);
 645
 646	/* mapping 802.15.4 to driver spec */
 647	switch (cca->mode) {
 648	case NL802154_CCA_ENERGY:
 649		cca_mode = MCR20A_CCA_MODE1;
 650		break;
 651	case NL802154_CCA_CARRIER:
 652		cca_mode = MCR20A_CCA_MODE2;
 653		break;
 654	case NL802154_CCA_ENERGY_CARRIER:
 655		switch (cca->opt) {
 656		case NL802154_CCA_OPT_ENERGY_CARRIER_AND:
 657			cca_mode = MCR20A_CCA_MODE3;
 658			cca_mode_and = true;
 659			break;
 660		case NL802154_CCA_OPT_ENERGY_CARRIER_OR:
 661			cca_mode = MCR20A_CCA_MODE3;
 662			cca_mode_and = false;
 663			break;
 664		default:
 665			return -EINVAL;
 666		}
 667		break;
 668	default:
 669		return -EINVAL;
 670	}
 671	ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
 672				 DAR_PHY_CTRL4_CCATYPE_MASK,
 673				 cca_mode << DAR_PHY_CTRL4_CCATYPE_SHIFT);
 674	if (ret < 0)
 675		return ret;
 676
 677	if (cca_mode == MCR20A_CCA_MODE3) {
 678		if (cca_mode_and) {
 679			ret = regmap_update_bits(lp->regmap_iar, IAR_CCA_CTRL,
 680						 IAR_CCA_CTRL_CCA3_AND_NOT_OR,
 681						 0x08);
 682		} else {
 683			ret = regmap_update_bits(lp->regmap_iar,
 684						 IAR_CCA_CTRL,
 685						 IAR_CCA_CTRL_CCA3_AND_NOT_OR,
 686						 0x00);
 687		}
 688		if (ret < 0)
 689			return ret;
 690	}
 691
 692	return ret;
 693}
 694
 695static int
 696mcr20a_set_cca_ed_level(struct ieee802154_hw *hw, s32 mbm)
 697{
 698	struct mcr20a_local *lp = hw->priv;
 699	u32 i;
 700
 701	dev_dbg(printdev(lp), "%s\n", __func__);
 702
 703	for (i = 0; i < hw->phy->supported.cca_ed_levels_size; i++) {
 704		if (hw->phy->supported.cca_ed_levels[i] == mbm)
 705			return regmap_write(lp->regmap_iar, IAR_CCA1_THRESH, i);
 706	}
 707
 708	return 0;
 709}
 710
 711static int
 712mcr20a_set_promiscuous_mode(struct ieee802154_hw *hw, const bool on)
 713{
 714	struct mcr20a_local *lp = hw->priv;
 715	int ret;
 716	u8 rx_frame_filter_reg = 0x0;
 717
 718	dev_dbg(printdev(lp), "%s(%d)\n", __func__, on);
 719
 720	if (on) {
 721		/* All frame types accepted*/
 722		rx_frame_filter_reg &= ~(IAR_RX_FRAME_FLT_FRM_VER);
 723		rx_frame_filter_reg |= (IAR_RX_FRAME_FLT_ACK_FT |
 724				  IAR_RX_FRAME_FLT_NS_FT);
 725
 726		ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
 727					 DAR_PHY_CTRL4_PROMISCUOUS,
 728					 DAR_PHY_CTRL4_PROMISCUOUS);
 729		if (ret < 0)
 730			return ret;
 731
 732		ret = regmap_write(lp->regmap_iar, IAR_RX_FRAME_FILTER,
 733				   rx_frame_filter_reg);
 734		if (ret < 0)
 735			return ret;
 736	} else {
 737		ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
 738					 DAR_PHY_CTRL4_PROMISCUOUS, 0x0);
 739		if (ret < 0)
 740			return ret;
 741
 742		ret = regmap_write(lp->regmap_iar, IAR_RX_FRAME_FILTER,
 743				   IAR_RX_FRAME_FLT_FRM_VER |
 744				   IAR_RX_FRAME_FLT_BEACON_FT |
 745				   IAR_RX_FRAME_FLT_DATA_FT |
 746				   IAR_RX_FRAME_FLT_CMD_FT);
 747		if (ret < 0)
 748			return ret;
 749	}
 750
 751	return 0;
 752}
 753
 754static const struct ieee802154_ops mcr20a_hw_ops = {
 755	.owner			= THIS_MODULE,
 756	.xmit_async		= mcr20a_xmit,
 757	.ed			= mcr20a_ed,
 758	.set_channel		= mcr20a_set_channel,
 759	.start			= mcr20a_start,
 760	.stop			= mcr20a_stop,
 761	.set_hw_addr_filt	= mcr20a_set_hw_addr_filt,
 762	.set_txpower		= mcr20a_set_txpower,
 763	.set_cca_mode		= mcr20a_set_cca_mode,
 764	.set_cca_ed_level	= mcr20a_set_cca_ed_level,
 765	.set_promiscuous_mode	= mcr20a_set_promiscuous_mode,
 766};
 767
 768static int
 769mcr20a_request_rx(struct mcr20a_local *lp)
 770{
 771	dev_dbg(printdev(lp), "%s\n", __func__);
 772
 773	/* Start the RX sequence */
 774	regmap_update_bits_async(lp->regmap_dar, DAR_PHY_CTRL1,
 775				 DAR_PHY_CTRL1_XCVSEQ_MASK, MCR20A_XCVSEQ_RX);
 776
 777	return 0;
 778}
 779
 780static void
 781mcr20a_handle_rx_read_buf_complete(void *context)
 782{
 783	struct mcr20a_local *lp = context;
 784	u8 len = lp->reg_data[0] & DAR_RX_FRAME_LENGTH_MASK;
 785	struct sk_buff *skb;
 786
 787	dev_dbg(printdev(lp), "%s\n", __func__);
 788
 789	dev_dbg(printdev(lp), "RX is done\n");
 790
 791	if (!ieee802154_is_valid_psdu_len(len)) {
 792		dev_vdbg(&lp->spi->dev, "corrupted frame received\n");
 793		len = IEEE802154_MTU;
 794	}
 795
 796	len = len - 2;  /* get rid of frame check field */
 797
 798	skb = dev_alloc_skb(len);
 799	if (!skb)
 800		return;
 801
 802	__skb_put_data(skb, lp->rx_buf, len);
 803	ieee802154_rx_irqsafe(lp->hw, skb, lp->rx_lqi[0]);
 804
 805	print_hex_dump_debug("mcr20a rx: ", DUMP_PREFIX_OFFSET, 16, 1,
 806			     lp->rx_buf, len, 0);
 807	pr_debug("mcr20a rx: lqi: %02hhx\n", lp->rx_lqi[0]);
 808
 809	/* start RX sequence */
 810	mcr20a_request_rx(lp);
 811}
 812
 813static void
 814mcr20a_handle_rx_read_len_complete(void *context)
 815{
 816	struct mcr20a_local *lp = context;
 817	u8 len;
 818	int ret;
 819
 820	dev_dbg(printdev(lp), "%s\n", __func__);
 821
 822	/* get the length of received frame */
 823	len = lp->reg_data[0] & DAR_RX_FRAME_LENGTH_MASK;
 824	dev_dbg(printdev(lp), "frame len : %d\n", len);
 825
 826	/* prepare to read the rx buf */
 827	lp->rx_buf_msg.complete = mcr20a_handle_rx_read_buf_complete;
 828	lp->rx_header[0] = MCR20A_BURST_READ_PACKET_BUF;
 829	lp->rx_xfer_buf.len = len;
 830
 831	ret = spi_async(lp->spi, &lp->rx_buf_msg);
 832	if (ret)
 833		dev_err(printdev(lp), "failed to read rx buffer length\n");
 834}
 835
 836static int
 837mcr20a_handle_rx(struct mcr20a_local *lp)
 838{
 839	dev_dbg(printdev(lp), "%s\n", __func__);
 840	lp->reg_msg.complete = mcr20a_handle_rx_read_len_complete;
 841	lp->reg_cmd[0] = MCR20A_READ_REG(DAR_RX_FRM_LEN);
 842	lp->reg_xfer_data.len	= 1;
 843
 844	return spi_async(lp->spi, &lp->reg_msg);
 845}
 846
 847static int
 848mcr20a_handle_tx_complete(struct mcr20a_local *lp)
 849{
 850	dev_dbg(printdev(lp), "%s\n", __func__);
 851
 852	ieee802154_xmit_complete(lp->hw, lp->tx_skb, false);
 853
 854	return mcr20a_request_rx(lp);
 855}
 856
 857static int
 858mcr20a_handle_tx(struct mcr20a_local *lp)
 859{
 860	int ret;
 861
 862	dev_dbg(printdev(lp), "%s\n", __func__);
 863
 864	/* write tx buffer */
 865	lp->tx_header[0]	= MCR20A_BURST_WRITE_PACKET_BUF;
 866	/* add 2 bytes of FCS */
 867	lp->tx_len[0]		= lp->tx_skb->len + 2;
 868	lp->tx_xfer_buf.tx_buf	= lp->tx_skb->data;
 869	/* add 1 byte psduLength */
 870	lp->tx_xfer_buf.len	= lp->tx_skb->len + 1;
 871
 872	ret = spi_async(lp->spi, &lp->tx_buf_msg);
 873	if (ret) {
 874		dev_err(printdev(lp), "SPI write Failed for TX buf\n");
 875		return ret;
 876	}
 877
 878	return 0;
 879}
 880
 881static void
 882mcr20a_irq_clean_complete(void *context)
 883{
 884	struct mcr20a_local *lp = context;
 885	u8 seq_state = lp->irq_data[DAR_IRQ_STS1] & DAR_PHY_CTRL1_XCVSEQ_MASK;
 886
 887	dev_dbg(printdev(lp), "%s\n", __func__);
 888
 889	enable_irq(lp->spi->irq);
 890
 891	dev_dbg(printdev(lp), "IRQ STA1 (%02x) STA2 (%02x)\n",
 892		lp->irq_data[DAR_IRQ_STS1], lp->irq_data[DAR_IRQ_STS2]);
 893
 894	switch (seq_state) {
 895	/* TX IRQ, RX IRQ and SEQ IRQ */
 896	case (DAR_IRQSTS1_TXIRQ | DAR_IRQSTS1_SEQIRQ):
 897		if (lp->is_tx) {
 898			lp->is_tx = 0;
 899			dev_dbg(printdev(lp), "TX is done. No ACK\n");
 900			mcr20a_handle_tx_complete(lp);
 901		}
 902		break;
 903	case (DAR_IRQSTS1_RXIRQ | DAR_IRQSTS1_SEQIRQ):
 904		/* rx is starting */
 905		dev_dbg(printdev(lp), "RX is starting\n");
 906		mcr20a_handle_rx(lp);
 907		break;
 908	case (DAR_IRQSTS1_RXIRQ | DAR_IRQSTS1_TXIRQ | DAR_IRQSTS1_SEQIRQ):
 909		if (lp->is_tx) {
 910			/* tx is done */
 911			lp->is_tx = 0;
 912			dev_dbg(printdev(lp), "TX is done. Get ACK\n");
 913			mcr20a_handle_tx_complete(lp);
 914		} else {
 915			/* rx is starting */
 916			dev_dbg(printdev(lp), "RX is starting\n");
 917			mcr20a_handle_rx(lp);
 918		}
 919		break;
 920	case (DAR_IRQSTS1_SEQIRQ):
 921		if (lp->is_tx) {
 922			dev_dbg(printdev(lp), "TX is starting\n");
 923			mcr20a_handle_tx(lp);
 924		} else {
 925			dev_dbg(printdev(lp), "MCR20A is stop\n");
 926		}
 927		break;
 928	}
 929}
 930
 931static void mcr20a_irq_status_complete(void *context)
 932{
 933	int ret;
 934	struct mcr20a_local *lp = context;
 935
 936	dev_dbg(printdev(lp), "%s\n", __func__);
 937	regmap_update_bits_async(lp->regmap_dar, DAR_PHY_CTRL1,
 938				 DAR_PHY_CTRL1_XCVSEQ_MASK, MCR20A_XCVSEQ_IDLE);
 939
 940	lp->reg_msg.complete = mcr20a_irq_clean_complete;
 941	lp->reg_cmd[0] = MCR20A_WRITE_REG(DAR_IRQ_STS1);
 942	memcpy(lp->reg_data, lp->irq_data, MCR20A_IRQSTS_NUM);
 943	lp->reg_xfer_data.len = MCR20A_IRQSTS_NUM;
 944
 945	ret = spi_async(lp->spi, &lp->reg_msg);
 946
 947	if (ret)
 948		dev_err(printdev(lp), "failed to clean irq status\n");
 949}
 950
 951static irqreturn_t mcr20a_irq_isr(int irq, void *data)
 952{
 953	struct mcr20a_local *lp = data;
 954	int ret;
 955
 956	disable_irq_nosync(irq);
 957
 958	lp->irq_header[0] = MCR20A_READ_REG(DAR_IRQ_STS1);
 959	/* read IRQSTSx */
 960	ret = spi_async(lp->spi, &lp->irq_msg);
 961	if (ret) {
 962		enable_irq(irq);
 963		return IRQ_NONE;
 964	}
 965
 966	return IRQ_HANDLED;
 967}
 968
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 969static void mcr20a_hw_setup(struct mcr20a_local *lp)
 970{
 971	u8 i;
 972	struct ieee802154_hw *hw = lp->hw;
 973	struct wpan_phy *phy = lp->hw->phy;
 974
 975	dev_dbg(printdev(lp), "%s\n", __func__);
 976
 
 
 
 
 977	hw->flags = IEEE802154_HW_TX_OMIT_CKSUM |
 978			IEEE802154_HW_AFILT |
 979			IEEE802154_HW_PROMISCUOUS;
 980
 981	phy->flags = WPAN_PHY_FLAG_TXPOWER | WPAN_PHY_FLAG_CCA_ED_LEVEL |
 982			WPAN_PHY_FLAG_CCA_MODE;
 983
 984	phy->supported.cca_modes = BIT(NL802154_CCA_ENERGY) |
 985		BIT(NL802154_CCA_CARRIER) | BIT(NL802154_CCA_ENERGY_CARRIER);
 986	phy->supported.cca_opts = BIT(NL802154_CCA_OPT_ENERGY_CARRIER_AND) |
 987		BIT(NL802154_CCA_OPT_ENERGY_CARRIER_OR);
 988
 989	/* initiating cca_ed_levels */
 990	for (i = MCR20A_MAX_CCA_THRESHOLD; i < MCR20A_MIN_CCA_THRESHOLD + 1;
 991	      ++i) {
 992		mcr20a_ed_levels[i] =  -i * 100;
 993	}
 994
 995	phy->supported.cca_ed_levels = mcr20a_ed_levels;
 996	phy->supported.cca_ed_levels_size = ARRAY_SIZE(mcr20a_ed_levels);
 997
 998	phy->cca.mode = NL802154_CCA_ENERGY;
 999
1000	phy->supported.channels[0] = MCR20A_VALID_CHANNELS;
1001	phy->current_page = 0;
1002	/* MCR20A default reset value */
1003	phy->current_channel = 20;
 
1004	phy->supported.tx_powers = mcr20a_powers;
1005	phy->supported.tx_powers_size = ARRAY_SIZE(mcr20a_powers);
1006	phy->cca_ed_level = phy->supported.cca_ed_levels[75];
1007	phy->transmit_power = phy->supported.tx_powers[0x0F];
1008}
1009
1010static void
1011mcr20a_setup_tx_spi_messages(struct mcr20a_local *lp)
1012{
1013	spi_message_init(&lp->tx_buf_msg);
1014	lp->tx_buf_msg.context = lp;
1015	lp->tx_buf_msg.complete = mcr20a_write_tx_buf_complete;
1016
1017	lp->tx_xfer_header.len = 1;
1018	lp->tx_xfer_header.tx_buf = lp->tx_header;
1019
1020	lp->tx_xfer_len.len = 1;
1021	lp->tx_xfer_len.tx_buf = lp->tx_len;
1022
1023	spi_message_add_tail(&lp->tx_xfer_header, &lp->tx_buf_msg);
1024	spi_message_add_tail(&lp->tx_xfer_len, &lp->tx_buf_msg);
1025	spi_message_add_tail(&lp->tx_xfer_buf, &lp->tx_buf_msg);
1026}
1027
1028static void
1029mcr20a_setup_rx_spi_messages(struct mcr20a_local *lp)
1030{
1031	spi_message_init(&lp->reg_msg);
1032	lp->reg_msg.context = lp;
1033
1034	lp->reg_xfer_cmd.len = 1;
1035	lp->reg_xfer_cmd.tx_buf = lp->reg_cmd;
1036	lp->reg_xfer_cmd.rx_buf = lp->reg_cmd;
1037
1038	lp->reg_xfer_data.rx_buf = lp->reg_data;
1039	lp->reg_xfer_data.tx_buf = lp->reg_data;
1040
1041	spi_message_add_tail(&lp->reg_xfer_cmd, &lp->reg_msg);
1042	spi_message_add_tail(&lp->reg_xfer_data, &lp->reg_msg);
1043
1044	spi_message_init(&lp->rx_buf_msg);
1045	lp->rx_buf_msg.context = lp;
1046	lp->rx_buf_msg.complete = mcr20a_handle_rx_read_buf_complete;
1047	lp->rx_xfer_header.len = 1;
1048	lp->rx_xfer_header.tx_buf = lp->rx_header;
1049	lp->rx_xfer_header.rx_buf = lp->rx_header;
1050
1051	lp->rx_xfer_buf.rx_buf = lp->rx_buf;
1052
1053	lp->rx_xfer_lqi.len = 1;
1054	lp->rx_xfer_lqi.rx_buf = lp->rx_lqi;
1055
1056	spi_message_add_tail(&lp->rx_xfer_header, &lp->rx_buf_msg);
1057	spi_message_add_tail(&lp->rx_xfer_buf, &lp->rx_buf_msg);
1058	spi_message_add_tail(&lp->rx_xfer_lqi, &lp->rx_buf_msg);
1059}
1060
1061static void
1062mcr20a_setup_irq_spi_messages(struct mcr20a_local *lp)
1063{
1064	spi_message_init(&lp->irq_msg);
1065	lp->irq_msg.context		= lp;
1066	lp->irq_msg.complete	= mcr20a_irq_status_complete;
1067	lp->irq_xfer_header.len	= 1;
1068	lp->irq_xfer_header.tx_buf = lp->irq_header;
1069	lp->irq_xfer_header.rx_buf = lp->irq_header;
1070
1071	lp->irq_xfer_data.len	= MCR20A_IRQSTS_NUM;
1072	lp->irq_xfer_data.rx_buf = lp->irq_data;
1073
1074	spi_message_add_tail(&lp->irq_xfer_header, &lp->irq_msg);
1075	spi_message_add_tail(&lp->irq_xfer_data, &lp->irq_msg);
1076}
1077
1078static int
1079mcr20a_phy_init(struct mcr20a_local *lp)
1080{
1081	u8 index;
1082	unsigned int phy_reg = 0;
1083	int ret;
1084
1085	dev_dbg(printdev(lp), "%s\n", __func__);
1086
1087	/* Disable Tristate on COCO MISO for SPI reads */
1088	ret = regmap_write(lp->regmap_iar, IAR_MISC_PAD_CTRL, 0x02);
1089	if (ret)
1090		goto err_ret;
1091
1092	/* Clear all PP IRQ bits in IRQSTS1 to avoid unexpected interrupts
1093	 * immediately after init
1094	 */
1095	ret = regmap_write(lp->regmap_dar, DAR_IRQ_STS1, 0xEF);
1096	if (ret)
1097		goto err_ret;
1098
1099	/* Clear all PP IRQ bits in IRQSTS2 */
1100	ret = regmap_write(lp->regmap_dar, DAR_IRQ_STS2,
1101			   DAR_IRQSTS2_ASM_IRQ | DAR_IRQSTS2_PB_ERR_IRQ |
1102			   DAR_IRQSTS2_WAKE_IRQ);
1103	if (ret)
1104		goto err_ret;
1105
1106	/* Disable all timer interrupts */
1107	ret = regmap_write(lp->regmap_dar, DAR_IRQ_STS3, 0xFF);
1108	if (ret)
1109		goto err_ret;
1110
1111	/*  PHY_CTRL1 : default HW settings + AUTOACK enabled */
1112	ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL1,
1113				 DAR_PHY_CTRL1_AUTOACK, DAR_PHY_CTRL1_AUTOACK);
1114
1115	/*  PHY_CTRL2 : disable all interrupts */
1116	ret = regmap_write(lp->regmap_dar, DAR_PHY_CTRL2, 0xFF);
1117	if (ret)
1118		goto err_ret;
1119
1120	/* PHY_CTRL3 : disable all timers and remaining interrupts */
1121	ret = regmap_write(lp->regmap_dar, DAR_PHY_CTRL3,
1122			   DAR_PHY_CTRL3_ASM_MSK | DAR_PHY_CTRL3_PB_ERR_MSK |
1123			   DAR_PHY_CTRL3_WAKE_MSK);
1124	if (ret)
1125		goto err_ret;
1126
1127	/* SRC_CTRL : enable Acknowledge Frame Pending and
1128	 * Source Address Matching Enable
1129	 */
1130	ret = regmap_write(lp->regmap_dar, DAR_SRC_CTRL,
1131			   DAR_SRC_CTRL_ACK_FRM_PND |
1132			   (DAR_SRC_CTRL_INDEX << DAR_SRC_CTRL_INDEX_SHIFT));
1133	if (ret)
1134		goto err_ret;
1135
1136	/*  RX_FRAME_FILTER */
1137	/*  FRM_VER[1:0] = b11. Accept FrameVersion 0 and 1 packets */
1138	ret = regmap_write(lp->regmap_iar, IAR_RX_FRAME_FILTER,
1139			   IAR_RX_FRAME_FLT_FRM_VER |
1140			   IAR_RX_FRAME_FLT_BEACON_FT |
1141			   IAR_RX_FRAME_FLT_DATA_FT |
1142			   IAR_RX_FRAME_FLT_CMD_FT);
1143	if (ret)
1144		goto err_ret;
1145
1146	dev_info(printdev(lp), "MCR20A DAR overwrites version: 0x%02x\n",
1147		 MCR20A_OVERWRITE_VERSION);
1148
1149	/* Overwrites direct registers  */
1150	ret = regmap_write(lp->regmap_dar, DAR_OVERWRITE_VER,
1151			   MCR20A_OVERWRITE_VERSION);
1152	if (ret)
1153		goto err_ret;
1154
1155	/* Overwrites indirect registers  */
1156	ret = regmap_multi_reg_write(lp->regmap_iar, mar20a_iar_overwrites,
1157				     ARRAY_SIZE(mar20a_iar_overwrites));
1158	if (ret)
1159		goto err_ret;
1160
1161	/* Clear HW indirect queue */
1162	dev_dbg(printdev(lp), "clear HW indirect queue\n");
1163	for (index = 0; index < MCR20A_PHY_INDIRECT_QUEUE_SIZE; index++) {
1164		phy_reg = (u8)(((index & DAR_SRC_CTRL_INDEX) <<
1165			       DAR_SRC_CTRL_INDEX_SHIFT)
1166			      | (DAR_SRC_CTRL_SRCADDR_EN)
1167			      | (DAR_SRC_CTRL_INDEX_DISABLE));
1168		ret = regmap_write(lp->regmap_dar, DAR_SRC_CTRL, phy_reg);
1169		if (ret)
1170			goto err_ret;
1171		phy_reg = 0;
1172	}
1173
1174	/* Assign HW Indirect hash table to PAN0 */
1175	ret = regmap_read(lp->regmap_iar, IAR_DUAL_PAN_CTRL, &phy_reg);
1176	if (ret)
1177		goto err_ret;
1178
1179	/* Clear current lvl */
1180	phy_reg &= ~IAR_DUAL_PAN_CTRL_DUAL_PAN_SAM_LVL_MSK;
1181
1182	/* Set new lvl */
1183	phy_reg |= MCR20A_PHY_INDIRECT_QUEUE_SIZE <<
1184		IAR_DUAL_PAN_CTRL_DUAL_PAN_SAM_LVL_SHIFT;
1185	ret = regmap_write(lp->regmap_iar, IAR_DUAL_PAN_CTRL, phy_reg);
1186	if (ret)
1187		goto err_ret;
1188
1189	/* Set CCA threshold to -75 dBm */
1190	ret = regmap_write(lp->regmap_iar, IAR_CCA1_THRESH, 0x4B);
1191	if (ret)
1192		goto err_ret;
1193
1194	/* Set prescaller to obtain 1 symbol (16us) timebase */
1195	ret = regmap_write(lp->regmap_iar, IAR_TMR_PRESCALE, 0x05);
1196	if (ret)
1197		goto err_ret;
1198
1199	/* Enable autodoze mode. */
1200	ret = regmap_update_bits(lp->regmap_dar, DAR_PWR_MODES,
1201				 DAR_PWR_MODES_AUTODOZE,
1202				 DAR_PWR_MODES_AUTODOZE);
1203	if (ret)
1204		goto err_ret;
1205
1206	/* Disable clk_out */
1207	ret = regmap_update_bits(lp->regmap_dar, DAR_CLK_OUT_CTRL,
1208				 DAR_CLK_OUT_CTRL_EN, 0x0);
1209	if (ret)
1210		goto err_ret;
1211
1212	return 0;
1213
1214err_ret:
1215	return ret;
1216}
1217
1218static int
1219mcr20a_probe(struct spi_device *spi)
1220{
1221	struct ieee802154_hw *hw;
1222	struct mcr20a_local *lp;
1223	struct gpio_desc *rst_b;
1224	int irq_type;
1225	int ret = -ENOMEM;
1226
1227	dev_dbg(&spi->dev, "%s\n", __func__);
1228
1229	if (!spi->irq) {
1230		dev_err(&spi->dev, "no IRQ specified\n");
1231		return -EINVAL;
1232	}
1233
1234	rst_b = devm_gpiod_get(&spi->dev, "rst_b", GPIOD_OUT_HIGH);
1235	if (IS_ERR(rst_b))
1236		return dev_err_probe(&spi->dev, PTR_ERR(rst_b),
1237				     "Failed to get 'rst_b' gpio");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1238
1239	/* reset mcr20a */
1240	usleep_range(10, 20);
1241	gpiod_set_value_cansleep(rst_b, 1);
1242	usleep_range(10, 20);
1243	gpiod_set_value_cansleep(rst_b, 0);
1244	usleep_range(120, 240);
 
 
1245
1246	/* allocate ieee802154_hw and private data */
1247	hw = ieee802154_alloc_hw(sizeof(*lp), &mcr20a_hw_ops);
1248	if (!hw) {
1249		dev_crit(&spi->dev, "ieee802154_alloc_hw failed\n");
1250		return ret;
 
1251	}
1252
1253	/* init mcr20a local data */
1254	lp = hw->priv;
1255	lp->hw = hw;
1256	lp->spi = spi;
 
 
1257
1258	/* init ieee802154_hw */
1259	hw->parent = &spi->dev;
1260	ieee802154_random_extended_addr(&hw->phy->perm_extended_addr);
1261
1262	/* init buf */
1263	lp->buf = devm_kzalloc(&spi->dev, SPI_COMMAND_BUFFER, GFP_KERNEL);
1264
1265	if (!lp->buf) {
1266		ret = -ENOMEM;
1267		goto free_dev;
1268	}
1269
1270	mcr20a_setup_tx_spi_messages(lp);
1271	mcr20a_setup_rx_spi_messages(lp);
1272	mcr20a_setup_irq_spi_messages(lp);
1273
1274	/* setup regmap */
1275	lp->regmap_dar = devm_regmap_init_spi(spi, &mcr20a_dar_regmap);
1276	if (IS_ERR(lp->regmap_dar)) {
1277		ret = PTR_ERR(lp->regmap_dar);
1278		dev_err(&spi->dev, "Failed to allocate dar map: %d\n",
1279			ret);
1280		goto free_dev;
1281	}
1282
1283	lp->regmap_iar = devm_regmap_init_spi(spi, &mcr20a_iar_regmap);
1284	if (IS_ERR(lp->regmap_iar)) {
1285		ret = PTR_ERR(lp->regmap_iar);
1286		dev_err(&spi->dev, "Failed to allocate iar map: %d\n", ret);
1287		goto free_dev;
1288	}
1289
1290	mcr20a_hw_setup(lp);
1291
1292	spi_set_drvdata(spi, lp);
1293
1294	ret = mcr20a_phy_init(lp);
1295	if (ret < 0) {
1296		dev_crit(&spi->dev, "mcr20a_phy_init failed\n");
1297		goto free_dev;
1298	}
1299
1300	irq_type = irq_get_trigger_type(spi->irq);
1301	if (!irq_type)
1302		irq_type = IRQF_TRIGGER_FALLING;
1303
1304	ret = devm_request_irq(&spi->dev, spi->irq, mcr20a_irq_isr,
1305			       irq_type | IRQF_NO_AUTOEN, dev_name(&spi->dev), lp);
1306	if (ret) {
1307		dev_err(&spi->dev, "could not request_irq for mcr20a\n");
1308		ret = -ENODEV;
1309		goto free_dev;
1310	}
1311
 
 
 
1312	ret = ieee802154_register_hw(hw);
1313	if (ret) {
1314		dev_crit(&spi->dev, "ieee802154_register_hw failed\n");
1315		goto free_dev;
1316	}
1317
1318	return ret;
1319
1320free_dev:
1321	ieee802154_free_hw(lp->hw);
 
 
1322
1323	return ret;
1324}
1325
1326static void mcr20a_remove(struct spi_device *spi)
1327{
1328	struct mcr20a_local *lp = spi_get_drvdata(spi);
1329
1330	dev_dbg(&spi->dev, "%s\n", __func__);
1331
1332	ieee802154_unregister_hw(lp->hw);
1333	ieee802154_free_hw(lp->hw);
 
 
1334}
1335
1336static const struct of_device_id mcr20a_of_match[] = {
1337	{ .compatible = "nxp,mcr20a", },
1338	{ },
1339};
1340MODULE_DEVICE_TABLE(of, mcr20a_of_match);
1341
1342static const struct spi_device_id mcr20a_device_id[] = {
1343	{ .name = "mcr20a", },
1344	{ },
1345};
1346MODULE_DEVICE_TABLE(spi, mcr20a_device_id);
1347
1348static struct spi_driver mcr20a_driver = {
1349	.id_table = mcr20a_device_id,
1350	.driver = {
1351		.of_match_table = mcr20a_of_match,
1352		.name	= "mcr20a",
1353	},
1354	.probe      = mcr20a_probe,
1355	.remove     = mcr20a_remove,
1356};
1357
1358module_spi_driver(mcr20a_driver);
1359
1360MODULE_DESCRIPTION("MCR20A Transceiver Driver");
1361MODULE_LICENSE("GPL v2");
1362MODULE_AUTHOR("Xue Liu <liuxuenetmail@gmail>");
v4.17
 
   1/*
   2 * Driver for NXP MCR20A 802.15.4 Wireless-PAN Networking controller
   3 *
   4 * Copyright (C) 2018 Xue Liu <liuxuenetmail@gmail.com>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2
   8 * as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 */
  16#include <linux/kernel.h>
  17#include <linux/module.h>
  18#include <linux/gpio.h>
  19#include <linux/spi/spi.h>
  20#include <linux/workqueue.h>
  21#include <linux/interrupt.h>
 
  22#include <linux/skbuff.h>
  23#include <linux/of_gpio.h>
  24#include <linux/regmap.h>
  25#include <linux/ieee802154.h>
  26#include <linux/debugfs.h>
  27
  28#include <net/mac802154.h>
  29#include <net/cfg802154.h>
  30
  31#include <linux/device.h>
  32
  33#include "mcr20a.h"
  34
  35#define	SPI_COMMAND_BUFFER		3
  36
  37#define REGISTER_READ			BIT(7)
  38#define REGISTER_WRITE			(0 << 7)
  39#define REGISTER_ACCESS			(0 << 6)
  40#define PACKET_BUFF_BURST_ACCESS	BIT(6)
  41#define PACKET_BUFF_BYTE_ACCESS		BIT(5)
  42
  43#define MCR20A_WRITE_REG(x)		(x)
  44#define MCR20A_READ_REG(x)		(REGISTER_READ | (x))
  45#define MCR20A_BURST_READ_PACKET_BUF	(0xC0)
  46#define MCR20A_BURST_WRITE_PACKET_BUF	(0x40)
  47
  48#define MCR20A_CMD_REG		0x80
  49#define MCR20A_CMD_REG_MASK	0x3f
  50#define MCR20A_CMD_WRITE	0x40
  51#define MCR20A_CMD_FB		0x20
  52
  53/* Number of Interrupt Request Status Register */
  54#define MCR20A_IRQSTS_NUM 2 /* only IRQ_STS1 and IRQ_STS2 */
  55
  56/* MCR20A CCA Type */
  57enum {
  58	MCR20A_CCA_ED,	  // energy detect - CCA bit not active,
  59			  // not to be used for T and CCCA sequences
  60	MCR20A_CCA_MODE1, // energy detect - CCA bit ACTIVE
  61	MCR20A_CCA_MODE2, // 802.15.4 compliant signal detect - CCA bit ACTIVE
  62	MCR20A_CCA_MODE3
  63};
  64
  65enum {
  66	MCR20A_XCVSEQ_IDLE	= 0x00,
  67	MCR20A_XCVSEQ_RX	= 0x01,
  68	MCR20A_XCVSEQ_TX	= 0x02,
  69	MCR20A_XCVSEQ_CCA	= 0x03,
  70	MCR20A_XCVSEQ_TR	= 0x04,
  71	MCR20A_XCVSEQ_CCCA	= 0x05,
  72};
  73
  74/* IEEE-802.15.4 defined constants (2.4 GHz logical channels) */
  75#define	MCR20A_MIN_CHANNEL	(11)
  76#define	MCR20A_MAX_CHANNEL	(26)
  77#define	MCR20A_CHANNEL_SPACING	(5)
  78
  79/* MCR20A CCA Threshold constans */
  80#define MCR20A_MIN_CCA_THRESHOLD (0x6EU)
  81#define MCR20A_MAX_CCA_THRESHOLD (0x00U)
  82
  83/* version 0C */
  84#define MCR20A_OVERWRITE_VERSION (0x0C)
  85
  86/* MCR20A PLL configurations */
  87static const u8  PLL_INT[16] = {
  88	/* 2405 */ 0x0B,	/* 2410 */ 0x0B,	/* 2415 */ 0x0B,
  89	/* 2420 */ 0x0B,	/* 2425 */ 0x0B,	/* 2430 */ 0x0B,
  90	/* 2435 */ 0x0C,	/* 2440 */ 0x0C,	/* 2445 */ 0x0C,
  91	/* 2450 */ 0x0C,	/* 2455 */ 0x0C,	/* 2460 */ 0x0C,
  92	/* 2465 */ 0x0D,	/* 2470 */ 0x0D,	/* 2475 */ 0x0D,
  93	/* 2480 */ 0x0D
  94};
  95
  96static const u8 PLL_FRAC[16] = {
  97	/* 2405 */ 0x28,	/* 2410 */ 0x50,	/* 2415 */ 0x78,
  98	/* 2420 */ 0xA0,	/* 2425 */ 0xC8,	/* 2430 */ 0xF0,
  99	/* 2435 */ 0x18,	/* 2440 */ 0x40,	/* 2445 */ 0x68,
 100	/* 2450 */ 0x90,	/* 2455 */ 0xB8,	/* 2460 */ 0xE0,
 101	/* 2465 */ 0x08,	/* 2470 */ 0x30,	/* 2475 */ 0x58,
 102	/* 2480 */ 0x80
 103};
 104
 105static const struct reg_sequence mar20a_iar_overwrites[] = {
 106	{ IAR_MISC_PAD_CTRL,	0x02 },
 107	{ IAR_VCO_CTRL1,	0xB3 },
 108	{ IAR_VCO_CTRL2,	0x07 },
 109	{ IAR_PA_TUNING,	0x71 },
 110	{ IAR_CHF_IBUF,		0x2F },
 111	{ IAR_CHF_QBUF,		0x2F },
 112	{ IAR_CHF_IRIN,		0x24 },
 113	{ IAR_CHF_QRIN,		0x24 },
 114	{ IAR_CHF_IL,		0x24 },
 115	{ IAR_CHF_QL,		0x24 },
 116	{ IAR_CHF_CC1,		0x32 },
 117	{ IAR_CHF_CCL,		0x1D },
 118	{ IAR_CHF_CC2,		0x2D },
 119	{ IAR_CHF_IROUT,	0x24 },
 120	{ IAR_CHF_QROUT,	0x24 },
 121	{ IAR_PA_CAL,		0x28 },
 122	{ IAR_AGC_THR1,		0x55 },
 123	{ IAR_AGC_THR2,		0x2D },
 124	{ IAR_ATT_RSSI1,	0x5F },
 125	{ IAR_ATT_RSSI2,	0x8F },
 126	{ IAR_RSSI_OFFSET,	0x61 },
 127	{ IAR_CHF_PMA_GAIN,	0x03 },
 128	{ IAR_CCA1_THRESH,	0x50 },
 129	{ IAR_CORR_NVAL,	0x13 },
 130	{ IAR_ACKDELAY,		0x3D },
 131};
 132
 133#define MCR20A_VALID_CHANNELS (0x07FFF800)
 134
 135struct mcr20a_platform_data {
 136	int rst_gpio;
 137};
 138
 139#define MCR20A_MAX_BUF		(127)
 140
 141#define printdev(X) (&X->spi->dev)
 142
 143/* regmap information for Direct Access Register (DAR) access */
 144#define MCR20A_DAR_WRITE	0x01
 145#define MCR20A_DAR_READ		0x00
 146#define MCR20A_DAR_NUMREGS	0x3F
 147
 148/* regmap information for Indirect Access Register (IAR) access */
 149#define MCR20A_IAR_ACCESS	0x80
 150#define MCR20A_IAR_NUMREGS	0xBEFF
 151
 152/* Read/Write SPI Commands for DAR and IAR registers. */
 153#define MCR20A_READSHORT(reg)	((reg) << 1)
 154#define MCR20A_WRITESHORT(reg)	((reg) << 1 | 1)
 155#define MCR20A_READLONG(reg)	(1 << 15 | (reg) << 5)
 156#define MCR20A_WRITELONG(reg)	(1 << 15 | (reg) << 5 | 1 << 4)
 157
 158/* Type definitions for link configuration of instantiable layers  */
 159#define MCR20A_PHY_INDIRECT_QUEUE_SIZE (12)
 160
 161static bool
 162mcr20a_dar_writeable(struct device *dev, unsigned int reg)
 163{
 164	switch (reg) {
 165	case DAR_IRQ_STS1:
 166	case DAR_IRQ_STS2:
 167	case DAR_IRQ_STS3:
 168	case DAR_PHY_CTRL1:
 169	case DAR_PHY_CTRL2:
 170	case DAR_PHY_CTRL3:
 171	case DAR_PHY_CTRL4:
 172	case DAR_SRC_CTRL:
 173	case DAR_SRC_ADDRS_SUM_LSB:
 174	case DAR_SRC_ADDRS_SUM_MSB:
 175	case DAR_T3CMP_LSB:
 176	case DAR_T3CMP_MSB:
 177	case DAR_T3CMP_USB:
 178	case DAR_T2PRIMECMP_LSB:
 179	case DAR_T2PRIMECMP_MSB:
 180	case DAR_T1CMP_LSB:
 181	case DAR_T1CMP_MSB:
 182	case DAR_T1CMP_USB:
 183	case DAR_T2CMP_LSB:
 184	case DAR_T2CMP_MSB:
 185	case DAR_T2CMP_USB:
 186	case DAR_T4CMP_LSB:
 187	case DAR_T4CMP_MSB:
 188	case DAR_T4CMP_USB:
 189	case DAR_PLL_INT0:
 190	case DAR_PLL_FRAC0_LSB:
 191	case DAR_PLL_FRAC0_MSB:
 192	case DAR_PA_PWR:
 193	/* no DAR_ACM */
 194	case DAR_OVERWRITE_VER:
 195	case DAR_CLK_OUT_CTRL:
 196	case DAR_PWR_MODES:
 197		return true;
 198	default:
 199		return false;
 200	}
 201}
 202
 203static bool
 204mcr20a_dar_readable(struct device *dev, unsigned int reg)
 205{
 206	bool rc;
 207
 208	/* all writeable are also readable */
 209	rc = mcr20a_dar_writeable(dev, reg);
 210	if (rc)
 211		return rc;
 212
 213	/* readonly regs */
 214	switch (reg) {
 215	case DAR_RX_FRM_LEN:
 216	case DAR_CCA1_ED_FNL:
 217	case DAR_EVENT_TMR_LSB:
 218	case DAR_EVENT_TMR_MSB:
 219	case DAR_EVENT_TMR_USB:
 220	case DAR_TIMESTAMP_LSB:
 221	case DAR_TIMESTAMP_MSB:
 222	case DAR_TIMESTAMP_USB:
 223	case DAR_SEQ_STATE:
 224	case DAR_LQI_VALUE:
 225	case DAR_RSSI_CCA_CONT:
 226		return true;
 227	default:
 228		return false;
 229	}
 230}
 231
 232static bool
 233mcr20a_dar_volatile(struct device *dev, unsigned int reg)
 234{
 235	/* can be changed during runtime */
 236	switch (reg) {
 237	case DAR_IRQ_STS1:
 238	case DAR_IRQ_STS2:
 239	case DAR_IRQ_STS3:
 240	/* use them in spi_async and regmap so it's volatile */
 241		return true;
 242	default:
 243		return false;
 244	}
 245}
 246
 247static bool
 248mcr20a_dar_precious(struct device *dev, unsigned int reg)
 249{
 250	/* don't clear irq line on read */
 251	switch (reg) {
 252	case DAR_IRQ_STS1:
 253	case DAR_IRQ_STS2:
 254	case DAR_IRQ_STS3:
 255		return true;
 256	default:
 257		return false;
 258	}
 259}
 260
 261static const struct regmap_config mcr20a_dar_regmap = {
 262	.name			= "mcr20a_dar",
 263	.reg_bits		= 8,
 264	.val_bits		= 8,
 265	.write_flag_mask	= REGISTER_ACCESS | REGISTER_WRITE,
 266	.read_flag_mask		= REGISTER_ACCESS | REGISTER_READ,
 267	.cache_type		= REGCACHE_RBTREE,
 268	.writeable_reg		= mcr20a_dar_writeable,
 269	.readable_reg		= mcr20a_dar_readable,
 270	.volatile_reg		= mcr20a_dar_volatile,
 271	.precious_reg		= mcr20a_dar_precious,
 272	.fast_io		= true,
 273	.can_multi_write	= true,
 274};
 275
 276static bool
 277mcr20a_iar_writeable(struct device *dev, unsigned int reg)
 278{
 279	switch (reg) {
 280	case IAR_XTAL_TRIM:
 281	case IAR_PMC_LP_TRIM:
 282	case IAR_MACPANID0_LSB:
 283	case IAR_MACPANID0_MSB:
 284	case IAR_MACSHORTADDRS0_LSB:
 285	case IAR_MACSHORTADDRS0_MSB:
 286	case IAR_MACLONGADDRS0_0:
 287	case IAR_MACLONGADDRS0_8:
 288	case IAR_MACLONGADDRS0_16:
 289	case IAR_MACLONGADDRS0_24:
 290	case IAR_MACLONGADDRS0_32:
 291	case IAR_MACLONGADDRS0_40:
 292	case IAR_MACLONGADDRS0_48:
 293	case IAR_MACLONGADDRS0_56:
 294	case IAR_RX_FRAME_FILTER:
 295	case IAR_PLL_INT1:
 296	case IAR_PLL_FRAC1_LSB:
 297	case IAR_PLL_FRAC1_MSB:
 298	case IAR_MACPANID1_LSB:
 299	case IAR_MACPANID1_MSB:
 300	case IAR_MACSHORTADDRS1_LSB:
 301	case IAR_MACSHORTADDRS1_MSB:
 302	case IAR_MACLONGADDRS1_0:
 303	case IAR_MACLONGADDRS1_8:
 304	case IAR_MACLONGADDRS1_16:
 305	case IAR_MACLONGADDRS1_24:
 306	case IAR_MACLONGADDRS1_32:
 307	case IAR_MACLONGADDRS1_40:
 308	case IAR_MACLONGADDRS1_48:
 309	case IAR_MACLONGADDRS1_56:
 310	case IAR_DUAL_PAN_CTRL:
 311	case IAR_DUAL_PAN_DWELL:
 312	case IAR_CCA1_THRESH:
 313	case IAR_CCA1_ED_OFFSET_COMP:
 314	case IAR_LQI_OFFSET_COMP:
 315	case IAR_CCA_CTRL:
 316	case IAR_CCA2_CORR_PEAKS:
 317	case IAR_CCA2_CORR_THRESH:
 318	case IAR_TMR_PRESCALE:
 319	case IAR_ANT_PAD_CTRL:
 320	case IAR_MISC_PAD_CTRL:
 321	case IAR_BSM_CTRL:
 322	case IAR_RNG:
 323	case IAR_RX_WTR_MARK:
 324	case IAR_SOFT_RESET:
 325	case IAR_TXDELAY:
 326	case IAR_ACKDELAY:
 327	case IAR_CORR_NVAL:
 328	case IAR_ANT_AGC_CTRL:
 329	case IAR_AGC_THR1:
 330	case IAR_AGC_THR2:
 331	case IAR_PA_CAL:
 332	case IAR_ATT_RSSI1:
 333	case IAR_ATT_RSSI2:
 334	case IAR_RSSI_OFFSET:
 335	case IAR_XTAL_CTRL:
 336	case IAR_CHF_PMA_GAIN:
 337	case IAR_CHF_IBUF:
 338	case IAR_CHF_QBUF:
 339	case IAR_CHF_IRIN:
 340	case IAR_CHF_QRIN:
 341	case IAR_CHF_IL:
 342	case IAR_CHF_QL:
 343	case IAR_CHF_CC1:
 344	case IAR_CHF_CCL:
 345	case IAR_CHF_CC2:
 346	case IAR_CHF_IROUT:
 347	case IAR_CHF_QROUT:
 348	case IAR_PA_TUNING:
 349	case IAR_VCO_CTRL1:
 350	case IAR_VCO_CTRL2:
 351		return true;
 352	default:
 353		return false;
 354	}
 355}
 356
 357static bool
 358mcr20a_iar_readable(struct device *dev, unsigned int reg)
 359{
 360	bool rc;
 361
 362	/* all writeable are also readable */
 363	rc = mcr20a_iar_writeable(dev, reg);
 364	if (rc)
 365		return rc;
 366
 367	/* readonly regs */
 368	switch (reg) {
 369	case IAR_PART_ID:
 370	case IAR_DUAL_PAN_STS:
 371	case IAR_RX_BYTE_COUNT:
 372	case IAR_FILTERFAIL_CODE1:
 373	case IAR_FILTERFAIL_CODE2:
 374	case IAR_RSSI:
 375		return true;
 376	default:
 377		return false;
 378	}
 379}
 380
 381static bool
 382mcr20a_iar_volatile(struct device *dev, unsigned int reg)
 383{
 384/* can be changed during runtime */
 385	switch (reg) {
 386	case IAR_DUAL_PAN_STS:
 387	case IAR_RX_BYTE_COUNT:
 388	case IAR_FILTERFAIL_CODE1:
 389	case IAR_FILTERFAIL_CODE2:
 390	case IAR_RSSI:
 391		return true;
 392	default:
 393		return false;
 394	}
 395}
 396
 397static const struct regmap_config mcr20a_iar_regmap = {
 398	.name			= "mcr20a_iar",
 399	.reg_bits		= 16,
 400	.val_bits		= 8,
 401	.write_flag_mask	= REGISTER_ACCESS | REGISTER_WRITE | IAR_INDEX,
 402	.read_flag_mask		= REGISTER_ACCESS | REGISTER_READ  | IAR_INDEX,
 403	.cache_type		= REGCACHE_RBTREE,
 404	.writeable_reg		= mcr20a_iar_writeable,
 405	.readable_reg		= mcr20a_iar_readable,
 406	.volatile_reg		= mcr20a_iar_volatile,
 407	.fast_io		= true,
 408};
 409
 410struct mcr20a_local {
 411	struct spi_device *spi;
 412
 413	struct ieee802154_hw *hw;
 414	struct mcr20a_platform_data *pdata;
 415	struct regmap *regmap_dar;
 416	struct regmap *regmap_iar;
 417
 418	u8 *buf;
 419
 420	bool is_tx;
 421
 422	/* for writing tx buffer */
 423	struct spi_message tx_buf_msg;
 424	u8 tx_header[1];
 425	/* burst buffer write command */
 426	struct spi_transfer tx_xfer_header;
 427	u8 tx_len[1];
 428	/* len of tx packet */
 429	struct spi_transfer tx_xfer_len;
 430	/* data of tx packet */
 431	struct spi_transfer tx_xfer_buf;
 432	struct sk_buff *tx_skb;
 433
 434	/* for read length rxfifo */
 435	struct spi_message reg_msg;
 436	u8 reg_cmd[1];
 437	u8 reg_data[MCR20A_IRQSTS_NUM];
 438	struct spi_transfer reg_xfer_cmd;
 439	struct spi_transfer reg_xfer_data;
 440
 441	/* receive handling */
 442	struct spi_message rx_buf_msg;
 443	u8 rx_header[1];
 444	struct spi_transfer rx_xfer_header;
 445	u8 rx_lqi[1];
 446	struct spi_transfer rx_xfer_lqi;
 447	u8 rx_buf[MCR20A_MAX_BUF];
 448	struct spi_transfer rx_xfer_buf;
 449
 450	/* isr handling for reading intstat */
 451	struct spi_message irq_msg;
 452	u8 irq_header[1];
 453	u8 irq_data[MCR20A_IRQSTS_NUM];
 454	struct spi_transfer irq_xfer_data;
 455	struct spi_transfer irq_xfer_header;
 456};
 457
 458static void
 459mcr20a_write_tx_buf_complete(void *context)
 460{
 461	struct mcr20a_local *lp = context;
 462	int ret;
 463
 464	dev_dbg(printdev(lp), "%s\n", __func__);
 465
 466	lp->reg_msg.complete = NULL;
 467	lp->reg_cmd[0]	= MCR20A_WRITE_REG(DAR_PHY_CTRL1);
 468	lp->reg_data[0] = MCR20A_XCVSEQ_TX;
 469	lp->reg_xfer_data.len = 1;
 470
 471	ret = spi_async(lp->spi, &lp->reg_msg);
 472	if (ret)
 473		dev_err(printdev(lp), "failed to set SEQ TX\n");
 474}
 475
 476static int
 477mcr20a_xmit(struct ieee802154_hw *hw, struct sk_buff *skb)
 478{
 479	struct mcr20a_local *lp = hw->priv;
 480
 481	dev_dbg(printdev(lp), "%s\n", __func__);
 482
 483	lp->tx_skb = skb;
 484
 485	print_hex_dump_debug("mcr20a tx: ", DUMP_PREFIX_OFFSET, 16, 1,
 486			     skb->data, skb->len, 0);
 487
 488	lp->is_tx = 1;
 489
 490	lp->reg_msg.complete	= NULL;
 491	lp->reg_cmd[0]		= MCR20A_WRITE_REG(DAR_PHY_CTRL1);
 492	lp->reg_data[0]		= MCR20A_XCVSEQ_IDLE;
 493	lp->reg_xfer_data.len	= 1;
 494
 495	return spi_async(lp->spi, &lp->reg_msg);
 496}
 497
 498static int
 499mcr20a_ed(struct ieee802154_hw *hw, u8 *level)
 500{
 501	WARN_ON(!level);
 502	*level = 0xbe;
 503	return 0;
 504}
 505
 506static int
 507mcr20a_set_channel(struct ieee802154_hw *hw, u8 page, u8 channel)
 508{
 509	struct mcr20a_local *lp = hw->priv;
 510	int ret;
 511
 512	dev_dbg(printdev(lp), "%s\n", __func__);
 513
 514	/* freqency = ((PLL_INT+64) + (PLL_FRAC/65536)) * 32 MHz */
 515	ret = regmap_write(lp->regmap_dar, DAR_PLL_INT0, PLL_INT[channel - 11]);
 516	if (ret)
 517		return ret;
 518	ret = regmap_write(lp->regmap_dar, DAR_PLL_FRAC0_LSB, 0x00);
 519	if (ret)
 520		return ret;
 521	ret = regmap_write(lp->regmap_dar, DAR_PLL_FRAC0_MSB,
 522			   PLL_FRAC[channel - 11]);
 523	if (ret)
 524		return ret;
 525
 526	return 0;
 527}
 528
 529static int
 530mcr20a_start(struct ieee802154_hw *hw)
 531{
 532	struct mcr20a_local *lp = hw->priv;
 533	int ret;
 534
 535	dev_dbg(printdev(lp), "%s\n", __func__);
 536
 537	/* No slotted operation */
 538	dev_dbg(printdev(lp), "no slotted operation\n");
 539	ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL1,
 540				 DAR_PHY_CTRL1_SLOTTED, 0x0);
 
 
 541
 542	/* enable irq */
 543	enable_irq(lp->spi->irq);
 544
 545	/* Unmask SEQ interrupt */
 546	ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL2,
 547				 DAR_PHY_CTRL2_SEQMSK, 0x0);
 
 
 548
 549	/* Start the RX sequence */
 550	dev_dbg(printdev(lp), "start the RX sequence\n");
 551	ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL1,
 552				 DAR_PHY_CTRL1_XCVSEQ_MASK, MCR20A_XCVSEQ_RX);
 
 
 553
 554	return 0;
 555}
 556
 557static void
 558mcr20a_stop(struct ieee802154_hw *hw)
 559{
 560	struct mcr20a_local *lp = hw->priv;
 561
 562	dev_dbg(printdev(lp), "%s\n", __func__);
 563
 564	/* stop all running sequence */
 565	regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL1,
 566			   DAR_PHY_CTRL1_XCVSEQ_MASK, MCR20A_XCVSEQ_IDLE);
 567
 568	/* disable irq */
 569	disable_irq(lp->spi->irq);
 570}
 571
 572static int
 573mcr20a_set_hw_addr_filt(struct ieee802154_hw *hw,
 574			struct ieee802154_hw_addr_filt *filt,
 575			unsigned long changed)
 576{
 577	struct mcr20a_local *lp = hw->priv;
 578
 579	dev_dbg(printdev(lp), "%s\n", __func__);
 580
 581	if (changed & IEEE802154_AFILT_SADDR_CHANGED) {
 582		u16 addr = le16_to_cpu(filt->short_addr);
 583
 584		regmap_write(lp->regmap_iar, IAR_MACSHORTADDRS0_LSB, addr);
 585		regmap_write(lp->regmap_iar, IAR_MACSHORTADDRS0_MSB, addr >> 8);
 586	}
 587
 588	if (changed & IEEE802154_AFILT_PANID_CHANGED) {
 589		u16 pan = le16_to_cpu(filt->pan_id);
 590
 591		regmap_write(lp->regmap_iar, IAR_MACPANID0_LSB, pan);
 592		regmap_write(lp->regmap_iar, IAR_MACPANID0_MSB, pan >> 8);
 593	}
 594
 595	if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) {
 596		u8 addr[8], i;
 597
 598		memcpy(addr, &filt->ieee_addr, 8);
 599		for (i = 0; i < 8; i++)
 600			regmap_write(lp->regmap_iar,
 601				     IAR_MACLONGADDRS0_0 + i, addr[i]);
 602	}
 603
 604	if (changed & IEEE802154_AFILT_PANC_CHANGED) {
 605		if (filt->pan_coord) {
 606			regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
 607					   DAR_PHY_CTRL4_PANCORDNTR0, 0x10);
 608		} else {
 609			regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
 610					   DAR_PHY_CTRL4_PANCORDNTR0, 0x00);
 611		}
 612	}
 613
 614	return 0;
 615}
 616
 617/* -30 dBm to 10 dBm */
 618#define MCR20A_MAX_TX_POWERS 0x14
 619static const s32 mcr20a_powers[MCR20A_MAX_TX_POWERS + 1] = {
 620	-3000, -2800, -2600, -2400, -2200, -2000, -1800, -1600, -1400,
 621	-1200, -1000, -800, -600, -400, -200, 0, 200, 400, 600, 800, 1000
 622};
 623
 624static int
 625mcr20a_set_txpower(struct ieee802154_hw *hw, s32 mbm)
 626{
 627	struct mcr20a_local *lp = hw->priv;
 628	u32 i;
 629
 630	dev_dbg(printdev(lp), "%s(%d)\n", __func__, mbm);
 631
 632	for (i = 0; i < lp->hw->phy->supported.tx_powers_size; i++) {
 633		if (lp->hw->phy->supported.tx_powers[i] == mbm)
 634			return regmap_write(lp->regmap_dar, DAR_PA_PWR,
 635					    ((i + 8) & 0x1F));
 636	}
 637
 638	return -EINVAL;
 639}
 640
 641#define MCR20A_MAX_ED_LEVELS MCR20A_MIN_CCA_THRESHOLD
 642static s32 mcr20a_ed_levels[MCR20A_MAX_ED_LEVELS + 1];
 643
 644static int
 645mcr20a_set_cca_mode(struct ieee802154_hw *hw,
 646		    const struct wpan_phy_cca *cca)
 647{
 648	struct mcr20a_local *lp = hw->priv;
 649	unsigned int cca_mode = 0xff;
 650	bool cca_mode_and = false;
 651	int ret;
 652
 653	dev_dbg(printdev(lp), "%s\n", __func__);
 654
 655	/* mapping 802.15.4 to driver spec */
 656	switch (cca->mode) {
 657	case NL802154_CCA_ENERGY:
 658		cca_mode = MCR20A_CCA_MODE1;
 659		break;
 660	case NL802154_CCA_CARRIER:
 661		cca_mode = MCR20A_CCA_MODE2;
 662		break;
 663	case NL802154_CCA_ENERGY_CARRIER:
 664		switch (cca->opt) {
 665		case NL802154_CCA_OPT_ENERGY_CARRIER_AND:
 666			cca_mode = MCR20A_CCA_MODE3;
 667			cca_mode_and = true;
 668			break;
 669		case NL802154_CCA_OPT_ENERGY_CARRIER_OR:
 670			cca_mode = MCR20A_CCA_MODE3;
 671			cca_mode_and = false;
 672			break;
 673		default:
 674			return -EINVAL;
 675		}
 676		break;
 677	default:
 678		return -EINVAL;
 679	}
 680	ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
 681				 DAR_PHY_CTRL4_CCATYPE_MASK,
 682				 cca_mode << DAR_PHY_CTRL4_CCATYPE_SHIFT);
 683	if (ret < 0)
 684		return ret;
 685
 686	if (cca_mode == MCR20A_CCA_MODE3) {
 687		if (cca_mode_and) {
 688			ret = regmap_update_bits(lp->regmap_iar, IAR_CCA_CTRL,
 689						 IAR_CCA_CTRL_CCA3_AND_NOT_OR,
 690						 0x08);
 691		} else {
 692			ret = regmap_update_bits(lp->regmap_iar,
 693						 IAR_CCA_CTRL,
 694						 IAR_CCA_CTRL_CCA3_AND_NOT_OR,
 695						 0x00);
 696		}
 697		if (ret < 0)
 698			return ret;
 699	}
 700
 701	return ret;
 702}
 703
 704static int
 705mcr20a_set_cca_ed_level(struct ieee802154_hw *hw, s32 mbm)
 706{
 707	struct mcr20a_local *lp = hw->priv;
 708	u32 i;
 709
 710	dev_dbg(printdev(lp), "%s\n", __func__);
 711
 712	for (i = 0; i < hw->phy->supported.cca_ed_levels_size; i++) {
 713		if (hw->phy->supported.cca_ed_levels[i] == mbm)
 714			return regmap_write(lp->regmap_iar, IAR_CCA1_THRESH, i);
 715	}
 716
 717	return 0;
 718}
 719
 720static int
 721mcr20a_set_promiscuous_mode(struct ieee802154_hw *hw, const bool on)
 722{
 723	struct mcr20a_local *lp = hw->priv;
 724	int ret;
 725	u8 rx_frame_filter_reg = 0x0;
 726
 727	dev_dbg(printdev(lp), "%s(%d)\n", __func__, on);
 728
 729	if (on) {
 730		/* All frame types accepted*/
 731		rx_frame_filter_reg &= ~(IAR_RX_FRAME_FLT_FRM_VER);
 732		rx_frame_filter_reg |= (IAR_RX_FRAME_FLT_ACK_FT |
 733				  IAR_RX_FRAME_FLT_NS_FT);
 734
 735		ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
 736					 DAR_PHY_CTRL4_PROMISCUOUS,
 737					 DAR_PHY_CTRL4_PROMISCUOUS);
 738		if (ret < 0)
 739			return ret;
 740
 741		ret = regmap_write(lp->regmap_iar, IAR_RX_FRAME_FILTER,
 742				   rx_frame_filter_reg);
 743		if (ret < 0)
 744			return ret;
 745	} else {
 746		ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
 747					 DAR_PHY_CTRL4_PROMISCUOUS, 0x0);
 748		if (ret < 0)
 749			return ret;
 750
 751		ret = regmap_write(lp->regmap_iar, IAR_RX_FRAME_FILTER,
 752				   IAR_RX_FRAME_FLT_FRM_VER |
 753				   IAR_RX_FRAME_FLT_BEACON_FT |
 754				   IAR_RX_FRAME_FLT_DATA_FT |
 755				   IAR_RX_FRAME_FLT_CMD_FT);
 756		if (ret < 0)
 757			return ret;
 758	}
 759
 760	return 0;
 761}
 762
 763static const struct ieee802154_ops mcr20a_hw_ops = {
 764	.owner			= THIS_MODULE,
 765	.xmit_async		= mcr20a_xmit,
 766	.ed			= mcr20a_ed,
 767	.set_channel		= mcr20a_set_channel,
 768	.start			= mcr20a_start,
 769	.stop			= mcr20a_stop,
 770	.set_hw_addr_filt	= mcr20a_set_hw_addr_filt,
 771	.set_txpower		= mcr20a_set_txpower,
 772	.set_cca_mode		= mcr20a_set_cca_mode,
 773	.set_cca_ed_level	= mcr20a_set_cca_ed_level,
 774	.set_promiscuous_mode	= mcr20a_set_promiscuous_mode,
 775};
 776
 777static int
 778mcr20a_request_rx(struct mcr20a_local *lp)
 779{
 780	dev_dbg(printdev(lp), "%s\n", __func__);
 781
 782	/* Start the RX sequence */
 783	regmap_update_bits_async(lp->regmap_dar, DAR_PHY_CTRL1,
 784				 DAR_PHY_CTRL1_XCVSEQ_MASK, MCR20A_XCVSEQ_RX);
 785
 786	return 0;
 787}
 788
 789static void
 790mcr20a_handle_rx_read_buf_complete(void *context)
 791{
 792	struct mcr20a_local *lp = context;
 793	u8 len = lp->reg_data[0] & DAR_RX_FRAME_LENGTH_MASK;
 794	struct sk_buff *skb;
 795
 796	dev_dbg(printdev(lp), "%s\n", __func__);
 797
 798	dev_dbg(printdev(lp), "RX is done\n");
 799
 800	if (!ieee802154_is_valid_psdu_len(len)) {
 801		dev_vdbg(&lp->spi->dev, "corrupted frame received\n");
 802		len = IEEE802154_MTU;
 803	}
 804
 805	len = len - 2;  /* get rid of frame check field */
 806
 807	skb = dev_alloc_skb(len);
 808	if (!skb)
 809		return;
 810
 811	memcpy(skb_put(skb, len), lp->rx_buf, len);
 812	ieee802154_rx_irqsafe(lp->hw, skb, lp->rx_lqi[0]);
 813
 814	print_hex_dump_debug("mcr20a rx: ", DUMP_PREFIX_OFFSET, 16, 1,
 815			     lp->rx_buf, len, 0);
 816	pr_debug("mcr20a rx: lqi: %02hhx\n", lp->rx_lqi[0]);
 817
 818	/* start RX sequence */
 819	mcr20a_request_rx(lp);
 820}
 821
 822static void
 823mcr20a_handle_rx_read_len_complete(void *context)
 824{
 825	struct mcr20a_local *lp = context;
 826	u8 len;
 827	int ret;
 828
 829	dev_dbg(printdev(lp), "%s\n", __func__);
 830
 831	/* get the length of received frame */
 832	len = lp->reg_data[0] & DAR_RX_FRAME_LENGTH_MASK;
 833	dev_dbg(printdev(lp), "frame len : %d\n", len);
 834
 835	/* prepare to read the rx buf */
 836	lp->rx_buf_msg.complete = mcr20a_handle_rx_read_buf_complete;
 837	lp->rx_header[0] = MCR20A_BURST_READ_PACKET_BUF;
 838	lp->rx_xfer_buf.len = len;
 839
 840	ret = spi_async(lp->spi, &lp->rx_buf_msg);
 841	if (ret)
 842		dev_err(printdev(lp), "failed to read rx buffer length\n");
 843}
 844
 845static int
 846mcr20a_handle_rx(struct mcr20a_local *lp)
 847{
 848	dev_dbg(printdev(lp), "%s\n", __func__);
 849	lp->reg_msg.complete = mcr20a_handle_rx_read_len_complete;
 850	lp->reg_cmd[0] = MCR20A_READ_REG(DAR_RX_FRM_LEN);
 851	lp->reg_xfer_data.len	= 1;
 852
 853	return spi_async(lp->spi, &lp->reg_msg);
 854}
 855
 856static int
 857mcr20a_handle_tx_complete(struct mcr20a_local *lp)
 858{
 859	dev_dbg(printdev(lp), "%s\n", __func__);
 860
 861	ieee802154_xmit_complete(lp->hw, lp->tx_skb, false);
 862
 863	return mcr20a_request_rx(lp);
 864}
 865
 866static int
 867mcr20a_handle_tx(struct mcr20a_local *lp)
 868{
 869	int ret;
 870
 871	dev_dbg(printdev(lp), "%s\n", __func__);
 872
 873	/* write tx buffer */
 874	lp->tx_header[0]	= MCR20A_BURST_WRITE_PACKET_BUF;
 875	/* add 2 bytes of FCS */
 876	lp->tx_len[0]		= lp->tx_skb->len + 2;
 877	lp->tx_xfer_buf.tx_buf	= lp->tx_skb->data;
 878	/* add 1 byte psduLength */
 879	lp->tx_xfer_buf.len	= lp->tx_skb->len + 1;
 880
 881	ret = spi_async(lp->spi, &lp->tx_buf_msg);
 882	if (ret) {
 883		dev_err(printdev(lp), "SPI write Failed for TX buf\n");
 884		return ret;
 885	}
 886
 887	return 0;
 888}
 889
 890static void
 891mcr20a_irq_clean_complete(void *context)
 892{
 893	struct mcr20a_local *lp = context;
 894	u8 seq_state = lp->irq_data[DAR_IRQ_STS1] & DAR_PHY_CTRL1_XCVSEQ_MASK;
 895
 896	dev_dbg(printdev(lp), "%s\n", __func__);
 897
 898	enable_irq(lp->spi->irq);
 899
 900	dev_dbg(printdev(lp), "IRQ STA1 (%02x) STA2 (%02x)\n",
 901		lp->irq_data[DAR_IRQ_STS1], lp->irq_data[DAR_IRQ_STS2]);
 902
 903	switch (seq_state) {
 904	/* TX IRQ, RX IRQ and SEQ IRQ */
 905	case (0x03):
 906		if (lp->is_tx) {
 907			lp->is_tx = 0;
 908			dev_dbg(printdev(lp), "TX is done. No ACK\n");
 909			mcr20a_handle_tx_complete(lp);
 910		}
 911		break;
 912	case (0x05):
 913			/* rx is starting */
 914			dev_dbg(printdev(lp), "RX is starting\n");
 915			mcr20a_handle_rx(lp);
 916		break;
 917	case (0x07):
 918		if (lp->is_tx) {
 919			/* tx is done */
 920			lp->is_tx = 0;
 921			dev_dbg(printdev(lp), "TX is done. Get ACK\n");
 922			mcr20a_handle_tx_complete(lp);
 923		} else {
 924			/* rx is starting */
 925			dev_dbg(printdev(lp), "RX is starting\n");
 926			mcr20a_handle_rx(lp);
 927		}
 928		break;
 929	case (0x01):
 930		if (lp->is_tx) {
 931			dev_dbg(printdev(lp), "TX is starting\n");
 932			mcr20a_handle_tx(lp);
 933		} else {
 934			dev_dbg(printdev(lp), "MCR20A is stop\n");
 935		}
 936		break;
 937	}
 938}
 939
 940static void mcr20a_irq_status_complete(void *context)
 941{
 942	int ret;
 943	struct mcr20a_local *lp = context;
 944
 945	dev_dbg(printdev(lp), "%s\n", __func__);
 946	regmap_update_bits_async(lp->regmap_dar, DAR_PHY_CTRL1,
 947				 DAR_PHY_CTRL1_XCVSEQ_MASK, MCR20A_XCVSEQ_IDLE);
 948
 949	lp->reg_msg.complete = mcr20a_irq_clean_complete;
 950	lp->reg_cmd[0] = MCR20A_WRITE_REG(DAR_IRQ_STS1);
 951	memcpy(lp->reg_data, lp->irq_data, MCR20A_IRQSTS_NUM);
 952	lp->reg_xfer_data.len = MCR20A_IRQSTS_NUM;
 953
 954	ret = spi_async(lp->spi, &lp->reg_msg);
 955
 956	if (ret)
 957		dev_err(printdev(lp), "failed to clean irq status\n");
 958}
 959
 960static irqreturn_t mcr20a_irq_isr(int irq, void *data)
 961{
 962	struct mcr20a_local *lp = data;
 963	int ret;
 964
 965	disable_irq_nosync(irq);
 966
 967	lp->irq_header[0] = MCR20A_READ_REG(DAR_IRQ_STS1);
 968	/* read IRQSTSx */
 969	ret = spi_async(lp->spi, &lp->irq_msg);
 970	if (ret) {
 971		enable_irq(irq);
 972		return IRQ_NONE;
 973	}
 974
 975	return IRQ_HANDLED;
 976}
 977
 978static int mcr20a_get_platform_data(struct spi_device *spi,
 979				    struct mcr20a_platform_data *pdata)
 980{
 981	int ret = 0;
 982
 983	if (!spi->dev.of_node)
 984		return -EINVAL;
 985
 986	pdata->rst_gpio = of_get_named_gpio(spi->dev.of_node, "rst_b-gpio", 0);
 987	dev_dbg(&spi->dev, "rst_b-gpio: %d\n", pdata->rst_gpio);
 988
 989	return ret;
 990}
 991
 992static void mcr20a_hw_setup(struct mcr20a_local *lp)
 993{
 994	u8 i;
 995	struct ieee802154_hw *hw = lp->hw;
 996	struct wpan_phy *phy = lp->hw->phy;
 997
 998	dev_dbg(printdev(lp), "%s\n", __func__);
 999
1000	phy->symbol_duration = 16;
1001	phy->lifs_period = 40;
1002	phy->sifs_period = 12;
1003
1004	hw->flags = IEEE802154_HW_TX_OMIT_CKSUM |
1005			IEEE802154_HW_AFILT |
1006			IEEE802154_HW_PROMISCUOUS;
1007
1008	phy->flags = WPAN_PHY_FLAG_TXPOWER | WPAN_PHY_FLAG_CCA_ED_LEVEL |
1009			WPAN_PHY_FLAG_CCA_MODE;
1010
1011	phy->supported.cca_modes = BIT(NL802154_CCA_ENERGY) |
1012		BIT(NL802154_CCA_CARRIER) | BIT(NL802154_CCA_ENERGY_CARRIER);
1013	phy->supported.cca_opts = BIT(NL802154_CCA_OPT_ENERGY_CARRIER_AND) |
1014		BIT(NL802154_CCA_OPT_ENERGY_CARRIER_OR);
1015
1016	/* initiating cca_ed_levels */
1017	for (i = MCR20A_MAX_CCA_THRESHOLD; i < MCR20A_MIN_CCA_THRESHOLD + 1;
1018	      ++i) {
1019		mcr20a_ed_levels[i] =  -i * 100;
1020	}
1021
1022	phy->supported.cca_ed_levels = mcr20a_ed_levels;
1023	phy->supported.cca_ed_levels_size = ARRAY_SIZE(mcr20a_ed_levels);
1024
1025	phy->cca.mode = NL802154_CCA_ENERGY;
1026
1027	phy->supported.channels[0] = MCR20A_VALID_CHANNELS;
1028	phy->current_page = 0;
1029	/* MCR20A default reset value */
1030	phy->current_channel = 20;
1031	phy->symbol_duration = 16;
1032	phy->supported.tx_powers = mcr20a_powers;
1033	phy->supported.tx_powers_size = ARRAY_SIZE(mcr20a_powers);
1034	phy->cca_ed_level = phy->supported.cca_ed_levels[75];
1035	phy->transmit_power = phy->supported.tx_powers[0x0F];
1036}
1037
1038static void
1039mcr20a_setup_tx_spi_messages(struct mcr20a_local *lp)
1040{
1041	spi_message_init(&lp->tx_buf_msg);
1042	lp->tx_buf_msg.context = lp;
1043	lp->tx_buf_msg.complete = mcr20a_write_tx_buf_complete;
1044
1045	lp->tx_xfer_header.len = 1;
1046	lp->tx_xfer_header.tx_buf = lp->tx_header;
1047
1048	lp->tx_xfer_len.len = 1;
1049	lp->tx_xfer_len.tx_buf = lp->tx_len;
1050
1051	spi_message_add_tail(&lp->tx_xfer_header, &lp->tx_buf_msg);
1052	spi_message_add_tail(&lp->tx_xfer_len, &lp->tx_buf_msg);
1053	spi_message_add_tail(&lp->tx_xfer_buf, &lp->tx_buf_msg);
1054}
1055
1056static void
1057mcr20a_setup_rx_spi_messages(struct mcr20a_local *lp)
1058{
1059	spi_message_init(&lp->reg_msg);
1060	lp->reg_msg.context = lp;
1061
1062	lp->reg_xfer_cmd.len = 1;
1063	lp->reg_xfer_cmd.tx_buf = lp->reg_cmd;
1064	lp->reg_xfer_cmd.rx_buf = lp->reg_cmd;
1065
1066	lp->reg_xfer_data.rx_buf = lp->reg_data;
1067	lp->reg_xfer_data.tx_buf = lp->reg_data;
1068
1069	spi_message_add_tail(&lp->reg_xfer_cmd, &lp->reg_msg);
1070	spi_message_add_tail(&lp->reg_xfer_data, &lp->reg_msg);
1071
1072	spi_message_init(&lp->rx_buf_msg);
1073	lp->rx_buf_msg.context = lp;
1074	lp->rx_buf_msg.complete = mcr20a_handle_rx_read_buf_complete;
1075	lp->rx_xfer_header.len = 1;
1076	lp->rx_xfer_header.tx_buf = lp->rx_header;
1077	lp->rx_xfer_header.rx_buf = lp->rx_header;
1078
1079	lp->rx_xfer_buf.rx_buf = lp->rx_buf;
1080
1081	lp->rx_xfer_lqi.len = 1;
1082	lp->rx_xfer_lqi.rx_buf = lp->rx_lqi;
1083
1084	spi_message_add_tail(&lp->rx_xfer_header, &lp->rx_buf_msg);
1085	spi_message_add_tail(&lp->rx_xfer_buf, &lp->rx_buf_msg);
1086	spi_message_add_tail(&lp->rx_xfer_lqi, &lp->rx_buf_msg);
1087}
1088
1089static void
1090mcr20a_setup_irq_spi_messages(struct mcr20a_local *lp)
1091{
1092	spi_message_init(&lp->irq_msg);
1093	lp->irq_msg.context		= lp;
1094	lp->irq_msg.complete	= mcr20a_irq_status_complete;
1095	lp->irq_xfer_header.len	= 1;
1096	lp->irq_xfer_header.tx_buf = lp->irq_header;
1097	lp->irq_xfer_header.rx_buf = lp->irq_header;
1098
1099	lp->irq_xfer_data.len	= MCR20A_IRQSTS_NUM;
1100	lp->irq_xfer_data.rx_buf = lp->irq_data;
1101
1102	spi_message_add_tail(&lp->irq_xfer_header, &lp->irq_msg);
1103	spi_message_add_tail(&lp->irq_xfer_data, &lp->irq_msg);
1104}
1105
1106static int
1107mcr20a_phy_init(struct mcr20a_local *lp)
1108{
1109	u8 index;
1110	unsigned int phy_reg = 0;
1111	int ret;
1112
1113	dev_dbg(printdev(lp), "%s\n", __func__);
1114
1115	/* Disable Tristate on COCO MISO for SPI reads */
1116	ret = regmap_write(lp->regmap_iar, IAR_MISC_PAD_CTRL, 0x02);
1117	if (ret)
1118		goto err_ret;
1119
1120	/* Clear all PP IRQ bits in IRQSTS1 to avoid unexpected interrupts
1121	 * immediately after init
1122	 */
1123	ret = regmap_write(lp->regmap_dar, DAR_IRQ_STS1, 0xEF);
1124	if (ret)
1125		goto err_ret;
1126
1127	/* Clear all PP IRQ bits in IRQSTS2 */
1128	ret = regmap_write(lp->regmap_dar, DAR_IRQ_STS2,
1129			   DAR_IRQSTS2_ASM_IRQ | DAR_IRQSTS2_PB_ERR_IRQ |
1130			   DAR_IRQSTS2_WAKE_IRQ);
1131	if (ret)
1132		goto err_ret;
1133
1134	/* Disable all timer interrupts */
1135	ret = regmap_write(lp->regmap_dar, DAR_IRQ_STS3, 0xFF);
1136	if (ret)
1137		goto err_ret;
1138
1139	/*  PHY_CTRL1 : default HW settings + AUTOACK enabled */
1140	ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL1,
1141				 DAR_PHY_CTRL1_AUTOACK, DAR_PHY_CTRL1_AUTOACK);
1142
1143	/*  PHY_CTRL2 : disable all interrupts */
1144	ret = regmap_write(lp->regmap_dar, DAR_PHY_CTRL2, 0xFF);
1145	if (ret)
1146		goto err_ret;
1147
1148	/* PHY_CTRL3 : disable all timers and remaining interrupts */
1149	ret = regmap_write(lp->regmap_dar, DAR_PHY_CTRL3,
1150			   DAR_PHY_CTRL3_ASM_MSK | DAR_PHY_CTRL3_PB_ERR_MSK |
1151			   DAR_PHY_CTRL3_WAKE_MSK);
1152	if (ret)
1153		goto err_ret;
1154
1155	/* SRC_CTRL : enable Acknowledge Frame Pending and
1156	 * Source Address Matching Enable
1157	 */
1158	ret = regmap_write(lp->regmap_dar, DAR_SRC_CTRL,
1159			   DAR_SRC_CTRL_ACK_FRM_PND |
1160			   (DAR_SRC_CTRL_INDEX << DAR_SRC_CTRL_INDEX_SHIFT));
1161	if (ret)
1162		goto err_ret;
1163
1164	/*  RX_FRAME_FILTER */
1165	/*  FRM_VER[1:0] = b11. Accept FrameVersion 0 and 1 packets */
1166	ret = regmap_write(lp->regmap_iar, IAR_RX_FRAME_FILTER,
1167			   IAR_RX_FRAME_FLT_FRM_VER |
1168			   IAR_RX_FRAME_FLT_BEACON_FT |
1169			   IAR_RX_FRAME_FLT_DATA_FT |
1170			   IAR_RX_FRAME_FLT_CMD_FT);
1171	if (ret)
1172		goto err_ret;
1173
1174	dev_info(printdev(lp), "MCR20A DAR overwrites version: 0x%02x\n",
1175		 MCR20A_OVERWRITE_VERSION);
1176
1177	/* Overwrites direct registers  */
1178	ret = regmap_write(lp->regmap_dar, DAR_OVERWRITE_VER,
1179			   MCR20A_OVERWRITE_VERSION);
1180	if (ret)
1181		goto err_ret;
1182
1183	/* Overwrites indirect registers  */
1184	ret = regmap_multi_reg_write(lp->regmap_iar, mar20a_iar_overwrites,
1185				     ARRAY_SIZE(mar20a_iar_overwrites));
1186	if (ret)
1187		goto err_ret;
1188
1189	/* Clear HW indirect queue */
1190	dev_dbg(printdev(lp), "clear HW indirect queue\n");
1191	for (index = 0; index < MCR20A_PHY_INDIRECT_QUEUE_SIZE; index++) {
1192		phy_reg = (u8)(((index & DAR_SRC_CTRL_INDEX) <<
1193			       DAR_SRC_CTRL_INDEX_SHIFT)
1194			      | (DAR_SRC_CTRL_SRCADDR_EN)
1195			      | (DAR_SRC_CTRL_INDEX_DISABLE));
1196		ret = regmap_write(lp->regmap_dar, DAR_SRC_CTRL, phy_reg);
1197		if (ret)
1198			goto err_ret;
1199		phy_reg = 0;
1200	}
1201
1202	/* Assign HW Indirect hash table to PAN0 */
1203	ret = regmap_read(lp->regmap_iar, IAR_DUAL_PAN_CTRL, &phy_reg);
1204	if (ret)
1205		goto err_ret;
1206
1207	/* Clear current lvl */
1208	phy_reg &= ~IAR_DUAL_PAN_CTRL_DUAL_PAN_SAM_LVL_MSK;
1209
1210	/* Set new lvl */
1211	phy_reg |= MCR20A_PHY_INDIRECT_QUEUE_SIZE <<
1212		IAR_DUAL_PAN_CTRL_DUAL_PAN_SAM_LVL_SHIFT;
1213	ret = regmap_write(lp->regmap_iar, IAR_DUAL_PAN_CTRL, phy_reg);
1214	if (ret)
1215		goto err_ret;
1216
1217	/* Set CCA threshold to -75 dBm */
1218	ret = regmap_write(lp->regmap_iar, IAR_CCA1_THRESH, 0x4B);
1219	if (ret)
1220		goto err_ret;
1221
1222	/* Set prescaller to obtain 1 symbol (16us) timebase */
1223	ret = regmap_write(lp->regmap_iar, IAR_TMR_PRESCALE, 0x05);
1224	if (ret)
1225		goto err_ret;
1226
1227	/* Enable autodoze mode. */
1228	ret = regmap_update_bits(lp->regmap_dar, DAR_PWR_MODES,
1229				 DAR_PWR_MODES_AUTODOZE,
1230				 DAR_PWR_MODES_AUTODOZE);
1231	if (ret)
1232		goto err_ret;
1233
1234	/* Disable clk_out */
1235	ret = regmap_update_bits(lp->regmap_dar, DAR_CLK_OUT_CTRL,
1236				 DAR_CLK_OUT_CTRL_EN, 0x0);
1237	if (ret)
1238		goto err_ret;
1239
1240	return 0;
1241
1242err_ret:
1243	return ret;
1244}
1245
1246static int
1247mcr20a_probe(struct spi_device *spi)
1248{
1249	struct ieee802154_hw *hw;
1250	struct mcr20a_local *lp;
1251	struct mcr20a_platform_data *pdata;
1252	int irq_type;
1253	int ret = -ENOMEM;
1254
1255	dev_dbg(&spi->dev, "%s\n", __func__);
1256
1257	if (!spi->irq) {
1258		dev_err(&spi->dev, "no IRQ specified\n");
1259		return -EINVAL;
1260	}
1261
1262	pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
1263	if (!pdata)
1264		return -ENOMEM;
1265
1266	/* set mcr20a platform data */
1267	ret = mcr20a_get_platform_data(spi, pdata);
1268	if (ret < 0) {
1269		dev_crit(&spi->dev, "mcr20a_get_platform_data failed.\n");
1270		goto free_pdata;
1271	}
1272
1273	/* init reset gpio */
1274	if (gpio_is_valid(pdata->rst_gpio)) {
1275		ret = devm_gpio_request_one(&spi->dev, pdata->rst_gpio,
1276					    GPIOF_OUT_INIT_HIGH, "reset");
1277		if (ret)
1278			goto free_pdata;
1279	}
1280
1281	/* reset mcr20a */
1282	if (gpio_is_valid(pdata->rst_gpio)) {
1283		usleep_range(10, 20);
1284		gpio_set_value_cansleep(pdata->rst_gpio, 0);
1285		usleep_range(10, 20);
1286		gpio_set_value_cansleep(pdata->rst_gpio, 1);
1287		usleep_range(120, 240);
1288	}
1289
1290	/* allocate ieee802154_hw and private data */
1291	hw = ieee802154_alloc_hw(sizeof(*lp), &mcr20a_hw_ops);
1292	if (!hw) {
1293		dev_crit(&spi->dev, "ieee802154_alloc_hw failed\n");
1294		ret = -ENOMEM;
1295		goto free_pdata;
1296	}
1297
1298	/* init mcr20a local data */
1299	lp = hw->priv;
1300	lp->hw = hw;
1301	lp->spi = spi;
1302	lp->spi->dev.platform_data = pdata;
1303	lp->pdata = pdata;
1304
1305	/* init ieee802154_hw */
1306	hw->parent = &spi->dev;
1307	ieee802154_random_extended_addr(&hw->phy->perm_extended_addr);
1308
1309	/* init buf */
1310	lp->buf = devm_kzalloc(&spi->dev, SPI_COMMAND_BUFFER, GFP_KERNEL);
1311
1312	if (!lp->buf) {
1313		ret = -ENOMEM;
1314		goto free_dev;
1315	}
1316
1317	mcr20a_setup_tx_spi_messages(lp);
1318	mcr20a_setup_rx_spi_messages(lp);
1319	mcr20a_setup_irq_spi_messages(lp);
1320
1321	/* setup regmap */
1322	lp->regmap_dar = devm_regmap_init_spi(spi, &mcr20a_dar_regmap);
1323	if (IS_ERR(lp->regmap_dar)) {
1324		ret = PTR_ERR(lp->regmap_dar);
1325		dev_err(&spi->dev, "Failed to allocate dar map: %d\n",
1326			ret);
1327		goto free_dev;
1328	}
1329
1330	lp->regmap_iar = devm_regmap_init_spi(spi, &mcr20a_iar_regmap);
1331	if (IS_ERR(lp->regmap_iar)) {
1332		ret = PTR_ERR(lp->regmap_iar);
1333		dev_err(&spi->dev, "Failed to allocate iar map: %d\n", ret);
1334		goto free_dev;
1335	}
1336
1337	mcr20a_hw_setup(lp);
1338
1339	spi_set_drvdata(spi, lp);
1340
1341	ret = mcr20a_phy_init(lp);
1342	if (ret < 0) {
1343		dev_crit(&spi->dev, "mcr20a_phy_init failed\n");
1344		goto free_dev;
1345	}
1346
1347	irq_type = irq_get_trigger_type(spi->irq);
1348	if (!irq_type)
1349		irq_type = IRQF_TRIGGER_FALLING;
1350
1351	ret = devm_request_irq(&spi->dev, spi->irq, mcr20a_irq_isr,
1352			       irq_type, dev_name(&spi->dev), lp);
1353	if (ret) {
1354		dev_err(&spi->dev, "could not request_irq for mcr20a\n");
1355		ret = -ENODEV;
1356		goto free_dev;
1357	}
1358
1359	/* disable_irq by default and wait for starting hardware */
1360	disable_irq(spi->irq);
1361
1362	ret = ieee802154_register_hw(hw);
1363	if (ret) {
1364		dev_crit(&spi->dev, "ieee802154_register_hw failed\n");
1365		goto free_dev;
1366	}
1367
1368	return ret;
1369
1370free_dev:
1371	ieee802154_free_hw(lp->hw);
1372free_pdata:
1373	kfree(pdata);
1374
1375	return ret;
1376}
1377
1378static int mcr20a_remove(struct spi_device *spi)
1379{
1380	struct mcr20a_local *lp = spi_get_drvdata(spi);
1381
1382	dev_dbg(&spi->dev, "%s\n", __func__);
1383
1384	ieee802154_unregister_hw(lp->hw);
1385	ieee802154_free_hw(lp->hw);
1386
1387	return 0;
1388}
1389
1390static const struct of_device_id mcr20a_of_match[] = {
1391	{ .compatible = "nxp,mcr20a", },
1392	{ },
1393};
1394MODULE_DEVICE_TABLE(of, mcr20a_of_match);
1395
1396static const struct spi_device_id mcr20a_device_id[] = {
1397	{ .name = "mcr20a", },
1398	{ },
1399};
1400MODULE_DEVICE_TABLE(spi, mcr20a_device_id);
1401
1402static struct spi_driver mcr20a_driver = {
1403	.id_table = mcr20a_device_id,
1404	.driver = {
1405		.of_match_table = of_match_ptr(mcr20a_of_match),
1406		.name	= "mcr20a",
1407	},
1408	.probe      = mcr20a_probe,
1409	.remove     = mcr20a_remove,
1410};
1411
1412module_spi_driver(mcr20a_driver);
1413
1414MODULE_DESCRIPTION("MCR20A Transceiver Driver");
1415MODULE_LICENSE("GPL v2");
1416MODULE_AUTHOR("Xue Liu <liuxuenetmail@gmail>");