Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
   2/* QLogic qede NIC Driver
   3 * Copyright (c) 2015-2017  QLogic Corporation
   4 * Copyright (c) 2019-2020 Marvell International Ltd.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6
   7#include <linux/netdevice.h>
   8#include <linux/etherdevice.h>
   9#include <linux/skbuff.h>
  10#include <linux/bpf_trace.h>
  11#include <net/udp_tunnel.h>
  12#include <linux/ip.h>
  13#include <net/gro.h>
  14#include <net/ipv6.h>
  15#include <net/tcp.h>
  16#include <linux/if_ether.h>
  17#include <linux/if_vlan.h>
  18#include <net/ip6_checksum.h>
  19#include "qede_ptp.h"
  20
  21#include <linux/qed/qed_if.h>
  22#include "qede.h"
  23/*********************************
  24 * Content also used by slowpath *
  25 *********************************/
  26
  27int qede_alloc_rx_buffer(struct qede_rx_queue *rxq, bool allow_lazy)
  28{
  29	struct sw_rx_data *sw_rx_data;
  30	struct eth_rx_bd *rx_bd;
  31	dma_addr_t mapping;
  32	struct page *data;
  33
  34	/* In case lazy-allocation is allowed, postpone allocation until the
  35	 * end of the NAPI run. We'd still need to make sure the Rx ring has
  36	 * sufficient buffers to guarantee an additional Rx interrupt.
  37	 */
  38	if (allow_lazy && likely(rxq->filled_buffers > 12)) {
  39		rxq->filled_buffers--;
  40		return 0;
  41	}
  42
  43	data = alloc_pages(GFP_ATOMIC, 0);
  44	if (unlikely(!data))
  45		return -ENOMEM;
  46
  47	/* Map the entire page as it would be used
  48	 * for multiple RX buffer segment size mapping.
  49	 */
  50	mapping = dma_map_page(rxq->dev, data, 0,
  51			       PAGE_SIZE, rxq->data_direction);
  52	if (unlikely(dma_mapping_error(rxq->dev, mapping))) {
  53		__free_page(data);
  54		return -ENOMEM;
  55	}
  56
  57	sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
  58	sw_rx_data->page_offset = 0;
  59	sw_rx_data->data = data;
  60	sw_rx_data->mapping = mapping;
  61
  62	/* Advance PROD and get BD pointer */
  63	rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
  64	WARN_ON(!rx_bd);
  65	rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
  66	rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping) +
  67				     rxq->rx_headroom);
  68
  69	rxq->sw_rx_prod++;
  70	rxq->filled_buffers++;
  71
  72	return 0;
  73}
  74
  75/* Unmap the data and free skb */
  76int qede_free_tx_pkt(struct qede_dev *edev, struct qede_tx_queue *txq, int *len)
  77{
  78	u16 idx = txq->sw_tx_cons;
  79	struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb;
  80	struct eth_tx_1st_bd *first_bd;
  81	struct eth_tx_bd *tx_data_bd;
  82	int bds_consumed = 0;
  83	int nbds;
  84	bool data_split = txq->sw_tx_ring.skbs[idx].flags & QEDE_TSO_SPLIT_BD;
  85	int i, split_bd_len = 0;
  86
  87	if (unlikely(!skb)) {
  88		DP_ERR(edev,
  89		       "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
  90		       idx, txq->sw_tx_cons, txq->sw_tx_prod);
  91		return -1;
  92	}
  93
  94	*len = skb->len;
  95
  96	first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
  97
  98	bds_consumed++;
  99
 100	nbds = first_bd->data.nbds;
 101
 102	if (data_split) {
 103		struct eth_tx_bd *split = (struct eth_tx_bd *)
 104			qed_chain_consume(&txq->tx_pbl);
 105		split_bd_len = BD_UNMAP_LEN(split);
 106		bds_consumed++;
 107	}
 108	dma_unmap_single(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
 109			 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
 110
 111	/* Unmap the data of the skb frags */
 112	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
 113		tx_data_bd = (struct eth_tx_bd *)
 114			qed_chain_consume(&txq->tx_pbl);
 115		dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
 116			       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
 117	}
 118
 119	while (bds_consumed++ < nbds)
 120		qed_chain_consume(&txq->tx_pbl);
 121
 122	/* Free skb */
 123	dev_kfree_skb_any(skb);
 124	txq->sw_tx_ring.skbs[idx].skb = NULL;
 125	txq->sw_tx_ring.skbs[idx].flags = 0;
 126
 127	return 0;
 128}
 129
 130/* Unmap the data and free skb when mapping failed during start_xmit */
 131static void qede_free_failed_tx_pkt(struct qede_tx_queue *txq,
 132				    struct eth_tx_1st_bd *first_bd,
 133				    int nbd, bool data_split)
 134{
 135	u16 idx = txq->sw_tx_prod;
 136	struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb;
 137	struct eth_tx_bd *tx_data_bd;
 138	int i, split_bd_len = 0;
 139
 140	/* Return prod to its position before this skb was handled */
 141	qed_chain_set_prod(&txq->tx_pbl,
 142			   le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
 143
 144	first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
 145
 146	if (data_split) {
 147		struct eth_tx_bd *split = (struct eth_tx_bd *)
 148					  qed_chain_produce(&txq->tx_pbl);
 149		split_bd_len = BD_UNMAP_LEN(split);
 150		nbd--;
 151	}
 152
 153	dma_unmap_single(txq->dev, BD_UNMAP_ADDR(first_bd),
 154			 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
 155
 156	/* Unmap the data of the skb frags */
 157	for (i = 0; i < nbd; i++) {
 158		tx_data_bd = (struct eth_tx_bd *)
 159			qed_chain_produce(&txq->tx_pbl);
 160		if (tx_data_bd->nbytes)
 161			dma_unmap_page(txq->dev,
 162				       BD_UNMAP_ADDR(tx_data_bd),
 163				       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
 164	}
 165
 166	/* Return again prod to its position before this skb was handled */
 167	qed_chain_set_prod(&txq->tx_pbl,
 168			   le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
 169
 170	/* Free skb */
 171	dev_kfree_skb_any(skb);
 172	txq->sw_tx_ring.skbs[idx].skb = NULL;
 173	txq->sw_tx_ring.skbs[idx].flags = 0;
 174}
 175
 176static u32 qede_xmit_type(struct sk_buff *skb, int *ipv6_ext)
 177{
 178	u32 rc = XMIT_L4_CSUM;
 179	__be16 l3_proto;
 180
 181	if (skb->ip_summed != CHECKSUM_PARTIAL)
 182		return XMIT_PLAIN;
 183
 184	l3_proto = vlan_get_protocol(skb);
 185	if (l3_proto == htons(ETH_P_IPV6) &&
 186	    (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
 187		*ipv6_ext = 1;
 188
 189	if (skb->encapsulation) {
 190		rc |= XMIT_ENC;
 191		if (skb_is_gso(skb)) {
 192			unsigned short gso_type = skb_shinfo(skb)->gso_type;
 193
 194			if ((gso_type & SKB_GSO_UDP_TUNNEL_CSUM) ||
 195			    (gso_type & SKB_GSO_GRE_CSUM))
 196				rc |= XMIT_ENC_GSO_L4_CSUM;
 197
 198			rc |= XMIT_LSO;
 199			return rc;
 200		}
 201	}
 202
 203	if (skb_is_gso(skb))
 204		rc |= XMIT_LSO;
 205
 206	return rc;
 207}
 208
 209static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
 210					 struct eth_tx_2nd_bd *second_bd,
 211					 struct eth_tx_3rd_bd *third_bd)
 212{
 213	u8 l4_proto;
 214	u16 bd2_bits1 = 0, bd2_bits2 = 0;
 215
 216	bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
 217
 218	bd2_bits2 |= ((skb_transport_offset(skb) >> 1) &
 219		     ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
 220		    << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
 221
 222	bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
 223		      ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
 224
 225	if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
 226		l4_proto = ipv6_hdr(skb)->nexthdr;
 227	else
 228		l4_proto = ip_hdr(skb)->protocol;
 229
 230	if (l4_proto == IPPROTO_UDP)
 231		bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
 232
 233	if (third_bd)
 234		third_bd->data.bitfields |=
 235			cpu_to_le16(((tcp_hdrlen(skb) / 4) &
 236				ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
 237				ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
 238
 239	second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
 240	second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
 241}
 242
 243static int map_frag_to_bd(struct qede_tx_queue *txq,
 244			  skb_frag_t *frag, struct eth_tx_bd *bd)
 245{
 246	dma_addr_t mapping;
 247
 248	/* Map skb non-linear frag data for DMA */
 249	mapping = skb_frag_dma_map(txq->dev, frag, 0,
 250				   skb_frag_size(frag), DMA_TO_DEVICE);
 251	if (unlikely(dma_mapping_error(txq->dev, mapping)))
 252		return -ENOMEM;
 253
 254	/* Setup the data pointer of the frag data */
 255	BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
 256
 257	return 0;
 258}
 259
 260static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt)
 261{
 262	if (is_encap_pkt)
 263		return skb_inner_tcp_all_headers(skb);
 264
 265	return skb_tcp_all_headers(skb);
 
 
 266}
 267
 268/* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
 269#if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
 270static bool qede_pkt_req_lin(struct sk_buff *skb, u8 xmit_type)
 271{
 272	int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
 273
 274	if (xmit_type & XMIT_LSO) {
 275		int hlen;
 276
 277		hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC);
 278
 279		/* linear payload would require its own BD */
 280		if (skb_headlen(skb) > hlen)
 281			allowed_frags--;
 282	}
 283
 284	return (skb_shinfo(skb)->nr_frags > allowed_frags);
 285}
 286#endif
 287
 288static inline void qede_update_tx_producer(struct qede_tx_queue *txq)
 289{
 290	/* wmb makes sure that the BDs data is updated before updating the
 291	 * producer, otherwise FW may read old data from the BDs.
 292	 */
 293	wmb();
 294	barrier();
 295	writel(txq->tx_db.raw, txq->doorbell_addr);
 296
 297	/* Fence required to flush the write combined buffer, since another
 298	 * CPU may write to the same doorbell address and data may be lost
 299	 * due to relaxed order nature of write combined bar.
 300	 */
 301	wmb();
 302}
 303
 304static int qede_xdp_xmit(struct qede_tx_queue *txq, dma_addr_t dma, u16 pad,
 305			 u16 len, struct page *page, struct xdp_frame *xdpf)
 306{
 307	struct eth_tx_1st_bd *bd;
 308	struct sw_tx_xdp *xdp;
 
 309	u16 val;
 310
 311	if (unlikely(qed_chain_get_elem_used(&txq->tx_pbl) >=
 312		     txq->num_tx_buffers)) {
 313		txq->stopped_cnt++;
 314		return -ENOMEM;
 315	}
 316
 317	bd = qed_chain_produce(&txq->tx_pbl);
 318	bd->data.nbds = 1;
 319	bd->data.bd_flags.bitfields = BIT(ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT);
 
 
 320
 321	val = (len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
 322	       ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
 323
 324	bd->data.bitfields = cpu_to_le16(val);
 
 325
 326	/* We can safely ignore the offset, as it's 0 for XDP */
 327	BD_SET_UNMAP_ADDR_LEN(bd, dma + pad, len);
 328
 329	xdp = txq->sw_tx_ring.xdp + txq->sw_tx_prod;
 330	xdp->mapping = dma;
 331	xdp->page = page;
 332	xdp->xdpf = xdpf;
 
 
 333
 
 
 334	txq->sw_tx_prod = (txq->sw_tx_prod + 1) % txq->num_tx_buffers;
 335
 336	return 0;
 337}
 338
 339int qede_xdp_transmit(struct net_device *dev, int n_frames,
 340		      struct xdp_frame **frames, u32 flags)
 341{
 342	struct qede_dev *edev = netdev_priv(dev);
 343	struct device *dmadev = &edev->pdev->dev;
 344	struct qede_tx_queue *xdp_tx;
 345	struct xdp_frame *xdpf;
 346	dma_addr_t mapping;
 347	int i, nxmit = 0;
 348	u16 xdp_prod;
 349
 350	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
 351		return -EINVAL;
 352
 353	if (unlikely(!netif_running(dev)))
 354		return -ENETDOWN;
 355
 356	i = smp_processor_id() % edev->total_xdp_queues;
 357	xdp_tx = edev->fp_array[i].xdp_tx;
 358
 359	spin_lock(&xdp_tx->xdp_tx_lock);
 360
 361	for (i = 0; i < n_frames; i++) {
 362		xdpf = frames[i];
 363
 364		mapping = dma_map_single(dmadev, xdpf->data, xdpf->len,
 365					 DMA_TO_DEVICE);
 366		if (unlikely(dma_mapping_error(dmadev, mapping)))
 367			break;
 368
 369		if (unlikely(qede_xdp_xmit(xdp_tx, mapping, 0, xdpf->len,
 370					   NULL, xdpf)))
 371			break;
 372		nxmit++;
 373	}
 374
 375	if (flags & XDP_XMIT_FLUSH) {
 376		xdp_prod = qed_chain_get_prod_idx(&xdp_tx->tx_pbl);
 377
 378		xdp_tx->tx_db.data.bd_prod = cpu_to_le16(xdp_prod);
 379		qede_update_tx_producer(xdp_tx);
 380	}
 381
 382	spin_unlock(&xdp_tx->xdp_tx_lock);
 383
 384	return nxmit;
 385}
 386
 387int qede_txq_has_work(struct qede_tx_queue *txq)
 388{
 389	u16 hw_bd_cons;
 390
 391	/* Tell compiler that consumer and producer can change */
 392	barrier();
 393	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
 394	if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
 395		return 0;
 396
 397	return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
 398}
 399
 400static void qede_xdp_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
 401{
 402	struct sw_tx_xdp *xdp_info, *xdp_arr = txq->sw_tx_ring.xdp;
 403	struct device *dev = &edev->pdev->dev;
 404	struct xdp_frame *xdpf;
 405	u16 hw_bd_cons;
 406
 407	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
 408	barrier();
 409
 410	while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
 411		xdp_info = xdp_arr + txq->sw_tx_cons;
 412		xdpf = xdp_info->xdpf;
 413
 414		if (xdpf) {
 415			dma_unmap_single(dev, xdp_info->mapping, xdpf->len,
 416					 DMA_TO_DEVICE);
 417			xdp_return_frame(xdpf);
 418
 419			xdp_info->xdpf = NULL;
 420		} else {
 421			dma_unmap_page(dev, xdp_info->mapping, PAGE_SIZE,
 422				       DMA_BIDIRECTIONAL);
 423			__free_page(xdp_info->page);
 424		}
 425
 426		qed_chain_consume(&txq->tx_pbl);
 427		txq->sw_tx_cons = (txq->sw_tx_cons + 1) % txq->num_tx_buffers;
 428		txq->xmit_pkts++;
 429	}
 430}
 431
 432static int qede_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
 433{
 434	unsigned int pkts_compl = 0, bytes_compl = 0;
 435	struct netdev_queue *netdev_txq;
 436	u16 hw_bd_cons;
 
 437	int rc;
 438
 439	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
 440
 441	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
 442	barrier();
 443
 444	while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
 445		int len = 0;
 446
 447		rc = qede_free_tx_pkt(edev, txq, &len);
 448		if (rc) {
 449			DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
 450				  hw_bd_cons,
 451				  qed_chain_get_cons_idx(&txq->tx_pbl));
 452			break;
 453		}
 454
 455		bytes_compl += len;
 456		pkts_compl++;
 457		txq->sw_tx_cons = (txq->sw_tx_cons + 1) % txq->num_tx_buffers;
 458		txq->xmit_pkts++;
 459	}
 460
 461	netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
 462
 463	/* Need to make the tx_bd_cons update visible to start_xmit()
 464	 * before checking for netif_tx_queue_stopped().  Without the
 465	 * memory barrier, there is a small possibility that
 466	 * start_xmit() will miss it and cause the queue to be stopped
 467	 * forever.
 468	 * On the other hand we need an rmb() here to ensure the proper
 469	 * ordering of bit testing in the following
 470	 * netif_tx_queue_stopped(txq) call.
 471	 */
 472	smp_mb();
 473
 474	if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
 475		/* Taking tx_lock is needed to prevent reenabling the queue
 476		 * while it's empty. This could have happen if rx_action() gets
 477		 * suspended in qede_tx_int() after the condition before
 478		 * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
 479		 *
 480		 * stops the queue->sees fresh tx_bd_cons->releases the queue->
 481		 * sends some packets consuming the whole queue again->
 482		 * stops the queue
 483		 */
 484
 485		__netif_tx_lock(netdev_txq, smp_processor_id());
 486
 487		if ((netif_tx_queue_stopped(netdev_txq)) &&
 488		    (edev->state == QEDE_STATE_OPEN) &&
 489		    (qed_chain_get_elem_left(&txq->tx_pbl)
 490		      >= (MAX_SKB_FRAGS + 1))) {
 491			netif_tx_wake_queue(netdev_txq);
 492			DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
 493				   "Wake queue was called\n");
 494		}
 495
 496		__netif_tx_unlock(netdev_txq);
 497	}
 498
 499	return 0;
 500}
 501
 502bool qede_has_rx_work(struct qede_rx_queue *rxq)
 503{
 504	u16 hw_comp_cons, sw_comp_cons;
 505
 506	/* Tell compiler that status block fields can change */
 507	barrier();
 508
 509	hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
 510	sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
 511
 512	return hw_comp_cons != sw_comp_cons;
 513}
 514
 515static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
 516{
 517	qed_chain_consume(&rxq->rx_bd_ring);
 518	rxq->sw_rx_cons++;
 519}
 520
 521/* This function reuses the buffer(from an offset) from
 522 * consumer index to producer index in the bd ring
 523 */
 524static inline void qede_reuse_page(struct qede_rx_queue *rxq,
 525				   struct sw_rx_data *curr_cons)
 526{
 527	struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
 528	struct sw_rx_data *curr_prod;
 529	dma_addr_t new_mapping;
 530
 531	curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
 532	*curr_prod = *curr_cons;
 533
 534	new_mapping = curr_prod->mapping + curr_prod->page_offset;
 535
 536	rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
 537	rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping) +
 538					  rxq->rx_headroom);
 539
 540	rxq->sw_rx_prod++;
 541	curr_cons->data = NULL;
 542}
 543
 544/* In case of allocation failures reuse buffers
 545 * from consumer index to produce buffers for firmware
 546 */
 547void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq, u8 count)
 548{
 549	struct sw_rx_data *curr_cons;
 550
 551	for (; count > 0; count--) {
 552		curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
 553		qede_reuse_page(rxq, curr_cons);
 554		qede_rx_bd_ring_consume(rxq);
 555	}
 556}
 557
 558static inline int qede_realloc_rx_buffer(struct qede_rx_queue *rxq,
 559					 struct sw_rx_data *curr_cons)
 560{
 561	/* Move to the next segment in the page */
 562	curr_cons->page_offset += rxq->rx_buf_seg_size;
 563
 564	if (curr_cons->page_offset == PAGE_SIZE) {
 565		if (unlikely(qede_alloc_rx_buffer(rxq, true))) {
 566			/* Since we failed to allocate new buffer
 567			 * current buffer can be used again.
 568			 */
 569			curr_cons->page_offset -= rxq->rx_buf_seg_size;
 570
 571			return -ENOMEM;
 572		}
 573
 574		dma_unmap_page(rxq->dev, curr_cons->mapping,
 575			       PAGE_SIZE, rxq->data_direction);
 576	} else {
 577		/* Increment refcount of the page as we don't want
 578		 * network stack to take the ownership of the page
 579		 * which can be recycled multiple times by the driver.
 580		 */
 581		page_ref_inc(curr_cons->data);
 582		qede_reuse_page(rxq, curr_cons);
 583	}
 584
 585	return 0;
 586}
 587
 588void qede_update_rx_prod(struct qede_dev *edev, struct qede_rx_queue *rxq)
 589{
 590	u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
 591	u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
 592	struct eth_rx_prod_data rx_prods = {0};
 593
 594	/* Update producers */
 595	rx_prods.bd_prod = cpu_to_le16(bd_prod);
 596	rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
 597
 598	/* Make sure that the BD and SGE data is updated before updating the
 599	 * producers since FW might read the BD/SGE right after the producer
 600	 * is updated.
 601	 */
 602	wmb();
 603
 604	internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
 605			(u32 *)&rx_prods);
 
 
 
 
 
 
 
 
 606}
 607
 608static void qede_get_rxhash(struct sk_buff *skb, u8 bitfields, __le32 rss_hash)
 609{
 610	enum pkt_hash_types hash_type = PKT_HASH_TYPE_NONE;
 611	enum rss_hash_type htype;
 612	u32 hash = 0;
 613
 614	htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
 615	if (htype) {
 616		hash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
 617			     (htype == RSS_HASH_TYPE_IPV6)) ?
 618			    PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
 619		hash = le32_to_cpu(rss_hash);
 620	}
 621	skb_set_hash(skb, hash, hash_type);
 622}
 623
 624static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
 625{
 626	skb_checksum_none_assert(skb);
 627
 628	if (csum_flag & QEDE_CSUM_UNNECESSARY)
 629		skb->ip_summed = CHECKSUM_UNNECESSARY;
 630
 631	if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY) {
 632		skb->csum_level = 1;
 633		skb->encapsulation = 1;
 634	}
 635}
 636
 637static inline void qede_skb_receive(struct qede_dev *edev,
 638				    struct qede_fastpath *fp,
 639				    struct qede_rx_queue *rxq,
 640				    struct sk_buff *skb, u16 vlan_tag)
 641{
 642	if (vlan_tag)
 643		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
 644
 645	napi_gro_receive(&fp->napi, skb);
 646}
 647
 648static void qede_set_gro_params(struct qede_dev *edev,
 649				struct sk_buff *skb,
 650				struct eth_fast_path_rx_tpa_start_cqe *cqe)
 651{
 652	u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
 653
 654	if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
 655	    PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
 656		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
 657	else
 658		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
 659
 660	skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
 661				    cqe->header_len;
 662}
 663
 664static int qede_fill_frag_skb(struct qede_dev *edev,
 665			      struct qede_rx_queue *rxq,
 666			      u8 tpa_agg_index, u16 len_on_bd)
 667{
 668	struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
 669							 NUM_RX_BDS_MAX];
 670	struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
 671	struct sk_buff *skb = tpa_info->skb;
 672
 673	if (unlikely(tpa_info->state != QEDE_AGG_STATE_START))
 674		goto out;
 675
 676	/* Add one frag and update the appropriate fields in the skb */
 677	skb_fill_page_desc(skb, tpa_info->frag_id++,
 678			   current_bd->data,
 679			   current_bd->page_offset + rxq->rx_headroom,
 680			   len_on_bd);
 681
 682	if (unlikely(qede_realloc_rx_buffer(rxq, current_bd))) {
 683		/* Incr page ref count to reuse on allocation failure
 684		 * so that it doesn't get freed while freeing SKB.
 685		 */
 686		page_ref_inc(current_bd->data);
 687		goto out;
 688	}
 689
 690	qede_rx_bd_ring_consume(rxq);
 
 691
 692	skb->data_len += len_on_bd;
 693	skb->truesize += rxq->rx_buf_seg_size;
 694	skb->len += len_on_bd;
 695
 696	return 0;
 697
 698out:
 699	tpa_info->state = QEDE_AGG_STATE_ERROR;
 700	qede_recycle_rx_bd_ring(rxq, 1);
 701
 702	return -ENOMEM;
 703}
 704
 705static bool qede_tunn_exist(u16 flag)
 706{
 707	return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
 708			  PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT));
 709}
 710
 711static u8 qede_check_tunn_csum(u16 flag)
 712{
 713	u16 csum_flag = 0;
 714	u8 tcsum = 0;
 715
 716	if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
 717		    PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT))
 718		csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
 719			     PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT;
 720
 721	if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
 722		    PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
 723		csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
 724			     PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
 725		tcsum = QEDE_TUNN_CSUM_UNNECESSARY;
 726	}
 727
 728	csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
 729		     PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT |
 730		     PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
 731		     PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
 732
 733	if (csum_flag & flag)
 734		return QEDE_CSUM_ERROR;
 735
 736	return QEDE_CSUM_UNNECESSARY | tcsum;
 737}
 738
 739static inline struct sk_buff *
 740qede_build_skb(struct qede_rx_queue *rxq,
 741	       struct sw_rx_data *bd, u16 len, u16 pad)
 742{
 743	struct sk_buff *skb;
 744	void *buf;
 745
 746	buf = page_address(bd->data) + bd->page_offset;
 747	skb = build_skb(buf, rxq->rx_buf_seg_size);
 748
 749	if (unlikely(!skb))
 750		return NULL;
 751
 752	skb_reserve(skb, pad);
 753	skb_put(skb, len);
 754
 755	return skb;
 756}
 757
 758static struct sk_buff *
 759qede_tpa_rx_build_skb(struct qede_dev *edev,
 760		      struct qede_rx_queue *rxq,
 761		      struct sw_rx_data *bd, u16 len, u16 pad,
 762		      bool alloc_skb)
 763{
 764	struct sk_buff *skb;
 765
 766	skb = qede_build_skb(rxq, bd, len, pad);
 767	bd->page_offset += rxq->rx_buf_seg_size;
 768
 769	if (bd->page_offset == PAGE_SIZE) {
 770		if (unlikely(qede_alloc_rx_buffer(rxq, true))) {
 771			DP_NOTICE(edev,
 772				  "Failed to allocate RX buffer for tpa start\n");
 773			bd->page_offset -= rxq->rx_buf_seg_size;
 774			page_ref_inc(bd->data);
 775			dev_kfree_skb_any(skb);
 776			return NULL;
 777		}
 778	} else {
 779		page_ref_inc(bd->data);
 780		qede_reuse_page(rxq, bd);
 781	}
 782
 783	/* We've consumed the first BD and prepared an SKB */
 784	qede_rx_bd_ring_consume(rxq);
 785
 786	return skb;
 787}
 788
 789static struct sk_buff *
 790qede_rx_build_skb(struct qede_dev *edev,
 791		  struct qede_rx_queue *rxq,
 792		  struct sw_rx_data *bd, u16 len, u16 pad)
 793{
 794	struct sk_buff *skb = NULL;
 795
 796	/* For smaller frames still need to allocate skb, memcpy
 797	 * data and benefit in reusing the page segment instead of
 798	 * un-mapping it.
 799	 */
 800	if ((len + pad <= edev->rx_copybreak)) {
 801		unsigned int offset = bd->page_offset + pad;
 802
 803		skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
 804		if (unlikely(!skb))
 805			return NULL;
 806
 807		skb_reserve(skb, pad);
 808		skb_put_data(skb, page_address(bd->data) + offset, len);
 809		qede_reuse_page(rxq, bd);
 810		goto out;
 811	}
 812
 813	skb = qede_build_skb(rxq, bd, len, pad);
 814
 815	if (unlikely(qede_realloc_rx_buffer(rxq, bd))) {
 816		/* Incr page ref count to reuse on allocation failure so
 817		 * that it doesn't get freed while freeing SKB [as its
 818		 * already mapped there].
 819		 */
 820		page_ref_inc(bd->data);
 821		dev_kfree_skb_any(skb);
 822		return NULL;
 823	}
 824out:
 825	/* We've consumed the first BD and prepared an SKB */
 826	qede_rx_bd_ring_consume(rxq);
 827
 828	return skb;
 829}
 830
 831static void qede_tpa_start(struct qede_dev *edev,
 832			   struct qede_rx_queue *rxq,
 833			   struct eth_fast_path_rx_tpa_start_cqe *cqe)
 834{
 835	struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
 
 
 
 
 836	struct sw_rx_data *sw_rx_data_cons;
 837	u16 pad;
 838
 839	sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
 840	pad = cqe->placement_offset + rxq->rx_headroom;
 
 
 
 
 
 
 
 
 
 
 
 841
 842	tpa_info->skb = qede_tpa_rx_build_skb(edev, rxq, sw_rx_data_cons,
 843					      le16_to_cpu(cqe->len_on_first_bd),
 844					      pad, false);
 845	tpa_info->buffer.page_offset = sw_rx_data_cons->page_offset;
 846	tpa_info->buffer.mapping = sw_rx_data_cons->mapping;
 
 
 
 847
 
 
 
 
 
 
 
 
 
 848	if (unlikely(!tpa_info->skb)) {
 849		DP_NOTICE(edev, "Failed to allocate SKB for gro\n");
 850
 851		/* Consume from ring but do not produce since
 852		 * this might be used by FW still, it will be re-used
 853		 * at TPA end.
 854		 */
 855		tpa_info->tpa_start_fail = true;
 856		qede_rx_bd_ring_consume(rxq);
 857		tpa_info->state = QEDE_AGG_STATE_ERROR;
 858		goto cons_buf;
 859	}
 860
 
 
 861	tpa_info->frag_id = 0;
 862	tpa_info->state = QEDE_AGG_STATE_START;
 863
 
 
 
 864	if ((le16_to_cpu(cqe->pars_flags.flags) >>
 865	     PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
 866	    PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
 867		tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
 868	else
 869		tpa_info->vlan_tag = 0;
 870
 871	qede_get_rxhash(tpa_info->skb, cqe->bitfields, cqe->rss_hash);
 872
 873	/* This is needed in order to enable forwarding support */
 874	qede_set_gro_params(edev, tpa_info->skb, cqe);
 875
 876cons_buf: /* We still need to handle bd_len_list to consume buffers */
 877	if (likely(cqe->bw_ext_bd_len_list[0]))
 878		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
 879				   le16_to_cpu(cqe->bw_ext_bd_len_list[0]));
 880
 881	if (unlikely(cqe->bw_ext_bd_len_list[1])) {
 882		DP_ERR(edev,
 883		       "Unlikely - got a TPA aggregation with more than one bw_ext_bd_len_list entry in the TPA start\n");
 884		tpa_info->state = QEDE_AGG_STATE_ERROR;
 885	}
 886}
 887
 888#ifdef CONFIG_INET
 889static void qede_gro_ip_csum(struct sk_buff *skb)
 890{
 891	const struct iphdr *iph = ip_hdr(skb);
 892	struct tcphdr *th;
 893
 894	skb_set_transport_header(skb, sizeof(struct iphdr));
 895	th = tcp_hdr(skb);
 896
 897	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
 898				  iph->saddr, iph->daddr, 0);
 899
 900	tcp_gro_complete(skb);
 901}
 902
 903static void qede_gro_ipv6_csum(struct sk_buff *skb)
 904{
 905	struct ipv6hdr *iph = ipv6_hdr(skb);
 906	struct tcphdr *th;
 907
 908	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
 909	th = tcp_hdr(skb);
 910
 911	th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
 912				  &iph->saddr, &iph->daddr, 0);
 913	tcp_gro_complete(skb);
 914}
 915#endif
 916
 917static void qede_gro_receive(struct qede_dev *edev,
 918			     struct qede_fastpath *fp,
 919			     struct sk_buff *skb,
 920			     u16 vlan_tag)
 921{
 922	/* FW can send a single MTU sized packet from gro flow
 923	 * due to aggregation timeout/last segment etc. which
 924	 * is not expected to be a gro packet. If a skb has zero
 925	 * frags then simply push it in the stack as non gso skb.
 926	 */
 927	if (unlikely(!skb->data_len)) {
 928		skb_shinfo(skb)->gso_type = 0;
 929		skb_shinfo(skb)->gso_size = 0;
 930		goto send_skb;
 931	}
 932
 933#ifdef CONFIG_INET
 934	if (skb_shinfo(skb)->gso_size) {
 935		skb_reset_network_header(skb);
 936
 937		switch (skb->protocol) {
 938		case htons(ETH_P_IP):
 939			qede_gro_ip_csum(skb);
 940			break;
 941		case htons(ETH_P_IPV6):
 942			qede_gro_ipv6_csum(skb);
 943			break;
 944		default:
 945			DP_ERR(edev,
 946			       "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
 947			       ntohs(skb->protocol));
 948		}
 949	}
 950#endif
 951
 952send_skb:
 953	skb_record_rx_queue(skb, fp->rxq->rxq_id);
 954	qede_skb_receive(edev, fp, fp->rxq, skb, vlan_tag);
 955}
 956
 957static inline void qede_tpa_cont(struct qede_dev *edev,
 958				 struct qede_rx_queue *rxq,
 959				 struct eth_fast_path_rx_tpa_cont_cqe *cqe)
 960{
 961	int i;
 962
 963	for (i = 0; cqe->len_list[i]; i++)
 964		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
 965				   le16_to_cpu(cqe->len_list[i]));
 966
 967	if (unlikely(i > 1))
 968		DP_ERR(edev,
 969		       "Strange - TPA cont with more than a single len_list entry\n");
 970}
 971
 972static int qede_tpa_end(struct qede_dev *edev,
 973			struct qede_fastpath *fp,
 974			struct eth_fast_path_rx_tpa_end_cqe *cqe)
 975{
 976	struct qede_rx_queue *rxq = fp->rxq;
 977	struct qede_agg_info *tpa_info;
 978	struct sk_buff *skb;
 979	int i;
 980
 981	tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
 982	skb = tpa_info->skb;
 983
 984	if (tpa_info->buffer.page_offset == PAGE_SIZE)
 985		dma_unmap_page(rxq->dev, tpa_info->buffer.mapping,
 986			       PAGE_SIZE, rxq->data_direction);
 987
 988	for (i = 0; cqe->len_list[i]; i++)
 989		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
 990				   le16_to_cpu(cqe->len_list[i]));
 991	if (unlikely(i > 1))
 992		DP_ERR(edev,
 993		       "Strange - TPA emd with more than a single len_list entry\n");
 994
 995	if (unlikely(tpa_info->state != QEDE_AGG_STATE_START))
 996		goto err;
 997
 998	/* Sanity */
 999	if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
1000		DP_ERR(edev,
1001		       "Strange - TPA had %02x BDs, but SKB has only %d frags\n",
1002		       cqe->num_of_bds, tpa_info->frag_id);
1003	if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
1004		DP_ERR(edev,
1005		       "Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
1006		       le16_to_cpu(cqe->total_packet_len), skb->len);
1007
 
 
 
 
 
1008	/* Finalize the SKB */
1009	skb->protocol = eth_type_trans(skb, edev->ndev);
1010	skb->ip_summed = CHECKSUM_UNNECESSARY;
1011
1012	/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
1013	 * to skb_shinfo(skb)->gso_segs
1014	 */
1015	NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
1016
1017	qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
1018
1019	tpa_info->state = QEDE_AGG_STATE_NONE;
1020
1021	return 1;
1022err:
1023	tpa_info->state = QEDE_AGG_STATE_NONE;
1024
1025	if (tpa_info->tpa_start_fail) {
1026		qede_reuse_page(rxq, &tpa_info->buffer);
1027		tpa_info->tpa_start_fail = false;
1028	}
1029
1030	dev_kfree_skb_any(tpa_info->skb);
1031	tpa_info->skb = NULL;
1032	return 0;
1033}
1034
1035static u8 qede_check_notunn_csum(u16 flag)
1036{
1037	u16 csum_flag = 0;
1038	u8 csum = 0;
1039
1040	if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1041		    PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1042		csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1043			     PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1044		csum = QEDE_CSUM_UNNECESSARY;
1045	}
1046
1047	csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1048		     PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1049
1050	if (csum_flag & flag)
1051		return QEDE_CSUM_ERROR;
1052
1053	return csum;
1054}
1055
1056static u8 qede_check_csum(u16 flag)
1057{
1058	if (!qede_tunn_exist(flag))
1059		return qede_check_notunn_csum(flag);
1060	else
1061		return qede_check_tunn_csum(flag);
1062}
1063
1064static bool qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe *cqe,
1065				      u16 flag)
1066{
1067	u8 tun_pars_flg = cqe->tunnel_pars_flags.flags;
1068
1069	if ((tun_pars_flg & (ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_MASK <<
1070			     ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_SHIFT)) ||
1071	    (flag & (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
1072		     PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT)))
1073		return true;
1074
1075	return false;
1076}
1077
1078/* Return true iff packet is to be passed to stack */
1079static bool qede_rx_xdp(struct qede_dev *edev,
1080			struct qede_fastpath *fp,
1081			struct qede_rx_queue *rxq,
1082			struct bpf_prog *prog,
1083			struct sw_rx_data *bd,
1084			struct eth_fast_path_rx_reg_cqe *cqe,
1085			u16 *data_offset, u16 *len)
1086{
1087	struct xdp_buff xdp;
1088	enum xdp_action act;
1089
1090	xdp_init_buff(&xdp, rxq->rx_buf_seg_size, &rxq->xdp_rxq);
1091	xdp_prepare_buff(&xdp, page_address(bd->data), *data_offset,
1092			 *len, false);
1093
 
 
 
 
 
 
 
1094	act = bpf_prog_run_xdp(prog, &xdp);
 
1095
1096	/* Recalculate, as XDP might have changed the headers */
1097	*data_offset = xdp.data - xdp.data_hard_start;
1098	*len = xdp.data_end - xdp.data;
1099
1100	if (act == XDP_PASS)
1101		return true;
1102
1103	/* Count number of packets not to be passed to stack */
1104	rxq->xdp_no_pass++;
1105
1106	switch (act) {
1107	case XDP_TX:
1108		/* We need the replacement buffer before transmit. */
1109		if (unlikely(qede_alloc_rx_buffer(rxq, true))) {
1110			qede_recycle_rx_bd_ring(rxq, 1);
1111
1112			trace_xdp_exception(edev->ndev, prog, act);
1113			break;
1114		}
1115
1116		/* Now if there's a transmission problem, we'd still have to
1117		 * throw current buffer, as replacement was already allocated.
1118		 */
1119		if (unlikely(qede_xdp_xmit(fp->xdp_tx, bd->mapping,
1120					   *data_offset, *len, bd->data,
1121					   NULL))) {
1122			dma_unmap_page(rxq->dev, bd->mapping, PAGE_SIZE,
1123				       rxq->data_direction);
1124			__free_page(bd->data);
1125
1126			trace_xdp_exception(edev->ndev, prog, act);
1127		} else {
1128			dma_sync_single_for_device(rxq->dev,
1129						   bd->mapping + *data_offset,
1130						   *len, rxq->data_direction);
1131			fp->xdp_xmit |= QEDE_XDP_TX;
1132		}
1133
1134		/* Regardless, we've consumed an Rx BD */
1135		qede_rx_bd_ring_consume(rxq);
1136		break;
1137	case XDP_REDIRECT:
1138		/* We need the replacement buffer before transmit. */
1139		if (unlikely(qede_alloc_rx_buffer(rxq, true))) {
1140			qede_recycle_rx_bd_ring(rxq, 1);
1141
1142			trace_xdp_exception(edev->ndev, prog, act);
1143			break;
1144		}
1145
1146		dma_unmap_page(rxq->dev, bd->mapping, PAGE_SIZE,
1147			       rxq->data_direction);
1148
1149		if (unlikely(xdp_do_redirect(edev->ndev, &xdp, prog)))
1150			DP_NOTICE(edev, "Failed to redirect the packet\n");
1151		else
1152			fp->xdp_xmit |= QEDE_XDP_REDIRECT;
1153
1154		qede_rx_bd_ring_consume(rxq);
1155		break;
1156	default:
1157		bpf_warn_invalid_xdp_action(edev->ndev, prog, act);
1158		fallthrough;
1159	case XDP_ABORTED:
1160		trace_xdp_exception(edev->ndev, prog, act);
1161		fallthrough;
1162	case XDP_DROP:
1163		qede_recycle_rx_bd_ring(rxq, cqe->bd_num);
1164	}
1165
1166	return false;
1167}
1168
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1169static int qede_rx_build_jumbo(struct qede_dev *edev,
1170			       struct qede_rx_queue *rxq,
1171			       struct sk_buff *skb,
1172			       struct eth_fast_path_rx_reg_cqe *cqe,
1173			       u16 first_bd_len)
1174{
1175	u16 pkt_len = le16_to_cpu(cqe->pkt_len);
1176	struct sw_rx_data *bd;
1177	u16 bd_cons_idx;
1178	u8 num_frags;
1179
1180	pkt_len -= first_bd_len;
1181
1182	/* We've already used one BD for the SKB. Now take care of the rest */
1183	for (num_frags = cqe->bd_num - 1; num_frags > 0; num_frags--) {
1184		u16 cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size :
1185		    pkt_len;
1186
1187		if (unlikely(!cur_size)) {
1188			DP_ERR(edev,
1189			       "Still got %d BDs for mapping jumbo, but length became 0\n",
1190			       num_frags);
1191			goto out;
1192		}
1193
1194		/* We need a replacement buffer for each BD */
1195		if (unlikely(qede_alloc_rx_buffer(rxq, true)))
1196			goto out;
1197
1198		/* Now that we've allocated the replacement buffer,
1199		 * we can safely consume the next BD and map it to the SKB.
1200		 */
1201		bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1202		bd = &rxq->sw_rx_ring[bd_cons_idx];
1203		qede_rx_bd_ring_consume(rxq);
1204
1205		dma_unmap_page(rxq->dev, bd->mapping,
1206			       PAGE_SIZE, DMA_FROM_DEVICE);
1207
1208		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, bd->data,
1209				rxq->rx_headroom, cur_size, PAGE_SIZE);
1210
 
 
 
1211		pkt_len -= cur_size;
1212	}
1213
1214	if (unlikely(pkt_len))
1215		DP_ERR(edev,
1216		       "Mapped all BDs of jumbo, but still have %d bytes\n",
1217		       pkt_len);
1218
1219out:
1220	return num_frags;
1221}
1222
1223static int qede_rx_process_tpa_cqe(struct qede_dev *edev,
1224				   struct qede_fastpath *fp,
1225				   struct qede_rx_queue *rxq,
1226				   union eth_rx_cqe *cqe,
1227				   enum eth_rx_cqe_type type)
1228{
1229	switch (type) {
1230	case ETH_RX_CQE_TYPE_TPA_START:
1231		qede_tpa_start(edev, rxq, &cqe->fast_path_tpa_start);
1232		return 0;
1233	case ETH_RX_CQE_TYPE_TPA_CONT:
1234		qede_tpa_cont(edev, rxq, &cqe->fast_path_tpa_cont);
1235		return 0;
1236	case ETH_RX_CQE_TYPE_TPA_END:
1237		return qede_tpa_end(edev, fp, &cqe->fast_path_tpa_end);
1238	default:
1239		return 0;
1240	}
1241}
1242
1243static int qede_rx_process_cqe(struct qede_dev *edev,
1244			       struct qede_fastpath *fp,
1245			       struct qede_rx_queue *rxq)
1246{
1247	struct bpf_prog *xdp_prog = READ_ONCE(rxq->xdp_prog);
1248	struct eth_fast_path_rx_reg_cqe *fp_cqe;
1249	u16 len, pad, bd_cons_idx, parse_flag;
1250	enum eth_rx_cqe_type cqe_type;
1251	union eth_rx_cqe *cqe;
1252	struct sw_rx_data *bd;
1253	struct sk_buff *skb;
1254	__le16 flags;
1255	u8 csum_flag;
1256
1257	/* Get the CQE from the completion ring */
1258	cqe = (union eth_rx_cqe *)qed_chain_consume(&rxq->rx_comp_ring);
1259	cqe_type = cqe->fast_path_regular.type;
1260
1261	/* Process an unlikely slowpath event */
1262	if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
1263		struct eth_slow_path_rx_cqe *sp_cqe;
1264
1265		sp_cqe = (struct eth_slow_path_rx_cqe *)cqe;
1266		edev->ops->eth_cqe_completion(edev->cdev, fp->id, sp_cqe);
1267		return 0;
1268	}
1269
1270	/* Handle TPA cqes */
1271	if (cqe_type != ETH_RX_CQE_TYPE_REGULAR)
1272		return qede_rx_process_tpa_cqe(edev, fp, rxq, cqe, cqe_type);
1273
1274	/* Get the data from the SW ring; Consume it only after it's evident
1275	 * we wouldn't recycle it.
1276	 */
1277	bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1278	bd = &rxq->sw_rx_ring[bd_cons_idx];
1279
1280	fp_cqe = &cqe->fast_path_regular;
1281	len = le16_to_cpu(fp_cqe->len_on_first_bd);
1282	pad = fp_cqe->placement_offset + rxq->rx_headroom;
1283
1284	/* Run eBPF program if one is attached */
1285	if (xdp_prog)
1286		if (!qede_rx_xdp(edev, fp, rxq, xdp_prog, bd, fp_cqe,
1287				 &pad, &len))
1288			return 0;
1289
1290	/* If this is an error packet then drop it */
1291	flags = cqe->fast_path_regular.pars_flags.flags;
1292	parse_flag = le16_to_cpu(flags);
1293
1294	csum_flag = qede_check_csum(parse_flag);
1295	if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
1296		if (qede_pkt_is_ip_fragmented(fp_cqe, parse_flag))
1297			rxq->rx_ip_frags++;
1298		else
1299			rxq->rx_hw_errors++;
1300	}
1301
1302	/* Basic validation passed; Need to prepare an SKB. This would also
1303	 * guarantee to finally consume the first BD upon success.
1304	 */
1305	skb = qede_rx_build_skb(edev, rxq, bd, len, pad);
1306	if (!skb) {
1307		rxq->rx_alloc_errors++;
1308		qede_recycle_rx_bd_ring(rxq, fp_cqe->bd_num);
1309		return 0;
1310	}
1311
1312	/* In case of Jumbo packet, several PAGE_SIZEd buffers will be pointed
1313	 * by a single cqe.
1314	 */
1315	if (fp_cqe->bd_num > 1) {
1316		u16 unmapped_frags = qede_rx_build_jumbo(edev, rxq, skb,
1317							 fp_cqe, len);
1318
1319		if (unlikely(unmapped_frags > 0)) {
1320			qede_recycle_rx_bd_ring(rxq, unmapped_frags);
1321			dev_kfree_skb_any(skb);
1322			return 0;
1323		}
1324	}
1325
1326	/* The SKB contains all the data. Now prepare meta-magic */
1327	skb->protocol = eth_type_trans(skb, edev->ndev);
1328	qede_get_rxhash(skb, fp_cqe->bitfields, fp_cqe->rss_hash);
1329	qede_set_skb_csum(skb, csum_flag);
1330	skb_record_rx_queue(skb, rxq->rxq_id);
1331	qede_ptp_record_rx_ts(edev, cqe, skb);
1332
1333	/* SKB is prepared - pass it to stack */
1334	qede_skb_receive(edev, fp, rxq, skb, le16_to_cpu(fp_cqe->vlan_tag));
1335
1336	return 1;
1337}
1338
1339static int qede_rx_int(struct qede_fastpath *fp, int budget)
1340{
1341	struct qede_rx_queue *rxq = fp->rxq;
1342	struct qede_dev *edev = fp->edev;
1343	int work_done = 0, rcv_pkts = 0;
1344	u16 hw_comp_cons, sw_comp_cons;
1345
1346	hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
1347	sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1348
1349	/* Memory barrier to prevent the CPU from doing speculative reads of CQE
1350	 * / BD in the while-loop before reading hw_comp_cons. If the CQE is
1351	 * read before it is written by FW, then FW writes CQE and SB, and then
1352	 * the CPU reads the hw_comp_cons, it will use an old CQE.
1353	 */
1354	rmb();
1355
1356	/* Loop to complete all indicated BDs */
1357	while ((sw_comp_cons != hw_comp_cons) && (work_done < budget)) {
1358		rcv_pkts += qede_rx_process_cqe(edev, fp, rxq);
1359		qed_chain_recycle_consumed(&rxq->rx_comp_ring);
1360		sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1361		work_done++;
1362	}
1363
1364	rxq->rcv_pkts += rcv_pkts;
1365
1366	/* Allocate replacement buffers */
1367	while (rxq->num_rx_buffers - rxq->filled_buffers)
1368		if (qede_alloc_rx_buffer(rxq, false))
1369			break;
1370
1371	/* Update producers */
1372	qede_update_rx_prod(edev, rxq);
1373
1374	return work_done;
1375}
1376
1377static bool qede_poll_is_more_work(struct qede_fastpath *fp)
1378{
1379	qed_sb_update_sb_idx(fp->sb_info);
1380
1381	/* *_has_*_work() reads the status block, thus we need to ensure that
1382	 * status block indices have been actually read (qed_sb_update_sb_idx)
1383	 * prior to this check (*_has_*_work) so that we won't write the
1384	 * "newer" value of the status block to HW (if there was a DMA right
1385	 * after qede_has_rx_work and if there is no rmb, the memory reading
1386	 * (qed_sb_update_sb_idx) may be postponed to right before *_ack_sb).
1387	 * In this case there will never be another interrupt until there is
1388	 * another update of the status block, while there is still unhandled
1389	 * work.
1390	 */
1391	rmb();
1392
1393	if (likely(fp->type & QEDE_FASTPATH_RX))
1394		if (qede_has_rx_work(fp->rxq))
1395			return true;
1396
1397	if (fp->type & QEDE_FASTPATH_XDP)
1398		if (qede_txq_has_work(fp->xdp_tx))
1399			return true;
1400
1401	if (likely(fp->type & QEDE_FASTPATH_TX)) {
1402		int cos;
1403
1404		for_each_cos_in_txq(fp->edev, cos) {
1405			if (qede_txq_has_work(&fp->txq[cos]))
1406				return true;
1407		}
1408	}
1409
1410	return false;
1411}
1412
1413/*********************
1414 * NDO & API related *
1415 *********************/
1416int qede_poll(struct napi_struct *napi, int budget)
1417{
1418	struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
1419						napi);
1420	struct qede_dev *edev = fp->edev;
1421	int rx_work_done = 0;
1422	u16 xdp_prod;
1423
1424	fp->xdp_xmit = 0;
1425
1426	if (likely(fp->type & QEDE_FASTPATH_TX)) {
1427		int cos;
1428
1429		for_each_cos_in_txq(fp->edev, cos) {
1430			if (qede_txq_has_work(&fp->txq[cos]))
1431				qede_tx_int(edev, &fp->txq[cos]);
1432		}
1433	}
1434
1435	if ((fp->type & QEDE_FASTPATH_XDP) && qede_txq_has_work(fp->xdp_tx))
1436		qede_xdp_tx_int(edev, fp->xdp_tx);
1437
1438	rx_work_done = (likely(fp->type & QEDE_FASTPATH_RX) &&
1439			qede_has_rx_work(fp->rxq)) ?
1440			qede_rx_int(fp, budget) : 0;
1441
1442	if (fp->xdp_xmit & QEDE_XDP_REDIRECT)
1443		xdp_do_flush();
1444
1445	/* Handle case where we are called by netpoll with a budget of 0 */
1446	if (rx_work_done < budget || !budget) {
1447		if (!qede_poll_is_more_work(fp)) {
1448			napi_complete_done(napi, rx_work_done);
1449
1450			/* Update and reenable interrupts */
1451			qed_sb_ack(fp->sb_info, IGU_INT_ENABLE, 1);
1452		} else {
1453			rx_work_done = budget;
1454		}
1455	}
1456
1457	if (fp->xdp_xmit & QEDE_XDP_TX) {
1458		xdp_prod = qed_chain_get_prod_idx(&fp->xdp_tx->tx_pbl);
1459
 
1460		fp->xdp_tx->tx_db.data.bd_prod = cpu_to_le16(xdp_prod);
1461		qede_update_tx_producer(fp->xdp_tx);
1462	}
1463
1464	return rx_work_done;
1465}
1466
1467irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
1468{
1469	struct qede_fastpath *fp = fp_cookie;
1470
1471	qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
1472
1473	napi_schedule_irqoff(&fp->napi);
1474	return IRQ_HANDLED;
1475}
1476
1477/* Main transmit function */
1478netdev_tx_t qede_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1479{
1480	struct qede_dev *edev = netdev_priv(ndev);
1481	struct netdev_queue *netdev_txq;
1482	struct qede_tx_queue *txq;
1483	struct eth_tx_1st_bd *first_bd;
1484	struct eth_tx_2nd_bd *second_bd = NULL;
1485	struct eth_tx_3rd_bd *third_bd = NULL;
1486	struct eth_tx_bd *tx_data_bd = NULL;
1487	u16 txq_index, val = 0;
1488	u8 nbd = 0;
1489	dma_addr_t mapping;
1490	int rc, frag_idx = 0, ipv6_ext = 0;
1491	u8 xmit_type;
1492	u16 idx;
1493	u16 hlen;
1494	bool data_split = false;
1495
1496	/* Get tx-queue context and netdev index */
1497	txq_index = skb_get_queue_mapping(skb);
1498	WARN_ON(txq_index >= QEDE_TSS_COUNT(edev) * edev->dev_info.num_tc);
1499	txq = QEDE_NDEV_TXQ_ID_TO_TXQ(edev, txq_index);
1500	netdev_txq = netdev_get_tx_queue(ndev, txq_index);
1501
1502	WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) < (MAX_SKB_FRAGS + 1));
1503
1504	xmit_type = qede_xmit_type(skb, &ipv6_ext);
1505
1506#if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
1507	if (qede_pkt_req_lin(skb, xmit_type)) {
1508		if (skb_linearize(skb)) {
1509			txq->tx_mem_alloc_err++;
1510
1511			dev_kfree_skb_any(skb);
1512			return NETDEV_TX_OK;
1513		}
1514	}
1515#endif
1516
1517	/* Fill the entry in the SW ring and the BDs in the FW ring */
1518	idx = txq->sw_tx_prod;
1519	txq->sw_tx_ring.skbs[idx].skb = skb;
1520	first_bd = (struct eth_tx_1st_bd *)
1521		   qed_chain_produce(&txq->tx_pbl);
1522	memset(first_bd, 0, sizeof(*first_bd));
1523	first_bd->data.bd_flags.bitfields =
1524		1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
1525
1526	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))
1527		qede_ptp_tx_ts(edev, skb);
1528
1529	/* Map skb linear data for DMA and set in the first BD */
1530	mapping = dma_map_single(txq->dev, skb->data,
1531				 skb_headlen(skb), DMA_TO_DEVICE);
1532	if (unlikely(dma_mapping_error(txq->dev, mapping))) {
1533		DP_NOTICE(edev, "SKB mapping failed\n");
1534		qede_free_failed_tx_pkt(txq, first_bd, 0, false);
1535		qede_update_tx_producer(txq);
1536		return NETDEV_TX_OK;
1537	}
1538	nbd++;
1539	BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
1540
1541	/* In case there is IPv6 with extension headers or LSO we need 2nd and
1542	 * 3rd BDs.
1543	 */
1544	if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
1545		second_bd = (struct eth_tx_2nd_bd *)
1546			qed_chain_produce(&txq->tx_pbl);
1547		memset(second_bd, 0, sizeof(*second_bd));
1548
1549		nbd++;
1550		third_bd = (struct eth_tx_3rd_bd *)
1551			qed_chain_produce(&txq->tx_pbl);
1552		memset(third_bd, 0, sizeof(*third_bd));
1553
1554		nbd++;
1555		/* We need to fill in additional data in second_bd... */
1556		tx_data_bd = (struct eth_tx_bd *)second_bd;
1557	}
1558
1559	if (skb_vlan_tag_present(skb)) {
1560		first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
1561		first_bd->data.bd_flags.bitfields |=
1562			1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
1563	}
1564
1565	/* Fill the parsing flags & params according to the requested offload */
1566	if (xmit_type & XMIT_L4_CSUM) {
1567		/* We don't re-calculate IP checksum as it is already done by
1568		 * the upper stack
1569		 */
1570		first_bd->data.bd_flags.bitfields |=
1571			1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
1572
1573		if (xmit_type & XMIT_ENC) {
1574			first_bd->data.bd_flags.bitfields |=
1575				1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
1576
1577			val |= (1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT);
1578		}
1579
1580		/* Legacy FW had flipped behavior in regard to this bit -
1581		 * I.e., needed to set to prevent FW from touching encapsulated
1582		 * packets when it didn't need to.
1583		 */
1584		if (unlikely(txq->is_legacy))
1585			val ^= (1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT);
1586
1587		/* If the packet is IPv6 with extension header, indicate that
1588		 * to FW and pass few params, since the device cracker doesn't
1589		 * support parsing IPv6 with extension header/s.
1590		 */
1591		if (unlikely(ipv6_ext))
1592			qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
1593	}
1594
1595	if (xmit_type & XMIT_LSO) {
1596		first_bd->data.bd_flags.bitfields |=
1597			(1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
1598		third_bd->data.lso_mss =
1599			cpu_to_le16(skb_shinfo(skb)->gso_size);
1600
1601		if (unlikely(xmit_type & XMIT_ENC)) {
1602			first_bd->data.bd_flags.bitfields |=
1603				1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
1604
1605			if (xmit_type & XMIT_ENC_GSO_L4_CSUM) {
1606				u8 tmp = ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
1607
1608				first_bd->data.bd_flags.bitfields |= 1 << tmp;
1609			}
1610			hlen = qede_get_skb_hlen(skb, true);
1611		} else {
1612			first_bd->data.bd_flags.bitfields |=
1613				1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
1614			hlen = qede_get_skb_hlen(skb, false);
1615		}
1616
1617		/* @@@TBD - if will not be removed need to check */
1618		third_bd->data.bitfields |=
1619			cpu_to_le16(1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT);
1620
1621		/* Make life easier for FW guys who can't deal with header and
1622		 * data on same BD. If we need to split, use the second bd...
1623		 */
1624		if (unlikely(skb_headlen(skb) > hlen)) {
1625			DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1626				   "TSO split header size is %d (%x:%x)\n",
1627				   first_bd->nbytes, first_bd->addr.hi,
1628				   first_bd->addr.lo);
1629
1630			mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
1631					   le32_to_cpu(first_bd->addr.lo)) +
1632					   hlen;
1633
1634			BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
1635					      le16_to_cpu(first_bd->nbytes) -
1636					      hlen);
1637
1638			/* this marks the BD as one that has no
1639			 * individual mapping
1640			 */
1641			txq->sw_tx_ring.skbs[idx].flags |= QEDE_TSO_SPLIT_BD;
1642
1643			first_bd->nbytes = cpu_to_le16(hlen);
1644
1645			tx_data_bd = (struct eth_tx_bd *)third_bd;
1646			data_split = true;
1647		}
1648	} else {
1649		if (unlikely(skb->len > ETH_TX_MAX_NON_LSO_PKT_LEN)) {
1650			DP_ERR(edev, "Unexpected non LSO skb length = 0x%x\n", skb->len);
1651			qede_free_failed_tx_pkt(txq, first_bd, 0, false);
1652			qede_update_tx_producer(txq);
1653			return NETDEV_TX_OK;
1654		}
1655
1656		val |= ((skb->len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
1657			 ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT);
1658	}
1659
1660	first_bd->data.bitfields = cpu_to_le16(val);
1661
1662	/* Handle fragmented skb */
1663	/* special handle for frags inside 2nd and 3rd bds.. */
1664	while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
1665		rc = map_frag_to_bd(txq,
1666				    &skb_shinfo(skb)->frags[frag_idx],
1667				    tx_data_bd);
1668		if (rc) {
1669			qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split);
1670			qede_update_tx_producer(txq);
1671			return NETDEV_TX_OK;
1672		}
1673
1674		if (tx_data_bd == (struct eth_tx_bd *)second_bd)
1675			tx_data_bd = (struct eth_tx_bd *)third_bd;
1676		else
1677			tx_data_bd = NULL;
1678
1679		frag_idx++;
1680	}
1681
1682	/* map last frags into 4th, 5th .... */
1683	for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
1684		tx_data_bd = (struct eth_tx_bd *)
1685			     qed_chain_produce(&txq->tx_pbl);
1686
1687		memset(tx_data_bd, 0, sizeof(*tx_data_bd));
1688
1689		rc = map_frag_to_bd(txq,
1690				    &skb_shinfo(skb)->frags[frag_idx],
1691				    tx_data_bd);
1692		if (rc) {
1693			qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split);
1694			qede_update_tx_producer(txq);
1695			return NETDEV_TX_OK;
1696		}
1697	}
1698
1699	/* update the first BD with the actual num BDs */
1700	first_bd->data.nbds = nbd;
1701
1702	netdev_tx_sent_queue(netdev_txq, skb->len);
1703
1704	skb_tx_timestamp(skb);
1705
1706	/* Advance packet producer only before sending the packet since mapping
1707	 * of pages may fail.
1708	 */
1709	txq->sw_tx_prod = (txq->sw_tx_prod + 1) % txq->num_tx_buffers;
1710
1711	/* 'next page' entries are counted in the producer value */
1712	txq->tx_db.data.bd_prod =
1713		cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
1714
1715	if (!netdev_xmit_more() || netif_xmit_stopped(netdev_txq))
1716		qede_update_tx_producer(txq);
1717
1718	if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
1719		      < (MAX_SKB_FRAGS + 1))) {
1720		if (netdev_xmit_more())
1721			qede_update_tx_producer(txq);
1722
1723		netif_tx_stop_queue(netdev_txq);
1724		txq->stopped_cnt++;
1725		DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1726			   "Stop queue was called\n");
1727		/* paired memory barrier is in qede_tx_int(), we have to keep
1728		 * ordering of set_bit() in netif_tx_stop_queue() and read of
1729		 * fp->bd_tx_cons
1730		 */
1731		smp_mb();
1732
1733		if ((qed_chain_get_elem_left(&txq->tx_pbl) >=
1734		     (MAX_SKB_FRAGS + 1)) &&
1735		    (edev->state == QEDE_STATE_OPEN)) {
1736			netif_tx_wake_queue(netdev_txq);
1737			DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1738				   "Wake queue was called\n");
1739		}
1740	}
1741
1742	return NETDEV_TX_OK;
1743}
1744
1745u16 qede_select_queue(struct net_device *dev, struct sk_buff *skb,
1746		      struct net_device *sb_dev)
1747{
1748	struct qede_dev *edev = netdev_priv(dev);
1749	int total_txq;
1750
1751	total_txq = QEDE_TSS_COUNT(edev) * edev->dev_info.num_tc;
1752
1753	return QEDE_TSS_COUNT(edev) ?
1754		netdev_pick_tx(dev, skb, NULL) % total_txq :  0;
1755}
1756
1757/* 8B udp header + 8B base tunnel header + 32B option length */
1758#define QEDE_MAX_TUN_HDR_LEN 48
1759
1760netdev_features_t qede_features_check(struct sk_buff *skb,
1761				      struct net_device *dev,
1762				      netdev_features_t features)
1763{
1764	if (skb->encapsulation) {
1765		u8 l4_proto = 0;
1766
1767		switch (vlan_get_protocol(skb)) {
1768		case htons(ETH_P_IP):
1769			l4_proto = ip_hdr(skb)->protocol;
1770			break;
1771		case htons(ETH_P_IPV6):
1772			l4_proto = ipv6_hdr(skb)->nexthdr;
1773			break;
1774		default:
1775			return features;
1776		}
1777
1778		/* Disable offloads for geneve tunnels, as HW can't parse
1779		 * the geneve header which has option length greater than 32b
1780		 * and disable offloads for the ports which are not offloaded.
1781		 */
1782		if (l4_proto == IPPROTO_UDP) {
1783			struct qede_dev *edev = netdev_priv(dev);
1784			u16 hdrlen, vxln_port, gnv_port;
1785
1786			hdrlen = QEDE_MAX_TUN_HDR_LEN;
1787			vxln_port = edev->vxlan_dst_port;
1788			gnv_port = edev->geneve_dst_port;
1789
1790			if ((skb_inner_mac_header(skb) -
1791			     skb_transport_header(skb)) > hdrlen ||
1792			     (ntohs(udp_hdr(skb)->dest) != vxln_port &&
1793			      ntohs(udp_hdr(skb)->dest) != gnv_port))
1794				return features & ~(NETIF_F_CSUM_MASK |
1795						    NETIF_F_GSO_MASK);
1796		} else if (l4_proto == IPPROTO_IPIP) {
1797			/* IPIP tunnels are unknown to the device or at least unsupported natively,
1798			 * offloads for them can't be done trivially, so disable them for such skb.
1799			 */
1800			return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
1801		}
1802	}
1803
1804	return features;
1805}
v4.17
 
   1/* QLogic qede NIC Driver
   2 * Copyright (c) 2015-2017  QLogic Corporation
   3 *
   4 * This software is available to you under a choice of one of two
   5 * licenses.  You may choose to be licensed under the terms of the GNU
   6 * General Public License (GPL) Version 2, available from the file
   7 * COPYING in the main directory of this source tree, or the
   8 * OpenIB.org BSD license below:
   9 *
  10 *     Redistribution and use in source and binary forms, with or
  11 *     without modification, are permitted provided that the following
  12 *     conditions are met:
  13 *
  14 *      - Redistributions of source code must retain the above
  15 *        copyright notice, this list of conditions and the following
  16 *        disclaimer.
  17 *
  18 *      - Redistributions in binary form must reproduce the above
  19 *        copyright notice, this list of conditions and the following
  20 *        disclaimer in the documentation and /or other materials
  21 *        provided with the distribution.
  22 *
  23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30 * SOFTWARE.
  31 */
 
  32#include <linux/netdevice.h>
  33#include <linux/etherdevice.h>
  34#include <linux/skbuff.h>
  35#include <linux/bpf_trace.h>
  36#include <net/udp_tunnel.h>
  37#include <linux/ip.h>
 
  38#include <net/ipv6.h>
  39#include <net/tcp.h>
  40#include <linux/if_ether.h>
  41#include <linux/if_vlan.h>
  42#include <net/ip6_checksum.h>
  43#include "qede_ptp.h"
  44
  45#include <linux/qed/qed_if.h>
  46#include "qede.h"
  47/*********************************
  48 * Content also used by slowpath *
  49 *********************************/
  50
  51int qede_alloc_rx_buffer(struct qede_rx_queue *rxq, bool allow_lazy)
  52{
  53	struct sw_rx_data *sw_rx_data;
  54	struct eth_rx_bd *rx_bd;
  55	dma_addr_t mapping;
  56	struct page *data;
  57
  58	/* In case lazy-allocation is allowed, postpone allocation until the
  59	 * end of the NAPI run. We'd still need to make sure the Rx ring has
  60	 * sufficient buffers to guarantee an additional Rx interrupt.
  61	 */
  62	if (allow_lazy && likely(rxq->filled_buffers > 12)) {
  63		rxq->filled_buffers--;
  64		return 0;
  65	}
  66
  67	data = alloc_pages(GFP_ATOMIC, 0);
  68	if (unlikely(!data))
  69		return -ENOMEM;
  70
  71	/* Map the entire page as it would be used
  72	 * for multiple RX buffer segment size mapping.
  73	 */
  74	mapping = dma_map_page(rxq->dev, data, 0,
  75			       PAGE_SIZE, rxq->data_direction);
  76	if (unlikely(dma_mapping_error(rxq->dev, mapping))) {
  77		__free_page(data);
  78		return -ENOMEM;
  79	}
  80
  81	sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
  82	sw_rx_data->page_offset = 0;
  83	sw_rx_data->data = data;
  84	sw_rx_data->mapping = mapping;
  85
  86	/* Advance PROD and get BD pointer */
  87	rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
  88	WARN_ON(!rx_bd);
  89	rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
  90	rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping) +
  91				     rxq->rx_headroom);
  92
  93	rxq->sw_rx_prod++;
  94	rxq->filled_buffers++;
  95
  96	return 0;
  97}
  98
  99/* Unmap the data and free skb */
 100int qede_free_tx_pkt(struct qede_dev *edev, struct qede_tx_queue *txq, int *len)
 101{
 102	u16 idx = txq->sw_tx_cons;
 103	struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb;
 104	struct eth_tx_1st_bd *first_bd;
 105	struct eth_tx_bd *tx_data_bd;
 106	int bds_consumed = 0;
 107	int nbds;
 108	bool data_split = txq->sw_tx_ring.skbs[idx].flags & QEDE_TSO_SPLIT_BD;
 109	int i, split_bd_len = 0;
 110
 111	if (unlikely(!skb)) {
 112		DP_ERR(edev,
 113		       "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
 114		       idx, txq->sw_tx_cons, txq->sw_tx_prod);
 115		return -1;
 116	}
 117
 118	*len = skb->len;
 119
 120	first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
 121
 122	bds_consumed++;
 123
 124	nbds = first_bd->data.nbds;
 125
 126	if (data_split) {
 127		struct eth_tx_bd *split = (struct eth_tx_bd *)
 128			qed_chain_consume(&txq->tx_pbl);
 129		split_bd_len = BD_UNMAP_LEN(split);
 130		bds_consumed++;
 131	}
 132	dma_unmap_single(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
 133			 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
 134
 135	/* Unmap the data of the skb frags */
 136	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
 137		tx_data_bd = (struct eth_tx_bd *)
 138			qed_chain_consume(&txq->tx_pbl);
 139		dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
 140			       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
 141	}
 142
 143	while (bds_consumed++ < nbds)
 144		qed_chain_consume(&txq->tx_pbl);
 145
 146	/* Free skb */
 147	dev_kfree_skb_any(skb);
 148	txq->sw_tx_ring.skbs[idx].skb = NULL;
 149	txq->sw_tx_ring.skbs[idx].flags = 0;
 150
 151	return 0;
 152}
 153
 154/* Unmap the data and free skb when mapping failed during start_xmit */
 155static void qede_free_failed_tx_pkt(struct qede_tx_queue *txq,
 156				    struct eth_tx_1st_bd *first_bd,
 157				    int nbd, bool data_split)
 158{
 159	u16 idx = txq->sw_tx_prod;
 160	struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb;
 161	struct eth_tx_bd *tx_data_bd;
 162	int i, split_bd_len = 0;
 163
 164	/* Return prod to its position before this skb was handled */
 165	qed_chain_set_prod(&txq->tx_pbl,
 166			   le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
 167
 168	first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
 169
 170	if (data_split) {
 171		struct eth_tx_bd *split = (struct eth_tx_bd *)
 172					  qed_chain_produce(&txq->tx_pbl);
 173		split_bd_len = BD_UNMAP_LEN(split);
 174		nbd--;
 175	}
 176
 177	dma_unmap_single(txq->dev, BD_UNMAP_ADDR(first_bd),
 178			 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
 179
 180	/* Unmap the data of the skb frags */
 181	for (i = 0; i < nbd; i++) {
 182		tx_data_bd = (struct eth_tx_bd *)
 183			qed_chain_produce(&txq->tx_pbl);
 184		if (tx_data_bd->nbytes)
 185			dma_unmap_page(txq->dev,
 186				       BD_UNMAP_ADDR(tx_data_bd),
 187				       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
 188	}
 189
 190	/* Return again prod to its position before this skb was handled */
 191	qed_chain_set_prod(&txq->tx_pbl,
 192			   le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
 193
 194	/* Free skb */
 195	dev_kfree_skb_any(skb);
 196	txq->sw_tx_ring.skbs[idx].skb = NULL;
 197	txq->sw_tx_ring.skbs[idx].flags = 0;
 198}
 199
 200static u32 qede_xmit_type(struct sk_buff *skb, int *ipv6_ext)
 201{
 202	u32 rc = XMIT_L4_CSUM;
 203	__be16 l3_proto;
 204
 205	if (skb->ip_summed != CHECKSUM_PARTIAL)
 206		return XMIT_PLAIN;
 207
 208	l3_proto = vlan_get_protocol(skb);
 209	if (l3_proto == htons(ETH_P_IPV6) &&
 210	    (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
 211		*ipv6_ext = 1;
 212
 213	if (skb->encapsulation) {
 214		rc |= XMIT_ENC;
 215		if (skb_is_gso(skb)) {
 216			unsigned short gso_type = skb_shinfo(skb)->gso_type;
 217
 218			if ((gso_type & SKB_GSO_UDP_TUNNEL_CSUM) ||
 219			    (gso_type & SKB_GSO_GRE_CSUM))
 220				rc |= XMIT_ENC_GSO_L4_CSUM;
 221
 222			rc |= XMIT_LSO;
 223			return rc;
 224		}
 225	}
 226
 227	if (skb_is_gso(skb))
 228		rc |= XMIT_LSO;
 229
 230	return rc;
 231}
 232
 233static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
 234					 struct eth_tx_2nd_bd *second_bd,
 235					 struct eth_tx_3rd_bd *third_bd)
 236{
 237	u8 l4_proto;
 238	u16 bd2_bits1 = 0, bd2_bits2 = 0;
 239
 240	bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
 241
 242	bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
 243		     ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
 244		    << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
 245
 246	bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
 247		      ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
 248
 249	if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
 250		l4_proto = ipv6_hdr(skb)->nexthdr;
 251	else
 252		l4_proto = ip_hdr(skb)->protocol;
 253
 254	if (l4_proto == IPPROTO_UDP)
 255		bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
 256
 257	if (third_bd)
 258		third_bd->data.bitfields |=
 259			cpu_to_le16(((tcp_hdrlen(skb) / 4) &
 260				ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
 261				ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
 262
 263	second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
 264	second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
 265}
 266
 267static int map_frag_to_bd(struct qede_tx_queue *txq,
 268			  skb_frag_t *frag, struct eth_tx_bd *bd)
 269{
 270	dma_addr_t mapping;
 271
 272	/* Map skb non-linear frag data for DMA */
 273	mapping = skb_frag_dma_map(txq->dev, frag, 0,
 274				   skb_frag_size(frag), DMA_TO_DEVICE);
 275	if (unlikely(dma_mapping_error(txq->dev, mapping)))
 276		return -ENOMEM;
 277
 278	/* Setup the data pointer of the frag data */
 279	BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
 280
 281	return 0;
 282}
 283
 284static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt)
 285{
 286	if (is_encap_pkt)
 287		return (skb_inner_transport_header(skb) +
 288			inner_tcp_hdrlen(skb) - skb->data);
 289	else
 290		return (skb_transport_header(skb) +
 291			tcp_hdrlen(skb) - skb->data);
 292}
 293
 294/* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
 295#if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
 296static bool qede_pkt_req_lin(struct sk_buff *skb, u8 xmit_type)
 297{
 298	int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
 299
 300	if (xmit_type & XMIT_LSO) {
 301		int hlen;
 302
 303		hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC);
 304
 305		/* linear payload would require its own BD */
 306		if (skb_headlen(skb) > hlen)
 307			allowed_frags--;
 308	}
 309
 310	return (skb_shinfo(skb)->nr_frags > allowed_frags);
 311}
 312#endif
 313
 314static inline void qede_update_tx_producer(struct qede_tx_queue *txq)
 315{
 316	/* wmb makes sure that the BDs data is updated before updating the
 317	 * producer, otherwise FW may read old data from the BDs.
 318	 */
 319	wmb();
 320	barrier();
 321	writel(txq->tx_db.raw, txq->doorbell_addr);
 322
 323	/* Fence required to flush the write combined buffer, since another
 324	 * CPU may write to the same doorbell address and data may be lost
 325	 * due to relaxed order nature of write combined bar.
 326	 */
 327	wmb();
 328}
 329
 330static int qede_xdp_xmit(struct qede_dev *edev, struct qede_fastpath *fp,
 331			 struct sw_rx_data *metadata, u16 padding, u16 length)
 332{
 333	struct qede_tx_queue *txq = fp->xdp_tx;
 334	struct eth_tx_1st_bd *first_bd;
 335	u16 idx = txq->sw_tx_prod;
 336	u16 val;
 337
 338	if (!qed_chain_get_elem_left(&txq->tx_pbl)) {
 
 339		txq->stopped_cnt++;
 340		return -ENOMEM;
 341	}
 342
 343	first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
 344
 345	memset(first_bd, 0, sizeof(*first_bd));
 346	first_bd->data.bd_flags.bitfields =
 347	    BIT(ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT);
 348
 349	val = (length & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
 350	       ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
 351
 352	first_bd->data.bitfields |= cpu_to_le16(val);
 353	first_bd->data.nbds = 1;
 354
 355	/* We can safely ignore the offset, as it's 0 for XDP */
 356	BD_SET_UNMAP_ADDR_LEN(first_bd, metadata->mapping + padding, length);
 357
 358	/* Synchronize the buffer back to device, as program [probably]
 359	 * has changed it.
 360	 */
 361	dma_sync_single_for_device(&edev->pdev->dev,
 362				   metadata->mapping + padding,
 363				   length, PCI_DMA_TODEVICE);
 364
 365	txq->sw_tx_ring.xdp[idx].page = metadata->data;
 366	txq->sw_tx_ring.xdp[idx].mapping = metadata->mapping;
 367	txq->sw_tx_prod = (txq->sw_tx_prod + 1) % txq->num_tx_buffers;
 368
 369	/* Mark the fastpath for future XDP doorbell */
 370	fp->xdp_xmit = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 371
 372	return 0;
 373}
 374
 375int qede_txq_has_work(struct qede_tx_queue *txq)
 376{
 377	u16 hw_bd_cons;
 378
 379	/* Tell compiler that consumer and producer can change */
 380	barrier();
 381	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
 382	if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
 383		return 0;
 384
 385	return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
 386}
 387
 388static void qede_xdp_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
 389{
 390	u16 hw_bd_cons, idx;
 
 
 
 391
 392	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
 393	barrier();
 394
 395	while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
 396		qed_chain_consume(&txq->tx_pbl);
 397		idx = txq->sw_tx_cons;
 
 
 
 
 
 398
 399		dma_unmap_page(&edev->pdev->dev,
 400			       txq->sw_tx_ring.xdp[idx].mapping,
 401			       PAGE_SIZE, DMA_BIDIRECTIONAL);
 402		__free_page(txq->sw_tx_ring.xdp[idx].page);
 
 
 403
 
 404		txq->sw_tx_cons = (txq->sw_tx_cons + 1) % txq->num_tx_buffers;
 405		txq->xmit_pkts++;
 406	}
 407}
 408
 409static int qede_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
 410{
 
 411	struct netdev_queue *netdev_txq;
 412	u16 hw_bd_cons;
 413	unsigned int pkts_compl = 0, bytes_compl = 0;
 414	int rc;
 415
 416	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index);
 417
 418	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
 419	barrier();
 420
 421	while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
 422		int len = 0;
 423
 424		rc = qede_free_tx_pkt(edev, txq, &len);
 425		if (rc) {
 426			DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
 427				  hw_bd_cons,
 428				  qed_chain_get_cons_idx(&txq->tx_pbl));
 429			break;
 430		}
 431
 432		bytes_compl += len;
 433		pkts_compl++;
 434		txq->sw_tx_cons = (txq->sw_tx_cons + 1) % txq->num_tx_buffers;
 435		txq->xmit_pkts++;
 436	}
 437
 438	netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
 439
 440	/* Need to make the tx_bd_cons update visible to start_xmit()
 441	 * before checking for netif_tx_queue_stopped().  Without the
 442	 * memory barrier, there is a small possibility that
 443	 * start_xmit() will miss it and cause the queue to be stopped
 444	 * forever.
 445	 * On the other hand we need an rmb() here to ensure the proper
 446	 * ordering of bit testing in the following
 447	 * netif_tx_queue_stopped(txq) call.
 448	 */
 449	smp_mb();
 450
 451	if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
 452		/* Taking tx_lock is needed to prevent reenabling the queue
 453		 * while it's empty. This could have happen if rx_action() gets
 454		 * suspended in qede_tx_int() after the condition before
 455		 * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
 456		 *
 457		 * stops the queue->sees fresh tx_bd_cons->releases the queue->
 458		 * sends some packets consuming the whole queue again->
 459		 * stops the queue
 460		 */
 461
 462		__netif_tx_lock(netdev_txq, smp_processor_id());
 463
 464		if ((netif_tx_queue_stopped(netdev_txq)) &&
 465		    (edev->state == QEDE_STATE_OPEN) &&
 466		    (qed_chain_get_elem_left(&txq->tx_pbl)
 467		      >= (MAX_SKB_FRAGS + 1))) {
 468			netif_tx_wake_queue(netdev_txq);
 469			DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
 470				   "Wake queue was called\n");
 471		}
 472
 473		__netif_tx_unlock(netdev_txq);
 474	}
 475
 476	return 0;
 477}
 478
 479bool qede_has_rx_work(struct qede_rx_queue *rxq)
 480{
 481	u16 hw_comp_cons, sw_comp_cons;
 482
 483	/* Tell compiler that status block fields can change */
 484	barrier();
 485
 486	hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
 487	sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
 488
 489	return hw_comp_cons != sw_comp_cons;
 490}
 491
 492static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
 493{
 494	qed_chain_consume(&rxq->rx_bd_ring);
 495	rxq->sw_rx_cons++;
 496}
 497
 498/* This function reuses the buffer(from an offset) from
 499 * consumer index to producer index in the bd ring
 500 */
 501static inline void qede_reuse_page(struct qede_rx_queue *rxq,
 502				   struct sw_rx_data *curr_cons)
 503{
 504	struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
 505	struct sw_rx_data *curr_prod;
 506	dma_addr_t new_mapping;
 507
 508	curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
 509	*curr_prod = *curr_cons;
 510
 511	new_mapping = curr_prod->mapping + curr_prod->page_offset;
 512
 513	rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
 514	rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping) +
 515					  rxq->rx_headroom);
 516
 517	rxq->sw_rx_prod++;
 518	curr_cons->data = NULL;
 519}
 520
 521/* In case of allocation failures reuse buffers
 522 * from consumer index to produce buffers for firmware
 523 */
 524void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq, u8 count)
 525{
 526	struct sw_rx_data *curr_cons;
 527
 528	for (; count > 0; count--) {
 529		curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
 530		qede_reuse_page(rxq, curr_cons);
 531		qede_rx_bd_ring_consume(rxq);
 532	}
 533}
 534
 535static inline int qede_realloc_rx_buffer(struct qede_rx_queue *rxq,
 536					 struct sw_rx_data *curr_cons)
 537{
 538	/* Move to the next segment in the page */
 539	curr_cons->page_offset += rxq->rx_buf_seg_size;
 540
 541	if (curr_cons->page_offset == PAGE_SIZE) {
 542		if (unlikely(qede_alloc_rx_buffer(rxq, true))) {
 543			/* Since we failed to allocate new buffer
 544			 * current buffer can be used again.
 545			 */
 546			curr_cons->page_offset -= rxq->rx_buf_seg_size;
 547
 548			return -ENOMEM;
 549		}
 550
 551		dma_unmap_page(rxq->dev, curr_cons->mapping,
 552			       PAGE_SIZE, rxq->data_direction);
 553	} else {
 554		/* Increment refcount of the page as we don't want
 555		 * network stack to take the ownership of the page
 556		 * which can be recycled multiple times by the driver.
 557		 */
 558		page_ref_inc(curr_cons->data);
 559		qede_reuse_page(rxq, curr_cons);
 560	}
 561
 562	return 0;
 563}
 564
 565void qede_update_rx_prod(struct qede_dev *edev, struct qede_rx_queue *rxq)
 566{
 567	u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
 568	u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
 569	struct eth_rx_prod_data rx_prods = {0};
 570
 571	/* Update producers */
 572	rx_prods.bd_prod = cpu_to_le16(bd_prod);
 573	rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
 574
 575	/* Make sure that the BD and SGE data is updated before updating the
 576	 * producers since FW might read the BD/SGE right after the producer
 577	 * is updated.
 578	 */
 579	wmb();
 580
 581	internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
 582			(u32 *)&rx_prods);
 583
 584	/* mmiowb is needed to synchronize doorbell writes from more than one
 585	 * processor. It guarantees that the write arrives to the device before
 586	 * the napi lock is released and another qede_poll is called (possibly
 587	 * on another CPU). Without this barrier, the next doorbell can bypass
 588	 * this doorbell. This is applicable to IA64/Altix systems.
 589	 */
 590	mmiowb();
 591}
 592
 593static void qede_get_rxhash(struct sk_buff *skb, u8 bitfields, __le32 rss_hash)
 594{
 595	enum pkt_hash_types hash_type = PKT_HASH_TYPE_NONE;
 596	enum rss_hash_type htype;
 597	u32 hash = 0;
 598
 599	htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
 600	if (htype) {
 601		hash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
 602			     (htype == RSS_HASH_TYPE_IPV6)) ?
 603			    PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
 604		hash = le32_to_cpu(rss_hash);
 605	}
 606	skb_set_hash(skb, hash, hash_type);
 607}
 608
 609static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
 610{
 611	skb_checksum_none_assert(skb);
 612
 613	if (csum_flag & QEDE_CSUM_UNNECESSARY)
 614		skb->ip_summed = CHECKSUM_UNNECESSARY;
 615
 616	if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY) {
 617		skb->csum_level = 1;
 618		skb->encapsulation = 1;
 619	}
 620}
 621
 622static inline void qede_skb_receive(struct qede_dev *edev,
 623				    struct qede_fastpath *fp,
 624				    struct qede_rx_queue *rxq,
 625				    struct sk_buff *skb, u16 vlan_tag)
 626{
 627	if (vlan_tag)
 628		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
 629
 630	napi_gro_receive(&fp->napi, skb);
 631}
 632
 633static void qede_set_gro_params(struct qede_dev *edev,
 634				struct sk_buff *skb,
 635				struct eth_fast_path_rx_tpa_start_cqe *cqe)
 636{
 637	u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
 638
 639	if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
 640	    PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
 641		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
 642	else
 643		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
 644
 645	skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
 646				    cqe->header_len;
 647}
 648
 649static int qede_fill_frag_skb(struct qede_dev *edev,
 650			      struct qede_rx_queue *rxq,
 651			      u8 tpa_agg_index, u16 len_on_bd)
 652{
 653	struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
 654							 NUM_RX_BDS_MAX];
 655	struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
 656	struct sk_buff *skb = tpa_info->skb;
 657
 658	if (unlikely(tpa_info->state != QEDE_AGG_STATE_START))
 659		goto out;
 660
 661	/* Add one frag and update the appropriate fields in the skb */
 662	skb_fill_page_desc(skb, tpa_info->frag_id++,
 663			   current_bd->data, current_bd->page_offset,
 
 664			   len_on_bd);
 665
 666	if (unlikely(qede_realloc_rx_buffer(rxq, current_bd))) {
 667		/* Incr page ref count to reuse on allocation failure
 668		 * so that it doesn't get freed while freeing SKB.
 669		 */
 670		page_ref_inc(current_bd->data);
 671		goto out;
 672	}
 673
 674	qed_chain_consume(&rxq->rx_bd_ring);
 675	rxq->sw_rx_cons++;
 676
 677	skb->data_len += len_on_bd;
 678	skb->truesize += rxq->rx_buf_seg_size;
 679	skb->len += len_on_bd;
 680
 681	return 0;
 682
 683out:
 684	tpa_info->state = QEDE_AGG_STATE_ERROR;
 685	qede_recycle_rx_bd_ring(rxq, 1);
 686
 687	return -ENOMEM;
 688}
 689
 690static bool qede_tunn_exist(u16 flag)
 691{
 692	return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
 693			  PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT));
 694}
 695
 696static u8 qede_check_tunn_csum(u16 flag)
 697{
 698	u16 csum_flag = 0;
 699	u8 tcsum = 0;
 700
 701	if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
 702		    PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT))
 703		csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
 704			     PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT;
 705
 706	if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
 707		    PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
 708		csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
 709			     PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
 710		tcsum = QEDE_TUNN_CSUM_UNNECESSARY;
 711	}
 712
 713	csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
 714		     PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT |
 715		     PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
 716		     PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
 717
 718	if (csum_flag & flag)
 719		return QEDE_CSUM_ERROR;
 720
 721	return QEDE_CSUM_UNNECESSARY | tcsum;
 722}
 723
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 724static void qede_tpa_start(struct qede_dev *edev,
 725			   struct qede_rx_queue *rxq,
 726			   struct eth_fast_path_rx_tpa_start_cqe *cqe)
 727{
 728	struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
 729	struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring);
 730	struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
 731	struct sw_rx_data *replace_buf = &tpa_info->buffer;
 732	dma_addr_t mapping = tpa_info->buffer_mapping;
 733	struct sw_rx_data *sw_rx_data_cons;
 734	struct sw_rx_data *sw_rx_data_prod;
 735
 736	sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
 737	sw_rx_data_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
 738
 739	/* Use pre-allocated replacement buffer - we can't release the agg.
 740	 * start until its over and we don't want to risk allocation failing
 741	 * here, so re-allocate when aggregation will be over.
 742	 */
 743	sw_rx_data_prod->mapping = replace_buf->mapping;
 744
 745	sw_rx_data_prod->data = replace_buf->data;
 746	rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(mapping));
 747	rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(mapping));
 748	sw_rx_data_prod->page_offset = replace_buf->page_offset;
 749
 750	rxq->sw_rx_prod++;
 751
 752	/* move partial skb from cons to pool (don't unmap yet)
 753	 * save mapping, incase we drop the packet later on.
 754	 */
 755	tpa_info->buffer = *sw_rx_data_cons;
 756	mapping = HILO_U64(le32_to_cpu(rx_bd_cons->addr.hi),
 757			   le32_to_cpu(rx_bd_cons->addr.lo));
 758
 759	tpa_info->buffer_mapping = mapping;
 760	rxq->sw_rx_cons++;
 761
 762	/* set tpa state to start only if we are able to allocate skb
 763	 * for this aggregation, otherwise mark as error and aggregation will
 764	 * be dropped
 765	 */
 766	tpa_info->skb = netdev_alloc_skb(edev->ndev,
 767					 le16_to_cpu(cqe->len_on_first_bd));
 768	if (unlikely(!tpa_info->skb)) {
 769		DP_NOTICE(edev, "Failed to allocate SKB for gro\n");
 
 
 
 
 
 
 
 770		tpa_info->state = QEDE_AGG_STATE_ERROR;
 771		goto cons_buf;
 772	}
 773
 774	/* Start filling in the aggregation info */
 775	skb_put(tpa_info->skb, le16_to_cpu(cqe->len_on_first_bd));
 776	tpa_info->frag_id = 0;
 777	tpa_info->state = QEDE_AGG_STATE_START;
 778
 779	/* Store some information from first CQE */
 780	tpa_info->start_cqe_placement_offset = cqe->placement_offset;
 781	tpa_info->start_cqe_bd_len = le16_to_cpu(cqe->len_on_first_bd);
 782	if ((le16_to_cpu(cqe->pars_flags.flags) >>
 783	     PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
 784	    PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
 785		tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
 786	else
 787		tpa_info->vlan_tag = 0;
 788
 789	qede_get_rxhash(tpa_info->skb, cqe->bitfields, cqe->rss_hash);
 790
 791	/* This is needed in order to enable forwarding support */
 792	qede_set_gro_params(edev, tpa_info->skb, cqe);
 793
 794cons_buf: /* We still need to handle bd_len_list to consume buffers */
 795	if (likely(cqe->ext_bd_len_list[0]))
 796		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
 797				   le16_to_cpu(cqe->ext_bd_len_list[0]));
 798
 799	if (unlikely(cqe->ext_bd_len_list[1])) {
 800		DP_ERR(edev,
 801		       "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n");
 802		tpa_info->state = QEDE_AGG_STATE_ERROR;
 803	}
 804}
 805
 806#ifdef CONFIG_INET
 807static void qede_gro_ip_csum(struct sk_buff *skb)
 808{
 809	const struct iphdr *iph = ip_hdr(skb);
 810	struct tcphdr *th;
 811
 812	skb_set_transport_header(skb, sizeof(struct iphdr));
 813	th = tcp_hdr(skb);
 814
 815	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
 816				  iph->saddr, iph->daddr, 0);
 817
 818	tcp_gro_complete(skb);
 819}
 820
 821static void qede_gro_ipv6_csum(struct sk_buff *skb)
 822{
 823	struct ipv6hdr *iph = ipv6_hdr(skb);
 824	struct tcphdr *th;
 825
 826	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
 827	th = tcp_hdr(skb);
 828
 829	th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
 830				  &iph->saddr, &iph->daddr, 0);
 831	tcp_gro_complete(skb);
 832}
 833#endif
 834
 835static void qede_gro_receive(struct qede_dev *edev,
 836			     struct qede_fastpath *fp,
 837			     struct sk_buff *skb,
 838			     u16 vlan_tag)
 839{
 840	/* FW can send a single MTU sized packet from gro flow
 841	 * due to aggregation timeout/last segment etc. which
 842	 * is not expected to be a gro packet. If a skb has zero
 843	 * frags then simply push it in the stack as non gso skb.
 844	 */
 845	if (unlikely(!skb->data_len)) {
 846		skb_shinfo(skb)->gso_type = 0;
 847		skb_shinfo(skb)->gso_size = 0;
 848		goto send_skb;
 849	}
 850
 851#ifdef CONFIG_INET
 852	if (skb_shinfo(skb)->gso_size) {
 853		skb_reset_network_header(skb);
 854
 855		switch (skb->protocol) {
 856		case htons(ETH_P_IP):
 857			qede_gro_ip_csum(skb);
 858			break;
 859		case htons(ETH_P_IPV6):
 860			qede_gro_ipv6_csum(skb);
 861			break;
 862		default:
 863			DP_ERR(edev,
 864			       "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
 865			       ntohs(skb->protocol));
 866		}
 867	}
 868#endif
 869
 870send_skb:
 871	skb_record_rx_queue(skb, fp->rxq->rxq_id);
 872	qede_skb_receive(edev, fp, fp->rxq, skb, vlan_tag);
 873}
 874
 875static inline void qede_tpa_cont(struct qede_dev *edev,
 876				 struct qede_rx_queue *rxq,
 877				 struct eth_fast_path_rx_tpa_cont_cqe *cqe)
 878{
 879	int i;
 880
 881	for (i = 0; cqe->len_list[i]; i++)
 882		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
 883				   le16_to_cpu(cqe->len_list[i]));
 884
 885	if (unlikely(i > 1))
 886		DP_ERR(edev,
 887		       "Strange - TPA cont with more than a single len_list entry\n");
 888}
 889
 890static int qede_tpa_end(struct qede_dev *edev,
 891			struct qede_fastpath *fp,
 892			struct eth_fast_path_rx_tpa_end_cqe *cqe)
 893{
 894	struct qede_rx_queue *rxq = fp->rxq;
 895	struct qede_agg_info *tpa_info;
 896	struct sk_buff *skb;
 897	int i;
 898
 899	tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
 900	skb = tpa_info->skb;
 901
 
 
 
 
 902	for (i = 0; cqe->len_list[i]; i++)
 903		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
 904				   le16_to_cpu(cqe->len_list[i]));
 905	if (unlikely(i > 1))
 906		DP_ERR(edev,
 907		       "Strange - TPA emd with more than a single len_list entry\n");
 908
 909	if (unlikely(tpa_info->state != QEDE_AGG_STATE_START))
 910		goto err;
 911
 912	/* Sanity */
 913	if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
 914		DP_ERR(edev,
 915		       "Strange - TPA had %02x BDs, but SKB has only %d frags\n",
 916		       cqe->num_of_bds, tpa_info->frag_id);
 917	if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
 918		DP_ERR(edev,
 919		       "Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
 920		       le16_to_cpu(cqe->total_packet_len), skb->len);
 921
 922	memcpy(skb->data,
 923	       page_address(tpa_info->buffer.data) +
 924	       tpa_info->start_cqe_placement_offset +
 925	       tpa_info->buffer.page_offset, tpa_info->start_cqe_bd_len);
 926
 927	/* Finalize the SKB */
 928	skb->protocol = eth_type_trans(skb, edev->ndev);
 929	skb->ip_summed = CHECKSUM_UNNECESSARY;
 930
 931	/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
 932	 * to skb_shinfo(skb)->gso_segs
 933	 */
 934	NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
 935
 936	qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
 937
 938	tpa_info->state = QEDE_AGG_STATE_NONE;
 939
 940	return 1;
 941err:
 942	tpa_info->state = QEDE_AGG_STATE_NONE;
 
 
 
 
 
 
 943	dev_kfree_skb_any(tpa_info->skb);
 944	tpa_info->skb = NULL;
 945	return 0;
 946}
 947
 948static u8 qede_check_notunn_csum(u16 flag)
 949{
 950	u16 csum_flag = 0;
 951	u8 csum = 0;
 952
 953	if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
 954		    PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
 955		csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
 956			     PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
 957		csum = QEDE_CSUM_UNNECESSARY;
 958	}
 959
 960	csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
 961		     PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
 962
 963	if (csum_flag & flag)
 964		return QEDE_CSUM_ERROR;
 965
 966	return csum;
 967}
 968
 969static u8 qede_check_csum(u16 flag)
 970{
 971	if (!qede_tunn_exist(flag))
 972		return qede_check_notunn_csum(flag);
 973	else
 974		return qede_check_tunn_csum(flag);
 975}
 976
 977static bool qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe *cqe,
 978				      u16 flag)
 979{
 980	u8 tun_pars_flg = cqe->tunnel_pars_flags.flags;
 981
 982	if ((tun_pars_flg & (ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_MASK <<
 983			     ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_SHIFT)) ||
 984	    (flag & (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
 985		     PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT)))
 986		return true;
 987
 988	return false;
 989}
 990
 991/* Return true iff packet is to be passed to stack */
 992static bool qede_rx_xdp(struct qede_dev *edev,
 993			struct qede_fastpath *fp,
 994			struct qede_rx_queue *rxq,
 995			struct bpf_prog *prog,
 996			struct sw_rx_data *bd,
 997			struct eth_fast_path_rx_reg_cqe *cqe,
 998			u16 *data_offset, u16 *len)
 999{
1000	struct xdp_buff xdp;
1001	enum xdp_action act;
1002
1003	xdp.data_hard_start = page_address(bd->data);
1004	xdp.data = xdp.data_hard_start + *data_offset;
1005	xdp_set_data_meta_invalid(&xdp);
1006	xdp.data_end = xdp.data + *len;
1007	xdp.rxq = &rxq->xdp_rxq;
1008
1009	/* Queues always have a full reset currently, so for the time
1010	 * being until there's atomic program replace just mark read
1011	 * side for map helpers.
1012	 */
1013	rcu_read_lock();
1014	act = bpf_prog_run_xdp(prog, &xdp);
1015	rcu_read_unlock();
1016
1017	/* Recalculate, as XDP might have changed the headers */
1018	*data_offset = xdp.data - xdp.data_hard_start;
1019	*len = xdp.data_end - xdp.data;
1020
1021	if (act == XDP_PASS)
1022		return true;
1023
1024	/* Count number of packets not to be passed to stack */
1025	rxq->xdp_no_pass++;
1026
1027	switch (act) {
1028	case XDP_TX:
1029		/* We need the replacement buffer before transmit. */
1030		if (qede_alloc_rx_buffer(rxq, true)) {
1031			qede_recycle_rx_bd_ring(rxq, 1);
 
1032			trace_xdp_exception(edev->ndev, prog, act);
1033			return false;
1034		}
1035
1036		/* Now if there's a transmission problem, we'd still have to
1037		 * throw current buffer, as replacement was already allocated.
1038		 */
1039		if (qede_xdp_xmit(edev, fp, bd, *data_offset, *len)) {
1040			dma_unmap_page(rxq->dev, bd->mapping,
1041				       PAGE_SIZE, DMA_BIDIRECTIONAL);
 
 
1042			__free_page(bd->data);
 
1043			trace_xdp_exception(edev->ndev, prog, act);
 
 
 
 
 
1044		}
1045
1046		/* Regardless, we've consumed an Rx BD */
1047		qede_rx_bd_ring_consume(rxq);
1048		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1049
 
 
1050	default:
1051		bpf_warn_invalid_xdp_action(act);
 
1052	case XDP_ABORTED:
1053		trace_xdp_exception(edev->ndev, prog, act);
 
1054	case XDP_DROP:
1055		qede_recycle_rx_bd_ring(rxq, cqe->bd_num);
1056	}
1057
1058	return false;
1059}
1060
1061static struct sk_buff *qede_rx_allocate_skb(struct qede_dev *edev,
1062					    struct qede_rx_queue *rxq,
1063					    struct sw_rx_data *bd, u16 len,
1064					    u16 pad)
1065{
1066	unsigned int offset = bd->page_offset + pad;
1067	struct skb_frag_struct *frag;
1068	struct page *page = bd->data;
1069	unsigned int pull_len;
1070	struct sk_buff *skb;
1071	unsigned char *va;
1072
1073	/* Allocate a new SKB with a sufficient large header len */
1074	skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
1075	if (unlikely(!skb))
1076		return NULL;
1077
1078	/* Copy data into SKB - if it's small, we can simply copy it and
1079	 * re-use the already allcoated & mapped memory.
1080	 */
1081	if (len + pad <= edev->rx_copybreak) {
1082		skb_put_data(skb, page_address(page) + offset, len);
1083		qede_reuse_page(rxq, bd);
1084		goto out;
1085	}
1086
1087	frag = &skb_shinfo(skb)->frags[0];
1088
1089	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
1090			page, offset, len, rxq->rx_buf_seg_size);
1091
1092	va = skb_frag_address(frag);
1093	pull_len = eth_get_headlen(va, QEDE_RX_HDR_SIZE);
1094
1095	/* Align the pull_len to optimize memcpy */
1096	memcpy(skb->data, va, ALIGN(pull_len, sizeof(long)));
1097
1098	/* Correct the skb & frag sizes offset after the pull */
1099	skb_frag_size_sub(frag, pull_len);
1100	frag->page_offset += pull_len;
1101	skb->data_len -= pull_len;
1102	skb->tail += pull_len;
1103
1104	if (unlikely(qede_realloc_rx_buffer(rxq, bd))) {
1105		/* Incr page ref count to reuse on allocation failure so
1106		 * that it doesn't get freed while freeing SKB [as its
1107		 * already mapped there].
1108		 */
1109		page_ref_inc(page);
1110		dev_kfree_skb_any(skb);
1111		return NULL;
1112	}
1113
1114out:
1115	/* We've consumed the first BD and prepared an SKB */
1116	qede_rx_bd_ring_consume(rxq);
1117	return skb;
1118}
1119
1120static int qede_rx_build_jumbo(struct qede_dev *edev,
1121			       struct qede_rx_queue *rxq,
1122			       struct sk_buff *skb,
1123			       struct eth_fast_path_rx_reg_cqe *cqe,
1124			       u16 first_bd_len)
1125{
1126	u16 pkt_len = le16_to_cpu(cqe->pkt_len);
1127	struct sw_rx_data *bd;
1128	u16 bd_cons_idx;
1129	u8 num_frags;
1130
1131	pkt_len -= first_bd_len;
1132
1133	/* We've already used one BD for the SKB. Now take care of the rest */
1134	for (num_frags = cqe->bd_num - 1; num_frags > 0; num_frags--) {
1135		u16 cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size :
1136		    pkt_len;
1137
1138		if (unlikely(!cur_size)) {
1139			DP_ERR(edev,
1140			       "Still got %d BDs for mapping jumbo, but length became 0\n",
1141			       num_frags);
1142			goto out;
1143		}
1144
1145		/* We need a replacement buffer for each BD */
1146		if (unlikely(qede_alloc_rx_buffer(rxq, true)))
1147			goto out;
1148
1149		/* Now that we've allocated the replacement buffer,
1150		 * we can safely consume the next BD and map it to the SKB.
1151		 */
1152		bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1153		bd = &rxq->sw_rx_ring[bd_cons_idx];
1154		qede_rx_bd_ring_consume(rxq);
1155
1156		dma_unmap_page(rxq->dev, bd->mapping,
1157			       PAGE_SIZE, DMA_FROM_DEVICE);
1158
1159		skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
1160				   bd->data, 0, cur_size);
1161
1162		skb->truesize += PAGE_SIZE;
1163		skb->data_len += cur_size;
1164		skb->len += cur_size;
1165		pkt_len -= cur_size;
1166	}
1167
1168	if (unlikely(pkt_len))
1169		DP_ERR(edev,
1170		       "Mapped all BDs of jumbo, but still have %d bytes\n",
1171		       pkt_len);
1172
1173out:
1174	return num_frags;
1175}
1176
1177static int qede_rx_process_tpa_cqe(struct qede_dev *edev,
1178				   struct qede_fastpath *fp,
1179				   struct qede_rx_queue *rxq,
1180				   union eth_rx_cqe *cqe,
1181				   enum eth_rx_cqe_type type)
1182{
1183	switch (type) {
1184	case ETH_RX_CQE_TYPE_TPA_START:
1185		qede_tpa_start(edev, rxq, &cqe->fast_path_tpa_start);
1186		return 0;
1187	case ETH_RX_CQE_TYPE_TPA_CONT:
1188		qede_tpa_cont(edev, rxq, &cqe->fast_path_tpa_cont);
1189		return 0;
1190	case ETH_RX_CQE_TYPE_TPA_END:
1191		return qede_tpa_end(edev, fp, &cqe->fast_path_tpa_end);
1192	default:
1193		return 0;
1194	}
1195}
1196
1197static int qede_rx_process_cqe(struct qede_dev *edev,
1198			       struct qede_fastpath *fp,
1199			       struct qede_rx_queue *rxq)
1200{
1201	struct bpf_prog *xdp_prog = READ_ONCE(rxq->xdp_prog);
1202	struct eth_fast_path_rx_reg_cqe *fp_cqe;
1203	u16 len, pad, bd_cons_idx, parse_flag;
1204	enum eth_rx_cqe_type cqe_type;
1205	union eth_rx_cqe *cqe;
1206	struct sw_rx_data *bd;
1207	struct sk_buff *skb;
1208	__le16 flags;
1209	u8 csum_flag;
1210
1211	/* Get the CQE from the completion ring */
1212	cqe = (union eth_rx_cqe *)qed_chain_consume(&rxq->rx_comp_ring);
1213	cqe_type = cqe->fast_path_regular.type;
1214
1215	/* Process an unlikely slowpath event */
1216	if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
1217		struct eth_slow_path_rx_cqe *sp_cqe;
1218
1219		sp_cqe = (struct eth_slow_path_rx_cqe *)cqe;
1220		edev->ops->eth_cqe_completion(edev->cdev, fp->id, sp_cqe);
1221		return 0;
1222	}
1223
1224	/* Handle TPA cqes */
1225	if (cqe_type != ETH_RX_CQE_TYPE_REGULAR)
1226		return qede_rx_process_tpa_cqe(edev, fp, rxq, cqe, cqe_type);
1227
1228	/* Get the data from the SW ring; Consume it only after it's evident
1229	 * we wouldn't recycle it.
1230	 */
1231	bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1232	bd = &rxq->sw_rx_ring[bd_cons_idx];
1233
1234	fp_cqe = &cqe->fast_path_regular;
1235	len = le16_to_cpu(fp_cqe->len_on_first_bd);
1236	pad = fp_cqe->placement_offset + rxq->rx_headroom;
1237
1238	/* Run eBPF program if one is attached */
1239	if (xdp_prog)
1240		if (!qede_rx_xdp(edev, fp, rxq, xdp_prog, bd, fp_cqe,
1241				 &pad, &len))
1242			return 0;
1243
1244	/* If this is an error packet then drop it */
1245	flags = cqe->fast_path_regular.pars_flags.flags;
1246	parse_flag = le16_to_cpu(flags);
1247
1248	csum_flag = qede_check_csum(parse_flag);
1249	if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
1250		if (qede_pkt_is_ip_fragmented(fp_cqe, parse_flag))
1251			rxq->rx_ip_frags++;
1252		else
1253			rxq->rx_hw_errors++;
1254	}
1255
1256	/* Basic validation passed; Need to prepare an SKB. This would also
1257	 * guarantee to finally consume the first BD upon success.
1258	 */
1259	skb = qede_rx_allocate_skb(edev, rxq, bd, len, pad);
1260	if (!skb) {
1261		rxq->rx_alloc_errors++;
1262		qede_recycle_rx_bd_ring(rxq, fp_cqe->bd_num);
1263		return 0;
1264	}
1265
1266	/* In case of Jumbo packet, several PAGE_SIZEd buffers will be pointed
1267	 * by a single cqe.
1268	 */
1269	if (fp_cqe->bd_num > 1) {
1270		u16 unmapped_frags = qede_rx_build_jumbo(edev, rxq, skb,
1271							 fp_cqe, len);
1272
1273		if (unlikely(unmapped_frags > 0)) {
1274			qede_recycle_rx_bd_ring(rxq, unmapped_frags);
1275			dev_kfree_skb_any(skb);
1276			return 0;
1277		}
1278	}
1279
1280	/* The SKB contains all the data. Now prepare meta-magic */
1281	skb->protocol = eth_type_trans(skb, edev->ndev);
1282	qede_get_rxhash(skb, fp_cqe->bitfields, fp_cqe->rss_hash);
1283	qede_set_skb_csum(skb, csum_flag);
1284	skb_record_rx_queue(skb, rxq->rxq_id);
1285	qede_ptp_record_rx_ts(edev, cqe, skb);
1286
1287	/* SKB is prepared - pass it to stack */
1288	qede_skb_receive(edev, fp, rxq, skb, le16_to_cpu(fp_cqe->vlan_tag));
1289
1290	return 1;
1291}
1292
1293static int qede_rx_int(struct qede_fastpath *fp, int budget)
1294{
1295	struct qede_rx_queue *rxq = fp->rxq;
1296	struct qede_dev *edev = fp->edev;
1297	int work_done = 0, rcv_pkts = 0;
1298	u16 hw_comp_cons, sw_comp_cons;
1299
1300	hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
1301	sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1302
1303	/* Memory barrier to prevent the CPU from doing speculative reads of CQE
1304	 * / BD in the while-loop before reading hw_comp_cons. If the CQE is
1305	 * read before it is written by FW, then FW writes CQE and SB, and then
1306	 * the CPU reads the hw_comp_cons, it will use an old CQE.
1307	 */
1308	rmb();
1309
1310	/* Loop to complete all indicated BDs */
1311	while ((sw_comp_cons != hw_comp_cons) && (work_done < budget)) {
1312		rcv_pkts += qede_rx_process_cqe(edev, fp, rxq);
1313		qed_chain_recycle_consumed(&rxq->rx_comp_ring);
1314		sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1315		work_done++;
1316	}
1317
1318	rxq->rcv_pkts += rcv_pkts;
1319
1320	/* Allocate replacement buffers */
1321	while (rxq->num_rx_buffers - rxq->filled_buffers)
1322		if (qede_alloc_rx_buffer(rxq, false))
1323			break;
1324
1325	/* Update producers */
1326	qede_update_rx_prod(edev, rxq);
1327
1328	return work_done;
1329}
1330
1331static bool qede_poll_is_more_work(struct qede_fastpath *fp)
1332{
1333	qed_sb_update_sb_idx(fp->sb_info);
1334
1335	/* *_has_*_work() reads the status block, thus we need to ensure that
1336	 * status block indices have been actually read (qed_sb_update_sb_idx)
1337	 * prior to this check (*_has_*_work) so that we won't write the
1338	 * "newer" value of the status block to HW (if there was a DMA right
1339	 * after qede_has_rx_work and if there is no rmb, the memory reading
1340	 * (qed_sb_update_sb_idx) may be postponed to right before *_ack_sb).
1341	 * In this case there will never be another interrupt until there is
1342	 * another update of the status block, while there is still unhandled
1343	 * work.
1344	 */
1345	rmb();
1346
1347	if (likely(fp->type & QEDE_FASTPATH_RX))
1348		if (qede_has_rx_work(fp->rxq))
1349			return true;
1350
1351	if (fp->type & QEDE_FASTPATH_XDP)
1352		if (qede_txq_has_work(fp->xdp_tx))
1353			return true;
1354
1355	if (likely(fp->type & QEDE_FASTPATH_TX))
1356		if (qede_txq_has_work(fp->txq))
1357			return true;
 
 
 
 
 
1358
1359	return false;
1360}
1361
1362/*********************
1363 * NDO & API related *
1364 *********************/
1365int qede_poll(struct napi_struct *napi, int budget)
1366{
1367	struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
1368						napi);
1369	struct qede_dev *edev = fp->edev;
1370	int rx_work_done = 0;
 
 
 
1371
1372	if (likely(fp->type & QEDE_FASTPATH_TX) && qede_txq_has_work(fp->txq))
1373		qede_tx_int(edev, fp->txq);
 
 
 
 
 
 
1374
1375	if ((fp->type & QEDE_FASTPATH_XDP) && qede_txq_has_work(fp->xdp_tx))
1376		qede_xdp_tx_int(edev, fp->xdp_tx);
1377
1378	rx_work_done = (likely(fp->type & QEDE_FASTPATH_RX) &&
1379			qede_has_rx_work(fp->rxq)) ?
1380			qede_rx_int(fp, budget) : 0;
1381	if (rx_work_done < budget) {
 
 
 
 
 
1382		if (!qede_poll_is_more_work(fp)) {
1383			napi_complete_done(napi, rx_work_done);
1384
1385			/* Update and reenable interrupts */
1386			qed_sb_ack(fp->sb_info, IGU_INT_ENABLE, 1);
1387		} else {
1388			rx_work_done = budget;
1389		}
1390	}
1391
1392	if (fp->xdp_xmit) {
1393		u16 xdp_prod = qed_chain_get_prod_idx(&fp->xdp_tx->tx_pbl);
1394
1395		fp->xdp_xmit = 0;
1396		fp->xdp_tx->tx_db.data.bd_prod = cpu_to_le16(xdp_prod);
1397		qede_update_tx_producer(fp->xdp_tx);
1398	}
1399
1400	return rx_work_done;
1401}
1402
1403irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
1404{
1405	struct qede_fastpath *fp = fp_cookie;
1406
1407	qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
1408
1409	napi_schedule_irqoff(&fp->napi);
1410	return IRQ_HANDLED;
1411}
1412
1413/* Main transmit function */
1414netdev_tx_t qede_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1415{
1416	struct qede_dev *edev = netdev_priv(ndev);
1417	struct netdev_queue *netdev_txq;
1418	struct qede_tx_queue *txq;
1419	struct eth_tx_1st_bd *first_bd;
1420	struct eth_tx_2nd_bd *second_bd = NULL;
1421	struct eth_tx_3rd_bd *third_bd = NULL;
1422	struct eth_tx_bd *tx_data_bd = NULL;
1423	u16 txq_index, val = 0;
1424	u8 nbd = 0;
1425	dma_addr_t mapping;
1426	int rc, frag_idx = 0, ipv6_ext = 0;
1427	u8 xmit_type;
1428	u16 idx;
1429	u16 hlen;
1430	bool data_split = false;
1431
1432	/* Get tx-queue context and netdev index */
1433	txq_index = skb_get_queue_mapping(skb);
1434	WARN_ON(txq_index >= QEDE_TSS_COUNT(edev));
1435	txq = edev->fp_array[edev->fp_num_rx + txq_index].txq;
1436	netdev_txq = netdev_get_tx_queue(ndev, txq_index);
1437
1438	WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) < (MAX_SKB_FRAGS + 1));
1439
1440	xmit_type = qede_xmit_type(skb, &ipv6_ext);
1441
1442#if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
1443	if (qede_pkt_req_lin(skb, xmit_type)) {
1444		if (skb_linearize(skb)) {
1445			DP_NOTICE(edev,
1446				  "SKB linearization failed - silently dropping this SKB\n");
1447			dev_kfree_skb_any(skb);
1448			return NETDEV_TX_OK;
1449		}
1450	}
1451#endif
1452
1453	/* Fill the entry in the SW ring and the BDs in the FW ring */
1454	idx = txq->sw_tx_prod;
1455	txq->sw_tx_ring.skbs[idx].skb = skb;
1456	first_bd = (struct eth_tx_1st_bd *)
1457		   qed_chain_produce(&txq->tx_pbl);
1458	memset(first_bd, 0, sizeof(*first_bd));
1459	first_bd->data.bd_flags.bitfields =
1460		1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
1461
1462	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))
1463		qede_ptp_tx_ts(edev, skb);
1464
1465	/* Map skb linear data for DMA and set in the first BD */
1466	mapping = dma_map_single(txq->dev, skb->data,
1467				 skb_headlen(skb), DMA_TO_DEVICE);
1468	if (unlikely(dma_mapping_error(txq->dev, mapping))) {
1469		DP_NOTICE(edev, "SKB mapping failed\n");
1470		qede_free_failed_tx_pkt(txq, first_bd, 0, false);
1471		qede_update_tx_producer(txq);
1472		return NETDEV_TX_OK;
1473	}
1474	nbd++;
1475	BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
1476
1477	/* In case there is IPv6 with extension headers or LSO we need 2nd and
1478	 * 3rd BDs.
1479	 */
1480	if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
1481		second_bd = (struct eth_tx_2nd_bd *)
1482			qed_chain_produce(&txq->tx_pbl);
1483		memset(second_bd, 0, sizeof(*second_bd));
1484
1485		nbd++;
1486		third_bd = (struct eth_tx_3rd_bd *)
1487			qed_chain_produce(&txq->tx_pbl);
1488		memset(third_bd, 0, sizeof(*third_bd));
1489
1490		nbd++;
1491		/* We need to fill in additional data in second_bd... */
1492		tx_data_bd = (struct eth_tx_bd *)second_bd;
1493	}
1494
1495	if (skb_vlan_tag_present(skb)) {
1496		first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
1497		first_bd->data.bd_flags.bitfields |=
1498			1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
1499	}
1500
1501	/* Fill the parsing flags & params according to the requested offload */
1502	if (xmit_type & XMIT_L4_CSUM) {
1503		/* We don't re-calculate IP checksum as it is already done by
1504		 * the upper stack
1505		 */
1506		first_bd->data.bd_flags.bitfields |=
1507			1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
1508
1509		if (xmit_type & XMIT_ENC) {
1510			first_bd->data.bd_flags.bitfields |=
1511				1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
1512
1513			val |= (1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT);
1514		}
1515
1516		/* Legacy FW had flipped behavior in regard to this bit -
1517		 * I.e., needed to set to prevent FW from touching encapsulated
1518		 * packets when it didn't need to.
1519		 */
1520		if (unlikely(txq->is_legacy))
1521			val ^= (1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT);
1522
1523		/* If the packet is IPv6 with extension header, indicate that
1524		 * to FW and pass few params, since the device cracker doesn't
1525		 * support parsing IPv6 with extension header/s.
1526		 */
1527		if (unlikely(ipv6_ext))
1528			qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
1529	}
1530
1531	if (xmit_type & XMIT_LSO) {
1532		first_bd->data.bd_flags.bitfields |=
1533			(1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
1534		third_bd->data.lso_mss =
1535			cpu_to_le16(skb_shinfo(skb)->gso_size);
1536
1537		if (unlikely(xmit_type & XMIT_ENC)) {
1538			first_bd->data.bd_flags.bitfields |=
1539				1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
1540
1541			if (xmit_type & XMIT_ENC_GSO_L4_CSUM) {
1542				u8 tmp = ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
1543
1544				first_bd->data.bd_flags.bitfields |= 1 << tmp;
1545			}
1546			hlen = qede_get_skb_hlen(skb, true);
1547		} else {
1548			first_bd->data.bd_flags.bitfields |=
1549				1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
1550			hlen = qede_get_skb_hlen(skb, false);
1551		}
1552
1553		/* @@@TBD - if will not be removed need to check */
1554		third_bd->data.bitfields |=
1555			cpu_to_le16(1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT);
1556
1557		/* Make life easier for FW guys who can't deal with header and
1558		 * data on same BD. If we need to split, use the second bd...
1559		 */
1560		if (unlikely(skb_headlen(skb) > hlen)) {
1561			DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1562				   "TSO split header size is %d (%x:%x)\n",
1563				   first_bd->nbytes, first_bd->addr.hi,
1564				   first_bd->addr.lo);
1565
1566			mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
1567					   le32_to_cpu(first_bd->addr.lo)) +
1568					   hlen;
1569
1570			BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
1571					      le16_to_cpu(first_bd->nbytes) -
1572					      hlen);
1573
1574			/* this marks the BD as one that has no
1575			 * individual mapping
1576			 */
1577			txq->sw_tx_ring.skbs[idx].flags |= QEDE_TSO_SPLIT_BD;
1578
1579			first_bd->nbytes = cpu_to_le16(hlen);
1580
1581			tx_data_bd = (struct eth_tx_bd *)third_bd;
1582			data_split = true;
1583		}
1584	} else {
 
 
 
 
 
 
 
1585		val |= ((skb->len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
1586			 ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT);
1587	}
1588
1589	first_bd->data.bitfields = cpu_to_le16(val);
1590
1591	/* Handle fragmented skb */
1592	/* special handle for frags inside 2nd and 3rd bds.. */
1593	while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
1594		rc = map_frag_to_bd(txq,
1595				    &skb_shinfo(skb)->frags[frag_idx],
1596				    tx_data_bd);
1597		if (rc) {
1598			qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split);
1599			qede_update_tx_producer(txq);
1600			return NETDEV_TX_OK;
1601		}
1602
1603		if (tx_data_bd == (struct eth_tx_bd *)second_bd)
1604			tx_data_bd = (struct eth_tx_bd *)third_bd;
1605		else
1606			tx_data_bd = NULL;
1607
1608		frag_idx++;
1609	}
1610
1611	/* map last frags into 4th, 5th .... */
1612	for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
1613		tx_data_bd = (struct eth_tx_bd *)
1614			     qed_chain_produce(&txq->tx_pbl);
1615
1616		memset(tx_data_bd, 0, sizeof(*tx_data_bd));
1617
1618		rc = map_frag_to_bd(txq,
1619				    &skb_shinfo(skb)->frags[frag_idx],
1620				    tx_data_bd);
1621		if (rc) {
1622			qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split);
1623			qede_update_tx_producer(txq);
1624			return NETDEV_TX_OK;
1625		}
1626	}
1627
1628	/* update the first BD with the actual num BDs */
1629	first_bd->data.nbds = nbd;
1630
1631	netdev_tx_sent_queue(netdev_txq, skb->len);
1632
1633	skb_tx_timestamp(skb);
1634
1635	/* Advance packet producer only before sending the packet since mapping
1636	 * of pages may fail.
1637	 */
1638	txq->sw_tx_prod = (txq->sw_tx_prod + 1) % txq->num_tx_buffers;
1639
1640	/* 'next page' entries are counted in the producer value */
1641	txq->tx_db.data.bd_prod =
1642		cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
1643
1644	if (!skb->xmit_more || netif_xmit_stopped(netdev_txq))
1645		qede_update_tx_producer(txq);
1646
1647	if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
1648		      < (MAX_SKB_FRAGS + 1))) {
1649		if (skb->xmit_more)
1650			qede_update_tx_producer(txq);
1651
1652		netif_tx_stop_queue(netdev_txq);
1653		txq->stopped_cnt++;
1654		DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1655			   "Stop queue was called\n");
1656		/* paired memory barrier is in qede_tx_int(), we have to keep
1657		 * ordering of set_bit() in netif_tx_stop_queue() and read of
1658		 * fp->bd_tx_cons
1659		 */
1660		smp_mb();
1661
1662		if ((qed_chain_get_elem_left(&txq->tx_pbl) >=
1663		     (MAX_SKB_FRAGS + 1)) &&
1664		    (edev->state == QEDE_STATE_OPEN)) {
1665			netif_tx_wake_queue(netdev_txq);
1666			DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1667				   "Wake queue was called\n");
1668		}
1669	}
1670
1671	return NETDEV_TX_OK;
1672}
1673
 
 
 
 
 
 
 
 
 
 
 
 
1674/* 8B udp header + 8B base tunnel header + 32B option length */
1675#define QEDE_MAX_TUN_HDR_LEN 48
1676
1677netdev_features_t qede_features_check(struct sk_buff *skb,
1678				      struct net_device *dev,
1679				      netdev_features_t features)
1680{
1681	if (skb->encapsulation) {
1682		u8 l4_proto = 0;
1683
1684		switch (vlan_get_protocol(skb)) {
1685		case htons(ETH_P_IP):
1686			l4_proto = ip_hdr(skb)->protocol;
1687			break;
1688		case htons(ETH_P_IPV6):
1689			l4_proto = ipv6_hdr(skb)->nexthdr;
1690			break;
1691		default:
1692			return features;
1693		}
1694
1695		/* Disable offloads for geneve tunnels, as HW can't parse
1696		 * the geneve header which has option length greater than 32b
1697		 * and disable offloads for the ports which are not offloaded.
1698		 */
1699		if (l4_proto == IPPROTO_UDP) {
1700			struct qede_dev *edev = netdev_priv(dev);
1701			u16 hdrlen, vxln_port, gnv_port;
1702
1703			hdrlen = QEDE_MAX_TUN_HDR_LEN;
1704			vxln_port = edev->vxlan_dst_port;
1705			gnv_port = edev->geneve_dst_port;
1706
1707			if ((skb_inner_mac_header(skb) -
1708			     skb_transport_header(skb)) > hdrlen ||
1709			     (ntohs(udp_hdr(skb)->dest) != vxln_port &&
1710			      ntohs(udp_hdr(skb)->dest) != gnv_port))
1711				return features & ~(NETIF_F_CSUM_MASK |
1712						    NETIF_F_GSO_MASK);
 
 
 
 
 
1713		}
1714	}
1715
1716	return features;
1717}