Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Driver for SGI's IOC3 based Ethernet cards as found in the PCI card.
 
 
 
 
   3 *
   4 * Copyright (C) 1999, 2000, 01, 03, 06 Ralf Baechle
   5 * Copyright (C) 1995, 1999, 2000, 2001 by Silicon Graphics, Inc.
   6 *
   7 * References:
   8 *  o IOC3 ASIC specification 4.51, 1996-04-18
   9 *  o IEEE 802.3 specification, 2000 edition
  10 *  o DP38840A Specification, National Semiconductor, March 1997
  11 *
  12 * To do:
  13 *
 
 
  14 *  o Use prefetching for large packets.  What is a good lower limit for
  15 *    prefetching?
 
  16 *  o Use hardware checksums.
 
  17 *  o Which PHYs might possibly be attached to the IOC3 in real live,
  18 *    which workarounds are required for them?  Do we ever have Lucent's?
  19 *  o For the 2.5 branch kill the mii-tool ioctls.
  20 */
  21
  22#define IOC3_NAME	"ioc3-eth"
  23#define IOC3_VERSION	"2.6.3-4"
  24
  25#include <linux/delay.h>
  26#include <linux/kernel.h>
  27#include <linux/mm.h>
  28#include <linux/errno.h>
  29#include <linux/module.h>
  30#include <linux/init.h>
  31#include <linux/crc16.h>
  32#include <linux/crc32.h>
  33#include <linux/mii.h>
  34#include <linux/in.h>
  35#include <linux/io.h>
  36#include <linux/ip.h>
  37#include <linux/tcp.h>
  38#include <linux/udp.h>
 
  39#include <linux/gfp.h>
 
 
 
 
 
 
 
  40#include <linux/netdevice.h>
  41#include <linux/etherdevice.h>
  42#include <linux/ethtool.h>
  43#include <linux/skbuff.h>
  44#include <linux/dma-mapping.h>
  45#include <linux/platform_device.h>
  46#include <linux/nvmem-consumer.h>
  47
  48#include <net/ip.h>
  49
 
 
 
 
 
  50#include <asm/sn/ioc3.h>
  51#include <asm/pci/bridge.h>
  52
  53#define CRC16_INIT	0
  54#define CRC16_VALID	0xb001
  55
  56/* Number of RX buffers.  This is tunable in the range of 16 <= x < 512.
  57 * The value must be a power of two.
  58 */
  59#define RX_BUFFS		64
  60#define RX_RING_ENTRIES		512		/* fixed in hardware */
  61#define RX_RING_MASK		(RX_RING_ENTRIES - 1)
  62#define RX_RING_SIZE		(RX_RING_ENTRIES * sizeof(u64))
  63
  64/* 128 TX buffers (not tunable) */
  65#define TX_RING_ENTRIES		128
  66#define TX_RING_MASK		(TX_RING_ENTRIES - 1)
  67#define TX_RING_SIZE		(TX_RING_ENTRIES * sizeof(struct ioc3_etxd))
  68
  69/* IOC3 does dma transfers in 128 byte blocks */
  70#define IOC3_DMA_XFER_LEN	128UL
  71
  72/* Every RX buffer starts with 8 byte descriptor data */
  73#define RX_OFFSET		(sizeof(struct ioc3_erxbuf) + NET_IP_ALIGN)
  74#define RX_BUF_SIZE		(13 * IOC3_DMA_XFER_LEN)
  75
  76#define ETCSR_FD   ((21 << ETCSR_IPGR2_SHIFT) | (21 << ETCSR_IPGR1_SHIFT) | 21)
  77#define ETCSR_HD   ((17 << ETCSR_IPGR2_SHIFT) | (11 << ETCSR_IPGR1_SHIFT) | 21)
  78
  79/* Private per NIC data of the driver.  */
  80struct ioc3_private {
  81	struct ioc3_ethregs *regs;
  82	struct device *dma_dev;
  83	u32 *ssram;
  84	unsigned long *rxr;		/* pointer to receiver ring */
  85	void *tx_ring;
  86	struct ioc3_etxd *txr;
  87	dma_addr_t rxr_dma;
  88	dma_addr_t txr_dma;
  89	struct sk_buff *rx_skbs[RX_RING_ENTRIES];
  90	struct sk_buff *tx_skbs[TX_RING_ENTRIES];
  91	int rx_ci;			/* RX consumer index */
  92	int rx_pi;			/* RX producer index */
  93	int tx_ci;			/* TX consumer index */
  94	int tx_pi;			/* TX producer index */
  95	int txqlen;
  96	u32 emcr, ehar_h, ehar_l;
  97	spinlock_t ioc3_lock;
  98	struct mii_if_info mii;
  99
 
 
 
 100	/* Members used by autonegotiation  */
 101	struct timer_list ioc3_timer;
 102};
 103
 104static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 105static void ioc3_set_multicast_list(struct net_device *dev);
 106static netdev_tx_t ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev);
 107static void ioc3_timeout(struct net_device *dev, unsigned int txqueue);
 108static inline unsigned int ioc3_hash(const unsigned char *addr);
 109static void ioc3_start(struct ioc3_private *ip);
 110static inline void ioc3_stop(struct ioc3_private *ip);
 111static void ioc3_init(struct net_device *dev);
 112static int ioc3_alloc_rx_bufs(struct net_device *dev);
 113static void ioc3_free_rx_bufs(struct ioc3_private *ip);
 114static inline void ioc3_clean_tx_ring(struct ioc3_private *ip);
 115
 
 116static const struct ethtool_ops ioc3_ethtool_ops;
 117
 
 
 
 
 118static inline unsigned long aligned_rx_skb_addr(unsigned long addr)
 119{
 120	return (~addr + 1) & (IOC3_DMA_XFER_LEN - 1UL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 121}
 122
 123static inline int ioc3_alloc_skb(struct ioc3_private *ip, struct sk_buff **skb,
 124				 struct ioc3_erxbuf **rxb, dma_addr_t *rxb_dma)
 125{
 126	struct sk_buff *new_skb;
 127	dma_addr_t d;
 128	int offset;
 129
 130	new_skb = alloc_skb(RX_BUF_SIZE + IOC3_DMA_XFER_LEN - 1, GFP_ATOMIC);
 131	if (!new_skb)
 132		return -ENOMEM;
 
 
 
 133
 134	/* ensure buffer is aligned to IOC3_DMA_XFER_LEN */
 135	offset = aligned_rx_skb_addr((unsigned long)new_skb->data);
 136	if (offset)
 137		skb_reserve(new_skb, offset);
 138
 139	d = dma_map_single(ip->dma_dev, new_skb->data,
 140			   RX_BUF_SIZE, DMA_FROM_DEVICE);
 
 141
 142	if (dma_mapping_error(ip->dma_dev, d)) {
 143		dev_kfree_skb_any(new_skb);
 144		return -ENOMEM;
 145	}
 146	*rxb_dma = d;
 147	*rxb = (struct ioc3_erxbuf *)new_skb->data;
 148	skb_reserve(new_skb, RX_OFFSET);
 149	*skb = new_skb;
 150
 151	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 152}
 153
 154#ifdef CONFIG_PCI_XTALK_BRIDGE
 155static inline unsigned long ioc3_map(dma_addr_t addr, unsigned long attr)
 
 
 156{
 157	return (addr & ~PCI64_ATTR_BAR) | attr;
 
 
 
 
 
 
 158}
 159
 160#define ERBAR_VAL	(ERBAR_BARRIER_BIT << ERBAR_RXBARR_SHIFT)
 161#else
 162static inline unsigned long ioc3_map(dma_addr_t addr, unsigned long attr)
 
 163{
 164	return addr;
 
 
 
 
 
 
 
 165}
 166
 167#define ERBAR_VAL	0
 168#endif
 
 
 
 
 
 
 169
 170static int ioc3eth_nvmem_match(struct device *dev, const void *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 171{
 172	const char *name = dev_name(dev);
 173	const char *prefix = data;
 174	int prefix_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 175
 176	prefix_len = strlen(prefix);
 177	if (strlen(name) < (prefix_len + 3))
 178		return 0;
 179
 180	if (memcmp(prefix, name, prefix_len) != 0)
 181		return 0;
 
 
 
 
 
 
 
 
 
 
 
 182
 183	/* found nvmem device which is attached to our ioc3
 184	 * now check for one wire family code 09, 89 and 91
 185	 */
 186	if (memcmp(name + prefix_len, "09-", 3) == 0)
 187		return 1;
 188	if (memcmp(name + prefix_len, "89-", 3) == 0)
 189		return 1;
 190	if (memcmp(name + prefix_len, "91-", 3) == 0)
 191		return 1;
 192
 193	return 0;
 194}
 195
 196static int ioc3eth_get_mac_addr(struct resource *res, u8 mac_addr[6])
 
 
 
 
 197{
 198	struct nvmem_device *nvmem;
 199	char prefix[24];
 200	u8 prom[16];
 201	int ret;
 202	int i;
 203
 204	snprintf(prefix, sizeof(prefix), "ioc3-%012llx-",
 205		 res->start & ~0xffff);
 
 
 
 
 
 206
 207	nvmem = nvmem_device_find(prefix, ioc3eth_nvmem_match);
 208	if (IS_ERR(nvmem))
 209		return PTR_ERR(nvmem);
 210
 211	ret = nvmem_device_read(nvmem, 0, 16, prom);
 212	nvmem_device_put(nvmem);
 213	if (ret < 0)
 214		return ret;
 215
 216	/* check, if content is valid */
 217	if (prom[0] != 0x0a ||
 218	    crc16(CRC16_INIT, prom, 13) != CRC16_VALID)
 219		return -EINVAL;
 220
 221	for (i = 0; i < 6; i++)
 222		mac_addr[i] = prom[10 - i];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 223
 224	return 0;
 225}
 226
 227static void __ioc3_set_mac_address(struct net_device *dev)
 228{
 229	struct ioc3_private *ip = netdev_priv(dev);
 
 230
 231	writel((dev->dev_addr[5] <<  8) |
 232	       dev->dev_addr[4],
 233	       &ip->regs->emar_h);
 234	writel((dev->dev_addr[3] << 24) |
 235	       (dev->dev_addr[2] << 16) |
 236	       (dev->dev_addr[1] <<  8) |
 237	       dev->dev_addr[0],
 238	       &ip->regs->emar_l);
 239}
 240
 241static int ioc3_set_mac_address(struct net_device *dev, void *addr)
 242{
 243	struct ioc3_private *ip = netdev_priv(dev);
 244	struct sockaddr *sa = addr;
 245
 246	eth_hw_addr_set(dev, sa->sa_data);
 247
 248	spin_lock_irq(&ip->ioc3_lock);
 249	__ioc3_set_mac_address(dev);
 250	spin_unlock_irq(&ip->ioc3_lock);
 251
 252	return 0;
 253}
 254
 255/* Caller must hold the ioc3_lock ever for MII readers.  This is also
 
 256 * used to protect the transmitter side but it's low contention.
 257 */
 258static int ioc3_mdio_read(struct net_device *dev, int phy, int reg)
 259{
 260	struct ioc3_private *ip = netdev_priv(dev);
 261	struct ioc3_ethregs *regs = ip->regs;
 262
 263	while (readl(&regs->micr) & MICR_BUSY)
 264		;
 265	writel((phy << MICR_PHYADDR_SHIFT) | reg | MICR_READTRIG,
 266	       &regs->micr);
 267	while (readl(&regs->micr) & MICR_BUSY)
 268		;
 269
 270	return readl(&regs->midr_r) & MIDR_DATA_MASK;
 271}
 272
 273static void ioc3_mdio_write(struct net_device *dev, int phy, int reg, int data)
 274{
 275	struct ioc3_private *ip = netdev_priv(dev);
 276	struct ioc3_ethregs *regs = ip->regs;
 277
 278	while (readl(&regs->micr) & MICR_BUSY)
 279		;
 280	writel(data, &regs->midr_w);
 281	writel((phy << MICR_PHYADDR_SHIFT) | reg, &regs->micr);
 282	while (readl(&regs->micr) & MICR_BUSY)
 283		;
 284}
 285
 286static int ioc3_mii_init(struct ioc3_private *ip);
 287
 288static struct net_device_stats *ioc3_get_stats(struct net_device *dev)
 289{
 290	struct ioc3_private *ip = netdev_priv(dev);
 291	struct ioc3_ethregs *regs = ip->regs;
 292
 293	dev->stats.collisions += readl(&regs->etcdc) & ETCDC_COLLCNT_MASK;
 294	return &dev->stats;
 295}
 296
 297static void ioc3_tcpudp_checksum(struct sk_buff *skb, u32 hwsum, int len)
 298{
 299	struct ethhdr *eh = eth_hdr(skb);
 
 300	unsigned int proto;
 301	unsigned char *cp;
 302	struct iphdr *ih;
 303	u32 csum, ehsum;
 304	u16 *ew;
 305
 306	/* Did hardware handle the checksum at all?  The cases we can handle
 
 307	 * are:
 308	 *
 309	 * - TCP and UDP checksums of IPv4 only.
 310	 * - IPv6 would be doable but we keep that for later ...
 311	 * - Only unfragmented packets.  Did somebody already tell you
 312	 *   fragmentation is evil?
 313	 * - don't care about packet size.  Worst case when processing a
 314	 *   malformed packet we'll try to access the packet at ip header +
 315	 *   64 bytes which is still inside the skb.  Even in the unlikely
 316	 *   case where the checksum is right the higher layers will still
 317	 *   drop the packet as appropriate.
 318	 */
 319	if (eh->h_proto != htons(ETH_P_IP))
 320		return;
 321
 322	ih = (struct iphdr *)((char *)eh + ETH_HLEN);
 323	if (ip_is_fragment(ih))
 324		return;
 325
 326	proto = ih->protocol;
 327	if (proto != IPPROTO_TCP && proto != IPPROTO_UDP)
 328		return;
 329
 330	/* Same as tx - compute csum of pseudo header  */
 331	csum = hwsum +
 332	       (ih->tot_len - (ih->ihl << 2)) +
 333	       htons((u16)ih->protocol) +
 334	       (ih->saddr >> 16) + (ih->saddr & 0xffff) +
 335	       (ih->daddr >> 16) + (ih->daddr & 0xffff);
 336
 337	/* Sum up ethernet dest addr, src addr and protocol  */
 338	ew = (u16 *)eh;
 339	ehsum = ew[0] + ew[1] + ew[2] + ew[3] + ew[4] + ew[5] + ew[6];
 340
 341	ehsum = (ehsum & 0xffff) + (ehsum >> 16);
 342	ehsum = (ehsum & 0xffff) + (ehsum >> 16);
 343
 344	csum += 0xffff ^ ehsum;
 345
 346	/* In the next step we also subtract the 1's complement
 347	 * checksum of the trailing ethernet CRC.
 348	 */
 349	cp = (char *)eh + len;	/* points at trailing CRC */
 350	if (len & 1) {
 351		csum += 0xffff ^ (u16)((cp[1] << 8) | cp[0]);
 352		csum += 0xffff ^ (u16)((cp[3] << 8) | cp[2]);
 353	} else {
 354		csum += 0xffff ^ (u16)((cp[0] << 8) | cp[1]);
 355		csum += 0xffff ^ (u16)((cp[2] << 8) | cp[3]);
 356	}
 357
 358	csum = (csum & 0xffff) + (csum >> 16);
 359	csum = (csum & 0xffff) + (csum >> 16);
 360
 361	if (csum == 0xffff)
 362		skb->ip_summed = CHECKSUM_UNNECESSARY;
 363}
 364
 365static inline void ioc3_rx(struct net_device *dev)
 366{
 367	struct ioc3_private *ip = netdev_priv(dev);
 368	struct sk_buff *skb, *new_skb;
 
 369	int rx_entry, n_entry, len;
 370	struct ioc3_erxbuf *rxb;
 371	unsigned long *rxr;
 372	dma_addr_t d;
 373	u32 w0, err;
 374
 375	rxr = ip->rxr;		/* Ring base */
 376	rx_entry = ip->rx_ci;				/* RX consume index */
 377	n_entry = ip->rx_pi;
 378
 379	skb = ip->rx_skbs[rx_entry];
 380	rxb = (struct ioc3_erxbuf *)(skb->data - RX_OFFSET);
 381	w0 = be32_to_cpu(rxb->w0);
 382
 383	while (w0 & ERXBUF_V) {
 384		err = be32_to_cpu(rxb->err);		/* It's valid ...  */
 385		if (err & ERXBUF_GOODPKT) {
 386			len = ((w0 >> ERXBUF_BYTECNT_SHIFT) & 0x7ff) - 4;
 387			skb_put(skb, len);
 388			skb->protocol = eth_type_trans(skb, dev);
 389
 390			if (ioc3_alloc_skb(ip, &new_skb, &rxb, &d)) {
 
 391				/* Ouch, drop packet and just recycle packet
 392				 * to keep the ring filled.
 393				 */
 394				dev->stats.rx_dropped++;
 395				new_skb = skb;
 396				d = rxr[rx_entry];
 397				goto next;
 398			}
 399
 400			if (likely(dev->features & NETIF_F_RXCSUM))
 401				ioc3_tcpudp_checksum(skb,
 402						     w0 & ERXBUF_IPCKSUM_MASK,
 403						     len);
 404
 405			dma_unmap_single(ip->dma_dev, rxr[rx_entry],
 406					 RX_BUF_SIZE, DMA_FROM_DEVICE);
 407
 408			netif_rx(skb);
 409
 410			ip->rx_skbs[rx_entry] = NULL;	/* Poison  */
 411
 
 
 
 
 
 412			dev->stats.rx_packets++;		/* Statistics */
 413			dev->stats.rx_bytes += len;
 414		} else {
 415			/* The frame is invalid and the skb never
 416			 * reached the network layer so we can just
 417			 * recycle it.
 418			 */
 419			new_skb = skb;
 420			d = rxr[rx_entry];
 421			dev->stats.rx_errors++;
 422		}
 423		if (err & ERXBUF_CRCERR)	/* Statistics */
 424			dev->stats.rx_crc_errors++;
 425		if (err & ERXBUF_FRAMERR)
 426			dev->stats.rx_frame_errors++;
 427
 428next:
 429		ip->rx_skbs[n_entry] = new_skb;
 430		rxr[n_entry] = cpu_to_be64(ioc3_map(d, PCI64_ATTR_BAR));
 431		rxb->w0 = 0;				/* Clear valid flag */
 432		n_entry = (n_entry + 1) & RX_RING_MASK;	/* Update erpir */
 433
 434		/* Now go on to the next ring entry.  */
 435		rx_entry = (rx_entry + 1) & RX_RING_MASK;
 436		skb = ip->rx_skbs[rx_entry];
 437		rxb = (struct ioc3_erxbuf *)(skb->data - RX_OFFSET);
 438		w0 = be32_to_cpu(rxb->w0);
 439	}
 440	writel((n_entry << 3) | ERPIR_ARM, &ip->regs->erpir);
 441	ip->rx_pi = n_entry;
 442	ip->rx_ci = rx_entry;
 443}
 444
 445static inline void ioc3_tx(struct net_device *dev)
 446{
 447	struct ioc3_private *ip = netdev_priv(dev);
 448	struct ioc3_ethregs *regs = ip->regs;
 449	unsigned long packets, bytes;
 
 450	int tx_entry, o_entry;
 451	struct sk_buff *skb;
 452	u32 etcir;
 453
 454	spin_lock(&ip->ioc3_lock);
 455	etcir = readl(&regs->etcir);
 456
 457	tx_entry = (etcir >> 7) & TX_RING_MASK;
 458	o_entry = ip->tx_ci;
 459	packets = 0;
 460	bytes = 0;
 461
 462	while (o_entry != tx_entry) {
 463		packets++;
 464		skb = ip->tx_skbs[o_entry];
 465		bytes += skb->len;
 466		dev_consume_skb_irq(skb);
 467		ip->tx_skbs[o_entry] = NULL;
 468
 469		o_entry = (o_entry + 1) & TX_RING_MASK;	/* Next */
 470
 471		etcir = readl(&regs->etcir);		/* More pkts sent?  */
 472		tx_entry = (etcir >> 7) & TX_RING_MASK;
 473	}
 474
 475	dev->stats.tx_packets += packets;
 476	dev->stats.tx_bytes += bytes;
 477	ip->txqlen -= packets;
 478
 479	if (netif_queue_stopped(dev) && ip->txqlen < TX_RING_ENTRIES)
 480		netif_wake_queue(dev);
 481
 482	ip->tx_ci = o_entry;
 483	spin_unlock(&ip->ioc3_lock);
 484}
 485
 486/* Deal with fatal IOC3 errors.  This condition might be caused by a hard or
 
 487 * software problems, so we should try to recover
 488 * more gracefully if this ever happens.  In theory we might be flooded
 489 * with such error interrupts if something really goes wrong, so we might
 490 * also consider to take the interface down.
 491 */
 492static void ioc3_error(struct net_device *dev, u32 eisr)
 493{
 494	struct ioc3_private *ip = netdev_priv(dev);
 
 495
 496	spin_lock(&ip->ioc3_lock);
 497
 498	if (eisr & EISR_RXOFLO)
 499		net_err_ratelimited("%s: RX overflow.\n", dev->name);
 500	if (eisr & EISR_RXBUFOFLO)
 501		net_err_ratelimited("%s: RX buffer overflow.\n", dev->name);
 502	if (eisr & EISR_RXMEMERR)
 503		net_err_ratelimited("%s: RX PCI error.\n", dev->name);
 504	if (eisr & EISR_RXPARERR)
 505		net_err_ratelimited("%s: RX SSRAM parity error.\n", dev->name);
 506	if (eisr & EISR_TXBUFUFLO)
 507		net_err_ratelimited("%s: TX buffer underflow.\n", dev->name);
 508	if (eisr & EISR_TXMEMERR)
 509		net_err_ratelimited("%s: TX PCI error.\n", dev->name);
 510
 511	ioc3_stop(ip);
 512	ioc3_free_rx_bufs(ip);
 513	ioc3_clean_tx_ring(ip);
 514
 515	ioc3_init(dev);
 516	if (ioc3_alloc_rx_bufs(dev)) {
 517		netdev_err(dev, "%s: rx buffer allocation failed\n", __func__);
 518		spin_unlock(&ip->ioc3_lock);
 519		return;
 520	}
 521	ioc3_start(ip);
 522	ioc3_mii_init(ip);
 523
 524	netif_wake_queue(dev);
 525
 526	spin_unlock(&ip->ioc3_lock);
 527}
 528
 529/* The interrupt handler does all of the Rx thread work and cleans up
 530 * after the Tx thread.
 531 */
 532static irqreturn_t ioc3_interrupt(int irq, void *dev_id)
 533{
 534	struct ioc3_private *ip = netdev_priv(dev_id);
 535	struct ioc3_ethregs *regs = ip->regs;
 
 
 
 
 536	u32 eisr;
 537
 538	eisr = readl(&regs->eisr);
 539	writel(eisr, &regs->eisr);
 540	readl(&regs->eisr);				/* Flush */
 
 541
 542	if (eisr & (EISR_RXOFLO | EISR_RXBUFOFLO | EISR_RXMEMERR |
 543		    EISR_RXPARERR | EISR_TXBUFUFLO | EISR_TXMEMERR))
 544		ioc3_error(dev_id, eisr);
 545	if (eisr & EISR_RXTIMERINT)
 546		ioc3_rx(dev_id);
 547	if (eisr & EISR_TXEXPLICIT)
 548		ioc3_tx(dev_id);
 549
 550	return IRQ_HANDLED;
 551}
 552
 553static inline void ioc3_setup_duplex(struct ioc3_private *ip)
 554{
 555	struct ioc3_ethregs *regs = ip->regs;
 556
 557	spin_lock_irq(&ip->ioc3_lock);
 558
 559	if (ip->mii.full_duplex) {
 560		writel(ETCSR_FD, &regs->etcsr);
 561		ip->emcr |= EMCR_DUPLEX;
 562	} else {
 563		writel(ETCSR_HD, &regs->etcsr);
 564		ip->emcr &= ~EMCR_DUPLEX;
 565	}
 566	writel(ip->emcr, &regs->emcr);
 567
 568	spin_unlock_irq(&ip->ioc3_lock);
 569}
 570
 571static void ioc3_timer(struct timer_list *t)
 572{
 573	struct ioc3_private *ip = from_timer(ip, t, ioc3_timer);
 574
 575	/* Print the link status if it has changed */
 576	mii_check_media(&ip->mii, 1, 0);
 577	ioc3_setup_duplex(ip);
 578
 579	ip->ioc3_timer.expires = jiffies + ((12 * HZ) / 10); /* 1.2s */
 580	add_timer(&ip->ioc3_timer);
 581}
 582
 583/* Try to find a PHY.  There is no apparent relation between the MII addresses
 
 584 * in the SGI documentation and what we find in reality, so we simply probe
 585 * for the PHY.
 
 
 
 586 */
 587static int ioc3_mii_init(struct ioc3_private *ip)
 588{
 
 
 589	u16 word;
 590	int i;
 591
 592	for (i = 0; i < 32; i++) {
 593		word = ioc3_mdio_read(ip->mii.dev, i, MII_PHYSID1);
 594
 595		if (word != 0xffff && word != 0x0000) {
 596			ip->mii.phy_id = i;
 597			return 0;
 
 
 
 
 
 
 
 
 
 
 598		}
 599	}
 600	ip->mii.phy_id = -1;
 601	return -ENODEV;
 
 
 
 602}
 603
 604static void ioc3_mii_start(struct ioc3_private *ip)
 605{
 606	ip->ioc3_timer.expires = jiffies + (12 * HZ) / 10;  /* 1.2 sec. */
 607	add_timer(&ip->ioc3_timer);
 608}
 609
 610static inline void ioc3_tx_unmap(struct ioc3_private *ip, int entry)
 611{
 612	struct ioc3_etxd *desc;
 613	u32 cmd, bufcnt, len;
 614
 615	desc = &ip->txr[entry];
 616	cmd = be32_to_cpu(desc->cmd);
 617	bufcnt = be32_to_cpu(desc->bufcnt);
 618	if (cmd & ETXD_B1V) {
 619		len = (bufcnt & ETXD_B1CNT_MASK) >> ETXD_B1CNT_SHIFT;
 620		dma_unmap_single(ip->dma_dev, be64_to_cpu(desc->p1),
 621				 len, DMA_TO_DEVICE);
 622	}
 623	if (cmd & ETXD_B2V) {
 624		len = (bufcnt & ETXD_B2CNT_MASK) >> ETXD_B2CNT_SHIFT;
 625		dma_unmap_single(ip->dma_dev, be64_to_cpu(desc->p2),
 626				 len, DMA_TO_DEVICE);
 627	}
 628}
 629
 630static inline void ioc3_clean_tx_ring(struct ioc3_private *ip)
 631{
 632	struct sk_buff *skb;
 633	int i;
 634
 635	for (i = 0; i < TX_RING_ENTRIES; i++) {
 636		skb = ip->tx_skbs[i];
 637		if (skb) {
 638			ioc3_tx_unmap(ip, i);
 639			ip->tx_skbs[i] = NULL;
 640			dev_kfree_skb_any(skb);
 641		}
 642		ip->txr[i].cmd = 0;
 643	}
 644	ip->tx_pi = 0;
 645	ip->tx_ci = 0;
 646}
 647
 648static void ioc3_free_rx_bufs(struct ioc3_private *ip)
 649{
 650	int rx_entry, n_entry;
 651	struct sk_buff *skb;
 
 652
 653	n_entry = ip->rx_ci;
 654	rx_entry = ip->rx_pi;
 
 
 
 
 
 
 
 
 
 
 
 
 655
 656	while (n_entry != rx_entry) {
 657		skb = ip->rx_skbs[n_entry];
 658		if (skb) {
 659			dma_unmap_single(ip->dma_dev,
 660					 be64_to_cpu(ip->rxr[n_entry]),
 661					 RX_BUF_SIZE, DMA_FROM_DEVICE);
 662			dev_kfree_skb_any(skb);
 663		}
 664		n_entry = (n_entry + 1) & RX_RING_MASK;
 
 665	}
 666}
 667
 668static int ioc3_alloc_rx_bufs(struct net_device *dev)
 669{
 670	struct ioc3_private *ip = netdev_priv(dev);
 671	struct ioc3_erxbuf *rxb;
 672	dma_addr_t d;
 673	int i;
 674
 675	/* Now the rx buffers.  The RX ring may be larger but
 676	 * we only allocate 16 buffers for now.  Need to tune
 677	 * this for performance and memory later.
 678	 */
 679	for (i = 0; i < RX_BUFFS; i++) {
 680		if (ioc3_alloc_skb(ip, &ip->rx_skbs[i], &rxb, &d))
 681			return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 682
 683		rxb->w0 = 0;	/* Clear valid flag */
 684		ip->rxr[i] = cpu_to_be64(ioc3_map(d, PCI64_ATTR_BAR));
 
 
 
 
 
 
 685	}
 686	ip->rx_ci = 0;
 687	ip->rx_pi = RX_BUFFS;
 688
 689	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 690}
 691
 692static inline void ioc3_ssram_disc(struct ioc3_private *ip)
 693{
 694	struct ioc3_ethregs *regs = ip->regs;
 695	u32 *ssram0 = &ip->ssram[0x0000];
 696	u32 *ssram1 = &ip->ssram[0x4000];
 697	u32 pattern = 0x5555;
 698
 699	/* Assume the larger size SSRAM and enable parity checking */
 700	writel(readl(&regs->emcr) | (EMCR_BUFSIZ | EMCR_RAMPAR), &regs->emcr);
 701	readl(&regs->emcr); /* Flush */
 702
 703	writel(pattern, ssram0);
 704	writel(~pattern & IOC3_SSRAM_DM, ssram1);
 705
 706	if ((readl(ssram0) & IOC3_SSRAM_DM) != pattern ||
 707	    (readl(ssram1) & IOC3_SSRAM_DM) != (~pattern & IOC3_SSRAM_DM)) {
 708		/* set ssram size to 64 KB */
 709		ip->emcr |= EMCR_RAMPAR;
 710		writel(readl(&regs->emcr) & ~EMCR_BUFSIZ, &regs->emcr);
 711	} else {
 712		ip->emcr |= EMCR_BUFSIZ | EMCR_RAMPAR;
 713	}
 714}
 715
 716static void ioc3_init(struct net_device *dev)
 717{
 718	struct ioc3_private *ip = netdev_priv(dev);
 719	struct ioc3_ethregs *regs = ip->regs;
 720
 721	del_timer_sync(&ip->ioc3_timer);	/* Kill if running	*/
 722
 723	writel(EMCR_RST, &regs->emcr);		/* Reset		*/
 724	readl(&regs->emcr);			/* Flush WB		*/
 725	udelay(4);				/* Give it time ...	*/
 726	writel(0, &regs->emcr);
 727	readl(&regs->emcr);
 728
 729	/* Misc registers  */
 730	writel(ERBAR_VAL, &regs->erbar);
 731	readl(&regs->etcdc);			/* Clear on read */
 732	writel(15, &regs->ercsr);		/* RX low watermark  */
 733	writel(0, &regs->ertr);			/* Interrupt immediately */
 
 
 
 
 734	__ioc3_set_mac_address(dev);
 735	writel(ip->ehar_h, &regs->ehar_h);
 736	writel(ip->ehar_l, &regs->ehar_l);
 737	writel(42, &regs->ersr);		/* XXX should be random */
 738}
 739
 740static void ioc3_start(struct ioc3_private *ip)
 741{
 742	struct ioc3_ethregs *regs = ip->regs;
 743	unsigned long ring;
 744
 745	/* Now the rx ring base, consume & produce registers.  */
 746	ring = ioc3_map(ip->rxr_dma, PCI64_ATTR_PREC);
 747	writel(ring >> 32, &regs->erbr_h);
 748	writel(ring & 0xffffffff, &regs->erbr_l);
 749	writel(ip->rx_ci << 3, &regs->ercir);
 750	writel((ip->rx_pi << 3) | ERPIR_ARM, &regs->erpir);
 751
 752	ring = ioc3_map(ip->txr_dma, PCI64_ATTR_PREC);
 753
 754	ip->txqlen = 0;					/* nothing queued  */
 755
 756	/* Now the tx ring base, consume & produce registers.  */
 757	writel(ring >> 32, &regs->etbr_h);
 758	writel(ring & 0xffffffff, &regs->etbr_l);
 759	writel(ip->tx_pi << 7, &regs->etpir);
 760	writel(ip->tx_ci << 7, &regs->etcir);
 761	readl(&regs->etcir);				/* Flush */
 762
 763	ip->emcr |= ((RX_OFFSET / 2) << EMCR_RXOFF_SHIFT) | EMCR_TXDMAEN |
 764		    EMCR_TXEN | EMCR_RXDMAEN | EMCR_RXEN | EMCR_PADEN;
 765	writel(ip->emcr, &regs->emcr);
 766	writel(EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
 767	       EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
 768	       EISR_TXEXPLICIT | EISR_TXMEMERR, &regs->eier);
 769	readl(&regs->eier);
 770}
 771
 772static inline void ioc3_stop(struct ioc3_private *ip)
 773{
 774	struct ioc3_ethregs *regs = ip->regs;
 775
 776	writel(0, &regs->emcr);			/* Shutup */
 777	writel(0, &regs->eier);			/* Disable interrupts */
 778	readl(&regs->eier);			/* Flush */
 779}
 780
 781static int ioc3_open(struct net_device *dev)
 782{
 783	struct ioc3_private *ip = netdev_priv(dev);
 784
 
 
 
 
 
 
 785	ip->ehar_h = 0;
 786	ip->ehar_l = 0;
 787
 788	ioc3_init(dev);
 789	if (ioc3_alloc_rx_bufs(dev)) {
 790		netdev_err(dev, "%s: rx buffer allocation failed\n", __func__);
 791		return -ENOMEM;
 792	}
 793	ioc3_start(ip);
 794	ioc3_mii_start(ip);
 795
 796	netif_start_queue(dev);
 797	return 0;
 798}
 799
 800static int ioc3_close(struct net_device *dev)
 801{
 802	struct ioc3_private *ip = netdev_priv(dev);
 803
 804	del_timer_sync(&ip->ioc3_timer);
 805
 806	netif_stop_queue(dev);
 807
 808	ioc3_stop(ip);
 
 809
 810	ioc3_free_rx_bufs(ip);
 811	ioc3_clean_tx_ring(ip);
 812
 813	return 0;
 814}
 815
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 816static const struct net_device_ops ioc3_netdev_ops = {
 817	.ndo_open		= ioc3_open,
 818	.ndo_stop		= ioc3_close,
 819	.ndo_start_xmit		= ioc3_start_xmit,
 820	.ndo_tx_timeout		= ioc3_timeout,
 821	.ndo_get_stats		= ioc3_get_stats,
 822	.ndo_set_rx_mode	= ioc3_set_multicast_list,
 823	.ndo_eth_ioctl		= ioc3_ioctl,
 824	.ndo_validate_addr	= eth_validate_addr,
 825	.ndo_set_mac_address	= ioc3_set_mac_address,
 826};
 827
 828static int ioc3eth_probe(struct platform_device *pdev)
 829{
 830	u32 sw_physid1, sw_physid2, vendor, model, rev;
 
 831	struct ioc3_private *ip;
 832	struct net_device *dev;
 833	struct resource *regs;
 834	u8 mac_addr[6];
 835	int err;
 836
 837	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 838	if (!regs) {
 839		dev_err(&pdev->dev, "Invalid resource\n");
 840		return -EINVAL;
 841	}
 842	/* get mac addr from one wire prom */
 843	if (ioc3eth_get_mac_addr(regs, mac_addr))
 844		return -EPROBE_DEFER; /* not available yet */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 845
 846	dev = alloc_etherdev(sizeof(struct ioc3_private));
 847	if (!dev)
 848		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 849
 850	SET_NETDEV_DEV(dev, &pdev->dev);
 851
 852	ip = netdev_priv(dev);
 853	ip->dma_dev = pdev->dev.parent;
 854	ip->regs = devm_platform_ioremap_resource(pdev, 0);
 855	if (IS_ERR(ip->regs)) {
 856		err = PTR_ERR(ip->regs);
 857		goto out_free;
 858	}
 859
 860	ip->ssram = devm_platform_ioremap_resource(pdev, 1);
 861	if (IS_ERR(ip->ssram)) {
 862		err = PTR_ERR(ip->ssram);
 863		goto out_free;
 864	}
 865
 866	dev->irq = platform_get_irq(pdev, 0);
 867	if (dev->irq < 0) {
 868		err = dev->irq;
 869		goto out_free;
 
 
 
 
 870	}
 
 871
 872	if (devm_request_irq(&pdev->dev, dev->irq, ioc3_interrupt,
 873			     IRQF_SHARED, "ioc3-eth", dev)) {
 874		dev_err(&pdev->dev, "Can't get irq %d\n", dev->irq);
 875		err = -ENODEV;
 876		goto out_free;
 877	}
 878
 879	spin_lock_init(&ip->ioc3_lock);
 880	timer_setup(&ip->ioc3_timer, ioc3_timer, 0);
 881
 882	ioc3_stop(ip);
 883
 884	/* Allocate rx ring.  4kb = 512 entries, must be 4kb aligned */
 885	ip->rxr = dma_alloc_coherent(ip->dma_dev, RX_RING_SIZE, &ip->rxr_dma,
 886				     GFP_KERNEL);
 887	if (!ip->rxr) {
 888		pr_err("ioc3-eth: rx ring allocation failed\n");
 889		err = -ENOMEM;
 890		goto out_stop;
 891	}
 892
 893	/* Allocate tx rings.  16kb = 128 bufs, must be 16kb aligned  */
 894	ip->tx_ring = dma_alloc_coherent(ip->dma_dev, TX_RING_SIZE + SZ_16K - 1,
 895					 &ip->txr_dma, GFP_KERNEL);
 896	if (!ip->tx_ring) {
 897		pr_err("ioc3-eth: tx ring allocation failed\n");
 898		err = -ENOMEM;
 899		goto out_stop;
 900	}
 901	/* Align TX ring */
 902	ip->txr = PTR_ALIGN(ip->tx_ring, SZ_16K);
 903	ip->txr_dma = ALIGN(ip->txr_dma, SZ_16K);
 904
 905	ioc3_init(dev);
 906
 
 
 907	ip->mii.phy_id_mask = 0x1f;
 908	ip->mii.reg_num_mask = 0x1f;
 909	ip->mii.dev = dev;
 910	ip->mii.mdio_read = ioc3_mdio_read;
 911	ip->mii.mdio_write = ioc3_mdio_write;
 912
 913	ioc3_mii_init(ip);
 914
 915	if (ip->mii.phy_id == -1) {
 916		netdev_err(dev, "Didn't find a PHY, goodbye.\n");
 
 917		err = -ENODEV;
 918		goto out_stop;
 919	}
 920
 921	ioc3_mii_start(ip);
 922	ioc3_ssram_disc(ip);
 923	eth_hw_addr_set(dev, mac_addr);
 924
 925	/* The IOC3-specific entries in the device structure. */
 926	dev->watchdog_timeo	= 5 * HZ;
 927	dev->netdev_ops		= &ioc3_netdev_ops;
 928	dev->ethtool_ops	= &ioc3_ethtool_ops;
 929	dev->hw_features	= NETIF_F_IP_CSUM | NETIF_F_RXCSUM;
 930	dev->features		= NETIF_F_IP_CSUM | NETIF_F_HIGHDMA;
 931
 932	sw_physid1 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID1);
 933	sw_physid2 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID2);
 934
 935	err = register_netdev(dev);
 936	if (err)
 937		goto out_stop;
 938
 939	mii_check_media(&ip->mii, 1, 1);
 940	ioc3_setup_duplex(ip);
 941
 942	vendor = (sw_physid1 << 12) | (sw_physid2 >> 4);
 943	model  = (sw_physid2 >> 4) & 0x3f;
 944	rev    = sw_physid2 & 0xf;
 945	netdev_info(dev, "Using PHY %d, vendor 0x%x, model %d, rev %d.\n",
 946		    ip->mii.phy_id, vendor, model, rev);
 947	netdev_info(dev, "IOC3 SSRAM has %d kbyte.\n",
 948		    ip->emcr & EMCR_BUFSIZ ? 128 : 64);
 949
 950	return 0;
 951
 952out_stop:
 
 953	del_timer_sync(&ip->ioc3_timer);
 954	if (ip->rxr)
 955		dma_free_coherent(ip->dma_dev, RX_RING_SIZE, ip->rxr,
 956				  ip->rxr_dma);
 957	if (ip->tx_ring)
 958		dma_free_coherent(ip->dma_dev, TX_RING_SIZE + SZ_16K - 1, ip->tx_ring,
 959				  ip->txr_dma);
 960out_free:
 961	free_netdev(dev);
 
 
 
 
 
 
 962	return err;
 963}
 964
 965static void ioc3eth_remove(struct platform_device *pdev)
 966{
 967	struct net_device *dev = platform_get_drvdata(pdev);
 968	struct ioc3_private *ip = netdev_priv(dev);
 969
 970	dma_free_coherent(ip->dma_dev, RX_RING_SIZE, ip->rxr, ip->rxr_dma);
 971	dma_free_coherent(ip->dma_dev, TX_RING_SIZE + SZ_16K - 1, ip->tx_ring, ip->txr_dma);
 972
 973	unregister_netdev(dev);
 974	del_timer_sync(&ip->ioc3_timer);
 
 
 
 975	free_netdev(dev);
 
 
 
 
 976}
 977
 
 
 
 
 
 
 
 
 
 
 
 
 978
 979static netdev_tx_t ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev)
 980{
 981	struct ioc3_private *ip = netdev_priv(dev);
 982	struct ioc3_etxd *desc;
 983	unsigned long data;
 
 
 984	unsigned int len;
 
 
 985	int produce;
 986	u32 w0 = 0;
 987
 988	/* IOC3 has a fairly simple minded checksumming hardware which simply
 
 989	 * adds up the 1's complement checksum for the entire packet and
 990	 * inserts it at an offset which can be specified in the descriptor
 991	 * into the transmit packet.  This means we have to compensate for the
 992	 * MAC header which should not be summed and the TCP/UDP pseudo headers
 993	 * manually.
 994	 */
 995	if (skb->ip_summed == CHECKSUM_PARTIAL) {
 996		const struct iphdr *ih = ip_hdr(skb);
 997		const int proto = ntohs(ih->protocol);
 998		unsigned int csoff;
 999		u32 csum, ehsum;
1000		u16 *eh;
1001
1002		/* The MAC header.  skb->mac seem the logic approach
1003		 * to find the MAC header - except it's a NULL pointer ...
1004		 */
1005		eh = (u16 *)skb->data;
1006
1007		/* Sum up dest addr, src addr and protocol  */
1008		ehsum = eh[0] + eh[1] + eh[2] + eh[3] + eh[4] + eh[5] + eh[6];
1009
 
 
 
 
1010		/* Skip IP header; it's sum is always zero and was
1011		 * already filled in by ip_output.c
1012		 */
1013		csum = csum_tcpudp_nofold(ih->saddr, ih->daddr,
1014					  ih->tot_len - (ih->ihl << 2),
1015					  proto, csum_fold(ehsum));
1016
1017		csum = (csum & 0xffff) + (csum >> 16);	/* Fold again */
1018		csum = (csum & 0xffff) + (csum >> 16);
1019
1020		csoff = ETH_HLEN + (ih->ihl << 2);
1021		if (proto == IPPROTO_UDP) {
1022			csoff += offsetof(struct udphdr, check);
1023			udp_hdr(skb)->check = csum;
1024		}
1025		if (proto == IPPROTO_TCP) {
1026			csoff += offsetof(struct tcphdr, check);
1027			tcp_hdr(skb)->check = csum;
1028		}
1029
1030		w0 = ETXD_DOCHECKSUM | (csoff << ETXD_CHKOFF_SHIFT);
1031	}
1032
1033	spin_lock_irq(&ip->ioc3_lock);
1034
1035	data = (unsigned long)skb->data;
1036	len = skb->len;
1037
1038	produce = ip->tx_pi;
1039	desc = &ip->txr[produce];
1040
1041	if (len <= 104) {
1042		/* Short packet, let's copy it directly into the ring.  */
1043		skb_copy_from_linear_data(skb, desc->data, skb->len);
1044		if (len < ETH_ZLEN) {
1045			/* Very short packet, pad with zeros at the end. */
1046			memset(desc->data + len, 0, ETH_ZLEN - len);
1047			len = ETH_ZLEN;
1048		}
1049		desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_D0V | w0);
1050		desc->bufcnt = cpu_to_be32(len);
1051	} else if ((data ^ (data + len - 1)) & 0x4000) {
1052		unsigned long b2 = (data | 0x3fffUL) + 1UL;
1053		unsigned long s1 = b2 - data;
1054		unsigned long s2 = data + len - b2;
1055		dma_addr_t d1, d2;
1056
1057		desc->cmd    = cpu_to_be32(len | ETXD_INTWHENDONE |
1058					   ETXD_B1V | ETXD_B2V | w0);
1059		desc->bufcnt = cpu_to_be32((s1 << ETXD_B1CNT_SHIFT) |
1060					   (s2 << ETXD_B2CNT_SHIFT));
1061		d1 = dma_map_single(ip->dma_dev, skb->data, s1, DMA_TO_DEVICE);
1062		if (dma_mapping_error(ip->dma_dev, d1))
1063			goto drop_packet;
1064		d2 = dma_map_single(ip->dma_dev, (void *)b2, s1, DMA_TO_DEVICE);
1065		if (dma_mapping_error(ip->dma_dev, d2)) {
1066			dma_unmap_single(ip->dma_dev, d1, len, DMA_TO_DEVICE);
1067			goto drop_packet;
1068		}
1069		desc->p1     = cpu_to_be64(ioc3_map(d1, PCI64_ATTR_PREF));
1070		desc->p2     = cpu_to_be64(ioc3_map(d2, PCI64_ATTR_PREF));
1071	} else {
1072		dma_addr_t d;
1073
1074		/* Normal sized packet that doesn't cross a page boundary. */
1075		desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_B1V | w0);
1076		desc->bufcnt = cpu_to_be32(len << ETXD_B1CNT_SHIFT);
1077		d = dma_map_single(ip->dma_dev, skb->data, len, DMA_TO_DEVICE);
1078		if (dma_mapping_error(ip->dma_dev, d))
1079			goto drop_packet;
1080		desc->p1     = cpu_to_be64(ioc3_map(d, PCI64_ATTR_PREF));
1081	}
1082
1083	mb(); /* make sure all descriptor changes are visible */
1084
1085	ip->tx_skbs[produce] = skb;			/* Remember skb */
1086	produce = (produce + 1) & TX_RING_MASK;
1087	ip->tx_pi = produce;
1088	writel(produce << 7, &ip->regs->etpir);		/* Fire ... */
1089
1090	ip->txqlen++;
1091
1092	if (ip->txqlen >= (TX_RING_ENTRIES - 1))
1093		netif_stop_queue(dev);
1094
1095	spin_unlock_irq(&ip->ioc3_lock);
1096
1097	return NETDEV_TX_OK;
1098
1099drop_packet:
1100	dev_kfree_skb_any(skb);
1101	dev->stats.tx_dropped++;
1102
1103	spin_unlock_irq(&ip->ioc3_lock);
1104
1105	return NETDEV_TX_OK;
1106}
1107
1108static void ioc3_timeout(struct net_device *dev, unsigned int txqueue)
1109{
1110	struct ioc3_private *ip = netdev_priv(dev);
1111
1112	netdev_err(dev, "transmit timed out, resetting\n");
1113
1114	spin_lock_irq(&ip->ioc3_lock);
1115
1116	ioc3_stop(ip);
1117	ioc3_free_rx_bufs(ip);
1118	ioc3_clean_tx_ring(ip);
1119
1120	ioc3_init(dev);
1121	if (ioc3_alloc_rx_bufs(dev)) {
1122		netdev_err(dev, "%s: rx buffer allocation failed\n", __func__);
1123		spin_unlock_irq(&ip->ioc3_lock);
1124		return;
1125	}
1126	ioc3_start(ip);
1127	ioc3_mii_init(ip);
1128	ioc3_mii_start(ip);
1129
1130	spin_unlock_irq(&ip->ioc3_lock);
1131
1132	netif_wake_queue(dev);
1133}
1134
1135/* Given a multicast ethernet address, this routine calculates the
 
1136 * address's bit index in the logical address filter mask
1137 */
 
1138static inline unsigned int ioc3_hash(const unsigned char *addr)
1139{
1140	unsigned int temp = 0;
1141	int bits;
1142	u32 crc;
 
1143
1144	crc = ether_crc_le(ETH_ALEN, addr);
1145
1146	crc &= 0x3f;    /* bit reverse lowest 6 bits for hash index */
1147	for (bits = 6; --bits >= 0; ) {
1148		temp <<= 1;
1149		temp |= (crc & 0x1);
1150		crc >>= 1;
1151	}
1152
1153	return temp;
1154}
1155
1156static void ioc3_get_drvinfo(struct net_device *dev,
1157			     struct ethtool_drvinfo *info)
1158{
1159	strscpy(info->driver, IOC3_NAME, sizeof(info->driver));
1160	strscpy(info->version, IOC3_VERSION, sizeof(info->version));
1161	strscpy(info->bus_info, pci_name(to_pci_dev(dev->dev.parent)),
1162		sizeof(info->bus_info));
 
1163}
1164
1165static int ioc3_get_link_ksettings(struct net_device *dev,
1166				   struct ethtool_link_ksettings *cmd)
1167{
1168	struct ioc3_private *ip = netdev_priv(dev);
1169
1170	spin_lock_irq(&ip->ioc3_lock);
1171	mii_ethtool_get_link_ksettings(&ip->mii, cmd);
1172	spin_unlock_irq(&ip->ioc3_lock);
1173
1174	return 0;
1175}
1176
1177static int ioc3_set_link_ksettings(struct net_device *dev,
1178				   const struct ethtool_link_ksettings *cmd)
1179{
1180	struct ioc3_private *ip = netdev_priv(dev);
1181	int rc;
1182
1183	spin_lock_irq(&ip->ioc3_lock);
1184	rc = mii_ethtool_set_link_ksettings(&ip->mii, cmd);
1185	spin_unlock_irq(&ip->ioc3_lock);
1186
1187	return rc;
1188}
1189
1190static int ioc3_nway_reset(struct net_device *dev)
1191{
1192	struct ioc3_private *ip = netdev_priv(dev);
1193	int rc;
1194
1195	spin_lock_irq(&ip->ioc3_lock);
1196	rc = mii_nway_restart(&ip->mii);
1197	spin_unlock_irq(&ip->ioc3_lock);
1198
1199	return rc;
1200}
1201
1202static u32 ioc3_get_link(struct net_device *dev)
1203{
1204	struct ioc3_private *ip = netdev_priv(dev);
1205	int rc;
1206
1207	spin_lock_irq(&ip->ioc3_lock);
1208	rc = mii_link_ok(&ip->mii);
1209	spin_unlock_irq(&ip->ioc3_lock);
1210
1211	return rc;
1212}
1213
1214static const struct ethtool_ops ioc3_ethtool_ops = {
1215	.get_drvinfo		= ioc3_get_drvinfo,
1216	.nway_reset		= ioc3_nway_reset,
1217	.get_link		= ioc3_get_link,
1218	.get_link_ksettings	= ioc3_get_link_ksettings,
1219	.set_link_ksettings	= ioc3_set_link_ksettings,
1220};
1221
1222static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1223{
1224	struct ioc3_private *ip = netdev_priv(dev);
1225	int rc;
1226
1227	spin_lock_irq(&ip->ioc3_lock);
1228	rc = generic_mii_ioctl(&ip->mii, if_mii(rq), cmd, NULL);
1229	spin_unlock_irq(&ip->ioc3_lock);
1230
1231	return rc;
1232}
1233
1234static void ioc3_set_multicast_list(struct net_device *dev)
1235{
1236	struct ioc3_private *ip = netdev_priv(dev);
1237	struct ioc3_ethregs *regs = ip->regs;
1238	struct netdev_hw_addr *ha;
 
 
1239	u64 ehar = 0;
1240
1241	spin_lock_irq(&ip->ioc3_lock);
1242
1243	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous.  */
1244		ip->emcr |= EMCR_PROMISC;
1245		writel(ip->emcr, &regs->emcr);
1246		readl(&regs->emcr);
1247	} else {
1248		ip->emcr &= ~EMCR_PROMISC;
1249		writel(ip->emcr, &regs->emcr);		/* Clear promiscuous. */
1250		readl(&regs->emcr);
1251
1252		if ((dev->flags & IFF_ALLMULTI) ||
1253		    (netdev_mc_count(dev) > 64)) {
1254			/* Too many for hashing to make sense or we want all
1255			 * multicast packets anyway,  so skip computing all the
1256			 * hashes and just accept all packets.
1257			 */
1258			ip->ehar_h = 0xffffffff;
1259			ip->ehar_l = 0xffffffff;
1260		} else {
1261			netdev_for_each_mc_addr(ha, dev) {
1262				ehar |= (1UL << ioc3_hash(ha->addr));
1263			}
1264			ip->ehar_h = ehar >> 32;
1265			ip->ehar_l = ehar & 0xffffffff;
1266		}
1267		writel(ip->ehar_h, &regs->ehar_h);
1268		writel(ip->ehar_l, &regs->ehar_l);
1269	}
1270
1271	spin_unlock_irq(&ip->ioc3_lock);
1272}
1273
1274static struct platform_driver ioc3eth_driver = {
1275	.probe  = ioc3eth_probe,
1276	.remove = ioc3eth_remove,
1277	.driver = {
1278		.name = "ioc3-eth",
1279	}
1280};
1281
1282module_platform_driver(ioc3eth_driver);
1283
1284MODULE_AUTHOR("Ralf Baechle <ralf@linux-mips.org>");
1285MODULE_DESCRIPTION("SGI IOC3 Ethernet driver");
1286MODULE_LICENSE("GPL");
v4.17
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Driver for SGI's IOC3 based Ethernet cards as found in the PCI card.
   7 *
   8 * Copyright (C) 1999, 2000, 01, 03, 06 Ralf Baechle
   9 * Copyright (C) 1995, 1999, 2000, 2001 by Silicon Graphics, Inc.
  10 *
  11 * References:
  12 *  o IOC3 ASIC specification 4.51, 1996-04-18
  13 *  o IEEE 802.3 specification, 2000 edition
  14 *  o DP38840A Specification, National Semiconductor, March 1997
  15 *
  16 * To do:
  17 *
  18 *  o Handle allocation failures in ioc3_alloc_skb() more gracefully.
  19 *  o Handle allocation failures in ioc3_init_rings().
  20 *  o Use prefetching for large packets.  What is a good lower limit for
  21 *    prefetching?
  22 *  o We're probably allocating a bit too much memory.
  23 *  o Use hardware checksums.
  24 *  o Convert to using a IOC3 meta driver.
  25 *  o Which PHYs might possibly be attached to the IOC3 in real live,
  26 *    which workarounds are required for them?  Do we ever have Lucent's?
  27 *  o For the 2.5 branch kill the mii-tool ioctls.
  28 */
  29
  30#define IOC3_NAME	"ioc3-eth"
  31#define IOC3_VERSION	"2.6.3-4"
  32
  33#include <linux/delay.h>
  34#include <linux/kernel.h>
  35#include <linux/mm.h>
  36#include <linux/errno.h>
  37#include <linux/module.h>
  38#include <linux/pci.h>
 
  39#include <linux/crc32.h>
  40#include <linux/mii.h>
  41#include <linux/in.h>
 
  42#include <linux/ip.h>
  43#include <linux/tcp.h>
  44#include <linux/udp.h>
  45#include <linux/dma-mapping.h>
  46#include <linux/gfp.h>
  47
  48#ifdef CONFIG_SERIAL_8250
  49#include <linux/serial_core.h>
  50#include <linux/serial_8250.h>
  51#include <linux/serial_reg.h>
  52#endif
  53
  54#include <linux/netdevice.h>
  55#include <linux/etherdevice.h>
  56#include <linux/ethtool.h>
  57#include <linux/skbuff.h>
 
 
 
 
  58#include <net/ip.h>
  59
  60#include <asm/byteorder.h>
  61#include <asm/io.h>
  62#include <asm/pgtable.h>
  63#include <linux/uaccess.h>
  64#include <asm/sn/types.h>
  65#include <asm/sn/ioc3.h>
  66#include <asm/pci/bridge.h>
  67
  68/*
  69 * 64 RX buffers.  This is tunable in the range of 16 <= x < 512.  The
  70 * value must be a power of two.
 
 
  71 */
  72#define RX_BUFFS 64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  73
  74#define ETCSR_FD	((17<<ETCSR_IPGR2_SHIFT) | (11<<ETCSR_IPGR1_SHIFT) | 21)
  75#define ETCSR_HD	((21<<ETCSR_IPGR2_SHIFT) | (21<<ETCSR_IPGR1_SHIFT) | 21)
  76
  77/* Private per NIC data of the driver.  */
  78struct ioc3_private {
  79	struct ioc3 *regs;
 
 
  80	unsigned long *rxr;		/* pointer to receiver ring */
 
  81	struct ioc3_etxd *txr;
  82	struct sk_buff *rx_skbs[512];
  83	struct sk_buff *tx_skbs[128];
 
 
  84	int rx_ci;			/* RX consumer index */
  85	int rx_pi;			/* RX producer index */
  86	int tx_ci;			/* TX consumer index */
  87	int tx_pi;			/* TX producer index */
  88	int txqlen;
  89	u32 emcr, ehar_h, ehar_l;
  90	spinlock_t ioc3_lock;
  91	struct mii_if_info mii;
  92
  93	struct net_device *dev;
  94	struct pci_dev *pdev;
  95
  96	/* Members used by autonegotiation  */
  97	struct timer_list ioc3_timer;
  98};
  99
 100static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 101static void ioc3_set_multicast_list(struct net_device *dev);
 102static int ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev);
 103static void ioc3_timeout(struct net_device *dev);
 104static inline unsigned int ioc3_hash(const unsigned char *addr);
 
 105static inline void ioc3_stop(struct ioc3_private *ip);
 106static void ioc3_init(struct net_device *dev);
 
 
 
 107
 108static const char ioc3_str[] = "IOC3 Ethernet";
 109static const struct ethtool_ops ioc3_ethtool_ops;
 110
 111/* We use this to acquire receive skb's that we can DMA directly into. */
 112
 113#define IOC3_CACHELINE	128UL
 114
 115static inline unsigned long aligned_rx_skb_addr(unsigned long addr)
 116{
 117	return (~addr + 1) & (IOC3_CACHELINE - 1UL);
 118}
 119
 120static inline struct sk_buff * ioc3_alloc_skb(unsigned long length,
 121	unsigned int gfp_mask)
 122{
 123	struct sk_buff *skb;
 124
 125	skb = alloc_skb(length + IOC3_CACHELINE - 1, gfp_mask);
 126	if (likely(skb)) {
 127		int offset = aligned_rx_skb_addr((unsigned long) skb->data);
 128		if (offset)
 129			skb_reserve(skb, offset);
 130	}
 131
 132	return skb;
 133}
 134
 135static inline unsigned long ioc3_map(void *ptr, unsigned long vdev)
 
 136{
 137#ifdef CONFIG_SGI_IP27
 138	vdev <<= 57;   /* Shift to PCI64_ATTR_VIRTUAL */
 
 139
 140	return vdev | (0xaUL << PCI64_ATTR_TARG_SHFT) | PCI64_ATTR_PREF |
 141	       ((unsigned long)ptr & TO_PHYS_MASK);
 142#else
 143	return virt_to_bus(ptr);
 144#endif
 145}
 146
 147/* BEWARE: The IOC3 documentation documents the size of rx buffers as
 148   1644 while it's actually 1664.  This one was nasty to track down ...  */
 149#define RX_OFFSET		10
 150#define RX_BUF_ALLOC_SIZE	(1664 + RX_OFFSET + IOC3_CACHELINE)
 151
 152/* DMA barrier to separate cached and uncached accesses.  */
 153#define BARRIER()							\
 154	__asm__("sync" ::: "memory")
 155
 
 
 
 
 
 
 
 
 156
 157#define IOC3_SIZE 0x100000
 158
 159/*
 160 * IOC3 is a big endian device
 161 *
 162 * Unorthodox but makes the users of these macros more readable - the pointer
 163 * to the IOC3's memory mapped registers is expected as struct ioc3 * ioc3
 164 * in the environment.
 165 */
 166#define ioc3_r_mcr()		be32_to_cpu(ioc3->mcr)
 167#define ioc3_w_mcr(v)		do { ioc3->mcr = cpu_to_be32(v); } while (0)
 168#define ioc3_w_gpcr_s(v)	do { ioc3->gpcr_s = cpu_to_be32(v); } while (0)
 169#define ioc3_r_emcr()		be32_to_cpu(ioc3->emcr)
 170#define ioc3_w_emcr(v)		do { ioc3->emcr = cpu_to_be32(v); } while (0)
 171#define ioc3_r_eisr()		be32_to_cpu(ioc3->eisr)
 172#define ioc3_w_eisr(v)		do { ioc3->eisr = cpu_to_be32(v); } while (0)
 173#define ioc3_r_eier()		be32_to_cpu(ioc3->eier)
 174#define ioc3_w_eier(v)		do { ioc3->eier = cpu_to_be32(v); } while (0)
 175#define ioc3_r_ercsr()		be32_to_cpu(ioc3->ercsr)
 176#define ioc3_w_ercsr(v)		do { ioc3->ercsr = cpu_to_be32(v); } while (0)
 177#define ioc3_r_erbr_h()		be32_to_cpu(ioc3->erbr_h)
 178#define ioc3_w_erbr_h(v)	do { ioc3->erbr_h = cpu_to_be32(v); } while (0)
 179#define ioc3_r_erbr_l()		be32_to_cpu(ioc3->erbr_l)
 180#define ioc3_w_erbr_l(v)	do { ioc3->erbr_l = cpu_to_be32(v); } while (0)
 181#define ioc3_r_erbar()		be32_to_cpu(ioc3->erbar)
 182#define ioc3_w_erbar(v)		do { ioc3->erbar = cpu_to_be32(v); } while (0)
 183#define ioc3_r_ercir()		be32_to_cpu(ioc3->ercir)
 184#define ioc3_w_ercir(v)		do { ioc3->ercir = cpu_to_be32(v); } while (0)
 185#define ioc3_r_erpir()		be32_to_cpu(ioc3->erpir)
 186#define ioc3_w_erpir(v)		do { ioc3->erpir = cpu_to_be32(v); } while (0)
 187#define ioc3_r_ertr()		be32_to_cpu(ioc3->ertr)
 188#define ioc3_w_ertr(v)		do { ioc3->ertr = cpu_to_be32(v); } while (0)
 189#define ioc3_r_etcsr()		be32_to_cpu(ioc3->etcsr)
 190#define ioc3_w_etcsr(v)		do { ioc3->etcsr = cpu_to_be32(v); } while (0)
 191#define ioc3_r_ersr()		be32_to_cpu(ioc3->ersr)
 192#define ioc3_w_ersr(v)		do { ioc3->ersr = cpu_to_be32(v); } while (0)
 193#define ioc3_r_etcdc()		be32_to_cpu(ioc3->etcdc)
 194#define ioc3_w_etcdc(v)		do { ioc3->etcdc = cpu_to_be32(v); } while (0)
 195#define ioc3_r_ebir()		be32_to_cpu(ioc3->ebir)
 196#define ioc3_w_ebir(v)		do { ioc3->ebir = cpu_to_be32(v); } while (0)
 197#define ioc3_r_etbr_h()		be32_to_cpu(ioc3->etbr_h)
 198#define ioc3_w_etbr_h(v)	do { ioc3->etbr_h = cpu_to_be32(v); } while (0)
 199#define ioc3_r_etbr_l()		be32_to_cpu(ioc3->etbr_l)
 200#define ioc3_w_etbr_l(v)	do { ioc3->etbr_l = cpu_to_be32(v); } while (0)
 201#define ioc3_r_etcir()		be32_to_cpu(ioc3->etcir)
 202#define ioc3_w_etcir(v)		do { ioc3->etcir = cpu_to_be32(v); } while (0)
 203#define ioc3_r_etpir()		be32_to_cpu(ioc3->etpir)
 204#define ioc3_w_etpir(v)		do { ioc3->etpir = cpu_to_be32(v); } while (0)
 205#define ioc3_r_emar_h()		be32_to_cpu(ioc3->emar_h)
 206#define ioc3_w_emar_h(v)	do { ioc3->emar_h = cpu_to_be32(v); } while (0)
 207#define ioc3_r_emar_l()		be32_to_cpu(ioc3->emar_l)
 208#define ioc3_w_emar_l(v)	do { ioc3->emar_l = cpu_to_be32(v); } while (0)
 209#define ioc3_r_ehar_h()		be32_to_cpu(ioc3->ehar_h)
 210#define ioc3_w_ehar_h(v)	do { ioc3->ehar_h = cpu_to_be32(v); } while (0)
 211#define ioc3_r_ehar_l()		be32_to_cpu(ioc3->ehar_l)
 212#define ioc3_w_ehar_l(v)	do { ioc3->ehar_l = cpu_to_be32(v); } while (0)
 213#define ioc3_r_micr()		be32_to_cpu(ioc3->micr)
 214#define ioc3_w_micr(v)		do { ioc3->micr = cpu_to_be32(v); } while (0)
 215#define ioc3_r_midr_r()		be32_to_cpu(ioc3->midr_r)
 216#define ioc3_w_midr_r(v)	do { ioc3->midr_r = cpu_to_be32(v); } while (0)
 217#define ioc3_r_midr_w()		be32_to_cpu(ioc3->midr_w)
 218#define ioc3_w_midr_w(v)	do { ioc3->midr_w = cpu_to_be32(v); } while (0)
 219
 220static inline u32 mcr_pack(u32 pulse, u32 sample)
 221{
 222	return (pulse << 10) | (sample << 2);
 223}
 224
 225static int nic_wait(struct ioc3 *ioc3)
 226{
 227	u32 mcr;
 228
 229        do {
 230                mcr = ioc3_r_mcr();
 231        } while (!(mcr & 2));
 232
 233        return mcr & 1;
 234}
 235
 236static int nic_reset(struct ioc3 *ioc3)
 237{
 238        int presence;
 239
 240	ioc3_w_mcr(mcr_pack(500, 65));
 241	presence = nic_wait(ioc3);
 242
 243	ioc3_w_mcr(mcr_pack(0, 500));
 244	nic_wait(ioc3);
 245
 246        return presence;
 247}
 248
 249static inline int nic_read_bit(struct ioc3 *ioc3)
 250{
 251	int result;
 252
 253	ioc3_w_mcr(mcr_pack(6, 13));
 254	result = nic_wait(ioc3);
 255	ioc3_w_mcr(mcr_pack(0, 100));
 256	nic_wait(ioc3);
 257
 258	return result;
 259}
 260
 261static inline void nic_write_bit(struct ioc3 *ioc3, int bit)
 262{
 263	if (bit)
 264		ioc3_w_mcr(mcr_pack(6, 110));
 265	else
 266		ioc3_w_mcr(mcr_pack(80, 30));
 267
 268	nic_wait(ioc3);
 269}
 270
 271/*
 272 * Read a byte from an iButton device
 273 */
 274static u32 nic_read_byte(struct ioc3 *ioc3)
 275{
 276	u32 result = 0;
 277	int i;
 278
 279	for (i = 0; i < 8; i++)
 280		result = (result >> 1) | (nic_read_bit(ioc3) << 7);
 281
 282	return result;
 283}
 284
 285/*
 286 * Write a byte to an iButton device
 287 */
 288static void nic_write_byte(struct ioc3 *ioc3, int byte)
 289{
 290	int i, bit;
 291
 292	for (i = 8; i; i--) {
 293		bit = byte & 1;
 294		byte >>= 1;
 295
 296		nic_write_bit(ioc3, bit);
 297	}
 298}
 299
 300static u64 nic_find(struct ioc3 *ioc3, int *last)
 301{
 302	int a, b, index, disc;
 303	u64 address = 0;
 304
 305	nic_reset(ioc3);
 306	/* Search ROM.  */
 307	nic_write_byte(ioc3, 0xf0);
 308
 309	/* Algorithm from ``Book of iButton Standards''.  */
 310	for (index = 0, disc = 0; index < 64; index++) {
 311		a = nic_read_bit(ioc3);
 312		b = nic_read_bit(ioc3);
 313
 314		if (a && b) {
 315			printk("NIC search failed (not fatal).\n");
 316			*last = 0;
 317			return 0;
 318		}
 319
 320		if (!a && !b) {
 321			if (index == *last) {
 322				address |= 1UL << index;
 323			} else if (index > *last) {
 324				address &= ~(1UL << index);
 325				disc = index;
 326			} else if ((address & (1UL << index)) == 0)
 327				disc = index;
 328			nic_write_bit(ioc3, address & (1UL << index));
 329			continue;
 330		} else {
 331			if (a)
 332				address |= 1UL << index;
 333			else
 334				address &= ~(1UL << index);
 335			nic_write_bit(ioc3, a);
 336			continue;
 337		}
 338	}
 339
 340	*last = disc;
 341
 342	return address;
 343}
 344
 345static int nic_init(struct ioc3 *ioc3)
 346{
 347	const char *unknown = "unknown";
 348	const char *type = unknown;
 349	u8 crc;
 350	u8 serial[6];
 351	int save = 0, i;
 352
 353	while (1) {
 354		u64 reg;
 355		reg = nic_find(ioc3, &save);
 356
 357		switch (reg & 0xff) {
 358		case 0x91:
 359			type = "DS1981U";
 360			break;
 361		default:
 362			if (save == 0) {
 363				/* Let the caller try again.  */
 364				return -1;
 365			}
 366			continue;
 367		}
 368
 369		nic_reset(ioc3);
 
 
 370
 371		/* Match ROM.  */
 372		nic_write_byte(ioc3, 0x55);
 373		for (i = 0; i < 8; i++)
 374			nic_write_byte(ioc3, (reg >> (i << 3)) & 0xff);
 375
 376		reg >>= 8; /* Shift out type.  */
 377		for (i = 0; i < 6; i++) {
 378			serial[i] = reg & 0xff;
 379			reg >>= 8;
 380		}
 381		crc = reg & 0xff;
 382		break;
 383	}
 384
 385	printk("Found %s NIC", type);
 386	if (type != unknown)
 387		printk (" registration number %pM, CRC %02x", serial, crc);
 388	printk(".\n");
 
 
 
 
 
 389
 390	return 0;
 391}
 392
 393/*
 394 * Read the NIC (Number-In-a-Can) device used to store the MAC address on
 395 * SN0 / SN00 nodeboards and PCI cards.
 396 */
 397static void ioc3_get_eaddr_nic(struct ioc3_private *ip)
 398{
 399	struct ioc3 *ioc3 = ip->regs;
 400	u8 nic[14];
 401	int tries = 2; /* There may be some problem with the battery?  */
 
 402	int i;
 403
 404	ioc3_w_gpcr_s(1 << 21);
 405
 406	while (tries--) {
 407		if (!nic_init(ioc3))
 408			break;
 409		udelay(500);
 410	}
 411
 412	if (tries < 0) {
 413		printk("Failed to read MAC address\n");
 414		return;
 415	}
 
 
 
 
 
 
 
 
 
 416
 417	/* Read Memory.  */
 418	nic_write_byte(ioc3, 0xf0);
 419	nic_write_byte(ioc3, 0x00);
 420	nic_write_byte(ioc3, 0x00);
 421
 422	for (i = 13; i >= 0; i--)
 423		nic[i] = nic_read_byte(ioc3);
 424
 425	for (i = 2; i < 8; i++)
 426		ip->dev->dev_addr[i - 2] = nic[i];
 427}
 428
 429/*
 430 * Ok, this is hosed by design.  It's necessary to know what machine the
 431 * NIC is in in order to know how to read the NIC address.  We also have
 432 * to know if it's a PCI card or a NIC in on the node board ...
 433 */
 434static void ioc3_get_eaddr(struct ioc3_private *ip)
 435{
 436	ioc3_get_eaddr_nic(ip);
 437
 438	printk("Ethernet address is %pM.\n", ip->dev->dev_addr);
 439}
 440
 441static void __ioc3_set_mac_address(struct net_device *dev)
 442{
 443	struct ioc3_private *ip = netdev_priv(dev);
 444	struct ioc3 *ioc3 = ip->regs;
 445
 446	ioc3_w_emar_h((dev->dev_addr[5] <<  8) | dev->dev_addr[4]);
 447	ioc3_w_emar_l((dev->dev_addr[3] << 24) | (dev->dev_addr[2] << 16) |
 448	              (dev->dev_addr[1] <<  8) | dev->dev_addr[0]);
 
 
 
 
 
 449}
 450
 451static int ioc3_set_mac_address(struct net_device *dev, void *addr)
 452{
 453	struct ioc3_private *ip = netdev_priv(dev);
 454	struct sockaddr *sa = addr;
 455
 456	memcpy(dev->dev_addr, sa->sa_data, dev->addr_len);
 457
 458	spin_lock_irq(&ip->ioc3_lock);
 459	__ioc3_set_mac_address(dev);
 460	spin_unlock_irq(&ip->ioc3_lock);
 461
 462	return 0;
 463}
 464
 465/*
 466 * Caller must hold the ioc3_lock ever for MII readers.  This is also
 467 * used to protect the transmitter side but it's low contention.
 468 */
 469static int ioc3_mdio_read(struct net_device *dev, int phy, int reg)
 470{
 471	struct ioc3_private *ip = netdev_priv(dev);
 472	struct ioc3 *ioc3 = ip->regs;
 473
 474	while (ioc3_r_micr() & MICR_BUSY);
 475	ioc3_w_micr((phy << MICR_PHYADDR_SHIFT) | reg | MICR_READTRIG);
 476	while (ioc3_r_micr() & MICR_BUSY);
 
 
 
 477
 478	return ioc3_r_midr_r() & MIDR_DATA_MASK;
 479}
 480
 481static void ioc3_mdio_write(struct net_device *dev, int phy, int reg, int data)
 482{
 483	struct ioc3_private *ip = netdev_priv(dev);
 484	struct ioc3 *ioc3 = ip->regs;
 485
 486	while (ioc3_r_micr() & MICR_BUSY);
 487	ioc3_w_midr_w(data);
 488	ioc3_w_micr((phy << MICR_PHYADDR_SHIFT) | reg);
 489	while (ioc3_r_micr() & MICR_BUSY);
 
 
 490}
 491
 492static int ioc3_mii_init(struct ioc3_private *ip);
 493
 494static struct net_device_stats *ioc3_get_stats(struct net_device *dev)
 495{
 496	struct ioc3_private *ip = netdev_priv(dev);
 497	struct ioc3 *ioc3 = ip->regs;
 498
 499	dev->stats.collisions += (ioc3_r_etcdc() & ETCDC_COLLCNT_MASK);
 500	return &dev->stats;
 501}
 502
 503static void ioc3_tcpudp_checksum(struct sk_buff *skb, uint32_t hwsum, int len)
 504{
 505	struct ethhdr *eh = eth_hdr(skb);
 506	uint32_t csum, ehsum;
 507	unsigned int proto;
 
 508	struct iphdr *ih;
 509	uint16_t *ew;
 510	unsigned char *cp;
 511
 512	/*
 513	 * Did hardware handle the checksum at all?  The cases we can handle
 514	 * are:
 515	 *
 516	 * - TCP and UDP checksums of IPv4 only.
 517	 * - IPv6 would be doable but we keep that for later ...
 518	 * - Only unfragmented packets.  Did somebody already tell you
 519	 *   fragmentation is evil?
 520	 * - don't care about packet size.  Worst case when processing a
 521	 *   malformed packet we'll try to access the packet at ip header +
 522	 *   64 bytes which is still inside the skb.  Even in the unlikely
 523	 *   case where the checksum is right the higher layers will still
 524	 *   drop the packet as appropriate.
 525	 */
 526	if (eh->h_proto != htons(ETH_P_IP))
 527		return;
 528
 529	ih = (struct iphdr *) ((char *)eh + ETH_HLEN);
 530	if (ip_is_fragment(ih))
 531		return;
 532
 533	proto = ih->protocol;
 534	if (proto != IPPROTO_TCP && proto != IPPROTO_UDP)
 535		return;
 536
 537	/* Same as tx - compute csum of pseudo header  */
 538	csum = hwsum +
 539	       (ih->tot_len - (ih->ihl << 2)) +
 540	       htons((uint16_t)ih->protocol) +
 541	       (ih->saddr >> 16) + (ih->saddr & 0xffff) +
 542	       (ih->daddr >> 16) + (ih->daddr & 0xffff);
 543
 544	/* Sum up ethernet dest addr, src addr and protocol  */
 545	ew = (uint16_t *) eh;
 546	ehsum = ew[0] + ew[1] + ew[2] + ew[3] + ew[4] + ew[5] + ew[6];
 547
 548	ehsum = (ehsum & 0xffff) + (ehsum >> 16);
 549	ehsum = (ehsum & 0xffff) + (ehsum >> 16);
 550
 551	csum += 0xffff ^ ehsum;
 552
 553	/* In the next step we also subtract the 1's complement
 554	   checksum of the trailing ethernet CRC.  */
 
 555	cp = (char *)eh + len;	/* points at trailing CRC */
 556	if (len & 1) {
 557		csum += 0xffff ^ (uint16_t) ((cp[1] << 8) | cp[0]);
 558		csum += 0xffff ^ (uint16_t) ((cp[3] << 8) | cp[2]);
 559	} else {
 560		csum += 0xffff ^ (uint16_t) ((cp[0] << 8) | cp[1]);
 561		csum += 0xffff ^ (uint16_t) ((cp[2] << 8) | cp[3]);
 562	}
 563
 564	csum = (csum & 0xffff) + (csum >> 16);
 565	csum = (csum & 0xffff) + (csum >> 16);
 566
 567	if (csum == 0xffff)
 568		skb->ip_summed = CHECKSUM_UNNECESSARY;
 569}
 570
 571static inline void ioc3_rx(struct net_device *dev)
 572{
 573	struct ioc3_private *ip = netdev_priv(dev);
 574	struct sk_buff *skb, *new_skb;
 575	struct ioc3 *ioc3 = ip->regs;
 576	int rx_entry, n_entry, len;
 577	struct ioc3_erxbuf *rxb;
 578	unsigned long *rxr;
 
 579	u32 w0, err;
 580
 581	rxr = ip->rxr;		/* Ring base */
 582	rx_entry = ip->rx_ci;				/* RX consume index */
 583	n_entry = ip->rx_pi;
 584
 585	skb = ip->rx_skbs[rx_entry];
 586	rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
 587	w0 = be32_to_cpu(rxb->w0);
 588
 589	while (w0 & ERXBUF_V) {
 590		err = be32_to_cpu(rxb->err);		/* It's valid ...  */
 591		if (err & ERXBUF_GOODPKT) {
 592			len = ((w0 >> ERXBUF_BYTECNT_SHIFT) & 0x7ff) - 4;
 593			skb_trim(skb, len);
 594			skb->protocol = eth_type_trans(skb, dev);
 595
 596			new_skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
 597			if (!new_skb) {
 598				/* Ouch, drop packet and just recycle packet
 599				   to keep the ring filled.  */
 
 600				dev->stats.rx_dropped++;
 601				new_skb = skb;
 
 602				goto next;
 603			}
 604
 605			if (likely(dev->features & NETIF_F_RXCSUM))
 606				ioc3_tcpudp_checksum(skb,
 607					w0 & ERXBUF_IPCKSUM_MASK, len);
 
 
 
 
 608
 609			netif_rx(skb);
 610
 611			ip->rx_skbs[rx_entry] = NULL;	/* Poison  */
 612
 613			/* Because we reserve afterwards. */
 614			skb_put(new_skb, (1664 + RX_OFFSET));
 615			rxb = (struct ioc3_erxbuf *) new_skb->data;
 616			skb_reserve(new_skb, RX_OFFSET);
 617
 618			dev->stats.rx_packets++;		/* Statistics */
 619			dev->stats.rx_bytes += len;
 620		} else {
 621			/* The frame is invalid and the skb never
 622			   reached the network layer so we can just
 623			   recycle it.  */
 
 624			new_skb = skb;
 
 625			dev->stats.rx_errors++;
 626		}
 627		if (err & ERXBUF_CRCERR)	/* Statistics */
 628			dev->stats.rx_crc_errors++;
 629		if (err & ERXBUF_FRAMERR)
 630			dev->stats.rx_frame_errors++;
 
 631next:
 632		ip->rx_skbs[n_entry] = new_skb;
 633		rxr[n_entry] = cpu_to_be64(ioc3_map(rxb, 1));
 634		rxb->w0 = 0;				/* Clear valid flag */
 635		n_entry = (n_entry + 1) & 511;		/* Update erpir */
 636
 637		/* Now go on to the next ring entry.  */
 638		rx_entry = (rx_entry + 1) & 511;
 639		skb = ip->rx_skbs[rx_entry];
 640		rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
 641		w0 = be32_to_cpu(rxb->w0);
 642	}
 643	ioc3_w_erpir((n_entry << 3) | ERPIR_ARM);
 644	ip->rx_pi = n_entry;
 645	ip->rx_ci = rx_entry;
 646}
 647
 648static inline void ioc3_tx(struct net_device *dev)
 649{
 650	struct ioc3_private *ip = netdev_priv(dev);
 
 651	unsigned long packets, bytes;
 652	struct ioc3 *ioc3 = ip->regs;
 653	int tx_entry, o_entry;
 654	struct sk_buff *skb;
 655	u32 etcir;
 656
 657	spin_lock(&ip->ioc3_lock);
 658	etcir = ioc3_r_etcir();
 659
 660	tx_entry = (etcir >> 7) & 127;
 661	o_entry = ip->tx_ci;
 662	packets = 0;
 663	bytes = 0;
 664
 665	while (o_entry != tx_entry) {
 666		packets++;
 667		skb = ip->tx_skbs[o_entry];
 668		bytes += skb->len;
 669		dev_kfree_skb_irq(skb);
 670		ip->tx_skbs[o_entry] = NULL;
 671
 672		o_entry = (o_entry + 1) & 127;		/* Next */
 673
 674		etcir = ioc3_r_etcir();			/* More pkts sent?  */
 675		tx_entry = (etcir >> 7) & 127;
 676	}
 677
 678	dev->stats.tx_packets += packets;
 679	dev->stats.tx_bytes += bytes;
 680	ip->txqlen -= packets;
 681
 682	if (ip->txqlen < 128)
 683		netif_wake_queue(dev);
 684
 685	ip->tx_ci = o_entry;
 686	spin_unlock(&ip->ioc3_lock);
 687}
 688
 689/*
 690 * Deal with fatal IOC3 errors.  This condition might be caused by a hard or
 691 * software problems, so we should try to recover
 692 * more gracefully if this ever happens.  In theory we might be flooded
 693 * with such error interrupts if something really goes wrong, so we might
 694 * also consider to take the interface down.
 695 */
 696static void ioc3_error(struct net_device *dev, u32 eisr)
 697{
 698	struct ioc3_private *ip = netdev_priv(dev);
 699	unsigned char *iface = dev->name;
 700
 701	spin_lock(&ip->ioc3_lock);
 702
 703	if (eisr & EISR_RXOFLO)
 704		printk(KERN_ERR "%s: RX overflow.\n", iface);
 705	if (eisr & EISR_RXBUFOFLO)
 706		printk(KERN_ERR "%s: RX buffer overflow.\n", iface);
 707	if (eisr & EISR_RXMEMERR)
 708		printk(KERN_ERR "%s: RX PCI error.\n", iface);
 709	if (eisr & EISR_RXPARERR)
 710		printk(KERN_ERR "%s: RX SSRAM parity error.\n", iface);
 711	if (eisr & EISR_TXBUFUFLO)
 712		printk(KERN_ERR "%s: TX buffer underflow.\n", iface);
 713	if (eisr & EISR_TXMEMERR)
 714		printk(KERN_ERR "%s: TX PCI error.\n", iface);
 715
 716	ioc3_stop(ip);
 
 
 
 717	ioc3_init(dev);
 
 
 
 
 
 
 718	ioc3_mii_init(ip);
 719
 720	netif_wake_queue(dev);
 721
 722	spin_unlock(&ip->ioc3_lock);
 723}
 724
 725/* The interrupt handler does all of the Rx thread work and cleans up
 726   after the Tx thread.  */
 727static irqreturn_t ioc3_interrupt(int irq, void *_dev)
 
 728{
 729	struct net_device *dev = (struct net_device *)_dev;
 730	struct ioc3_private *ip = netdev_priv(dev);
 731	struct ioc3 *ioc3 = ip->regs;
 732	const u32 enabled = EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
 733	                    EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
 734	                    EISR_TXEXPLICIT | EISR_TXMEMERR;
 735	u32 eisr;
 736
 737	eisr = ioc3_r_eisr() & enabled;
 738
 739	ioc3_w_eisr(eisr);
 740	(void) ioc3_r_eisr();				/* Flush */
 741
 742	if (eisr & (EISR_RXOFLO | EISR_RXBUFOFLO | EISR_RXMEMERR |
 743	            EISR_RXPARERR | EISR_TXBUFUFLO | EISR_TXMEMERR))
 744		ioc3_error(dev, eisr);
 745	if (eisr & EISR_RXTIMERINT)
 746		ioc3_rx(dev);
 747	if (eisr & EISR_TXEXPLICIT)
 748		ioc3_tx(dev);
 749
 750	return IRQ_HANDLED;
 751}
 752
 753static inline void ioc3_setup_duplex(struct ioc3_private *ip)
 754{
 755	struct ioc3 *ioc3 = ip->regs;
 
 
 756
 757	if (ip->mii.full_duplex) {
 758		ioc3_w_etcsr(ETCSR_FD);
 759		ip->emcr |= EMCR_DUPLEX;
 760	} else {
 761		ioc3_w_etcsr(ETCSR_HD);
 762		ip->emcr &= ~EMCR_DUPLEX;
 763	}
 764	ioc3_w_emcr(ip->emcr);
 
 
 765}
 766
 767static void ioc3_timer(struct timer_list *t)
 768{
 769	struct ioc3_private *ip = from_timer(ip, t, ioc3_timer);
 770
 771	/* Print the link status if it has changed */
 772	mii_check_media(&ip->mii, 1, 0);
 773	ioc3_setup_duplex(ip);
 774
 775	ip->ioc3_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2s */
 776	add_timer(&ip->ioc3_timer);
 777}
 778
 779/*
 780 * Try to find a PHY.  There is no apparent relation between the MII addresses
 781 * in the SGI documentation and what we find in reality, so we simply probe
 782 * for the PHY.  It seems IOC3 PHYs usually live on address 31.  One of my
 783 * onboard IOC3s has the special oddity that probing doesn't seem to find it
 784 * yet the interface seems to work fine, so if probing fails we for now will
 785 * simply default to PHY 31 instead of bailing out.
 786 */
 787static int ioc3_mii_init(struct ioc3_private *ip)
 788{
 789	int i, found = 0, res = 0;
 790	int ioc3_phy_workaround = 1;
 791	u16 word;
 
 792
 793	for (i = 0; i < 32; i++) {
 794		word = ioc3_mdio_read(ip->dev, i, MII_PHYSID1);
 795
 796		if (word != 0xffff && word != 0x0000) {
 797			found = 1;
 798			break;			/* Found a PHY		*/
 799		}
 800	}
 801
 802	if (!found) {
 803		if (ioc3_phy_workaround)
 804			i = 31;
 805		else {
 806			ip->mii.phy_id = -1;
 807			res = -ENODEV;
 808			goto out;
 809		}
 810	}
 811
 812	ip->mii.phy_id = i;
 813
 814out:
 815	return res;
 816}
 817
 818static void ioc3_mii_start(struct ioc3_private *ip)
 819{
 820	ip->ioc3_timer.expires = jiffies + (12 * HZ)/10;  /* 1.2 sec. */
 821	add_timer(&ip->ioc3_timer);
 822}
 823
 824static inline void ioc3_clean_rx_ring(struct ioc3_private *ip)
 825{
 826	struct sk_buff *skb;
 827	int i;
 828
 829	for (i = ip->rx_ci; i & 15; i++) {
 830		ip->rx_skbs[ip->rx_pi] = ip->rx_skbs[ip->rx_ci];
 831		ip->rxr[ip->rx_pi++] = ip->rxr[ip->rx_ci++];
 832	}
 833	ip->rx_pi &= 511;
 834	ip->rx_ci &= 511;
 835
 836	for (i = ip->rx_ci; i != ip->rx_pi; i = (i+1) & 511) {
 837		struct ioc3_erxbuf *rxb;
 838		skb = ip->rx_skbs[i];
 839		rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
 840		rxb->w0 = 0;
 841	}
 842}
 843
 844static inline void ioc3_clean_tx_ring(struct ioc3_private *ip)
 845{
 846	struct sk_buff *skb;
 847	int i;
 848
 849	for (i=0; i < 128; i++) {
 850		skb = ip->tx_skbs[i];
 851		if (skb) {
 
 852			ip->tx_skbs[i] = NULL;
 853			dev_kfree_skb_any(skb);
 854		}
 855		ip->txr[i].cmd = 0;
 856	}
 857	ip->tx_pi = 0;
 858	ip->tx_ci = 0;
 859}
 860
 861static void ioc3_free_rings(struct ioc3_private *ip)
 862{
 
 863	struct sk_buff *skb;
 864	int rx_entry, n_entry;
 865
 866	if (ip->txr) {
 867		ioc3_clean_tx_ring(ip);
 868		free_pages((unsigned long)ip->txr, 2);
 869		ip->txr = NULL;
 870	}
 871
 872	if (ip->rxr) {
 873		n_entry = ip->rx_ci;
 874		rx_entry = ip->rx_pi;
 875
 876		while (n_entry != rx_entry) {
 877			skb = ip->rx_skbs[n_entry];
 878			if (skb)
 879				dev_kfree_skb_any(skb);
 880
 881			n_entry = (n_entry + 1) & 511;
 
 
 
 
 
 
 882		}
 883		free_page((unsigned long)ip->rxr);
 884		ip->rxr = NULL;
 885	}
 886}
 887
 888static void ioc3_alloc_rings(struct net_device *dev)
 889{
 890	struct ioc3_private *ip = netdev_priv(dev);
 891	struct ioc3_erxbuf *rxb;
 892	unsigned long *rxr;
 893	int i;
 894
 895	if (ip->rxr == NULL) {
 896		/* Allocate and initialize rx ring.  4kb = 512 entries  */
 897		ip->rxr = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
 898		rxr = ip->rxr;
 899		if (!rxr)
 900			printk("ioc3_alloc_rings(): get_zeroed_page() failed!\n");
 901
 902		/* Now the rx buffers.  The RX ring may be larger but
 903		   we only allocate 16 buffers for now.  Need to tune
 904		   this for performance and memory later.  */
 905		for (i = 0; i < RX_BUFFS; i++) {
 906			struct sk_buff *skb;
 907
 908			skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
 909			if (!skb) {
 910				show_free_areas(0, NULL);
 911				continue;
 912			}
 913
 914			ip->rx_skbs[i] = skb;
 915
 916			/* Because we reserve afterwards. */
 917			skb_put(skb, (1664 + RX_OFFSET));
 918			rxb = (struct ioc3_erxbuf *) skb->data;
 919			rxr[i] = cpu_to_be64(ioc3_map(rxb, 1));
 920			skb_reserve(skb, RX_OFFSET);
 921		}
 922		ip->rx_ci = 0;
 923		ip->rx_pi = RX_BUFFS;
 924	}
 
 
 925
 926	if (ip->txr == NULL) {
 927		/* Allocate and initialize tx rings.  16kb = 128 bufs.  */
 928		ip->txr = (struct ioc3_etxd *)__get_free_pages(GFP_KERNEL, 2);
 929		if (!ip->txr)
 930			printk("ioc3_alloc_rings(): __get_free_pages() failed!\n");
 931		ip->tx_pi = 0;
 932		ip->tx_ci = 0;
 933	}
 934}
 935
 936static void ioc3_init_rings(struct net_device *dev)
 937{
 938	struct ioc3_private *ip = netdev_priv(dev);
 939	struct ioc3 *ioc3 = ip->regs;
 940	unsigned long ring;
 941
 942	ioc3_free_rings(ip);
 943	ioc3_alloc_rings(dev);
 944
 945	ioc3_clean_rx_ring(ip);
 946	ioc3_clean_tx_ring(ip);
 947
 948	/* Now the rx ring base, consume & produce registers.  */
 949	ring = ioc3_map(ip->rxr, 0);
 950	ioc3_w_erbr_h(ring >> 32);
 951	ioc3_w_erbr_l(ring & 0xffffffff);
 952	ioc3_w_ercir(ip->rx_ci << 3);
 953	ioc3_w_erpir((ip->rx_pi << 3) | ERPIR_ARM);
 954
 955	ring = ioc3_map(ip->txr, 0);
 956
 957	ip->txqlen = 0;					/* nothing queued  */
 958
 959	/* Now the tx ring base, consume & produce registers.  */
 960	ioc3_w_etbr_h(ring >> 32);
 961	ioc3_w_etbr_l(ring & 0xffffffff);
 962	ioc3_w_etpir(ip->tx_pi << 7);
 963	ioc3_w_etcir(ip->tx_ci << 7);
 964	(void) ioc3_r_etcir();				/* Flush */
 965}
 966
 967static inline void ioc3_ssram_disc(struct ioc3_private *ip)
 968{
 969	struct ioc3 *ioc3 = ip->regs;
 970	volatile u32 *ssram0 = &ioc3->ssram[0x0000];
 971	volatile u32 *ssram1 = &ioc3->ssram[0x4000];
 972	unsigned int pattern = 0x5555;
 973
 974	/* Assume the larger size SSRAM and enable parity checking */
 975	ioc3_w_emcr(ioc3_r_emcr() | (EMCR_BUFSIZ | EMCR_RAMPAR));
 
 976
 977	*ssram0 = pattern;
 978	*ssram1 = ~pattern & IOC3_SSRAM_DM;
 979
 980	if ((*ssram0 & IOC3_SSRAM_DM) != pattern ||
 981	    (*ssram1 & IOC3_SSRAM_DM) != (~pattern & IOC3_SSRAM_DM)) {
 982		/* set ssram size to 64 KB */
 983		ip->emcr = EMCR_RAMPAR;
 984		ioc3_w_emcr(ioc3_r_emcr() & ~EMCR_BUFSIZ);
 985	} else
 986		ip->emcr = EMCR_BUFSIZ | EMCR_RAMPAR;
 
 987}
 988
 989static void ioc3_init(struct net_device *dev)
 990{
 991	struct ioc3_private *ip = netdev_priv(dev);
 992	struct ioc3 *ioc3 = ip->regs;
 993
 994	del_timer_sync(&ip->ioc3_timer);	/* Kill if running	*/
 995
 996	ioc3_w_emcr(EMCR_RST);			/* Reset		*/
 997	(void) ioc3_r_emcr();			/* Flush WB		*/
 998	udelay(4);				/* Give it time ...	*/
 999	ioc3_w_emcr(0);
1000	(void) ioc3_r_emcr();
1001
1002	/* Misc registers  */
1003#ifdef CONFIG_SGI_IP27
1004	ioc3_w_erbar(PCI64_ATTR_BAR >> 32);	/* Barrier on last store */
1005#else
1006	ioc3_w_erbar(0);			/* Let PCI API get it right */
1007#endif
1008	(void) ioc3_r_etcdc();			/* Clear on read */
1009	ioc3_w_ercsr(15);			/* RX low watermark  */
1010	ioc3_w_ertr(0);				/* Interrupt immediately */
1011	__ioc3_set_mac_address(dev);
1012	ioc3_w_ehar_h(ip->ehar_h);
1013	ioc3_w_ehar_l(ip->ehar_l);
1014	ioc3_w_ersr(42);			/* XXX should be random */
 
1015
1016	ioc3_init_rings(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1017
1018	ip->emcr |= ((RX_OFFSET / 2) << EMCR_RXOFF_SHIFT) | EMCR_TXDMAEN |
1019	             EMCR_TXEN | EMCR_RXDMAEN | EMCR_RXEN | EMCR_PADEN;
1020	ioc3_w_emcr(ip->emcr);
1021	ioc3_w_eier(EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
1022	            EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
1023	            EISR_TXEXPLICIT | EISR_TXMEMERR);
1024	(void) ioc3_r_eier();
1025}
1026
1027static inline void ioc3_stop(struct ioc3_private *ip)
1028{
1029	struct ioc3 *ioc3 = ip->regs;
1030
1031	ioc3_w_emcr(0);				/* Shutup */
1032	ioc3_w_eier(0);				/* Disable interrupts */
1033	(void) ioc3_r_eier();			/* Flush */
1034}
1035
1036static int ioc3_open(struct net_device *dev)
1037{
1038	struct ioc3_private *ip = netdev_priv(dev);
1039
1040	if (request_irq(dev->irq, ioc3_interrupt, IRQF_SHARED, ioc3_str, dev)) {
1041		printk(KERN_ERR "%s: Can't get irq %d\n", dev->name, dev->irq);
1042
1043		return -EAGAIN;
1044	}
1045
1046	ip->ehar_h = 0;
1047	ip->ehar_l = 0;
 
1048	ioc3_init(dev);
 
 
 
 
 
1049	ioc3_mii_start(ip);
1050
1051	netif_start_queue(dev);
1052	return 0;
1053}
1054
1055static int ioc3_close(struct net_device *dev)
1056{
1057	struct ioc3_private *ip = netdev_priv(dev);
1058
1059	del_timer_sync(&ip->ioc3_timer);
1060
1061	netif_stop_queue(dev);
1062
1063	ioc3_stop(ip);
1064	free_irq(dev->irq, dev);
1065
1066	ioc3_free_rings(ip);
 
 
1067	return 0;
1068}
1069
1070/*
1071 * MENET cards have four IOC3 chips, which are attached to two sets of
1072 * PCI slot resources each: the primary connections are on slots
1073 * 0..3 and the secondaries are on 4..7
1074 *
1075 * All four ethernets are brought out to connectors; six serial ports
1076 * (a pair from each of the first three IOC3s) are brought out to
1077 * MiniDINs; all other subdevices are left swinging in the wind, leave
1078 * them disabled.
1079 */
1080
1081static int ioc3_adjacent_is_ioc3(struct pci_dev *pdev, int slot)
1082{
1083	struct pci_dev *dev = pci_get_slot(pdev->bus, PCI_DEVFN(slot, 0));
1084	int ret = 0;
1085
1086	if (dev) {
1087		if (dev->vendor == PCI_VENDOR_ID_SGI &&
1088			dev->device == PCI_DEVICE_ID_SGI_IOC3)
1089			ret = 1;
1090		pci_dev_put(dev);
1091	}
1092
1093	return ret;
1094}
1095
1096static int ioc3_is_menet(struct pci_dev *pdev)
1097{
1098	return pdev->bus->parent == NULL &&
1099	       ioc3_adjacent_is_ioc3(pdev, 0) &&
1100	       ioc3_adjacent_is_ioc3(pdev, 1) &&
1101	       ioc3_adjacent_is_ioc3(pdev, 2);
1102}
1103
1104#ifdef CONFIG_SERIAL_8250
1105/*
1106 * Note about serial ports and consoles:
1107 * For console output, everyone uses the IOC3 UARTA (offset 0x178)
1108 * connected to the master node (look in ip27_setup_console() and
1109 * ip27prom_console_write()).
1110 *
1111 * For serial (/dev/ttyS0 etc), we can not have hardcoded serial port
1112 * addresses on a partitioned machine. Since we currently use the ioc3
1113 * serial ports, we use dynamic serial port discovery that the serial.c
1114 * driver uses for pci/pnp ports (there is an entry for the SGI ioc3
1115 * boards in pci_boards[]). Unfortunately, UARTA's pio address is greater
1116 * than UARTB's, although UARTA on o200s has traditionally been known as
1117 * port 0. So, we just use one serial port from each ioc3 (since the
1118 * serial driver adds addresses to get to higher ports).
1119 *
1120 * The first one to do a register_console becomes the preferred console
1121 * (if there is no kernel command line console= directive). /dev/console
1122 * (ie 5, 1) is then "aliased" into the device number returned by the
1123 * "device" routine referred to in this console structure
1124 * (ip27prom_console_dev).
1125 *
1126 * Also look in ip27-pci.c:pci_fixup_ioc3() for some comments on working
1127 * around ioc3 oddities in this respect.
1128 *
1129 * The IOC3 serials use a 22MHz clock rate with an additional divider which
1130 * can be programmed in the SCR register if the DLAB bit is set.
1131 *
1132 * Register to interrupt zero because we share the interrupt with
1133 * the serial driver which we don't properly support yet.
1134 *
1135 * Can't use UPF_IOREMAP as the whole of IOC3 resources have already been
1136 * registered.
1137 */
1138static void ioc3_8250_register(struct ioc3_uartregs __iomem *uart)
1139{
1140#define COSMISC_CONSTANT 6
1141
1142	struct uart_8250_port port = {
1143	        .port = {
1144			.irq		= 0,
1145			.flags		= UPF_SKIP_TEST | UPF_BOOT_AUTOCONF,
1146			.iotype		= UPIO_MEM,
1147			.regshift	= 0,
1148			.uartclk	= (22000000 << 1) / COSMISC_CONSTANT,
1149
1150			.membase	= (unsigned char __iomem *) uart,
1151			.mapbase	= (unsigned long) uart,
1152                }
1153	};
1154	unsigned char lcr;
1155
1156	lcr = uart->iu_lcr;
1157	uart->iu_lcr = lcr | UART_LCR_DLAB;
1158	uart->iu_scr = COSMISC_CONSTANT,
1159	uart->iu_lcr = lcr;
1160	uart->iu_lcr;
1161	serial8250_register_8250_port(&port);
1162}
1163
1164static void ioc3_serial_probe(struct pci_dev *pdev, struct ioc3 *ioc3)
1165{
1166	/*
1167	 * We need to recognice and treat the fourth MENET serial as it
1168	 * does not have an SuperIO chip attached to it, therefore attempting
1169	 * to access it will result in bus errors.  We call something an
1170	 * MENET if PCI slot 0, 1, 2 and 3 of a master PCI bus all have an IOC3
1171	 * in it.  This is paranoid but we want to avoid blowing up on a
1172	 * showhorn PCI box that happens to have 4 IOC3 cards in it so it's
1173	 * not paranoid enough ...
1174	 */
1175	if (ioc3_is_menet(pdev) && PCI_SLOT(pdev->devfn) == 3)
1176		return;
1177
1178	/*
1179	 * Switch IOC3 to PIO mode.  It probably already was but let's be
1180	 * paranoid
1181	 */
1182	ioc3->gpcr_s = GPCR_UARTA_MODESEL | GPCR_UARTB_MODESEL;
1183	ioc3->gpcr_s;
1184	ioc3->gppr_6 = 0;
1185	ioc3->gppr_6;
1186	ioc3->gppr_7 = 0;
1187	ioc3->gppr_7;
1188	ioc3->sscr_a = ioc3->sscr_a & ~SSCR_DMA_EN;
1189	ioc3->sscr_a;
1190	ioc3->sscr_b = ioc3->sscr_b & ~SSCR_DMA_EN;
1191	ioc3->sscr_b;
1192	/* Disable all SA/B interrupts except for SA/B_INT in SIO_IEC. */
1193	ioc3->sio_iec &= ~ (SIO_IR_SA_TX_MT | SIO_IR_SA_RX_FULL |
1194			    SIO_IR_SA_RX_HIGH | SIO_IR_SA_RX_TIMER |
1195			    SIO_IR_SA_DELTA_DCD | SIO_IR_SA_DELTA_CTS |
1196			    SIO_IR_SA_TX_EXPLICIT | SIO_IR_SA_MEMERR);
1197	ioc3->sio_iec |= SIO_IR_SA_INT;
1198	ioc3->sscr_a = 0;
1199	ioc3->sio_iec &= ~ (SIO_IR_SB_TX_MT | SIO_IR_SB_RX_FULL |
1200			    SIO_IR_SB_RX_HIGH | SIO_IR_SB_RX_TIMER |
1201			    SIO_IR_SB_DELTA_DCD | SIO_IR_SB_DELTA_CTS |
1202			    SIO_IR_SB_TX_EXPLICIT | SIO_IR_SB_MEMERR);
1203	ioc3->sio_iec |= SIO_IR_SB_INT;
1204	ioc3->sscr_b = 0;
1205
1206	ioc3_8250_register(&ioc3->sregs.uarta);
1207	ioc3_8250_register(&ioc3->sregs.uartb);
1208}
1209#endif
1210
1211static const struct net_device_ops ioc3_netdev_ops = {
1212	.ndo_open		= ioc3_open,
1213	.ndo_stop		= ioc3_close,
1214	.ndo_start_xmit		= ioc3_start_xmit,
1215	.ndo_tx_timeout		= ioc3_timeout,
1216	.ndo_get_stats		= ioc3_get_stats,
1217	.ndo_set_rx_mode	= ioc3_set_multicast_list,
1218	.ndo_do_ioctl		= ioc3_ioctl,
1219	.ndo_validate_addr	= eth_validate_addr,
1220	.ndo_set_mac_address	= ioc3_set_mac_address,
1221};
1222
1223static int ioc3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1224{
1225	unsigned int sw_physid1, sw_physid2;
1226	struct net_device *dev = NULL;
1227	struct ioc3_private *ip;
1228	struct ioc3 *ioc3;
1229	unsigned long ioc3_base, ioc3_size;
1230	u32 vendor, model, rev;
1231	int err, pci_using_dac;
1232
1233	/* Configure DMA attributes. */
1234	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1235	if (!err) {
1236		pci_using_dac = 1;
1237		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1238		if (err < 0) {
1239			printk(KERN_ERR "%s: Unable to obtain 64 bit DMA "
1240			       "for consistent allocations\n", pci_name(pdev));
1241			goto out;
1242		}
1243	} else {
1244		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1245		if (err) {
1246			printk(KERN_ERR "%s: No usable DMA configuration, "
1247			       "aborting.\n", pci_name(pdev));
1248			goto out;
1249		}
1250		pci_using_dac = 0;
1251	}
1252
1253	if (pci_enable_device(pdev))
1254		return -ENODEV;
1255
1256	dev = alloc_etherdev(sizeof(struct ioc3_private));
1257	if (!dev) {
1258		err = -ENOMEM;
1259		goto out_disable;
1260	}
1261
1262	if (pci_using_dac)
1263		dev->features |= NETIF_F_HIGHDMA;
1264
1265	err = pci_request_regions(pdev, "ioc3");
1266	if (err)
1267		goto out_free;
1268
1269	SET_NETDEV_DEV(dev, &pdev->dev);
1270
1271	ip = netdev_priv(dev);
1272	ip->dev = dev;
 
 
 
 
 
1273
1274	dev->irq = pdev->irq;
 
 
 
 
1275
1276	ioc3_base = pci_resource_start(pdev, 0);
1277	ioc3_size = pci_resource_len(pdev, 0);
1278	ioc3 = (struct ioc3 *) ioremap(ioc3_base, ioc3_size);
1279	if (!ioc3) {
1280		printk(KERN_CRIT "ioc3eth(%s): ioremap failed, goodbye.\n",
1281		       pci_name(pdev));
1282		err = -ENOMEM;
1283		goto out_res;
1284	}
1285	ip->regs = ioc3;
1286
1287#ifdef CONFIG_SERIAL_8250
1288	ioc3_serial_probe(pdev, ioc3);
1289#endif
 
 
 
1290
1291	spin_lock_init(&ip->ioc3_lock);
1292	timer_setup(&ip->ioc3_timer, ioc3_timer, 0);
1293
1294	ioc3_stop(ip);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1295	ioc3_init(dev);
1296
1297	ip->pdev = pdev;
1298
1299	ip->mii.phy_id_mask = 0x1f;
1300	ip->mii.reg_num_mask = 0x1f;
1301	ip->mii.dev = dev;
1302	ip->mii.mdio_read = ioc3_mdio_read;
1303	ip->mii.mdio_write = ioc3_mdio_write;
1304
1305	ioc3_mii_init(ip);
1306
1307	if (ip->mii.phy_id == -1) {
1308		printk(KERN_CRIT "ioc3-eth(%s): Didn't find a PHY, goodbye.\n",
1309		       pci_name(pdev));
1310		err = -ENODEV;
1311		goto out_stop;
1312	}
1313
1314	ioc3_mii_start(ip);
1315	ioc3_ssram_disc(ip);
1316	ioc3_get_eaddr(ip);
1317
1318	/* The IOC3-specific entries in the device structure. */
1319	dev->watchdog_timeo	= 5 * HZ;
1320	dev->netdev_ops		= &ioc3_netdev_ops;
1321	dev->ethtool_ops	= &ioc3_ethtool_ops;
1322	dev->hw_features	= NETIF_F_IP_CSUM | NETIF_F_RXCSUM;
1323	dev->features		= NETIF_F_IP_CSUM;
1324
1325	sw_physid1 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID1);
1326	sw_physid2 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID2);
1327
1328	err = register_netdev(dev);
1329	if (err)
1330		goto out_stop;
1331
1332	mii_check_media(&ip->mii, 1, 1);
1333	ioc3_setup_duplex(ip);
1334
1335	vendor = (sw_physid1 << 12) | (sw_physid2 >> 4);
1336	model  = (sw_physid2 >> 4) & 0x3f;
1337	rev    = sw_physid2 & 0xf;
1338	printk(KERN_INFO "%s: Using PHY %d, vendor 0x%x, model %d, "
1339	       "rev %d.\n", dev->name, ip->mii.phy_id, vendor, model, rev);
1340	printk(KERN_INFO "%s: IOC3 SSRAM has %d kbyte.\n", dev->name,
1341	       ip->emcr & EMCR_BUFSIZ ? 128 : 64);
1342
1343	return 0;
1344
1345out_stop:
1346	ioc3_stop(ip);
1347	del_timer_sync(&ip->ioc3_timer);
1348	ioc3_free_rings(ip);
1349out_res:
1350	pci_release_regions(pdev);
 
 
 
1351out_free:
1352	free_netdev(dev);
1353out_disable:
1354	/*
1355	 * We should call pci_disable_device(pdev); here if the IOC3 wasn't
1356	 * such a weird device ...
1357	 */
1358out:
1359	return err;
1360}
1361
1362static void ioc3_remove_one(struct pci_dev *pdev)
1363{
1364	struct net_device *dev = pci_get_drvdata(pdev);
1365	struct ioc3_private *ip = netdev_priv(dev);
1366	struct ioc3 *ioc3 = ip->regs;
 
 
1367
1368	unregister_netdev(dev);
1369	del_timer_sync(&ip->ioc3_timer);
1370
1371	iounmap(ioc3);
1372	pci_release_regions(pdev);
1373	free_netdev(dev);
1374	/*
1375	 * We should call pci_disable_device(pdev); here if the IOC3 wasn't
1376	 * such a weird device ...
1377	 */
1378}
1379
1380static const struct pci_device_id ioc3_pci_tbl[] = {
1381	{ PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_IOC3, PCI_ANY_ID, PCI_ANY_ID },
1382	{ 0 }
1383};
1384MODULE_DEVICE_TABLE(pci, ioc3_pci_tbl);
1385
1386static struct pci_driver ioc3_driver = {
1387	.name		= "ioc3-eth",
1388	.id_table	= ioc3_pci_tbl,
1389	.probe		= ioc3_probe,
1390	.remove		= ioc3_remove_one,
1391};
1392
1393static int ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev)
1394{
 
 
1395	unsigned long data;
1396	struct ioc3_private *ip = netdev_priv(dev);
1397	struct ioc3 *ioc3 = ip->regs;
1398	unsigned int len;
1399	struct ioc3_etxd *desc;
1400	uint32_t w0 = 0;
1401	int produce;
 
1402
1403	/*
1404	 * IOC3 has a fairly simple minded checksumming hardware which simply
1405	 * adds up the 1's complement checksum for the entire packet and
1406	 * inserts it at an offset which can be specified in the descriptor
1407	 * into the transmit packet.  This means we have to compensate for the
1408	 * MAC header which should not be summed and the TCP/UDP pseudo headers
1409	 * manually.
1410	 */
1411	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1412		const struct iphdr *ih = ip_hdr(skb);
1413		const int proto = ntohs(ih->protocol);
1414		unsigned int csoff;
1415		uint32_t csum, ehsum;
1416		uint16_t *eh;
1417
1418		/* The MAC header.  skb->mac seem the logic approach
1419		   to find the MAC header - except it's a NULL pointer ...  */
1420		eh = (uint16_t *) skb->data;
 
1421
1422		/* Sum up dest addr, src addr and protocol  */
1423		ehsum = eh[0] + eh[1] + eh[2] + eh[3] + eh[4] + eh[5] + eh[6];
1424
1425		/* Fold ehsum.  can't use csum_fold which negates also ...  */
1426		ehsum = (ehsum & 0xffff) + (ehsum >> 16);
1427		ehsum = (ehsum & 0xffff) + (ehsum >> 16);
1428
1429		/* Skip IP header; it's sum is always zero and was
1430		   already filled in by ip_output.c */
 
1431		csum = csum_tcpudp_nofold(ih->saddr, ih->daddr,
1432		                          ih->tot_len - (ih->ihl << 2),
1433		                          proto, 0xffff ^ ehsum);
1434
1435		csum = (csum & 0xffff) + (csum >> 16);	/* Fold again */
1436		csum = (csum & 0xffff) + (csum >> 16);
1437
1438		csoff = ETH_HLEN + (ih->ihl << 2);
1439		if (proto == IPPROTO_UDP) {
1440			csoff += offsetof(struct udphdr, check);
1441			udp_hdr(skb)->check = csum;
1442		}
1443		if (proto == IPPROTO_TCP) {
1444			csoff += offsetof(struct tcphdr, check);
1445			tcp_hdr(skb)->check = csum;
1446		}
1447
1448		w0 = ETXD_DOCHECKSUM | (csoff << ETXD_CHKOFF_SHIFT);
1449	}
1450
1451	spin_lock_irq(&ip->ioc3_lock);
1452
1453	data = (unsigned long) skb->data;
1454	len = skb->len;
1455
1456	produce = ip->tx_pi;
1457	desc = &ip->txr[produce];
1458
1459	if (len <= 104) {
1460		/* Short packet, let's copy it directly into the ring.  */
1461		skb_copy_from_linear_data(skb, desc->data, skb->len);
1462		if (len < ETH_ZLEN) {
1463			/* Very short packet, pad with zeros at the end. */
1464			memset(desc->data + len, 0, ETH_ZLEN - len);
1465			len = ETH_ZLEN;
1466		}
1467		desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_D0V | w0);
1468		desc->bufcnt = cpu_to_be32(len);
1469	} else if ((data ^ (data + len - 1)) & 0x4000) {
1470		unsigned long b2 = (data | 0x3fffUL) + 1UL;
1471		unsigned long s1 = b2 - data;
1472		unsigned long s2 = data + len - b2;
 
1473
1474		desc->cmd    = cpu_to_be32(len | ETXD_INTWHENDONE |
1475		                           ETXD_B1V | ETXD_B2V | w0);
1476		desc->bufcnt = cpu_to_be32((s1 << ETXD_B1CNT_SHIFT) |
1477		                           (s2 << ETXD_B2CNT_SHIFT));
1478		desc->p1     = cpu_to_be64(ioc3_map(skb->data, 1));
1479		desc->p2     = cpu_to_be64(ioc3_map((void *) b2, 1));
 
 
 
 
 
 
 
 
1480	} else {
 
 
1481		/* Normal sized packet that doesn't cross a page boundary. */
1482		desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_B1V | w0);
1483		desc->bufcnt = cpu_to_be32(len << ETXD_B1CNT_SHIFT);
1484		desc->p1     = cpu_to_be64(ioc3_map(skb->data, 1));
 
 
 
1485	}
1486
1487	BARRIER();
1488
1489	ip->tx_skbs[produce] = skb;			/* Remember skb */
1490	produce = (produce + 1) & 127;
1491	ip->tx_pi = produce;
1492	ioc3_w_etpir(produce << 7);			/* Fire ... */
1493
1494	ip->txqlen++;
1495
1496	if (ip->txqlen >= 127)
1497		netif_stop_queue(dev);
1498
1499	spin_unlock_irq(&ip->ioc3_lock);
1500
1501	return NETDEV_TX_OK;
 
 
 
 
 
 
 
 
1502}
1503
1504static void ioc3_timeout(struct net_device *dev)
1505{
1506	struct ioc3_private *ip = netdev_priv(dev);
1507
1508	printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
1509
1510	spin_lock_irq(&ip->ioc3_lock);
1511
1512	ioc3_stop(ip);
 
 
 
1513	ioc3_init(dev);
 
 
 
 
 
 
1514	ioc3_mii_init(ip);
1515	ioc3_mii_start(ip);
1516
1517	spin_unlock_irq(&ip->ioc3_lock);
1518
1519	netif_wake_queue(dev);
1520}
1521
1522/*
1523 * Given a multicast ethernet address, this routine calculates the
1524 * address's bit index in the logical address filter mask
1525 */
1526
1527static inline unsigned int ioc3_hash(const unsigned char *addr)
1528{
1529	unsigned int temp = 0;
 
1530	u32 crc;
1531	int bits;
1532
1533	crc = ether_crc_le(ETH_ALEN, addr);
1534
1535	crc &= 0x3f;    /* bit reverse lowest 6 bits for hash index */
1536	for (bits = 6; --bits >= 0; ) {
1537		temp <<= 1;
1538		temp |= (crc & 0x1);
1539		crc >>= 1;
1540	}
1541
1542	return temp;
1543}
1544
1545static void ioc3_get_drvinfo (struct net_device *dev,
1546	struct ethtool_drvinfo *info)
1547{
1548	struct ioc3_private *ip = netdev_priv(dev);
1549
1550	strlcpy(info->driver, IOC3_NAME, sizeof(info->driver));
1551	strlcpy(info->version, IOC3_VERSION, sizeof(info->version));
1552	strlcpy(info->bus_info, pci_name(ip->pdev), sizeof(info->bus_info));
1553}
1554
1555static int ioc3_get_link_ksettings(struct net_device *dev,
1556				   struct ethtool_link_ksettings *cmd)
1557{
1558	struct ioc3_private *ip = netdev_priv(dev);
1559
1560	spin_lock_irq(&ip->ioc3_lock);
1561	mii_ethtool_get_link_ksettings(&ip->mii, cmd);
1562	spin_unlock_irq(&ip->ioc3_lock);
1563
1564	return 0;
1565}
1566
1567static int ioc3_set_link_ksettings(struct net_device *dev,
1568				   const struct ethtool_link_ksettings *cmd)
1569{
1570	struct ioc3_private *ip = netdev_priv(dev);
1571	int rc;
1572
1573	spin_lock_irq(&ip->ioc3_lock);
1574	rc = mii_ethtool_set_link_ksettings(&ip->mii, cmd);
1575	spin_unlock_irq(&ip->ioc3_lock);
1576
1577	return rc;
1578}
1579
1580static int ioc3_nway_reset(struct net_device *dev)
1581{
1582	struct ioc3_private *ip = netdev_priv(dev);
1583	int rc;
1584
1585	spin_lock_irq(&ip->ioc3_lock);
1586	rc = mii_nway_restart(&ip->mii);
1587	spin_unlock_irq(&ip->ioc3_lock);
1588
1589	return rc;
1590}
1591
1592static u32 ioc3_get_link(struct net_device *dev)
1593{
1594	struct ioc3_private *ip = netdev_priv(dev);
1595	int rc;
1596
1597	spin_lock_irq(&ip->ioc3_lock);
1598	rc = mii_link_ok(&ip->mii);
1599	spin_unlock_irq(&ip->ioc3_lock);
1600
1601	return rc;
1602}
1603
1604static const struct ethtool_ops ioc3_ethtool_ops = {
1605	.get_drvinfo		= ioc3_get_drvinfo,
1606	.nway_reset		= ioc3_nway_reset,
1607	.get_link		= ioc3_get_link,
1608	.get_link_ksettings	= ioc3_get_link_ksettings,
1609	.set_link_ksettings	= ioc3_set_link_ksettings,
1610};
1611
1612static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1613{
1614	struct ioc3_private *ip = netdev_priv(dev);
1615	int rc;
1616
1617	spin_lock_irq(&ip->ioc3_lock);
1618	rc = generic_mii_ioctl(&ip->mii, if_mii(rq), cmd, NULL);
1619	spin_unlock_irq(&ip->ioc3_lock);
1620
1621	return rc;
1622}
1623
1624static void ioc3_set_multicast_list(struct net_device *dev)
1625{
 
 
1626	struct netdev_hw_addr *ha;
1627	struct ioc3_private *ip = netdev_priv(dev);
1628	struct ioc3 *ioc3 = ip->regs;
1629	u64 ehar = 0;
1630
1631	netif_stop_queue(dev);				/* Lock out others. */
1632
1633	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous.  */
1634		ip->emcr |= EMCR_PROMISC;
1635		ioc3_w_emcr(ip->emcr);
1636		(void) ioc3_r_emcr();
1637	} else {
1638		ip->emcr &= ~EMCR_PROMISC;
1639		ioc3_w_emcr(ip->emcr);			/* Clear promiscuous. */
1640		(void) ioc3_r_emcr();
1641
1642		if ((dev->flags & IFF_ALLMULTI) ||
1643		    (netdev_mc_count(dev) > 64)) {
1644			/* Too many for hashing to make sense or we want all
1645			   multicast packets anyway,  so skip computing all the
1646			   hashes and just accept all packets.  */
 
1647			ip->ehar_h = 0xffffffff;
1648			ip->ehar_l = 0xffffffff;
1649		} else {
1650			netdev_for_each_mc_addr(ha, dev) {
1651				ehar |= (1UL << ioc3_hash(ha->addr));
1652			}
1653			ip->ehar_h = ehar >> 32;
1654			ip->ehar_l = ehar & 0xffffffff;
1655		}
1656		ioc3_w_ehar_h(ip->ehar_h);
1657		ioc3_w_ehar_l(ip->ehar_l);
1658	}
1659
1660	netif_wake_queue(dev);			/* Let us get going again. */
1661}
1662
1663module_pci_driver(ioc3_driver);
 
 
 
 
 
 
 
 
 
1664MODULE_AUTHOR("Ralf Baechle <ralf@linux-mips.org>");
1665MODULE_DESCRIPTION("SGI IOC3 Ethernet driver");
1666MODULE_LICENSE("GPL");