Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Driver for SGI's IOC3 based Ethernet cards as found in the PCI card.
3 *
4 * Copyright (C) 1999, 2000, 01, 03, 06 Ralf Baechle
5 * Copyright (C) 1995, 1999, 2000, 2001 by Silicon Graphics, Inc.
6 *
7 * References:
8 * o IOC3 ASIC specification 4.51, 1996-04-18
9 * o IEEE 802.3 specification, 2000 edition
10 * o DP38840A Specification, National Semiconductor, March 1997
11 *
12 * To do:
13 *
14 * o Use prefetching for large packets. What is a good lower limit for
15 * prefetching?
16 * o Use hardware checksums.
17 * o Which PHYs might possibly be attached to the IOC3 in real live,
18 * which workarounds are required for them? Do we ever have Lucent's?
19 * o For the 2.5 branch kill the mii-tool ioctls.
20 */
21
22#define IOC3_NAME "ioc3-eth"
23#define IOC3_VERSION "2.6.3-4"
24
25#include <linux/delay.h>
26#include <linux/kernel.h>
27#include <linux/mm.h>
28#include <linux/errno.h>
29#include <linux/module.h>
30#include <linux/init.h>
31#include <linux/crc16.h>
32#include <linux/crc32.h>
33#include <linux/mii.h>
34#include <linux/in.h>
35#include <linux/io.h>
36#include <linux/ip.h>
37#include <linux/tcp.h>
38#include <linux/udp.h>
39#include <linux/gfp.h>
40#include <linux/netdevice.h>
41#include <linux/etherdevice.h>
42#include <linux/ethtool.h>
43#include <linux/skbuff.h>
44#include <linux/dma-mapping.h>
45#include <linux/platform_device.h>
46#include <linux/nvmem-consumer.h>
47
48#include <net/ip.h>
49
50#include <asm/sn/ioc3.h>
51#include <asm/pci/bridge.h>
52
53#define CRC16_INIT 0
54#define CRC16_VALID 0xb001
55
56/* Number of RX buffers. This is tunable in the range of 16 <= x < 512.
57 * The value must be a power of two.
58 */
59#define RX_BUFFS 64
60#define RX_RING_ENTRIES 512 /* fixed in hardware */
61#define RX_RING_MASK (RX_RING_ENTRIES - 1)
62#define RX_RING_SIZE (RX_RING_ENTRIES * sizeof(u64))
63
64/* 128 TX buffers (not tunable) */
65#define TX_RING_ENTRIES 128
66#define TX_RING_MASK (TX_RING_ENTRIES - 1)
67#define TX_RING_SIZE (TX_RING_ENTRIES * sizeof(struct ioc3_etxd))
68
69/* IOC3 does dma transfers in 128 byte blocks */
70#define IOC3_DMA_XFER_LEN 128UL
71
72/* Every RX buffer starts with 8 byte descriptor data */
73#define RX_OFFSET (sizeof(struct ioc3_erxbuf) + NET_IP_ALIGN)
74#define RX_BUF_SIZE (13 * IOC3_DMA_XFER_LEN)
75
76#define ETCSR_FD ((21 << ETCSR_IPGR2_SHIFT) | (21 << ETCSR_IPGR1_SHIFT) | 21)
77#define ETCSR_HD ((17 << ETCSR_IPGR2_SHIFT) | (11 << ETCSR_IPGR1_SHIFT) | 21)
78
79/* Private per NIC data of the driver. */
80struct ioc3_private {
81 struct ioc3_ethregs *regs;
82 struct device *dma_dev;
83 u32 *ssram;
84 unsigned long *rxr; /* pointer to receiver ring */
85 void *tx_ring;
86 struct ioc3_etxd *txr;
87 dma_addr_t rxr_dma;
88 dma_addr_t txr_dma;
89 struct sk_buff *rx_skbs[RX_RING_ENTRIES];
90 struct sk_buff *tx_skbs[TX_RING_ENTRIES];
91 int rx_ci; /* RX consumer index */
92 int rx_pi; /* RX producer index */
93 int tx_ci; /* TX consumer index */
94 int tx_pi; /* TX producer index */
95 int txqlen;
96 u32 emcr, ehar_h, ehar_l;
97 spinlock_t ioc3_lock;
98 struct mii_if_info mii;
99
100 /* Members used by autonegotiation */
101 struct timer_list ioc3_timer;
102};
103
104static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
105static void ioc3_set_multicast_list(struct net_device *dev);
106static netdev_tx_t ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev);
107static void ioc3_timeout(struct net_device *dev, unsigned int txqueue);
108static inline unsigned int ioc3_hash(const unsigned char *addr);
109static void ioc3_start(struct ioc3_private *ip);
110static inline void ioc3_stop(struct ioc3_private *ip);
111static void ioc3_init(struct net_device *dev);
112static int ioc3_alloc_rx_bufs(struct net_device *dev);
113static void ioc3_free_rx_bufs(struct ioc3_private *ip);
114static inline void ioc3_clean_tx_ring(struct ioc3_private *ip);
115
116static const struct ethtool_ops ioc3_ethtool_ops;
117
118static inline unsigned long aligned_rx_skb_addr(unsigned long addr)
119{
120 return (~addr + 1) & (IOC3_DMA_XFER_LEN - 1UL);
121}
122
123static inline int ioc3_alloc_skb(struct ioc3_private *ip, struct sk_buff **skb,
124 struct ioc3_erxbuf **rxb, dma_addr_t *rxb_dma)
125{
126 struct sk_buff *new_skb;
127 dma_addr_t d;
128 int offset;
129
130 new_skb = alloc_skb(RX_BUF_SIZE + IOC3_DMA_XFER_LEN - 1, GFP_ATOMIC);
131 if (!new_skb)
132 return -ENOMEM;
133
134 /* ensure buffer is aligned to IOC3_DMA_XFER_LEN */
135 offset = aligned_rx_skb_addr((unsigned long)new_skb->data);
136 if (offset)
137 skb_reserve(new_skb, offset);
138
139 d = dma_map_single(ip->dma_dev, new_skb->data,
140 RX_BUF_SIZE, DMA_FROM_DEVICE);
141
142 if (dma_mapping_error(ip->dma_dev, d)) {
143 dev_kfree_skb_any(new_skb);
144 return -ENOMEM;
145 }
146 *rxb_dma = d;
147 *rxb = (struct ioc3_erxbuf *)new_skb->data;
148 skb_reserve(new_skb, RX_OFFSET);
149 *skb = new_skb;
150
151 return 0;
152}
153
154#ifdef CONFIG_PCI_XTALK_BRIDGE
155static inline unsigned long ioc3_map(dma_addr_t addr, unsigned long attr)
156{
157 return (addr & ~PCI64_ATTR_BAR) | attr;
158}
159
160#define ERBAR_VAL (ERBAR_BARRIER_BIT << ERBAR_RXBARR_SHIFT)
161#else
162static inline unsigned long ioc3_map(dma_addr_t addr, unsigned long attr)
163{
164 return addr;
165}
166
167#define ERBAR_VAL 0
168#endif
169
170static int ioc3eth_nvmem_match(struct device *dev, const void *data)
171{
172 const char *name = dev_name(dev);
173 const char *prefix = data;
174 int prefix_len;
175
176 prefix_len = strlen(prefix);
177 if (strlen(name) < (prefix_len + 3))
178 return 0;
179
180 if (memcmp(prefix, name, prefix_len) != 0)
181 return 0;
182
183 /* found nvmem device which is attached to our ioc3
184 * now check for one wire family code 09, 89 and 91
185 */
186 if (memcmp(name + prefix_len, "09-", 3) == 0)
187 return 1;
188 if (memcmp(name + prefix_len, "89-", 3) == 0)
189 return 1;
190 if (memcmp(name + prefix_len, "91-", 3) == 0)
191 return 1;
192
193 return 0;
194}
195
196static int ioc3eth_get_mac_addr(struct resource *res, u8 mac_addr[6])
197{
198 struct nvmem_device *nvmem;
199 char prefix[24];
200 u8 prom[16];
201 int ret;
202 int i;
203
204 snprintf(prefix, sizeof(prefix), "ioc3-%012llx-",
205 res->start & ~0xffff);
206
207 nvmem = nvmem_device_find(prefix, ioc3eth_nvmem_match);
208 if (IS_ERR(nvmem))
209 return PTR_ERR(nvmem);
210
211 ret = nvmem_device_read(nvmem, 0, 16, prom);
212 nvmem_device_put(nvmem);
213 if (ret < 0)
214 return ret;
215
216 /* check, if content is valid */
217 if (prom[0] != 0x0a ||
218 crc16(CRC16_INIT, prom, 13) != CRC16_VALID)
219 return -EINVAL;
220
221 for (i = 0; i < 6; i++)
222 mac_addr[i] = prom[10 - i];
223
224 return 0;
225}
226
227static void __ioc3_set_mac_address(struct net_device *dev)
228{
229 struct ioc3_private *ip = netdev_priv(dev);
230
231 writel((dev->dev_addr[5] << 8) |
232 dev->dev_addr[4],
233 &ip->regs->emar_h);
234 writel((dev->dev_addr[3] << 24) |
235 (dev->dev_addr[2] << 16) |
236 (dev->dev_addr[1] << 8) |
237 dev->dev_addr[0],
238 &ip->regs->emar_l);
239}
240
241static int ioc3_set_mac_address(struct net_device *dev, void *addr)
242{
243 struct ioc3_private *ip = netdev_priv(dev);
244 struct sockaddr *sa = addr;
245
246 eth_hw_addr_set(dev, sa->sa_data);
247
248 spin_lock_irq(&ip->ioc3_lock);
249 __ioc3_set_mac_address(dev);
250 spin_unlock_irq(&ip->ioc3_lock);
251
252 return 0;
253}
254
255/* Caller must hold the ioc3_lock ever for MII readers. This is also
256 * used to protect the transmitter side but it's low contention.
257 */
258static int ioc3_mdio_read(struct net_device *dev, int phy, int reg)
259{
260 struct ioc3_private *ip = netdev_priv(dev);
261 struct ioc3_ethregs *regs = ip->regs;
262
263 while (readl(®s->micr) & MICR_BUSY)
264 ;
265 writel((phy << MICR_PHYADDR_SHIFT) | reg | MICR_READTRIG,
266 ®s->micr);
267 while (readl(®s->micr) & MICR_BUSY)
268 ;
269
270 return readl(®s->midr_r) & MIDR_DATA_MASK;
271}
272
273static void ioc3_mdio_write(struct net_device *dev, int phy, int reg, int data)
274{
275 struct ioc3_private *ip = netdev_priv(dev);
276 struct ioc3_ethregs *regs = ip->regs;
277
278 while (readl(®s->micr) & MICR_BUSY)
279 ;
280 writel(data, ®s->midr_w);
281 writel((phy << MICR_PHYADDR_SHIFT) | reg, ®s->micr);
282 while (readl(®s->micr) & MICR_BUSY)
283 ;
284}
285
286static int ioc3_mii_init(struct ioc3_private *ip);
287
288static struct net_device_stats *ioc3_get_stats(struct net_device *dev)
289{
290 struct ioc3_private *ip = netdev_priv(dev);
291 struct ioc3_ethregs *regs = ip->regs;
292
293 dev->stats.collisions += readl(®s->etcdc) & ETCDC_COLLCNT_MASK;
294 return &dev->stats;
295}
296
297static void ioc3_tcpudp_checksum(struct sk_buff *skb, u32 hwsum, int len)
298{
299 struct ethhdr *eh = eth_hdr(skb);
300 unsigned int proto;
301 unsigned char *cp;
302 struct iphdr *ih;
303 u32 csum, ehsum;
304 u16 *ew;
305
306 /* Did hardware handle the checksum at all? The cases we can handle
307 * are:
308 *
309 * - TCP and UDP checksums of IPv4 only.
310 * - IPv6 would be doable but we keep that for later ...
311 * - Only unfragmented packets. Did somebody already tell you
312 * fragmentation is evil?
313 * - don't care about packet size. Worst case when processing a
314 * malformed packet we'll try to access the packet at ip header +
315 * 64 bytes which is still inside the skb. Even in the unlikely
316 * case where the checksum is right the higher layers will still
317 * drop the packet as appropriate.
318 */
319 if (eh->h_proto != htons(ETH_P_IP))
320 return;
321
322 ih = (struct iphdr *)((char *)eh + ETH_HLEN);
323 if (ip_is_fragment(ih))
324 return;
325
326 proto = ih->protocol;
327 if (proto != IPPROTO_TCP && proto != IPPROTO_UDP)
328 return;
329
330 /* Same as tx - compute csum of pseudo header */
331 csum = hwsum +
332 (ih->tot_len - (ih->ihl << 2)) +
333 htons((u16)ih->protocol) +
334 (ih->saddr >> 16) + (ih->saddr & 0xffff) +
335 (ih->daddr >> 16) + (ih->daddr & 0xffff);
336
337 /* Sum up ethernet dest addr, src addr and protocol */
338 ew = (u16 *)eh;
339 ehsum = ew[0] + ew[1] + ew[2] + ew[3] + ew[4] + ew[5] + ew[6];
340
341 ehsum = (ehsum & 0xffff) + (ehsum >> 16);
342 ehsum = (ehsum & 0xffff) + (ehsum >> 16);
343
344 csum += 0xffff ^ ehsum;
345
346 /* In the next step we also subtract the 1's complement
347 * checksum of the trailing ethernet CRC.
348 */
349 cp = (char *)eh + len; /* points at trailing CRC */
350 if (len & 1) {
351 csum += 0xffff ^ (u16)((cp[1] << 8) | cp[0]);
352 csum += 0xffff ^ (u16)((cp[3] << 8) | cp[2]);
353 } else {
354 csum += 0xffff ^ (u16)((cp[0] << 8) | cp[1]);
355 csum += 0xffff ^ (u16)((cp[2] << 8) | cp[3]);
356 }
357
358 csum = (csum & 0xffff) + (csum >> 16);
359 csum = (csum & 0xffff) + (csum >> 16);
360
361 if (csum == 0xffff)
362 skb->ip_summed = CHECKSUM_UNNECESSARY;
363}
364
365static inline void ioc3_rx(struct net_device *dev)
366{
367 struct ioc3_private *ip = netdev_priv(dev);
368 struct sk_buff *skb, *new_skb;
369 int rx_entry, n_entry, len;
370 struct ioc3_erxbuf *rxb;
371 unsigned long *rxr;
372 dma_addr_t d;
373 u32 w0, err;
374
375 rxr = ip->rxr; /* Ring base */
376 rx_entry = ip->rx_ci; /* RX consume index */
377 n_entry = ip->rx_pi;
378
379 skb = ip->rx_skbs[rx_entry];
380 rxb = (struct ioc3_erxbuf *)(skb->data - RX_OFFSET);
381 w0 = be32_to_cpu(rxb->w0);
382
383 while (w0 & ERXBUF_V) {
384 err = be32_to_cpu(rxb->err); /* It's valid ... */
385 if (err & ERXBUF_GOODPKT) {
386 len = ((w0 >> ERXBUF_BYTECNT_SHIFT) & 0x7ff) - 4;
387 skb_put(skb, len);
388 skb->protocol = eth_type_trans(skb, dev);
389
390 if (ioc3_alloc_skb(ip, &new_skb, &rxb, &d)) {
391 /* Ouch, drop packet and just recycle packet
392 * to keep the ring filled.
393 */
394 dev->stats.rx_dropped++;
395 new_skb = skb;
396 d = rxr[rx_entry];
397 goto next;
398 }
399
400 if (likely(dev->features & NETIF_F_RXCSUM))
401 ioc3_tcpudp_checksum(skb,
402 w0 & ERXBUF_IPCKSUM_MASK,
403 len);
404
405 dma_unmap_single(ip->dma_dev, rxr[rx_entry],
406 RX_BUF_SIZE, DMA_FROM_DEVICE);
407
408 netif_rx(skb);
409
410 ip->rx_skbs[rx_entry] = NULL; /* Poison */
411
412 dev->stats.rx_packets++; /* Statistics */
413 dev->stats.rx_bytes += len;
414 } else {
415 /* The frame is invalid and the skb never
416 * reached the network layer so we can just
417 * recycle it.
418 */
419 new_skb = skb;
420 d = rxr[rx_entry];
421 dev->stats.rx_errors++;
422 }
423 if (err & ERXBUF_CRCERR) /* Statistics */
424 dev->stats.rx_crc_errors++;
425 if (err & ERXBUF_FRAMERR)
426 dev->stats.rx_frame_errors++;
427
428next:
429 ip->rx_skbs[n_entry] = new_skb;
430 rxr[n_entry] = cpu_to_be64(ioc3_map(d, PCI64_ATTR_BAR));
431 rxb->w0 = 0; /* Clear valid flag */
432 n_entry = (n_entry + 1) & RX_RING_MASK; /* Update erpir */
433
434 /* Now go on to the next ring entry. */
435 rx_entry = (rx_entry + 1) & RX_RING_MASK;
436 skb = ip->rx_skbs[rx_entry];
437 rxb = (struct ioc3_erxbuf *)(skb->data - RX_OFFSET);
438 w0 = be32_to_cpu(rxb->w0);
439 }
440 writel((n_entry << 3) | ERPIR_ARM, &ip->regs->erpir);
441 ip->rx_pi = n_entry;
442 ip->rx_ci = rx_entry;
443}
444
445static inline void ioc3_tx(struct net_device *dev)
446{
447 struct ioc3_private *ip = netdev_priv(dev);
448 struct ioc3_ethregs *regs = ip->regs;
449 unsigned long packets, bytes;
450 int tx_entry, o_entry;
451 struct sk_buff *skb;
452 u32 etcir;
453
454 spin_lock(&ip->ioc3_lock);
455 etcir = readl(®s->etcir);
456
457 tx_entry = (etcir >> 7) & TX_RING_MASK;
458 o_entry = ip->tx_ci;
459 packets = 0;
460 bytes = 0;
461
462 while (o_entry != tx_entry) {
463 packets++;
464 skb = ip->tx_skbs[o_entry];
465 bytes += skb->len;
466 dev_consume_skb_irq(skb);
467 ip->tx_skbs[o_entry] = NULL;
468
469 o_entry = (o_entry + 1) & TX_RING_MASK; /* Next */
470
471 etcir = readl(®s->etcir); /* More pkts sent? */
472 tx_entry = (etcir >> 7) & TX_RING_MASK;
473 }
474
475 dev->stats.tx_packets += packets;
476 dev->stats.tx_bytes += bytes;
477 ip->txqlen -= packets;
478
479 if (netif_queue_stopped(dev) && ip->txqlen < TX_RING_ENTRIES)
480 netif_wake_queue(dev);
481
482 ip->tx_ci = o_entry;
483 spin_unlock(&ip->ioc3_lock);
484}
485
486/* Deal with fatal IOC3 errors. This condition might be caused by a hard or
487 * software problems, so we should try to recover
488 * more gracefully if this ever happens. In theory we might be flooded
489 * with such error interrupts if something really goes wrong, so we might
490 * also consider to take the interface down.
491 */
492static void ioc3_error(struct net_device *dev, u32 eisr)
493{
494 struct ioc3_private *ip = netdev_priv(dev);
495
496 spin_lock(&ip->ioc3_lock);
497
498 if (eisr & EISR_RXOFLO)
499 net_err_ratelimited("%s: RX overflow.\n", dev->name);
500 if (eisr & EISR_RXBUFOFLO)
501 net_err_ratelimited("%s: RX buffer overflow.\n", dev->name);
502 if (eisr & EISR_RXMEMERR)
503 net_err_ratelimited("%s: RX PCI error.\n", dev->name);
504 if (eisr & EISR_RXPARERR)
505 net_err_ratelimited("%s: RX SSRAM parity error.\n", dev->name);
506 if (eisr & EISR_TXBUFUFLO)
507 net_err_ratelimited("%s: TX buffer underflow.\n", dev->name);
508 if (eisr & EISR_TXMEMERR)
509 net_err_ratelimited("%s: TX PCI error.\n", dev->name);
510
511 ioc3_stop(ip);
512 ioc3_free_rx_bufs(ip);
513 ioc3_clean_tx_ring(ip);
514
515 ioc3_init(dev);
516 if (ioc3_alloc_rx_bufs(dev)) {
517 netdev_err(dev, "%s: rx buffer allocation failed\n", __func__);
518 spin_unlock(&ip->ioc3_lock);
519 return;
520 }
521 ioc3_start(ip);
522 ioc3_mii_init(ip);
523
524 netif_wake_queue(dev);
525
526 spin_unlock(&ip->ioc3_lock);
527}
528
529/* The interrupt handler does all of the Rx thread work and cleans up
530 * after the Tx thread.
531 */
532static irqreturn_t ioc3_interrupt(int irq, void *dev_id)
533{
534 struct ioc3_private *ip = netdev_priv(dev_id);
535 struct ioc3_ethregs *regs = ip->regs;
536 u32 eisr;
537
538 eisr = readl(®s->eisr);
539 writel(eisr, ®s->eisr);
540 readl(®s->eisr); /* Flush */
541
542 if (eisr & (EISR_RXOFLO | EISR_RXBUFOFLO | EISR_RXMEMERR |
543 EISR_RXPARERR | EISR_TXBUFUFLO | EISR_TXMEMERR))
544 ioc3_error(dev_id, eisr);
545 if (eisr & EISR_RXTIMERINT)
546 ioc3_rx(dev_id);
547 if (eisr & EISR_TXEXPLICIT)
548 ioc3_tx(dev_id);
549
550 return IRQ_HANDLED;
551}
552
553static inline void ioc3_setup_duplex(struct ioc3_private *ip)
554{
555 struct ioc3_ethregs *regs = ip->regs;
556
557 spin_lock_irq(&ip->ioc3_lock);
558
559 if (ip->mii.full_duplex) {
560 writel(ETCSR_FD, ®s->etcsr);
561 ip->emcr |= EMCR_DUPLEX;
562 } else {
563 writel(ETCSR_HD, ®s->etcsr);
564 ip->emcr &= ~EMCR_DUPLEX;
565 }
566 writel(ip->emcr, ®s->emcr);
567
568 spin_unlock_irq(&ip->ioc3_lock);
569}
570
571static void ioc3_timer(struct timer_list *t)
572{
573 struct ioc3_private *ip = from_timer(ip, t, ioc3_timer);
574
575 /* Print the link status if it has changed */
576 mii_check_media(&ip->mii, 1, 0);
577 ioc3_setup_duplex(ip);
578
579 ip->ioc3_timer.expires = jiffies + ((12 * HZ) / 10); /* 1.2s */
580 add_timer(&ip->ioc3_timer);
581}
582
583/* Try to find a PHY. There is no apparent relation between the MII addresses
584 * in the SGI documentation and what we find in reality, so we simply probe
585 * for the PHY.
586 */
587static int ioc3_mii_init(struct ioc3_private *ip)
588{
589 u16 word;
590 int i;
591
592 for (i = 0; i < 32; i++) {
593 word = ioc3_mdio_read(ip->mii.dev, i, MII_PHYSID1);
594
595 if (word != 0xffff && word != 0x0000) {
596 ip->mii.phy_id = i;
597 return 0;
598 }
599 }
600 ip->mii.phy_id = -1;
601 return -ENODEV;
602}
603
604static void ioc3_mii_start(struct ioc3_private *ip)
605{
606 ip->ioc3_timer.expires = jiffies + (12 * HZ) / 10; /* 1.2 sec. */
607 add_timer(&ip->ioc3_timer);
608}
609
610static inline void ioc3_tx_unmap(struct ioc3_private *ip, int entry)
611{
612 struct ioc3_etxd *desc;
613 u32 cmd, bufcnt, len;
614
615 desc = &ip->txr[entry];
616 cmd = be32_to_cpu(desc->cmd);
617 bufcnt = be32_to_cpu(desc->bufcnt);
618 if (cmd & ETXD_B1V) {
619 len = (bufcnt & ETXD_B1CNT_MASK) >> ETXD_B1CNT_SHIFT;
620 dma_unmap_single(ip->dma_dev, be64_to_cpu(desc->p1),
621 len, DMA_TO_DEVICE);
622 }
623 if (cmd & ETXD_B2V) {
624 len = (bufcnt & ETXD_B2CNT_MASK) >> ETXD_B2CNT_SHIFT;
625 dma_unmap_single(ip->dma_dev, be64_to_cpu(desc->p2),
626 len, DMA_TO_DEVICE);
627 }
628}
629
630static inline void ioc3_clean_tx_ring(struct ioc3_private *ip)
631{
632 struct sk_buff *skb;
633 int i;
634
635 for (i = 0; i < TX_RING_ENTRIES; i++) {
636 skb = ip->tx_skbs[i];
637 if (skb) {
638 ioc3_tx_unmap(ip, i);
639 ip->tx_skbs[i] = NULL;
640 dev_kfree_skb_any(skb);
641 }
642 ip->txr[i].cmd = 0;
643 }
644 ip->tx_pi = 0;
645 ip->tx_ci = 0;
646}
647
648static void ioc3_free_rx_bufs(struct ioc3_private *ip)
649{
650 int rx_entry, n_entry;
651 struct sk_buff *skb;
652
653 n_entry = ip->rx_ci;
654 rx_entry = ip->rx_pi;
655
656 while (n_entry != rx_entry) {
657 skb = ip->rx_skbs[n_entry];
658 if (skb) {
659 dma_unmap_single(ip->dma_dev,
660 be64_to_cpu(ip->rxr[n_entry]),
661 RX_BUF_SIZE, DMA_FROM_DEVICE);
662 dev_kfree_skb_any(skb);
663 }
664 n_entry = (n_entry + 1) & RX_RING_MASK;
665 }
666}
667
668static int ioc3_alloc_rx_bufs(struct net_device *dev)
669{
670 struct ioc3_private *ip = netdev_priv(dev);
671 struct ioc3_erxbuf *rxb;
672 dma_addr_t d;
673 int i;
674
675 /* Now the rx buffers. The RX ring may be larger but
676 * we only allocate 16 buffers for now. Need to tune
677 * this for performance and memory later.
678 */
679 for (i = 0; i < RX_BUFFS; i++) {
680 if (ioc3_alloc_skb(ip, &ip->rx_skbs[i], &rxb, &d))
681 return -ENOMEM;
682
683 rxb->w0 = 0; /* Clear valid flag */
684 ip->rxr[i] = cpu_to_be64(ioc3_map(d, PCI64_ATTR_BAR));
685 }
686 ip->rx_ci = 0;
687 ip->rx_pi = RX_BUFFS;
688
689 return 0;
690}
691
692static inline void ioc3_ssram_disc(struct ioc3_private *ip)
693{
694 struct ioc3_ethregs *regs = ip->regs;
695 u32 *ssram0 = &ip->ssram[0x0000];
696 u32 *ssram1 = &ip->ssram[0x4000];
697 u32 pattern = 0x5555;
698
699 /* Assume the larger size SSRAM and enable parity checking */
700 writel(readl(®s->emcr) | (EMCR_BUFSIZ | EMCR_RAMPAR), ®s->emcr);
701 readl(®s->emcr); /* Flush */
702
703 writel(pattern, ssram0);
704 writel(~pattern & IOC3_SSRAM_DM, ssram1);
705
706 if ((readl(ssram0) & IOC3_SSRAM_DM) != pattern ||
707 (readl(ssram1) & IOC3_SSRAM_DM) != (~pattern & IOC3_SSRAM_DM)) {
708 /* set ssram size to 64 KB */
709 ip->emcr |= EMCR_RAMPAR;
710 writel(readl(®s->emcr) & ~EMCR_BUFSIZ, ®s->emcr);
711 } else {
712 ip->emcr |= EMCR_BUFSIZ | EMCR_RAMPAR;
713 }
714}
715
716static void ioc3_init(struct net_device *dev)
717{
718 struct ioc3_private *ip = netdev_priv(dev);
719 struct ioc3_ethregs *regs = ip->regs;
720
721 del_timer_sync(&ip->ioc3_timer); /* Kill if running */
722
723 writel(EMCR_RST, ®s->emcr); /* Reset */
724 readl(®s->emcr); /* Flush WB */
725 udelay(4); /* Give it time ... */
726 writel(0, ®s->emcr);
727 readl(®s->emcr);
728
729 /* Misc registers */
730 writel(ERBAR_VAL, ®s->erbar);
731 readl(®s->etcdc); /* Clear on read */
732 writel(15, ®s->ercsr); /* RX low watermark */
733 writel(0, ®s->ertr); /* Interrupt immediately */
734 __ioc3_set_mac_address(dev);
735 writel(ip->ehar_h, ®s->ehar_h);
736 writel(ip->ehar_l, ®s->ehar_l);
737 writel(42, ®s->ersr); /* XXX should be random */
738}
739
740static void ioc3_start(struct ioc3_private *ip)
741{
742 struct ioc3_ethregs *regs = ip->regs;
743 unsigned long ring;
744
745 /* Now the rx ring base, consume & produce registers. */
746 ring = ioc3_map(ip->rxr_dma, PCI64_ATTR_PREC);
747 writel(ring >> 32, ®s->erbr_h);
748 writel(ring & 0xffffffff, ®s->erbr_l);
749 writel(ip->rx_ci << 3, ®s->ercir);
750 writel((ip->rx_pi << 3) | ERPIR_ARM, ®s->erpir);
751
752 ring = ioc3_map(ip->txr_dma, PCI64_ATTR_PREC);
753
754 ip->txqlen = 0; /* nothing queued */
755
756 /* Now the tx ring base, consume & produce registers. */
757 writel(ring >> 32, ®s->etbr_h);
758 writel(ring & 0xffffffff, ®s->etbr_l);
759 writel(ip->tx_pi << 7, ®s->etpir);
760 writel(ip->tx_ci << 7, ®s->etcir);
761 readl(®s->etcir); /* Flush */
762
763 ip->emcr |= ((RX_OFFSET / 2) << EMCR_RXOFF_SHIFT) | EMCR_TXDMAEN |
764 EMCR_TXEN | EMCR_RXDMAEN | EMCR_RXEN | EMCR_PADEN;
765 writel(ip->emcr, ®s->emcr);
766 writel(EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
767 EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
768 EISR_TXEXPLICIT | EISR_TXMEMERR, ®s->eier);
769 readl(®s->eier);
770}
771
772static inline void ioc3_stop(struct ioc3_private *ip)
773{
774 struct ioc3_ethregs *regs = ip->regs;
775
776 writel(0, ®s->emcr); /* Shutup */
777 writel(0, ®s->eier); /* Disable interrupts */
778 readl(®s->eier); /* Flush */
779}
780
781static int ioc3_open(struct net_device *dev)
782{
783 struct ioc3_private *ip = netdev_priv(dev);
784
785 ip->ehar_h = 0;
786 ip->ehar_l = 0;
787
788 ioc3_init(dev);
789 if (ioc3_alloc_rx_bufs(dev)) {
790 netdev_err(dev, "%s: rx buffer allocation failed\n", __func__);
791 return -ENOMEM;
792 }
793 ioc3_start(ip);
794 ioc3_mii_start(ip);
795
796 netif_start_queue(dev);
797 return 0;
798}
799
800static int ioc3_close(struct net_device *dev)
801{
802 struct ioc3_private *ip = netdev_priv(dev);
803
804 del_timer_sync(&ip->ioc3_timer);
805
806 netif_stop_queue(dev);
807
808 ioc3_stop(ip);
809
810 ioc3_free_rx_bufs(ip);
811 ioc3_clean_tx_ring(ip);
812
813 return 0;
814}
815
816static const struct net_device_ops ioc3_netdev_ops = {
817 .ndo_open = ioc3_open,
818 .ndo_stop = ioc3_close,
819 .ndo_start_xmit = ioc3_start_xmit,
820 .ndo_tx_timeout = ioc3_timeout,
821 .ndo_get_stats = ioc3_get_stats,
822 .ndo_set_rx_mode = ioc3_set_multicast_list,
823 .ndo_eth_ioctl = ioc3_ioctl,
824 .ndo_validate_addr = eth_validate_addr,
825 .ndo_set_mac_address = ioc3_set_mac_address,
826};
827
828static int ioc3eth_probe(struct platform_device *pdev)
829{
830 u32 sw_physid1, sw_physid2, vendor, model, rev;
831 struct ioc3_private *ip;
832 struct net_device *dev;
833 struct resource *regs;
834 u8 mac_addr[6];
835 int err;
836
837 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
838 if (!regs) {
839 dev_err(&pdev->dev, "Invalid resource\n");
840 return -EINVAL;
841 }
842 /* get mac addr from one wire prom */
843 if (ioc3eth_get_mac_addr(regs, mac_addr))
844 return -EPROBE_DEFER; /* not available yet */
845
846 dev = alloc_etherdev(sizeof(struct ioc3_private));
847 if (!dev)
848 return -ENOMEM;
849
850 SET_NETDEV_DEV(dev, &pdev->dev);
851
852 ip = netdev_priv(dev);
853 ip->dma_dev = pdev->dev.parent;
854 ip->regs = devm_platform_ioremap_resource(pdev, 0);
855 if (IS_ERR(ip->regs)) {
856 err = PTR_ERR(ip->regs);
857 goto out_free;
858 }
859
860 ip->ssram = devm_platform_ioremap_resource(pdev, 1);
861 if (IS_ERR(ip->ssram)) {
862 err = PTR_ERR(ip->ssram);
863 goto out_free;
864 }
865
866 dev->irq = platform_get_irq(pdev, 0);
867 if (dev->irq < 0) {
868 err = dev->irq;
869 goto out_free;
870 }
871
872 if (devm_request_irq(&pdev->dev, dev->irq, ioc3_interrupt,
873 IRQF_SHARED, "ioc3-eth", dev)) {
874 dev_err(&pdev->dev, "Can't get irq %d\n", dev->irq);
875 err = -ENODEV;
876 goto out_free;
877 }
878
879 spin_lock_init(&ip->ioc3_lock);
880 timer_setup(&ip->ioc3_timer, ioc3_timer, 0);
881
882 ioc3_stop(ip);
883
884 /* Allocate rx ring. 4kb = 512 entries, must be 4kb aligned */
885 ip->rxr = dma_alloc_coherent(ip->dma_dev, RX_RING_SIZE, &ip->rxr_dma,
886 GFP_KERNEL);
887 if (!ip->rxr) {
888 pr_err("ioc3-eth: rx ring allocation failed\n");
889 err = -ENOMEM;
890 goto out_stop;
891 }
892
893 /* Allocate tx rings. 16kb = 128 bufs, must be 16kb aligned */
894 ip->tx_ring = dma_alloc_coherent(ip->dma_dev, TX_RING_SIZE + SZ_16K - 1,
895 &ip->txr_dma, GFP_KERNEL);
896 if (!ip->tx_ring) {
897 pr_err("ioc3-eth: tx ring allocation failed\n");
898 err = -ENOMEM;
899 goto out_stop;
900 }
901 /* Align TX ring */
902 ip->txr = PTR_ALIGN(ip->tx_ring, SZ_16K);
903 ip->txr_dma = ALIGN(ip->txr_dma, SZ_16K);
904
905 ioc3_init(dev);
906
907 ip->mii.phy_id_mask = 0x1f;
908 ip->mii.reg_num_mask = 0x1f;
909 ip->mii.dev = dev;
910 ip->mii.mdio_read = ioc3_mdio_read;
911 ip->mii.mdio_write = ioc3_mdio_write;
912
913 ioc3_mii_init(ip);
914
915 if (ip->mii.phy_id == -1) {
916 netdev_err(dev, "Didn't find a PHY, goodbye.\n");
917 err = -ENODEV;
918 goto out_stop;
919 }
920
921 ioc3_mii_start(ip);
922 ioc3_ssram_disc(ip);
923 eth_hw_addr_set(dev, mac_addr);
924
925 /* The IOC3-specific entries in the device structure. */
926 dev->watchdog_timeo = 5 * HZ;
927 dev->netdev_ops = &ioc3_netdev_ops;
928 dev->ethtool_ops = &ioc3_ethtool_ops;
929 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_RXCSUM;
930 dev->features = NETIF_F_IP_CSUM | NETIF_F_HIGHDMA;
931
932 sw_physid1 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID1);
933 sw_physid2 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID2);
934
935 err = register_netdev(dev);
936 if (err)
937 goto out_stop;
938
939 mii_check_media(&ip->mii, 1, 1);
940 ioc3_setup_duplex(ip);
941
942 vendor = (sw_physid1 << 12) | (sw_physid2 >> 4);
943 model = (sw_physid2 >> 4) & 0x3f;
944 rev = sw_physid2 & 0xf;
945 netdev_info(dev, "Using PHY %d, vendor 0x%x, model %d, rev %d.\n",
946 ip->mii.phy_id, vendor, model, rev);
947 netdev_info(dev, "IOC3 SSRAM has %d kbyte.\n",
948 ip->emcr & EMCR_BUFSIZ ? 128 : 64);
949
950 return 0;
951
952out_stop:
953 del_timer_sync(&ip->ioc3_timer);
954 if (ip->rxr)
955 dma_free_coherent(ip->dma_dev, RX_RING_SIZE, ip->rxr,
956 ip->rxr_dma);
957 if (ip->tx_ring)
958 dma_free_coherent(ip->dma_dev, TX_RING_SIZE + SZ_16K - 1, ip->tx_ring,
959 ip->txr_dma);
960out_free:
961 free_netdev(dev);
962 return err;
963}
964
965static void ioc3eth_remove(struct platform_device *pdev)
966{
967 struct net_device *dev = platform_get_drvdata(pdev);
968 struct ioc3_private *ip = netdev_priv(dev);
969
970 dma_free_coherent(ip->dma_dev, RX_RING_SIZE, ip->rxr, ip->rxr_dma);
971 dma_free_coherent(ip->dma_dev, TX_RING_SIZE + SZ_16K - 1, ip->tx_ring, ip->txr_dma);
972
973 unregister_netdev(dev);
974 del_timer_sync(&ip->ioc3_timer);
975 free_netdev(dev);
976}
977
978
979static netdev_tx_t ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev)
980{
981 struct ioc3_private *ip = netdev_priv(dev);
982 struct ioc3_etxd *desc;
983 unsigned long data;
984 unsigned int len;
985 int produce;
986 u32 w0 = 0;
987
988 /* IOC3 has a fairly simple minded checksumming hardware which simply
989 * adds up the 1's complement checksum for the entire packet and
990 * inserts it at an offset which can be specified in the descriptor
991 * into the transmit packet. This means we have to compensate for the
992 * MAC header which should not be summed and the TCP/UDP pseudo headers
993 * manually.
994 */
995 if (skb->ip_summed == CHECKSUM_PARTIAL) {
996 const struct iphdr *ih = ip_hdr(skb);
997 const int proto = ntohs(ih->protocol);
998 unsigned int csoff;
999 u32 csum, ehsum;
1000 u16 *eh;
1001
1002 /* The MAC header. skb->mac seem the logic approach
1003 * to find the MAC header - except it's a NULL pointer ...
1004 */
1005 eh = (u16 *)skb->data;
1006
1007 /* Sum up dest addr, src addr and protocol */
1008 ehsum = eh[0] + eh[1] + eh[2] + eh[3] + eh[4] + eh[5] + eh[6];
1009
1010 /* Skip IP header; it's sum is always zero and was
1011 * already filled in by ip_output.c
1012 */
1013 csum = csum_tcpudp_nofold(ih->saddr, ih->daddr,
1014 ih->tot_len - (ih->ihl << 2),
1015 proto, csum_fold(ehsum));
1016
1017 csum = (csum & 0xffff) + (csum >> 16); /* Fold again */
1018 csum = (csum & 0xffff) + (csum >> 16);
1019
1020 csoff = ETH_HLEN + (ih->ihl << 2);
1021 if (proto == IPPROTO_UDP) {
1022 csoff += offsetof(struct udphdr, check);
1023 udp_hdr(skb)->check = csum;
1024 }
1025 if (proto == IPPROTO_TCP) {
1026 csoff += offsetof(struct tcphdr, check);
1027 tcp_hdr(skb)->check = csum;
1028 }
1029
1030 w0 = ETXD_DOCHECKSUM | (csoff << ETXD_CHKOFF_SHIFT);
1031 }
1032
1033 spin_lock_irq(&ip->ioc3_lock);
1034
1035 data = (unsigned long)skb->data;
1036 len = skb->len;
1037
1038 produce = ip->tx_pi;
1039 desc = &ip->txr[produce];
1040
1041 if (len <= 104) {
1042 /* Short packet, let's copy it directly into the ring. */
1043 skb_copy_from_linear_data(skb, desc->data, skb->len);
1044 if (len < ETH_ZLEN) {
1045 /* Very short packet, pad with zeros at the end. */
1046 memset(desc->data + len, 0, ETH_ZLEN - len);
1047 len = ETH_ZLEN;
1048 }
1049 desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_D0V | w0);
1050 desc->bufcnt = cpu_to_be32(len);
1051 } else if ((data ^ (data + len - 1)) & 0x4000) {
1052 unsigned long b2 = (data | 0x3fffUL) + 1UL;
1053 unsigned long s1 = b2 - data;
1054 unsigned long s2 = data + len - b2;
1055 dma_addr_t d1, d2;
1056
1057 desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE |
1058 ETXD_B1V | ETXD_B2V | w0);
1059 desc->bufcnt = cpu_to_be32((s1 << ETXD_B1CNT_SHIFT) |
1060 (s2 << ETXD_B2CNT_SHIFT));
1061 d1 = dma_map_single(ip->dma_dev, skb->data, s1, DMA_TO_DEVICE);
1062 if (dma_mapping_error(ip->dma_dev, d1))
1063 goto drop_packet;
1064 d2 = dma_map_single(ip->dma_dev, (void *)b2, s1, DMA_TO_DEVICE);
1065 if (dma_mapping_error(ip->dma_dev, d2)) {
1066 dma_unmap_single(ip->dma_dev, d1, len, DMA_TO_DEVICE);
1067 goto drop_packet;
1068 }
1069 desc->p1 = cpu_to_be64(ioc3_map(d1, PCI64_ATTR_PREF));
1070 desc->p2 = cpu_to_be64(ioc3_map(d2, PCI64_ATTR_PREF));
1071 } else {
1072 dma_addr_t d;
1073
1074 /* Normal sized packet that doesn't cross a page boundary. */
1075 desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_B1V | w0);
1076 desc->bufcnt = cpu_to_be32(len << ETXD_B1CNT_SHIFT);
1077 d = dma_map_single(ip->dma_dev, skb->data, len, DMA_TO_DEVICE);
1078 if (dma_mapping_error(ip->dma_dev, d))
1079 goto drop_packet;
1080 desc->p1 = cpu_to_be64(ioc3_map(d, PCI64_ATTR_PREF));
1081 }
1082
1083 mb(); /* make sure all descriptor changes are visible */
1084
1085 ip->tx_skbs[produce] = skb; /* Remember skb */
1086 produce = (produce + 1) & TX_RING_MASK;
1087 ip->tx_pi = produce;
1088 writel(produce << 7, &ip->regs->etpir); /* Fire ... */
1089
1090 ip->txqlen++;
1091
1092 if (ip->txqlen >= (TX_RING_ENTRIES - 1))
1093 netif_stop_queue(dev);
1094
1095 spin_unlock_irq(&ip->ioc3_lock);
1096
1097 return NETDEV_TX_OK;
1098
1099drop_packet:
1100 dev_kfree_skb_any(skb);
1101 dev->stats.tx_dropped++;
1102
1103 spin_unlock_irq(&ip->ioc3_lock);
1104
1105 return NETDEV_TX_OK;
1106}
1107
1108static void ioc3_timeout(struct net_device *dev, unsigned int txqueue)
1109{
1110 struct ioc3_private *ip = netdev_priv(dev);
1111
1112 netdev_err(dev, "transmit timed out, resetting\n");
1113
1114 spin_lock_irq(&ip->ioc3_lock);
1115
1116 ioc3_stop(ip);
1117 ioc3_free_rx_bufs(ip);
1118 ioc3_clean_tx_ring(ip);
1119
1120 ioc3_init(dev);
1121 if (ioc3_alloc_rx_bufs(dev)) {
1122 netdev_err(dev, "%s: rx buffer allocation failed\n", __func__);
1123 spin_unlock_irq(&ip->ioc3_lock);
1124 return;
1125 }
1126 ioc3_start(ip);
1127 ioc3_mii_init(ip);
1128 ioc3_mii_start(ip);
1129
1130 spin_unlock_irq(&ip->ioc3_lock);
1131
1132 netif_wake_queue(dev);
1133}
1134
1135/* Given a multicast ethernet address, this routine calculates the
1136 * address's bit index in the logical address filter mask
1137 */
1138static inline unsigned int ioc3_hash(const unsigned char *addr)
1139{
1140 unsigned int temp = 0;
1141 int bits;
1142 u32 crc;
1143
1144 crc = ether_crc_le(ETH_ALEN, addr);
1145
1146 crc &= 0x3f; /* bit reverse lowest 6 bits for hash index */
1147 for (bits = 6; --bits >= 0; ) {
1148 temp <<= 1;
1149 temp |= (crc & 0x1);
1150 crc >>= 1;
1151 }
1152
1153 return temp;
1154}
1155
1156static void ioc3_get_drvinfo(struct net_device *dev,
1157 struct ethtool_drvinfo *info)
1158{
1159 strscpy(info->driver, IOC3_NAME, sizeof(info->driver));
1160 strscpy(info->version, IOC3_VERSION, sizeof(info->version));
1161 strscpy(info->bus_info, pci_name(to_pci_dev(dev->dev.parent)),
1162 sizeof(info->bus_info));
1163}
1164
1165static int ioc3_get_link_ksettings(struct net_device *dev,
1166 struct ethtool_link_ksettings *cmd)
1167{
1168 struct ioc3_private *ip = netdev_priv(dev);
1169
1170 spin_lock_irq(&ip->ioc3_lock);
1171 mii_ethtool_get_link_ksettings(&ip->mii, cmd);
1172 spin_unlock_irq(&ip->ioc3_lock);
1173
1174 return 0;
1175}
1176
1177static int ioc3_set_link_ksettings(struct net_device *dev,
1178 const struct ethtool_link_ksettings *cmd)
1179{
1180 struct ioc3_private *ip = netdev_priv(dev);
1181 int rc;
1182
1183 spin_lock_irq(&ip->ioc3_lock);
1184 rc = mii_ethtool_set_link_ksettings(&ip->mii, cmd);
1185 spin_unlock_irq(&ip->ioc3_lock);
1186
1187 return rc;
1188}
1189
1190static int ioc3_nway_reset(struct net_device *dev)
1191{
1192 struct ioc3_private *ip = netdev_priv(dev);
1193 int rc;
1194
1195 spin_lock_irq(&ip->ioc3_lock);
1196 rc = mii_nway_restart(&ip->mii);
1197 spin_unlock_irq(&ip->ioc3_lock);
1198
1199 return rc;
1200}
1201
1202static u32 ioc3_get_link(struct net_device *dev)
1203{
1204 struct ioc3_private *ip = netdev_priv(dev);
1205 int rc;
1206
1207 spin_lock_irq(&ip->ioc3_lock);
1208 rc = mii_link_ok(&ip->mii);
1209 spin_unlock_irq(&ip->ioc3_lock);
1210
1211 return rc;
1212}
1213
1214static const struct ethtool_ops ioc3_ethtool_ops = {
1215 .get_drvinfo = ioc3_get_drvinfo,
1216 .nway_reset = ioc3_nway_reset,
1217 .get_link = ioc3_get_link,
1218 .get_link_ksettings = ioc3_get_link_ksettings,
1219 .set_link_ksettings = ioc3_set_link_ksettings,
1220};
1221
1222static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1223{
1224 struct ioc3_private *ip = netdev_priv(dev);
1225 int rc;
1226
1227 spin_lock_irq(&ip->ioc3_lock);
1228 rc = generic_mii_ioctl(&ip->mii, if_mii(rq), cmd, NULL);
1229 spin_unlock_irq(&ip->ioc3_lock);
1230
1231 return rc;
1232}
1233
1234static void ioc3_set_multicast_list(struct net_device *dev)
1235{
1236 struct ioc3_private *ip = netdev_priv(dev);
1237 struct ioc3_ethregs *regs = ip->regs;
1238 struct netdev_hw_addr *ha;
1239 u64 ehar = 0;
1240
1241 spin_lock_irq(&ip->ioc3_lock);
1242
1243 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1244 ip->emcr |= EMCR_PROMISC;
1245 writel(ip->emcr, ®s->emcr);
1246 readl(®s->emcr);
1247 } else {
1248 ip->emcr &= ~EMCR_PROMISC;
1249 writel(ip->emcr, ®s->emcr); /* Clear promiscuous. */
1250 readl(®s->emcr);
1251
1252 if ((dev->flags & IFF_ALLMULTI) ||
1253 (netdev_mc_count(dev) > 64)) {
1254 /* Too many for hashing to make sense or we want all
1255 * multicast packets anyway, so skip computing all the
1256 * hashes and just accept all packets.
1257 */
1258 ip->ehar_h = 0xffffffff;
1259 ip->ehar_l = 0xffffffff;
1260 } else {
1261 netdev_for_each_mc_addr(ha, dev) {
1262 ehar |= (1UL << ioc3_hash(ha->addr));
1263 }
1264 ip->ehar_h = ehar >> 32;
1265 ip->ehar_l = ehar & 0xffffffff;
1266 }
1267 writel(ip->ehar_h, ®s->ehar_h);
1268 writel(ip->ehar_l, ®s->ehar_l);
1269 }
1270
1271 spin_unlock_irq(&ip->ioc3_lock);
1272}
1273
1274static struct platform_driver ioc3eth_driver = {
1275 .probe = ioc3eth_probe,
1276 .remove = ioc3eth_remove,
1277 .driver = {
1278 .name = "ioc3-eth",
1279 }
1280};
1281
1282module_platform_driver(ioc3eth_driver);
1283
1284MODULE_AUTHOR("Ralf Baechle <ralf@linux-mips.org>");
1285MODULE_DESCRIPTION("SGI IOC3 Ethernet driver");
1286MODULE_LICENSE("GPL");
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Driver for SGI's IOC3 based Ethernet cards as found in the PCI card.
7 *
8 * Copyright (C) 1999, 2000, 01, 03, 06 Ralf Baechle
9 * Copyright (C) 1995, 1999, 2000, 2001 by Silicon Graphics, Inc.
10 *
11 * References:
12 * o IOC3 ASIC specification 4.51, 1996-04-18
13 * o IEEE 802.3 specification, 2000 edition
14 * o DP38840A Specification, National Semiconductor, March 1997
15 *
16 * To do:
17 *
18 * o Handle allocation failures in ioc3_alloc_skb() more gracefully.
19 * o Handle allocation failures in ioc3_init_rings().
20 * o Use prefetching for large packets. What is a good lower limit for
21 * prefetching?
22 * o We're probably allocating a bit too much memory.
23 * o Use hardware checksums.
24 * o Convert to using a IOC3 meta driver.
25 * o Which PHYs might possibly be attached to the IOC3 in real live,
26 * which workarounds are required for them? Do we ever have Lucent's?
27 * o For the 2.5 branch kill the mii-tool ioctls.
28 */
29
30#define IOC3_NAME "ioc3-eth"
31#define IOC3_VERSION "2.6.3-4"
32
33#include <linux/delay.h>
34#include <linux/kernel.h>
35#include <linux/mm.h>
36#include <linux/errno.h>
37#include <linux/module.h>
38#include <linux/pci.h>
39#include <linux/crc32.h>
40#include <linux/mii.h>
41#include <linux/in.h>
42#include <linux/ip.h>
43#include <linux/tcp.h>
44#include <linux/udp.h>
45#include <linux/dma-mapping.h>
46#include <linux/gfp.h>
47
48#ifdef CONFIG_SERIAL_8250
49#include <linux/serial_core.h>
50#include <linux/serial_8250.h>
51#include <linux/serial_reg.h>
52#endif
53
54#include <linux/netdevice.h>
55#include <linux/etherdevice.h>
56#include <linux/ethtool.h>
57#include <linux/skbuff.h>
58#include <net/ip.h>
59
60#include <asm/byteorder.h>
61#include <asm/io.h>
62#include <asm/pgtable.h>
63#include <linux/uaccess.h>
64#include <asm/sn/types.h>
65#include <asm/sn/ioc3.h>
66#include <asm/pci/bridge.h>
67
68/*
69 * 64 RX buffers. This is tunable in the range of 16 <= x < 512. The
70 * value must be a power of two.
71 */
72#define RX_BUFFS 64
73
74#define ETCSR_FD ((17<<ETCSR_IPGR2_SHIFT) | (11<<ETCSR_IPGR1_SHIFT) | 21)
75#define ETCSR_HD ((21<<ETCSR_IPGR2_SHIFT) | (21<<ETCSR_IPGR1_SHIFT) | 21)
76
77/* Private per NIC data of the driver. */
78struct ioc3_private {
79 struct ioc3 *regs;
80 unsigned long *rxr; /* pointer to receiver ring */
81 struct ioc3_etxd *txr;
82 struct sk_buff *rx_skbs[512];
83 struct sk_buff *tx_skbs[128];
84 int rx_ci; /* RX consumer index */
85 int rx_pi; /* RX producer index */
86 int tx_ci; /* TX consumer index */
87 int tx_pi; /* TX producer index */
88 int txqlen;
89 u32 emcr, ehar_h, ehar_l;
90 spinlock_t ioc3_lock;
91 struct mii_if_info mii;
92
93 struct net_device *dev;
94 struct pci_dev *pdev;
95
96 /* Members used by autonegotiation */
97 struct timer_list ioc3_timer;
98};
99
100static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
101static void ioc3_set_multicast_list(struct net_device *dev);
102static int ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev);
103static void ioc3_timeout(struct net_device *dev);
104static inline unsigned int ioc3_hash(const unsigned char *addr);
105static inline void ioc3_stop(struct ioc3_private *ip);
106static void ioc3_init(struct net_device *dev);
107
108static const char ioc3_str[] = "IOC3 Ethernet";
109static const struct ethtool_ops ioc3_ethtool_ops;
110
111/* We use this to acquire receive skb's that we can DMA directly into. */
112
113#define IOC3_CACHELINE 128UL
114
115static inline unsigned long aligned_rx_skb_addr(unsigned long addr)
116{
117 return (~addr + 1) & (IOC3_CACHELINE - 1UL);
118}
119
120static inline struct sk_buff * ioc3_alloc_skb(unsigned long length,
121 unsigned int gfp_mask)
122{
123 struct sk_buff *skb;
124
125 skb = alloc_skb(length + IOC3_CACHELINE - 1, gfp_mask);
126 if (likely(skb)) {
127 int offset = aligned_rx_skb_addr((unsigned long) skb->data);
128 if (offset)
129 skb_reserve(skb, offset);
130 }
131
132 return skb;
133}
134
135static inline unsigned long ioc3_map(void *ptr, unsigned long vdev)
136{
137#ifdef CONFIG_SGI_IP27
138 vdev <<= 57; /* Shift to PCI64_ATTR_VIRTUAL */
139
140 return vdev | (0xaUL << PCI64_ATTR_TARG_SHFT) | PCI64_ATTR_PREF |
141 ((unsigned long)ptr & TO_PHYS_MASK);
142#else
143 return virt_to_bus(ptr);
144#endif
145}
146
147/* BEWARE: The IOC3 documentation documents the size of rx buffers as
148 1644 while it's actually 1664. This one was nasty to track down ... */
149#define RX_OFFSET 10
150#define RX_BUF_ALLOC_SIZE (1664 + RX_OFFSET + IOC3_CACHELINE)
151
152/* DMA barrier to separate cached and uncached accesses. */
153#define BARRIER() \
154 __asm__("sync" ::: "memory")
155
156
157#define IOC3_SIZE 0x100000
158
159/*
160 * IOC3 is a big endian device
161 *
162 * Unorthodox but makes the users of these macros more readable - the pointer
163 * to the IOC3's memory mapped registers is expected as struct ioc3 * ioc3
164 * in the environment.
165 */
166#define ioc3_r_mcr() be32_to_cpu(ioc3->mcr)
167#define ioc3_w_mcr(v) do { ioc3->mcr = cpu_to_be32(v); } while (0)
168#define ioc3_w_gpcr_s(v) do { ioc3->gpcr_s = cpu_to_be32(v); } while (0)
169#define ioc3_r_emcr() be32_to_cpu(ioc3->emcr)
170#define ioc3_w_emcr(v) do { ioc3->emcr = cpu_to_be32(v); } while (0)
171#define ioc3_r_eisr() be32_to_cpu(ioc3->eisr)
172#define ioc3_w_eisr(v) do { ioc3->eisr = cpu_to_be32(v); } while (0)
173#define ioc3_r_eier() be32_to_cpu(ioc3->eier)
174#define ioc3_w_eier(v) do { ioc3->eier = cpu_to_be32(v); } while (0)
175#define ioc3_r_ercsr() be32_to_cpu(ioc3->ercsr)
176#define ioc3_w_ercsr(v) do { ioc3->ercsr = cpu_to_be32(v); } while (0)
177#define ioc3_r_erbr_h() be32_to_cpu(ioc3->erbr_h)
178#define ioc3_w_erbr_h(v) do { ioc3->erbr_h = cpu_to_be32(v); } while (0)
179#define ioc3_r_erbr_l() be32_to_cpu(ioc3->erbr_l)
180#define ioc3_w_erbr_l(v) do { ioc3->erbr_l = cpu_to_be32(v); } while (0)
181#define ioc3_r_erbar() be32_to_cpu(ioc3->erbar)
182#define ioc3_w_erbar(v) do { ioc3->erbar = cpu_to_be32(v); } while (0)
183#define ioc3_r_ercir() be32_to_cpu(ioc3->ercir)
184#define ioc3_w_ercir(v) do { ioc3->ercir = cpu_to_be32(v); } while (0)
185#define ioc3_r_erpir() be32_to_cpu(ioc3->erpir)
186#define ioc3_w_erpir(v) do { ioc3->erpir = cpu_to_be32(v); } while (0)
187#define ioc3_r_ertr() be32_to_cpu(ioc3->ertr)
188#define ioc3_w_ertr(v) do { ioc3->ertr = cpu_to_be32(v); } while (0)
189#define ioc3_r_etcsr() be32_to_cpu(ioc3->etcsr)
190#define ioc3_w_etcsr(v) do { ioc3->etcsr = cpu_to_be32(v); } while (0)
191#define ioc3_r_ersr() be32_to_cpu(ioc3->ersr)
192#define ioc3_w_ersr(v) do { ioc3->ersr = cpu_to_be32(v); } while (0)
193#define ioc3_r_etcdc() be32_to_cpu(ioc3->etcdc)
194#define ioc3_w_etcdc(v) do { ioc3->etcdc = cpu_to_be32(v); } while (0)
195#define ioc3_r_ebir() be32_to_cpu(ioc3->ebir)
196#define ioc3_w_ebir(v) do { ioc3->ebir = cpu_to_be32(v); } while (0)
197#define ioc3_r_etbr_h() be32_to_cpu(ioc3->etbr_h)
198#define ioc3_w_etbr_h(v) do { ioc3->etbr_h = cpu_to_be32(v); } while (0)
199#define ioc3_r_etbr_l() be32_to_cpu(ioc3->etbr_l)
200#define ioc3_w_etbr_l(v) do { ioc3->etbr_l = cpu_to_be32(v); } while (0)
201#define ioc3_r_etcir() be32_to_cpu(ioc3->etcir)
202#define ioc3_w_etcir(v) do { ioc3->etcir = cpu_to_be32(v); } while (0)
203#define ioc3_r_etpir() be32_to_cpu(ioc3->etpir)
204#define ioc3_w_etpir(v) do { ioc3->etpir = cpu_to_be32(v); } while (0)
205#define ioc3_r_emar_h() be32_to_cpu(ioc3->emar_h)
206#define ioc3_w_emar_h(v) do { ioc3->emar_h = cpu_to_be32(v); } while (0)
207#define ioc3_r_emar_l() be32_to_cpu(ioc3->emar_l)
208#define ioc3_w_emar_l(v) do { ioc3->emar_l = cpu_to_be32(v); } while (0)
209#define ioc3_r_ehar_h() be32_to_cpu(ioc3->ehar_h)
210#define ioc3_w_ehar_h(v) do { ioc3->ehar_h = cpu_to_be32(v); } while (0)
211#define ioc3_r_ehar_l() be32_to_cpu(ioc3->ehar_l)
212#define ioc3_w_ehar_l(v) do { ioc3->ehar_l = cpu_to_be32(v); } while (0)
213#define ioc3_r_micr() be32_to_cpu(ioc3->micr)
214#define ioc3_w_micr(v) do { ioc3->micr = cpu_to_be32(v); } while (0)
215#define ioc3_r_midr_r() be32_to_cpu(ioc3->midr_r)
216#define ioc3_w_midr_r(v) do { ioc3->midr_r = cpu_to_be32(v); } while (0)
217#define ioc3_r_midr_w() be32_to_cpu(ioc3->midr_w)
218#define ioc3_w_midr_w(v) do { ioc3->midr_w = cpu_to_be32(v); } while (0)
219
220static inline u32 mcr_pack(u32 pulse, u32 sample)
221{
222 return (pulse << 10) | (sample << 2);
223}
224
225static int nic_wait(struct ioc3 *ioc3)
226{
227 u32 mcr;
228
229 do {
230 mcr = ioc3_r_mcr();
231 } while (!(mcr & 2));
232
233 return mcr & 1;
234}
235
236static int nic_reset(struct ioc3 *ioc3)
237{
238 int presence;
239
240 ioc3_w_mcr(mcr_pack(500, 65));
241 presence = nic_wait(ioc3);
242
243 ioc3_w_mcr(mcr_pack(0, 500));
244 nic_wait(ioc3);
245
246 return presence;
247}
248
249static inline int nic_read_bit(struct ioc3 *ioc3)
250{
251 int result;
252
253 ioc3_w_mcr(mcr_pack(6, 13));
254 result = nic_wait(ioc3);
255 ioc3_w_mcr(mcr_pack(0, 100));
256 nic_wait(ioc3);
257
258 return result;
259}
260
261static inline void nic_write_bit(struct ioc3 *ioc3, int bit)
262{
263 if (bit)
264 ioc3_w_mcr(mcr_pack(6, 110));
265 else
266 ioc3_w_mcr(mcr_pack(80, 30));
267
268 nic_wait(ioc3);
269}
270
271/*
272 * Read a byte from an iButton device
273 */
274static u32 nic_read_byte(struct ioc3 *ioc3)
275{
276 u32 result = 0;
277 int i;
278
279 for (i = 0; i < 8; i++)
280 result = (result >> 1) | (nic_read_bit(ioc3) << 7);
281
282 return result;
283}
284
285/*
286 * Write a byte to an iButton device
287 */
288static void nic_write_byte(struct ioc3 *ioc3, int byte)
289{
290 int i, bit;
291
292 for (i = 8; i; i--) {
293 bit = byte & 1;
294 byte >>= 1;
295
296 nic_write_bit(ioc3, bit);
297 }
298}
299
300static u64 nic_find(struct ioc3 *ioc3, int *last)
301{
302 int a, b, index, disc;
303 u64 address = 0;
304
305 nic_reset(ioc3);
306 /* Search ROM. */
307 nic_write_byte(ioc3, 0xf0);
308
309 /* Algorithm from ``Book of iButton Standards''. */
310 for (index = 0, disc = 0; index < 64; index++) {
311 a = nic_read_bit(ioc3);
312 b = nic_read_bit(ioc3);
313
314 if (a && b) {
315 printk("NIC search failed (not fatal).\n");
316 *last = 0;
317 return 0;
318 }
319
320 if (!a && !b) {
321 if (index == *last) {
322 address |= 1UL << index;
323 } else if (index > *last) {
324 address &= ~(1UL << index);
325 disc = index;
326 } else if ((address & (1UL << index)) == 0)
327 disc = index;
328 nic_write_bit(ioc3, address & (1UL << index));
329 continue;
330 } else {
331 if (a)
332 address |= 1UL << index;
333 else
334 address &= ~(1UL << index);
335 nic_write_bit(ioc3, a);
336 continue;
337 }
338 }
339
340 *last = disc;
341
342 return address;
343}
344
345static int nic_init(struct ioc3 *ioc3)
346{
347 const char *unknown = "unknown";
348 const char *type = unknown;
349 u8 crc;
350 u8 serial[6];
351 int save = 0, i;
352
353 while (1) {
354 u64 reg;
355 reg = nic_find(ioc3, &save);
356
357 switch (reg & 0xff) {
358 case 0x91:
359 type = "DS1981U";
360 break;
361 default:
362 if (save == 0) {
363 /* Let the caller try again. */
364 return -1;
365 }
366 continue;
367 }
368
369 nic_reset(ioc3);
370
371 /* Match ROM. */
372 nic_write_byte(ioc3, 0x55);
373 for (i = 0; i < 8; i++)
374 nic_write_byte(ioc3, (reg >> (i << 3)) & 0xff);
375
376 reg >>= 8; /* Shift out type. */
377 for (i = 0; i < 6; i++) {
378 serial[i] = reg & 0xff;
379 reg >>= 8;
380 }
381 crc = reg & 0xff;
382 break;
383 }
384
385 printk("Found %s NIC", type);
386 if (type != unknown)
387 printk (" registration number %pM, CRC %02x", serial, crc);
388 printk(".\n");
389
390 return 0;
391}
392
393/*
394 * Read the NIC (Number-In-a-Can) device used to store the MAC address on
395 * SN0 / SN00 nodeboards and PCI cards.
396 */
397static void ioc3_get_eaddr_nic(struct ioc3_private *ip)
398{
399 struct ioc3 *ioc3 = ip->regs;
400 u8 nic[14];
401 int tries = 2; /* There may be some problem with the battery? */
402 int i;
403
404 ioc3_w_gpcr_s(1 << 21);
405
406 while (tries--) {
407 if (!nic_init(ioc3))
408 break;
409 udelay(500);
410 }
411
412 if (tries < 0) {
413 printk("Failed to read MAC address\n");
414 return;
415 }
416
417 /* Read Memory. */
418 nic_write_byte(ioc3, 0xf0);
419 nic_write_byte(ioc3, 0x00);
420 nic_write_byte(ioc3, 0x00);
421
422 for (i = 13; i >= 0; i--)
423 nic[i] = nic_read_byte(ioc3);
424
425 for (i = 2; i < 8; i++)
426 ip->dev->dev_addr[i - 2] = nic[i];
427}
428
429/*
430 * Ok, this is hosed by design. It's necessary to know what machine the
431 * NIC is in in order to know how to read the NIC address. We also have
432 * to know if it's a PCI card or a NIC in on the node board ...
433 */
434static void ioc3_get_eaddr(struct ioc3_private *ip)
435{
436 ioc3_get_eaddr_nic(ip);
437
438 printk("Ethernet address is %pM.\n", ip->dev->dev_addr);
439}
440
441static void __ioc3_set_mac_address(struct net_device *dev)
442{
443 struct ioc3_private *ip = netdev_priv(dev);
444 struct ioc3 *ioc3 = ip->regs;
445
446 ioc3_w_emar_h((dev->dev_addr[5] << 8) | dev->dev_addr[4]);
447 ioc3_w_emar_l((dev->dev_addr[3] << 24) | (dev->dev_addr[2] << 16) |
448 (dev->dev_addr[1] << 8) | dev->dev_addr[0]);
449}
450
451static int ioc3_set_mac_address(struct net_device *dev, void *addr)
452{
453 struct ioc3_private *ip = netdev_priv(dev);
454 struct sockaddr *sa = addr;
455
456 memcpy(dev->dev_addr, sa->sa_data, dev->addr_len);
457
458 spin_lock_irq(&ip->ioc3_lock);
459 __ioc3_set_mac_address(dev);
460 spin_unlock_irq(&ip->ioc3_lock);
461
462 return 0;
463}
464
465/*
466 * Caller must hold the ioc3_lock ever for MII readers. This is also
467 * used to protect the transmitter side but it's low contention.
468 */
469static int ioc3_mdio_read(struct net_device *dev, int phy, int reg)
470{
471 struct ioc3_private *ip = netdev_priv(dev);
472 struct ioc3 *ioc3 = ip->regs;
473
474 while (ioc3_r_micr() & MICR_BUSY);
475 ioc3_w_micr((phy << MICR_PHYADDR_SHIFT) | reg | MICR_READTRIG);
476 while (ioc3_r_micr() & MICR_BUSY);
477
478 return ioc3_r_midr_r() & MIDR_DATA_MASK;
479}
480
481static void ioc3_mdio_write(struct net_device *dev, int phy, int reg, int data)
482{
483 struct ioc3_private *ip = netdev_priv(dev);
484 struct ioc3 *ioc3 = ip->regs;
485
486 while (ioc3_r_micr() & MICR_BUSY);
487 ioc3_w_midr_w(data);
488 ioc3_w_micr((phy << MICR_PHYADDR_SHIFT) | reg);
489 while (ioc3_r_micr() & MICR_BUSY);
490}
491
492static int ioc3_mii_init(struct ioc3_private *ip);
493
494static struct net_device_stats *ioc3_get_stats(struct net_device *dev)
495{
496 struct ioc3_private *ip = netdev_priv(dev);
497 struct ioc3 *ioc3 = ip->regs;
498
499 dev->stats.collisions += (ioc3_r_etcdc() & ETCDC_COLLCNT_MASK);
500 return &dev->stats;
501}
502
503static void ioc3_tcpudp_checksum(struct sk_buff *skb, uint32_t hwsum, int len)
504{
505 struct ethhdr *eh = eth_hdr(skb);
506 uint32_t csum, ehsum;
507 unsigned int proto;
508 struct iphdr *ih;
509 uint16_t *ew;
510 unsigned char *cp;
511
512 /*
513 * Did hardware handle the checksum at all? The cases we can handle
514 * are:
515 *
516 * - TCP and UDP checksums of IPv4 only.
517 * - IPv6 would be doable but we keep that for later ...
518 * - Only unfragmented packets. Did somebody already tell you
519 * fragmentation is evil?
520 * - don't care about packet size. Worst case when processing a
521 * malformed packet we'll try to access the packet at ip header +
522 * 64 bytes which is still inside the skb. Even in the unlikely
523 * case where the checksum is right the higher layers will still
524 * drop the packet as appropriate.
525 */
526 if (eh->h_proto != htons(ETH_P_IP))
527 return;
528
529 ih = (struct iphdr *) ((char *)eh + ETH_HLEN);
530 if (ip_is_fragment(ih))
531 return;
532
533 proto = ih->protocol;
534 if (proto != IPPROTO_TCP && proto != IPPROTO_UDP)
535 return;
536
537 /* Same as tx - compute csum of pseudo header */
538 csum = hwsum +
539 (ih->tot_len - (ih->ihl << 2)) +
540 htons((uint16_t)ih->protocol) +
541 (ih->saddr >> 16) + (ih->saddr & 0xffff) +
542 (ih->daddr >> 16) + (ih->daddr & 0xffff);
543
544 /* Sum up ethernet dest addr, src addr and protocol */
545 ew = (uint16_t *) eh;
546 ehsum = ew[0] + ew[1] + ew[2] + ew[3] + ew[4] + ew[5] + ew[6];
547
548 ehsum = (ehsum & 0xffff) + (ehsum >> 16);
549 ehsum = (ehsum & 0xffff) + (ehsum >> 16);
550
551 csum += 0xffff ^ ehsum;
552
553 /* In the next step we also subtract the 1's complement
554 checksum of the trailing ethernet CRC. */
555 cp = (char *)eh + len; /* points at trailing CRC */
556 if (len & 1) {
557 csum += 0xffff ^ (uint16_t) ((cp[1] << 8) | cp[0]);
558 csum += 0xffff ^ (uint16_t) ((cp[3] << 8) | cp[2]);
559 } else {
560 csum += 0xffff ^ (uint16_t) ((cp[0] << 8) | cp[1]);
561 csum += 0xffff ^ (uint16_t) ((cp[2] << 8) | cp[3]);
562 }
563
564 csum = (csum & 0xffff) + (csum >> 16);
565 csum = (csum & 0xffff) + (csum >> 16);
566
567 if (csum == 0xffff)
568 skb->ip_summed = CHECKSUM_UNNECESSARY;
569}
570
571static inline void ioc3_rx(struct net_device *dev)
572{
573 struct ioc3_private *ip = netdev_priv(dev);
574 struct sk_buff *skb, *new_skb;
575 struct ioc3 *ioc3 = ip->regs;
576 int rx_entry, n_entry, len;
577 struct ioc3_erxbuf *rxb;
578 unsigned long *rxr;
579 u32 w0, err;
580
581 rxr = ip->rxr; /* Ring base */
582 rx_entry = ip->rx_ci; /* RX consume index */
583 n_entry = ip->rx_pi;
584
585 skb = ip->rx_skbs[rx_entry];
586 rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
587 w0 = be32_to_cpu(rxb->w0);
588
589 while (w0 & ERXBUF_V) {
590 err = be32_to_cpu(rxb->err); /* It's valid ... */
591 if (err & ERXBUF_GOODPKT) {
592 len = ((w0 >> ERXBUF_BYTECNT_SHIFT) & 0x7ff) - 4;
593 skb_trim(skb, len);
594 skb->protocol = eth_type_trans(skb, dev);
595
596 new_skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
597 if (!new_skb) {
598 /* Ouch, drop packet and just recycle packet
599 to keep the ring filled. */
600 dev->stats.rx_dropped++;
601 new_skb = skb;
602 goto next;
603 }
604
605 if (likely(dev->features & NETIF_F_RXCSUM))
606 ioc3_tcpudp_checksum(skb,
607 w0 & ERXBUF_IPCKSUM_MASK, len);
608
609 netif_rx(skb);
610
611 ip->rx_skbs[rx_entry] = NULL; /* Poison */
612
613 /* Because we reserve afterwards. */
614 skb_put(new_skb, (1664 + RX_OFFSET));
615 rxb = (struct ioc3_erxbuf *) new_skb->data;
616 skb_reserve(new_skb, RX_OFFSET);
617
618 dev->stats.rx_packets++; /* Statistics */
619 dev->stats.rx_bytes += len;
620 } else {
621 /* The frame is invalid and the skb never
622 reached the network layer so we can just
623 recycle it. */
624 new_skb = skb;
625 dev->stats.rx_errors++;
626 }
627 if (err & ERXBUF_CRCERR) /* Statistics */
628 dev->stats.rx_crc_errors++;
629 if (err & ERXBUF_FRAMERR)
630 dev->stats.rx_frame_errors++;
631next:
632 ip->rx_skbs[n_entry] = new_skb;
633 rxr[n_entry] = cpu_to_be64(ioc3_map(rxb, 1));
634 rxb->w0 = 0; /* Clear valid flag */
635 n_entry = (n_entry + 1) & 511; /* Update erpir */
636
637 /* Now go on to the next ring entry. */
638 rx_entry = (rx_entry + 1) & 511;
639 skb = ip->rx_skbs[rx_entry];
640 rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
641 w0 = be32_to_cpu(rxb->w0);
642 }
643 ioc3_w_erpir((n_entry << 3) | ERPIR_ARM);
644 ip->rx_pi = n_entry;
645 ip->rx_ci = rx_entry;
646}
647
648static inline void ioc3_tx(struct net_device *dev)
649{
650 struct ioc3_private *ip = netdev_priv(dev);
651 unsigned long packets, bytes;
652 struct ioc3 *ioc3 = ip->regs;
653 int tx_entry, o_entry;
654 struct sk_buff *skb;
655 u32 etcir;
656
657 spin_lock(&ip->ioc3_lock);
658 etcir = ioc3_r_etcir();
659
660 tx_entry = (etcir >> 7) & 127;
661 o_entry = ip->tx_ci;
662 packets = 0;
663 bytes = 0;
664
665 while (o_entry != tx_entry) {
666 packets++;
667 skb = ip->tx_skbs[o_entry];
668 bytes += skb->len;
669 dev_kfree_skb_irq(skb);
670 ip->tx_skbs[o_entry] = NULL;
671
672 o_entry = (o_entry + 1) & 127; /* Next */
673
674 etcir = ioc3_r_etcir(); /* More pkts sent? */
675 tx_entry = (etcir >> 7) & 127;
676 }
677
678 dev->stats.tx_packets += packets;
679 dev->stats.tx_bytes += bytes;
680 ip->txqlen -= packets;
681
682 if (ip->txqlen < 128)
683 netif_wake_queue(dev);
684
685 ip->tx_ci = o_entry;
686 spin_unlock(&ip->ioc3_lock);
687}
688
689/*
690 * Deal with fatal IOC3 errors. This condition might be caused by a hard or
691 * software problems, so we should try to recover
692 * more gracefully if this ever happens. In theory we might be flooded
693 * with such error interrupts if something really goes wrong, so we might
694 * also consider to take the interface down.
695 */
696static void ioc3_error(struct net_device *dev, u32 eisr)
697{
698 struct ioc3_private *ip = netdev_priv(dev);
699 unsigned char *iface = dev->name;
700
701 spin_lock(&ip->ioc3_lock);
702
703 if (eisr & EISR_RXOFLO)
704 printk(KERN_ERR "%s: RX overflow.\n", iface);
705 if (eisr & EISR_RXBUFOFLO)
706 printk(KERN_ERR "%s: RX buffer overflow.\n", iface);
707 if (eisr & EISR_RXMEMERR)
708 printk(KERN_ERR "%s: RX PCI error.\n", iface);
709 if (eisr & EISR_RXPARERR)
710 printk(KERN_ERR "%s: RX SSRAM parity error.\n", iface);
711 if (eisr & EISR_TXBUFUFLO)
712 printk(KERN_ERR "%s: TX buffer underflow.\n", iface);
713 if (eisr & EISR_TXMEMERR)
714 printk(KERN_ERR "%s: TX PCI error.\n", iface);
715
716 ioc3_stop(ip);
717 ioc3_init(dev);
718 ioc3_mii_init(ip);
719
720 netif_wake_queue(dev);
721
722 spin_unlock(&ip->ioc3_lock);
723}
724
725/* The interrupt handler does all of the Rx thread work and cleans up
726 after the Tx thread. */
727static irqreturn_t ioc3_interrupt(int irq, void *_dev)
728{
729 struct net_device *dev = (struct net_device *)_dev;
730 struct ioc3_private *ip = netdev_priv(dev);
731 struct ioc3 *ioc3 = ip->regs;
732 const u32 enabled = EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
733 EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
734 EISR_TXEXPLICIT | EISR_TXMEMERR;
735 u32 eisr;
736
737 eisr = ioc3_r_eisr() & enabled;
738
739 ioc3_w_eisr(eisr);
740 (void) ioc3_r_eisr(); /* Flush */
741
742 if (eisr & (EISR_RXOFLO | EISR_RXBUFOFLO | EISR_RXMEMERR |
743 EISR_RXPARERR | EISR_TXBUFUFLO | EISR_TXMEMERR))
744 ioc3_error(dev, eisr);
745 if (eisr & EISR_RXTIMERINT)
746 ioc3_rx(dev);
747 if (eisr & EISR_TXEXPLICIT)
748 ioc3_tx(dev);
749
750 return IRQ_HANDLED;
751}
752
753static inline void ioc3_setup_duplex(struct ioc3_private *ip)
754{
755 struct ioc3 *ioc3 = ip->regs;
756
757 if (ip->mii.full_duplex) {
758 ioc3_w_etcsr(ETCSR_FD);
759 ip->emcr |= EMCR_DUPLEX;
760 } else {
761 ioc3_w_etcsr(ETCSR_HD);
762 ip->emcr &= ~EMCR_DUPLEX;
763 }
764 ioc3_w_emcr(ip->emcr);
765}
766
767static void ioc3_timer(struct timer_list *t)
768{
769 struct ioc3_private *ip = from_timer(ip, t, ioc3_timer);
770
771 /* Print the link status if it has changed */
772 mii_check_media(&ip->mii, 1, 0);
773 ioc3_setup_duplex(ip);
774
775 ip->ioc3_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2s */
776 add_timer(&ip->ioc3_timer);
777}
778
779/*
780 * Try to find a PHY. There is no apparent relation between the MII addresses
781 * in the SGI documentation and what we find in reality, so we simply probe
782 * for the PHY. It seems IOC3 PHYs usually live on address 31. One of my
783 * onboard IOC3s has the special oddity that probing doesn't seem to find it
784 * yet the interface seems to work fine, so if probing fails we for now will
785 * simply default to PHY 31 instead of bailing out.
786 */
787static int ioc3_mii_init(struct ioc3_private *ip)
788{
789 int i, found = 0, res = 0;
790 int ioc3_phy_workaround = 1;
791 u16 word;
792
793 for (i = 0; i < 32; i++) {
794 word = ioc3_mdio_read(ip->dev, i, MII_PHYSID1);
795
796 if (word != 0xffff && word != 0x0000) {
797 found = 1;
798 break; /* Found a PHY */
799 }
800 }
801
802 if (!found) {
803 if (ioc3_phy_workaround)
804 i = 31;
805 else {
806 ip->mii.phy_id = -1;
807 res = -ENODEV;
808 goto out;
809 }
810 }
811
812 ip->mii.phy_id = i;
813
814out:
815 return res;
816}
817
818static void ioc3_mii_start(struct ioc3_private *ip)
819{
820 ip->ioc3_timer.expires = jiffies + (12 * HZ)/10; /* 1.2 sec. */
821 add_timer(&ip->ioc3_timer);
822}
823
824static inline void ioc3_clean_rx_ring(struct ioc3_private *ip)
825{
826 struct sk_buff *skb;
827 int i;
828
829 for (i = ip->rx_ci; i & 15; i++) {
830 ip->rx_skbs[ip->rx_pi] = ip->rx_skbs[ip->rx_ci];
831 ip->rxr[ip->rx_pi++] = ip->rxr[ip->rx_ci++];
832 }
833 ip->rx_pi &= 511;
834 ip->rx_ci &= 511;
835
836 for (i = ip->rx_ci; i != ip->rx_pi; i = (i+1) & 511) {
837 struct ioc3_erxbuf *rxb;
838 skb = ip->rx_skbs[i];
839 rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
840 rxb->w0 = 0;
841 }
842}
843
844static inline void ioc3_clean_tx_ring(struct ioc3_private *ip)
845{
846 struct sk_buff *skb;
847 int i;
848
849 for (i=0; i < 128; i++) {
850 skb = ip->tx_skbs[i];
851 if (skb) {
852 ip->tx_skbs[i] = NULL;
853 dev_kfree_skb_any(skb);
854 }
855 ip->txr[i].cmd = 0;
856 }
857 ip->tx_pi = 0;
858 ip->tx_ci = 0;
859}
860
861static void ioc3_free_rings(struct ioc3_private *ip)
862{
863 struct sk_buff *skb;
864 int rx_entry, n_entry;
865
866 if (ip->txr) {
867 ioc3_clean_tx_ring(ip);
868 free_pages((unsigned long)ip->txr, 2);
869 ip->txr = NULL;
870 }
871
872 if (ip->rxr) {
873 n_entry = ip->rx_ci;
874 rx_entry = ip->rx_pi;
875
876 while (n_entry != rx_entry) {
877 skb = ip->rx_skbs[n_entry];
878 if (skb)
879 dev_kfree_skb_any(skb);
880
881 n_entry = (n_entry + 1) & 511;
882 }
883 free_page((unsigned long)ip->rxr);
884 ip->rxr = NULL;
885 }
886}
887
888static void ioc3_alloc_rings(struct net_device *dev)
889{
890 struct ioc3_private *ip = netdev_priv(dev);
891 struct ioc3_erxbuf *rxb;
892 unsigned long *rxr;
893 int i;
894
895 if (ip->rxr == NULL) {
896 /* Allocate and initialize rx ring. 4kb = 512 entries */
897 ip->rxr = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
898 rxr = ip->rxr;
899 if (!rxr)
900 printk("ioc3_alloc_rings(): get_zeroed_page() failed!\n");
901
902 /* Now the rx buffers. The RX ring may be larger but
903 we only allocate 16 buffers for now. Need to tune
904 this for performance and memory later. */
905 for (i = 0; i < RX_BUFFS; i++) {
906 struct sk_buff *skb;
907
908 skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
909 if (!skb) {
910 show_free_areas(0, NULL);
911 continue;
912 }
913
914 ip->rx_skbs[i] = skb;
915
916 /* Because we reserve afterwards. */
917 skb_put(skb, (1664 + RX_OFFSET));
918 rxb = (struct ioc3_erxbuf *) skb->data;
919 rxr[i] = cpu_to_be64(ioc3_map(rxb, 1));
920 skb_reserve(skb, RX_OFFSET);
921 }
922 ip->rx_ci = 0;
923 ip->rx_pi = RX_BUFFS;
924 }
925
926 if (ip->txr == NULL) {
927 /* Allocate and initialize tx rings. 16kb = 128 bufs. */
928 ip->txr = (struct ioc3_etxd *)__get_free_pages(GFP_KERNEL, 2);
929 if (!ip->txr)
930 printk("ioc3_alloc_rings(): __get_free_pages() failed!\n");
931 ip->tx_pi = 0;
932 ip->tx_ci = 0;
933 }
934}
935
936static void ioc3_init_rings(struct net_device *dev)
937{
938 struct ioc3_private *ip = netdev_priv(dev);
939 struct ioc3 *ioc3 = ip->regs;
940 unsigned long ring;
941
942 ioc3_free_rings(ip);
943 ioc3_alloc_rings(dev);
944
945 ioc3_clean_rx_ring(ip);
946 ioc3_clean_tx_ring(ip);
947
948 /* Now the rx ring base, consume & produce registers. */
949 ring = ioc3_map(ip->rxr, 0);
950 ioc3_w_erbr_h(ring >> 32);
951 ioc3_w_erbr_l(ring & 0xffffffff);
952 ioc3_w_ercir(ip->rx_ci << 3);
953 ioc3_w_erpir((ip->rx_pi << 3) | ERPIR_ARM);
954
955 ring = ioc3_map(ip->txr, 0);
956
957 ip->txqlen = 0; /* nothing queued */
958
959 /* Now the tx ring base, consume & produce registers. */
960 ioc3_w_etbr_h(ring >> 32);
961 ioc3_w_etbr_l(ring & 0xffffffff);
962 ioc3_w_etpir(ip->tx_pi << 7);
963 ioc3_w_etcir(ip->tx_ci << 7);
964 (void) ioc3_r_etcir(); /* Flush */
965}
966
967static inline void ioc3_ssram_disc(struct ioc3_private *ip)
968{
969 struct ioc3 *ioc3 = ip->regs;
970 volatile u32 *ssram0 = &ioc3->ssram[0x0000];
971 volatile u32 *ssram1 = &ioc3->ssram[0x4000];
972 unsigned int pattern = 0x5555;
973
974 /* Assume the larger size SSRAM and enable parity checking */
975 ioc3_w_emcr(ioc3_r_emcr() | (EMCR_BUFSIZ | EMCR_RAMPAR));
976
977 *ssram0 = pattern;
978 *ssram1 = ~pattern & IOC3_SSRAM_DM;
979
980 if ((*ssram0 & IOC3_SSRAM_DM) != pattern ||
981 (*ssram1 & IOC3_SSRAM_DM) != (~pattern & IOC3_SSRAM_DM)) {
982 /* set ssram size to 64 KB */
983 ip->emcr = EMCR_RAMPAR;
984 ioc3_w_emcr(ioc3_r_emcr() & ~EMCR_BUFSIZ);
985 } else
986 ip->emcr = EMCR_BUFSIZ | EMCR_RAMPAR;
987}
988
989static void ioc3_init(struct net_device *dev)
990{
991 struct ioc3_private *ip = netdev_priv(dev);
992 struct ioc3 *ioc3 = ip->regs;
993
994 del_timer_sync(&ip->ioc3_timer); /* Kill if running */
995
996 ioc3_w_emcr(EMCR_RST); /* Reset */
997 (void) ioc3_r_emcr(); /* Flush WB */
998 udelay(4); /* Give it time ... */
999 ioc3_w_emcr(0);
1000 (void) ioc3_r_emcr();
1001
1002 /* Misc registers */
1003#ifdef CONFIG_SGI_IP27
1004 ioc3_w_erbar(PCI64_ATTR_BAR >> 32); /* Barrier on last store */
1005#else
1006 ioc3_w_erbar(0); /* Let PCI API get it right */
1007#endif
1008 (void) ioc3_r_etcdc(); /* Clear on read */
1009 ioc3_w_ercsr(15); /* RX low watermark */
1010 ioc3_w_ertr(0); /* Interrupt immediately */
1011 __ioc3_set_mac_address(dev);
1012 ioc3_w_ehar_h(ip->ehar_h);
1013 ioc3_w_ehar_l(ip->ehar_l);
1014 ioc3_w_ersr(42); /* XXX should be random */
1015
1016 ioc3_init_rings(dev);
1017
1018 ip->emcr |= ((RX_OFFSET / 2) << EMCR_RXOFF_SHIFT) | EMCR_TXDMAEN |
1019 EMCR_TXEN | EMCR_RXDMAEN | EMCR_RXEN | EMCR_PADEN;
1020 ioc3_w_emcr(ip->emcr);
1021 ioc3_w_eier(EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
1022 EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
1023 EISR_TXEXPLICIT | EISR_TXMEMERR);
1024 (void) ioc3_r_eier();
1025}
1026
1027static inline void ioc3_stop(struct ioc3_private *ip)
1028{
1029 struct ioc3 *ioc3 = ip->regs;
1030
1031 ioc3_w_emcr(0); /* Shutup */
1032 ioc3_w_eier(0); /* Disable interrupts */
1033 (void) ioc3_r_eier(); /* Flush */
1034}
1035
1036static int ioc3_open(struct net_device *dev)
1037{
1038 struct ioc3_private *ip = netdev_priv(dev);
1039
1040 if (request_irq(dev->irq, ioc3_interrupt, IRQF_SHARED, ioc3_str, dev)) {
1041 printk(KERN_ERR "%s: Can't get irq %d\n", dev->name, dev->irq);
1042
1043 return -EAGAIN;
1044 }
1045
1046 ip->ehar_h = 0;
1047 ip->ehar_l = 0;
1048 ioc3_init(dev);
1049 ioc3_mii_start(ip);
1050
1051 netif_start_queue(dev);
1052 return 0;
1053}
1054
1055static int ioc3_close(struct net_device *dev)
1056{
1057 struct ioc3_private *ip = netdev_priv(dev);
1058
1059 del_timer_sync(&ip->ioc3_timer);
1060
1061 netif_stop_queue(dev);
1062
1063 ioc3_stop(ip);
1064 free_irq(dev->irq, dev);
1065
1066 ioc3_free_rings(ip);
1067 return 0;
1068}
1069
1070/*
1071 * MENET cards have four IOC3 chips, which are attached to two sets of
1072 * PCI slot resources each: the primary connections are on slots
1073 * 0..3 and the secondaries are on 4..7
1074 *
1075 * All four ethernets are brought out to connectors; six serial ports
1076 * (a pair from each of the first three IOC3s) are brought out to
1077 * MiniDINs; all other subdevices are left swinging in the wind, leave
1078 * them disabled.
1079 */
1080
1081static int ioc3_adjacent_is_ioc3(struct pci_dev *pdev, int slot)
1082{
1083 struct pci_dev *dev = pci_get_slot(pdev->bus, PCI_DEVFN(slot, 0));
1084 int ret = 0;
1085
1086 if (dev) {
1087 if (dev->vendor == PCI_VENDOR_ID_SGI &&
1088 dev->device == PCI_DEVICE_ID_SGI_IOC3)
1089 ret = 1;
1090 pci_dev_put(dev);
1091 }
1092
1093 return ret;
1094}
1095
1096static int ioc3_is_menet(struct pci_dev *pdev)
1097{
1098 return pdev->bus->parent == NULL &&
1099 ioc3_adjacent_is_ioc3(pdev, 0) &&
1100 ioc3_adjacent_is_ioc3(pdev, 1) &&
1101 ioc3_adjacent_is_ioc3(pdev, 2);
1102}
1103
1104#ifdef CONFIG_SERIAL_8250
1105/*
1106 * Note about serial ports and consoles:
1107 * For console output, everyone uses the IOC3 UARTA (offset 0x178)
1108 * connected to the master node (look in ip27_setup_console() and
1109 * ip27prom_console_write()).
1110 *
1111 * For serial (/dev/ttyS0 etc), we can not have hardcoded serial port
1112 * addresses on a partitioned machine. Since we currently use the ioc3
1113 * serial ports, we use dynamic serial port discovery that the serial.c
1114 * driver uses for pci/pnp ports (there is an entry for the SGI ioc3
1115 * boards in pci_boards[]). Unfortunately, UARTA's pio address is greater
1116 * than UARTB's, although UARTA on o200s has traditionally been known as
1117 * port 0. So, we just use one serial port from each ioc3 (since the
1118 * serial driver adds addresses to get to higher ports).
1119 *
1120 * The first one to do a register_console becomes the preferred console
1121 * (if there is no kernel command line console= directive). /dev/console
1122 * (ie 5, 1) is then "aliased" into the device number returned by the
1123 * "device" routine referred to in this console structure
1124 * (ip27prom_console_dev).
1125 *
1126 * Also look in ip27-pci.c:pci_fixup_ioc3() for some comments on working
1127 * around ioc3 oddities in this respect.
1128 *
1129 * The IOC3 serials use a 22MHz clock rate with an additional divider which
1130 * can be programmed in the SCR register if the DLAB bit is set.
1131 *
1132 * Register to interrupt zero because we share the interrupt with
1133 * the serial driver which we don't properly support yet.
1134 *
1135 * Can't use UPF_IOREMAP as the whole of IOC3 resources have already been
1136 * registered.
1137 */
1138static void ioc3_8250_register(struct ioc3_uartregs __iomem *uart)
1139{
1140#define COSMISC_CONSTANT 6
1141
1142 struct uart_8250_port port = {
1143 .port = {
1144 .irq = 0,
1145 .flags = UPF_SKIP_TEST | UPF_BOOT_AUTOCONF,
1146 .iotype = UPIO_MEM,
1147 .regshift = 0,
1148 .uartclk = (22000000 << 1) / COSMISC_CONSTANT,
1149
1150 .membase = (unsigned char __iomem *) uart,
1151 .mapbase = (unsigned long) uart,
1152 }
1153 };
1154 unsigned char lcr;
1155
1156 lcr = uart->iu_lcr;
1157 uart->iu_lcr = lcr | UART_LCR_DLAB;
1158 uart->iu_scr = COSMISC_CONSTANT,
1159 uart->iu_lcr = lcr;
1160 uart->iu_lcr;
1161 serial8250_register_8250_port(&port);
1162}
1163
1164static void ioc3_serial_probe(struct pci_dev *pdev, struct ioc3 *ioc3)
1165{
1166 /*
1167 * We need to recognice and treat the fourth MENET serial as it
1168 * does not have an SuperIO chip attached to it, therefore attempting
1169 * to access it will result in bus errors. We call something an
1170 * MENET if PCI slot 0, 1, 2 and 3 of a master PCI bus all have an IOC3
1171 * in it. This is paranoid but we want to avoid blowing up on a
1172 * showhorn PCI box that happens to have 4 IOC3 cards in it so it's
1173 * not paranoid enough ...
1174 */
1175 if (ioc3_is_menet(pdev) && PCI_SLOT(pdev->devfn) == 3)
1176 return;
1177
1178 /*
1179 * Switch IOC3 to PIO mode. It probably already was but let's be
1180 * paranoid
1181 */
1182 ioc3->gpcr_s = GPCR_UARTA_MODESEL | GPCR_UARTB_MODESEL;
1183 ioc3->gpcr_s;
1184 ioc3->gppr_6 = 0;
1185 ioc3->gppr_6;
1186 ioc3->gppr_7 = 0;
1187 ioc3->gppr_7;
1188 ioc3->sscr_a = ioc3->sscr_a & ~SSCR_DMA_EN;
1189 ioc3->sscr_a;
1190 ioc3->sscr_b = ioc3->sscr_b & ~SSCR_DMA_EN;
1191 ioc3->sscr_b;
1192 /* Disable all SA/B interrupts except for SA/B_INT in SIO_IEC. */
1193 ioc3->sio_iec &= ~ (SIO_IR_SA_TX_MT | SIO_IR_SA_RX_FULL |
1194 SIO_IR_SA_RX_HIGH | SIO_IR_SA_RX_TIMER |
1195 SIO_IR_SA_DELTA_DCD | SIO_IR_SA_DELTA_CTS |
1196 SIO_IR_SA_TX_EXPLICIT | SIO_IR_SA_MEMERR);
1197 ioc3->sio_iec |= SIO_IR_SA_INT;
1198 ioc3->sscr_a = 0;
1199 ioc3->sio_iec &= ~ (SIO_IR_SB_TX_MT | SIO_IR_SB_RX_FULL |
1200 SIO_IR_SB_RX_HIGH | SIO_IR_SB_RX_TIMER |
1201 SIO_IR_SB_DELTA_DCD | SIO_IR_SB_DELTA_CTS |
1202 SIO_IR_SB_TX_EXPLICIT | SIO_IR_SB_MEMERR);
1203 ioc3->sio_iec |= SIO_IR_SB_INT;
1204 ioc3->sscr_b = 0;
1205
1206 ioc3_8250_register(&ioc3->sregs.uarta);
1207 ioc3_8250_register(&ioc3->sregs.uartb);
1208}
1209#endif
1210
1211static const struct net_device_ops ioc3_netdev_ops = {
1212 .ndo_open = ioc3_open,
1213 .ndo_stop = ioc3_close,
1214 .ndo_start_xmit = ioc3_start_xmit,
1215 .ndo_tx_timeout = ioc3_timeout,
1216 .ndo_get_stats = ioc3_get_stats,
1217 .ndo_set_rx_mode = ioc3_set_multicast_list,
1218 .ndo_do_ioctl = ioc3_ioctl,
1219 .ndo_validate_addr = eth_validate_addr,
1220 .ndo_set_mac_address = ioc3_set_mac_address,
1221};
1222
1223static int ioc3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1224{
1225 unsigned int sw_physid1, sw_physid2;
1226 struct net_device *dev = NULL;
1227 struct ioc3_private *ip;
1228 struct ioc3 *ioc3;
1229 unsigned long ioc3_base, ioc3_size;
1230 u32 vendor, model, rev;
1231 int err, pci_using_dac;
1232
1233 /* Configure DMA attributes. */
1234 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1235 if (!err) {
1236 pci_using_dac = 1;
1237 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1238 if (err < 0) {
1239 printk(KERN_ERR "%s: Unable to obtain 64 bit DMA "
1240 "for consistent allocations\n", pci_name(pdev));
1241 goto out;
1242 }
1243 } else {
1244 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1245 if (err) {
1246 printk(KERN_ERR "%s: No usable DMA configuration, "
1247 "aborting.\n", pci_name(pdev));
1248 goto out;
1249 }
1250 pci_using_dac = 0;
1251 }
1252
1253 if (pci_enable_device(pdev))
1254 return -ENODEV;
1255
1256 dev = alloc_etherdev(sizeof(struct ioc3_private));
1257 if (!dev) {
1258 err = -ENOMEM;
1259 goto out_disable;
1260 }
1261
1262 if (pci_using_dac)
1263 dev->features |= NETIF_F_HIGHDMA;
1264
1265 err = pci_request_regions(pdev, "ioc3");
1266 if (err)
1267 goto out_free;
1268
1269 SET_NETDEV_DEV(dev, &pdev->dev);
1270
1271 ip = netdev_priv(dev);
1272 ip->dev = dev;
1273
1274 dev->irq = pdev->irq;
1275
1276 ioc3_base = pci_resource_start(pdev, 0);
1277 ioc3_size = pci_resource_len(pdev, 0);
1278 ioc3 = (struct ioc3 *) ioremap(ioc3_base, ioc3_size);
1279 if (!ioc3) {
1280 printk(KERN_CRIT "ioc3eth(%s): ioremap failed, goodbye.\n",
1281 pci_name(pdev));
1282 err = -ENOMEM;
1283 goto out_res;
1284 }
1285 ip->regs = ioc3;
1286
1287#ifdef CONFIG_SERIAL_8250
1288 ioc3_serial_probe(pdev, ioc3);
1289#endif
1290
1291 spin_lock_init(&ip->ioc3_lock);
1292 timer_setup(&ip->ioc3_timer, ioc3_timer, 0);
1293
1294 ioc3_stop(ip);
1295 ioc3_init(dev);
1296
1297 ip->pdev = pdev;
1298
1299 ip->mii.phy_id_mask = 0x1f;
1300 ip->mii.reg_num_mask = 0x1f;
1301 ip->mii.dev = dev;
1302 ip->mii.mdio_read = ioc3_mdio_read;
1303 ip->mii.mdio_write = ioc3_mdio_write;
1304
1305 ioc3_mii_init(ip);
1306
1307 if (ip->mii.phy_id == -1) {
1308 printk(KERN_CRIT "ioc3-eth(%s): Didn't find a PHY, goodbye.\n",
1309 pci_name(pdev));
1310 err = -ENODEV;
1311 goto out_stop;
1312 }
1313
1314 ioc3_mii_start(ip);
1315 ioc3_ssram_disc(ip);
1316 ioc3_get_eaddr(ip);
1317
1318 /* The IOC3-specific entries in the device structure. */
1319 dev->watchdog_timeo = 5 * HZ;
1320 dev->netdev_ops = &ioc3_netdev_ops;
1321 dev->ethtool_ops = &ioc3_ethtool_ops;
1322 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_RXCSUM;
1323 dev->features = NETIF_F_IP_CSUM;
1324
1325 sw_physid1 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID1);
1326 sw_physid2 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID2);
1327
1328 err = register_netdev(dev);
1329 if (err)
1330 goto out_stop;
1331
1332 mii_check_media(&ip->mii, 1, 1);
1333 ioc3_setup_duplex(ip);
1334
1335 vendor = (sw_physid1 << 12) | (sw_physid2 >> 4);
1336 model = (sw_physid2 >> 4) & 0x3f;
1337 rev = sw_physid2 & 0xf;
1338 printk(KERN_INFO "%s: Using PHY %d, vendor 0x%x, model %d, "
1339 "rev %d.\n", dev->name, ip->mii.phy_id, vendor, model, rev);
1340 printk(KERN_INFO "%s: IOC3 SSRAM has %d kbyte.\n", dev->name,
1341 ip->emcr & EMCR_BUFSIZ ? 128 : 64);
1342
1343 return 0;
1344
1345out_stop:
1346 ioc3_stop(ip);
1347 del_timer_sync(&ip->ioc3_timer);
1348 ioc3_free_rings(ip);
1349out_res:
1350 pci_release_regions(pdev);
1351out_free:
1352 free_netdev(dev);
1353out_disable:
1354 /*
1355 * We should call pci_disable_device(pdev); here if the IOC3 wasn't
1356 * such a weird device ...
1357 */
1358out:
1359 return err;
1360}
1361
1362static void ioc3_remove_one(struct pci_dev *pdev)
1363{
1364 struct net_device *dev = pci_get_drvdata(pdev);
1365 struct ioc3_private *ip = netdev_priv(dev);
1366 struct ioc3 *ioc3 = ip->regs;
1367
1368 unregister_netdev(dev);
1369 del_timer_sync(&ip->ioc3_timer);
1370
1371 iounmap(ioc3);
1372 pci_release_regions(pdev);
1373 free_netdev(dev);
1374 /*
1375 * We should call pci_disable_device(pdev); here if the IOC3 wasn't
1376 * such a weird device ...
1377 */
1378}
1379
1380static const struct pci_device_id ioc3_pci_tbl[] = {
1381 { PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_IOC3, PCI_ANY_ID, PCI_ANY_ID },
1382 { 0 }
1383};
1384MODULE_DEVICE_TABLE(pci, ioc3_pci_tbl);
1385
1386static struct pci_driver ioc3_driver = {
1387 .name = "ioc3-eth",
1388 .id_table = ioc3_pci_tbl,
1389 .probe = ioc3_probe,
1390 .remove = ioc3_remove_one,
1391};
1392
1393static int ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev)
1394{
1395 unsigned long data;
1396 struct ioc3_private *ip = netdev_priv(dev);
1397 struct ioc3 *ioc3 = ip->regs;
1398 unsigned int len;
1399 struct ioc3_etxd *desc;
1400 uint32_t w0 = 0;
1401 int produce;
1402
1403 /*
1404 * IOC3 has a fairly simple minded checksumming hardware which simply
1405 * adds up the 1's complement checksum for the entire packet and
1406 * inserts it at an offset which can be specified in the descriptor
1407 * into the transmit packet. This means we have to compensate for the
1408 * MAC header which should not be summed and the TCP/UDP pseudo headers
1409 * manually.
1410 */
1411 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1412 const struct iphdr *ih = ip_hdr(skb);
1413 const int proto = ntohs(ih->protocol);
1414 unsigned int csoff;
1415 uint32_t csum, ehsum;
1416 uint16_t *eh;
1417
1418 /* The MAC header. skb->mac seem the logic approach
1419 to find the MAC header - except it's a NULL pointer ... */
1420 eh = (uint16_t *) skb->data;
1421
1422 /* Sum up dest addr, src addr and protocol */
1423 ehsum = eh[0] + eh[1] + eh[2] + eh[3] + eh[4] + eh[5] + eh[6];
1424
1425 /* Fold ehsum. can't use csum_fold which negates also ... */
1426 ehsum = (ehsum & 0xffff) + (ehsum >> 16);
1427 ehsum = (ehsum & 0xffff) + (ehsum >> 16);
1428
1429 /* Skip IP header; it's sum is always zero and was
1430 already filled in by ip_output.c */
1431 csum = csum_tcpudp_nofold(ih->saddr, ih->daddr,
1432 ih->tot_len - (ih->ihl << 2),
1433 proto, 0xffff ^ ehsum);
1434
1435 csum = (csum & 0xffff) + (csum >> 16); /* Fold again */
1436 csum = (csum & 0xffff) + (csum >> 16);
1437
1438 csoff = ETH_HLEN + (ih->ihl << 2);
1439 if (proto == IPPROTO_UDP) {
1440 csoff += offsetof(struct udphdr, check);
1441 udp_hdr(skb)->check = csum;
1442 }
1443 if (proto == IPPROTO_TCP) {
1444 csoff += offsetof(struct tcphdr, check);
1445 tcp_hdr(skb)->check = csum;
1446 }
1447
1448 w0 = ETXD_DOCHECKSUM | (csoff << ETXD_CHKOFF_SHIFT);
1449 }
1450
1451 spin_lock_irq(&ip->ioc3_lock);
1452
1453 data = (unsigned long) skb->data;
1454 len = skb->len;
1455
1456 produce = ip->tx_pi;
1457 desc = &ip->txr[produce];
1458
1459 if (len <= 104) {
1460 /* Short packet, let's copy it directly into the ring. */
1461 skb_copy_from_linear_data(skb, desc->data, skb->len);
1462 if (len < ETH_ZLEN) {
1463 /* Very short packet, pad with zeros at the end. */
1464 memset(desc->data + len, 0, ETH_ZLEN - len);
1465 len = ETH_ZLEN;
1466 }
1467 desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_D0V | w0);
1468 desc->bufcnt = cpu_to_be32(len);
1469 } else if ((data ^ (data + len - 1)) & 0x4000) {
1470 unsigned long b2 = (data | 0x3fffUL) + 1UL;
1471 unsigned long s1 = b2 - data;
1472 unsigned long s2 = data + len - b2;
1473
1474 desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE |
1475 ETXD_B1V | ETXD_B2V | w0);
1476 desc->bufcnt = cpu_to_be32((s1 << ETXD_B1CNT_SHIFT) |
1477 (s2 << ETXD_B2CNT_SHIFT));
1478 desc->p1 = cpu_to_be64(ioc3_map(skb->data, 1));
1479 desc->p2 = cpu_to_be64(ioc3_map((void *) b2, 1));
1480 } else {
1481 /* Normal sized packet that doesn't cross a page boundary. */
1482 desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_B1V | w0);
1483 desc->bufcnt = cpu_to_be32(len << ETXD_B1CNT_SHIFT);
1484 desc->p1 = cpu_to_be64(ioc3_map(skb->data, 1));
1485 }
1486
1487 BARRIER();
1488
1489 ip->tx_skbs[produce] = skb; /* Remember skb */
1490 produce = (produce + 1) & 127;
1491 ip->tx_pi = produce;
1492 ioc3_w_etpir(produce << 7); /* Fire ... */
1493
1494 ip->txqlen++;
1495
1496 if (ip->txqlen >= 127)
1497 netif_stop_queue(dev);
1498
1499 spin_unlock_irq(&ip->ioc3_lock);
1500
1501 return NETDEV_TX_OK;
1502}
1503
1504static void ioc3_timeout(struct net_device *dev)
1505{
1506 struct ioc3_private *ip = netdev_priv(dev);
1507
1508 printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
1509
1510 spin_lock_irq(&ip->ioc3_lock);
1511
1512 ioc3_stop(ip);
1513 ioc3_init(dev);
1514 ioc3_mii_init(ip);
1515 ioc3_mii_start(ip);
1516
1517 spin_unlock_irq(&ip->ioc3_lock);
1518
1519 netif_wake_queue(dev);
1520}
1521
1522/*
1523 * Given a multicast ethernet address, this routine calculates the
1524 * address's bit index in the logical address filter mask
1525 */
1526
1527static inline unsigned int ioc3_hash(const unsigned char *addr)
1528{
1529 unsigned int temp = 0;
1530 u32 crc;
1531 int bits;
1532
1533 crc = ether_crc_le(ETH_ALEN, addr);
1534
1535 crc &= 0x3f; /* bit reverse lowest 6 bits for hash index */
1536 for (bits = 6; --bits >= 0; ) {
1537 temp <<= 1;
1538 temp |= (crc & 0x1);
1539 crc >>= 1;
1540 }
1541
1542 return temp;
1543}
1544
1545static void ioc3_get_drvinfo (struct net_device *dev,
1546 struct ethtool_drvinfo *info)
1547{
1548 struct ioc3_private *ip = netdev_priv(dev);
1549
1550 strlcpy(info->driver, IOC3_NAME, sizeof(info->driver));
1551 strlcpy(info->version, IOC3_VERSION, sizeof(info->version));
1552 strlcpy(info->bus_info, pci_name(ip->pdev), sizeof(info->bus_info));
1553}
1554
1555static int ioc3_get_link_ksettings(struct net_device *dev,
1556 struct ethtool_link_ksettings *cmd)
1557{
1558 struct ioc3_private *ip = netdev_priv(dev);
1559
1560 spin_lock_irq(&ip->ioc3_lock);
1561 mii_ethtool_get_link_ksettings(&ip->mii, cmd);
1562 spin_unlock_irq(&ip->ioc3_lock);
1563
1564 return 0;
1565}
1566
1567static int ioc3_set_link_ksettings(struct net_device *dev,
1568 const struct ethtool_link_ksettings *cmd)
1569{
1570 struct ioc3_private *ip = netdev_priv(dev);
1571 int rc;
1572
1573 spin_lock_irq(&ip->ioc3_lock);
1574 rc = mii_ethtool_set_link_ksettings(&ip->mii, cmd);
1575 spin_unlock_irq(&ip->ioc3_lock);
1576
1577 return rc;
1578}
1579
1580static int ioc3_nway_reset(struct net_device *dev)
1581{
1582 struct ioc3_private *ip = netdev_priv(dev);
1583 int rc;
1584
1585 spin_lock_irq(&ip->ioc3_lock);
1586 rc = mii_nway_restart(&ip->mii);
1587 spin_unlock_irq(&ip->ioc3_lock);
1588
1589 return rc;
1590}
1591
1592static u32 ioc3_get_link(struct net_device *dev)
1593{
1594 struct ioc3_private *ip = netdev_priv(dev);
1595 int rc;
1596
1597 spin_lock_irq(&ip->ioc3_lock);
1598 rc = mii_link_ok(&ip->mii);
1599 spin_unlock_irq(&ip->ioc3_lock);
1600
1601 return rc;
1602}
1603
1604static const struct ethtool_ops ioc3_ethtool_ops = {
1605 .get_drvinfo = ioc3_get_drvinfo,
1606 .nway_reset = ioc3_nway_reset,
1607 .get_link = ioc3_get_link,
1608 .get_link_ksettings = ioc3_get_link_ksettings,
1609 .set_link_ksettings = ioc3_set_link_ksettings,
1610};
1611
1612static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1613{
1614 struct ioc3_private *ip = netdev_priv(dev);
1615 int rc;
1616
1617 spin_lock_irq(&ip->ioc3_lock);
1618 rc = generic_mii_ioctl(&ip->mii, if_mii(rq), cmd, NULL);
1619 spin_unlock_irq(&ip->ioc3_lock);
1620
1621 return rc;
1622}
1623
1624static void ioc3_set_multicast_list(struct net_device *dev)
1625{
1626 struct netdev_hw_addr *ha;
1627 struct ioc3_private *ip = netdev_priv(dev);
1628 struct ioc3 *ioc3 = ip->regs;
1629 u64 ehar = 0;
1630
1631 netif_stop_queue(dev); /* Lock out others. */
1632
1633 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1634 ip->emcr |= EMCR_PROMISC;
1635 ioc3_w_emcr(ip->emcr);
1636 (void) ioc3_r_emcr();
1637 } else {
1638 ip->emcr &= ~EMCR_PROMISC;
1639 ioc3_w_emcr(ip->emcr); /* Clear promiscuous. */
1640 (void) ioc3_r_emcr();
1641
1642 if ((dev->flags & IFF_ALLMULTI) ||
1643 (netdev_mc_count(dev) > 64)) {
1644 /* Too many for hashing to make sense or we want all
1645 multicast packets anyway, so skip computing all the
1646 hashes and just accept all packets. */
1647 ip->ehar_h = 0xffffffff;
1648 ip->ehar_l = 0xffffffff;
1649 } else {
1650 netdev_for_each_mc_addr(ha, dev) {
1651 ehar |= (1UL << ioc3_hash(ha->addr));
1652 }
1653 ip->ehar_h = ehar >> 32;
1654 ip->ehar_l = ehar & 0xffffffff;
1655 }
1656 ioc3_w_ehar_h(ip->ehar_h);
1657 ioc3_w_ehar_l(ip->ehar_l);
1658 }
1659
1660 netif_wake_queue(dev); /* Let us get going again. */
1661}
1662
1663module_pci_driver(ioc3_driver);
1664MODULE_AUTHOR("Ralf Baechle <ralf@linux-mips.org>");
1665MODULE_DESCRIPTION("SGI IOC3 Ethernet driver");
1666MODULE_LICENSE("GPL");