Linux Audio

Check our new training course

Loading...
v6.13.7
   1/* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */
   2/*
   3	Written/copyright 1999-2001 by Donald Becker.
   4	Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com)
   5	Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com)
   6	Portions copyright 2004 Harald Welte <laforge@gnumonks.org>
   7
   8	This software may be used and distributed according to the terms of
   9	the GNU General Public License (GPL), incorporated herein by reference.
  10	Drivers based on or derived from this code fall under the GPL and must
  11	retain the authorship, copyright and license notice.  This file is not
  12	a complete program and may only be used when the entire operating
  13	system is licensed under the GPL.  License for under other terms may be
  14	available.  Contact the original author for details.
  15
  16	The original author may be reached as becker@scyld.com, or at
  17	Scyld Computing Corporation
  18	410 Severn Ave., Suite 210
  19	Annapolis MD 21403
  20
  21	Support information and updates available at
  22	http://www.scyld.com/network/netsemi.html
  23	[link no longer provides useful info -jgarzik]
  24
  25
  26	TODO:
  27	* big endian support with CFG:BEM instead of cpu_to_le32
  28*/
  29
  30#include <linux/module.h>
  31#include <linux/kernel.h>
  32#include <linux/string.h>
  33#include <linux/timer.h>
  34#include <linux/errno.h>
  35#include <linux/ioport.h>
  36#include <linux/slab.h>
  37#include <linux/interrupt.h>
  38#include <linux/pci.h>
  39#include <linux/netdevice.h>
  40#include <linux/etherdevice.h>
  41#include <linux/skbuff.h>
  42#include <linux/init.h>
  43#include <linux/spinlock.h>
  44#include <linux/ethtool.h>
  45#include <linux/delay.h>
  46#include <linux/rtnetlink.h>
  47#include <linux/mii.h>
  48#include <linux/crc32.h>
  49#include <linux/bitops.h>
  50#include <linux/prefetch.h>
  51#include <asm/processor.h>	/* Processor type for cache alignment. */
  52#include <asm/io.h>
  53#include <asm/irq.h>
  54#include <linux/uaccess.h>
  55
  56#define DRV_NAME	"natsemi"
  57#define DRV_VERSION	"2.1"
  58#define DRV_RELDATE	"Sept 11, 2006"
  59
  60#define RX_OFFSET	2
  61
  62/* Updated to recommendations in pci-skeleton v2.03. */
  63
  64/* The user-configurable values.
  65   These may be modified when a driver module is loaded.*/
  66
  67#define NATSEMI_DEF_MSG		(NETIF_MSG_DRV		| \
  68				 NETIF_MSG_LINK		| \
  69				 NETIF_MSG_WOL		| \
  70				 NETIF_MSG_RX_ERR	| \
  71				 NETIF_MSG_TX_ERR)
  72static int debug = -1;
  73
  74static int mtu;
  75
  76/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
  77   This chip uses a 512 element hash table based on the Ethernet CRC.  */
  78static const int multicast_filter_limit = 100;
  79
  80/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
  81   Setting to > 1518 effectively disables this feature. */
  82static int rx_copybreak;
  83
  84static int dspcfg_workaround = 1;
  85
  86/* Used to pass the media type, etc.
  87   Both 'options[]' and 'full_duplex[]' should exist for driver
  88   interoperability.
  89   The media type is usually passed in 'options[]'.
  90*/
  91#define MAX_UNITS 8		/* More are supported, limit only on options */
  92static int options[MAX_UNITS];
  93static int full_duplex[MAX_UNITS];
  94
  95/* Operational parameters that are set at compile time. */
  96
  97/* Keep the ring sizes a power of two for compile efficiency.
  98   The compiler will convert <unsigned>'%'<2^N> into a bit mask.
  99   Making the Tx ring too large decreases the effectiveness of channel
 100   bonding and packet priority.
 101   There are no ill effects from too-large receive rings. */
 102#define TX_RING_SIZE	16
 103#define TX_QUEUE_LEN	10 /* Limit ring entries actually used, min 4. */
 104#define RX_RING_SIZE	32
 105
 106/* Operational parameters that usually are not changed. */
 107/* Time in jiffies before concluding the transmitter is hung. */
 108#define TX_TIMEOUT  (2*HZ)
 109
 110#define NATSEMI_HW_TIMEOUT	400
 111#define NATSEMI_TIMER_FREQ	5*HZ
 112#define NATSEMI_PG0_NREGS	64
 113#define NATSEMI_RFDR_NREGS	8
 114#define NATSEMI_PG1_NREGS	4
 115#define NATSEMI_NREGS		(NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \
 116				 NATSEMI_PG1_NREGS)
 117#define NATSEMI_REGS_VER	1 /* v1 added RFDR registers */
 118#define NATSEMI_REGS_SIZE	(NATSEMI_NREGS * sizeof(u32))
 119
 120/* Buffer sizes:
 121 * The nic writes 32-bit values, even if the upper bytes of
 122 * a 32-bit value are beyond the end of the buffer.
 123 */
 124#define NATSEMI_HEADERS		22	/* 2*mac,type,vlan,crc */
 125#define NATSEMI_PADDING		16	/* 2 bytes should be sufficient */
 126#define NATSEMI_LONGPKT		1518	/* limit for normal packets */
 127#define NATSEMI_RX_LIMIT	2046	/* maximum supported by hardware */
 128
 129/* These identify the driver base version and may not be removed. */
 130static const char version[] =
 131  KERN_INFO DRV_NAME " dp8381x driver, version "
 132      DRV_VERSION ", " DRV_RELDATE "\n"
 133  "  originally by Donald Becker <becker@scyld.com>\n"
 134  "  2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n";
 135
 136MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
 137MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver");
 138MODULE_LICENSE("GPL");
 139
 140module_param(mtu, int, 0);
 141module_param(debug, int, 0);
 142module_param(rx_copybreak, int, 0);
 143module_param(dspcfg_workaround, int, 0);
 144module_param_array(options, int, NULL, 0);
 145module_param_array(full_duplex, int, NULL, 0);
 146MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)");
 147MODULE_PARM_DESC(debug, "DP8381x default debug level");
 148MODULE_PARM_DESC(rx_copybreak,
 149	"DP8381x copy breakpoint for copy-only-tiny-frames");
 150MODULE_PARM_DESC(dspcfg_workaround, "DP8381x: control DspCfg workaround");
 151MODULE_PARM_DESC(options,
 152	"DP8381x: Bits 0-3: media type, bit 17: full duplex");
 153MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)");
 154
 155/*
 156				Theory of Operation
 157
 158I. Board Compatibility
 159
 160This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC.
 161It also works with other chips in the DP83810 series.
 162
 163II. Board-specific settings
 164
 165This driver requires the PCI interrupt line to be valid.
 166It honors the EEPROM-set values.
 167
 168III. Driver operation
 169
 170IIIa. Ring buffers
 171
 172This driver uses two statically allocated fixed-size descriptor lists
 173formed into rings by a branch from the final descriptor to the beginning of
 174the list.  The ring sizes are set at compile time by RX/TX_RING_SIZE.
 175The NatSemi design uses a 'next descriptor' pointer that the driver forms
 176into a list.
 177
 178IIIb/c. Transmit/Receive Structure
 179
 180This driver uses a zero-copy receive and transmit scheme.
 181The driver allocates full frame size skbuffs for the Rx ring buffers at
 182open() time and passes the skb->data field to the chip as receive data
 183buffers.  When an incoming frame is less than RX_COPYBREAK bytes long,
 184a fresh skbuff is allocated and the frame is copied to the new skbuff.
 185When the incoming frame is larger, the skbuff is passed directly up the
 186protocol stack.  Buffers consumed this way are replaced by newly allocated
 187skbuffs in a later phase of receives.
 188
 189The RX_COPYBREAK value is chosen to trade-off the memory wasted by
 190using a full-sized skbuff for small frames vs. the copying costs of larger
 191frames.  New boards are typically used in generously configured machines
 192and the underfilled buffers have negligible impact compared to the benefit of
 193a single allocation size, so the default value of zero results in never
 194copying packets.  When copying is done, the cost is usually mitigated by using
 195a combined copy/checksum routine.  Copying also preloads the cache, which is
 196most useful with small frames.
 197
 198A subtle aspect of the operation is that unaligned buffers are not permitted
 199by the hardware.  Thus the IP header at offset 14 in an ethernet frame isn't
 200longword aligned for further processing.  On copies frames are put into the
 201skbuff at an offset of "+2", 16-byte aligning the IP header.
 202
 203IIId. Synchronization
 204
 205Most operations are synchronized on the np->lock irq spinlock, except the
 206receive and transmit paths which are synchronised using a combination of
 207hardware descriptor ownership, disabling interrupts and NAPI poll scheduling.
 208
 209IVb. References
 210
 211http://www.scyld.com/expert/100mbps.html
 212http://www.scyld.com/expert/NWay.html
 213Datasheet is available from:
 214http://www.national.com/pf/DP/DP83815.html
 215
 216IVc. Errata
 217
 218None characterised.
 219*/
 220
 221
 222
 223/*
 224 * Support for fibre connections on Am79C874:
 225 * This phy needs a special setup when connected to a fibre cable.
 226 * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf
 227 */
 228#define PHYID_AM79C874	0x0022561b
 229
 230enum {
 231	MII_MCTRL	= 0x15,		/* mode control register */
 232	MII_FX_SEL	= 0x0001,	/* 100BASE-FX (fiber) */
 233	MII_EN_SCRM	= 0x0004,	/* enable scrambler (tp) */
 234};
 235
 236enum {
 237	NATSEMI_FLAG_IGNORE_PHY		= 0x1,
 238};
 239
 240/* array of board data directly indexed by pci_tbl[x].driver_data */
 241static struct {
 242	const char *name;
 243	unsigned long flags;
 244	unsigned int eeprom_size;
 245} natsemi_pci_info[] = {
 246	{ "Aculab E1/T1 PMXc cPCI carrier card", NATSEMI_FLAG_IGNORE_PHY, 128 },
 247	{ "NatSemi DP8381[56]", 0, 24 },
 248};
 249
 250static const struct pci_device_id natsemi_pci_tbl[] = {
 251	{ PCI_VENDOR_ID_NS, 0x0020, 0x12d9,     0x000c,     0, 0, 0 },
 252	{ PCI_VENDOR_ID_NS, 0x0020, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
 253	{ }	/* terminate list */
 254};
 255MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl);
 256
 257/* Offsets to the device registers.
 258   Unlike software-only systems, device drivers interact with complex hardware.
 259   It's not useful to define symbolic names for every register bit in the
 260   device.
 261*/
 262enum register_offsets {
 263	ChipCmd			= 0x00,
 264	ChipConfig		= 0x04,
 265	EECtrl			= 0x08,
 266	PCIBusCfg		= 0x0C,
 267	IntrStatus		= 0x10,
 268	IntrMask		= 0x14,
 269	IntrEnable		= 0x18,
 270	IntrHoldoff		= 0x1C, /* DP83816 only */
 271	TxRingPtr		= 0x20,
 272	TxConfig		= 0x24,
 273	RxRingPtr		= 0x30,
 274	RxConfig		= 0x34,
 275	ClkRun			= 0x3C,
 276	WOLCmd			= 0x40,
 277	PauseCmd		= 0x44,
 278	RxFilterAddr		= 0x48,
 279	RxFilterData		= 0x4C,
 280	BootRomAddr		= 0x50,
 281	BootRomData		= 0x54,
 282	SiliconRev		= 0x58,
 283	StatsCtrl		= 0x5C,
 284	StatsData		= 0x60,
 285	RxPktErrs		= 0x60,
 286	RxMissed		= 0x68,
 287	RxCRCErrs		= 0x64,
 288	BasicControl		= 0x80,
 289	BasicStatus		= 0x84,
 290	AnegAdv			= 0x90,
 291	AnegPeer		= 0x94,
 292	PhyStatus		= 0xC0,
 293	MIntrCtrl		= 0xC4,
 294	MIntrStatus		= 0xC8,
 295	PhyCtrl			= 0xE4,
 296
 297	/* These are from the spec, around page 78... on a separate table.
 298	 * The meaning of these registers depend on the value of PGSEL. */
 299	PGSEL			= 0xCC,
 300	PMDCSR			= 0xE4,
 301	TSTDAT			= 0xFC,
 302	DSPCFG			= 0xF4,
 303	SDCFG			= 0xF8
 304};
 305/* the values for the 'magic' registers above (PGSEL=1) */
 306#define PMDCSR_VAL	0x189c	/* enable preferred adaptation circuitry */
 307#define TSTDAT_VAL	0x0
 308#define DSPCFG_VAL	0x5040
 309#define SDCFG_VAL	0x008c	/* set voltage thresholds for Signal Detect */
 310#define DSPCFG_LOCK	0x20	/* coefficient lock bit in DSPCFG */
 311#define DSPCFG_COEF	0x1000	/* see coefficient (in TSTDAT) bit in DSPCFG */
 312#define TSTDAT_FIXED	0xe8	/* magic number for bad coefficients */
 313
 314/* misc PCI space registers */
 315enum pci_register_offsets {
 316	PCIPM			= 0x44,
 317};
 318
 319enum ChipCmd_bits {
 320	ChipReset		= 0x100,
 321	RxReset			= 0x20,
 322	TxReset			= 0x10,
 323	RxOff			= 0x08,
 324	RxOn			= 0x04,
 325	TxOff			= 0x02,
 326	TxOn			= 0x01,
 327};
 328
 329enum ChipConfig_bits {
 330	CfgPhyDis		= 0x200,
 331	CfgPhyRst		= 0x400,
 332	CfgExtPhy		= 0x1000,
 333	CfgAnegEnable		= 0x2000,
 334	CfgAneg100		= 0x4000,
 335	CfgAnegFull		= 0x8000,
 336	CfgAnegDone		= 0x8000000,
 337	CfgFullDuplex		= 0x20000000,
 338	CfgSpeed100		= 0x40000000,
 339	CfgLink			= 0x80000000,
 340};
 341
 342enum EECtrl_bits {
 343	EE_ShiftClk		= 0x04,
 344	EE_DataIn		= 0x01,
 345	EE_ChipSelect		= 0x08,
 346	EE_DataOut		= 0x02,
 347	MII_Data 		= 0x10,
 348	MII_Write		= 0x20,
 349	MII_ShiftClk		= 0x40,
 350};
 351
 352enum PCIBusCfg_bits {
 353	EepromReload		= 0x4,
 354};
 355
 356/* Bits in the interrupt status/mask registers. */
 357enum IntrStatus_bits {
 358	IntrRxDone		= 0x0001,
 359	IntrRxIntr		= 0x0002,
 360	IntrRxErr		= 0x0004,
 361	IntrRxEarly		= 0x0008,
 362	IntrRxIdle		= 0x0010,
 363	IntrRxOverrun		= 0x0020,
 364	IntrTxDone		= 0x0040,
 365	IntrTxIntr		= 0x0080,
 366	IntrTxErr		= 0x0100,
 367	IntrTxIdle		= 0x0200,
 368	IntrTxUnderrun		= 0x0400,
 369	StatsMax		= 0x0800,
 370	SWInt			= 0x1000,
 371	WOLPkt			= 0x2000,
 372	LinkChange		= 0x4000,
 373	IntrHighBits		= 0x8000,
 374	RxStatusFIFOOver	= 0x10000,
 375	IntrPCIErr		= 0xf00000,
 376	RxResetDone		= 0x1000000,
 377	TxResetDone		= 0x2000000,
 378	IntrAbnormalSummary	= 0xCD20,
 379};
 380
 381/*
 382 * Default Interrupts:
 383 * Rx OK, Rx Packet Error, Rx Overrun,
 384 * Tx OK, Tx Packet Error, Tx Underrun,
 385 * MIB Service, Phy Interrupt, High Bits,
 386 * Rx Status FIFO overrun,
 387 * Received Target Abort, Received Master Abort,
 388 * Signalled System Error, Received Parity Error
 389 */
 390#define DEFAULT_INTR 0x00f1cd65
 391
 392enum TxConfig_bits {
 393	TxDrthMask		= 0x3f,
 394	TxFlthMask		= 0x3f00,
 395	TxMxdmaMask		= 0x700000,
 396	TxMxdma_512		= 0x0,
 397	TxMxdma_4		= 0x100000,
 398	TxMxdma_8		= 0x200000,
 399	TxMxdma_16		= 0x300000,
 400	TxMxdma_32		= 0x400000,
 401	TxMxdma_64		= 0x500000,
 402	TxMxdma_128		= 0x600000,
 403	TxMxdma_256		= 0x700000,
 404	TxCollRetry		= 0x800000,
 405	TxAutoPad		= 0x10000000,
 406	TxMacLoop		= 0x20000000,
 407	TxHeartIgn		= 0x40000000,
 408	TxCarrierIgn		= 0x80000000
 409};
 410
 411/*
 412 * Tx Configuration:
 413 * - 256 byte DMA burst length
 414 * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free)
 415 * - 64 bytes initial drain threshold (i.e. begin actual transmission
 416 *   when 64 byte are in the fifo)
 417 * - on tx underruns, increase drain threshold by 64.
 418 * - at most use a drain threshold of 1472 bytes: The sum of the fill
 419 *   threshold and the drain threshold must be less than 2016 bytes.
 420 *
 421 */
 422#define TX_FLTH_VAL		((512/32) << 8)
 423#define TX_DRTH_VAL_START	(64/32)
 424#define TX_DRTH_VAL_INC		2
 425#define TX_DRTH_VAL_LIMIT	(1472/32)
 426
 427enum RxConfig_bits {
 428	RxDrthMask		= 0x3e,
 429	RxMxdmaMask		= 0x700000,
 430	RxMxdma_512		= 0x0,
 431	RxMxdma_4		= 0x100000,
 432	RxMxdma_8		= 0x200000,
 433	RxMxdma_16		= 0x300000,
 434	RxMxdma_32		= 0x400000,
 435	RxMxdma_64		= 0x500000,
 436	RxMxdma_128		= 0x600000,
 437	RxMxdma_256		= 0x700000,
 438	RxAcceptLong		= 0x8000000,
 439	RxAcceptTx		= 0x10000000,
 440	RxAcceptRunt		= 0x40000000,
 441	RxAcceptErr		= 0x80000000
 442};
 443#define RX_DRTH_VAL		(128/8)
 444
 445enum ClkRun_bits {
 446	PMEEnable		= 0x100,
 447	PMEStatus		= 0x8000,
 448};
 449
 450enum WolCmd_bits {
 451	WakePhy			= 0x1,
 452	WakeUnicast		= 0x2,
 453	WakeMulticast		= 0x4,
 454	WakeBroadcast		= 0x8,
 455	WakeArp			= 0x10,
 456	WakePMatch0		= 0x20,
 457	WakePMatch1		= 0x40,
 458	WakePMatch2		= 0x80,
 459	WakePMatch3		= 0x100,
 460	WakeMagic		= 0x200,
 461	WakeMagicSecure		= 0x400,
 462	SecureHack		= 0x100000,
 463	WokePhy			= 0x400000,
 464	WokeUnicast		= 0x800000,
 465	WokeMulticast		= 0x1000000,
 466	WokeBroadcast		= 0x2000000,
 467	WokeArp			= 0x4000000,
 468	WokePMatch0		= 0x8000000,
 469	WokePMatch1		= 0x10000000,
 470	WokePMatch2		= 0x20000000,
 471	WokePMatch3		= 0x40000000,
 472	WokeMagic		= 0x80000000,
 473	WakeOptsSummary		= 0x7ff
 474};
 475
 476enum RxFilterAddr_bits {
 477	RFCRAddressMask		= 0x3ff,
 478	AcceptMulticast		= 0x00200000,
 479	AcceptMyPhys		= 0x08000000,
 480	AcceptAllPhys		= 0x10000000,
 481	AcceptAllMulticast	= 0x20000000,
 482	AcceptBroadcast		= 0x40000000,
 483	RxFilterEnable		= 0x80000000
 484};
 485
 486enum StatsCtrl_bits {
 487	StatsWarn		= 0x1,
 488	StatsFreeze		= 0x2,
 489	StatsClear		= 0x4,
 490	StatsStrobe		= 0x8,
 491};
 492
 493enum MIntrCtrl_bits {
 494	MICRIntEn		= 0x2,
 495};
 496
 497enum PhyCtrl_bits {
 498	PhyAddrMask		= 0x1f,
 499};
 500
 501#define PHY_ADDR_NONE		32
 502#define PHY_ADDR_INTERNAL	1
 503
 504/* values we might find in the silicon revision register */
 505#define SRR_DP83815_C	0x0302
 506#define SRR_DP83815_D	0x0403
 507#define SRR_DP83816_A4	0x0504
 508#define SRR_DP83816_A5	0x0505
 509
 510/* The Rx and Tx buffer descriptors. */
 511/* Note that using only 32 bit fields simplifies conversion to big-endian
 512   architectures. */
 513struct netdev_desc {
 514	__le32 next_desc;
 515	__le32 cmd_status;
 516	__le32 addr;
 517	__le32 software_use;
 518};
 519
 520/* Bits in network_desc.status */
 521enum desc_status_bits {
 522	DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000,
 523	DescNoCRC=0x10000000, DescPktOK=0x08000000,
 524	DescSizeMask=0xfff,
 525
 526	DescTxAbort=0x04000000, DescTxFIFO=0x02000000,
 527	DescTxCarrier=0x01000000, DescTxDefer=0x00800000,
 528	DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000,
 529	DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000,
 530
 531	DescRxAbort=0x04000000, DescRxOver=0x02000000,
 532	DescRxDest=0x01800000, DescRxLong=0x00400000,
 533	DescRxRunt=0x00200000, DescRxInvalid=0x00100000,
 534	DescRxCRC=0x00080000, DescRxAlign=0x00040000,
 535	DescRxLoop=0x00020000, DesRxColl=0x00010000,
 536};
 537
 538struct netdev_private {
 539	/* Descriptor rings first for alignment */
 540	dma_addr_t ring_dma;
 541	struct netdev_desc *rx_ring;
 542	struct netdev_desc *tx_ring;
 543	/* The addresses of receive-in-place skbuffs */
 544	struct sk_buff *rx_skbuff[RX_RING_SIZE];
 545	dma_addr_t rx_dma[RX_RING_SIZE];
 546	/* address of a sent-in-place packet/buffer, for later free() */
 547	struct sk_buff *tx_skbuff[TX_RING_SIZE];
 548	dma_addr_t tx_dma[TX_RING_SIZE];
 549	struct net_device *dev;
 550	void __iomem *ioaddr;
 551	struct napi_struct napi;
 552	/* Media monitoring timer */
 553	struct timer_list timer;
 554	/* Frequently used values: keep some adjacent for cache effect */
 555	struct pci_dev *pci_dev;
 556	struct netdev_desc *rx_head_desc;
 557	/* Producer/consumer ring indices */
 558	unsigned int cur_rx, dirty_rx;
 559	unsigned int cur_tx, dirty_tx;
 560	/* Based on MTU+slack. */
 561	unsigned int rx_buf_sz;
 562	int oom;
 563	/* Interrupt status */
 564	u32 intr_status;
 565	/* Do not touch the nic registers */
 566	int hands_off;
 567	/* Don't pay attention to the reported link state. */
 568	int ignore_phy;
 569	/* external phy that is used: only valid if dev->if_port != PORT_TP */
 570	int mii;
 571	int phy_addr_external;
 572	unsigned int full_duplex;
 573	/* Rx filter */
 574	u32 cur_rx_mode;
 575	u32 rx_filter[16];
 576	/* FIFO and PCI burst thresholds */
 577	u32 tx_config, rx_config;
 578	/* original contents of ClkRun register */
 579	u32 SavedClkRun;
 580	/* silicon revision */
 581	u32 srr;
 582	/* expected DSPCFG value */
 583	u16 dspcfg;
 584	int dspcfg_workaround;
 585	/* parms saved in ethtool format */
 586	u16	speed;		/* The forced speed, 10Mb, 100Mb, gigabit */
 587	u8	duplex;		/* Duplex, half or full */
 588	u8	autoneg;	/* Autonegotiation enabled */
 589	/* MII transceiver section */
 590	u16 advertising;
 591	unsigned int iosize;
 592	spinlock_t lock;
 593	u32 msg_enable;
 594	/* EEPROM data */
 595	int eeprom_size;
 596};
 597
 598static void move_int_phy(struct net_device *dev, int addr);
 599static int eeprom_read(void __iomem *ioaddr, int location);
 600static int mdio_read(struct net_device *dev, int reg);
 601static void mdio_write(struct net_device *dev, int reg, u16 data);
 602static void init_phy_fixup(struct net_device *dev);
 603static int miiport_read(struct net_device *dev, int phy_id, int reg);
 604static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data);
 605static int find_mii(struct net_device *dev);
 606static void natsemi_reset(struct net_device *dev);
 607static void natsemi_reload_eeprom(struct net_device *dev);
 608static void natsemi_stop_rxtx(struct net_device *dev);
 609static int netdev_open(struct net_device *dev);
 610static void do_cable_magic(struct net_device *dev);
 611static void undo_cable_magic(struct net_device *dev);
 612static void check_link(struct net_device *dev);
 613static void netdev_timer(struct timer_list *t);
 614static void dump_ring(struct net_device *dev);
 615static void ns_tx_timeout(struct net_device *dev, unsigned int txqueue);
 616static int alloc_ring(struct net_device *dev);
 617static void refill_rx(struct net_device *dev);
 618static void init_ring(struct net_device *dev);
 619static void drain_tx(struct net_device *dev);
 620static void drain_ring(struct net_device *dev);
 621static void free_ring(struct net_device *dev);
 622static void reinit_ring(struct net_device *dev);
 623static void init_registers(struct net_device *dev);
 624static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
 625static irqreturn_t intr_handler(int irq, void *dev_instance);
 626static void netdev_error(struct net_device *dev, int intr_status);
 627static int natsemi_poll(struct napi_struct *napi, int budget);
 628static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do);
 629static void netdev_tx_done(struct net_device *dev);
 630static int natsemi_change_mtu(struct net_device *dev, int new_mtu);
 631#ifdef CONFIG_NET_POLL_CONTROLLER
 632static void natsemi_poll_controller(struct net_device *dev);
 633#endif
 634static void __set_rx_mode(struct net_device *dev);
 635static void set_rx_mode(struct net_device *dev);
 636static void __get_stats(struct net_device *dev);
 637static struct net_device_stats *get_stats(struct net_device *dev);
 638static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 639static int netdev_set_wol(struct net_device *dev, u32 newval);
 640static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur);
 641static int netdev_set_sopass(struct net_device *dev, u8 *newval);
 642static int netdev_get_sopass(struct net_device *dev, u8 *data);
 643static int netdev_get_ecmd(struct net_device *dev,
 644			   struct ethtool_link_ksettings *ecmd);
 645static int netdev_set_ecmd(struct net_device *dev,
 646			   const struct ethtool_link_ksettings *ecmd);
 647static void enable_wol_mode(struct net_device *dev, int enable_intr);
 648static int netdev_close(struct net_device *dev);
 649static int netdev_get_regs(struct net_device *dev, u8 *buf);
 650static int netdev_get_eeprom(struct net_device *dev, u8 *buf);
 651static const struct ethtool_ops ethtool_ops;
 652
 653#define NATSEMI_ATTR(_name) \
 654static ssize_t natsemi_show_##_name(struct device *dev, \
 655         struct device_attribute *attr, char *buf); \
 656	 static ssize_t natsemi_set_##_name(struct device *dev, \
 657		struct device_attribute *attr, \
 658	        const char *buf, size_t count); \
 659	 static DEVICE_ATTR(_name, 0644, natsemi_show_##_name, natsemi_set_##_name)
 660
 661#define NATSEMI_CREATE_FILE(_dev, _name) \
 662         device_create_file(&_dev->dev, &dev_attr_##_name)
 663#define NATSEMI_REMOVE_FILE(_dev, _name) \
 664         device_remove_file(&_dev->dev, &dev_attr_##_name)
 665
 666NATSEMI_ATTR(dspcfg_workaround);
 667
 668static ssize_t natsemi_show_dspcfg_workaround(struct device *dev,
 669				  	      struct device_attribute *attr,
 670					      char *buf)
 671{
 672	struct netdev_private *np = netdev_priv(to_net_dev(dev));
 673
 674	return sprintf(buf, "%s\n", np->dspcfg_workaround ? "on" : "off");
 675}
 676
 677static ssize_t natsemi_set_dspcfg_workaround(struct device *dev,
 678					     struct device_attribute *attr,
 679					     const char *buf, size_t count)
 680{
 681	struct netdev_private *np = netdev_priv(to_net_dev(dev));
 682	int new_setting;
 683	unsigned long flags;
 684
 685        /* Find out the new setting */
 686        if (!strncmp("on", buf, count - 1) || !strncmp("1", buf, count - 1))
 687                new_setting = 1;
 688        else if (!strncmp("off", buf, count - 1) ||
 689                 !strncmp("0", buf, count - 1))
 690		new_setting = 0;
 691	else
 692                 return count;
 693
 694	spin_lock_irqsave(&np->lock, flags);
 695
 696	np->dspcfg_workaround = new_setting;
 697
 698	spin_unlock_irqrestore(&np->lock, flags);
 699
 700	return count;
 701}
 702
 703static inline void __iomem *ns_ioaddr(struct net_device *dev)
 704{
 705	struct netdev_private *np = netdev_priv(dev);
 706
 707	return np->ioaddr;
 708}
 709
 710static inline void natsemi_irq_enable(struct net_device *dev)
 711{
 712	writel(1, ns_ioaddr(dev) + IntrEnable);
 713	readl(ns_ioaddr(dev) + IntrEnable);
 714}
 715
 716static inline void natsemi_irq_disable(struct net_device *dev)
 717{
 718	writel(0, ns_ioaddr(dev) + IntrEnable);
 719	readl(ns_ioaddr(dev) + IntrEnable);
 720}
 721
 722static void move_int_phy(struct net_device *dev, int addr)
 723{
 724	struct netdev_private *np = netdev_priv(dev);
 725	void __iomem *ioaddr = ns_ioaddr(dev);
 726	int target = 31;
 727
 728	/*
 729	 * The internal phy is visible on the external mii bus. Therefore we must
 730	 * move it away before we can send commands to an external phy.
 731	 * There are two addresses we must avoid:
 732	 * - the address on the external phy that is used for transmission.
 733	 * - the address that we want to access. User space can access phys
 734	 *   on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independent from the
 735	 *   phy that is used for transmission.
 736	 */
 737
 738	if (target == addr)
 739		target--;
 740	if (target == np->phy_addr_external)
 741		target--;
 742	writew(target, ioaddr + PhyCtrl);
 743	readw(ioaddr + PhyCtrl);
 744	udelay(1);
 745}
 746
 747static void natsemi_init_media(struct net_device *dev)
 748{
 749	struct netdev_private *np = netdev_priv(dev);
 750	u32 tmp;
 751
 752	if (np->ignore_phy)
 753		netif_carrier_on(dev);
 754	else
 755		netif_carrier_off(dev);
 756
 757	/* get the initial settings from hardware */
 758	tmp            = mdio_read(dev, MII_BMCR);
 759	np->speed      = (tmp & BMCR_SPEED100)? SPEED_100     : SPEED_10;
 760	np->duplex     = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL   : DUPLEX_HALF;
 761	np->autoneg    = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE;
 762	np->advertising= mdio_read(dev, MII_ADVERTISE);
 763
 764	if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL &&
 765	    netif_msg_probe(np)) {
 766		printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s "
 767			"10%s %s duplex.\n",
 768			pci_name(np->pci_dev),
 769			(mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)?
 770			  "enabled, advertise" : "disabled, force",
 771			(np->advertising &
 772			  (ADVERTISE_100FULL|ADVERTISE_100HALF))?
 773			    "0" : "",
 774			(np->advertising &
 775			  (ADVERTISE_100FULL|ADVERTISE_10FULL))?
 776			    "full" : "half");
 777	}
 778	if (netif_msg_probe(np))
 779		printk(KERN_INFO
 780			"natsemi %s: Transceiver status %#04x advertising %#04x.\n",
 781			pci_name(np->pci_dev), mdio_read(dev, MII_BMSR),
 782			np->advertising);
 783
 784}
 785
 786static const struct net_device_ops natsemi_netdev_ops = {
 787	.ndo_open		= netdev_open,
 788	.ndo_stop		= netdev_close,
 789	.ndo_start_xmit		= start_tx,
 790	.ndo_get_stats		= get_stats,
 791	.ndo_set_rx_mode	= set_rx_mode,
 792	.ndo_change_mtu		= natsemi_change_mtu,
 793	.ndo_eth_ioctl		= netdev_ioctl,
 794	.ndo_tx_timeout 	= ns_tx_timeout,
 795	.ndo_set_mac_address 	= eth_mac_addr,
 796	.ndo_validate_addr	= eth_validate_addr,
 797#ifdef CONFIG_NET_POLL_CONTROLLER
 798	.ndo_poll_controller	= natsemi_poll_controller,
 799#endif
 800};
 801
 802static int natsemi_probe1(struct pci_dev *pdev, const struct pci_device_id *ent)
 803{
 804	struct net_device *dev;
 805	struct netdev_private *np;
 806	int i, option, irq, chip_idx = ent->driver_data;
 807	static int find_cnt = -1;
 808	resource_size_t iostart;
 809	unsigned long iosize;
 810	void __iomem *ioaddr;
 811	const int pcibar = 1; /* PCI base address register */
 812	u8 addr[ETH_ALEN];
 813	int prev_eedata;
 814	u32 tmp;
 815
 816/* when built into the kernel, we only print version if device is found */
 817#ifndef MODULE
 818	static int printed_version;
 819	if (!printed_version++)
 820		printk(version);
 821#endif
 822
 823	i = pcim_enable_device(pdev);
 824	if (i) return i;
 825
 826	/* natsemi has a non-standard PM control register
 827	 * in PCI config space.  Some boards apparently need
 828	 * to be brought to D0 in this manner.
 829	 */
 830	pci_read_config_dword(pdev, PCIPM, &tmp);
 831	if (tmp & PCI_PM_CTRL_STATE_MASK) {
 832		/* D0 state, disable PME assertion */
 833		u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK;
 834		pci_write_config_dword(pdev, PCIPM, newtmp);
 835	}
 836
 837	find_cnt++;
 838	iostart = pci_resource_start(pdev, pcibar);
 839	iosize = pci_resource_len(pdev, pcibar);
 840	irq = pdev->irq;
 841
 842	pci_set_master(pdev);
 843
 844	dev = alloc_etherdev(sizeof (struct netdev_private));
 845	if (!dev)
 846		return -ENOMEM;
 847	SET_NETDEV_DEV(dev, &pdev->dev);
 848
 849	i = pci_request_regions(pdev, DRV_NAME);
 850	if (i)
 851		goto err_pci_request_regions;
 852
 853	ioaddr = ioremap(iostart, iosize);
 854	if (!ioaddr) {
 855		i = -ENOMEM;
 856		goto err_pci_request_regions;
 857	}
 858
 859	/* Work around the dropped serial bit. */
 860	prev_eedata = eeprom_read(ioaddr, 6);
 861	for (i = 0; i < 3; i++) {
 862		int eedata = eeprom_read(ioaddr, i + 7);
 863		addr[i*2] = (eedata << 1) + (prev_eedata >> 15);
 864		addr[i*2+1] = eedata >> 7;
 865		prev_eedata = eedata;
 866	}
 867	eth_hw_addr_set(dev, addr);
 868
 869	np = netdev_priv(dev);
 870	np->ioaddr = ioaddr;
 871
 872	netif_napi_add(dev, &np->napi, natsemi_poll);
 873	np->dev = dev;
 874
 875	np->pci_dev = pdev;
 876	pci_set_drvdata(pdev, dev);
 877	np->iosize = iosize;
 878	spin_lock_init(&np->lock);
 879	np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG;
 880	np->hands_off = 0;
 881	np->intr_status = 0;
 882	np->eeprom_size = natsemi_pci_info[chip_idx].eeprom_size;
 883	if (natsemi_pci_info[chip_idx].flags & NATSEMI_FLAG_IGNORE_PHY)
 884		np->ignore_phy = 1;
 885	else
 886		np->ignore_phy = 0;
 887	np->dspcfg_workaround = dspcfg_workaround;
 888
 889	/* Initial port:
 890	 * - If configured to ignore the PHY set up for external.
 891	 * - If the nic was configured to use an external phy and if find_mii
 892	 *   finds a phy: use external port, first phy that replies.
 893	 * - Otherwise: internal port.
 894	 * Note that the phy address for the internal phy doesn't matter:
 895	 * The address would be used to access a phy over the mii bus, but
 896	 * the internal phy is accessed through mapped registers.
 897	 */
 898	if (np->ignore_phy || readl(ioaddr + ChipConfig) & CfgExtPhy)
 899		dev->if_port = PORT_MII;
 900	else
 901		dev->if_port = PORT_TP;
 902	/* Reset the chip to erase previous misconfiguration. */
 903	natsemi_reload_eeprom(dev);
 904	natsemi_reset(dev);
 905
 906	if (dev->if_port != PORT_TP) {
 907		np->phy_addr_external = find_mii(dev);
 908		/* If we're ignoring the PHY it doesn't matter if we can't
 909		 * find one. */
 910		if (!np->ignore_phy && np->phy_addr_external == PHY_ADDR_NONE) {
 911			dev->if_port = PORT_TP;
 912			np->phy_addr_external = PHY_ADDR_INTERNAL;
 913		}
 914	} else {
 915		np->phy_addr_external = PHY_ADDR_INTERNAL;
 916	}
 917
 918	option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
 919	/* The lower four bits are the media type. */
 920	if (option) {
 921		if (option & 0x200)
 922			np->full_duplex = 1;
 923		if (option & 15)
 924			printk(KERN_INFO
 925				"natsemi %s: ignoring user supplied media type %d",
 926				pci_name(np->pci_dev), option & 15);
 927	}
 928	if (find_cnt < MAX_UNITS  &&  full_duplex[find_cnt])
 929		np->full_duplex = 1;
 930
 931	dev->netdev_ops = &natsemi_netdev_ops;
 932	dev->watchdog_timeo = TX_TIMEOUT;
 933
 934	dev->ethtool_ops = &ethtool_ops;
 935
 936	/* MTU range: 64 - 2024 */
 937	dev->min_mtu = ETH_ZLEN + ETH_FCS_LEN;
 938	dev->max_mtu = NATSEMI_RX_LIMIT - NATSEMI_HEADERS;
 939
 940	if (mtu)
 941		dev->mtu = mtu;
 942
 943	natsemi_init_media(dev);
 944
 945	/* save the silicon revision for later querying */
 946	np->srr = readl(ioaddr + SiliconRev);
 947	if (netif_msg_hw(np))
 948		printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n",
 949				pci_name(np->pci_dev), np->srr);
 950
 951	i = register_netdev(dev);
 952	if (i)
 953		goto err_register_netdev;
 954	i = NATSEMI_CREATE_FILE(pdev, dspcfg_workaround);
 955	if (i)
 956		goto err_create_file;
 957
 958	if (netif_msg_drv(np)) {
 959		printk(KERN_INFO "natsemi %s: %s at %#08llx "
 960		       "(%s), %pM, IRQ %d",
 961		       dev->name, natsemi_pci_info[chip_idx].name,
 962		       (unsigned long long)iostart, pci_name(np->pci_dev),
 963		       dev->dev_addr, irq);
 964		if (dev->if_port == PORT_TP)
 965			printk(", port TP.\n");
 966		else if (np->ignore_phy)
 967			printk(", port MII, ignoring PHY\n");
 968		else
 969			printk(", port MII, phy ad %d.\n", np->phy_addr_external);
 970	}
 971	return 0;
 972
 973 err_create_file:
 974	unregister_netdev(dev);
 975
 976 err_register_netdev:
 977	iounmap(ioaddr);
 978
 
 
 
 979 err_pci_request_regions:
 980	free_netdev(dev);
 981	return i;
 982}
 983
 984
 985/* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.
 986   The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */
 987
 988/* Delay between EEPROM clock transitions.
 989   No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
 990   a delay.  Note that pre-2.0.34 kernels had a cache-alignment bug that
 991   made udelay() unreliable.
 
 
 992*/
 993#define eeprom_delay(ee_addr)	readl(ee_addr)
 994
 995#define EE_Write0 (EE_ChipSelect)
 996#define EE_Write1 (EE_ChipSelect | EE_DataIn)
 997
 998/* The EEPROM commands include the alway-set leading bit. */
 999enum EEPROM_Cmds {
1000	EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
1001};
1002
1003static int eeprom_read(void __iomem *addr, int location)
1004{
1005	int i;
1006	int retval = 0;
1007	void __iomem *ee_addr = addr + EECtrl;
1008	int read_cmd = location | EE_ReadCmd;
1009
1010	writel(EE_Write0, ee_addr);
1011
1012	/* Shift the read command bits out. */
1013	for (i = 10; i >= 0; i--) {
1014		short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
1015		writel(dataval, ee_addr);
1016		eeprom_delay(ee_addr);
1017		writel(dataval | EE_ShiftClk, ee_addr);
1018		eeprom_delay(ee_addr);
1019	}
1020	writel(EE_ChipSelect, ee_addr);
1021	eeprom_delay(ee_addr);
1022
1023	for (i = 0; i < 16; i++) {
1024		writel(EE_ChipSelect | EE_ShiftClk, ee_addr);
1025		eeprom_delay(ee_addr);
1026		retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0;
1027		writel(EE_ChipSelect, ee_addr);
1028		eeprom_delay(ee_addr);
1029	}
1030
1031	/* Terminate the EEPROM access. */
1032	writel(EE_Write0, ee_addr);
1033	writel(0, ee_addr);
1034	return retval;
1035}
1036
1037/* MII transceiver control section.
1038 * The 83815 series has an internal transceiver, and we present the
1039 * internal management registers as if they were MII connected.
1040 * External Phy registers are referenced through the MII interface.
1041 */
1042
1043/* clock transitions >= 20ns (25MHz)
1044 * One readl should be good to PCI @ 100MHz
1045 */
1046#define mii_delay(ioaddr)  readl(ioaddr + EECtrl)
1047
1048static int mii_getbit (struct net_device *dev)
1049{
1050	int data;
1051	void __iomem *ioaddr = ns_ioaddr(dev);
1052
1053	writel(MII_ShiftClk, ioaddr + EECtrl);
1054	data = readl(ioaddr + EECtrl);
1055	writel(0, ioaddr + EECtrl);
1056	mii_delay(ioaddr);
1057	return (data & MII_Data)? 1 : 0;
1058}
1059
1060static void mii_send_bits (struct net_device *dev, u32 data, int len)
1061{
1062	u32 i;
1063	void __iomem *ioaddr = ns_ioaddr(dev);
1064
1065	for (i = (1 << (len-1)); i; i >>= 1)
1066	{
1067		u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0);
1068		writel(mdio_val, ioaddr + EECtrl);
1069		mii_delay(ioaddr);
1070		writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl);
1071		mii_delay(ioaddr);
1072	}
1073	writel(0, ioaddr + EECtrl);
1074	mii_delay(ioaddr);
1075}
1076
1077static int miiport_read(struct net_device *dev, int phy_id, int reg)
1078{
1079	u32 cmd;
1080	int i;
1081	u32 retval = 0;
1082
1083	/* Ensure sync */
1084	mii_send_bits (dev, 0xffffffff, 32);
1085	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1086	/* ST,OP = 0110'b for read operation */
1087	cmd = (0x06 << 10) | (phy_id << 5) | reg;
1088	mii_send_bits (dev, cmd, 14);
1089	/* Turnaround */
1090	if (mii_getbit (dev))
1091		return 0;
1092	/* Read data */
1093	for (i = 0; i < 16; i++) {
1094		retval <<= 1;
1095		retval |= mii_getbit (dev);
1096	}
1097	/* End cycle */
1098	mii_getbit (dev);
1099	return retval;
1100}
1101
1102static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data)
1103{
1104	u32 cmd;
1105
1106	/* Ensure sync */
1107	mii_send_bits (dev, 0xffffffff, 32);
1108	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1109	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1110	cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data;
1111	mii_send_bits (dev, cmd, 32);
1112	/* End cycle */
1113	mii_getbit (dev);
1114}
1115
1116static int mdio_read(struct net_device *dev, int reg)
1117{
1118	struct netdev_private *np = netdev_priv(dev);
1119	void __iomem *ioaddr = ns_ioaddr(dev);
1120
1121	/* The 83815 series has two ports:
1122	 * - an internal transceiver
1123	 * - an external mii bus
1124	 */
1125	if (dev->if_port == PORT_TP)
1126		return readw(ioaddr+BasicControl+(reg<<2));
1127	else
1128		return miiport_read(dev, np->phy_addr_external, reg);
1129}
1130
1131static void mdio_write(struct net_device *dev, int reg, u16 data)
1132{
1133	struct netdev_private *np = netdev_priv(dev);
1134	void __iomem *ioaddr = ns_ioaddr(dev);
1135
1136	/* The 83815 series has an internal transceiver; handle separately */
1137	if (dev->if_port == PORT_TP)
1138		writew(data, ioaddr+BasicControl+(reg<<2));
1139	else
1140		miiport_write(dev, np->phy_addr_external, reg, data);
1141}
1142
1143static void init_phy_fixup(struct net_device *dev)
1144{
1145	struct netdev_private *np = netdev_priv(dev);
1146	void __iomem *ioaddr = ns_ioaddr(dev);
1147	int i;
1148	u32 cfg;
1149	u16 tmp;
1150
1151	/* restore stuff lost when power was out */
1152	tmp = mdio_read(dev, MII_BMCR);
1153	if (np->autoneg == AUTONEG_ENABLE) {
1154		/* renegotiate if something changed */
1155		if ((tmp & BMCR_ANENABLE) == 0 ||
1156		    np->advertising != mdio_read(dev, MII_ADVERTISE))
1157		{
1158			/* turn on autonegotiation and force negotiation */
1159			tmp |= (BMCR_ANENABLE | BMCR_ANRESTART);
1160			mdio_write(dev, MII_ADVERTISE, np->advertising);
1161		}
1162	} else {
1163		/* turn off auto negotiation, set speed and duplexity */
1164		tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX);
1165		if (np->speed == SPEED_100)
1166			tmp |= BMCR_SPEED100;
1167		if (np->duplex == DUPLEX_FULL)
1168			tmp |= BMCR_FULLDPLX;
1169		/*
1170		 * Note: there is no good way to inform the link partner
1171		 * that our capabilities changed. The user has to unplug
1172		 * and replug the network cable after some changes, e.g.
1173		 * after switching from 10HD, autoneg off to 100 HD,
1174		 * autoneg off.
1175		 */
1176	}
1177	mdio_write(dev, MII_BMCR, tmp);
1178	readl(ioaddr + ChipConfig);
1179	udelay(1);
1180
1181	/* find out what phy this is */
1182	np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1183				+ mdio_read(dev, MII_PHYSID2);
1184
1185	/* handle external phys here */
1186	switch (np->mii) {
1187	case PHYID_AM79C874:
1188		/* phy specific configuration for fibre/tp operation */
1189		tmp = mdio_read(dev, MII_MCTRL);
1190		tmp &= ~(MII_FX_SEL | MII_EN_SCRM);
1191		if (dev->if_port == PORT_FIBRE)
1192			tmp |= MII_FX_SEL;
1193		else
1194			tmp |= MII_EN_SCRM;
1195		mdio_write(dev, MII_MCTRL, tmp);
1196		break;
1197	default:
1198		break;
1199	}
1200	cfg = readl(ioaddr + ChipConfig);
1201	if (cfg & CfgExtPhy)
1202		return;
1203
1204	/* On page 78 of the spec, they recommend some settings for "optimum
1205	   performance" to be done in sequence.  These settings optimize some
1206	   of the 100Mbit autodetection circuitry.  They say we only want to
1207	   do this for rev C of the chip, but engineers at NSC (Bradley
1208	   Kennedy) recommends always setting them.  If you don't, you get
1209	   errors on some autonegotiations that make the device unusable.
1210
1211	   It seems that the DSP needs a few usec to reinitialize after
1212	   the start of the phy. Just retry writing these values until they
1213	   stick.
1214	*/
1215	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1216
1217		int dspcfg;
1218		writew(1, ioaddr + PGSEL);
1219		writew(PMDCSR_VAL, ioaddr + PMDCSR);
1220		writew(TSTDAT_VAL, ioaddr + TSTDAT);
1221		np->dspcfg = (np->srr <= SRR_DP83815_C)?
1222			DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG));
1223		writew(np->dspcfg, ioaddr + DSPCFG);
1224		writew(SDCFG_VAL, ioaddr + SDCFG);
1225		writew(0, ioaddr + PGSEL);
1226		readl(ioaddr + ChipConfig);
1227		udelay(10);
1228
1229		writew(1, ioaddr + PGSEL);
1230		dspcfg = readw(ioaddr + DSPCFG);
1231		writew(0, ioaddr + PGSEL);
1232		if (np->dspcfg == dspcfg)
1233			break;
1234	}
1235
1236	if (netif_msg_link(np)) {
1237		if (i==NATSEMI_HW_TIMEOUT) {
1238			printk(KERN_INFO
1239				"%s: DSPCFG mismatch after retrying for %d usec.\n",
1240				dev->name, i*10);
1241		} else {
1242			printk(KERN_INFO
1243				"%s: DSPCFG accepted after %d usec.\n",
1244				dev->name, i*10);
1245		}
1246	}
1247	/*
1248	 * Enable PHY Specific event based interrupts.  Link state change
1249	 * and Auto-Negotiation Completion are among the affected.
1250	 * Read the intr status to clear it (needed for wake events).
1251	 */
1252	readw(ioaddr + MIntrStatus);
1253	writew(MICRIntEn, ioaddr + MIntrCtrl);
1254}
1255
1256static int switch_port_external(struct net_device *dev)
1257{
1258	struct netdev_private *np = netdev_priv(dev);
1259	void __iomem *ioaddr = ns_ioaddr(dev);
1260	u32 cfg;
1261
1262	cfg = readl(ioaddr + ChipConfig);
1263	if (cfg & CfgExtPhy)
1264		return 0;
1265
1266	if (netif_msg_link(np)) {
1267		printk(KERN_INFO "%s: switching to external transceiver.\n",
1268				dev->name);
1269	}
1270
1271	/* 1) switch back to external phy */
1272	writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig);
1273	readl(ioaddr + ChipConfig);
1274	udelay(1);
1275
1276	/* 2) reset the external phy: */
1277	/* resetting the external PHY has been known to cause a hub supplying
1278	 * power over Ethernet to kill the power.  We don't want to kill
1279	 * power to this computer, so we avoid resetting the phy.
1280	 */
1281
1282	/* 3) reinit the phy fixup, it got lost during power down. */
1283	move_int_phy(dev, np->phy_addr_external);
1284	init_phy_fixup(dev);
1285
1286	return 1;
1287}
1288
1289static int switch_port_internal(struct net_device *dev)
1290{
1291	struct netdev_private *np = netdev_priv(dev);
1292	void __iomem *ioaddr = ns_ioaddr(dev);
1293	int i;
1294	u32 cfg;
1295	u16 bmcr;
1296
1297	cfg = readl(ioaddr + ChipConfig);
1298	if (!(cfg &CfgExtPhy))
1299		return 0;
1300
1301	if (netif_msg_link(np)) {
1302		printk(KERN_INFO "%s: switching to internal transceiver.\n",
1303				dev->name);
1304	}
1305	/* 1) switch back to internal phy: */
1306	cfg = cfg & ~(CfgExtPhy | CfgPhyDis);
1307	writel(cfg, ioaddr + ChipConfig);
1308	readl(ioaddr + ChipConfig);
1309	udelay(1);
1310
1311	/* 2) reset the internal phy: */
1312	bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1313	writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2));
1314	readl(ioaddr + ChipConfig);
1315	udelay(10);
1316	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1317		bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1318		if (!(bmcr & BMCR_RESET))
1319			break;
1320		udelay(10);
1321	}
1322	if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) {
1323		printk(KERN_INFO
1324			"%s: phy reset did not complete in %d usec.\n",
1325			dev->name, i*10);
1326	}
1327	/* 3) reinit the phy fixup, it got lost during power down. */
1328	init_phy_fixup(dev);
1329
1330	return 1;
1331}
1332
1333/* Scan for a PHY on the external mii bus.
1334 * There are two tricky points:
1335 * - Do not scan while the internal phy is enabled. The internal phy will
1336 *   crash: e.g. reads from the DSPCFG register will return odd values and
1337 *   the nasty random phy reset code will reset the nic every few seconds.
1338 * - The internal phy must be moved around, an external phy could
1339 *   have the same address as the internal phy.
1340 */
1341static int find_mii(struct net_device *dev)
1342{
1343	struct netdev_private *np = netdev_priv(dev);
1344	int tmp;
1345	int i;
1346	int did_switch;
1347
1348	/* Switch to external phy */
1349	did_switch = switch_port_external(dev);
1350
1351	/* Scan the possible phy addresses:
1352	 *
1353	 * PHY address 0 means that the phy is in isolate mode. Not yet
1354	 * supported due to lack of test hardware. User space should
1355	 * handle it through ethtool.
1356	 */
1357	for (i = 1; i <= 31; i++) {
1358		move_int_phy(dev, i);
1359		tmp = miiport_read(dev, i, MII_BMSR);
1360		if (tmp != 0xffff && tmp != 0x0000) {
1361			/* found something! */
1362			np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1363					+ mdio_read(dev, MII_PHYSID2);
1364	 		if (netif_msg_probe(np)) {
1365				printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n",
1366						pci_name(np->pci_dev), np->mii, i);
1367			}
1368			break;
1369		}
1370	}
1371	/* And switch back to internal phy: */
1372	if (did_switch)
1373		switch_port_internal(dev);
1374	return i;
1375}
1376
1377/* CFG bits [13:16] [18:23] */
1378#define CFG_RESET_SAVE 0xfde000
1379/* WCSR bits [0:4] [9:10] */
1380#define WCSR_RESET_SAVE 0x61f
1381/* RFCR bits [20] [22] [27:31] */
1382#define RFCR_RESET_SAVE 0xf8500000
1383
1384static void natsemi_reset(struct net_device *dev)
1385{
1386	int i;
1387	u32 cfg;
1388	u32 wcsr;
1389	u32 rfcr;
1390	u16 pmatch[3];
1391	u16 sopass[3];
1392	struct netdev_private *np = netdev_priv(dev);
1393	void __iomem *ioaddr = ns_ioaddr(dev);
1394
1395	/*
1396	 * Resetting the chip causes some registers to be lost.
1397	 * Natsemi suggests NOT reloading the EEPROM while live, so instead
1398	 * we save the state that would have been loaded from EEPROM
1399	 * on a normal power-up (see the spec EEPROM map).  This assumes
1400	 * whoever calls this will follow up with init_registers() eventually.
1401	 */
1402
1403	/* CFG */
1404	cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE;
1405	/* WCSR */
1406	wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE;
1407	/* RFCR */
1408	rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE;
1409	/* PMATCH */
1410	for (i = 0; i < 3; i++) {
1411		writel(i*2, ioaddr + RxFilterAddr);
1412		pmatch[i] = readw(ioaddr + RxFilterData);
1413	}
1414	/* SOPAS */
1415	for (i = 0; i < 3; i++) {
1416		writel(0xa+(i*2), ioaddr + RxFilterAddr);
1417		sopass[i] = readw(ioaddr + RxFilterData);
1418	}
1419
1420	/* now whack the chip */
1421	writel(ChipReset, ioaddr + ChipCmd);
1422	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1423		if (!(readl(ioaddr + ChipCmd) & ChipReset))
1424			break;
1425		udelay(5);
1426	}
1427	if (i==NATSEMI_HW_TIMEOUT) {
1428		printk(KERN_WARNING "%s: reset did not complete in %d usec.\n",
1429			dev->name, i*5);
1430	} else if (netif_msg_hw(np)) {
1431		printk(KERN_DEBUG "%s: reset completed in %d usec.\n",
1432			dev->name, i*5);
1433	}
1434
1435	/* restore CFG */
1436	cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE;
1437	/* turn on external phy if it was selected */
1438	if (dev->if_port == PORT_TP)
1439		cfg &= ~(CfgExtPhy | CfgPhyDis);
1440	else
1441		cfg |= (CfgExtPhy | CfgPhyDis);
1442	writel(cfg, ioaddr + ChipConfig);
1443	/* restore WCSR */
1444	wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE;
1445	writel(wcsr, ioaddr + WOLCmd);
1446	/* read RFCR */
1447	rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE;
1448	/* restore PMATCH */
1449	for (i = 0; i < 3; i++) {
1450		writel(i*2, ioaddr + RxFilterAddr);
1451		writew(pmatch[i], ioaddr + RxFilterData);
1452	}
1453	for (i = 0; i < 3; i++) {
1454		writel(0xa+(i*2), ioaddr + RxFilterAddr);
1455		writew(sopass[i], ioaddr + RxFilterData);
1456	}
1457	/* restore RFCR */
1458	writel(rfcr, ioaddr + RxFilterAddr);
1459}
1460
1461static void reset_rx(struct net_device *dev)
1462{
1463	int i;
1464	struct netdev_private *np = netdev_priv(dev);
1465	void __iomem *ioaddr = ns_ioaddr(dev);
1466
1467	np->intr_status &= ~RxResetDone;
1468
1469	writel(RxReset, ioaddr + ChipCmd);
1470
1471	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1472		np->intr_status |= readl(ioaddr + IntrStatus);
1473		if (np->intr_status & RxResetDone)
1474			break;
1475		udelay(15);
1476	}
1477	if (i==NATSEMI_HW_TIMEOUT) {
1478		printk(KERN_WARNING "%s: RX reset did not complete in %d usec.\n",
1479		       dev->name, i*15);
1480	} else if (netif_msg_hw(np)) {
1481		printk(KERN_WARNING "%s: RX reset took %d usec.\n",
1482		       dev->name, i*15);
1483	}
1484}
1485
1486static void natsemi_reload_eeprom(struct net_device *dev)
1487{
1488	struct netdev_private *np = netdev_priv(dev);
1489	void __iomem *ioaddr = ns_ioaddr(dev);
1490	int i;
1491
1492	writel(EepromReload, ioaddr + PCIBusCfg);
1493	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1494		udelay(50);
1495		if (!(readl(ioaddr + PCIBusCfg) & EepromReload))
1496			break;
1497	}
1498	if (i==NATSEMI_HW_TIMEOUT) {
1499		printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n",
1500			pci_name(np->pci_dev), i*50);
1501	} else if (netif_msg_hw(np)) {
1502		printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n",
1503			pci_name(np->pci_dev), i*50);
1504	}
1505}
1506
1507static void natsemi_stop_rxtx(struct net_device *dev)
1508{
1509	void __iomem * ioaddr = ns_ioaddr(dev);
1510	struct netdev_private *np = netdev_priv(dev);
1511	int i;
1512
1513	writel(RxOff | TxOff, ioaddr + ChipCmd);
1514	for(i=0;i< NATSEMI_HW_TIMEOUT;i++) {
1515		if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0)
1516			break;
1517		udelay(5);
1518	}
1519	if (i==NATSEMI_HW_TIMEOUT) {
1520		printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n",
1521			dev->name, i*5);
1522	} else if (netif_msg_hw(np)) {
1523		printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n",
1524			dev->name, i*5);
1525	}
1526}
1527
1528static int netdev_open(struct net_device *dev)
1529{
1530	struct netdev_private *np = netdev_priv(dev);
1531	void __iomem * ioaddr = ns_ioaddr(dev);
1532	const int irq = np->pci_dev->irq;
1533	int i;
1534
1535	/* Reset the chip, just in case. */
1536	natsemi_reset(dev);
1537
1538	i = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
1539	if (i) return i;
1540
1541	if (netif_msg_ifup(np))
1542		printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
1543			dev->name, irq);
1544	i = alloc_ring(dev);
1545	if (i < 0) {
1546		free_irq(irq, dev);
1547		return i;
1548	}
1549	napi_enable(&np->napi);
1550
1551	init_ring(dev);
1552	spin_lock_irq(&np->lock);
1553	init_registers(dev);
1554	/* now set the MAC address according to dev->dev_addr */
1555	for (i = 0; i < 3; i++) {
1556		u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i];
1557
1558		writel(i*2, ioaddr + RxFilterAddr);
1559		writew(mac, ioaddr + RxFilterData);
1560	}
1561	writel(np->cur_rx_mode, ioaddr + RxFilterAddr);
1562	spin_unlock_irq(&np->lock);
1563
1564	netif_start_queue(dev);
1565
1566	if (netif_msg_ifup(np))
1567		printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n",
1568			dev->name, (int)readl(ioaddr + ChipCmd));
1569
1570	/* Set the timer to check for link beat. */
1571	timer_setup(&np->timer, netdev_timer, 0);
1572	np->timer.expires = round_jiffies(jiffies + NATSEMI_TIMER_FREQ);
1573	add_timer(&np->timer);
1574
1575	return 0;
1576}
1577
1578static void do_cable_magic(struct net_device *dev)
1579{
1580	struct netdev_private *np = netdev_priv(dev);
1581	void __iomem *ioaddr = ns_ioaddr(dev);
1582
1583	if (dev->if_port != PORT_TP)
1584		return;
1585
1586	if (np->srr >= SRR_DP83816_A5)
1587		return;
1588
1589	/*
1590	 * 100 MBit links with short cables can trip an issue with the chip.
1591	 * The problem manifests as lots of CRC errors and/or flickering
1592	 * activity LED while idle.  This process is based on instructions
1593	 * from engineers at National.
1594	 */
1595	if (readl(ioaddr + ChipConfig) & CfgSpeed100) {
1596		u16 data;
1597
1598		writew(1, ioaddr + PGSEL);
1599		/*
1600		 * coefficient visibility should already be enabled via
1601		 * DSPCFG | 0x1000
1602		 */
1603		data = readw(ioaddr + TSTDAT) & 0xff;
1604		/*
1605		 * the value must be negative, and within certain values
1606		 * (these values all come from National)
1607		 */
1608		if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) {
1609			np = netdev_priv(dev);
1610
1611			/* the bug has been triggered - fix the coefficient */
1612			writew(TSTDAT_FIXED, ioaddr + TSTDAT);
1613			/* lock the value */
1614			data = readw(ioaddr + DSPCFG);
1615			np->dspcfg = data | DSPCFG_LOCK;
1616			writew(np->dspcfg, ioaddr + DSPCFG);
1617		}
1618		writew(0, ioaddr + PGSEL);
1619	}
1620}
1621
1622static void undo_cable_magic(struct net_device *dev)
1623{
1624	u16 data;
1625	struct netdev_private *np = netdev_priv(dev);
1626	void __iomem * ioaddr = ns_ioaddr(dev);
1627
1628	if (dev->if_port != PORT_TP)
1629		return;
1630
1631	if (np->srr >= SRR_DP83816_A5)
1632		return;
1633
1634	writew(1, ioaddr + PGSEL);
1635	/* make sure the lock bit is clear */
1636	data = readw(ioaddr + DSPCFG);
1637	np->dspcfg = data & ~DSPCFG_LOCK;
1638	writew(np->dspcfg, ioaddr + DSPCFG);
1639	writew(0, ioaddr + PGSEL);
1640}
1641
1642static void check_link(struct net_device *dev)
1643{
1644	struct netdev_private *np = netdev_priv(dev);
1645	void __iomem * ioaddr = ns_ioaddr(dev);
1646	int duplex = np->duplex;
1647	u16 bmsr;
1648
1649	/* If we are ignoring the PHY then don't try reading it. */
1650	if (np->ignore_phy)
1651		goto propagate_state;
1652
1653	/* The link status field is latched: it remains low after a temporary
1654	 * link failure until it's read. We need the current link status,
1655	 * thus read twice.
1656	 */
1657	mdio_read(dev, MII_BMSR);
1658	bmsr = mdio_read(dev, MII_BMSR);
1659
1660	if (!(bmsr & BMSR_LSTATUS)) {
1661		if (netif_carrier_ok(dev)) {
1662			if (netif_msg_link(np))
1663				printk(KERN_NOTICE "%s: link down.\n",
1664				       dev->name);
1665			netif_carrier_off(dev);
1666			undo_cable_magic(dev);
1667		}
1668		return;
1669	}
1670	if (!netif_carrier_ok(dev)) {
1671		if (netif_msg_link(np))
1672			printk(KERN_NOTICE "%s: link up.\n", dev->name);
1673		netif_carrier_on(dev);
1674		do_cable_magic(dev);
1675	}
1676
1677	duplex = np->full_duplex;
1678	if (!duplex) {
1679		if (bmsr & BMSR_ANEGCOMPLETE) {
1680			int tmp = mii_nway_result(
1681				np->advertising & mdio_read(dev, MII_LPA));
1682			if (tmp == LPA_100FULL || tmp == LPA_10FULL)
1683				duplex = 1;
1684		} else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX)
1685			duplex = 1;
1686	}
1687
1688propagate_state:
1689	/* if duplex is set then bit 28 must be set, too */
1690	if (duplex ^ !!(np->rx_config & RxAcceptTx)) {
1691		if (netif_msg_link(np))
1692			printk(KERN_INFO
1693				"%s: Setting %s-duplex based on negotiated "
1694				"link capability.\n", dev->name,
1695				duplex ? "full" : "half");
1696		if (duplex) {
1697			np->rx_config |= RxAcceptTx;
1698			np->tx_config |= TxCarrierIgn | TxHeartIgn;
1699		} else {
1700			np->rx_config &= ~RxAcceptTx;
1701			np->tx_config &= ~(TxCarrierIgn | TxHeartIgn);
1702		}
1703		writel(np->tx_config, ioaddr + TxConfig);
1704		writel(np->rx_config, ioaddr + RxConfig);
1705	}
1706}
1707
1708static void init_registers(struct net_device *dev)
1709{
1710	struct netdev_private *np = netdev_priv(dev);
1711	void __iomem * ioaddr = ns_ioaddr(dev);
1712
1713	init_phy_fixup(dev);
1714
1715	/* clear any interrupts that are pending, such as wake events */
1716	readl(ioaddr + IntrStatus);
1717
1718	writel(np->ring_dma, ioaddr + RxRingPtr);
1719	writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc),
1720		ioaddr + TxRingPtr);
1721
1722	/* Initialize other registers.
1723	 * Configure the PCI bus bursts and FIFO thresholds.
1724	 * Configure for standard, in-spec Ethernet.
1725	 * Start with half-duplex. check_link will update
1726	 * to the correct settings.
1727	 */
1728
1729	/* DRTH: 2: start tx if 64 bytes are in the fifo
1730	 * FLTH: 0x10: refill with next packet if 512 bytes are free
1731	 * MXDMA: 0: up to 256 byte bursts.
1732	 * 	MXDMA must be <= FLTH
1733	 * ECRETRY=1
1734	 * ATP=1
1735	 */
1736	np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 |
1737				TX_FLTH_VAL | TX_DRTH_VAL_START;
1738	writel(np->tx_config, ioaddr + TxConfig);
1739
1740	/* DRTH 0x10: start copying to memory if 128 bytes are in the fifo
1741	 * MXDMA 0: up to 256 byte bursts
1742	 */
1743	np->rx_config = RxMxdma_256 | RX_DRTH_VAL;
1744	/* if receive ring now has bigger buffers than normal, enable jumbo */
1745	if (np->rx_buf_sz > NATSEMI_LONGPKT)
1746		np->rx_config |= RxAcceptLong;
1747
1748	writel(np->rx_config, ioaddr + RxConfig);
1749
1750	/* Disable PME:
1751	 * The PME bit is initialized from the EEPROM contents.
1752	 * PCI cards probably have PME disabled, but motherboard
1753	 * implementations may have PME set to enable WakeOnLan.
1754	 * With PME set the chip will scan incoming packets but
1755	 * nothing will be written to memory. */
1756	np->SavedClkRun = readl(ioaddr + ClkRun);
1757	writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun);
1758	if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) {
1759		printk(KERN_NOTICE "%s: Wake-up event %#08x\n",
1760			dev->name, readl(ioaddr + WOLCmd));
1761	}
1762
1763	check_link(dev);
1764	__set_rx_mode(dev);
1765
1766	/* Enable interrupts by setting the interrupt mask. */
1767	writel(DEFAULT_INTR, ioaddr + IntrMask);
1768	natsemi_irq_enable(dev);
1769
1770	writel(RxOn | TxOn, ioaddr + ChipCmd);
1771	writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */
1772}
1773
1774/*
1775 * netdev_timer:
1776 * Purpose:
1777 * 1) check for link changes. Usually they are handled by the MII interrupt
1778 *    but it doesn't hurt to check twice.
1779 * 2) check for sudden death of the NIC:
1780 *    It seems that a reference set for this chip went out with incorrect info,
1781 *    and there exist boards that aren't quite right.  An unexpected voltage
1782 *    drop can cause the PHY to get itself in a weird state (basically reset).
1783 *    NOTE: this only seems to affect revC chips.  The user can disable
1784 *    this check via dspcfg_workaround sysfs option.
1785 * 3) check of death of the RX path due to OOM
1786 */
1787static void netdev_timer(struct timer_list *t)
1788{
1789	struct netdev_private *np = from_timer(np, t, timer);
1790	struct net_device *dev = np->dev;
1791	void __iomem * ioaddr = ns_ioaddr(dev);
1792	int next_tick = NATSEMI_TIMER_FREQ;
1793	const int irq = np->pci_dev->irq;
1794
1795	if (netif_msg_timer(np)) {
1796		/* DO NOT read the IntrStatus register,
1797		 * a read clears any pending interrupts.
1798		 */
1799		printk(KERN_DEBUG "%s: Media selection timer tick.\n",
1800			dev->name);
1801	}
1802
1803	if (dev->if_port == PORT_TP) {
1804		u16 dspcfg;
1805
1806		spin_lock_irq(&np->lock);
1807		/* check for a nasty random phy-reset - use dspcfg as a flag */
1808		writew(1, ioaddr+PGSEL);
1809		dspcfg = readw(ioaddr+DSPCFG);
1810		writew(0, ioaddr+PGSEL);
1811		if (np->dspcfg_workaround && dspcfg != np->dspcfg) {
1812			if (!netif_queue_stopped(dev)) {
1813				spin_unlock_irq(&np->lock);
1814				if (netif_msg_drv(np))
1815					printk(KERN_NOTICE "%s: possible phy reset: "
1816						"re-initializing\n", dev->name);
1817				disable_irq(irq);
1818				spin_lock_irq(&np->lock);
1819				natsemi_stop_rxtx(dev);
1820				dump_ring(dev);
1821				reinit_ring(dev);
1822				init_registers(dev);
1823				spin_unlock_irq(&np->lock);
1824				enable_irq(irq);
1825			} else {
1826				/* hurry back */
1827				next_tick = HZ;
1828				spin_unlock_irq(&np->lock);
1829			}
1830		} else {
1831			/* init_registers() calls check_link() for the above case */
1832			check_link(dev);
1833			spin_unlock_irq(&np->lock);
1834		}
1835	} else {
1836		spin_lock_irq(&np->lock);
1837		check_link(dev);
1838		spin_unlock_irq(&np->lock);
1839	}
1840	if (np->oom) {
1841		disable_irq(irq);
1842		np->oom = 0;
1843		refill_rx(dev);
1844		enable_irq(irq);
1845		if (!np->oom) {
1846			writel(RxOn, ioaddr + ChipCmd);
1847		} else {
1848			next_tick = 1;
1849		}
1850	}
1851
1852	if (next_tick > 1)
1853		mod_timer(&np->timer, round_jiffies(jiffies + next_tick));
1854	else
1855		mod_timer(&np->timer, jiffies + next_tick);
1856}
1857
1858static void dump_ring(struct net_device *dev)
1859{
1860	struct netdev_private *np = netdev_priv(dev);
1861
1862	if (netif_msg_pktdata(np)) {
1863		int i;
1864		printk(KERN_DEBUG "  Tx ring at %p:\n", np->tx_ring);
1865		for (i = 0; i < TX_RING_SIZE; i++) {
1866			printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1867				i, np->tx_ring[i].next_desc,
1868				np->tx_ring[i].cmd_status,
1869				np->tx_ring[i].addr);
1870		}
1871		printk(KERN_DEBUG "  Rx ring %p:\n", np->rx_ring);
1872		for (i = 0; i < RX_RING_SIZE; i++) {
1873			printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1874				i, np->rx_ring[i].next_desc,
1875				np->rx_ring[i].cmd_status,
1876				np->rx_ring[i].addr);
1877		}
1878	}
1879}
1880
1881static void ns_tx_timeout(struct net_device *dev, unsigned int txqueue)
1882{
1883	struct netdev_private *np = netdev_priv(dev);
1884	void __iomem * ioaddr = ns_ioaddr(dev);
1885	const int irq = np->pci_dev->irq;
1886
1887	disable_irq(irq);
1888	spin_lock_irq(&np->lock);
1889	if (!np->hands_off) {
1890		if (netif_msg_tx_err(np))
1891			printk(KERN_WARNING
1892				"%s: Transmit timed out, status %#08x,"
1893				" resetting...\n",
1894				dev->name, readl(ioaddr + IntrStatus));
1895		dump_ring(dev);
1896
1897		natsemi_reset(dev);
1898		reinit_ring(dev);
1899		init_registers(dev);
1900	} else {
1901		printk(KERN_WARNING
1902			"%s: tx_timeout while in hands_off state?\n",
1903			dev->name);
1904	}
1905	spin_unlock_irq(&np->lock);
1906	enable_irq(irq);
1907
1908	netif_trans_update(dev); /* prevent tx timeout */
1909	dev->stats.tx_errors++;
1910	netif_wake_queue(dev);
1911}
1912
1913static int alloc_ring(struct net_device *dev)
1914{
1915	struct netdev_private *np = netdev_priv(dev);
1916	np->rx_ring = dma_alloc_coherent(&np->pci_dev->dev,
1917					 sizeof(struct netdev_desc) * (RX_RING_SIZE + TX_RING_SIZE),
1918					 &np->ring_dma, GFP_KERNEL);
1919	if (!np->rx_ring)
1920		return -ENOMEM;
1921	np->tx_ring = &np->rx_ring[RX_RING_SIZE];
1922	return 0;
1923}
1924
1925static void refill_rx(struct net_device *dev)
1926{
1927	struct netdev_private *np = netdev_priv(dev);
1928
1929	/* Refill the Rx ring buffers. */
1930	for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1931		struct sk_buff *skb;
1932		int entry = np->dirty_rx % RX_RING_SIZE;
1933		if (np->rx_skbuff[entry] == NULL) {
1934			unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING;
1935			skb = netdev_alloc_skb(dev, buflen);
1936			np->rx_skbuff[entry] = skb;
1937			if (skb == NULL)
1938				break; /* Better luck next round. */
1939			np->rx_dma[entry] = dma_map_single(&np->pci_dev->dev,
1940							   skb->data, buflen,
1941							   DMA_FROM_DEVICE);
1942			if (dma_mapping_error(&np->pci_dev->dev, np->rx_dma[entry])) {
1943				dev_kfree_skb_any(skb);
1944				np->rx_skbuff[entry] = NULL;
1945				break; /* Better luck next round. */
1946			}
1947			np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]);
1948		}
1949		np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz);
1950	}
1951	if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) {
1952		if (netif_msg_rx_err(np))
1953			printk(KERN_WARNING "%s: going OOM.\n", dev->name);
1954		np->oom = 1;
1955	}
1956}
1957
1958static void set_bufsize(struct net_device *dev)
1959{
1960	struct netdev_private *np = netdev_priv(dev);
1961	if (dev->mtu <= ETH_DATA_LEN)
1962		np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS;
1963	else
1964		np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS;
1965}
1966
1967/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1968static void init_ring(struct net_device *dev)
1969{
1970	struct netdev_private *np = netdev_priv(dev);
1971	int i;
1972
1973	/* 1) TX ring */
1974	np->dirty_tx = np->cur_tx = 0;
1975	for (i = 0; i < TX_RING_SIZE; i++) {
1976		np->tx_skbuff[i] = NULL;
1977		np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1978			+sizeof(struct netdev_desc)
1979			*((i+1)%TX_RING_SIZE+RX_RING_SIZE));
1980		np->tx_ring[i].cmd_status = 0;
1981	}
1982
1983	/* 2) RX ring */
1984	np->dirty_rx = 0;
1985	np->cur_rx = RX_RING_SIZE;
1986	np->oom = 0;
1987	set_bufsize(dev);
1988
1989	np->rx_head_desc = &np->rx_ring[0];
1990
1991	/* Please be careful before changing this loop - at least gcc-2.95.1
1992	 * miscompiles it otherwise.
1993	 */
1994	/* Initialize all Rx descriptors. */
1995	for (i = 0; i < RX_RING_SIZE; i++) {
1996		np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1997				+sizeof(struct netdev_desc)
1998				*((i+1)%RX_RING_SIZE));
1999		np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2000		np->rx_skbuff[i] = NULL;
2001	}
2002	refill_rx(dev);
2003	dump_ring(dev);
2004}
2005
2006static void drain_tx(struct net_device *dev)
2007{
2008	struct netdev_private *np = netdev_priv(dev);
2009	int i;
2010
2011	for (i = 0; i < TX_RING_SIZE; i++) {
2012		if (np->tx_skbuff[i]) {
2013			dma_unmap_single(&np->pci_dev->dev, np->tx_dma[i],
2014					 np->tx_skbuff[i]->len, DMA_TO_DEVICE);
 
2015			dev_kfree_skb(np->tx_skbuff[i]);
2016			dev->stats.tx_dropped++;
2017		}
2018		np->tx_skbuff[i] = NULL;
2019	}
2020}
2021
2022static void drain_rx(struct net_device *dev)
2023{
2024	struct netdev_private *np = netdev_priv(dev);
2025	unsigned int buflen = np->rx_buf_sz;
2026	int i;
2027
2028	/* Free all the skbuffs in the Rx queue. */
2029	for (i = 0; i < RX_RING_SIZE; i++) {
2030		np->rx_ring[i].cmd_status = 0;
2031		np->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
2032		if (np->rx_skbuff[i]) {
2033			dma_unmap_single(&np->pci_dev->dev, np->rx_dma[i],
2034					 buflen + NATSEMI_PADDING,
2035					 DMA_FROM_DEVICE);
2036			dev_kfree_skb(np->rx_skbuff[i]);
2037		}
2038		np->rx_skbuff[i] = NULL;
2039	}
2040}
2041
2042static void drain_ring(struct net_device *dev)
2043{
2044	drain_rx(dev);
2045	drain_tx(dev);
2046}
2047
2048static void free_ring(struct net_device *dev)
2049{
2050	struct netdev_private *np = netdev_priv(dev);
2051	dma_free_coherent(&np->pci_dev->dev,
2052			  sizeof(struct netdev_desc) * (RX_RING_SIZE + TX_RING_SIZE),
2053			  np->rx_ring, np->ring_dma);
2054}
2055
2056static void reinit_rx(struct net_device *dev)
2057{
2058	struct netdev_private *np = netdev_priv(dev);
2059	int i;
2060
2061	/* RX Ring */
2062	np->dirty_rx = 0;
2063	np->cur_rx = RX_RING_SIZE;
2064	np->rx_head_desc = &np->rx_ring[0];
2065	/* Initialize all Rx descriptors. */
2066	for (i = 0; i < RX_RING_SIZE; i++)
2067		np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2068
2069	refill_rx(dev);
2070}
2071
2072static void reinit_ring(struct net_device *dev)
2073{
2074	struct netdev_private *np = netdev_priv(dev);
2075	int i;
2076
2077	/* drain TX ring */
2078	drain_tx(dev);
2079	np->dirty_tx = np->cur_tx = 0;
2080	for (i=0;i<TX_RING_SIZE;i++)
2081		np->tx_ring[i].cmd_status = 0;
2082
2083	reinit_rx(dev);
2084}
2085
2086static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
2087{
2088	struct netdev_private *np = netdev_priv(dev);
2089	void __iomem * ioaddr = ns_ioaddr(dev);
2090	unsigned entry;
2091	unsigned long flags;
2092
2093	/* Note: Ordering is important here, set the field with the
2094	   "ownership" bit last, and only then increment cur_tx. */
2095
2096	/* Calculate the next Tx descriptor entry. */
2097	entry = np->cur_tx % TX_RING_SIZE;
2098
2099	np->tx_skbuff[entry] = skb;
2100	np->tx_dma[entry] = dma_map_single(&np->pci_dev->dev, skb->data,
2101					   skb->len, DMA_TO_DEVICE);
2102	if (dma_mapping_error(&np->pci_dev->dev, np->tx_dma[entry])) {
2103		np->tx_skbuff[entry] = NULL;
2104		dev_kfree_skb_irq(skb);
2105		dev->stats.tx_dropped++;
2106		return NETDEV_TX_OK;
2107	}
2108
2109	np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]);
2110
2111	spin_lock_irqsave(&np->lock, flags);
2112
2113	if (!np->hands_off) {
2114		np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len);
2115		/* StrongARM: Explicitly cache flush np->tx_ring and
2116		 * skb->data,skb->len. */
2117		wmb();
2118		np->cur_tx++;
2119		if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) {
2120			netdev_tx_done(dev);
2121			if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1)
2122				netif_stop_queue(dev);
2123		}
2124		/* Wake the potentially-idle transmit channel. */
2125		writel(TxOn, ioaddr + ChipCmd);
2126	} else {
2127		dev_kfree_skb_irq(skb);
2128		dev->stats.tx_dropped++;
2129	}
2130	spin_unlock_irqrestore(&np->lock, flags);
2131
2132	if (netif_msg_tx_queued(np)) {
2133		printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
2134			dev->name, np->cur_tx, entry);
2135	}
2136	return NETDEV_TX_OK;
2137}
2138
2139static void netdev_tx_done(struct net_device *dev)
2140{
2141	struct netdev_private *np = netdev_priv(dev);
2142
2143	for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
2144		int entry = np->dirty_tx % TX_RING_SIZE;
2145		if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn))
2146			break;
2147		if (netif_msg_tx_done(np))
2148			printk(KERN_DEBUG
2149				"%s: tx frame #%d finished, status %#08x.\n",
2150					dev->name, np->dirty_tx,
2151					le32_to_cpu(np->tx_ring[entry].cmd_status));
2152		if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) {
2153			dev->stats.tx_packets++;
2154			dev->stats.tx_bytes += np->tx_skbuff[entry]->len;
2155		} else { /* Various Tx errors */
2156			int tx_status =
2157				le32_to_cpu(np->tx_ring[entry].cmd_status);
2158			if (tx_status & (DescTxAbort|DescTxExcColl))
2159				dev->stats.tx_aborted_errors++;
2160			if (tx_status & DescTxFIFO)
2161				dev->stats.tx_fifo_errors++;
2162			if (tx_status & DescTxCarrier)
2163				dev->stats.tx_carrier_errors++;
2164			if (tx_status & DescTxOOWCol)
2165				dev->stats.tx_window_errors++;
2166			dev->stats.tx_errors++;
2167		}
2168		dma_unmap_single(&np->pci_dev->dev, np->tx_dma[entry],
2169				 np->tx_skbuff[entry]->len, DMA_TO_DEVICE);
 
2170		/* Free the original skb. */
2171		dev_consume_skb_irq(np->tx_skbuff[entry]);
2172		np->tx_skbuff[entry] = NULL;
2173	}
2174	if (netif_queue_stopped(dev) &&
2175	    np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
2176		/* The ring is no longer full, wake queue. */
2177		netif_wake_queue(dev);
2178	}
2179}
2180
2181/* The interrupt handler doesn't actually handle interrupts itself, it
2182 * schedules a NAPI poll if there is anything to do. */
2183static irqreturn_t intr_handler(int irq, void *dev_instance)
2184{
2185	struct net_device *dev = dev_instance;
2186	struct netdev_private *np = netdev_priv(dev);
2187	void __iomem * ioaddr = ns_ioaddr(dev);
2188
2189	/* Reading IntrStatus automatically acknowledges so don't do
2190	 * that while interrupts are disabled, (for example, while a
2191	 * poll is scheduled).  */
2192	if (np->hands_off || !readl(ioaddr + IntrEnable))
2193		return IRQ_NONE;
2194
2195	np->intr_status = readl(ioaddr + IntrStatus);
2196
2197	if (!np->intr_status)
2198		return IRQ_NONE;
2199
2200	if (netif_msg_intr(np))
2201		printk(KERN_DEBUG
2202		       "%s: Interrupt, status %#08x, mask %#08x.\n",
2203		       dev->name, np->intr_status,
2204		       readl(ioaddr + IntrMask));
2205
2206	prefetch(&np->rx_skbuff[np->cur_rx % RX_RING_SIZE]);
2207
2208	if (napi_schedule_prep(&np->napi)) {
2209		/* Disable interrupts and register for poll */
2210		natsemi_irq_disable(dev);
2211		__napi_schedule(&np->napi);
2212	} else
2213		printk(KERN_WARNING
2214	       	       "%s: Ignoring interrupt, status %#08x, mask %#08x.\n",
2215		       dev->name, np->intr_status,
2216		       readl(ioaddr + IntrMask));
2217
2218	return IRQ_HANDLED;
2219}
2220
2221/* This is the NAPI poll routine.  As well as the standard RX handling
2222 * it also handles all other interrupts that the chip might raise.
2223 */
2224static int natsemi_poll(struct napi_struct *napi, int budget)
2225{
2226	struct netdev_private *np = container_of(napi, struct netdev_private, napi);
2227	struct net_device *dev = np->dev;
2228	void __iomem * ioaddr = ns_ioaddr(dev);
2229	int work_done = 0;
2230
2231	do {
2232		if (netif_msg_intr(np))
2233			printk(KERN_DEBUG
2234			       "%s: Poll, status %#08x, mask %#08x.\n",
2235			       dev->name, np->intr_status,
2236			       readl(ioaddr + IntrMask));
2237
2238		/* netdev_rx() may read IntrStatus again if the RX state
2239		 * machine falls over so do it first. */
2240		if (np->intr_status &
2241		    (IntrRxDone | IntrRxIntr | RxStatusFIFOOver |
2242		     IntrRxErr | IntrRxOverrun)) {
2243			netdev_rx(dev, &work_done, budget);
2244		}
2245
2246		if (np->intr_status &
2247		    (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) {
2248			spin_lock(&np->lock);
2249			netdev_tx_done(dev);
2250			spin_unlock(&np->lock);
2251		}
2252
2253		/* Abnormal error summary/uncommon events handlers. */
2254		if (np->intr_status & IntrAbnormalSummary)
2255			netdev_error(dev, np->intr_status);
2256
2257		if (work_done >= budget)
2258			return work_done;
2259
2260		np->intr_status = readl(ioaddr + IntrStatus);
2261	} while (np->intr_status);
2262
2263	napi_complete_done(napi, work_done);
2264
2265	/* Reenable interrupts providing nothing is trying to shut
2266	 * the chip down. */
2267	spin_lock(&np->lock);
2268	if (!np->hands_off)
2269		natsemi_irq_enable(dev);
2270	spin_unlock(&np->lock);
2271
2272	return work_done;
2273}
2274
2275/* This routine is logically part of the interrupt handler, but separated
2276   for clarity and better register allocation. */
2277static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do)
2278{
2279	struct netdev_private *np = netdev_priv(dev);
2280	int entry = np->cur_rx % RX_RING_SIZE;
2281	int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
2282	s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2283	unsigned int buflen = np->rx_buf_sz;
2284	void __iomem * ioaddr = ns_ioaddr(dev);
2285
2286	/* If the driver owns the next entry it's a new packet. Send it up. */
2287	while (desc_status < 0) { /* e.g. & DescOwn */
2288		int pkt_len;
2289		if (netif_msg_rx_status(np))
2290			printk(KERN_DEBUG
2291				"  netdev_rx() entry %d status was %#08x.\n",
2292				entry, desc_status);
2293		if (--boguscnt < 0)
2294			break;
2295
2296		if (*work_done >= work_to_do)
2297			break;
2298
2299		(*work_done)++;
2300
2301		pkt_len = (desc_status & DescSizeMask) - 4;
2302		if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){
2303			if (desc_status & DescMore) {
2304				unsigned long flags;
2305
2306				if (netif_msg_rx_err(np))
2307					printk(KERN_WARNING
2308						"%s: Oversized(?) Ethernet "
2309						"frame spanned multiple "
2310						"buffers, entry %#08x "
2311						"status %#08x.\n", dev->name,
2312						np->cur_rx, desc_status);
2313				dev->stats.rx_length_errors++;
2314
2315				/* The RX state machine has probably
2316				 * locked up beneath us.  Follow the
2317				 * reset procedure documented in
2318				 * AN-1287. */
2319
2320				spin_lock_irqsave(&np->lock, flags);
2321				reset_rx(dev);
2322				reinit_rx(dev);
2323				writel(np->ring_dma, ioaddr + RxRingPtr);
2324				check_link(dev);
2325				spin_unlock_irqrestore(&np->lock, flags);
2326
2327				/* We'll enable RX on exit from this
2328				 * function. */
2329				break;
2330
2331			} else {
2332				/* There was an error. */
2333				dev->stats.rx_errors++;
2334				if (desc_status & (DescRxAbort|DescRxOver))
2335					dev->stats.rx_over_errors++;
2336				if (desc_status & (DescRxLong|DescRxRunt))
2337					dev->stats.rx_length_errors++;
2338				if (desc_status & (DescRxInvalid|DescRxAlign))
2339					dev->stats.rx_frame_errors++;
2340				if (desc_status & DescRxCRC)
2341					dev->stats.rx_crc_errors++;
2342			}
2343		} else if (pkt_len > np->rx_buf_sz) {
2344			/* if this is the tail of a double buffer
2345			 * packet, we've already counted the error
2346			 * on the first part.  Ignore the second half.
2347			 */
2348		} else {
2349			struct sk_buff *skb;
2350			/* Omit CRC size. */
2351			/* Check if the packet is long enough to accept
2352			 * without copying to a minimally-sized skbuff. */
2353			if (pkt_len < rx_copybreak &&
2354			    (skb = netdev_alloc_skb(dev, pkt_len + RX_OFFSET)) != NULL) {
2355				/* 16 byte align the IP header */
2356				skb_reserve(skb, RX_OFFSET);
2357				dma_sync_single_for_cpu(&np->pci_dev->dev,
2358							np->rx_dma[entry],
2359							buflen,
2360							DMA_FROM_DEVICE);
2361				skb_copy_to_linear_data(skb,
2362					np->rx_skbuff[entry]->data, pkt_len);
2363				skb_put(skb, pkt_len);
2364				dma_sync_single_for_device(&np->pci_dev->dev,
2365							   np->rx_dma[entry],
2366							   buflen,
2367							   DMA_FROM_DEVICE);
2368			} else {
2369				dma_unmap_single(&np->pci_dev->dev,
2370						 np->rx_dma[entry],
2371						 buflen + NATSEMI_PADDING,
2372						 DMA_FROM_DEVICE);
2373				skb_put(skb = np->rx_skbuff[entry], pkt_len);
2374				np->rx_skbuff[entry] = NULL;
2375			}
2376			skb->protocol = eth_type_trans(skb, dev);
2377			netif_receive_skb(skb);
2378			dev->stats.rx_packets++;
2379			dev->stats.rx_bytes += pkt_len;
2380		}
2381		entry = (++np->cur_rx) % RX_RING_SIZE;
2382		np->rx_head_desc = &np->rx_ring[entry];
2383		desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2384	}
2385	refill_rx(dev);
2386
2387	/* Restart Rx engine if stopped. */
2388	if (np->oom)
2389		mod_timer(&np->timer, jiffies + 1);
2390	else
2391		writel(RxOn, ioaddr + ChipCmd);
2392}
2393
2394static void netdev_error(struct net_device *dev, int intr_status)
2395{
2396	struct netdev_private *np = netdev_priv(dev);
2397	void __iomem * ioaddr = ns_ioaddr(dev);
2398
2399	spin_lock(&np->lock);
2400	if (intr_status & LinkChange) {
2401		u16 lpa = mdio_read(dev, MII_LPA);
2402		if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE &&
2403		    netif_msg_link(np)) {
2404			printk(KERN_INFO
2405				"%s: Autonegotiation advertising"
2406				" %#04x  partner %#04x.\n", dev->name,
2407				np->advertising, lpa);
2408		}
2409
2410		/* read MII int status to clear the flag */
2411		readw(ioaddr + MIntrStatus);
2412		check_link(dev);
2413	}
2414	if (intr_status & StatsMax) {
2415		__get_stats(dev);
2416	}
2417	if (intr_status & IntrTxUnderrun) {
2418		if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) {
2419			np->tx_config += TX_DRTH_VAL_INC;
2420			if (netif_msg_tx_err(np))
2421				printk(KERN_NOTICE
2422					"%s: increased tx threshold, txcfg %#08x.\n",
2423					dev->name, np->tx_config);
2424		} else {
2425			if (netif_msg_tx_err(np))
2426				printk(KERN_NOTICE
2427					"%s: tx underrun with maximum tx threshold, txcfg %#08x.\n",
2428					dev->name, np->tx_config);
2429		}
2430		writel(np->tx_config, ioaddr + TxConfig);
2431	}
2432	if (intr_status & WOLPkt && netif_msg_wol(np)) {
2433		int wol_status = readl(ioaddr + WOLCmd);
2434		printk(KERN_NOTICE "%s: Link wake-up event %#08x\n",
2435			dev->name, wol_status);
2436	}
2437	if (intr_status & RxStatusFIFOOver) {
2438		if (netif_msg_rx_err(np) && netif_msg_intr(np)) {
2439			printk(KERN_NOTICE "%s: Rx status FIFO overrun\n",
2440				dev->name);
2441		}
2442		dev->stats.rx_fifo_errors++;
2443		dev->stats.rx_errors++;
2444	}
2445	/* Hmmmmm, it's not clear how to recover from PCI faults. */
2446	if (intr_status & IntrPCIErr) {
2447		printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name,
2448			intr_status & IntrPCIErr);
2449		dev->stats.tx_fifo_errors++;
2450		dev->stats.tx_errors++;
2451		dev->stats.rx_fifo_errors++;
2452		dev->stats.rx_errors++;
2453	}
2454	spin_unlock(&np->lock);
2455}
2456
2457static void __get_stats(struct net_device *dev)
2458{
2459	void __iomem * ioaddr = ns_ioaddr(dev);
2460
2461	/* The chip only need report frame silently dropped. */
2462	dev->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs);
2463	dev->stats.rx_missed_errors += readl(ioaddr + RxMissed);
2464}
2465
2466static struct net_device_stats *get_stats(struct net_device *dev)
2467{
2468	struct netdev_private *np = netdev_priv(dev);
2469
2470	/* The chip only need report frame silently dropped. */
2471	spin_lock_irq(&np->lock);
2472	if (netif_running(dev) && !np->hands_off)
2473		__get_stats(dev);
2474	spin_unlock_irq(&np->lock);
2475
2476	return &dev->stats;
2477}
2478
2479#ifdef CONFIG_NET_POLL_CONTROLLER
2480static void natsemi_poll_controller(struct net_device *dev)
2481{
2482	struct netdev_private *np = netdev_priv(dev);
2483	const int irq = np->pci_dev->irq;
2484
2485	disable_irq(irq);
2486	intr_handler(irq, dev);
2487	enable_irq(irq);
2488}
2489#endif
2490
2491#define HASH_TABLE	0x200
2492static void __set_rx_mode(struct net_device *dev)
2493{
2494	void __iomem * ioaddr = ns_ioaddr(dev);
2495	struct netdev_private *np = netdev_priv(dev);
2496	u8 mc_filter[64]; /* Multicast hash filter */
2497	u32 rx_mode;
2498
2499	if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2500		rx_mode = RxFilterEnable | AcceptBroadcast
2501			| AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys;
2502	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
2503		   (dev->flags & IFF_ALLMULTI)) {
2504		rx_mode = RxFilterEnable | AcceptBroadcast
2505			| AcceptAllMulticast | AcceptMyPhys;
2506	} else {
2507		struct netdev_hw_addr *ha;
2508		int i;
2509
2510		memset(mc_filter, 0, sizeof(mc_filter));
2511		netdev_for_each_mc_addr(ha, dev) {
2512			int b = (ether_crc(ETH_ALEN, ha->addr) >> 23) & 0x1ff;
2513			mc_filter[b/8] |= (1 << (b & 0x07));
2514		}
2515		rx_mode = RxFilterEnable | AcceptBroadcast
2516			| AcceptMulticast | AcceptMyPhys;
2517		for (i = 0; i < 64; i += 2) {
2518			writel(HASH_TABLE + i, ioaddr + RxFilterAddr);
2519			writel((mc_filter[i + 1] << 8) + mc_filter[i],
2520			       ioaddr + RxFilterData);
2521		}
2522	}
2523	writel(rx_mode, ioaddr + RxFilterAddr);
2524	np->cur_rx_mode = rx_mode;
2525}
2526
2527static int natsemi_change_mtu(struct net_device *dev, int new_mtu)
2528{
2529	WRITE_ONCE(dev->mtu, new_mtu);
2530
2531	/* synchronized against open : rtnl_lock() held by caller */
2532	if (netif_running(dev)) {
2533		struct netdev_private *np = netdev_priv(dev);
2534		void __iomem * ioaddr = ns_ioaddr(dev);
2535		const int irq = np->pci_dev->irq;
2536
2537		disable_irq(irq);
2538		spin_lock(&np->lock);
2539		/* stop engines */
2540		natsemi_stop_rxtx(dev);
2541		/* drain rx queue */
2542		drain_rx(dev);
2543		/* change buffers */
2544		set_bufsize(dev);
2545		reinit_rx(dev);
2546		writel(np->ring_dma, ioaddr + RxRingPtr);
2547		/* restart engines */
2548		writel(RxOn | TxOn, ioaddr + ChipCmd);
2549		spin_unlock(&np->lock);
2550		enable_irq(irq);
2551	}
2552	return 0;
2553}
2554
2555static void set_rx_mode(struct net_device *dev)
2556{
2557	struct netdev_private *np = netdev_priv(dev);
2558	spin_lock_irq(&np->lock);
2559	if (!np->hands_off)
2560		__set_rx_mode(dev);
2561	spin_unlock_irq(&np->lock);
2562}
2563
2564static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2565{
2566	struct netdev_private *np = netdev_priv(dev);
2567	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
2568	strscpy(info->version, DRV_VERSION, sizeof(info->version));
2569	strscpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
2570}
2571
2572static int get_regs_len(struct net_device *dev)
2573{
2574	return NATSEMI_REGS_SIZE;
2575}
2576
2577static int get_eeprom_len(struct net_device *dev)
2578{
2579	struct netdev_private *np = netdev_priv(dev);
2580	return np->eeprom_size;
2581}
2582
2583static int get_link_ksettings(struct net_device *dev,
2584			      struct ethtool_link_ksettings *ecmd)
2585{
2586	struct netdev_private *np = netdev_priv(dev);
2587	spin_lock_irq(&np->lock);
2588	netdev_get_ecmd(dev, ecmd);
2589	spin_unlock_irq(&np->lock);
2590	return 0;
2591}
2592
2593static int set_link_ksettings(struct net_device *dev,
2594			      const struct ethtool_link_ksettings *ecmd)
2595{
2596	struct netdev_private *np = netdev_priv(dev);
2597	int res;
2598	spin_lock_irq(&np->lock);
2599	res = netdev_set_ecmd(dev, ecmd);
2600	spin_unlock_irq(&np->lock);
2601	return res;
2602}
2603
2604static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2605{
2606	struct netdev_private *np = netdev_priv(dev);
2607	spin_lock_irq(&np->lock);
2608	netdev_get_wol(dev, &wol->supported, &wol->wolopts);
2609	netdev_get_sopass(dev, wol->sopass);
2610	spin_unlock_irq(&np->lock);
2611}
2612
2613static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2614{
2615	struct netdev_private *np = netdev_priv(dev);
2616	int res;
2617	spin_lock_irq(&np->lock);
2618	netdev_set_wol(dev, wol->wolopts);
2619	res = netdev_set_sopass(dev, wol->sopass);
2620	spin_unlock_irq(&np->lock);
2621	return res;
2622}
2623
2624static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2625{
2626	struct netdev_private *np = netdev_priv(dev);
2627	regs->version = NATSEMI_REGS_VER;
2628	spin_lock_irq(&np->lock);
2629	netdev_get_regs(dev, buf);
2630	spin_unlock_irq(&np->lock);
2631}
2632
2633static u32 get_msglevel(struct net_device *dev)
2634{
2635	struct netdev_private *np = netdev_priv(dev);
2636	return np->msg_enable;
2637}
2638
2639static void set_msglevel(struct net_device *dev, u32 val)
2640{
2641	struct netdev_private *np = netdev_priv(dev);
2642	np->msg_enable = val;
2643}
2644
2645static int nway_reset(struct net_device *dev)
2646{
2647	int tmp;
2648	int r = -EINVAL;
2649	/* if autoneg is off, it's an error */
2650	tmp = mdio_read(dev, MII_BMCR);
2651	if (tmp & BMCR_ANENABLE) {
2652		tmp |= (BMCR_ANRESTART);
2653		mdio_write(dev, MII_BMCR, tmp);
2654		r = 0;
2655	}
2656	return r;
2657}
2658
2659static u32 get_link(struct net_device *dev)
2660{
2661	/* LSTATUS is latched low until a read - so read twice */
2662	mdio_read(dev, MII_BMSR);
2663	return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0;
2664}
2665
2666static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
2667{
2668	struct netdev_private *np = netdev_priv(dev);
2669	u8 *eebuf;
2670	int res;
2671
2672	eebuf = kmalloc(np->eeprom_size, GFP_KERNEL);
2673	if (!eebuf)
2674		return -ENOMEM;
2675
2676	eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16);
2677	spin_lock_irq(&np->lock);
2678	res = netdev_get_eeprom(dev, eebuf);
2679	spin_unlock_irq(&np->lock);
2680	if (!res)
2681		memcpy(data, eebuf+eeprom->offset, eeprom->len);
2682	kfree(eebuf);
2683	return res;
2684}
2685
2686static const struct ethtool_ops ethtool_ops = {
2687	.get_drvinfo = get_drvinfo,
2688	.get_regs_len = get_regs_len,
2689	.get_eeprom_len = get_eeprom_len,
2690	.get_wol = get_wol,
2691	.set_wol = set_wol,
2692	.get_regs = get_regs,
2693	.get_msglevel = get_msglevel,
2694	.set_msglevel = set_msglevel,
2695	.nway_reset = nway_reset,
2696	.get_link = get_link,
2697	.get_eeprom = get_eeprom,
2698	.get_link_ksettings = get_link_ksettings,
2699	.set_link_ksettings = set_link_ksettings,
2700};
2701
2702static int netdev_set_wol(struct net_device *dev, u32 newval)
2703{
2704	struct netdev_private *np = netdev_priv(dev);
2705	void __iomem * ioaddr = ns_ioaddr(dev);
2706	u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary;
2707
2708	/* translate to bitmasks this chip understands */
2709	if (newval & WAKE_PHY)
2710		data |= WakePhy;
2711	if (newval & WAKE_UCAST)
2712		data |= WakeUnicast;
2713	if (newval & WAKE_MCAST)
2714		data |= WakeMulticast;
2715	if (newval & WAKE_BCAST)
2716		data |= WakeBroadcast;
2717	if (newval & WAKE_ARP)
2718		data |= WakeArp;
2719	if (newval & WAKE_MAGIC)
2720		data |= WakeMagic;
2721	if (np->srr >= SRR_DP83815_D) {
2722		if (newval & WAKE_MAGICSECURE) {
2723			data |= WakeMagicSecure;
2724		}
2725	}
2726
2727	writel(data, ioaddr + WOLCmd);
2728
2729	return 0;
2730}
2731
2732static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur)
2733{
2734	struct netdev_private *np = netdev_priv(dev);
2735	void __iomem * ioaddr = ns_ioaddr(dev);
2736	u32 regval = readl(ioaddr + WOLCmd);
2737
2738	*supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST
2739			| WAKE_ARP | WAKE_MAGIC);
2740
2741	if (np->srr >= SRR_DP83815_D) {
2742		/* SOPASS works on revD and higher */
2743		*supported |= WAKE_MAGICSECURE;
2744	}
2745	*cur = 0;
2746
2747	/* translate from chip bitmasks */
2748	if (regval & WakePhy)
2749		*cur |= WAKE_PHY;
2750	if (regval & WakeUnicast)
2751		*cur |= WAKE_UCAST;
2752	if (regval & WakeMulticast)
2753		*cur |= WAKE_MCAST;
2754	if (regval & WakeBroadcast)
2755		*cur |= WAKE_BCAST;
2756	if (regval & WakeArp)
2757		*cur |= WAKE_ARP;
2758	if (regval & WakeMagic)
2759		*cur |= WAKE_MAGIC;
2760	if (regval & WakeMagicSecure) {
2761		/* this can be on in revC, but it's broken */
2762		*cur |= WAKE_MAGICSECURE;
2763	}
2764
2765	return 0;
2766}
2767
2768static int netdev_set_sopass(struct net_device *dev, u8 *newval)
2769{
2770	struct netdev_private *np = netdev_priv(dev);
2771	void __iomem * ioaddr = ns_ioaddr(dev);
2772	u16 *sval = (u16 *)newval;
2773	u32 addr;
2774
2775	if (np->srr < SRR_DP83815_D) {
2776		return 0;
2777	}
2778
2779	/* enable writing to these registers by disabling the RX filter */
2780	addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2781	addr &= ~RxFilterEnable;
2782	writel(addr, ioaddr + RxFilterAddr);
2783
2784	/* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */
2785	writel(addr | 0xa, ioaddr + RxFilterAddr);
2786	writew(sval[0], ioaddr + RxFilterData);
2787
2788	writel(addr | 0xc, ioaddr + RxFilterAddr);
2789	writew(sval[1], ioaddr + RxFilterData);
2790
2791	writel(addr | 0xe, ioaddr + RxFilterAddr);
2792	writew(sval[2], ioaddr + RxFilterData);
2793
2794	/* re-enable the RX filter */
2795	writel(addr | RxFilterEnable, ioaddr + RxFilterAddr);
2796
2797	return 0;
2798}
2799
2800static int netdev_get_sopass(struct net_device *dev, u8 *data)
2801{
2802	struct netdev_private *np = netdev_priv(dev);
2803	void __iomem * ioaddr = ns_ioaddr(dev);
2804	u16 *sval = (u16 *)data;
2805	u32 addr;
2806
2807	if (np->srr < SRR_DP83815_D) {
2808		sval[0] = sval[1] = sval[2] = 0;
2809		return 0;
2810	}
2811
2812	/* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */
2813	addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2814
2815	writel(addr | 0xa, ioaddr + RxFilterAddr);
2816	sval[0] = readw(ioaddr + RxFilterData);
2817
2818	writel(addr | 0xc, ioaddr + RxFilterAddr);
2819	sval[1] = readw(ioaddr + RxFilterData);
2820
2821	writel(addr | 0xe, ioaddr + RxFilterAddr);
2822	sval[2] = readw(ioaddr + RxFilterData);
2823
2824	writel(addr, ioaddr + RxFilterAddr);
2825
2826	return 0;
2827}
2828
2829static int netdev_get_ecmd(struct net_device *dev,
2830			   struct ethtool_link_ksettings *ecmd)
2831{
2832	struct netdev_private *np = netdev_priv(dev);
2833	u32 supported, advertising;
2834	u32 tmp;
2835
2836	ecmd->base.port   = dev->if_port;
2837	ecmd->base.speed  = np->speed;
2838	ecmd->base.duplex = np->duplex;
2839	ecmd->base.autoneg = np->autoneg;
2840	advertising = 0;
2841
2842	if (np->advertising & ADVERTISE_10HALF)
2843		advertising |= ADVERTISED_10baseT_Half;
2844	if (np->advertising & ADVERTISE_10FULL)
2845		advertising |= ADVERTISED_10baseT_Full;
2846	if (np->advertising & ADVERTISE_100HALF)
2847		advertising |= ADVERTISED_100baseT_Half;
2848	if (np->advertising & ADVERTISE_100FULL)
2849		advertising |= ADVERTISED_100baseT_Full;
2850	supported   = (SUPPORTED_Autoneg |
2851		SUPPORTED_10baseT_Half  | SUPPORTED_10baseT_Full  |
2852		SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2853		SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE);
2854	ecmd->base.phy_address = np->phy_addr_external;
2855	/*
2856	 * We intentionally report the phy address of the external
2857	 * phy, even if the internal phy is used. This is necessary
2858	 * to work around a deficiency of the ethtool interface:
2859	 * It's only possible to query the settings of the active
2860	 * port. Therefore
2861	 * # ethtool -s ethX port mii
2862	 * actually sends an ioctl to switch to port mii with the
2863	 * settings that are used for the current active port.
2864	 * If we would report a different phy address in this
2865	 * command, then
2866	 * # ethtool -s ethX port tp;ethtool -s ethX port mii
2867	 * would unintentionally change the phy address.
2868	 *
2869	 * Fortunately the phy address doesn't matter with the
2870	 * internal phy...
2871	 */
2872
2873	/* set information based on active port type */
2874	switch (ecmd->base.port) {
2875	default:
2876	case PORT_TP:
2877		advertising |= ADVERTISED_TP;
2878		break;
2879	case PORT_MII:
2880		advertising |= ADVERTISED_MII;
2881		break;
2882	case PORT_FIBRE:
2883		advertising |= ADVERTISED_FIBRE;
2884		break;
2885	}
2886
2887	/* if autonegotiation is on, try to return the active speed/duplex */
2888	if (ecmd->base.autoneg == AUTONEG_ENABLE) {
2889		advertising |= ADVERTISED_Autoneg;
2890		tmp = mii_nway_result(
2891			np->advertising & mdio_read(dev, MII_LPA));
2892		if (tmp == LPA_100FULL || tmp == LPA_100HALF)
2893			ecmd->base.speed = SPEED_100;
2894		else
2895			ecmd->base.speed = SPEED_10;
2896		if (tmp == LPA_100FULL || tmp == LPA_10FULL)
2897			ecmd->base.duplex = DUPLEX_FULL;
2898		else
2899			ecmd->base.duplex = DUPLEX_HALF;
2900	}
2901
2902	/* ignore maxtxpkt, maxrxpkt for now */
2903
2904	ethtool_convert_legacy_u32_to_link_mode(ecmd->link_modes.supported,
2905						supported);
2906	ethtool_convert_legacy_u32_to_link_mode(ecmd->link_modes.advertising,
2907						advertising);
2908
2909	return 0;
2910}
2911
2912static int netdev_set_ecmd(struct net_device *dev,
2913			   const struct ethtool_link_ksettings *ecmd)
2914{
2915	struct netdev_private *np = netdev_priv(dev);
2916	u32 advertising;
2917
2918	ethtool_convert_link_mode_to_legacy_u32(&advertising,
2919						ecmd->link_modes.advertising);
2920
2921	if (ecmd->base.port != PORT_TP &&
2922	    ecmd->base.port != PORT_MII &&
2923	    ecmd->base.port != PORT_FIBRE)
2924		return -EINVAL;
2925	if (ecmd->base.autoneg == AUTONEG_ENABLE) {
2926		if ((advertising & (ADVERTISED_10baseT_Half |
2927					  ADVERTISED_10baseT_Full |
2928					  ADVERTISED_100baseT_Half |
2929					  ADVERTISED_100baseT_Full)) == 0) {
2930			return -EINVAL;
2931		}
2932	} else if (ecmd->base.autoneg == AUTONEG_DISABLE) {
2933		u32 speed = ecmd->base.speed;
2934		if (speed != SPEED_10 && speed != SPEED_100)
2935			return -EINVAL;
2936		if (ecmd->base.duplex != DUPLEX_HALF &&
2937		    ecmd->base.duplex != DUPLEX_FULL)
2938			return -EINVAL;
2939	} else {
2940		return -EINVAL;
2941	}
2942
2943	/*
2944	 * If we're ignoring the PHY then autoneg and the internal
2945	 * transceiver are really not going to work so don't let the
2946	 * user select them.
2947	 */
2948	if (np->ignore_phy && (ecmd->base.autoneg == AUTONEG_ENABLE ||
2949			       ecmd->base.port == PORT_TP))
2950		return -EINVAL;
2951
2952	/*
2953	 * maxtxpkt, maxrxpkt: ignored for now.
2954	 *
2955	 * transceiver:
2956	 * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always
2957	 * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and
2958	 * selects based on ecmd->port.
2959	 *
2960	 * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre
2961	 * phys that are connected to the mii bus. It's used to apply fibre
2962	 * specific updates.
2963	 */
2964
2965	/* WHEW! now lets bang some bits */
2966
2967	/* save the parms */
2968	dev->if_port          = ecmd->base.port;
2969	np->autoneg           = ecmd->base.autoneg;
2970	np->phy_addr_external = ecmd->base.phy_address & PhyAddrMask;
2971	if (np->autoneg == AUTONEG_ENABLE) {
2972		/* advertise only what has been requested */
2973		np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2974		if (advertising & ADVERTISED_10baseT_Half)
2975			np->advertising |= ADVERTISE_10HALF;
2976		if (advertising & ADVERTISED_10baseT_Full)
2977			np->advertising |= ADVERTISE_10FULL;
2978		if (advertising & ADVERTISED_100baseT_Half)
2979			np->advertising |= ADVERTISE_100HALF;
2980		if (advertising & ADVERTISED_100baseT_Full)
2981			np->advertising |= ADVERTISE_100FULL;
2982	} else {
2983		np->speed  = ecmd->base.speed;
2984		np->duplex = ecmd->base.duplex;
2985		/* user overriding the initial full duplex parm? */
2986		if (np->duplex == DUPLEX_HALF)
2987			np->full_duplex = 0;
2988	}
2989
2990	/* get the right phy enabled */
2991	if (ecmd->base.port == PORT_TP)
2992		switch_port_internal(dev);
2993	else
2994		switch_port_external(dev);
2995
2996	/* set parms and see how this affected our link status */
2997	init_phy_fixup(dev);
2998	check_link(dev);
2999	return 0;
3000}
3001
3002static int netdev_get_regs(struct net_device *dev, u8 *buf)
3003{
3004	int i;
3005	int j;
3006	u32 rfcr;
3007	u32 *rbuf = (u32 *)buf;
3008	void __iomem * ioaddr = ns_ioaddr(dev);
3009
3010	/* read non-mii page 0 of registers */
3011	for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) {
3012		rbuf[i] = readl(ioaddr + i*4);
3013	}
3014
3015	/* read current mii registers */
3016	for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++)
3017		rbuf[i] = mdio_read(dev, i & 0x1f);
3018
3019	/* read only the 'magic' registers from page 1 */
3020	writew(1, ioaddr + PGSEL);
3021	rbuf[i++] = readw(ioaddr + PMDCSR);
3022	rbuf[i++] = readw(ioaddr + TSTDAT);
3023	rbuf[i++] = readw(ioaddr + DSPCFG);
3024	rbuf[i++] = readw(ioaddr + SDCFG);
3025	writew(0, ioaddr + PGSEL);
3026
3027	/* read RFCR indexed registers */
3028	rfcr = readl(ioaddr + RxFilterAddr);
3029	for (j = 0; j < NATSEMI_RFDR_NREGS; j++) {
3030		writel(j*2, ioaddr + RxFilterAddr);
3031		rbuf[i++] = readw(ioaddr + RxFilterData);
3032	}
3033	writel(rfcr, ioaddr + RxFilterAddr);
3034
3035	/* the interrupt status is clear-on-read - see if we missed any */
3036	if (rbuf[4] & rbuf[5]) {
3037		printk(KERN_WARNING
3038			"%s: shoot, we dropped an interrupt (%#08x)\n",
3039			dev->name, rbuf[4] & rbuf[5]);
3040	}
3041
3042	return 0;
3043}
3044
3045#define SWAP_BITS(x)	( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \
3046			| (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9)  \
3047			| (((x) & 0x0010) << 7)  | (((x) & 0x0020) << 5)  \
3048			| (((x) & 0x0040) << 3)  | (((x) & 0x0080) << 1)  \
3049			| (((x) & 0x0100) >> 1)  | (((x) & 0x0200) >> 3)  \
3050			| (((x) & 0x0400) >> 5)  | (((x) & 0x0800) >> 7)  \
3051			| (((x) & 0x1000) >> 9)  | (((x) & 0x2000) >> 11) \
3052			| (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) )
3053
3054static int netdev_get_eeprom(struct net_device *dev, u8 *buf)
3055{
3056	int i;
3057	u16 *ebuf = (u16 *)buf;
3058	void __iomem * ioaddr = ns_ioaddr(dev);
3059	struct netdev_private *np = netdev_priv(dev);
3060
3061	/* eeprom_read reads 16 bits, and indexes by 16 bits */
3062	for (i = 0; i < np->eeprom_size/2; i++) {
3063		ebuf[i] = eeprom_read(ioaddr, i);
3064		/* The EEPROM itself stores data bit-swapped, but eeprom_read
3065		 * reads it back "sanely". So we swap it back here in order to
3066		 * present it to userland as it is stored. */
3067		ebuf[i] = SWAP_BITS(ebuf[i]);
3068	}
3069	return 0;
3070}
3071
3072static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3073{
3074	struct mii_ioctl_data *data = if_mii(rq);
3075	struct netdev_private *np = netdev_priv(dev);
3076
3077	switch(cmd) {
3078	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
3079		data->phy_id = np->phy_addr_external;
3080		fallthrough;
3081
3082	case SIOCGMIIREG:		/* Read MII PHY register. */
3083		/* The phy_id is not enough to uniquely identify
3084		 * the intended target. Therefore the command is sent to
3085		 * the given mii on the current port.
3086		 */
3087		if (dev->if_port == PORT_TP) {
3088			if ((data->phy_id & 0x1f) == np->phy_addr_external)
3089				data->val_out = mdio_read(dev,
3090							data->reg_num & 0x1f);
3091			else
3092				data->val_out = 0;
3093		} else {
3094			move_int_phy(dev, data->phy_id & 0x1f);
3095			data->val_out = miiport_read(dev, data->phy_id & 0x1f,
3096							data->reg_num & 0x1f);
3097		}
3098		return 0;
3099
3100	case SIOCSMIIREG:		/* Write MII PHY register. */
3101		if (dev->if_port == PORT_TP) {
3102			if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3103				if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3104					np->advertising = data->val_in;
3105				mdio_write(dev, data->reg_num & 0x1f,
3106							data->val_in);
3107			}
3108		} else {
3109			if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3110				if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3111					np->advertising = data->val_in;
3112			}
3113			move_int_phy(dev, data->phy_id & 0x1f);
3114			miiport_write(dev, data->phy_id & 0x1f,
3115						data->reg_num & 0x1f,
3116						data->val_in);
3117		}
3118		return 0;
3119	default:
3120		return -EOPNOTSUPP;
3121	}
3122}
3123
3124static void enable_wol_mode(struct net_device *dev, int enable_intr)
3125{
3126	void __iomem * ioaddr = ns_ioaddr(dev);
3127	struct netdev_private *np = netdev_priv(dev);
3128
3129	if (netif_msg_wol(np))
3130		printk(KERN_INFO "%s: remaining active for wake-on-lan\n",
3131			dev->name);
3132
3133	/* For WOL we must restart the rx process in silent mode.
3134	 * Write NULL to the RxRingPtr. Only possible if
3135	 * rx process is stopped
3136	 */
3137	writel(0, ioaddr + RxRingPtr);
3138
3139	/* read WoL status to clear */
3140	readl(ioaddr + WOLCmd);
3141
3142	/* PME on, clear status */
3143	writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun);
3144
3145	/* and restart the rx process */
3146	writel(RxOn, ioaddr + ChipCmd);
3147
3148	if (enable_intr) {
3149		/* enable the WOL interrupt.
3150		 * Could be used to send a netlink message.
3151		 */
3152		writel(WOLPkt | LinkChange, ioaddr + IntrMask);
3153		natsemi_irq_enable(dev);
3154	}
3155}
3156
3157static int netdev_close(struct net_device *dev)
3158{
3159	void __iomem * ioaddr = ns_ioaddr(dev);
3160	struct netdev_private *np = netdev_priv(dev);
3161	const int irq = np->pci_dev->irq;
3162
3163	if (netif_msg_ifdown(np))
3164		printk(KERN_DEBUG
3165			"%s: Shutting down ethercard, status was %#04x.\n",
3166			dev->name, (int)readl(ioaddr + ChipCmd));
3167	if (netif_msg_pktdata(np))
3168		printk(KERN_DEBUG
3169			"%s: Queue pointers were Tx %d / %d,  Rx %d / %d.\n",
3170			dev->name, np->cur_tx, np->dirty_tx,
3171			np->cur_rx, np->dirty_rx);
3172
3173	napi_disable(&np->napi);
3174
3175	/*
3176	 * FIXME: what if someone tries to close a device
3177	 * that is suspended?
3178	 * Should we reenable the nic to switch to
3179	 * the final WOL settings?
3180	 */
3181
3182	del_timer_sync(&np->timer);
3183	disable_irq(irq);
3184	spin_lock_irq(&np->lock);
3185	natsemi_irq_disable(dev);
3186	np->hands_off = 1;
3187	spin_unlock_irq(&np->lock);
3188	enable_irq(irq);
3189
3190	free_irq(irq, dev);
3191
3192	/* Interrupt disabled, interrupt handler released,
3193	 * queue stopped, timer deleted, rtnl_lock held
3194	 * All async codepaths that access the driver are disabled.
3195	 */
3196	spin_lock_irq(&np->lock);
3197	np->hands_off = 0;
3198	readl(ioaddr + IntrMask);
3199	readw(ioaddr + MIntrStatus);
3200
3201	/* Freeze Stats */
3202	writel(StatsFreeze, ioaddr + StatsCtrl);
3203
3204	/* Stop the chip's Tx and Rx processes. */
3205	natsemi_stop_rxtx(dev);
3206
3207	__get_stats(dev);
3208	spin_unlock_irq(&np->lock);
3209
3210	/* clear the carrier last - an interrupt could reenable it otherwise */
3211	netif_carrier_off(dev);
3212	netif_stop_queue(dev);
3213
3214	dump_ring(dev);
3215	drain_ring(dev);
3216	free_ring(dev);
3217
3218	{
3219		u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3220		if (wol) {
3221			/* restart the NIC in WOL mode.
3222			 * The nic must be stopped for this.
3223			 */
3224			enable_wol_mode(dev, 0);
3225		} else {
3226			/* Restore PME enable bit unmolested */
3227			writel(np->SavedClkRun, ioaddr + ClkRun);
3228		}
3229	}
3230	return 0;
3231}
3232
3233
3234static void natsemi_remove1(struct pci_dev *pdev)
3235{
3236	struct net_device *dev = pci_get_drvdata(pdev);
3237	void __iomem * ioaddr = ns_ioaddr(dev);
3238
3239	NATSEMI_REMOVE_FILE(pdev, dspcfg_workaround);
3240	unregister_netdev (dev);
 
3241	iounmap(ioaddr);
3242	free_netdev (dev);
3243}
3244
 
 
3245/*
3246 * The ns83815 chip doesn't have explicit RxStop bits.
3247 * Kicking the Rx or Tx process for a new packet reenables the Rx process
3248 * of the nic, thus this function must be very careful:
3249 *
3250 * suspend/resume synchronization:
3251 * entry points:
3252 *   netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler,
3253 *   start_tx, ns_tx_timeout
3254 *
3255 * No function accesses the hardware without checking np->hands_off.
3256 *	the check occurs under spin_lock_irq(&np->lock);
3257 * exceptions:
3258 *	* netdev_ioctl: noncritical access.
3259 *	* netdev_open: cannot happen due to the device_detach
3260 *	* netdev_close: doesn't hurt.
3261 *	* netdev_timer: timer stopped by natsemi_suspend.
3262 *	* intr_handler: doesn't acquire the spinlock. suspend calls
3263 *		disable_irq() to enforce synchronization.
3264 *      * natsemi_poll: checks before reenabling interrupts.  suspend
3265 *              sets hands_off, disables interrupts and then waits with
3266 *              napi_disable().
3267 *
3268 * Interrupts must be disabled, otherwise hands_off can cause irq storms.
3269 */
3270
3271static int __maybe_unused natsemi_suspend(struct device *dev_d)
3272{
3273	struct net_device *dev = dev_get_drvdata(dev_d);
3274	struct netdev_private *np = netdev_priv(dev);
3275	void __iomem * ioaddr = ns_ioaddr(dev);
3276
3277	rtnl_lock();
3278	if (netif_running (dev)) {
3279		const int irq = np->pci_dev->irq;
3280
3281		del_timer_sync(&np->timer);
3282
3283		disable_irq(irq);
3284		spin_lock_irq(&np->lock);
3285
3286		natsemi_irq_disable(dev);
3287		np->hands_off = 1;
3288		natsemi_stop_rxtx(dev);
3289		netif_stop_queue(dev);
3290
3291		spin_unlock_irq(&np->lock);
3292		enable_irq(irq);
3293
3294		napi_disable(&np->napi);
3295
3296		/* Update the error counts. */
3297		__get_stats(dev);
3298
3299		/* pci_power_off(pdev, -1); */
3300		drain_ring(dev);
3301		{
3302			u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3303			/* Restore PME enable bit */
3304			if (wol) {
3305				/* restart the NIC in WOL mode.
3306				 * The nic must be stopped for this.
3307				 * FIXME: use the WOL interrupt
3308				 */
3309				enable_wol_mode(dev, 0);
3310			} else {
3311				/* Restore PME enable bit unmolested */
3312				writel(np->SavedClkRun, ioaddr + ClkRun);
3313			}
3314		}
3315	}
3316	netif_device_detach(dev);
3317	rtnl_unlock();
3318	return 0;
3319}
3320
3321
3322static int __maybe_unused natsemi_resume(struct device *dev_d)
3323{
3324	struct net_device *dev = dev_get_drvdata(dev_d);
3325	struct netdev_private *np = netdev_priv(dev);
 
3326
3327	rtnl_lock();
3328	if (netif_device_present(dev))
3329		goto out;
3330	if (netif_running(dev)) {
3331		const int irq = np->pci_dev->irq;
3332
3333		BUG_ON(!np->hands_off);
 
 
 
 
 
 
3334	/*	pci_power_on(pdev); */
3335
3336		napi_enable(&np->napi);
3337
3338		natsemi_reset(dev);
3339		init_ring(dev);
3340		disable_irq(irq);
3341		spin_lock_irq(&np->lock);
3342		np->hands_off = 0;
3343		init_registers(dev);
3344		netif_device_attach(dev);
3345		spin_unlock_irq(&np->lock);
3346		enable_irq(irq);
3347
3348		mod_timer(&np->timer, round_jiffies(jiffies + 1*HZ));
3349	}
3350	netif_device_attach(dev);
3351out:
3352	rtnl_unlock();
3353	return 0;
3354}
3355
3356static SIMPLE_DEV_PM_OPS(natsemi_pm_ops, natsemi_suspend, natsemi_resume);
3357
3358static struct pci_driver natsemi_driver = {
3359	.name		= DRV_NAME,
3360	.id_table	= natsemi_pci_tbl,
3361	.probe		= natsemi_probe1,
3362	.remove		= natsemi_remove1,
3363	.driver.pm	= &natsemi_pm_ops,
 
 
 
3364};
3365
3366static int __init natsemi_init_mod (void)
3367{
3368/* when a module, this is printed whether or not devices are found in probe */
3369#ifdef MODULE
3370	printk(version);
3371#endif
3372
3373	return pci_register_driver(&natsemi_driver);
3374}
3375
3376static void __exit natsemi_exit_mod (void)
3377{
3378	pci_unregister_driver (&natsemi_driver);
3379}
3380
3381module_init(natsemi_init_mod);
3382module_exit(natsemi_exit_mod);
3383
v4.17
   1/* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */
   2/*
   3	Written/copyright 1999-2001 by Donald Becker.
   4	Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com)
   5	Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com)
   6	Portions copyright 2004 Harald Welte <laforge@gnumonks.org>
   7
   8	This software may be used and distributed according to the terms of
   9	the GNU General Public License (GPL), incorporated herein by reference.
  10	Drivers based on or derived from this code fall under the GPL and must
  11	retain the authorship, copyright and license notice.  This file is not
  12	a complete program and may only be used when the entire operating
  13	system is licensed under the GPL.  License for under other terms may be
  14	available.  Contact the original author for details.
  15
  16	The original author may be reached as becker@scyld.com, or at
  17	Scyld Computing Corporation
  18	410 Severn Ave., Suite 210
  19	Annapolis MD 21403
  20
  21	Support information and updates available at
  22	http://www.scyld.com/network/netsemi.html
  23	[link no longer provides useful info -jgarzik]
  24
  25
  26	TODO:
  27	* big endian support with CFG:BEM instead of cpu_to_le32
  28*/
  29
  30#include <linux/module.h>
  31#include <linux/kernel.h>
  32#include <linux/string.h>
  33#include <linux/timer.h>
  34#include <linux/errno.h>
  35#include <linux/ioport.h>
  36#include <linux/slab.h>
  37#include <linux/interrupt.h>
  38#include <linux/pci.h>
  39#include <linux/netdevice.h>
  40#include <linux/etherdevice.h>
  41#include <linux/skbuff.h>
  42#include <linux/init.h>
  43#include <linux/spinlock.h>
  44#include <linux/ethtool.h>
  45#include <linux/delay.h>
  46#include <linux/rtnetlink.h>
  47#include <linux/mii.h>
  48#include <linux/crc32.h>
  49#include <linux/bitops.h>
  50#include <linux/prefetch.h>
  51#include <asm/processor.h>	/* Processor type for cache alignment. */
  52#include <asm/io.h>
  53#include <asm/irq.h>
  54#include <linux/uaccess.h>
  55
  56#define DRV_NAME	"natsemi"
  57#define DRV_VERSION	"2.1"
  58#define DRV_RELDATE	"Sept 11, 2006"
  59
  60#define RX_OFFSET	2
  61
  62/* Updated to recommendations in pci-skeleton v2.03. */
  63
  64/* The user-configurable values.
  65   These may be modified when a driver module is loaded.*/
  66
  67#define NATSEMI_DEF_MSG		(NETIF_MSG_DRV		| \
  68				 NETIF_MSG_LINK		| \
  69				 NETIF_MSG_WOL		| \
  70				 NETIF_MSG_RX_ERR	| \
  71				 NETIF_MSG_TX_ERR)
  72static int debug = -1;
  73
  74static int mtu;
  75
  76/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
  77   This chip uses a 512 element hash table based on the Ethernet CRC.  */
  78static const int multicast_filter_limit = 100;
  79
  80/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
  81   Setting to > 1518 effectively disables this feature. */
  82static int rx_copybreak;
  83
  84static int dspcfg_workaround = 1;
  85
  86/* Used to pass the media type, etc.
  87   Both 'options[]' and 'full_duplex[]' should exist for driver
  88   interoperability.
  89   The media type is usually passed in 'options[]'.
  90*/
  91#define MAX_UNITS 8		/* More are supported, limit only on options */
  92static int options[MAX_UNITS];
  93static int full_duplex[MAX_UNITS];
  94
  95/* Operational parameters that are set at compile time. */
  96
  97/* Keep the ring sizes a power of two for compile efficiency.
  98   The compiler will convert <unsigned>'%'<2^N> into a bit mask.
  99   Making the Tx ring too large decreases the effectiveness of channel
 100   bonding and packet priority.
 101   There are no ill effects from too-large receive rings. */
 102#define TX_RING_SIZE	16
 103#define TX_QUEUE_LEN	10 /* Limit ring entries actually used, min 4. */
 104#define RX_RING_SIZE	32
 105
 106/* Operational parameters that usually are not changed. */
 107/* Time in jiffies before concluding the transmitter is hung. */
 108#define TX_TIMEOUT  (2*HZ)
 109
 110#define NATSEMI_HW_TIMEOUT	400
 111#define NATSEMI_TIMER_FREQ	5*HZ
 112#define NATSEMI_PG0_NREGS	64
 113#define NATSEMI_RFDR_NREGS	8
 114#define NATSEMI_PG1_NREGS	4
 115#define NATSEMI_NREGS		(NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \
 116				 NATSEMI_PG1_NREGS)
 117#define NATSEMI_REGS_VER	1 /* v1 added RFDR registers */
 118#define NATSEMI_REGS_SIZE	(NATSEMI_NREGS * sizeof(u32))
 119
 120/* Buffer sizes:
 121 * The nic writes 32-bit values, even if the upper bytes of
 122 * a 32-bit value are beyond the end of the buffer.
 123 */
 124#define NATSEMI_HEADERS		22	/* 2*mac,type,vlan,crc */
 125#define NATSEMI_PADDING		16	/* 2 bytes should be sufficient */
 126#define NATSEMI_LONGPKT		1518	/* limit for normal packets */
 127#define NATSEMI_RX_LIMIT	2046	/* maximum supported by hardware */
 128
 129/* These identify the driver base version and may not be removed. */
 130static const char version[] =
 131  KERN_INFO DRV_NAME " dp8381x driver, version "
 132      DRV_VERSION ", " DRV_RELDATE "\n"
 133  "  originally by Donald Becker <becker@scyld.com>\n"
 134  "  2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n";
 135
 136MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
 137MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver");
 138MODULE_LICENSE("GPL");
 139
 140module_param(mtu, int, 0);
 141module_param(debug, int, 0);
 142module_param(rx_copybreak, int, 0);
 143module_param(dspcfg_workaround, int, 0);
 144module_param_array(options, int, NULL, 0);
 145module_param_array(full_duplex, int, NULL, 0);
 146MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)");
 147MODULE_PARM_DESC(debug, "DP8381x default debug level");
 148MODULE_PARM_DESC(rx_copybreak,
 149	"DP8381x copy breakpoint for copy-only-tiny-frames");
 150MODULE_PARM_DESC(dspcfg_workaround, "DP8381x: control DspCfg workaround");
 151MODULE_PARM_DESC(options,
 152	"DP8381x: Bits 0-3: media type, bit 17: full duplex");
 153MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)");
 154
 155/*
 156				Theory of Operation
 157
 158I. Board Compatibility
 159
 160This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC.
 161It also works with other chips in in the DP83810 series.
 162
 163II. Board-specific settings
 164
 165This driver requires the PCI interrupt line to be valid.
 166It honors the EEPROM-set values.
 167
 168III. Driver operation
 169
 170IIIa. Ring buffers
 171
 172This driver uses two statically allocated fixed-size descriptor lists
 173formed into rings by a branch from the final descriptor to the beginning of
 174the list.  The ring sizes are set at compile time by RX/TX_RING_SIZE.
 175The NatSemi design uses a 'next descriptor' pointer that the driver forms
 176into a list.
 177
 178IIIb/c. Transmit/Receive Structure
 179
 180This driver uses a zero-copy receive and transmit scheme.
 181The driver allocates full frame size skbuffs for the Rx ring buffers at
 182open() time and passes the skb->data field to the chip as receive data
 183buffers.  When an incoming frame is less than RX_COPYBREAK bytes long,
 184a fresh skbuff is allocated and the frame is copied to the new skbuff.
 185When the incoming frame is larger, the skbuff is passed directly up the
 186protocol stack.  Buffers consumed this way are replaced by newly allocated
 187skbuffs in a later phase of receives.
 188
 189The RX_COPYBREAK value is chosen to trade-off the memory wasted by
 190using a full-sized skbuff for small frames vs. the copying costs of larger
 191frames.  New boards are typically used in generously configured machines
 192and the underfilled buffers have negligible impact compared to the benefit of
 193a single allocation size, so the default value of zero results in never
 194copying packets.  When copying is done, the cost is usually mitigated by using
 195a combined copy/checksum routine.  Copying also preloads the cache, which is
 196most useful with small frames.
 197
 198A subtle aspect of the operation is that unaligned buffers are not permitted
 199by the hardware.  Thus the IP header at offset 14 in an ethernet frame isn't
 200longword aligned for further processing.  On copies frames are put into the
 201skbuff at an offset of "+2", 16-byte aligning the IP header.
 202
 203IIId. Synchronization
 204
 205Most operations are synchronized on the np->lock irq spinlock, except the
 206receive and transmit paths which are synchronised using a combination of
 207hardware descriptor ownership, disabling interrupts and NAPI poll scheduling.
 208
 209IVb. References
 210
 211http://www.scyld.com/expert/100mbps.html
 212http://www.scyld.com/expert/NWay.html
 213Datasheet is available from:
 214http://www.national.com/pf/DP/DP83815.html
 215
 216IVc. Errata
 217
 218None characterised.
 219*/
 220
 221
 222
 223/*
 224 * Support for fibre connections on Am79C874:
 225 * This phy needs a special setup when connected to a fibre cable.
 226 * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf
 227 */
 228#define PHYID_AM79C874	0x0022561b
 229
 230enum {
 231	MII_MCTRL	= 0x15,		/* mode control register */
 232	MII_FX_SEL	= 0x0001,	/* 100BASE-FX (fiber) */
 233	MII_EN_SCRM	= 0x0004,	/* enable scrambler (tp) */
 234};
 235
 236enum {
 237	NATSEMI_FLAG_IGNORE_PHY		= 0x1,
 238};
 239
 240/* array of board data directly indexed by pci_tbl[x].driver_data */
 241static struct {
 242	const char *name;
 243	unsigned long flags;
 244	unsigned int eeprom_size;
 245} natsemi_pci_info[] = {
 246	{ "Aculab E1/T1 PMXc cPCI carrier card", NATSEMI_FLAG_IGNORE_PHY, 128 },
 247	{ "NatSemi DP8381[56]", 0, 24 },
 248};
 249
 250static const struct pci_device_id natsemi_pci_tbl[] = {
 251	{ PCI_VENDOR_ID_NS, 0x0020, 0x12d9,     0x000c,     0, 0, 0 },
 252	{ PCI_VENDOR_ID_NS, 0x0020, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
 253	{ }	/* terminate list */
 254};
 255MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl);
 256
 257/* Offsets to the device registers.
 258   Unlike software-only systems, device drivers interact with complex hardware.
 259   It's not useful to define symbolic names for every register bit in the
 260   device.
 261*/
 262enum register_offsets {
 263	ChipCmd			= 0x00,
 264	ChipConfig		= 0x04,
 265	EECtrl			= 0x08,
 266	PCIBusCfg		= 0x0C,
 267	IntrStatus		= 0x10,
 268	IntrMask		= 0x14,
 269	IntrEnable		= 0x18,
 270	IntrHoldoff		= 0x1C, /* DP83816 only */
 271	TxRingPtr		= 0x20,
 272	TxConfig		= 0x24,
 273	RxRingPtr		= 0x30,
 274	RxConfig		= 0x34,
 275	ClkRun			= 0x3C,
 276	WOLCmd			= 0x40,
 277	PauseCmd		= 0x44,
 278	RxFilterAddr		= 0x48,
 279	RxFilterData		= 0x4C,
 280	BootRomAddr		= 0x50,
 281	BootRomData		= 0x54,
 282	SiliconRev		= 0x58,
 283	StatsCtrl		= 0x5C,
 284	StatsData		= 0x60,
 285	RxPktErrs		= 0x60,
 286	RxMissed		= 0x68,
 287	RxCRCErrs		= 0x64,
 288	BasicControl		= 0x80,
 289	BasicStatus		= 0x84,
 290	AnegAdv			= 0x90,
 291	AnegPeer		= 0x94,
 292	PhyStatus		= 0xC0,
 293	MIntrCtrl		= 0xC4,
 294	MIntrStatus		= 0xC8,
 295	PhyCtrl			= 0xE4,
 296
 297	/* These are from the spec, around page 78... on a separate table.
 298	 * The meaning of these registers depend on the value of PGSEL. */
 299	PGSEL			= 0xCC,
 300	PMDCSR			= 0xE4,
 301	TSTDAT			= 0xFC,
 302	DSPCFG			= 0xF4,
 303	SDCFG			= 0xF8
 304};
 305/* the values for the 'magic' registers above (PGSEL=1) */
 306#define PMDCSR_VAL	0x189c	/* enable preferred adaptation circuitry */
 307#define TSTDAT_VAL	0x0
 308#define DSPCFG_VAL	0x5040
 309#define SDCFG_VAL	0x008c	/* set voltage thresholds for Signal Detect */
 310#define DSPCFG_LOCK	0x20	/* coefficient lock bit in DSPCFG */
 311#define DSPCFG_COEF	0x1000	/* see coefficient (in TSTDAT) bit in DSPCFG */
 312#define TSTDAT_FIXED	0xe8	/* magic number for bad coefficients */
 313
 314/* misc PCI space registers */
 315enum pci_register_offsets {
 316	PCIPM			= 0x44,
 317};
 318
 319enum ChipCmd_bits {
 320	ChipReset		= 0x100,
 321	RxReset			= 0x20,
 322	TxReset			= 0x10,
 323	RxOff			= 0x08,
 324	RxOn			= 0x04,
 325	TxOff			= 0x02,
 326	TxOn			= 0x01,
 327};
 328
 329enum ChipConfig_bits {
 330	CfgPhyDis		= 0x200,
 331	CfgPhyRst		= 0x400,
 332	CfgExtPhy		= 0x1000,
 333	CfgAnegEnable		= 0x2000,
 334	CfgAneg100		= 0x4000,
 335	CfgAnegFull		= 0x8000,
 336	CfgAnegDone		= 0x8000000,
 337	CfgFullDuplex		= 0x20000000,
 338	CfgSpeed100		= 0x40000000,
 339	CfgLink			= 0x80000000,
 340};
 341
 342enum EECtrl_bits {
 343	EE_ShiftClk		= 0x04,
 344	EE_DataIn		= 0x01,
 345	EE_ChipSelect		= 0x08,
 346	EE_DataOut		= 0x02,
 347	MII_Data 		= 0x10,
 348	MII_Write		= 0x20,
 349	MII_ShiftClk		= 0x40,
 350};
 351
 352enum PCIBusCfg_bits {
 353	EepromReload		= 0x4,
 354};
 355
 356/* Bits in the interrupt status/mask registers. */
 357enum IntrStatus_bits {
 358	IntrRxDone		= 0x0001,
 359	IntrRxIntr		= 0x0002,
 360	IntrRxErr		= 0x0004,
 361	IntrRxEarly		= 0x0008,
 362	IntrRxIdle		= 0x0010,
 363	IntrRxOverrun		= 0x0020,
 364	IntrTxDone		= 0x0040,
 365	IntrTxIntr		= 0x0080,
 366	IntrTxErr		= 0x0100,
 367	IntrTxIdle		= 0x0200,
 368	IntrTxUnderrun		= 0x0400,
 369	StatsMax		= 0x0800,
 370	SWInt			= 0x1000,
 371	WOLPkt			= 0x2000,
 372	LinkChange		= 0x4000,
 373	IntrHighBits		= 0x8000,
 374	RxStatusFIFOOver	= 0x10000,
 375	IntrPCIErr		= 0xf00000,
 376	RxResetDone		= 0x1000000,
 377	TxResetDone		= 0x2000000,
 378	IntrAbnormalSummary	= 0xCD20,
 379};
 380
 381/*
 382 * Default Interrupts:
 383 * Rx OK, Rx Packet Error, Rx Overrun,
 384 * Tx OK, Tx Packet Error, Tx Underrun,
 385 * MIB Service, Phy Interrupt, High Bits,
 386 * Rx Status FIFO overrun,
 387 * Received Target Abort, Received Master Abort,
 388 * Signalled System Error, Received Parity Error
 389 */
 390#define DEFAULT_INTR 0x00f1cd65
 391
 392enum TxConfig_bits {
 393	TxDrthMask		= 0x3f,
 394	TxFlthMask		= 0x3f00,
 395	TxMxdmaMask		= 0x700000,
 396	TxMxdma_512		= 0x0,
 397	TxMxdma_4		= 0x100000,
 398	TxMxdma_8		= 0x200000,
 399	TxMxdma_16		= 0x300000,
 400	TxMxdma_32		= 0x400000,
 401	TxMxdma_64		= 0x500000,
 402	TxMxdma_128		= 0x600000,
 403	TxMxdma_256		= 0x700000,
 404	TxCollRetry		= 0x800000,
 405	TxAutoPad		= 0x10000000,
 406	TxMacLoop		= 0x20000000,
 407	TxHeartIgn		= 0x40000000,
 408	TxCarrierIgn		= 0x80000000
 409};
 410
 411/*
 412 * Tx Configuration:
 413 * - 256 byte DMA burst length
 414 * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free)
 415 * - 64 bytes initial drain threshold (i.e. begin actual transmission
 416 *   when 64 byte are in the fifo)
 417 * - on tx underruns, increase drain threshold by 64.
 418 * - at most use a drain threshold of 1472 bytes: The sum of the fill
 419 *   threshold and the drain threshold must be less than 2016 bytes.
 420 *
 421 */
 422#define TX_FLTH_VAL		((512/32) << 8)
 423#define TX_DRTH_VAL_START	(64/32)
 424#define TX_DRTH_VAL_INC		2
 425#define TX_DRTH_VAL_LIMIT	(1472/32)
 426
 427enum RxConfig_bits {
 428	RxDrthMask		= 0x3e,
 429	RxMxdmaMask		= 0x700000,
 430	RxMxdma_512		= 0x0,
 431	RxMxdma_4		= 0x100000,
 432	RxMxdma_8		= 0x200000,
 433	RxMxdma_16		= 0x300000,
 434	RxMxdma_32		= 0x400000,
 435	RxMxdma_64		= 0x500000,
 436	RxMxdma_128		= 0x600000,
 437	RxMxdma_256		= 0x700000,
 438	RxAcceptLong		= 0x8000000,
 439	RxAcceptTx		= 0x10000000,
 440	RxAcceptRunt		= 0x40000000,
 441	RxAcceptErr		= 0x80000000
 442};
 443#define RX_DRTH_VAL		(128/8)
 444
 445enum ClkRun_bits {
 446	PMEEnable		= 0x100,
 447	PMEStatus		= 0x8000,
 448};
 449
 450enum WolCmd_bits {
 451	WakePhy			= 0x1,
 452	WakeUnicast		= 0x2,
 453	WakeMulticast		= 0x4,
 454	WakeBroadcast		= 0x8,
 455	WakeArp			= 0x10,
 456	WakePMatch0		= 0x20,
 457	WakePMatch1		= 0x40,
 458	WakePMatch2		= 0x80,
 459	WakePMatch3		= 0x100,
 460	WakeMagic		= 0x200,
 461	WakeMagicSecure		= 0x400,
 462	SecureHack		= 0x100000,
 463	WokePhy			= 0x400000,
 464	WokeUnicast		= 0x800000,
 465	WokeMulticast		= 0x1000000,
 466	WokeBroadcast		= 0x2000000,
 467	WokeArp			= 0x4000000,
 468	WokePMatch0		= 0x8000000,
 469	WokePMatch1		= 0x10000000,
 470	WokePMatch2		= 0x20000000,
 471	WokePMatch3		= 0x40000000,
 472	WokeMagic		= 0x80000000,
 473	WakeOptsSummary		= 0x7ff
 474};
 475
 476enum RxFilterAddr_bits {
 477	RFCRAddressMask		= 0x3ff,
 478	AcceptMulticast		= 0x00200000,
 479	AcceptMyPhys		= 0x08000000,
 480	AcceptAllPhys		= 0x10000000,
 481	AcceptAllMulticast	= 0x20000000,
 482	AcceptBroadcast		= 0x40000000,
 483	RxFilterEnable		= 0x80000000
 484};
 485
 486enum StatsCtrl_bits {
 487	StatsWarn		= 0x1,
 488	StatsFreeze		= 0x2,
 489	StatsClear		= 0x4,
 490	StatsStrobe		= 0x8,
 491};
 492
 493enum MIntrCtrl_bits {
 494	MICRIntEn		= 0x2,
 495};
 496
 497enum PhyCtrl_bits {
 498	PhyAddrMask		= 0x1f,
 499};
 500
 501#define PHY_ADDR_NONE		32
 502#define PHY_ADDR_INTERNAL	1
 503
 504/* values we might find in the silicon revision register */
 505#define SRR_DP83815_C	0x0302
 506#define SRR_DP83815_D	0x0403
 507#define SRR_DP83816_A4	0x0504
 508#define SRR_DP83816_A5	0x0505
 509
 510/* The Rx and Tx buffer descriptors. */
 511/* Note that using only 32 bit fields simplifies conversion to big-endian
 512   architectures. */
 513struct netdev_desc {
 514	__le32 next_desc;
 515	__le32 cmd_status;
 516	__le32 addr;
 517	__le32 software_use;
 518};
 519
 520/* Bits in network_desc.status */
 521enum desc_status_bits {
 522	DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000,
 523	DescNoCRC=0x10000000, DescPktOK=0x08000000,
 524	DescSizeMask=0xfff,
 525
 526	DescTxAbort=0x04000000, DescTxFIFO=0x02000000,
 527	DescTxCarrier=0x01000000, DescTxDefer=0x00800000,
 528	DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000,
 529	DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000,
 530
 531	DescRxAbort=0x04000000, DescRxOver=0x02000000,
 532	DescRxDest=0x01800000, DescRxLong=0x00400000,
 533	DescRxRunt=0x00200000, DescRxInvalid=0x00100000,
 534	DescRxCRC=0x00080000, DescRxAlign=0x00040000,
 535	DescRxLoop=0x00020000, DesRxColl=0x00010000,
 536};
 537
 538struct netdev_private {
 539	/* Descriptor rings first for alignment */
 540	dma_addr_t ring_dma;
 541	struct netdev_desc *rx_ring;
 542	struct netdev_desc *tx_ring;
 543	/* The addresses of receive-in-place skbuffs */
 544	struct sk_buff *rx_skbuff[RX_RING_SIZE];
 545	dma_addr_t rx_dma[RX_RING_SIZE];
 546	/* address of a sent-in-place packet/buffer, for later free() */
 547	struct sk_buff *tx_skbuff[TX_RING_SIZE];
 548	dma_addr_t tx_dma[TX_RING_SIZE];
 549	struct net_device *dev;
 550	void __iomem *ioaddr;
 551	struct napi_struct napi;
 552	/* Media monitoring timer */
 553	struct timer_list timer;
 554	/* Frequently used values: keep some adjacent for cache effect */
 555	struct pci_dev *pci_dev;
 556	struct netdev_desc *rx_head_desc;
 557	/* Producer/consumer ring indices */
 558	unsigned int cur_rx, dirty_rx;
 559	unsigned int cur_tx, dirty_tx;
 560	/* Based on MTU+slack. */
 561	unsigned int rx_buf_sz;
 562	int oom;
 563	/* Interrupt status */
 564	u32 intr_status;
 565	/* Do not touch the nic registers */
 566	int hands_off;
 567	/* Don't pay attention to the reported link state. */
 568	int ignore_phy;
 569	/* external phy that is used: only valid if dev->if_port != PORT_TP */
 570	int mii;
 571	int phy_addr_external;
 572	unsigned int full_duplex;
 573	/* Rx filter */
 574	u32 cur_rx_mode;
 575	u32 rx_filter[16];
 576	/* FIFO and PCI burst thresholds */
 577	u32 tx_config, rx_config;
 578	/* original contents of ClkRun register */
 579	u32 SavedClkRun;
 580	/* silicon revision */
 581	u32 srr;
 582	/* expected DSPCFG value */
 583	u16 dspcfg;
 584	int dspcfg_workaround;
 585	/* parms saved in ethtool format */
 586	u16	speed;		/* The forced speed, 10Mb, 100Mb, gigabit */
 587	u8	duplex;		/* Duplex, half or full */
 588	u8	autoneg;	/* Autonegotiation enabled */
 589	/* MII transceiver section */
 590	u16 advertising;
 591	unsigned int iosize;
 592	spinlock_t lock;
 593	u32 msg_enable;
 594	/* EEPROM data */
 595	int eeprom_size;
 596};
 597
 598static void move_int_phy(struct net_device *dev, int addr);
 599static int eeprom_read(void __iomem *ioaddr, int location);
 600static int mdio_read(struct net_device *dev, int reg);
 601static void mdio_write(struct net_device *dev, int reg, u16 data);
 602static void init_phy_fixup(struct net_device *dev);
 603static int miiport_read(struct net_device *dev, int phy_id, int reg);
 604static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data);
 605static int find_mii(struct net_device *dev);
 606static void natsemi_reset(struct net_device *dev);
 607static void natsemi_reload_eeprom(struct net_device *dev);
 608static void natsemi_stop_rxtx(struct net_device *dev);
 609static int netdev_open(struct net_device *dev);
 610static void do_cable_magic(struct net_device *dev);
 611static void undo_cable_magic(struct net_device *dev);
 612static void check_link(struct net_device *dev);
 613static void netdev_timer(struct timer_list *t);
 614static void dump_ring(struct net_device *dev);
 615static void ns_tx_timeout(struct net_device *dev);
 616static int alloc_ring(struct net_device *dev);
 617static void refill_rx(struct net_device *dev);
 618static void init_ring(struct net_device *dev);
 619static void drain_tx(struct net_device *dev);
 620static void drain_ring(struct net_device *dev);
 621static void free_ring(struct net_device *dev);
 622static void reinit_ring(struct net_device *dev);
 623static void init_registers(struct net_device *dev);
 624static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
 625static irqreturn_t intr_handler(int irq, void *dev_instance);
 626static void netdev_error(struct net_device *dev, int intr_status);
 627static int natsemi_poll(struct napi_struct *napi, int budget);
 628static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do);
 629static void netdev_tx_done(struct net_device *dev);
 630static int natsemi_change_mtu(struct net_device *dev, int new_mtu);
 631#ifdef CONFIG_NET_POLL_CONTROLLER
 632static void natsemi_poll_controller(struct net_device *dev);
 633#endif
 634static void __set_rx_mode(struct net_device *dev);
 635static void set_rx_mode(struct net_device *dev);
 636static void __get_stats(struct net_device *dev);
 637static struct net_device_stats *get_stats(struct net_device *dev);
 638static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 639static int netdev_set_wol(struct net_device *dev, u32 newval);
 640static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur);
 641static int netdev_set_sopass(struct net_device *dev, u8 *newval);
 642static int netdev_get_sopass(struct net_device *dev, u8 *data);
 643static int netdev_get_ecmd(struct net_device *dev,
 644			   struct ethtool_link_ksettings *ecmd);
 645static int netdev_set_ecmd(struct net_device *dev,
 646			   const struct ethtool_link_ksettings *ecmd);
 647static void enable_wol_mode(struct net_device *dev, int enable_intr);
 648static int netdev_close(struct net_device *dev);
 649static int netdev_get_regs(struct net_device *dev, u8 *buf);
 650static int netdev_get_eeprom(struct net_device *dev, u8 *buf);
 651static const struct ethtool_ops ethtool_ops;
 652
 653#define NATSEMI_ATTR(_name) \
 654static ssize_t natsemi_show_##_name(struct device *dev, \
 655         struct device_attribute *attr, char *buf); \
 656	 static ssize_t natsemi_set_##_name(struct device *dev, \
 657		struct device_attribute *attr, \
 658	        const char *buf, size_t count); \
 659	 static DEVICE_ATTR(_name, 0644, natsemi_show_##_name, natsemi_set_##_name)
 660
 661#define NATSEMI_CREATE_FILE(_dev, _name) \
 662         device_create_file(&_dev->dev, &dev_attr_##_name)
 663#define NATSEMI_REMOVE_FILE(_dev, _name) \
 664         device_remove_file(&_dev->dev, &dev_attr_##_name)
 665
 666NATSEMI_ATTR(dspcfg_workaround);
 667
 668static ssize_t natsemi_show_dspcfg_workaround(struct device *dev,
 669				  	      struct device_attribute *attr,
 670					      char *buf)
 671{
 672	struct netdev_private *np = netdev_priv(to_net_dev(dev));
 673
 674	return sprintf(buf, "%s\n", np->dspcfg_workaround ? "on" : "off");
 675}
 676
 677static ssize_t natsemi_set_dspcfg_workaround(struct device *dev,
 678					     struct device_attribute *attr,
 679					     const char *buf, size_t count)
 680{
 681	struct netdev_private *np = netdev_priv(to_net_dev(dev));
 682	int new_setting;
 683	unsigned long flags;
 684
 685        /* Find out the new setting */
 686        if (!strncmp("on", buf, count - 1) || !strncmp("1", buf, count - 1))
 687                new_setting = 1;
 688        else if (!strncmp("off", buf, count - 1) ||
 689                 !strncmp("0", buf, count - 1))
 690		new_setting = 0;
 691	else
 692                 return count;
 693
 694	spin_lock_irqsave(&np->lock, flags);
 695
 696	np->dspcfg_workaround = new_setting;
 697
 698	spin_unlock_irqrestore(&np->lock, flags);
 699
 700	return count;
 701}
 702
 703static inline void __iomem *ns_ioaddr(struct net_device *dev)
 704{
 705	struct netdev_private *np = netdev_priv(dev);
 706
 707	return np->ioaddr;
 708}
 709
 710static inline void natsemi_irq_enable(struct net_device *dev)
 711{
 712	writel(1, ns_ioaddr(dev) + IntrEnable);
 713	readl(ns_ioaddr(dev) + IntrEnable);
 714}
 715
 716static inline void natsemi_irq_disable(struct net_device *dev)
 717{
 718	writel(0, ns_ioaddr(dev) + IntrEnable);
 719	readl(ns_ioaddr(dev) + IntrEnable);
 720}
 721
 722static void move_int_phy(struct net_device *dev, int addr)
 723{
 724	struct netdev_private *np = netdev_priv(dev);
 725	void __iomem *ioaddr = ns_ioaddr(dev);
 726	int target = 31;
 727
 728	/*
 729	 * The internal phy is visible on the external mii bus. Therefore we must
 730	 * move it away before we can send commands to an external phy.
 731	 * There are two addresses we must avoid:
 732	 * - the address on the external phy that is used for transmission.
 733	 * - the address that we want to access. User space can access phys
 734	 *   on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independent from the
 735	 *   phy that is used for transmission.
 736	 */
 737
 738	if (target == addr)
 739		target--;
 740	if (target == np->phy_addr_external)
 741		target--;
 742	writew(target, ioaddr + PhyCtrl);
 743	readw(ioaddr + PhyCtrl);
 744	udelay(1);
 745}
 746
 747static void natsemi_init_media(struct net_device *dev)
 748{
 749	struct netdev_private *np = netdev_priv(dev);
 750	u32 tmp;
 751
 752	if (np->ignore_phy)
 753		netif_carrier_on(dev);
 754	else
 755		netif_carrier_off(dev);
 756
 757	/* get the initial settings from hardware */
 758	tmp            = mdio_read(dev, MII_BMCR);
 759	np->speed      = (tmp & BMCR_SPEED100)? SPEED_100     : SPEED_10;
 760	np->duplex     = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL   : DUPLEX_HALF;
 761	np->autoneg    = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE;
 762	np->advertising= mdio_read(dev, MII_ADVERTISE);
 763
 764	if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL &&
 765	    netif_msg_probe(np)) {
 766		printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s "
 767			"10%s %s duplex.\n",
 768			pci_name(np->pci_dev),
 769			(mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)?
 770			  "enabled, advertise" : "disabled, force",
 771			(np->advertising &
 772			  (ADVERTISE_100FULL|ADVERTISE_100HALF))?
 773			    "0" : "",
 774			(np->advertising &
 775			  (ADVERTISE_100FULL|ADVERTISE_10FULL))?
 776			    "full" : "half");
 777	}
 778	if (netif_msg_probe(np))
 779		printk(KERN_INFO
 780			"natsemi %s: Transceiver status %#04x advertising %#04x.\n",
 781			pci_name(np->pci_dev), mdio_read(dev, MII_BMSR),
 782			np->advertising);
 783
 784}
 785
 786static const struct net_device_ops natsemi_netdev_ops = {
 787	.ndo_open		= netdev_open,
 788	.ndo_stop		= netdev_close,
 789	.ndo_start_xmit		= start_tx,
 790	.ndo_get_stats		= get_stats,
 791	.ndo_set_rx_mode	= set_rx_mode,
 792	.ndo_change_mtu		= natsemi_change_mtu,
 793	.ndo_do_ioctl		= netdev_ioctl,
 794	.ndo_tx_timeout 	= ns_tx_timeout,
 795	.ndo_set_mac_address 	= eth_mac_addr,
 796	.ndo_validate_addr	= eth_validate_addr,
 797#ifdef CONFIG_NET_POLL_CONTROLLER
 798	.ndo_poll_controller	= natsemi_poll_controller,
 799#endif
 800};
 801
 802static int natsemi_probe1(struct pci_dev *pdev, const struct pci_device_id *ent)
 803{
 804	struct net_device *dev;
 805	struct netdev_private *np;
 806	int i, option, irq, chip_idx = ent->driver_data;
 807	static int find_cnt = -1;
 808	resource_size_t iostart;
 809	unsigned long iosize;
 810	void __iomem *ioaddr;
 811	const int pcibar = 1; /* PCI base address register */
 
 812	int prev_eedata;
 813	u32 tmp;
 814
 815/* when built into the kernel, we only print version if device is found */
 816#ifndef MODULE
 817	static int printed_version;
 818	if (!printed_version++)
 819		printk(version);
 820#endif
 821
 822	i = pci_enable_device(pdev);
 823	if (i) return i;
 824
 825	/* natsemi has a non-standard PM control register
 826	 * in PCI config space.  Some boards apparently need
 827	 * to be brought to D0 in this manner.
 828	 */
 829	pci_read_config_dword(pdev, PCIPM, &tmp);
 830	if (tmp & PCI_PM_CTRL_STATE_MASK) {
 831		/* D0 state, disable PME assertion */
 832		u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK;
 833		pci_write_config_dword(pdev, PCIPM, newtmp);
 834	}
 835
 836	find_cnt++;
 837	iostart = pci_resource_start(pdev, pcibar);
 838	iosize = pci_resource_len(pdev, pcibar);
 839	irq = pdev->irq;
 840
 841	pci_set_master(pdev);
 842
 843	dev = alloc_etherdev(sizeof (struct netdev_private));
 844	if (!dev)
 845		return -ENOMEM;
 846	SET_NETDEV_DEV(dev, &pdev->dev);
 847
 848	i = pci_request_regions(pdev, DRV_NAME);
 849	if (i)
 850		goto err_pci_request_regions;
 851
 852	ioaddr = ioremap(iostart, iosize);
 853	if (!ioaddr) {
 854		i = -ENOMEM;
 855		goto err_ioremap;
 856	}
 857
 858	/* Work around the dropped serial bit. */
 859	prev_eedata = eeprom_read(ioaddr, 6);
 860	for (i = 0; i < 3; i++) {
 861		int eedata = eeprom_read(ioaddr, i + 7);
 862		dev->dev_addr[i*2] = (eedata << 1) + (prev_eedata >> 15);
 863		dev->dev_addr[i*2+1] = eedata >> 7;
 864		prev_eedata = eedata;
 865	}
 
 866
 867	np = netdev_priv(dev);
 868	np->ioaddr = ioaddr;
 869
 870	netif_napi_add(dev, &np->napi, natsemi_poll, 64);
 871	np->dev = dev;
 872
 873	np->pci_dev = pdev;
 874	pci_set_drvdata(pdev, dev);
 875	np->iosize = iosize;
 876	spin_lock_init(&np->lock);
 877	np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG;
 878	np->hands_off = 0;
 879	np->intr_status = 0;
 880	np->eeprom_size = natsemi_pci_info[chip_idx].eeprom_size;
 881	if (natsemi_pci_info[chip_idx].flags & NATSEMI_FLAG_IGNORE_PHY)
 882		np->ignore_phy = 1;
 883	else
 884		np->ignore_phy = 0;
 885	np->dspcfg_workaround = dspcfg_workaround;
 886
 887	/* Initial port:
 888	 * - If configured to ignore the PHY set up for external.
 889	 * - If the nic was configured to use an external phy and if find_mii
 890	 *   finds a phy: use external port, first phy that replies.
 891	 * - Otherwise: internal port.
 892	 * Note that the phy address for the internal phy doesn't matter:
 893	 * The address would be used to access a phy over the mii bus, but
 894	 * the internal phy is accessed through mapped registers.
 895	 */
 896	if (np->ignore_phy || readl(ioaddr + ChipConfig) & CfgExtPhy)
 897		dev->if_port = PORT_MII;
 898	else
 899		dev->if_port = PORT_TP;
 900	/* Reset the chip to erase previous misconfiguration. */
 901	natsemi_reload_eeprom(dev);
 902	natsemi_reset(dev);
 903
 904	if (dev->if_port != PORT_TP) {
 905		np->phy_addr_external = find_mii(dev);
 906		/* If we're ignoring the PHY it doesn't matter if we can't
 907		 * find one. */
 908		if (!np->ignore_phy && np->phy_addr_external == PHY_ADDR_NONE) {
 909			dev->if_port = PORT_TP;
 910			np->phy_addr_external = PHY_ADDR_INTERNAL;
 911		}
 912	} else {
 913		np->phy_addr_external = PHY_ADDR_INTERNAL;
 914	}
 915
 916	option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
 917	/* The lower four bits are the media type. */
 918	if (option) {
 919		if (option & 0x200)
 920			np->full_duplex = 1;
 921		if (option & 15)
 922			printk(KERN_INFO
 923				"natsemi %s: ignoring user supplied media type %d",
 924				pci_name(np->pci_dev), option & 15);
 925	}
 926	if (find_cnt < MAX_UNITS  &&  full_duplex[find_cnt])
 927		np->full_duplex = 1;
 928
 929	dev->netdev_ops = &natsemi_netdev_ops;
 930	dev->watchdog_timeo = TX_TIMEOUT;
 931
 932	dev->ethtool_ops = &ethtool_ops;
 933
 934	/* MTU range: 64 - 2024 */
 935	dev->min_mtu = ETH_ZLEN + ETH_FCS_LEN;
 936	dev->max_mtu = NATSEMI_RX_LIMIT - NATSEMI_HEADERS;
 937
 938	if (mtu)
 939		dev->mtu = mtu;
 940
 941	natsemi_init_media(dev);
 942
 943	/* save the silicon revision for later querying */
 944	np->srr = readl(ioaddr + SiliconRev);
 945	if (netif_msg_hw(np))
 946		printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n",
 947				pci_name(np->pci_dev), np->srr);
 948
 949	i = register_netdev(dev);
 950	if (i)
 951		goto err_register_netdev;
 952	i = NATSEMI_CREATE_FILE(pdev, dspcfg_workaround);
 953	if (i)
 954		goto err_create_file;
 955
 956	if (netif_msg_drv(np)) {
 957		printk(KERN_INFO "natsemi %s: %s at %#08llx "
 958		       "(%s), %pM, IRQ %d",
 959		       dev->name, natsemi_pci_info[chip_idx].name,
 960		       (unsigned long long)iostart, pci_name(np->pci_dev),
 961		       dev->dev_addr, irq);
 962		if (dev->if_port == PORT_TP)
 963			printk(", port TP.\n");
 964		else if (np->ignore_phy)
 965			printk(", port MII, ignoring PHY\n");
 966		else
 967			printk(", port MII, phy ad %d.\n", np->phy_addr_external);
 968	}
 969	return 0;
 970
 971 err_create_file:
 972 	unregister_netdev(dev);
 973
 974 err_register_netdev:
 975	iounmap(ioaddr);
 976
 977 err_ioremap:
 978	pci_release_regions(pdev);
 979
 980 err_pci_request_regions:
 981	free_netdev(dev);
 982	return i;
 983}
 984
 985
 986/* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.
 987   The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */
 988
 989/* Delay between EEPROM clock transitions.
 990   No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
 991   a delay.  Note that pre-2.0.34 kernels had a cache-alignment bug that
 992   made udelay() unreliable.
 993   The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is
 994   deprecated.
 995*/
 996#define eeprom_delay(ee_addr)	readl(ee_addr)
 997
 998#define EE_Write0 (EE_ChipSelect)
 999#define EE_Write1 (EE_ChipSelect | EE_DataIn)
1000
1001/* The EEPROM commands include the alway-set leading bit. */
1002enum EEPROM_Cmds {
1003	EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
1004};
1005
1006static int eeprom_read(void __iomem *addr, int location)
1007{
1008	int i;
1009	int retval = 0;
1010	void __iomem *ee_addr = addr + EECtrl;
1011	int read_cmd = location | EE_ReadCmd;
1012
1013	writel(EE_Write0, ee_addr);
1014
1015	/* Shift the read command bits out. */
1016	for (i = 10; i >= 0; i--) {
1017		short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
1018		writel(dataval, ee_addr);
1019		eeprom_delay(ee_addr);
1020		writel(dataval | EE_ShiftClk, ee_addr);
1021		eeprom_delay(ee_addr);
1022	}
1023	writel(EE_ChipSelect, ee_addr);
1024	eeprom_delay(ee_addr);
1025
1026	for (i = 0; i < 16; i++) {
1027		writel(EE_ChipSelect | EE_ShiftClk, ee_addr);
1028		eeprom_delay(ee_addr);
1029		retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0;
1030		writel(EE_ChipSelect, ee_addr);
1031		eeprom_delay(ee_addr);
1032	}
1033
1034	/* Terminate the EEPROM access. */
1035	writel(EE_Write0, ee_addr);
1036	writel(0, ee_addr);
1037	return retval;
1038}
1039
1040/* MII transceiver control section.
1041 * The 83815 series has an internal transceiver, and we present the
1042 * internal management registers as if they were MII connected.
1043 * External Phy registers are referenced through the MII interface.
1044 */
1045
1046/* clock transitions >= 20ns (25MHz)
1047 * One readl should be good to PCI @ 100MHz
1048 */
1049#define mii_delay(ioaddr)  readl(ioaddr + EECtrl)
1050
1051static int mii_getbit (struct net_device *dev)
1052{
1053	int data;
1054	void __iomem *ioaddr = ns_ioaddr(dev);
1055
1056	writel(MII_ShiftClk, ioaddr + EECtrl);
1057	data = readl(ioaddr + EECtrl);
1058	writel(0, ioaddr + EECtrl);
1059	mii_delay(ioaddr);
1060	return (data & MII_Data)? 1 : 0;
1061}
1062
1063static void mii_send_bits (struct net_device *dev, u32 data, int len)
1064{
1065	u32 i;
1066	void __iomem *ioaddr = ns_ioaddr(dev);
1067
1068	for (i = (1 << (len-1)); i; i >>= 1)
1069	{
1070		u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0);
1071		writel(mdio_val, ioaddr + EECtrl);
1072		mii_delay(ioaddr);
1073		writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl);
1074		mii_delay(ioaddr);
1075	}
1076	writel(0, ioaddr + EECtrl);
1077	mii_delay(ioaddr);
1078}
1079
1080static int miiport_read(struct net_device *dev, int phy_id, int reg)
1081{
1082	u32 cmd;
1083	int i;
1084	u32 retval = 0;
1085
1086	/* Ensure sync */
1087	mii_send_bits (dev, 0xffffffff, 32);
1088	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1089	/* ST,OP = 0110'b for read operation */
1090	cmd = (0x06 << 10) | (phy_id << 5) | reg;
1091	mii_send_bits (dev, cmd, 14);
1092	/* Turnaround */
1093	if (mii_getbit (dev))
1094		return 0;
1095	/* Read data */
1096	for (i = 0; i < 16; i++) {
1097		retval <<= 1;
1098		retval |= mii_getbit (dev);
1099	}
1100	/* End cycle */
1101	mii_getbit (dev);
1102	return retval;
1103}
1104
1105static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data)
1106{
1107	u32 cmd;
1108
1109	/* Ensure sync */
1110	mii_send_bits (dev, 0xffffffff, 32);
1111	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1112	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1113	cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data;
1114	mii_send_bits (dev, cmd, 32);
1115	/* End cycle */
1116	mii_getbit (dev);
1117}
1118
1119static int mdio_read(struct net_device *dev, int reg)
1120{
1121	struct netdev_private *np = netdev_priv(dev);
1122	void __iomem *ioaddr = ns_ioaddr(dev);
1123
1124	/* The 83815 series has two ports:
1125	 * - an internal transceiver
1126	 * - an external mii bus
1127	 */
1128	if (dev->if_port == PORT_TP)
1129		return readw(ioaddr+BasicControl+(reg<<2));
1130	else
1131		return miiport_read(dev, np->phy_addr_external, reg);
1132}
1133
1134static void mdio_write(struct net_device *dev, int reg, u16 data)
1135{
1136	struct netdev_private *np = netdev_priv(dev);
1137	void __iomem *ioaddr = ns_ioaddr(dev);
1138
1139	/* The 83815 series has an internal transceiver; handle separately */
1140	if (dev->if_port == PORT_TP)
1141		writew(data, ioaddr+BasicControl+(reg<<2));
1142	else
1143		miiport_write(dev, np->phy_addr_external, reg, data);
1144}
1145
1146static void init_phy_fixup(struct net_device *dev)
1147{
1148	struct netdev_private *np = netdev_priv(dev);
1149	void __iomem *ioaddr = ns_ioaddr(dev);
1150	int i;
1151	u32 cfg;
1152	u16 tmp;
1153
1154	/* restore stuff lost when power was out */
1155	tmp = mdio_read(dev, MII_BMCR);
1156	if (np->autoneg == AUTONEG_ENABLE) {
1157		/* renegotiate if something changed */
1158		if ((tmp & BMCR_ANENABLE) == 0 ||
1159		    np->advertising != mdio_read(dev, MII_ADVERTISE))
1160		{
1161			/* turn on autonegotiation and force negotiation */
1162			tmp |= (BMCR_ANENABLE | BMCR_ANRESTART);
1163			mdio_write(dev, MII_ADVERTISE, np->advertising);
1164		}
1165	} else {
1166		/* turn off auto negotiation, set speed and duplexity */
1167		tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX);
1168		if (np->speed == SPEED_100)
1169			tmp |= BMCR_SPEED100;
1170		if (np->duplex == DUPLEX_FULL)
1171			tmp |= BMCR_FULLDPLX;
1172		/*
1173		 * Note: there is no good way to inform the link partner
1174		 * that our capabilities changed. The user has to unplug
1175		 * and replug the network cable after some changes, e.g.
1176		 * after switching from 10HD, autoneg off to 100 HD,
1177		 * autoneg off.
1178		 */
1179	}
1180	mdio_write(dev, MII_BMCR, tmp);
1181	readl(ioaddr + ChipConfig);
1182	udelay(1);
1183
1184	/* find out what phy this is */
1185	np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1186				+ mdio_read(dev, MII_PHYSID2);
1187
1188	/* handle external phys here */
1189	switch (np->mii) {
1190	case PHYID_AM79C874:
1191		/* phy specific configuration for fibre/tp operation */
1192		tmp = mdio_read(dev, MII_MCTRL);
1193		tmp &= ~(MII_FX_SEL | MII_EN_SCRM);
1194		if (dev->if_port == PORT_FIBRE)
1195			tmp |= MII_FX_SEL;
1196		else
1197			tmp |= MII_EN_SCRM;
1198		mdio_write(dev, MII_MCTRL, tmp);
1199		break;
1200	default:
1201		break;
1202	}
1203	cfg = readl(ioaddr + ChipConfig);
1204	if (cfg & CfgExtPhy)
1205		return;
1206
1207	/* On page 78 of the spec, they recommend some settings for "optimum
1208	   performance" to be done in sequence.  These settings optimize some
1209	   of the 100Mbit autodetection circuitry.  They say we only want to
1210	   do this for rev C of the chip, but engineers at NSC (Bradley
1211	   Kennedy) recommends always setting them.  If you don't, you get
1212	   errors on some autonegotiations that make the device unusable.
1213
1214	   It seems that the DSP needs a few usec to reinitialize after
1215	   the start of the phy. Just retry writing these values until they
1216	   stick.
1217	*/
1218	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1219
1220		int dspcfg;
1221		writew(1, ioaddr + PGSEL);
1222		writew(PMDCSR_VAL, ioaddr + PMDCSR);
1223		writew(TSTDAT_VAL, ioaddr + TSTDAT);
1224		np->dspcfg = (np->srr <= SRR_DP83815_C)?
1225			DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG));
1226		writew(np->dspcfg, ioaddr + DSPCFG);
1227		writew(SDCFG_VAL, ioaddr + SDCFG);
1228		writew(0, ioaddr + PGSEL);
1229		readl(ioaddr + ChipConfig);
1230		udelay(10);
1231
1232		writew(1, ioaddr + PGSEL);
1233		dspcfg = readw(ioaddr + DSPCFG);
1234		writew(0, ioaddr + PGSEL);
1235		if (np->dspcfg == dspcfg)
1236			break;
1237	}
1238
1239	if (netif_msg_link(np)) {
1240		if (i==NATSEMI_HW_TIMEOUT) {
1241			printk(KERN_INFO
1242				"%s: DSPCFG mismatch after retrying for %d usec.\n",
1243				dev->name, i*10);
1244		} else {
1245			printk(KERN_INFO
1246				"%s: DSPCFG accepted after %d usec.\n",
1247				dev->name, i*10);
1248		}
1249	}
1250	/*
1251	 * Enable PHY Specific event based interrupts.  Link state change
1252	 * and Auto-Negotiation Completion are among the affected.
1253	 * Read the intr status to clear it (needed for wake events).
1254	 */
1255	readw(ioaddr + MIntrStatus);
1256	writew(MICRIntEn, ioaddr + MIntrCtrl);
1257}
1258
1259static int switch_port_external(struct net_device *dev)
1260{
1261	struct netdev_private *np = netdev_priv(dev);
1262	void __iomem *ioaddr = ns_ioaddr(dev);
1263	u32 cfg;
1264
1265	cfg = readl(ioaddr + ChipConfig);
1266	if (cfg & CfgExtPhy)
1267		return 0;
1268
1269	if (netif_msg_link(np)) {
1270		printk(KERN_INFO "%s: switching to external transceiver.\n",
1271				dev->name);
1272	}
1273
1274	/* 1) switch back to external phy */
1275	writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig);
1276	readl(ioaddr + ChipConfig);
1277	udelay(1);
1278
1279	/* 2) reset the external phy: */
1280	/* resetting the external PHY has been known to cause a hub supplying
1281	 * power over Ethernet to kill the power.  We don't want to kill
1282	 * power to this computer, so we avoid resetting the phy.
1283	 */
1284
1285	/* 3) reinit the phy fixup, it got lost during power down. */
1286	move_int_phy(dev, np->phy_addr_external);
1287	init_phy_fixup(dev);
1288
1289	return 1;
1290}
1291
1292static int switch_port_internal(struct net_device *dev)
1293{
1294	struct netdev_private *np = netdev_priv(dev);
1295	void __iomem *ioaddr = ns_ioaddr(dev);
1296	int i;
1297	u32 cfg;
1298	u16 bmcr;
1299
1300	cfg = readl(ioaddr + ChipConfig);
1301	if (!(cfg &CfgExtPhy))
1302		return 0;
1303
1304	if (netif_msg_link(np)) {
1305		printk(KERN_INFO "%s: switching to internal transceiver.\n",
1306				dev->name);
1307	}
1308	/* 1) switch back to internal phy: */
1309	cfg = cfg & ~(CfgExtPhy | CfgPhyDis);
1310	writel(cfg, ioaddr + ChipConfig);
1311	readl(ioaddr + ChipConfig);
1312	udelay(1);
1313
1314	/* 2) reset the internal phy: */
1315	bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1316	writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2));
1317	readl(ioaddr + ChipConfig);
1318	udelay(10);
1319	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1320		bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1321		if (!(bmcr & BMCR_RESET))
1322			break;
1323		udelay(10);
1324	}
1325	if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) {
1326		printk(KERN_INFO
1327			"%s: phy reset did not complete in %d usec.\n",
1328			dev->name, i*10);
1329	}
1330	/* 3) reinit the phy fixup, it got lost during power down. */
1331	init_phy_fixup(dev);
1332
1333	return 1;
1334}
1335
1336/* Scan for a PHY on the external mii bus.
1337 * There are two tricky points:
1338 * - Do not scan while the internal phy is enabled. The internal phy will
1339 *   crash: e.g. reads from the DSPCFG register will return odd values and
1340 *   the nasty random phy reset code will reset the nic every few seconds.
1341 * - The internal phy must be moved around, an external phy could
1342 *   have the same address as the internal phy.
1343 */
1344static int find_mii(struct net_device *dev)
1345{
1346	struct netdev_private *np = netdev_priv(dev);
1347	int tmp;
1348	int i;
1349	int did_switch;
1350
1351	/* Switch to external phy */
1352	did_switch = switch_port_external(dev);
1353
1354	/* Scan the possible phy addresses:
1355	 *
1356	 * PHY address 0 means that the phy is in isolate mode. Not yet
1357	 * supported due to lack of test hardware. User space should
1358	 * handle it through ethtool.
1359	 */
1360	for (i = 1; i <= 31; i++) {
1361		move_int_phy(dev, i);
1362		tmp = miiport_read(dev, i, MII_BMSR);
1363		if (tmp != 0xffff && tmp != 0x0000) {
1364			/* found something! */
1365			np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1366					+ mdio_read(dev, MII_PHYSID2);
1367	 		if (netif_msg_probe(np)) {
1368				printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n",
1369						pci_name(np->pci_dev), np->mii, i);
1370			}
1371			break;
1372		}
1373	}
1374	/* And switch back to internal phy: */
1375	if (did_switch)
1376		switch_port_internal(dev);
1377	return i;
1378}
1379
1380/* CFG bits [13:16] [18:23] */
1381#define CFG_RESET_SAVE 0xfde000
1382/* WCSR bits [0:4] [9:10] */
1383#define WCSR_RESET_SAVE 0x61f
1384/* RFCR bits [20] [22] [27:31] */
1385#define RFCR_RESET_SAVE 0xf8500000
1386
1387static void natsemi_reset(struct net_device *dev)
1388{
1389	int i;
1390	u32 cfg;
1391	u32 wcsr;
1392	u32 rfcr;
1393	u16 pmatch[3];
1394	u16 sopass[3];
1395	struct netdev_private *np = netdev_priv(dev);
1396	void __iomem *ioaddr = ns_ioaddr(dev);
1397
1398	/*
1399	 * Resetting the chip causes some registers to be lost.
1400	 * Natsemi suggests NOT reloading the EEPROM while live, so instead
1401	 * we save the state that would have been loaded from EEPROM
1402	 * on a normal power-up (see the spec EEPROM map).  This assumes
1403	 * whoever calls this will follow up with init_registers() eventually.
1404	 */
1405
1406	/* CFG */
1407	cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE;
1408	/* WCSR */
1409	wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE;
1410	/* RFCR */
1411	rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE;
1412	/* PMATCH */
1413	for (i = 0; i < 3; i++) {
1414		writel(i*2, ioaddr + RxFilterAddr);
1415		pmatch[i] = readw(ioaddr + RxFilterData);
1416	}
1417	/* SOPAS */
1418	for (i = 0; i < 3; i++) {
1419		writel(0xa+(i*2), ioaddr + RxFilterAddr);
1420		sopass[i] = readw(ioaddr + RxFilterData);
1421	}
1422
1423	/* now whack the chip */
1424	writel(ChipReset, ioaddr + ChipCmd);
1425	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1426		if (!(readl(ioaddr + ChipCmd) & ChipReset))
1427			break;
1428		udelay(5);
1429	}
1430	if (i==NATSEMI_HW_TIMEOUT) {
1431		printk(KERN_WARNING "%s: reset did not complete in %d usec.\n",
1432			dev->name, i*5);
1433	} else if (netif_msg_hw(np)) {
1434		printk(KERN_DEBUG "%s: reset completed in %d usec.\n",
1435			dev->name, i*5);
1436	}
1437
1438	/* restore CFG */
1439	cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE;
1440	/* turn on external phy if it was selected */
1441	if (dev->if_port == PORT_TP)
1442		cfg &= ~(CfgExtPhy | CfgPhyDis);
1443	else
1444		cfg |= (CfgExtPhy | CfgPhyDis);
1445	writel(cfg, ioaddr + ChipConfig);
1446	/* restore WCSR */
1447	wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE;
1448	writel(wcsr, ioaddr + WOLCmd);
1449	/* read RFCR */
1450	rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE;
1451	/* restore PMATCH */
1452	for (i = 0; i < 3; i++) {
1453		writel(i*2, ioaddr + RxFilterAddr);
1454		writew(pmatch[i], ioaddr + RxFilterData);
1455	}
1456	for (i = 0; i < 3; i++) {
1457		writel(0xa+(i*2), ioaddr + RxFilterAddr);
1458		writew(sopass[i], ioaddr + RxFilterData);
1459	}
1460	/* restore RFCR */
1461	writel(rfcr, ioaddr + RxFilterAddr);
1462}
1463
1464static void reset_rx(struct net_device *dev)
1465{
1466	int i;
1467	struct netdev_private *np = netdev_priv(dev);
1468	void __iomem *ioaddr = ns_ioaddr(dev);
1469
1470	np->intr_status &= ~RxResetDone;
1471
1472	writel(RxReset, ioaddr + ChipCmd);
1473
1474	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1475		np->intr_status |= readl(ioaddr + IntrStatus);
1476		if (np->intr_status & RxResetDone)
1477			break;
1478		udelay(15);
1479	}
1480	if (i==NATSEMI_HW_TIMEOUT) {
1481		printk(KERN_WARNING "%s: RX reset did not complete in %d usec.\n",
1482		       dev->name, i*15);
1483	} else if (netif_msg_hw(np)) {
1484		printk(KERN_WARNING "%s: RX reset took %d usec.\n",
1485		       dev->name, i*15);
1486	}
1487}
1488
1489static void natsemi_reload_eeprom(struct net_device *dev)
1490{
1491	struct netdev_private *np = netdev_priv(dev);
1492	void __iomem *ioaddr = ns_ioaddr(dev);
1493	int i;
1494
1495	writel(EepromReload, ioaddr + PCIBusCfg);
1496	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1497		udelay(50);
1498		if (!(readl(ioaddr + PCIBusCfg) & EepromReload))
1499			break;
1500	}
1501	if (i==NATSEMI_HW_TIMEOUT) {
1502		printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n",
1503			pci_name(np->pci_dev), i*50);
1504	} else if (netif_msg_hw(np)) {
1505		printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n",
1506			pci_name(np->pci_dev), i*50);
1507	}
1508}
1509
1510static void natsemi_stop_rxtx(struct net_device *dev)
1511{
1512	void __iomem * ioaddr = ns_ioaddr(dev);
1513	struct netdev_private *np = netdev_priv(dev);
1514	int i;
1515
1516	writel(RxOff | TxOff, ioaddr + ChipCmd);
1517	for(i=0;i< NATSEMI_HW_TIMEOUT;i++) {
1518		if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0)
1519			break;
1520		udelay(5);
1521	}
1522	if (i==NATSEMI_HW_TIMEOUT) {
1523		printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n",
1524			dev->name, i*5);
1525	} else if (netif_msg_hw(np)) {
1526		printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n",
1527			dev->name, i*5);
1528	}
1529}
1530
1531static int netdev_open(struct net_device *dev)
1532{
1533	struct netdev_private *np = netdev_priv(dev);
1534	void __iomem * ioaddr = ns_ioaddr(dev);
1535	const int irq = np->pci_dev->irq;
1536	int i;
1537
1538	/* Reset the chip, just in case. */
1539	natsemi_reset(dev);
1540
1541	i = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
1542	if (i) return i;
1543
1544	if (netif_msg_ifup(np))
1545		printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
1546			dev->name, irq);
1547	i = alloc_ring(dev);
1548	if (i < 0) {
1549		free_irq(irq, dev);
1550		return i;
1551	}
1552	napi_enable(&np->napi);
1553
1554	init_ring(dev);
1555	spin_lock_irq(&np->lock);
1556	init_registers(dev);
1557	/* now set the MAC address according to dev->dev_addr */
1558	for (i = 0; i < 3; i++) {
1559		u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i];
1560
1561		writel(i*2, ioaddr + RxFilterAddr);
1562		writew(mac, ioaddr + RxFilterData);
1563	}
1564	writel(np->cur_rx_mode, ioaddr + RxFilterAddr);
1565	spin_unlock_irq(&np->lock);
1566
1567	netif_start_queue(dev);
1568
1569	if (netif_msg_ifup(np))
1570		printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n",
1571			dev->name, (int)readl(ioaddr + ChipCmd));
1572
1573	/* Set the timer to check for link beat. */
1574	timer_setup(&np->timer, netdev_timer, 0);
1575	np->timer.expires = round_jiffies(jiffies + NATSEMI_TIMER_FREQ);
1576	add_timer(&np->timer);
1577
1578	return 0;
1579}
1580
1581static void do_cable_magic(struct net_device *dev)
1582{
1583	struct netdev_private *np = netdev_priv(dev);
1584	void __iomem *ioaddr = ns_ioaddr(dev);
1585
1586	if (dev->if_port != PORT_TP)
1587		return;
1588
1589	if (np->srr >= SRR_DP83816_A5)
1590		return;
1591
1592	/*
1593	 * 100 MBit links with short cables can trip an issue with the chip.
1594	 * The problem manifests as lots of CRC errors and/or flickering
1595	 * activity LED while idle.  This process is based on instructions
1596	 * from engineers at National.
1597	 */
1598	if (readl(ioaddr + ChipConfig) & CfgSpeed100) {
1599		u16 data;
1600
1601		writew(1, ioaddr + PGSEL);
1602		/*
1603		 * coefficient visibility should already be enabled via
1604		 * DSPCFG | 0x1000
1605		 */
1606		data = readw(ioaddr + TSTDAT) & 0xff;
1607		/*
1608		 * the value must be negative, and within certain values
1609		 * (these values all come from National)
1610		 */
1611		if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) {
1612			np = netdev_priv(dev);
1613
1614			/* the bug has been triggered - fix the coefficient */
1615			writew(TSTDAT_FIXED, ioaddr + TSTDAT);
1616			/* lock the value */
1617			data = readw(ioaddr + DSPCFG);
1618			np->dspcfg = data | DSPCFG_LOCK;
1619			writew(np->dspcfg, ioaddr + DSPCFG);
1620		}
1621		writew(0, ioaddr + PGSEL);
1622	}
1623}
1624
1625static void undo_cable_magic(struct net_device *dev)
1626{
1627	u16 data;
1628	struct netdev_private *np = netdev_priv(dev);
1629	void __iomem * ioaddr = ns_ioaddr(dev);
1630
1631	if (dev->if_port != PORT_TP)
1632		return;
1633
1634	if (np->srr >= SRR_DP83816_A5)
1635		return;
1636
1637	writew(1, ioaddr + PGSEL);
1638	/* make sure the lock bit is clear */
1639	data = readw(ioaddr + DSPCFG);
1640	np->dspcfg = data & ~DSPCFG_LOCK;
1641	writew(np->dspcfg, ioaddr + DSPCFG);
1642	writew(0, ioaddr + PGSEL);
1643}
1644
1645static void check_link(struct net_device *dev)
1646{
1647	struct netdev_private *np = netdev_priv(dev);
1648	void __iomem * ioaddr = ns_ioaddr(dev);
1649	int duplex = np->duplex;
1650	u16 bmsr;
1651
1652	/* If we are ignoring the PHY then don't try reading it. */
1653	if (np->ignore_phy)
1654		goto propagate_state;
1655
1656	/* The link status field is latched: it remains low after a temporary
1657	 * link failure until it's read. We need the current link status,
1658	 * thus read twice.
1659	 */
1660	mdio_read(dev, MII_BMSR);
1661	bmsr = mdio_read(dev, MII_BMSR);
1662
1663	if (!(bmsr & BMSR_LSTATUS)) {
1664		if (netif_carrier_ok(dev)) {
1665			if (netif_msg_link(np))
1666				printk(KERN_NOTICE "%s: link down.\n",
1667				       dev->name);
1668			netif_carrier_off(dev);
1669			undo_cable_magic(dev);
1670		}
1671		return;
1672	}
1673	if (!netif_carrier_ok(dev)) {
1674		if (netif_msg_link(np))
1675			printk(KERN_NOTICE "%s: link up.\n", dev->name);
1676		netif_carrier_on(dev);
1677		do_cable_magic(dev);
1678	}
1679
1680	duplex = np->full_duplex;
1681	if (!duplex) {
1682		if (bmsr & BMSR_ANEGCOMPLETE) {
1683			int tmp = mii_nway_result(
1684				np->advertising & mdio_read(dev, MII_LPA));
1685			if (tmp == LPA_100FULL || tmp == LPA_10FULL)
1686				duplex = 1;
1687		} else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX)
1688			duplex = 1;
1689	}
1690
1691propagate_state:
1692	/* if duplex is set then bit 28 must be set, too */
1693	if (duplex ^ !!(np->rx_config & RxAcceptTx)) {
1694		if (netif_msg_link(np))
1695			printk(KERN_INFO
1696				"%s: Setting %s-duplex based on negotiated "
1697				"link capability.\n", dev->name,
1698				duplex ? "full" : "half");
1699		if (duplex) {
1700			np->rx_config |= RxAcceptTx;
1701			np->tx_config |= TxCarrierIgn | TxHeartIgn;
1702		} else {
1703			np->rx_config &= ~RxAcceptTx;
1704			np->tx_config &= ~(TxCarrierIgn | TxHeartIgn);
1705		}
1706		writel(np->tx_config, ioaddr + TxConfig);
1707		writel(np->rx_config, ioaddr + RxConfig);
1708	}
1709}
1710
1711static void init_registers(struct net_device *dev)
1712{
1713	struct netdev_private *np = netdev_priv(dev);
1714	void __iomem * ioaddr = ns_ioaddr(dev);
1715
1716	init_phy_fixup(dev);
1717
1718	/* clear any interrupts that are pending, such as wake events */
1719	readl(ioaddr + IntrStatus);
1720
1721	writel(np->ring_dma, ioaddr + RxRingPtr);
1722	writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc),
1723		ioaddr + TxRingPtr);
1724
1725	/* Initialize other registers.
1726	 * Configure the PCI bus bursts and FIFO thresholds.
1727	 * Configure for standard, in-spec Ethernet.
1728	 * Start with half-duplex. check_link will update
1729	 * to the correct settings.
1730	 */
1731
1732	/* DRTH: 2: start tx if 64 bytes are in the fifo
1733	 * FLTH: 0x10: refill with next packet if 512 bytes are free
1734	 * MXDMA: 0: up to 256 byte bursts.
1735	 * 	MXDMA must be <= FLTH
1736	 * ECRETRY=1
1737	 * ATP=1
1738	 */
1739	np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 |
1740				TX_FLTH_VAL | TX_DRTH_VAL_START;
1741	writel(np->tx_config, ioaddr + TxConfig);
1742
1743	/* DRTH 0x10: start copying to memory if 128 bytes are in the fifo
1744	 * MXDMA 0: up to 256 byte bursts
1745	 */
1746	np->rx_config = RxMxdma_256 | RX_DRTH_VAL;
1747	/* if receive ring now has bigger buffers than normal, enable jumbo */
1748	if (np->rx_buf_sz > NATSEMI_LONGPKT)
1749		np->rx_config |= RxAcceptLong;
1750
1751	writel(np->rx_config, ioaddr + RxConfig);
1752
1753	/* Disable PME:
1754	 * The PME bit is initialized from the EEPROM contents.
1755	 * PCI cards probably have PME disabled, but motherboard
1756	 * implementations may have PME set to enable WakeOnLan.
1757	 * With PME set the chip will scan incoming packets but
1758	 * nothing will be written to memory. */
1759	np->SavedClkRun = readl(ioaddr + ClkRun);
1760	writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun);
1761	if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) {
1762		printk(KERN_NOTICE "%s: Wake-up event %#08x\n",
1763			dev->name, readl(ioaddr + WOLCmd));
1764	}
1765
1766	check_link(dev);
1767	__set_rx_mode(dev);
1768
1769	/* Enable interrupts by setting the interrupt mask. */
1770	writel(DEFAULT_INTR, ioaddr + IntrMask);
1771	natsemi_irq_enable(dev);
1772
1773	writel(RxOn | TxOn, ioaddr + ChipCmd);
1774	writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */
1775}
1776
1777/*
1778 * netdev_timer:
1779 * Purpose:
1780 * 1) check for link changes. Usually they are handled by the MII interrupt
1781 *    but it doesn't hurt to check twice.
1782 * 2) check for sudden death of the NIC:
1783 *    It seems that a reference set for this chip went out with incorrect info,
1784 *    and there exist boards that aren't quite right.  An unexpected voltage
1785 *    drop can cause the PHY to get itself in a weird state (basically reset).
1786 *    NOTE: this only seems to affect revC chips.  The user can disable
1787 *    this check via dspcfg_workaround sysfs option.
1788 * 3) check of death of the RX path due to OOM
1789 */
1790static void netdev_timer(struct timer_list *t)
1791{
1792	struct netdev_private *np = from_timer(np, t, timer);
1793	struct net_device *dev = np->dev;
1794	void __iomem * ioaddr = ns_ioaddr(dev);
1795	int next_tick = NATSEMI_TIMER_FREQ;
1796	const int irq = np->pci_dev->irq;
1797
1798	if (netif_msg_timer(np)) {
1799		/* DO NOT read the IntrStatus register,
1800		 * a read clears any pending interrupts.
1801		 */
1802		printk(KERN_DEBUG "%s: Media selection timer tick.\n",
1803			dev->name);
1804	}
1805
1806	if (dev->if_port == PORT_TP) {
1807		u16 dspcfg;
1808
1809		spin_lock_irq(&np->lock);
1810		/* check for a nasty random phy-reset - use dspcfg as a flag */
1811		writew(1, ioaddr+PGSEL);
1812		dspcfg = readw(ioaddr+DSPCFG);
1813		writew(0, ioaddr+PGSEL);
1814		if (np->dspcfg_workaround && dspcfg != np->dspcfg) {
1815			if (!netif_queue_stopped(dev)) {
1816				spin_unlock_irq(&np->lock);
1817				if (netif_msg_drv(np))
1818					printk(KERN_NOTICE "%s: possible phy reset: "
1819						"re-initializing\n", dev->name);
1820				disable_irq(irq);
1821				spin_lock_irq(&np->lock);
1822				natsemi_stop_rxtx(dev);
1823				dump_ring(dev);
1824				reinit_ring(dev);
1825				init_registers(dev);
1826				spin_unlock_irq(&np->lock);
1827				enable_irq(irq);
1828			} else {
1829				/* hurry back */
1830				next_tick = HZ;
1831				spin_unlock_irq(&np->lock);
1832			}
1833		} else {
1834			/* init_registers() calls check_link() for the above case */
1835			check_link(dev);
1836			spin_unlock_irq(&np->lock);
1837		}
1838	} else {
1839		spin_lock_irq(&np->lock);
1840		check_link(dev);
1841		spin_unlock_irq(&np->lock);
1842	}
1843	if (np->oom) {
1844		disable_irq(irq);
1845		np->oom = 0;
1846		refill_rx(dev);
1847		enable_irq(irq);
1848		if (!np->oom) {
1849			writel(RxOn, ioaddr + ChipCmd);
1850		} else {
1851			next_tick = 1;
1852		}
1853	}
1854
1855	if (next_tick > 1)
1856		mod_timer(&np->timer, round_jiffies(jiffies + next_tick));
1857	else
1858		mod_timer(&np->timer, jiffies + next_tick);
1859}
1860
1861static void dump_ring(struct net_device *dev)
1862{
1863	struct netdev_private *np = netdev_priv(dev);
1864
1865	if (netif_msg_pktdata(np)) {
1866		int i;
1867		printk(KERN_DEBUG "  Tx ring at %p:\n", np->tx_ring);
1868		for (i = 0; i < TX_RING_SIZE; i++) {
1869			printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1870				i, np->tx_ring[i].next_desc,
1871				np->tx_ring[i].cmd_status,
1872				np->tx_ring[i].addr);
1873		}
1874		printk(KERN_DEBUG "  Rx ring %p:\n", np->rx_ring);
1875		for (i = 0; i < RX_RING_SIZE; i++) {
1876			printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1877				i, np->rx_ring[i].next_desc,
1878				np->rx_ring[i].cmd_status,
1879				np->rx_ring[i].addr);
1880		}
1881	}
1882}
1883
1884static void ns_tx_timeout(struct net_device *dev)
1885{
1886	struct netdev_private *np = netdev_priv(dev);
1887	void __iomem * ioaddr = ns_ioaddr(dev);
1888	const int irq = np->pci_dev->irq;
1889
1890	disable_irq(irq);
1891	spin_lock_irq(&np->lock);
1892	if (!np->hands_off) {
1893		if (netif_msg_tx_err(np))
1894			printk(KERN_WARNING
1895				"%s: Transmit timed out, status %#08x,"
1896				" resetting...\n",
1897				dev->name, readl(ioaddr + IntrStatus));
1898		dump_ring(dev);
1899
1900		natsemi_reset(dev);
1901		reinit_ring(dev);
1902		init_registers(dev);
1903	} else {
1904		printk(KERN_WARNING
1905			"%s: tx_timeout while in hands_off state?\n",
1906			dev->name);
1907	}
1908	spin_unlock_irq(&np->lock);
1909	enable_irq(irq);
1910
1911	netif_trans_update(dev); /* prevent tx timeout */
1912	dev->stats.tx_errors++;
1913	netif_wake_queue(dev);
1914}
1915
1916static int alloc_ring(struct net_device *dev)
1917{
1918	struct netdev_private *np = netdev_priv(dev);
1919	np->rx_ring = pci_alloc_consistent(np->pci_dev,
1920		sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
1921		&np->ring_dma);
1922	if (!np->rx_ring)
1923		return -ENOMEM;
1924	np->tx_ring = &np->rx_ring[RX_RING_SIZE];
1925	return 0;
1926}
1927
1928static void refill_rx(struct net_device *dev)
1929{
1930	struct netdev_private *np = netdev_priv(dev);
1931
1932	/* Refill the Rx ring buffers. */
1933	for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1934		struct sk_buff *skb;
1935		int entry = np->dirty_rx % RX_RING_SIZE;
1936		if (np->rx_skbuff[entry] == NULL) {
1937			unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING;
1938			skb = netdev_alloc_skb(dev, buflen);
1939			np->rx_skbuff[entry] = skb;
1940			if (skb == NULL)
1941				break; /* Better luck next round. */
1942			np->rx_dma[entry] = pci_map_single(np->pci_dev,
1943				skb->data, buflen, PCI_DMA_FROMDEVICE);
1944			if (pci_dma_mapping_error(np->pci_dev,
1945						  np->rx_dma[entry])) {
1946				dev_kfree_skb_any(skb);
1947				np->rx_skbuff[entry] = NULL;
1948				break; /* Better luck next round. */
1949			}
1950			np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]);
1951		}
1952		np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz);
1953	}
1954	if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) {
1955		if (netif_msg_rx_err(np))
1956			printk(KERN_WARNING "%s: going OOM.\n", dev->name);
1957		np->oom = 1;
1958	}
1959}
1960
1961static void set_bufsize(struct net_device *dev)
1962{
1963	struct netdev_private *np = netdev_priv(dev);
1964	if (dev->mtu <= ETH_DATA_LEN)
1965		np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS;
1966	else
1967		np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS;
1968}
1969
1970/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1971static void init_ring(struct net_device *dev)
1972{
1973	struct netdev_private *np = netdev_priv(dev);
1974	int i;
1975
1976	/* 1) TX ring */
1977	np->dirty_tx = np->cur_tx = 0;
1978	for (i = 0; i < TX_RING_SIZE; i++) {
1979		np->tx_skbuff[i] = NULL;
1980		np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1981			+sizeof(struct netdev_desc)
1982			*((i+1)%TX_RING_SIZE+RX_RING_SIZE));
1983		np->tx_ring[i].cmd_status = 0;
1984	}
1985
1986	/* 2) RX ring */
1987	np->dirty_rx = 0;
1988	np->cur_rx = RX_RING_SIZE;
1989	np->oom = 0;
1990	set_bufsize(dev);
1991
1992	np->rx_head_desc = &np->rx_ring[0];
1993
1994	/* Please be careful before changing this loop - at least gcc-2.95.1
1995	 * miscompiles it otherwise.
1996	 */
1997	/* Initialize all Rx descriptors. */
1998	for (i = 0; i < RX_RING_SIZE; i++) {
1999		np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma
2000				+sizeof(struct netdev_desc)
2001				*((i+1)%RX_RING_SIZE));
2002		np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2003		np->rx_skbuff[i] = NULL;
2004	}
2005	refill_rx(dev);
2006	dump_ring(dev);
2007}
2008
2009static void drain_tx(struct net_device *dev)
2010{
2011	struct netdev_private *np = netdev_priv(dev);
2012	int i;
2013
2014	for (i = 0; i < TX_RING_SIZE; i++) {
2015		if (np->tx_skbuff[i]) {
2016			pci_unmap_single(np->pci_dev,
2017				np->tx_dma[i], np->tx_skbuff[i]->len,
2018				PCI_DMA_TODEVICE);
2019			dev_kfree_skb(np->tx_skbuff[i]);
2020			dev->stats.tx_dropped++;
2021		}
2022		np->tx_skbuff[i] = NULL;
2023	}
2024}
2025
2026static void drain_rx(struct net_device *dev)
2027{
2028	struct netdev_private *np = netdev_priv(dev);
2029	unsigned int buflen = np->rx_buf_sz;
2030	int i;
2031
2032	/* Free all the skbuffs in the Rx queue. */
2033	for (i = 0; i < RX_RING_SIZE; i++) {
2034		np->rx_ring[i].cmd_status = 0;
2035		np->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
2036		if (np->rx_skbuff[i]) {
2037			pci_unmap_single(np->pci_dev, np->rx_dma[i],
2038				buflen + NATSEMI_PADDING,
2039				PCI_DMA_FROMDEVICE);
2040			dev_kfree_skb(np->rx_skbuff[i]);
2041		}
2042		np->rx_skbuff[i] = NULL;
2043	}
2044}
2045
2046static void drain_ring(struct net_device *dev)
2047{
2048	drain_rx(dev);
2049	drain_tx(dev);
2050}
2051
2052static void free_ring(struct net_device *dev)
2053{
2054	struct netdev_private *np = netdev_priv(dev);
2055	pci_free_consistent(np->pci_dev,
2056		sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
2057		np->rx_ring, np->ring_dma);
2058}
2059
2060static void reinit_rx(struct net_device *dev)
2061{
2062	struct netdev_private *np = netdev_priv(dev);
2063	int i;
2064
2065	/* RX Ring */
2066	np->dirty_rx = 0;
2067	np->cur_rx = RX_RING_SIZE;
2068	np->rx_head_desc = &np->rx_ring[0];
2069	/* Initialize all Rx descriptors. */
2070	for (i = 0; i < RX_RING_SIZE; i++)
2071		np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2072
2073	refill_rx(dev);
2074}
2075
2076static void reinit_ring(struct net_device *dev)
2077{
2078	struct netdev_private *np = netdev_priv(dev);
2079	int i;
2080
2081	/* drain TX ring */
2082	drain_tx(dev);
2083	np->dirty_tx = np->cur_tx = 0;
2084	for (i=0;i<TX_RING_SIZE;i++)
2085		np->tx_ring[i].cmd_status = 0;
2086
2087	reinit_rx(dev);
2088}
2089
2090static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
2091{
2092	struct netdev_private *np = netdev_priv(dev);
2093	void __iomem * ioaddr = ns_ioaddr(dev);
2094	unsigned entry;
2095	unsigned long flags;
2096
2097	/* Note: Ordering is important here, set the field with the
2098	   "ownership" bit last, and only then increment cur_tx. */
2099
2100	/* Calculate the next Tx descriptor entry. */
2101	entry = np->cur_tx % TX_RING_SIZE;
2102
2103	np->tx_skbuff[entry] = skb;
2104	np->tx_dma[entry] = pci_map_single(np->pci_dev,
2105				skb->data,skb->len, PCI_DMA_TODEVICE);
2106	if (pci_dma_mapping_error(np->pci_dev, np->tx_dma[entry])) {
2107		np->tx_skbuff[entry] = NULL;
2108		dev_kfree_skb_irq(skb);
2109		dev->stats.tx_dropped++;
2110		return NETDEV_TX_OK;
2111	}
2112
2113	np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]);
2114
2115	spin_lock_irqsave(&np->lock, flags);
2116
2117	if (!np->hands_off) {
2118		np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len);
2119		/* StrongARM: Explicitly cache flush np->tx_ring and
2120		 * skb->data,skb->len. */
2121		wmb();
2122		np->cur_tx++;
2123		if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) {
2124			netdev_tx_done(dev);
2125			if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1)
2126				netif_stop_queue(dev);
2127		}
2128		/* Wake the potentially-idle transmit channel. */
2129		writel(TxOn, ioaddr + ChipCmd);
2130	} else {
2131		dev_kfree_skb_irq(skb);
2132		dev->stats.tx_dropped++;
2133	}
2134	spin_unlock_irqrestore(&np->lock, flags);
2135
2136	if (netif_msg_tx_queued(np)) {
2137		printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
2138			dev->name, np->cur_tx, entry);
2139	}
2140	return NETDEV_TX_OK;
2141}
2142
2143static void netdev_tx_done(struct net_device *dev)
2144{
2145	struct netdev_private *np = netdev_priv(dev);
2146
2147	for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
2148		int entry = np->dirty_tx % TX_RING_SIZE;
2149		if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn))
2150			break;
2151		if (netif_msg_tx_done(np))
2152			printk(KERN_DEBUG
2153				"%s: tx frame #%d finished, status %#08x.\n",
2154					dev->name, np->dirty_tx,
2155					le32_to_cpu(np->tx_ring[entry].cmd_status));
2156		if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) {
2157			dev->stats.tx_packets++;
2158			dev->stats.tx_bytes += np->tx_skbuff[entry]->len;
2159		} else { /* Various Tx errors */
2160			int tx_status =
2161				le32_to_cpu(np->tx_ring[entry].cmd_status);
2162			if (tx_status & (DescTxAbort|DescTxExcColl))
2163				dev->stats.tx_aborted_errors++;
2164			if (tx_status & DescTxFIFO)
2165				dev->stats.tx_fifo_errors++;
2166			if (tx_status & DescTxCarrier)
2167				dev->stats.tx_carrier_errors++;
2168			if (tx_status & DescTxOOWCol)
2169				dev->stats.tx_window_errors++;
2170			dev->stats.tx_errors++;
2171		}
2172		pci_unmap_single(np->pci_dev,np->tx_dma[entry],
2173					np->tx_skbuff[entry]->len,
2174					PCI_DMA_TODEVICE);
2175		/* Free the original skb. */
2176		dev_kfree_skb_irq(np->tx_skbuff[entry]);
2177		np->tx_skbuff[entry] = NULL;
2178	}
2179	if (netif_queue_stopped(dev) &&
2180	    np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
2181		/* The ring is no longer full, wake queue. */
2182		netif_wake_queue(dev);
2183	}
2184}
2185
2186/* The interrupt handler doesn't actually handle interrupts itself, it
2187 * schedules a NAPI poll if there is anything to do. */
2188static irqreturn_t intr_handler(int irq, void *dev_instance)
2189{
2190	struct net_device *dev = dev_instance;
2191	struct netdev_private *np = netdev_priv(dev);
2192	void __iomem * ioaddr = ns_ioaddr(dev);
2193
2194	/* Reading IntrStatus automatically acknowledges so don't do
2195	 * that while interrupts are disabled, (for example, while a
2196	 * poll is scheduled).  */
2197	if (np->hands_off || !readl(ioaddr + IntrEnable))
2198		return IRQ_NONE;
2199
2200	np->intr_status = readl(ioaddr + IntrStatus);
2201
2202	if (!np->intr_status)
2203		return IRQ_NONE;
2204
2205	if (netif_msg_intr(np))
2206		printk(KERN_DEBUG
2207		       "%s: Interrupt, status %#08x, mask %#08x.\n",
2208		       dev->name, np->intr_status,
2209		       readl(ioaddr + IntrMask));
2210
2211	prefetch(&np->rx_skbuff[np->cur_rx % RX_RING_SIZE]);
2212
2213	if (napi_schedule_prep(&np->napi)) {
2214		/* Disable interrupts and register for poll */
2215		natsemi_irq_disable(dev);
2216		__napi_schedule(&np->napi);
2217	} else
2218		printk(KERN_WARNING
2219	       	       "%s: Ignoring interrupt, status %#08x, mask %#08x.\n",
2220		       dev->name, np->intr_status,
2221		       readl(ioaddr + IntrMask));
2222
2223	return IRQ_HANDLED;
2224}
2225
2226/* This is the NAPI poll routine.  As well as the standard RX handling
2227 * it also handles all other interrupts that the chip might raise.
2228 */
2229static int natsemi_poll(struct napi_struct *napi, int budget)
2230{
2231	struct netdev_private *np = container_of(napi, struct netdev_private, napi);
2232	struct net_device *dev = np->dev;
2233	void __iomem * ioaddr = ns_ioaddr(dev);
2234	int work_done = 0;
2235
2236	do {
2237		if (netif_msg_intr(np))
2238			printk(KERN_DEBUG
2239			       "%s: Poll, status %#08x, mask %#08x.\n",
2240			       dev->name, np->intr_status,
2241			       readl(ioaddr + IntrMask));
2242
2243		/* netdev_rx() may read IntrStatus again if the RX state
2244		 * machine falls over so do it first. */
2245		if (np->intr_status &
2246		    (IntrRxDone | IntrRxIntr | RxStatusFIFOOver |
2247		     IntrRxErr | IntrRxOverrun)) {
2248			netdev_rx(dev, &work_done, budget);
2249		}
2250
2251		if (np->intr_status &
2252		    (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) {
2253			spin_lock(&np->lock);
2254			netdev_tx_done(dev);
2255			spin_unlock(&np->lock);
2256		}
2257
2258		/* Abnormal error summary/uncommon events handlers. */
2259		if (np->intr_status & IntrAbnormalSummary)
2260			netdev_error(dev, np->intr_status);
2261
2262		if (work_done >= budget)
2263			return work_done;
2264
2265		np->intr_status = readl(ioaddr + IntrStatus);
2266	} while (np->intr_status);
2267
2268	napi_complete_done(napi, work_done);
2269
2270	/* Reenable interrupts providing nothing is trying to shut
2271	 * the chip down. */
2272	spin_lock(&np->lock);
2273	if (!np->hands_off)
2274		natsemi_irq_enable(dev);
2275	spin_unlock(&np->lock);
2276
2277	return work_done;
2278}
2279
2280/* This routine is logically part of the interrupt handler, but separated
2281   for clarity and better register allocation. */
2282static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do)
2283{
2284	struct netdev_private *np = netdev_priv(dev);
2285	int entry = np->cur_rx % RX_RING_SIZE;
2286	int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
2287	s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2288	unsigned int buflen = np->rx_buf_sz;
2289	void __iomem * ioaddr = ns_ioaddr(dev);
2290
2291	/* If the driver owns the next entry it's a new packet. Send it up. */
2292	while (desc_status < 0) { /* e.g. & DescOwn */
2293		int pkt_len;
2294		if (netif_msg_rx_status(np))
2295			printk(KERN_DEBUG
2296				"  netdev_rx() entry %d status was %#08x.\n",
2297				entry, desc_status);
2298		if (--boguscnt < 0)
2299			break;
2300
2301		if (*work_done >= work_to_do)
2302			break;
2303
2304		(*work_done)++;
2305
2306		pkt_len = (desc_status & DescSizeMask) - 4;
2307		if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){
2308			if (desc_status & DescMore) {
2309				unsigned long flags;
2310
2311				if (netif_msg_rx_err(np))
2312					printk(KERN_WARNING
2313						"%s: Oversized(?) Ethernet "
2314						"frame spanned multiple "
2315						"buffers, entry %#08x "
2316						"status %#08x.\n", dev->name,
2317						np->cur_rx, desc_status);
2318				dev->stats.rx_length_errors++;
2319
2320				/* The RX state machine has probably
2321				 * locked up beneath us.  Follow the
2322				 * reset procedure documented in
2323				 * AN-1287. */
2324
2325				spin_lock_irqsave(&np->lock, flags);
2326				reset_rx(dev);
2327				reinit_rx(dev);
2328				writel(np->ring_dma, ioaddr + RxRingPtr);
2329				check_link(dev);
2330				spin_unlock_irqrestore(&np->lock, flags);
2331
2332				/* We'll enable RX on exit from this
2333				 * function. */
2334				break;
2335
2336			} else {
2337				/* There was an error. */
2338				dev->stats.rx_errors++;
2339				if (desc_status & (DescRxAbort|DescRxOver))
2340					dev->stats.rx_over_errors++;
2341				if (desc_status & (DescRxLong|DescRxRunt))
2342					dev->stats.rx_length_errors++;
2343				if (desc_status & (DescRxInvalid|DescRxAlign))
2344					dev->stats.rx_frame_errors++;
2345				if (desc_status & DescRxCRC)
2346					dev->stats.rx_crc_errors++;
2347			}
2348		} else if (pkt_len > np->rx_buf_sz) {
2349			/* if this is the tail of a double buffer
2350			 * packet, we've already counted the error
2351			 * on the first part.  Ignore the second half.
2352			 */
2353		} else {
2354			struct sk_buff *skb;
2355			/* Omit CRC size. */
2356			/* Check if the packet is long enough to accept
2357			 * without copying to a minimally-sized skbuff. */
2358			if (pkt_len < rx_copybreak &&
2359			    (skb = netdev_alloc_skb(dev, pkt_len + RX_OFFSET)) != NULL) {
2360				/* 16 byte align the IP header */
2361				skb_reserve(skb, RX_OFFSET);
2362				pci_dma_sync_single_for_cpu(np->pci_dev,
2363					np->rx_dma[entry],
2364					buflen,
2365					PCI_DMA_FROMDEVICE);
2366				skb_copy_to_linear_data(skb,
2367					np->rx_skbuff[entry]->data, pkt_len);
2368				skb_put(skb, pkt_len);
2369				pci_dma_sync_single_for_device(np->pci_dev,
2370					np->rx_dma[entry],
2371					buflen,
2372					PCI_DMA_FROMDEVICE);
2373			} else {
2374				pci_unmap_single(np->pci_dev, np->rx_dma[entry],
 
2375						 buflen + NATSEMI_PADDING,
2376						 PCI_DMA_FROMDEVICE);
2377				skb_put(skb = np->rx_skbuff[entry], pkt_len);
2378				np->rx_skbuff[entry] = NULL;
2379			}
2380			skb->protocol = eth_type_trans(skb, dev);
2381			netif_receive_skb(skb);
2382			dev->stats.rx_packets++;
2383			dev->stats.rx_bytes += pkt_len;
2384		}
2385		entry = (++np->cur_rx) % RX_RING_SIZE;
2386		np->rx_head_desc = &np->rx_ring[entry];
2387		desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2388	}
2389	refill_rx(dev);
2390
2391	/* Restart Rx engine if stopped. */
2392	if (np->oom)
2393		mod_timer(&np->timer, jiffies + 1);
2394	else
2395		writel(RxOn, ioaddr + ChipCmd);
2396}
2397
2398static void netdev_error(struct net_device *dev, int intr_status)
2399{
2400	struct netdev_private *np = netdev_priv(dev);
2401	void __iomem * ioaddr = ns_ioaddr(dev);
2402
2403	spin_lock(&np->lock);
2404	if (intr_status & LinkChange) {
2405		u16 lpa = mdio_read(dev, MII_LPA);
2406		if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE &&
2407		    netif_msg_link(np)) {
2408			printk(KERN_INFO
2409				"%s: Autonegotiation advertising"
2410				" %#04x  partner %#04x.\n", dev->name,
2411				np->advertising, lpa);
2412		}
2413
2414		/* read MII int status to clear the flag */
2415		readw(ioaddr + MIntrStatus);
2416		check_link(dev);
2417	}
2418	if (intr_status & StatsMax) {
2419		__get_stats(dev);
2420	}
2421	if (intr_status & IntrTxUnderrun) {
2422		if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) {
2423			np->tx_config += TX_DRTH_VAL_INC;
2424			if (netif_msg_tx_err(np))
2425				printk(KERN_NOTICE
2426					"%s: increased tx threshold, txcfg %#08x.\n",
2427					dev->name, np->tx_config);
2428		} else {
2429			if (netif_msg_tx_err(np))
2430				printk(KERN_NOTICE
2431					"%s: tx underrun with maximum tx threshold, txcfg %#08x.\n",
2432					dev->name, np->tx_config);
2433		}
2434		writel(np->tx_config, ioaddr + TxConfig);
2435	}
2436	if (intr_status & WOLPkt && netif_msg_wol(np)) {
2437		int wol_status = readl(ioaddr + WOLCmd);
2438		printk(KERN_NOTICE "%s: Link wake-up event %#08x\n",
2439			dev->name, wol_status);
2440	}
2441	if (intr_status & RxStatusFIFOOver) {
2442		if (netif_msg_rx_err(np) && netif_msg_intr(np)) {
2443			printk(KERN_NOTICE "%s: Rx status FIFO overrun\n",
2444				dev->name);
2445		}
2446		dev->stats.rx_fifo_errors++;
2447		dev->stats.rx_errors++;
2448	}
2449	/* Hmmmmm, it's not clear how to recover from PCI faults. */
2450	if (intr_status & IntrPCIErr) {
2451		printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name,
2452			intr_status & IntrPCIErr);
2453		dev->stats.tx_fifo_errors++;
2454		dev->stats.tx_errors++;
2455		dev->stats.rx_fifo_errors++;
2456		dev->stats.rx_errors++;
2457	}
2458	spin_unlock(&np->lock);
2459}
2460
2461static void __get_stats(struct net_device *dev)
2462{
2463	void __iomem * ioaddr = ns_ioaddr(dev);
2464
2465	/* The chip only need report frame silently dropped. */
2466	dev->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs);
2467	dev->stats.rx_missed_errors += readl(ioaddr + RxMissed);
2468}
2469
2470static struct net_device_stats *get_stats(struct net_device *dev)
2471{
2472	struct netdev_private *np = netdev_priv(dev);
2473
2474	/* The chip only need report frame silently dropped. */
2475	spin_lock_irq(&np->lock);
2476	if (netif_running(dev) && !np->hands_off)
2477		__get_stats(dev);
2478	spin_unlock_irq(&np->lock);
2479
2480	return &dev->stats;
2481}
2482
2483#ifdef CONFIG_NET_POLL_CONTROLLER
2484static void natsemi_poll_controller(struct net_device *dev)
2485{
2486	struct netdev_private *np = netdev_priv(dev);
2487	const int irq = np->pci_dev->irq;
2488
2489	disable_irq(irq);
2490	intr_handler(irq, dev);
2491	enable_irq(irq);
2492}
2493#endif
2494
2495#define HASH_TABLE	0x200
2496static void __set_rx_mode(struct net_device *dev)
2497{
2498	void __iomem * ioaddr = ns_ioaddr(dev);
2499	struct netdev_private *np = netdev_priv(dev);
2500	u8 mc_filter[64]; /* Multicast hash filter */
2501	u32 rx_mode;
2502
2503	if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2504		rx_mode = RxFilterEnable | AcceptBroadcast
2505			| AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys;
2506	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
2507		   (dev->flags & IFF_ALLMULTI)) {
2508		rx_mode = RxFilterEnable | AcceptBroadcast
2509			| AcceptAllMulticast | AcceptMyPhys;
2510	} else {
2511		struct netdev_hw_addr *ha;
2512		int i;
2513
2514		memset(mc_filter, 0, sizeof(mc_filter));
2515		netdev_for_each_mc_addr(ha, dev) {
2516			int b = (ether_crc(ETH_ALEN, ha->addr) >> 23) & 0x1ff;
2517			mc_filter[b/8] |= (1 << (b & 0x07));
2518		}
2519		rx_mode = RxFilterEnable | AcceptBroadcast
2520			| AcceptMulticast | AcceptMyPhys;
2521		for (i = 0; i < 64; i += 2) {
2522			writel(HASH_TABLE + i, ioaddr + RxFilterAddr);
2523			writel((mc_filter[i + 1] << 8) + mc_filter[i],
2524			       ioaddr + RxFilterData);
2525		}
2526	}
2527	writel(rx_mode, ioaddr + RxFilterAddr);
2528	np->cur_rx_mode = rx_mode;
2529}
2530
2531static int natsemi_change_mtu(struct net_device *dev, int new_mtu)
2532{
2533	dev->mtu = new_mtu;
2534
2535	/* synchronized against open : rtnl_lock() held by caller */
2536	if (netif_running(dev)) {
2537		struct netdev_private *np = netdev_priv(dev);
2538		void __iomem * ioaddr = ns_ioaddr(dev);
2539		const int irq = np->pci_dev->irq;
2540
2541		disable_irq(irq);
2542		spin_lock(&np->lock);
2543		/* stop engines */
2544		natsemi_stop_rxtx(dev);
2545		/* drain rx queue */
2546		drain_rx(dev);
2547		/* change buffers */
2548		set_bufsize(dev);
2549		reinit_rx(dev);
2550		writel(np->ring_dma, ioaddr + RxRingPtr);
2551		/* restart engines */
2552		writel(RxOn | TxOn, ioaddr + ChipCmd);
2553		spin_unlock(&np->lock);
2554		enable_irq(irq);
2555	}
2556	return 0;
2557}
2558
2559static void set_rx_mode(struct net_device *dev)
2560{
2561	struct netdev_private *np = netdev_priv(dev);
2562	spin_lock_irq(&np->lock);
2563	if (!np->hands_off)
2564		__set_rx_mode(dev);
2565	spin_unlock_irq(&np->lock);
2566}
2567
2568static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2569{
2570	struct netdev_private *np = netdev_priv(dev);
2571	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2572	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2573	strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
2574}
2575
2576static int get_regs_len(struct net_device *dev)
2577{
2578	return NATSEMI_REGS_SIZE;
2579}
2580
2581static int get_eeprom_len(struct net_device *dev)
2582{
2583	struct netdev_private *np = netdev_priv(dev);
2584	return np->eeprom_size;
2585}
2586
2587static int get_link_ksettings(struct net_device *dev,
2588			      struct ethtool_link_ksettings *ecmd)
2589{
2590	struct netdev_private *np = netdev_priv(dev);
2591	spin_lock_irq(&np->lock);
2592	netdev_get_ecmd(dev, ecmd);
2593	spin_unlock_irq(&np->lock);
2594	return 0;
2595}
2596
2597static int set_link_ksettings(struct net_device *dev,
2598			      const struct ethtool_link_ksettings *ecmd)
2599{
2600	struct netdev_private *np = netdev_priv(dev);
2601	int res;
2602	spin_lock_irq(&np->lock);
2603	res = netdev_set_ecmd(dev, ecmd);
2604	spin_unlock_irq(&np->lock);
2605	return res;
2606}
2607
2608static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2609{
2610	struct netdev_private *np = netdev_priv(dev);
2611	spin_lock_irq(&np->lock);
2612	netdev_get_wol(dev, &wol->supported, &wol->wolopts);
2613	netdev_get_sopass(dev, wol->sopass);
2614	spin_unlock_irq(&np->lock);
2615}
2616
2617static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2618{
2619	struct netdev_private *np = netdev_priv(dev);
2620	int res;
2621	spin_lock_irq(&np->lock);
2622	netdev_set_wol(dev, wol->wolopts);
2623	res = netdev_set_sopass(dev, wol->sopass);
2624	spin_unlock_irq(&np->lock);
2625	return res;
2626}
2627
2628static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2629{
2630	struct netdev_private *np = netdev_priv(dev);
2631	regs->version = NATSEMI_REGS_VER;
2632	spin_lock_irq(&np->lock);
2633	netdev_get_regs(dev, buf);
2634	spin_unlock_irq(&np->lock);
2635}
2636
2637static u32 get_msglevel(struct net_device *dev)
2638{
2639	struct netdev_private *np = netdev_priv(dev);
2640	return np->msg_enable;
2641}
2642
2643static void set_msglevel(struct net_device *dev, u32 val)
2644{
2645	struct netdev_private *np = netdev_priv(dev);
2646	np->msg_enable = val;
2647}
2648
2649static int nway_reset(struct net_device *dev)
2650{
2651	int tmp;
2652	int r = -EINVAL;
2653	/* if autoneg is off, it's an error */
2654	tmp = mdio_read(dev, MII_BMCR);
2655	if (tmp & BMCR_ANENABLE) {
2656		tmp |= (BMCR_ANRESTART);
2657		mdio_write(dev, MII_BMCR, tmp);
2658		r = 0;
2659	}
2660	return r;
2661}
2662
2663static u32 get_link(struct net_device *dev)
2664{
2665	/* LSTATUS is latched low until a read - so read twice */
2666	mdio_read(dev, MII_BMSR);
2667	return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0;
2668}
2669
2670static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
2671{
2672	struct netdev_private *np = netdev_priv(dev);
2673	u8 *eebuf;
2674	int res;
2675
2676	eebuf = kmalloc(np->eeprom_size, GFP_KERNEL);
2677	if (!eebuf)
2678		return -ENOMEM;
2679
2680	eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16);
2681	spin_lock_irq(&np->lock);
2682	res = netdev_get_eeprom(dev, eebuf);
2683	spin_unlock_irq(&np->lock);
2684	if (!res)
2685		memcpy(data, eebuf+eeprom->offset, eeprom->len);
2686	kfree(eebuf);
2687	return res;
2688}
2689
2690static const struct ethtool_ops ethtool_ops = {
2691	.get_drvinfo = get_drvinfo,
2692	.get_regs_len = get_regs_len,
2693	.get_eeprom_len = get_eeprom_len,
2694	.get_wol = get_wol,
2695	.set_wol = set_wol,
2696	.get_regs = get_regs,
2697	.get_msglevel = get_msglevel,
2698	.set_msglevel = set_msglevel,
2699	.nway_reset = nway_reset,
2700	.get_link = get_link,
2701	.get_eeprom = get_eeprom,
2702	.get_link_ksettings = get_link_ksettings,
2703	.set_link_ksettings = set_link_ksettings,
2704};
2705
2706static int netdev_set_wol(struct net_device *dev, u32 newval)
2707{
2708	struct netdev_private *np = netdev_priv(dev);
2709	void __iomem * ioaddr = ns_ioaddr(dev);
2710	u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary;
2711
2712	/* translate to bitmasks this chip understands */
2713	if (newval & WAKE_PHY)
2714		data |= WakePhy;
2715	if (newval & WAKE_UCAST)
2716		data |= WakeUnicast;
2717	if (newval & WAKE_MCAST)
2718		data |= WakeMulticast;
2719	if (newval & WAKE_BCAST)
2720		data |= WakeBroadcast;
2721	if (newval & WAKE_ARP)
2722		data |= WakeArp;
2723	if (newval & WAKE_MAGIC)
2724		data |= WakeMagic;
2725	if (np->srr >= SRR_DP83815_D) {
2726		if (newval & WAKE_MAGICSECURE) {
2727			data |= WakeMagicSecure;
2728		}
2729	}
2730
2731	writel(data, ioaddr + WOLCmd);
2732
2733	return 0;
2734}
2735
2736static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur)
2737{
2738	struct netdev_private *np = netdev_priv(dev);
2739	void __iomem * ioaddr = ns_ioaddr(dev);
2740	u32 regval = readl(ioaddr + WOLCmd);
2741
2742	*supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST
2743			| WAKE_ARP | WAKE_MAGIC);
2744
2745	if (np->srr >= SRR_DP83815_D) {
2746		/* SOPASS works on revD and higher */
2747		*supported |= WAKE_MAGICSECURE;
2748	}
2749	*cur = 0;
2750
2751	/* translate from chip bitmasks */
2752	if (regval & WakePhy)
2753		*cur |= WAKE_PHY;
2754	if (regval & WakeUnicast)
2755		*cur |= WAKE_UCAST;
2756	if (regval & WakeMulticast)
2757		*cur |= WAKE_MCAST;
2758	if (regval & WakeBroadcast)
2759		*cur |= WAKE_BCAST;
2760	if (regval & WakeArp)
2761		*cur |= WAKE_ARP;
2762	if (regval & WakeMagic)
2763		*cur |= WAKE_MAGIC;
2764	if (regval & WakeMagicSecure) {
2765		/* this can be on in revC, but it's broken */
2766		*cur |= WAKE_MAGICSECURE;
2767	}
2768
2769	return 0;
2770}
2771
2772static int netdev_set_sopass(struct net_device *dev, u8 *newval)
2773{
2774	struct netdev_private *np = netdev_priv(dev);
2775	void __iomem * ioaddr = ns_ioaddr(dev);
2776	u16 *sval = (u16 *)newval;
2777	u32 addr;
2778
2779	if (np->srr < SRR_DP83815_D) {
2780		return 0;
2781	}
2782
2783	/* enable writing to these registers by disabling the RX filter */
2784	addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2785	addr &= ~RxFilterEnable;
2786	writel(addr, ioaddr + RxFilterAddr);
2787
2788	/* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */
2789	writel(addr | 0xa, ioaddr + RxFilterAddr);
2790	writew(sval[0], ioaddr + RxFilterData);
2791
2792	writel(addr | 0xc, ioaddr + RxFilterAddr);
2793	writew(sval[1], ioaddr + RxFilterData);
2794
2795	writel(addr | 0xe, ioaddr + RxFilterAddr);
2796	writew(sval[2], ioaddr + RxFilterData);
2797
2798	/* re-enable the RX filter */
2799	writel(addr | RxFilterEnable, ioaddr + RxFilterAddr);
2800
2801	return 0;
2802}
2803
2804static int netdev_get_sopass(struct net_device *dev, u8 *data)
2805{
2806	struct netdev_private *np = netdev_priv(dev);
2807	void __iomem * ioaddr = ns_ioaddr(dev);
2808	u16 *sval = (u16 *)data;
2809	u32 addr;
2810
2811	if (np->srr < SRR_DP83815_D) {
2812		sval[0] = sval[1] = sval[2] = 0;
2813		return 0;
2814	}
2815
2816	/* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */
2817	addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2818
2819	writel(addr | 0xa, ioaddr + RxFilterAddr);
2820	sval[0] = readw(ioaddr + RxFilterData);
2821
2822	writel(addr | 0xc, ioaddr + RxFilterAddr);
2823	sval[1] = readw(ioaddr + RxFilterData);
2824
2825	writel(addr | 0xe, ioaddr + RxFilterAddr);
2826	sval[2] = readw(ioaddr + RxFilterData);
2827
2828	writel(addr, ioaddr + RxFilterAddr);
2829
2830	return 0;
2831}
2832
2833static int netdev_get_ecmd(struct net_device *dev,
2834			   struct ethtool_link_ksettings *ecmd)
2835{
2836	struct netdev_private *np = netdev_priv(dev);
2837	u32 supported, advertising;
2838	u32 tmp;
2839
2840	ecmd->base.port   = dev->if_port;
2841	ecmd->base.speed  = np->speed;
2842	ecmd->base.duplex = np->duplex;
2843	ecmd->base.autoneg = np->autoneg;
2844	advertising = 0;
2845
2846	if (np->advertising & ADVERTISE_10HALF)
2847		advertising |= ADVERTISED_10baseT_Half;
2848	if (np->advertising & ADVERTISE_10FULL)
2849		advertising |= ADVERTISED_10baseT_Full;
2850	if (np->advertising & ADVERTISE_100HALF)
2851		advertising |= ADVERTISED_100baseT_Half;
2852	if (np->advertising & ADVERTISE_100FULL)
2853		advertising |= ADVERTISED_100baseT_Full;
2854	supported   = (SUPPORTED_Autoneg |
2855		SUPPORTED_10baseT_Half  | SUPPORTED_10baseT_Full  |
2856		SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2857		SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE);
2858	ecmd->base.phy_address = np->phy_addr_external;
2859	/*
2860	 * We intentionally report the phy address of the external
2861	 * phy, even if the internal phy is used. This is necessary
2862	 * to work around a deficiency of the ethtool interface:
2863	 * It's only possible to query the settings of the active
2864	 * port. Therefore
2865	 * # ethtool -s ethX port mii
2866	 * actually sends an ioctl to switch to port mii with the
2867	 * settings that are used for the current active port.
2868	 * If we would report a different phy address in this
2869	 * command, then
2870	 * # ethtool -s ethX port tp;ethtool -s ethX port mii
2871	 * would unintentionally change the phy address.
2872	 *
2873	 * Fortunately the phy address doesn't matter with the
2874	 * internal phy...
2875	 */
2876
2877	/* set information based on active port type */
2878	switch (ecmd->base.port) {
2879	default:
2880	case PORT_TP:
2881		advertising |= ADVERTISED_TP;
2882		break;
2883	case PORT_MII:
2884		advertising |= ADVERTISED_MII;
2885		break;
2886	case PORT_FIBRE:
2887		advertising |= ADVERTISED_FIBRE;
2888		break;
2889	}
2890
2891	/* if autonegotiation is on, try to return the active speed/duplex */
2892	if (ecmd->base.autoneg == AUTONEG_ENABLE) {
2893		advertising |= ADVERTISED_Autoneg;
2894		tmp = mii_nway_result(
2895			np->advertising & mdio_read(dev, MII_LPA));
2896		if (tmp == LPA_100FULL || tmp == LPA_100HALF)
2897			ecmd->base.speed = SPEED_100;
2898		else
2899			ecmd->base.speed = SPEED_10;
2900		if (tmp == LPA_100FULL || tmp == LPA_10FULL)
2901			ecmd->base.duplex = DUPLEX_FULL;
2902		else
2903			ecmd->base.duplex = DUPLEX_HALF;
2904	}
2905
2906	/* ignore maxtxpkt, maxrxpkt for now */
2907
2908	ethtool_convert_legacy_u32_to_link_mode(ecmd->link_modes.supported,
2909						supported);
2910	ethtool_convert_legacy_u32_to_link_mode(ecmd->link_modes.advertising,
2911						advertising);
2912
2913	return 0;
2914}
2915
2916static int netdev_set_ecmd(struct net_device *dev,
2917			   const struct ethtool_link_ksettings *ecmd)
2918{
2919	struct netdev_private *np = netdev_priv(dev);
2920	u32 advertising;
2921
2922	ethtool_convert_link_mode_to_legacy_u32(&advertising,
2923						ecmd->link_modes.advertising);
2924
2925	if (ecmd->base.port != PORT_TP &&
2926	    ecmd->base.port != PORT_MII &&
2927	    ecmd->base.port != PORT_FIBRE)
2928		return -EINVAL;
2929	if (ecmd->base.autoneg == AUTONEG_ENABLE) {
2930		if ((advertising & (ADVERTISED_10baseT_Half |
2931					  ADVERTISED_10baseT_Full |
2932					  ADVERTISED_100baseT_Half |
2933					  ADVERTISED_100baseT_Full)) == 0) {
2934			return -EINVAL;
2935		}
2936	} else if (ecmd->base.autoneg == AUTONEG_DISABLE) {
2937		u32 speed = ecmd->base.speed;
2938		if (speed != SPEED_10 && speed != SPEED_100)
2939			return -EINVAL;
2940		if (ecmd->base.duplex != DUPLEX_HALF &&
2941		    ecmd->base.duplex != DUPLEX_FULL)
2942			return -EINVAL;
2943	} else {
2944		return -EINVAL;
2945	}
2946
2947	/*
2948	 * If we're ignoring the PHY then autoneg and the internal
2949	 * transceiver are really not going to work so don't let the
2950	 * user select them.
2951	 */
2952	if (np->ignore_phy && (ecmd->base.autoneg == AUTONEG_ENABLE ||
2953			       ecmd->base.port == PORT_TP))
2954		return -EINVAL;
2955
2956	/*
2957	 * maxtxpkt, maxrxpkt: ignored for now.
2958	 *
2959	 * transceiver:
2960	 * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always
2961	 * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and
2962	 * selects based on ecmd->port.
2963	 *
2964	 * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre
2965	 * phys that are connected to the mii bus. It's used to apply fibre
2966	 * specific updates.
2967	 */
2968
2969	/* WHEW! now lets bang some bits */
2970
2971	/* save the parms */
2972	dev->if_port          = ecmd->base.port;
2973	np->autoneg           = ecmd->base.autoneg;
2974	np->phy_addr_external = ecmd->base.phy_address & PhyAddrMask;
2975	if (np->autoneg == AUTONEG_ENABLE) {
2976		/* advertise only what has been requested */
2977		np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2978		if (advertising & ADVERTISED_10baseT_Half)
2979			np->advertising |= ADVERTISE_10HALF;
2980		if (advertising & ADVERTISED_10baseT_Full)
2981			np->advertising |= ADVERTISE_10FULL;
2982		if (advertising & ADVERTISED_100baseT_Half)
2983			np->advertising |= ADVERTISE_100HALF;
2984		if (advertising & ADVERTISED_100baseT_Full)
2985			np->advertising |= ADVERTISE_100FULL;
2986	} else {
2987		np->speed  = ecmd->base.speed;
2988		np->duplex = ecmd->base.duplex;
2989		/* user overriding the initial full duplex parm? */
2990		if (np->duplex == DUPLEX_HALF)
2991			np->full_duplex = 0;
2992	}
2993
2994	/* get the right phy enabled */
2995	if (ecmd->base.port == PORT_TP)
2996		switch_port_internal(dev);
2997	else
2998		switch_port_external(dev);
2999
3000	/* set parms and see how this affected our link status */
3001	init_phy_fixup(dev);
3002	check_link(dev);
3003	return 0;
3004}
3005
3006static int netdev_get_regs(struct net_device *dev, u8 *buf)
3007{
3008	int i;
3009	int j;
3010	u32 rfcr;
3011	u32 *rbuf = (u32 *)buf;
3012	void __iomem * ioaddr = ns_ioaddr(dev);
3013
3014	/* read non-mii page 0 of registers */
3015	for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) {
3016		rbuf[i] = readl(ioaddr + i*4);
3017	}
3018
3019	/* read current mii registers */
3020	for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++)
3021		rbuf[i] = mdio_read(dev, i & 0x1f);
3022
3023	/* read only the 'magic' registers from page 1 */
3024	writew(1, ioaddr + PGSEL);
3025	rbuf[i++] = readw(ioaddr + PMDCSR);
3026	rbuf[i++] = readw(ioaddr + TSTDAT);
3027	rbuf[i++] = readw(ioaddr + DSPCFG);
3028	rbuf[i++] = readw(ioaddr + SDCFG);
3029	writew(0, ioaddr + PGSEL);
3030
3031	/* read RFCR indexed registers */
3032	rfcr = readl(ioaddr + RxFilterAddr);
3033	for (j = 0; j < NATSEMI_RFDR_NREGS; j++) {
3034		writel(j*2, ioaddr + RxFilterAddr);
3035		rbuf[i++] = readw(ioaddr + RxFilterData);
3036	}
3037	writel(rfcr, ioaddr + RxFilterAddr);
3038
3039	/* the interrupt status is clear-on-read - see if we missed any */
3040	if (rbuf[4] & rbuf[5]) {
3041		printk(KERN_WARNING
3042			"%s: shoot, we dropped an interrupt (%#08x)\n",
3043			dev->name, rbuf[4] & rbuf[5]);
3044	}
3045
3046	return 0;
3047}
3048
3049#define SWAP_BITS(x)	( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \
3050			| (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9)  \
3051			| (((x) & 0x0010) << 7)  | (((x) & 0x0020) << 5)  \
3052			| (((x) & 0x0040) << 3)  | (((x) & 0x0080) << 1)  \
3053			| (((x) & 0x0100) >> 1)  | (((x) & 0x0200) >> 3)  \
3054			| (((x) & 0x0400) >> 5)  | (((x) & 0x0800) >> 7)  \
3055			| (((x) & 0x1000) >> 9)  | (((x) & 0x2000) >> 11) \
3056			| (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) )
3057
3058static int netdev_get_eeprom(struct net_device *dev, u8 *buf)
3059{
3060	int i;
3061	u16 *ebuf = (u16 *)buf;
3062	void __iomem * ioaddr = ns_ioaddr(dev);
3063	struct netdev_private *np = netdev_priv(dev);
3064
3065	/* eeprom_read reads 16 bits, and indexes by 16 bits */
3066	for (i = 0; i < np->eeprom_size/2; i++) {
3067		ebuf[i] = eeprom_read(ioaddr, i);
3068		/* The EEPROM itself stores data bit-swapped, but eeprom_read
3069		 * reads it back "sanely". So we swap it back here in order to
3070		 * present it to userland as it is stored. */
3071		ebuf[i] = SWAP_BITS(ebuf[i]);
3072	}
3073	return 0;
3074}
3075
3076static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3077{
3078	struct mii_ioctl_data *data = if_mii(rq);
3079	struct netdev_private *np = netdev_priv(dev);
3080
3081	switch(cmd) {
3082	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
3083		data->phy_id = np->phy_addr_external;
3084		/* Fall Through */
3085
3086	case SIOCGMIIREG:		/* Read MII PHY register. */
3087		/* The phy_id is not enough to uniquely identify
3088		 * the intended target. Therefore the command is sent to
3089		 * the given mii on the current port.
3090		 */
3091		if (dev->if_port == PORT_TP) {
3092			if ((data->phy_id & 0x1f) == np->phy_addr_external)
3093				data->val_out = mdio_read(dev,
3094							data->reg_num & 0x1f);
3095			else
3096				data->val_out = 0;
3097		} else {
3098			move_int_phy(dev, data->phy_id & 0x1f);
3099			data->val_out = miiport_read(dev, data->phy_id & 0x1f,
3100							data->reg_num & 0x1f);
3101		}
3102		return 0;
3103
3104	case SIOCSMIIREG:		/* Write MII PHY register. */
3105		if (dev->if_port == PORT_TP) {
3106			if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3107 				if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3108					np->advertising = data->val_in;
3109				mdio_write(dev, data->reg_num & 0x1f,
3110							data->val_in);
3111			}
3112		} else {
3113			if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3114 				if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3115					np->advertising = data->val_in;
3116			}
3117			move_int_phy(dev, data->phy_id & 0x1f);
3118			miiport_write(dev, data->phy_id & 0x1f,
3119						data->reg_num & 0x1f,
3120						data->val_in);
3121		}
3122		return 0;
3123	default:
3124		return -EOPNOTSUPP;
3125	}
3126}
3127
3128static void enable_wol_mode(struct net_device *dev, int enable_intr)
3129{
3130	void __iomem * ioaddr = ns_ioaddr(dev);
3131	struct netdev_private *np = netdev_priv(dev);
3132
3133	if (netif_msg_wol(np))
3134		printk(KERN_INFO "%s: remaining active for wake-on-lan\n",
3135			dev->name);
3136
3137	/* For WOL we must restart the rx process in silent mode.
3138	 * Write NULL to the RxRingPtr. Only possible if
3139	 * rx process is stopped
3140	 */
3141	writel(0, ioaddr + RxRingPtr);
3142
3143	/* read WoL status to clear */
3144	readl(ioaddr + WOLCmd);
3145
3146	/* PME on, clear status */
3147	writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun);
3148
3149	/* and restart the rx process */
3150	writel(RxOn, ioaddr + ChipCmd);
3151
3152	if (enable_intr) {
3153		/* enable the WOL interrupt.
3154		 * Could be used to send a netlink message.
3155		 */
3156		writel(WOLPkt | LinkChange, ioaddr + IntrMask);
3157		natsemi_irq_enable(dev);
3158	}
3159}
3160
3161static int netdev_close(struct net_device *dev)
3162{
3163	void __iomem * ioaddr = ns_ioaddr(dev);
3164	struct netdev_private *np = netdev_priv(dev);
3165	const int irq = np->pci_dev->irq;
3166
3167	if (netif_msg_ifdown(np))
3168		printk(KERN_DEBUG
3169			"%s: Shutting down ethercard, status was %#04x.\n",
3170			dev->name, (int)readl(ioaddr + ChipCmd));
3171	if (netif_msg_pktdata(np))
3172		printk(KERN_DEBUG
3173			"%s: Queue pointers were Tx %d / %d,  Rx %d / %d.\n",
3174			dev->name, np->cur_tx, np->dirty_tx,
3175			np->cur_rx, np->dirty_rx);
3176
3177	napi_disable(&np->napi);
3178
3179	/*
3180	 * FIXME: what if someone tries to close a device
3181	 * that is suspended?
3182	 * Should we reenable the nic to switch to
3183	 * the final WOL settings?
3184	 */
3185
3186	del_timer_sync(&np->timer);
3187	disable_irq(irq);
3188	spin_lock_irq(&np->lock);
3189	natsemi_irq_disable(dev);
3190	np->hands_off = 1;
3191	spin_unlock_irq(&np->lock);
3192	enable_irq(irq);
3193
3194	free_irq(irq, dev);
3195
3196	/* Interrupt disabled, interrupt handler released,
3197	 * queue stopped, timer deleted, rtnl_lock held
3198	 * All async codepaths that access the driver are disabled.
3199	 */
3200	spin_lock_irq(&np->lock);
3201	np->hands_off = 0;
3202	readl(ioaddr + IntrMask);
3203	readw(ioaddr + MIntrStatus);
3204
3205	/* Freeze Stats */
3206	writel(StatsFreeze, ioaddr + StatsCtrl);
3207
3208	/* Stop the chip's Tx and Rx processes. */
3209	natsemi_stop_rxtx(dev);
3210
3211	__get_stats(dev);
3212	spin_unlock_irq(&np->lock);
3213
3214	/* clear the carrier last - an interrupt could reenable it otherwise */
3215	netif_carrier_off(dev);
3216	netif_stop_queue(dev);
3217
3218	dump_ring(dev);
3219	drain_ring(dev);
3220	free_ring(dev);
3221
3222	{
3223		u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3224		if (wol) {
3225			/* restart the NIC in WOL mode.
3226			 * The nic must be stopped for this.
3227			 */
3228			enable_wol_mode(dev, 0);
3229		} else {
3230			/* Restore PME enable bit unmolested */
3231			writel(np->SavedClkRun, ioaddr + ClkRun);
3232		}
3233	}
3234	return 0;
3235}
3236
3237
3238static void natsemi_remove1(struct pci_dev *pdev)
3239{
3240	struct net_device *dev = pci_get_drvdata(pdev);
3241	void __iomem * ioaddr = ns_ioaddr(dev);
3242
3243	NATSEMI_REMOVE_FILE(pdev, dspcfg_workaround);
3244	unregister_netdev (dev);
3245	pci_release_regions (pdev);
3246	iounmap(ioaddr);
3247	free_netdev (dev);
3248}
3249
3250#ifdef CONFIG_PM
3251
3252/*
3253 * The ns83815 chip doesn't have explicit RxStop bits.
3254 * Kicking the Rx or Tx process for a new packet reenables the Rx process
3255 * of the nic, thus this function must be very careful:
3256 *
3257 * suspend/resume synchronization:
3258 * entry points:
3259 *   netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler,
3260 *   start_tx, ns_tx_timeout
3261 *
3262 * No function accesses the hardware without checking np->hands_off.
3263 *	the check occurs under spin_lock_irq(&np->lock);
3264 * exceptions:
3265 *	* netdev_ioctl: noncritical access.
3266 *	* netdev_open: cannot happen due to the device_detach
3267 *	* netdev_close: doesn't hurt.
3268 *	* netdev_timer: timer stopped by natsemi_suspend.
3269 *	* intr_handler: doesn't acquire the spinlock. suspend calls
3270 *		disable_irq() to enforce synchronization.
3271 *      * natsemi_poll: checks before reenabling interrupts.  suspend
3272 *              sets hands_off, disables interrupts and then waits with
3273 *              napi_disable().
3274 *
3275 * Interrupts must be disabled, otherwise hands_off can cause irq storms.
3276 */
3277
3278static int natsemi_suspend (struct pci_dev *pdev, pm_message_t state)
3279{
3280	struct net_device *dev = pci_get_drvdata (pdev);
3281	struct netdev_private *np = netdev_priv(dev);
3282	void __iomem * ioaddr = ns_ioaddr(dev);
3283
3284	rtnl_lock();
3285	if (netif_running (dev)) {
3286		const int irq = np->pci_dev->irq;
3287
3288		del_timer_sync(&np->timer);
3289
3290		disable_irq(irq);
3291		spin_lock_irq(&np->lock);
3292
3293		natsemi_irq_disable(dev);
3294		np->hands_off = 1;
3295		natsemi_stop_rxtx(dev);
3296		netif_stop_queue(dev);
3297
3298		spin_unlock_irq(&np->lock);
3299		enable_irq(irq);
3300
3301		napi_disable(&np->napi);
3302
3303		/* Update the error counts. */
3304		__get_stats(dev);
3305
3306		/* pci_power_off(pdev, -1); */
3307		drain_ring(dev);
3308		{
3309			u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3310			/* Restore PME enable bit */
3311			if (wol) {
3312				/* restart the NIC in WOL mode.
3313				 * The nic must be stopped for this.
3314				 * FIXME: use the WOL interrupt
3315				 */
3316				enable_wol_mode(dev, 0);
3317			} else {
3318				/* Restore PME enable bit unmolested */
3319				writel(np->SavedClkRun, ioaddr + ClkRun);
3320			}
3321		}
3322	}
3323	netif_device_detach(dev);
3324	rtnl_unlock();
3325	return 0;
3326}
3327
3328
3329static int natsemi_resume (struct pci_dev *pdev)
3330{
3331	struct net_device *dev = pci_get_drvdata (pdev);
3332	struct netdev_private *np = netdev_priv(dev);
3333	int ret = 0;
3334
3335	rtnl_lock();
3336	if (netif_device_present(dev))
3337		goto out;
3338	if (netif_running(dev)) {
3339		const int irq = np->pci_dev->irq;
3340
3341		BUG_ON(!np->hands_off);
3342		ret = pci_enable_device(pdev);
3343		if (ret < 0) {
3344			dev_err(&pdev->dev,
3345				"pci_enable_device() failed: %d\n", ret);
3346			goto out;
3347		}
3348	/*	pci_power_on(pdev); */
3349
3350		napi_enable(&np->napi);
3351
3352		natsemi_reset(dev);
3353		init_ring(dev);
3354		disable_irq(irq);
3355		spin_lock_irq(&np->lock);
3356		np->hands_off = 0;
3357		init_registers(dev);
3358		netif_device_attach(dev);
3359		spin_unlock_irq(&np->lock);
3360		enable_irq(irq);
3361
3362		mod_timer(&np->timer, round_jiffies(jiffies + 1*HZ));
3363	}
3364	netif_device_attach(dev);
3365out:
3366	rtnl_unlock();
3367	return ret;
3368}
3369
3370#endif /* CONFIG_PM */
3371
3372static struct pci_driver natsemi_driver = {
3373	.name		= DRV_NAME,
3374	.id_table	= natsemi_pci_tbl,
3375	.probe		= natsemi_probe1,
3376	.remove		= natsemi_remove1,
3377#ifdef CONFIG_PM
3378	.suspend	= natsemi_suspend,
3379	.resume		= natsemi_resume,
3380#endif
3381};
3382
3383static int __init natsemi_init_mod (void)
3384{
3385/* when a module, this is printed whether or not devices are found in probe */
3386#ifdef MODULE
3387	printk(version);
3388#endif
3389
3390	return pci_register_driver(&natsemi_driver);
3391}
3392
3393static void __exit natsemi_exit_mod (void)
3394{
3395	pci_unregister_driver (&natsemi_driver);
3396}
3397
3398module_init(natsemi_init_mod);
3399module_exit(natsemi_exit_mod);
3400