Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Microchip switch driver main logic
   4 *
   5 * Copyright (C) 2017-2024 Microchip Technology Inc.
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#include <linux/delay.h>
   9#include <linux/dsa/ksz_common.h>
  10#include <linux/export.h>
  11#include <linux/gpio/consumer.h>
  12#include <linux/kernel.h>
  13#include <linux/module.h>
  14#include <linux/platform_data/microchip-ksz.h>
  15#include <linux/phy.h>
  16#include <linux/etherdevice.h>
  17#include <linux/if_bridge.h>
  18#include <linux/if_vlan.h>
  19#include <linux/if_hsr.h>
  20#include <linux/irq.h>
  21#include <linux/irqdomain.h>
  22#include <linux/of.h>
  23#include <linux/of_mdio.h>
  24#include <linux/of_net.h>
  25#include <linux/micrel_phy.h>
  26#include <net/dsa.h>
  27#include <net/ieee8021q.h>
  28#include <net/pkt_cls.h>
  29#include <net/switchdev.h>
  30
  31#include "ksz_common.h"
  32#include "ksz_dcb.h"
  33#include "ksz_ptp.h"
  34#include "ksz8.h"
  35#include "ksz9477.h"
  36#include "lan937x.h"
  37
  38#define MIB_COUNTER_NUM 0x20
  39
  40struct ksz_stats_raw {
  41	u64 rx_hi;
  42	u64 rx_undersize;
  43	u64 rx_fragments;
  44	u64 rx_oversize;
  45	u64 rx_jabbers;
  46	u64 rx_symbol_err;
  47	u64 rx_crc_err;
  48	u64 rx_align_err;
  49	u64 rx_mac_ctrl;
  50	u64 rx_pause;
  51	u64 rx_bcast;
  52	u64 rx_mcast;
  53	u64 rx_ucast;
  54	u64 rx_64_or_less;
  55	u64 rx_65_127;
  56	u64 rx_128_255;
  57	u64 rx_256_511;
  58	u64 rx_512_1023;
  59	u64 rx_1024_1522;
  60	u64 rx_1523_2000;
  61	u64 rx_2001;
  62	u64 tx_hi;
  63	u64 tx_late_col;
  64	u64 tx_pause;
  65	u64 tx_bcast;
  66	u64 tx_mcast;
  67	u64 tx_ucast;
  68	u64 tx_deferred;
  69	u64 tx_total_col;
  70	u64 tx_exc_col;
  71	u64 tx_single_col;
  72	u64 tx_mult_col;
  73	u64 rx_total;
  74	u64 tx_total;
  75	u64 rx_discards;
  76	u64 tx_discards;
  77};
  78
  79struct ksz88xx_stats_raw {
  80	u64 rx;
  81	u64 rx_hi;
  82	u64 rx_undersize;
  83	u64 rx_fragments;
  84	u64 rx_oversize;
  85	u64 rx_jabbers;
  86	u64 rx_symbol_err;
  87	u64 rx_crc_err;
  88	u64 rx_align_err;
  89	u64 rx_mac_ctrl;
  90	u64 rx_pause;
  91	u64 rx_bcast;
  92	u64 rx_mcast;
  93	u64 rx_ucast;
  94	u64 rx_64_or_less;
  95	u64 rx_65_127;
  96	u64 rx_128_255;
  97	u64 rx_256_511;
  98	u64 rx_512_1023;
  99	u64 rx_1024_1522;
 100	u64 tx;
 101	u64 tx_hi;
 102	u64 tx_late_col;
 103	u64 tx_pause;
 104	u64 tx_bcast;
 105	u64 tx_mcast;
 106	u64 tx_ucast;
 107	u64 tx_deferred;
 108	u64 tx_total_col;
 109	u64 tx_exc_col;
 110	u64 tx_single_col;
 111	u64 tx_mult_col;
 112	u64 rx_discards;
 113	u64 tx_discards;
 114};
 115
 116static const struct ksz_mib_names ksz88xx_mib_names[] = {
 117	{ 0x00, "rx" },
 118	{ 0x01, "rx_hi" },
 119	{ 0x02, "rx_undersize" },
 120	{ 0x03, "rx_fragments" },
 121	{ 0x04, "rx_oversize" },
 122	{ 0x05, "rx_jabbers" },
 123	{ 0x06, "rx_symbol_err" },
 124	{ 0x07, "rx_crc_err" },
 125	{ 0x08, "rx_align_err" },
 126	{ 0x09, "rx_mac_ctrl" },
 127	{ 0x0a, "rx_pause" },
 128	{ 0x0b, "rx_bcast" },
 129	{ 0x0c, "rx_mcast" },
 130	{ 0x0d, "rx_ucast" },
 131	{ 0x0e, "rx_64_or_less" },
 132	{ 0x0f, "rx_65_127" },
 133	{ 0x10, "rx_128_255" },
 134	{ 0x11, "rx_256_511" },
 135	{ 0x12, "rx_512_1023" },
 136	{ 0x13, "rx_1024_1522" },
 137	{ 0x14, "tx" },
 138	{ 0x15, "tx_hi" },
 139	{ 0x16, "tx_late_col" },
 140	{ 0x17, "tx_pause" },
 141	{ 0x18, "tx_bcast" },
 142	{ 0x19, "tx_mcast" },
 143	{ 0x1a, "tx_ucast" },
 144	{ 0x1b, "tx_deferred" },
 145	{ 0x1c, "tx_total_col" },
 146	{ 0x1d, "tx_exc_col" },
 147	{ 0x1e, "tx_single_col" },
 148	{ 0x1f, "tx_mult_col" },
 149	{ 0x100, "rx_discards" },
 150	{ 0x101, "tx_discards" },
 151};
 152
 153static const struct ksz_mib_names ksz9477_mib_names[] = {
 154	{ 0x00, "rx_hi" },
 155	{ 0x01, "rx_undersize" },
 156	{ 0x02, "rx_fragments" },
 157	{ 0x03, "rx_oversize" },
 158	{ 0x04, "rx_jabbers" },
 159	{ 0x05, "rx_symbol_err" },
 160	{ 0x06, "rx_crc_err" },
 161	{ 0x07, "rx_align_err" },
 162	{ 0x08, "rx_mac_ctrl" },
 163	{ 0x09, "rx_pause" },
 164	{ 0x0A, "rx_bcast" },
 165	{ 0x0B, "rx_mcast" },
 166	{ 0x0C, "rx_ucast" },
 167	{ 0x0D, "rx_64_or_less" },
 168	{ 0x0E, "rx_65_127" },
 169	{ 0x0F, "rx_128_255" },
 170	{ 0x10, "rx_256_511" },
 171	{ 0x11, "rx_512_1023" },
 172	{ 0x12, "rx_1024_1522" },
 173	{ 0x13, "rx_1523_2000" },
 174	{ 0x14, "rx_2001" },
 175	{ 0x15, "tx_hi" },
 176	{ 0x16, "tx_late_col" },
 177	{ 0x17, "tx_pause" },
 178	{ 0x18, "tx_bcast" },
 179	{ 0x19, "tx_mcast" },
 180	{ 0x1A, "tx_ucast" },
 181	{ 0x1B, "tx_deferred" },
 182	{ 0x1C, "tx_total_col" },
 183	{ 0x1D, "tx_exc_col" },
 184	{ 0x1E, "tx_single_col" },
 185	{ 0x1F, "tx_mult_col" },
 186	{ 0x80, "rx_total" },
 187	{ 0x81, "tx_total" },
 188	{ 0x82, "rx_discards" },
 189	{ 0x83, "tx_discards" },
 190};
 191
 192struct ksz_driver_strength_prop {
 193	const char *name;
 194	int offset;
 195	int value;
 196};
 197
 198enum ksz_driver_strength_type {
 199	KSZ_DRIVER_STRENGTH_HI,
 200	KSZ_DRIVER_STRENGTH_LO,
 201	KSZ_DRIVER_STRENGTH_IO,
 202};
 203
 204/**
 205 * struct ksz_drive_strength - drive strength mapping
 206 * @reg_val:	register value
 207 * @microamp:	microamp value
 208 */
 209struct ksz_drive_strength {
 210	u32 reg_val;
 211	u32 microamp;
 212};
 213
 214/* ksz9477_drive_strengths - Drive strength mapping for KSZ9477 variants
 215 *
 216 * This values are not documented in KSZ9477 variants but confirmed by
 217 * Microchip that KSZ9477, KSZ9567, KSZ8567, KSZ9897, KSZ9896, KSZ9563, KSZ9893
 218 * and KSZ8563 are using same register (drive strength) settings like KSZ8795.
 219 *
 220 * Documentation in KSZ8795CLX provides more information with some
 221 * recommendations:
 222 * - for high speed signals
 223 *   1. 4 mA or 8 mA is often used for MII, RMII, and SPI interface with using
 224 *      2.5V or 3.3V VDDIO.
 225 *   2. 12 mA or 16 mA is often used for MII, RMII, and SPI interface with
 226 *      using 1.8V VDDIO.
 227 *   3. 20 mA or 24 mA is often used for GMII/RGMII interface with using 2.5V
 228 *      or 3.3V VDDIO.
 229 *   4. 28 mA is often used for GMII/RGMII interface with using 1.8V VDDIO.
 230 *   5. In same interface, the heavy loading should use higher one of the
 231 *      drive current strength.
 232 * - for low speed signals
 233 *   1. 3.3V VDDIO, use either 4 mA or 8 mA.
 234 *   2. 2.5V VDDIO, use either 8 mA or 12 mA.
 235 *   3. 1.8V VDDIO, use either 12 mA or 16 mA.
 236 *   4. If it is heavy loading, can use higher drive current strength.
 237 */
 238static const struct ksz_drive_strength ksz9477_drive_strengths[] = {
 239	{ SW_DRIVE_STRENGTH_2MA,  2000 },
 240	{ SW_DRIVE_STRENGTH_4MA,  4000 },
 241	{ SW_DRIVE_STRENGTH_8MA,  8000 },
 242	{ SW_DRIVE_STRENGTH_12MA, 12000 },
 243	{ SW_DRIVE_STRENGTH_16MA, 16000 },
 244	{ SW_DRIVE_STRENGTH_20MA, 20000 },
 245	{ SW_DRIVE_STRENGTH_24MA, 24000 },
 246	{ SW_DRIVE_STRENGTH_28MA, 28000 },
 247};
 248
 249/* ksz88x3_drive_strengths - Drive strength mapping for KSZ8863, KSZ8873, ..
 250 *			     variants.
 251 * This values are documented in KSZ8873 and KSZ8863 datasheets.
 252 */
 253static const struct ksz_drive_strength ksz88x3_drive_strengths[] = {
 254	{ 0,  8000 },
 255	{ KSZ8873_DRIVE_STRENGTH_16MA, 16000 },
 256};
 257
 258static void ksz88x3_phylink_mac_config(struct phylink_config *config,
 259				       unsigned int mode,
 260				       const struct phylink_link_state *state);
 261static void ksz_phylink_mac_config(struct phylink_config *config,
 262				   unsigned int mode,
 263				   const struct phylink_link_state *state);
 264static void ksz_phylink_mac_link_down(struct phylink_config *config,
 265				      unsigned int mode,
 266				      phy_interface_t interface);
 267
 268static const struct phylink_mac_ops ksz88x3_phylink_mac_ops = {
 269	.mac_config	= ksz88x3_phylink_mac_config,
 270	.mac_link_down	= ksz_phylink_mac_link_down,
 271	.mac_link_up	= ksz8_phylink_mac_link_up,
 272};
 273
 274static const struct phylink_mac_ops ksz8_phylink_mac_ops = {
 275	.mac_config	= ksz_phylink_mac_config,
 276	.mac_link_down	= ksz_phylink_mac_link_down,
 277	.mac_link_up	= ksz8_phylink_mac_link_up,
 278};
 279
 280static const struct ksz_dev_ops ksz88xx_dev_ops = {
 281	.setup = ksz8_setup,
 282	.get_port_addr = ksz8_get_port_addr,
 283	.cfg_port_member = ksz8_cfg_port_member,
 284	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
 285	.port_setup = ksz8_port_setup,
 286	.r_phy = ksz8_r_phy,
 287	.w_phy = ksz8_w_phy,
 288	.r_mib_cnt = ksz8_r_mib_cnt,
 289	.r_mib_pkt = ksz8_r_mib_pkt,
 290	.r_mib_stat64 = ksz88xx_r_mib_stats64,
 291	.freeze_mib = ksz8_freeze_mib,
 292	.port_init_cnt = ksz8_port_init_cnt,
 293	.fdb_dump = ksz8_fdb_dump,
 294	.fdb_add = ksz8_fdb_add,
 295	.fdb_del = ksz8_fdb_del,
 296	.mdb_add = ksz8_mdb_add,
 297	.mdb_del = ksz8_mdb_del,
 298	.vlan_filtering = ksz8_port_vlan_filtering,
 299	.vlan_add = ksz8_port_vlan_add,
 300	.vlan_del = ksz8_port_vlan_del,
 301	.mirror_add = ksz8_port_mirror_add,
 302	.mirror_del = ksz8_port_mirror_del,
 303	.get_caps = ksz8_get_caps,
 304	.config_cpu_port = ksz8_config_cpu_port,
 305	.enable_stp_addr = ksz8_enable_stp_addr,
 306	.reset = ksz8_reset_switch,
 307	.init = ksz8_switch_init,
 308	.exit = ksz8_switch_exit,
 309	.change_mtu = ksz8_change_mtu,
 310	.pme_write8 = ksz8_pme_write8,
 311	.pme_pread8 = ksz8_pme_pread8,
 312	.pme_pwrite8 = ksz8_pme_pwrite8,
 313};
 314
 315static const struct ksz_dev_ops ksz87xx_dev_ops = {
 316	.setup = ksz8_setup,
 317	.get_port_addr = ksz8_get_port_addr,
 318	.cfg_port_member = ksz8_cfg_port_member,
 319	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
 320	.port_setup = ksz8_port_setup,
 321	.r_phy = ksz8_r_phy,
 322	.w_phy = ksz8_w_phy,
 323	.r_mib_cnt = ksz8_r_mib_cnt,
 324	.r_mib_pkt = ksz8_r_mib_pkt,
 325	.r_mib_stat64 = ksz_r_mib_stats64,
 326	.freeze_mib = ksz8_freeze_mib,
 327	.port_init_cnt = ksz8_port_init_cnt,
 328	.fdb_dump = ksz8_fdb_dump,
 329	.fdb_add = ksz8_fdb_add,
 330	.fdb_del = ksz8_fdb_del,
 331	.mdb_add = ksz8_mdb_add,
 332	.mdb_del = ksz8_mdb_del,
 333	.vlan_filtering = ksz8_port_vlan_filtering,
 334	.vlan_add = ksz8_port_vlan_add,
 335	.vlan_del = ksz8_port_vlan_del,
 336	.mirror_add = ksz8_port_mirror_add,
 337	.mirror_del = ksz8_port_mirror_del,
 338	.get_caps = ksz8_get_caps,
 339	.config_cpu_port = ksz8_config_cpu_port,
 340	.enable_stp_addr = ksz8_enable_stp_addr,
 341	.reset = ksz8_reset_switch,
 342	.init = ksz8_switch_init,
 343	.exit = ksz8_switch_exit,
 344	.change_mtu = ksz8_change_mtu,
 345	.pme_write8 = ksz8_pme_write8,
 346	.pme_pread8 = ksz8_pme_pread8,
 347	.pme_pwrite8 = ksz8_pme_pwrite8,
 348};
 349
 350static void ksz9477_phylink_mac_link_up(struct phylink_config *config,
 351					struct phy_device *phydev,
 352					unsigned int mode,
 353					phy_interface_t interface,
 354					int speed, int duplex, bool tx_pause,
 355					bool rx_pause);
 356
 357static const struct phylink_mac_ops ksz9477_phylink_mac_ops = {
 358	.mac_config	= ksz_phylink_mac_config,
 359	.mac_link_down	= ksz_phylink_mac_link_down,
 360	.mac_link_up	= ksz9477_phylink_mac_link_up,
 361};
 362
 363static const struct ksz_dev_ops ksz9477_dev_ops = {
 364	.setup = ksz9477_setup,
 365	.get_port_addr = ksz9477_get_port_addr,
 366	.cfg_port_member = ksz9477_cfg_port_member,
 367	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
 368	.port_setup = ksz9477_port_setup,
 369	.set_ageing_time = ksz9477_set_ageing_time,
 370	.r_phy = ksz9477_r_phy,
 371	.w_phy = ksz9477_w_phy,
 372	.r_mib_cnt = ksz9477_r_mib_cnt,
 373	.r_mib_pkt = ksz9477_r_mib_pkt,
 374	.r_mib_stat64 = ksz_r_mib_stats64,
 375	.freeze_mib = ksz9477_freeze_mib,
 376	.port_init_cnt = ksz9477_port_init_cnt,
 377	.vlan_filtering = ksz9477_port_vlan_filtering,
 378	.vlan_add = ksz9477_port_vlan_add,
 379	.vlan_del = ksz9477_port_vlan_del,
 380	.mirror_add = ksz9477_port_mirror_add,
 381	.mirror_del = ksz9477_port_mirror_del,
 382	.get_caps = ksz9477_get_caps,
 383	.fdb_dump = ksz9477_fdb_dump,
 384	.fdb_add = ksz9477_fdb_add,
 385	.fdb_del = ksz9477_fdb_del,
 386	.mdb_add = ksz9477_mdb_add,
 387	.mdb_del = ksz9477_mdb_del,
 388	.change_mtu = ksz9477_change_mtu,
 389	.pme_write8 = ksz_write8,
 390	.pme_pread8 = ksz_pread8,
 391	.pme_pwrite8 = ksz_pwrite8,
 392	.config_cpu_port = ksz9477_config_cpu_port,
 393	.tc_cbs_set_cinc = ksz9477_tc_cbs_set_cinc,
 394	.enable_stp_addr = ksz9477_enable_stp_addr,
 395	.reset = ksz9477_reset_switch,
 396	.init = ksz9477_switch_init,
 397	.exit = ksz9477_switch_exit,
 398};
 399
 400static const struct phylink_mac_ops lan937x_phylink_mac_ops = {
 401	.mac_config	= ksz_phylink_mac_config,
 402	.mac_link_down	= ksz_phylink_mac_link_down,
 403	.mac_link_up	= ksz9477_phylink_mac_link_up,
 404};
 405
 406static const struct ksz_dev_ops lan937x_dev_ops = {
 407	.setup = lan937x_setup,
 408	.teardown = lan937x_teardown,
 409	.get_port_addr = ksz9477_get_port_addr,
 410	.cfg_port_member = ksz9477_cfg_port_member,
 411	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
 412	.port_setup = lan937x_port_setup,
 413	.set_ageing_time = lan937x_set_ageing_time,
 414	.mdio_bus_preinit = lan937x_mdio_bus_preinit,
 415	.create_phy_addr_map = lan937x_create_phy_addr_map,
 416	.r_phy = lan937x_r_phy,
 417	.w_phy = lan937x_w_phy,
 418	.r_mib_cnt = ksz9477_r_mib_cnt,
 419	.r_mib_pkt = ksz9477_r_mib_pkt,
 420	.r_mib_stat64 = ksz_r_mib_stats64,
 421	.freeze_mib = ksz9477_freeze_mib,
 422	.port_init_cnt = ksz9477_port_init_cnt,
 423	.vlan_filtering = ksz9477_port_vlan_filtering,
 424	.vlan_add = ksz9477_port_vlan_add,
 425	.vlan_del = ksz9477_port_vlan_del,
 426	.mirror_add = ksz9477_port_mirror_add,
 427	.mirror_del = ksz9477_port_mirror_del,
 428	.get_caps = lan937x_phylink_get_caps,
 429	.setup_rgmii_delay = lan937x_setup_rgmii_delay,
 430	.fdb_dump = ksz9477_fdb_dump,
 431	.fdb_add = ksz9477_fdb_add,
 432	.fdb_del = ksz9477_fdb_del,
 433	.mdb_add = ksz9477_mdb_add,
 434	.mdb_del = ksz9477_mdb_del,
 435	.change_mtu = lan937x_change_mtu,
 436	.config_cpu_port = lan937x_config_cpu_port,
 437	.tc_cbs_set_cinc = lan937x_tc_cbs_set_cinc,
 438	.enable_stp_addr = ksz9477_enable_stp_addr,
 439	.reset = lan937x_reset_switch,
 440	.init = lan937x_switch_init,
 441	.exit = lan937x_switch_exit,
 442};
 443
 444static const u16 ksz8795_regs[] = {
 445	[REG_SW_MAC_ADDR]		= 0x68,
 446	[REG_IND_CTRL_0]		= 0x6E,
 447	[REG_IND_DATA_8]		= 0x70,
 448	[REG_IND_DATA_CHECK]		= 0x72,
 449	[REG_IND_DATA_HI]		= 0x71,
 450	[REG_IND_DATA_LO]		= 0x75,
 451	[REG_IND_MIB_CHECK]		= 0x74,
 452	[REG_IND_BYTE]			= 0xA0,
 453	[P_FORCE_CTRL]			= 0x0C,
 454	[P_LINK_STATUS]			= 0x0E,
 455	[P_LOCAL_CTRL]			= 0x07,
 456	[P_NEG_RESTART_CTRL]		= 0x0D,
 457	[P_REMOTE_STATUS]		= 0x08,
 458	[P_SPEED_STATUS]		= 0x09,
 459	[S_TAIL_TAG_CTRL]		= 0x0C,
 460	[P_STP_CTRL]			= 0x02,
 461	[S_START_CTRL]			= 0x01,
 462	[S_BROADCAST_CTRL]		= 0x06,
 463	[S_MULTICAST_CTRL]		= 0x04,
 464	[P_XMII_CTRL_0]			= 0x06,
 465	[P_XMII_CTRL_1]			= 0x06,
 466	[REG_SW_PME_CTRL]		= 0x8003,
 467	[REG_PORT_PME_STATUS]		= 0x8003,
 468	[REG_PORT_PME_CTRL]		= 0x8007,
 469};
 470
 471static const u32 ksz8795_masks[] = {
 472	[PORT_802_1P_REMAPPING]		= BIT(7),
 473	[SW_TAIL_TAG_ENABLE]		= BIT(1),
 474	[MIB_COUNTER_OVERFLOW]		= BIT(6),
 475	[MIB_COUNTER_VALID]		= BIT(5),
 476	[VLAN_TABLE_FID]		= GENMASK(6, 0),
 477	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(11, 7),
 478	[VLAN_TABLE_VALID]		= BIT(12),
 479	[STATIC_MAC_TABLE_VALID]	= BIT(21),
 480	[STATIC_MAC_TABLE_USE_FID]	= BIT(23),
 481	[STATIC_MAC_TABLE_FID]		= GENMASK(30, 24),
 482	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(22),
 483	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(20, 16),
 484	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(6, 0),
 485	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(7),
 486	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
 487	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 29),
 488	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(22, 16),
 489	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(26, 24),
 490	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(28, 27),
 491	[P_MII_TX_FLOW_CTRL]		= BIT(5),
 492	[P_MII_RX_FLOW_CTRL]		= BIT(5),
 493};
 494
 495static const u8 ksz8795_xmii_ctrl0[] = {
 496	[P_MII_100MBIT]			= 0,
 497	[P_MII_10MBIT]			= 1,
 498	[P_MII_FULL_DUPLEX]		= 0,
 499	[P_MII_HALF_DUPLEX]		= 1,
 500};
 501
 502static const u8 ksz8795_xmii_ctrl1[] = {
 503	[P_RGMII_SEL]			= 3,
 504	[P_GMII_SEL]			= 2,
 505	[P_RMII_SEL]			= 1,
 506	[P_MII_SEL]			= 0,
 507	[P_GMII_1GBIT]			= 1,
 508	[P_GMII_NOT_1GBIT]		= 0,
 509};
 510
 511static const u8 ksz8795_shifts[] = {
 512	[VLAN_TABLE_MEMBERSHIP_S]	= 7,
 513	[VLAN_TABLE]			= 16,
 514	[STATIC_MAC_FWD_PORTS]		= 16,
 515	[STATIC_MAC_FID]		= 24,
 516	[DYNAMIC_MAC_ENTRIES_H]		= 3,
 517	[DYNAMIC_MAC_ENTRIES]		= 29,
 518	[DYNAMIC_MAC_FID]		= 16,
 519	[DYNAMIC_MAC_TIMESTAMP]		= 27,
 520	[DYNAMIC_MAC_SRC_PORT]		= 24,
 521};
 522
 523static const u16 ksz8863_regs[] = {
 524	[REG_SW_MAC_ADDR]		= 0x70,
 525	[REG_IND_CTRL_0]		= 0x79,
 526	[REG_IND_DATA_8]		= 0x7B,
 527	[REG_IND_DATA_CHECK]		= 0x7B,
 528	[REG_IND_DATA_HI]		= 0x7C,
 529	[REG_IND_DATA_LO]		= 0x80,
 530	[REG_IND_MIB_CHECK]		= 0x80,
 531	[P_FORCE_CTRL]			= 0x0C,
 532	[P_LINK_STATUS]			= 0x0E,
 533	[P_LOCAL_CTRL]			= 0x0C,
 534	[P_NEG_RESTART_CTRL]		= 0x0D,
 535	[P_REMOTE_STATUS]		= 0x0E,
 536	[P_SPEED_STATUS]		= 0x0F,
 537	[S_TAIL_TAG_CTRL]		= 0x03,
 538	[P_STP_CTRL]			= 0x02,
 539	[S_START_CTRL]			= 0x01,
 540	[S_BROADCAST_CTRL]		= 0x06,
 541	[S_MULTICAST_CTRL]		= 0x04,
 542};
 543
 544static const u32 ksz8863_masks[] = {
 545	[PORT_802_1P_REMAPPING]		= BIT(3),
 546	[SW_TAIL_TAG_ENABLE]		= BIT(6),
 547	[MIB_COUNTER_OVERFLOW]		= BIT(7),
 548	[MIB_COUNTER_VALID]		= BIT(6),
 549	[VLAN_TABLE_FID]		= GENMASK(15, 12),
 550	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(18, 16),
 551	[VLAN_TABLE_VALID]		= BIT(19),
 552	[STATIC_MAC_TABLE_VALID]	= BIT(19),
 553	[STATIC_MAC_TABLE_USE_FID]	= BIT(21),
 554	[STATIC_MAC_TABLE_FID]		= GENMASK(25, 22),
 555	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(20),
 556	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(18, 16),
 557	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(1, 0),
 558	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(2),
 559	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
 560	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 24),
 561	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(19, 16),
 562	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(21, 20),
 563	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(23, 22),
 564};
 565
 566static u8 ksz8863_shifts[] = {
 567	[VLAN_TABLE_MEMBERSHIP_S]	= 16,
 568	[STATIC_MAC_FWD_PORTS]		= 16,
 569	[STATIC_MAC_FID]		= 22,
 570	[DYNAMIC_MAC_ENTRIES_H]		= 8,
 571	[DYNAMIC_MAC_ENTRIES]		= 24,
 572	[DYNAMIC_MAC_FID]		= 16,
 573	[DYNAMIC_MAC_TIMESTAMP]		= 22,
 574	[DYNAMIC_MAC_SRC_PORT]		= 20,
 575};
 576
 577static const u16 ksz8895_regs[] = {
 578	[REG_SW_MAC_ADDR]		= 0x68,
 579	[REG_IND_CTRL_0]		= 0x6E,
 580	[REG_IND_DATA_8]		= 0x70,
 581	[REG_IND_DATA_CHECK]		= 0x72,
 582	[REG_IND_DATA_HI]		= 0x71,
 583	[REG_IND_DATA_LO]		= 0x75,
 584	[REG_IND_MIB_CHECK]		= 0x75,
 585	[P_FORCE_CTRL]			= 0x0C,
 586	[P_LINK_STATUS]			= 0x0E,
 587	[P_LOCAL_CTRL]			= 0x0C,
 588	[P_NEG_RESTART_CTRL]		= 0x0D,
 589	[P_REMOTE_STATUS]		= 0x0E,
 590	[P_SPEED_STATUS]		= 0x09,
 591	[S_TAIL_TAG_CTRL]		= 0x0C,
 592	[P_STP_CTRL]			= 0x02,
 593	[S_START_CTRL]			= 0x01,
 594	[S_BROADCAST_CTRL]		= 0x06,
 595	[S_MULTICAST_CTRL]		= 0x04,
 596};
 597
 598static const u32 ksz8895_masks[] = {
 599	[PORT_802_1P_REMAPPING]		= BIT(7),
 600	[SW_TAIL_TAG_ENABLE]		= BIT(1),
 601	[MIB_COUNTER_OVERFLOW]		= BIT(7),
 602	[MIB_COUNTER_VALID]		= BIT(6),
 603	[VLAN_TABLE_FID]		= GENMASK(6, 0),
 604	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(11, 7),
 605	[VLAN_TABLE_VALID]		= BIT(12),
 606	[STATIC_MAC_TABLE_VALID]	= BIT(21),
 607	[STATIC_MAC_TABLE_USE_FID]	= BIT(23),
 608	[STATIC_MAC_TABLE_FID]		= GENMASK(30, 24),
 609	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(22),
 610	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(20, 16),
 611	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(6, 0),
 612	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(7),
 613	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
 614	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 29),
 615	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(22, 16),
 616	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(26, 24),
 617	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(28, 27),
 618};
 619
 620static const u8 ksz8895_shifts[] = {
 621	[VLAN_TABLE_MEMBERSHIP_S]	= 7,
 622	[VLAN_TABLE]			= 13,
 623	[STATIC_MAC_FWD_PORTS]		= 16,
 624	[STATIC_MAC_FID]		= 24,
 625	[DYNAMIC_MAC_ENTRIES_H]		= 3,
 626	[DYNAMIC_MAC_ENTRIES]		= 29,
 627	[DYNAMIC_MAC_FID]		= 16,
 628	[DYNAMIC_MAC_TIMESTAMP]		= 27,
 629	[DYNAMIC_MAC_SRC_PORT]		= 24,
 630};
 631
 632static const u16 ksz9477_regs[] = {
 633	[REG_SW_MAC_ADDR]		= 0x0302,
 634	[P_STP_CTRL]			= 0x0B04,
 635	[S_START_CTRL]			= 0x0300,
 636	[S_BROADCAST_CTRL]		= 0x0332,
 637	[S_MULTICAST_CTRL]		= 0x0331,
 638	[P_XMII_CTRL_0]			= 0x0300,
 639	[P_XMII_CTRL_1]			= 0x0301,
 640	[REG_SW_PME_CTRL]		= 0x0006,
 641	[REG_PORT_PME_STATUS]		= 0x0013,
 642	[REG_PORT_PME_CTRL]		= 0x0017,
 643};
 644
 645static const u32 ksz9477_masks[] = {
 646	[ALU_STAT_WRITE]		= 0,
 647	[ALU_STAT_READ]			= 1,
 648	[P_MII_TX_FLOW_CTRL]		= BIT(5),
 649	[P_MII_RX_FLOW_CTRL]		= BIT(3),
 650};
 651
 652static const u8 ksz9477_shifts[] = {
 653	[ALU_STAT_INDEX]		= 16,
 654};
 655
 656static const u8 ksz9477_xmii_ctrl0[] = {
 657	[P_MII_100MBIT]			= 1,
 658	[P_MII_10MBIT]			= 0,
 659	[P_MII_FULL_DUPLEX]		= 1,
 660	[P_MII_HALF_DUPLEX]		= 0,
 661};
 662
 663static const u8 ksz9477_xmii_ctrl1[] = {
 664	[P_RGMII_SEL]			= 0,
 665	[P_RMII_SEL]			= 1,
 666	[P_GMII_SEL]			= 2,
 667	[P_MII_SEL]			= 3,
 668	[P_GMII_1GBIT]			= 0,
 669	[P_GMII_NOT_1GBIT]		= 1,
 670};
 671
 672static const u32 lan937x_masks[] = {
 673	[ALU_STAT_WRITE]		= 1,
 674	[ALU_STAT_READ]			= 2,
 675	[P_MII_TX_FLOW_CTRL]		= BIT(5),
 676	[P_MII_RX_FLOW_CTRL]		= BIT(3),
 677};
 678
 679static const u8 lan937x_shifts[] = {
 680	[ALU_STAT_INDEX]		= 8,
 681};
 682
 683static const struct regmap_range ksz8563_valid_regs[] = {
 684	regmap_reg_range(0x0000, 0x0003),
 685	regmap_reg_range(0x0006, 0x0006),
 686	regmap_reg_range(0x000f, 0x001f),
 687	regmap_reg_range(0x0100, 0x0100),
 688	regmap_reg_range(0x0104, 0x0107),
 689	regmap_reg_range(0x010d, 0x010d),
 690	regmap_reg_range(0x0110, 0x0113),
 691	regmap_reg_range(0x0120, 0x012b),
 692	regmap_reg_range(0x0201, 0x0201),
 693	regmap_reg_range(0x0210, 0x0213),
 694	regmap_reg_range(0x0300, 0x0300),
 695	regmap_reg_range(0x0302, 0x031b),
 696	regmap_reg_range(0x0320, 0x032b),
 697	regmap_reg_range(0x0330, 0x0336),
 698	regmap_reg_range(0x0338, 0x033e),
 699	regmap_reg_range(0x0340, 0x035f),
 700	regmap_reg_range(0x0370, 0x0370),
 701	regmap_reg_range(0x0378, 0x0378),
 702	regmap_reg_range(0x037c, 0x037d),
 703	regmap_reg_range(0x0390, 0x0393),
 704	regmap_reg_range(0x0400, 0x040e),
 705	regmap_reg_range(0x0410, 0x042f),
 706	regmap_reg_range(0x0500, 0x0519),
 707	regmap_reg_range(0x0520, 0x054b),
 708	regmap_reg_range(0x0550, 0x05b3),
 709
 710	/* port 1 */
 711	regmap_reg_range(0x1000, 0x1001),
 712	regmap_reg_range(0x1004, 0x100b),
 713	regmap_reg_range(0x1013, 0x1013),
 714	regmap_reg_range(0x1017, 0x1017),
 715	regmap_reg_range(0x101b, 0x101b),
 716	regmap_reg_range(0x101f, 0x1021),
 717	regmap_reg_range(0x1030, 0x1030),
 718	regmap_reg_range(0x1100, 0x1111),
 719	regmap_reg_range(0x111a, 0x111d),
 720	regmap_reg_range(0x1122, 0x1127),
 721	regmap_reg_range(0x112a, 0x112b),
 722	regmap_reg_range(0x1136, 0x1139),
 723	regmap_reg_range(0x113e, 0x113f),
 724	regmap_reg_range(0x1400, 0x1401),
 725	regmap_reg_range(0x1403, 0x1403),
 726	regmap_reg_range(0x1410, 0x1417),
 727	regmap_reg_range(0x1420, 0x1423),
 728	regmap_reg_range(0x1500, 0x1507),
 729	regmap_reg_range(0x1600, 0x1612),
 730	regmap_reg_range(0x1800, 0x180f),
 731	regmap_reg_range(0x1900, 0x1907),
 732	regmap_reg_range(0x1914, 0x191b),
 733	regmap_reg_range(0x1a00, 0x1a03),
 734	regmap_reg_range(0x1a04, 0x1a08),
 735	regmap_reg_range(0x1b00, 0x1b01),
 736	regmap_reg_range(0x1b04, 0x1b04),
 737	regmap_reg_range(0x1c00, 0x1c05),
 738	regmap_reg_range(0x1c08, 0x1c1b),
 739
 740	/* port 2 */
 741	regmap_reg_range(0x2000, 0x2001),
 742	regmap_reg_range(0x2004, 0x200b),
 743	regmap_reg_range(0x2013, 0x2013),
 744	regmap_reg_range(0x2017, 0x2017),
 745	regmap_reg_range(0x201b, 0x201b),
 746	regmap_reg_range(0x201f, 0x2021),
 747	regmap_reg_range(0x2030, 0x2030),
 748	regmap_reg_range(0x2100, 0x2111),
 749	regmap_reg_range(0x211a, 0x211d),
 750	regmap_reg_range(0x2122, 0x2127),
 751	regmap_reg_range(0x212a, 0x212b),
 752	regmap_reg_range(0x2136, 0x2139),
 753	regmap_reg_range(0x213e, 0x213f),
 754	regmap_reg_range(0x2400, 0x2401),
 755	regmap_reg_range(0x2403, 0x2403),
 756	regmap_reg_range(0x2410, 0x2417),
 757	regmap_reg_range(0x2420, 0x2423),
 758	regmap_reg_range(0x2500, 0x2507),
 759	regmap_reg_range(0x2600, 0x2612),
 760	regmap_reg_range(0x2800, 0x280f),
 761	regmap_reg_range(0x2900, 0x2907),
 762	regmap_reg_range(0x2914, 0x291b),
 763	regmap_reg_range(0x2a00, 0x2a03),
 764	regmap_reg_range(0x2a04, 0x2a08),
 765	regmap_reg_range(0x2b00, 0x2b01),
 766	regmap_reg_range(0x2b04, 0x2b04),
 767	regmap_reg_range(0x2c00, 0x2c05),
 768	regmap_reg_range(0x2c08, 0x2c1b),
 769
 770	/* port 3 */
 771	regmap_reg_range(0x3000, 0x3001),
 772	regmap_reg_range(0x3004, 0x300b),
 773	regmap_reg_range(0x3013, 0x3013),
 774	regmap_reg_range(0x3017, 0x3017),
 775	regmap_reg_range(0x301b, 0x301b),
 776	regmap_reg_range(0x301f, 0x3021),
 777	regmap_reg_range(0x3030, 0x3030),
 778	regmap_reg_range(0x3300, 0x3301),
 779	regmap_reg_range(0x3303, 0x3303),
 780	regmap_reg_range(0x3400, 0x3401),
 781	regmap_reg_range(0x3403, 0x3403),
 782	regmap_reg_range(0x3410, 0x3417),
 783	regmap_reg_range(0x3420, 0x3423),
 784	regmap_reg_range(0x3500, 0x3507),
 785	regmap_reg_range(0x3600, 0x3612),
 786	regmap_reg_range(0x3800, 0x380f),
 787	regmap_reg_range(0x3900, 0x3907),
 788	regmap_reg_range(0x3914, 0x391b),
 789	regmap_reg_range(0x3a00, 0x3a03),
 790	regmap_reg_range(0x3a04, 0x3a08),
 791	regmap_reg_range(0x3b00, 0x3b01),
 792	regmap_reg_range(0x3b04, 0x3b04),
 793	regmap_reg_range(0x3c00, 0x3c05),
 794	regmap_reg_range(0x3c08, 0x3c1b),
 795};
 796
 797static const struct regmap_access_table ksz8563_register_set = {
 798	.yes_ranges = ksz8563_valid_regs,
 799	.n_yes_ranges = ARRAY_SIZE(ksz8563_valid_regs),
 800};
 801
 802static const struct regmap_range ksz9477_valid_regs[] = {
 803	regmap_reg_range(0x0000, 0x0003),
 804	regmap_reg_range(0x0006, 0x0006),
 805	regmap_reg_range(0x0010, 0x001f),
 806	regmap_reg_range(0x0100, 0x0100),
 807	regmap_reg_range(0x0103, 0x0107),
 808	regmap_reg_range(0x010d, 0x010d),
 809	regmap_reg_range(0x0110, 0x0113),
 810	regmap_reg_range(0x0120, 0x012b),
 811	regmap_reg_range(0x0201, 0x0201),
 812	regmap_reg_range(0x0210, 0x0213),
 813	regmap_reg_range(0x0300, 0x0300),
 814	regmap_reg_range(0x0302, 0x031b),
 815	regmap_reg_range(0x0320, 0x032b),
 816	regmap_reg_range(0x0330, 0x0336),
 817	regmap_reg_range(0x0338, 0x033b),
 818	regmap_reg_range(0x033e, 0x033e),
 819	regmap_reg_range(0x0340, 0x035f),
 820	regmap_reg_range(0x0370, 0x0370),
 821	regmap_reg_range(0x0378, 0x0378),
 822	regmap_reg_range(0x037c, 0x037d),
 823	regmap_reg_range(0x0390, 0x0393),
 824	regmap_reg_range(0x0400, 0x040e),
 825	regmap_reg_range(0x0410, 0x042f),
 826	regmap_reg_range(0x0444, 0x044b),
 827	regmap_reg_range(0x0450, 0x046f),
 828	regmap_reg_range(0x0500, 0x0519),
 829	regmap_reg_range(0x0520, 0x054b),
 830	regmap_reg_range(0x0550, 0x05b3),
 831	regmap_reg_range(0x0604, 0x060b),
 832	regmap_reg_range(0x0610, 0x0612),
 833	regmap_reg_range(0x0614, 0x062c),
 834	regmap_reg_range(0x0640, 0x0645),
 835	regmap_reg_range(0x0648, 0x064d),
 836
 837	/* port 1 */
 838	regmap_reg_range(0x1000, 0x1001),
 839	regmap_reg_range(0x1013, 0x1013),
 840	regmap_reg_range(0x1017, 0x1017),
 841	regmap_reg_range(0x101b, 0x101b),
 842	regmap_reg_range(0x101f, 0x1020),
 843	regmap_reg_range(0x1030, 0x1030),
 844	regmap_reg_range(0x1100, 0x1115),
 845	regmap_reg_range(0x111a, 0x111f),
 846	regmap_reg_range(0x1120, 0x112b),
 847	regmap_reg_range(0x1134, 0x113b),
 848	regmap_reg_range(0x113c, 0x113f),
 849	regmap_reg_range(0x1400, 0x1401),
 850	regmap_reg_range(0x1403, 0x1403),
 851	regmap_reg_range(0x1410, 0x1417),
 852	regmap_reg_range(0x1420, 0x1423),
 853	regmap_reg_range(0x1500, 0x1507),
 854	regmap_reg_range(0x1600, 0x1613),
 855	regmap_reg_range(0x1800, 0x180f),
 856	regmap_reg_range(0x1820, 0x1827),
 857	regmap_reg_range(0x1830, 0x1837),
 858	regmap_reg_range(0x1840, 0x184b),
 859	regmap_reg_range(0x1900, 0x1907),
 860	regmap_reg_range(0x1914, 0x191b),
 861	regmap_reg_range(0x1920, 0x1920),
 862	regmap_reg_range(0x1923, 0x1927),
 863	regmap_reg_range(0x1a00, 0x1a03),
 864	regmap_reg_range(0x1a04, 0x1a07),
 865	regmap_reg_range(0x1b00, 0x1b01),
 866	regmap_reg_range(0x1b04, 0x1b04),
 867	regmap_reg_range(0x1c00, 0x1c05),
 868	regmap_reg_range(0x1c08, 0x1c1b),
 869
 870	/* port 2 */
 871	regmap_reg_range(0x2000, 0x2001),
 872	regmap_reg_range(0x2013, 0x2013),
 873	regmap_reg_range(0x2017, 0x2017),
 874	regmap_reg_range(0x201b, 0x201b),
 875	regmap_reg_range(0x201f, 0x2020),
 876	regmap_reg_range(0x2030, 0x2030),
 877	regmap_reg_range(0x2100, 0x2115),
 878	regmap_reg_range(0x211a, 0x211f),
 879	regmap_reg_range(0x2120, 0x212b),
 880	regmap_reg_range(0x2134, 0x213b),
 881	regmap_reg_range(0x213c, 0x213f),
 882	regmap_reg_range(0x2400, 0x2401),
 883	regmap_reg_range(0x2403, 0x2403),
 884	regmap_reg_range(0x2410, 0x2417),
 885	regmap_reg_range(0x2420, 0x2423),
 886	regmap_reg_range(0x2500, 0x2507),
 887	regmap_reg_range(0x2600, 0x2613),
 888	regmap_reg_range(0x2800, 0x280f),
 889	regmap_reg_range(0x2820, 0x2827),
 890	regmap_reg_range(0x2830, 0x2837),
 891	regmap_reg_range(0x2840, 0x284b),
 892	regmap_reg_range(0x2900, 0x2907),
 893	regmap_reg_range(0x2914, 0x291b),
 894	regmap_reg_range(0x2920, 0x2920),
 895	regmap_reg_range(0x2923, 0x2927),
 896	regmap_reg_range(0x2a00, 0x2a03),
 897	regmap_reg_range(0x2a04, 0x2a07),
 898	regmap_reg_range(0x2b00, 0x2b01),
 899	regmap_reg_range(0x2b04, 0x2b04),
 900	regmap_reg_range(0x2c00, 0x2c05),
 901	regmap_reg_range(0x2c08, 0x2c1b),
 902
 903	/* port 3 */
 904	regmap_reg_range(0x3000, 0x3001),
 905	regmap_reg_range(0x3013, 0x3013),
 906	regmap_reg_range(0x3017, 0x3017),
 907	regmap_reg_range(0x301b, 0x301b),
 908	regmap_reg_range(0x301f, 0x3020),
 909	regmap_reg_range(0x3030, 0x3030),
 910	regmap_reg_range(0x3100, 0x3115),
 911	regmap_reg_range(0x311a, 0x311f),
 912	regmap_reg_range(0x3120, 0x312b),
 913	regmap_reg_range(0x3134, 0x313b),
 914	regmap_reg_range(0x313c, 0x313f),
 915	regmap_reg_range(0x3400, 0x3401),
 916	regmap_reg_range(0x3403, 0x3403),
 917	regmap_reg_range(0x3410, 0x3417),
 918	regmap_reg_range(0x3420, 0x3423),
 919	regmap_reg_range(0x3500, 0x3507),
 920	regmap_reg_range(0x3600, 0x3613),
 921	regmap_reg_range(0x3800, 0x380f),
 922	regmap_reg_range(0x3820, 0x3827),
 923	regmap_reg_range(0x3830, 0x3837),
 924	regmap_reg_range(0x3840, 0x384b),
 925	regmap_reg_range(0x3900, 0x3907),
 926	regmap_reg_range(0x3914, 0x391b),
 927	regmap_reg_range(0x3920, 0x3920),
 928	regmap_reg_range(0x3923, 0x3927),
 929	regmap_reg_range(0x3a00, 0x3a03),
 930	regmap_reg_range(0x3a04, 0x3a07),
 931	regmap_reg_range(0x3b00, 0x3b01),
 932	regmap_reg_range(0x3b04, 0x3b04),
 933	regmap_reg_range(0x3c00, 0x3c05),
 934	regmap_reg_range(0x3c08, 0x3c1b),
 935
 936	/* port 4 */
 937	regmap_reg_range(0x4000, 0x4001),
 938	regmap_reg_range(0x4013, 0x4013),
 939	regmap_reg_range(0x4017, 0x4017),
 940	regmap_reg_range(0x401b, 0x401b),
 941	regmap_reg_range(0x401f, 0x4020),
 942	regmap_reg_range(0x4030, 0x4030),
 943	regmap_reg_range(0x4100, 0x4115),
 944	regmap_reg_range(0x411a, 0x411f),
 945	regmap_reg_range(0x4120, 0x412b),
 946	regmap_reg_range(0x4134, 0x413b),
 947	regmap_reg_range(0x413c, 0x413f),
 948	regmap_reg_range(0x4400, 0x4401),
 949	regmap_reg_range(0x4403, 0x4403),
 950	regmap_reg_range(0x4410, 0x4417),
 951	regmap_reg_range(0x4420, 0x4423),
 952	regmap_reg_range(0x4500, 0x4507),
 953	regmap_reg_range(0x4600, 0x4613),
 954	regmap_reg_range(0x4800, 0x480f),
 955	regmap_reg_range(0x4820, 0x4827),
 956	regmap_reg_range(0x4830, 0x4837),
 957	regmap_reg_range(0x4840, 0x484b),
 958	regmap_reg_range(0x4900, 0x4907),
 959	regmap_reg_range(0x4914, 0x491b),
 960	regmap_reg_range(0x4920, 0x4920),
 961	regmap_reg_range(0x4923, 0x4927),
 962	regmap_reg_range(0x4a00, 0x4a03),
 963	regmap_reg_range(0x4a04, 0x4a07),
 964	regmap_reg_range(0x4b00, 0x4b01),
 965	regmap_reg_range(0x4b04, 0x4b04),
 966	regmap_reg_range(0x4c00, 0x4c05),
 967	regmap_reg_range(0x4c08, 0x4c1b),
 968
 969	/* port 5 */
 970	regmap_reg_range(0x5000, 0x5001),
 971	regmap_reg_range(0x5013, 0x5013),
 972	regmap_reg_range(0x5017, 0x5017),
 973	regmap_reg_range(0x501b, 0x501b),
 974	regmap_reg_range(0x501f, 0x5020),
 975	regmap_reg_range(0x5030, 0x5030),
 976	regmap_reg_range(0x5100, 0x5115),
 977	regmap_reg_range(0x511a, 0x511f),
 978	regmap_reg_range(0x5120, 0x512b),
 979	regmap_reg_range(0x5134, 0x513b),
 980	regmap_reg_range(0x513c, 0x513f),
 981	regmap_reg_range(0x5400, 0x5401),
 982	regmap_reg_range(0x5403, 0x5403),
 983	regmap_reg_range(0x5410, 0x5417),
 984	regmap_reg_range(0x5420, 0x5423),
 985	regmap_reg_range(0x5500, 0x5507),
 986	regmap_reg_range(0x5600, 0x5613),
 987	regmap_reg_range(0x5800, 0x580f),
 988	regmap_reg_range(0x5820, 0x5827),
 989	regmap_reg_range(0x5830, 0x5837),
 990	regmap_reg_range(0x5840, 0x584b),
 991	regmap_reg_range(0x5900, 0x5907),
 992	regmap_reg_range(0x5914, 0x591b),
 993	regmap_reg_range(0x5920, 0x5920),
 994	regmap_reg_range(0x5923, 0x5927),
 995	regmap_reg_range(0x5a00, 0x5a03),
 996	regmap_reg_range(0x5a04, 0x5a07),
 997	regmap_reg_range(0x5b00, 0x5b01),
 998	regmap_reg_range(0x5b04, 0x5b04),
 999	regmap_reg_range(0x5c00, 0x5c05),
1000	regmap_reg_range(0x5c08, 0x5c1b),
1001
1002	/* port 6 */
1003	regmap_reg_range(0x6000, 0x6001),
1004	regmap_reg_range(0x6013, 0x6013),
1005	regmap_reg_range(0x6017, 0x6017),
1006	regmap_reg_range(0x601b, 0x601b),
1007	regmap_reg_range(0x601f, 0x6020),
1008	regmap_reg_range(0x6030, 0x6030),
1009	regmap_reg_range(0x6300, 0x6301),
1010	regmap_reg_range(0x6400, 0x6401),
1011	regmap_reg_range(0x6403, 0x6403),
1012	regmap_reg_range(0x6410, 0x6417),
1013	regmap_reg_range(0x6420, 0x6423),
1014	regmap_reg_range(0x6500, 0x6507),
1015	regmap_reg_range(0x6600, 0x6613),
1016	regmap_reg_range(0x6800, 0x680f),
1017	regmap_reg_range(0x6820, 0x6827),
1018	regmap_reg_range(0x6830, 0x6837),
1019	regmap_reg_range(0x6840, 0x684b),
1020	regmap_reg_range(0x6900, 0x6907),
1021	regmap_reg_range(0x6914, 0x691b),
1022	regmap_reg_range(0x6920, 0x6920),
1023	regmap_reg_range(0x6923, 0x6927),
1024	regmap_reg_range(0x6a00, 0x6a03),
1025	regmap_reg_range(0x6a04, 0x6a07),
1026	regmap_reg_range(0x6b00, 0x6b01),
1027	regmap_reg_range(0x6b04, 0x6b04),
1028	regmap_reg_range(0x6c00, 0x6c05),
1029	regmap_reg_range(0x6c08, 0x6c1b),
1030
1031	/* port 7 */
1032	regmap_reg_range(0x7000, 0x7001),
1033	regmap_reg_range(0x7013, 0x7013),
1034	regmap_reg_range(0x7017, 0x7017),
1035	regmap_reg_range(0x701b, 0x701b),
1036	regmap_reg_range(0x701f, 0x7020),
1037	regmap_reg_range(0x7030, 0x7030),
1038	regmap_reg_range(0x7200, 0x7203),
1039	regmap_reg_range(0x7206, 0x7207),
1040	regmap_reg_range(0x7300, 0x7301),
1041	regmap_reg_range(0x7400, 0x7401),
1042	regmap_reg_range(0x7403, 0x7403),
1043	regmap_reg_range(0x7410, 0x7417),
1044	regmap_reg_range(0x7420, 0x7423),
1045	regmap_reg_range(0x7500, 0x7507),
1046	regmap_reg_range(0x7600, 0x7613),
1047	regmap_reg_range(0x7800, 0x780f),
1048	regmap_reg_range(0x7820, 0x7827),
1049	regmap_reg_range(0x7830, 0x7837),
1050	regmap_reg_range(0x7840, 0x784b),
1051	regmap_reg_range(0x7900, 0x7907),
1052	regmap_reg_range(0x7914, 0x791b),
1053	regmap_reg_range(0x7920, 0x7920),
1054	regmap_reg_range(0x7923, 0x7927),
1055	regmap_reg_range(0x7a00, 0x7a03),
1056	regmap_reg_range(0x7a04, 0x7a07),
1057	regmap_reg_range(0x7b00, 0x7b01),
1058	regmap_reg_range(0x7b04, 0x7b04),
1059	regmap_reg_range(0x7c00, 0x7c05),
1060	regmap_reg_range(0x7c08, 0x7c1b),
1061};
1062
1063static const struct regmap_access_table ksz9477_register_set = {
1064	.yes_ranges = ksz9477_valid_regs,
1065	.n_yes_ranges = ARRAY_SIZE(ksz9477_valid_regs),
1066};
1067
1068static const struct regmap_range ksz9896_valid_regs[] = {
1069	regmap_reg_range(0x0000, 0x0003),
1070	regmap_reg_range(0x0006, 0x0006),
1071	regmap_reg_range(0x0010, 0x001f),
1072	regmap_reg_range(0x0100, 0x0100),
1073	regmap_reg_range(0x0103, 0x0107),
1074	regmap_reg_range(0x010d, 0x010d),
1075	regmap_reg_range(0x0110, 0x0113),
1076	regmap_reg_range(0x0120, 0x0127),
1077	regmap_reg_range(0x0201, 0x0201),
1078	regmap_reg_range(0x0210, 0x0213),
1079	regmap_reg_range(0x0300, 0x0300),
1080	regmap_reg_range(0x0302, 0x030b),
1081	regmap_reg_range(0x0310, 0x031b),
1082	regmap_reg_range(0x0320, 0x032b),
1083	regmap_reg_range(0x0330, 0x0336),
1084	regmap_reg_range(0x0338, 0x033b),
1085	regmap_reg_range(0x033e, 0x033e),
1086	regmap_reg_range(0x0340, 0x035f),
1087	regmap_reg_range(0x0370, 0x0370),
1088	regmap_reg_range(0x0378, 0x0378),
1089	regmap_reg_range(0x037c, 0x037d),
1090	regmap_reg_range(0x0390, 0x0393),
1091	regmap_reg_range(0x0400, 0x040e),
1092	regmap_reg_range(0x0410, 0x042f),
1093
1094	/* port 1 */
1095	regmap_reg_range(0x1000, 0x1001),
1096	regmap_reg_range(0x1013, 0x1013),
1097	regmap_reg_range(0x1017, 0x1017),
1098	regmap_reg_range(0x101b, 0x101b),
1099	regmap_reg_range(0x101f, 0x1020),
1100	regmap_reg_range(0x1030, 0x1030),
1101	regmap_reg_range(0x1100, 0x1115),
1102	regmap_reg_range(0x111a, 0x111f),
1103	regmap_reg_range(0x1120, 0x112b),
1104	regmap_reg_range(0x1134, 0x113b),
1105	regmap_reg_range(0x113c, 0x113f),
1106	regmap_reg_range(0x1400, 0x1401),
1107	regmap_reg_range(0x1403, 0x1403),
1108	regmap_reg_range(0x1410, 0x1417),
1109	regmap_reg_range(0x1420, 0x1423),
1110	regmap_reg_range(0x1500, 0x1507),
1111	regmap_reg_range(0x1600, 0x1612),
1112	regmap_reg_range(0x1800, 0x180f),
1113	regmap_reg_range(0x1820, 0x1827),
1114	regmap_reg_range(0x1830, 0x1837),
1115	regmap_reg_range(0x1840, 0x184b),
1116	regmap_reg_range(0x1900, 0x1907),
1117	regmap_reg_range(0x1914, 0x1915),
1118	regmap_reg_range(0x1a00, 0x1a03),
1119	regmap_reg_range(0x1a04, 0x1a07),
1120	regmap_reg_range(0x1b00, 0x1b01),
1121	regmap_reg_range(0x1b04, 0x1b04),
1122
1123	/* port 2 */
1124	regmap_reg_range(0x2000, 0x2001),
1125	regmap_reg_range(0x2013, 0x2013),
1126	regmap_reg_range(0x2017, 0x2017),
1127	regmap_reg_range(0x201b, 0x201b),
1128	regmap_reg_range(0x201f, 0x2020),
1129	regmap_reg_range(0x2030, 0x2030),
1130	regmap_reg_range(0x2100, 0x2115),
1131	regmap_reg_range(0x211a, 0x211f),
1132	regmap_reg_range(0x2120, 0x212b),
1133	regmap_reg_range(0x2134, 0x213b),
1134	regmap_reg_range(0x213c, 0x213f),
1135	regmap_reg_range(0x2400, 0x2401),
1136	regmap_reg_range(0x2403, 0x2403),
1137	regmap_reg_range(0x2410, 0x2417),
1138	regmap_reg_range(0x2420, 0x2423),
1139	regmap_reg_range(0x2500, 0x2507),
1140	regmap_reg_range(0x2600, 0x2612),
1141	regmap_reg_range(0x2800, 0x280f),
1142	regmap_reg_range(0x2820, 0x2827),
1143	regmap_reg_range(0x2830, 0x2837),
1144	regmap_reg_range(0x2840, 0x284b),
1145	regmap_reg_range(0x2900, 0x2907),
1146	regmap_reg_range(0x2914, 0x2915),
1147	regmap_reg_range(0x2a00, 0x2a03),
1148	regmap_reg_range(0x2a04, 0x2a07),
1149	regmap_reg_range(0x2b00, 0x2b01),
1150	regmap_reg_range(0x2b04, 0x2b04),
1151
1152	/* port 3 */
1153	regmap_reg_range(0x3000, 0x3001),
1154	regmap_reg_range(0x3013, 0x3013),
1155	regmap_reg_range(0x3017, 0x3017),
1156	regmap_reg_range(0x301b, 0x301b),
1157	regmap_reg_range(0x301f, 0x3020),
1158	regmap_reg_range(0x3030, 0x3030),
1159	regmap_reg_range(0x3100, 0x3115),
1160	regmap_reg_range(0x311a, 0x311f),
1161	regmap_reg_range(0x3120, 0x312b),
1162	regmap_reg_range(0x3134, 0x313b),
1163	regmap_reg_range(0x313c, 0x313f),
1164	regmap_reg_range(0x3400, 0x3401),
1165	regmap_reg_range(0x3403, 0x3403),
1166	regmap_reg_range(0x3410, 0x3417),
1167	regmap_reg_range(0x3420, 0x3423),
1168	regmap_reg_range(0x3500, 0x3507),
1169	regmap_reg_range(0x3600, 0x3612),
1170	regmap_reg_range(0x3800, 0x380f),
1171	regmap_reg_range(0x3820, 0x3827),
1172	regmap_reg_range(0x3830, 0x3837),
1173	regmap_reg_range(0x3840, 0x384b),
1174	regmap_reg_range(0x3900, 0x3907),
1175	regmap_reg_range(0x3914, 0x3915),
1176	regmap_reg_range(0x3a00, 0x3a03),
1177	regmap_reg_range(0x3a04, 0x3a07),
1178	regmap_reg_range(0x3b00, 0x3b01),
1179	regmap_reg_range(0x3b04, 0x3b04),
1180
1181	/* port 4 */
1182	regmap_reg_range(0x4000, 0x4001),
1183	regmap_reg_range(0x4013, 0x4013),
1184	regmap_reg_range(0x4017, 0x4017),
1185	regmap_reg_range(0x401b, 0x401b),
1186	regmap_reg_range(0x401f, 0x4020),
1187	regmap_reg_range(0x4030, 0x4030),
1188	regmap_reg_range(0x4100, 0x4115),
1189	regmap_reg_range(0x411a, 0x411f),
1190	regmap_reg_range(0x4120, 0x412b),
1191	regmap_reg_range(0x4134, 0x413b),
1192	regmap_reg_range(0x413c, 0x413f),
1193	regmap_reg_range(0x4400, 0x4401),
1194	regmap_reg_range(0x4403, 0x4403),
1195	regmap_reg_range(0x4410, 0x4417),
1196	regmap_reg_range(0x4420, 0x4423),
1197	regmap_reg_range(0x4500, 0x4507),
1198	regmap_reg_range(0x4600, 0x4612),
1199	regmap_reg_range(0x4800, 0x480f),
1200	regmap_reg_range(0x4820, 0x4827),
1201	regmap_reg_range(0x4830, 0x4837),
1202	regmap_reg_range(0x4840, 0x484b),
1203	regmap_reg_range(0x4900, 0x4907),
1204	regmap_reg_range(0x4914, 0x4915),
1205	regmap_reg_range(0x4a00, 0x4a03),
1206	regmap_reg_range(0x4a04, 0x4a07),
1207	regmap_reg_range(0x4b00, 0x4b01),
1208	regmap_reg_range(0x4b04, 0x4b04),
1209
1210	/* port 5 */
1211	regmap_reg_range(0x5000, 0x5001),
1212	regmap_reg_range(0x5013, 0x5013),
1213	regmap_reg_range(0x5017, 0x5017),
1214	regmap_reg_range(0x501b, 0x501b),
1215	regmap_reg_range(0x501f, 0x5020),
1216	regmap_reg_range(0x5030, 0x5030),
1217	regmap_reg_range(0x5100, 0x5115),
1218	regmap_reg_range(0x511a, 0x511f),
1219	regmap_reg_range(0x5120, 0x512b),
1220	regmap_reg_range(0x5134, 0x513b),
1221	regmap_reg_range(0x513c, 0x513f),
1222	regmap_reg_range(0x5400, 0x5401),
1223	regmap_reg_range(0x5403, 0x5403),
1224	regmap_reg_range(0x5410, 0x5417),
1225	regmap_reg_range(0x5420, 0x5423),
1226	regmap_reg_range(0x5500, 0x5507),
1227	regmap_reg_range(0x5600, 0x5612),
1228	regmap_reg_range(0x5800, 0x580f),
1229	regmap_reg_range(0x5820, 0x5827),
1230	regmap_reg_range(0x5830, 0x5837),
1231	regmap_reg_range(0x5840, 0x584b),
1232	regmap_reg_range(0x5900, 0x5907),
1233	regmap_reg_range(0x5914, 0x5915),
1234	regmap_reg_range(0x5a00, 0x5a03),
1235	regmap_reg_range(0x5a04, 0x5a07),
1236	regmap_reg_range(0x5b00, 0x5b01),
1237	regmap_reg_range(0x5b04, 0x5b04),
1238
1239	/* port 6 */
1240	regmap_reg_range(0x6000, 0x6001),
1241	regmap_reg_range(0x6013, 0x6013),
1242	regmap_reg_range(0x6017, 0x6017),
1243	regmap_reg_range(0x601b, 0x601b),
1244	regmap_reg_range(0x601f, 0x6020),
1245	regmap_reg_range(0x6030, 0x6030),
1246	regmap_reg_range(0x6100, 0x6115),
1247	regmap_reg_range(0x611a, 0x611f),
1248	regmap_reg_range(0x6120, 0x612b),
1249	regmap_reg_range(0x6134, 0x613b),
1250	regmap_reg_range(0x613c, 0x613f),
1251	regmap_reg_range(0x6300, 0x6301),
1252	regmap_reg_range(0x6400, 0x6401),
1253	regmap_reg_range(0x6403, 0x6403),
1254	regmap_reg_range(0x6410, 0x6417),
1255	regmap_reg_range(0x6420, 0x6423),
1256	regmap_reg_range(0x6500, 0x6507),
1257	regmap_reg_range(0x6600, 0x6612),
1258	regmap_reg_range(0x6800, 0x680f),
1259	regmap_reg_range(0x6820, 0x6827),
1260	regmap_reg_range(0x6830, 0x6837),
1261	regmap_reg_range(0x6840, 0x684b),
1262	regmap_reg_range(0x6900, 0x6907),
1263	regmap_reg_range(0x6914, 0x6915),
1264	regmap_reg_range(0x6a00, 0x6a03),
1265	regmap_reg_range(0x6a04, 0x6a07),
1266	regmap_reg_range(0x6b00, 0x6b01),
1267	regmap_reg_range(0x6b04, 0x6b04),
1268};
1269
1270static const struct regmap_access_table ksz9896_register_set = {
1271	.yes_ranges = ksz9896_valid_regs,
1272	.n_yes_ranges = ARRAY_SIZE(ksz9896_valid_regs),
1273};
1274
1275static const struct regmap_range ksz8873_valid_regs[] = {
1276	regmap_reg_range(0x00, 0x01),
1277	/* global control register */
1278	regmap_reg_range(0x02, 0x0f),
1279
1280	/* port registers */
1281	regmap_reg_range(0x10, 0x1d),
1282	regmap_reg_range(0x1e, 0x1f),
1283	regmap_reg_range(0x20, 0x2d),
1284	regmap_reg_range(0x2e, 0x2f),
1285	regmap_reg_range(0x30, 0x39),
1286	regmap_reg_range(0x3f, 0x3f),
1287
1288	/* advanced control registers */
1289	regmap_reg_range(0x60, 0x6f),
1290	regmap_reg_range(0x70, 0x75),
1291	regmap_reg_range(0x76, 0x78),
1292	regmap_reg_range(0x79, 0x7a),
1293	regmap_reg_range(0x7b, 0x83),
1294	regmap_reg_range(0x8e, 0x99),
1295	regmap_reg_range(0x9a, 0xa5),
1296	regmap_reg_range(0xa6, 0xa6),
1297	regmap_reg_range(0xa7, 0xaa),
1298	regmap_reg_range(0xab, 0xae),
1299	regmap_reg_range(0xaf, 0xba),
1300	regmap_reg_range(0xbb, 0xbc),
1301	regmap_reg_range(0xbd, 0xbd),
1302	regmap_reg_range(0xc0, 0xc0),
1303	regmap_reg_range(0xc2, 0xc2),
1304	regmap_reg_range(0xc3, 0xc3),
1305	regmap_reg_range(0xc4, 0xc4),
1306	regmap_reg_range(0xc6, 0xc6),
1307};
1308
1309static const struct regmap_access_table ksz8873_register_set = {
1310	.yes_ranges = ksz8873_valid_regs,
1311	.n_yes_ranges = ARRAY_SIZE(ksz8873_valid_regs),
1312};
1313
1314const struct ksz_chip_data ksz_switch_chips[] = {
1315	[KSZ8563] = {
1316		.chip_id = KSZ8563_CHIP_ID,
1317		.dev_name = "KSZ8563",
1318		.num_vlans = 4096,
1319		.num_alus = 4096,
1320		.num_statics = 16,
1321		.cpu_ports = 0x07,	/* can be configured as cpu port */
1322		.port_cnt = 3,		/* total port count */
1323		.port_nirqs = 3,
1324		.num_tx_queues = 4,
1325		.num_ipms = 8,
1326		.tc_cbs_supported = true,
1327		.ops = &ksz9477_dev_ops,
1328		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1329		.mib_names = ksz9477_mib_names,
1330		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1331		.reg_mib_cnt = MIB_COUNTER_NUM,
1332		.regs = ksz9477_regs,
1333		.masks = ksz9477_masks,
1334		.shifts = ksz9477_shifts,
1335		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1336		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1337		.supports_mii = {false, false, true},
1338		.supports_rmii = {false, false, true},
1339		.supports_rgmii = {false, false, true},
1340		.internal_phy = {true, true, false},
1341		.gbit_capable = {false, false, true},
1342		.wr_table = &ksz8563_register_set,
1343		.rd_table = &ksz8563_register_set,
1344	},
1345
1346	[KSZ8795] = {
1347		.chip_id = KSZ8795_CHIP_ID,
1348		.dev_name = "KSZ8795",
1349		.num_vlans = 4096,
1350		.num_alus = 0,
1351		.num_statics = 32,
1352		.cpu_ports = 0x10,	/* can be configured as cpu port */
1353		.port_cnt = 5,		/* total cpu and user ports */
1354		.num_tx_queues = 4,
1355		.num_ipms = 4,
1356		.ops = &ksz87xx_dev_ops,
1357		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1358		.ksz87xx_eee_link_erratum = true,
1359		.mib_names = ksz9477_mib_names,
1360		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1361		.reg_mib_cnt = MIB_COUNTER_NUM,
1362		.regs = ksz8795_regs,
1363		.masks = ksz8795_masks,
1364		.shifts = ksz8795_shifts,
1365		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1366		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1367		.supports_mii = {false, false, false, false, true},
1368		.supports_rmii = {false, false, false, false, true},
1369		.supports_rgmii = {false, false, false, false, true},
1370		.internal_phy = {true, true, true, true, false},
1371	},
1372
1373	[KSZ8794] = {
1374		/* WARNING
1375		 * =======
1376		 * KSZ8794 is similar to KSZ8795, except the port map
1377		 * contains a gap between external and CPU ports, the
1378		 * port map is NOT continuous. The per-port register
1379		 * map is shifted accordingly too, i.e. registers at
1380		 * offset 0x40 are NOT used on KSZ8794 and they ARE
1381		 * used on KSZ8795 for external port 3.
1382		 *           external  cpu
1383		 * KSZ8794   0,1,2      4
1384		 * KSZ8795   0,1,2,3    4
1385		 * KSZ8765   0,1,2,3    4
1386		 * port_cnt is configured as 5, even though it is 4
1387		 */
1388		.chip_id = KSZ8794_CHIP_ID,
1389		.dev_name = "KSZ8794",
1390		.num_vlans = 4096,
1391		.num_alus = 0,
1392		.num_statics = 32,
1393		.cpu_ports = 0x10,	/* can be configured as cpu port */
1394		.port_cnt = 5,		/* total cpu and user ports */
1395		.num_tx_queues = 4,
1396		.num_ipms = 4,
1397		.ops = &ksz87xx_dev_ops,
1398		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1399		.ksz87xx_eee_link_erratum = true,
1400		.mib_names = ksz9477_mib_names,
1401		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1402		.reg_mib_cnt = MIB_COUNTER_NUM,
1403		.regs = ksz8795_regs,
1404		.masks = ksz8795_masks,
1405		.shifts = ksz8795_shifts,
1406		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1407		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1408		.supports_mii = {false, false, false, false, true},
1409		.supports_rmii = {false, false, false, false, true},
1410		.supports_rgmii = {false, false, false, false, true},
1411		.internal_phy = {true, true, true, false, false},
1412	},
1413
1414	[KSZ8765] = {
1415		.chip_id = KSZ8765_CHIP_ID,
1416		.dev_name = "KSZ8765",
1417		.num_vlans = 4096,
1418		.num_alus = 0,
1419		.num_statics = 32,
1420		.cpu_ports = 0x10,	/* can be configured as cpu port */
1421		.port_cnt = 5,		/* total cpu and user ports */
1422		.num_tx_queues = 4,
1423		.num_ipms = 4,
1424		.ops = &ksz87xx_dev_ops,
1425		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1426		.ksz87xx_eee_link_erratum = true,
1427		.mib_names = ksz9477_mib_names,
1428		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1429		.reg_mib_cnt = MIB_COUNTER_NUM,
1430		.regs = ksz8795_regs,
1431		.masks = ksz8795_masks,
1432		.shifts = ksz8795_shifts,
1433		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1434		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1435		.supports_mii = {false, false, false, false, true},
1436		.supports_rmii = {false, false, false, false, true},
1437		.supports_rgmii = {false, false, false, false, true},
1438		.internal_phy = {true, true, true, true, false},
1439	},
1440
1441	[KSZ88X3] = {
1442		.chip_id = KSZ88X3_CHIP_ID,
1443		.dev_name = "KSZ8863/KSZ8873",
1444		.num_vlans = 16,
1445		.num_alus = 0,
1446		.num_statics = 8,
1447		.cpu_ports = 0x4,	/* can be configured as cpu port */
1448		.port_cnt = 3,
1449		.num_tx_queues = 4,
1450		.num_ipms = 4,
1451		.ops = &ksz88xx_dev_ops,
1452		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1453		.mib_names = ksz88xx_mib_names,
1454		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1455		.reg_mib_cnt = MIB_COUNTER_NUM,
1456		.regs = ksz8863_regs,
1457		.masks = ksz8863_masks,
1458		.shifts = ksz8863_shifts,
1459		.supports_mii = {false, false, true},
1460		.supports_rmii = {false, false, true},
1461		.internal_phy = {true, true, false},
1462		.wr_table = &ksz8873_register_set,
1463		.rd_table = &ksz8873_register_set,
1464	},
1465
1466	[KSZ8864] = {
1467		/* WARNING
1468		 * =======
1469		 * KSZ8864 is similar to KSZ8895, except the first port
1470		 * does not exist.
1471		 *           external  cpu
1472		 * KSZ8864   1,2,3      4
1473		 * KSZ8895   0,1,2,3    4
1474		 * port_cnt is configured as 5, even though it is 4
1475		 */
1476		.chip_id = KSZ8864_CHIP_ID,
1477		.dev_name = "KSZ8864",
1478		.num_vlans = 4096,
1479		.num_alus = 0,
1480		.num_statics = 32,
1481		.cpu_ports = 0x10,	/* can be configured as cpu port */
1482		.port_cnt = 5,		/* total cpu and user ports */
1483		.num_tx_queues = 4,
1484		.num_ipms = 4,
1485		.ops = &ksz88xx_dev_ops,
1486		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1487		.mib_names = ksz88xx_mib_names,
1488		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1489		.reg_mib_cnt = MIB_COUNTER_NUM,
1490		.regs = ksz8895_regs,
1491		.masks = ksz8895_masks,
1492		.shifts = ksz8895_shifts,
1493		.supports_mii = {false, false, false, false, true},
1494		.supports_rmii = {false, false, false, false, true},
1495		.internal_phy = {false, true, true, true, false},
1496	},
1497
1498	[KSZ8895] = {
1499		.chip_id = KSZ8895_CHIP_ID,
1500		.dev_name = "KSZ8895",
1501		.num_vlans = 4096,
1502		.num_alus = 0,
1503		.num_statics = 32,
1504		.cpu_ports = 0x10,	/* can be configured as cpu port */
1505		.port_cnt = 5,		/* total cpu and user ports */
1506		.num_tx_queues = 4,
1507		.num_ipms = 4,
1508		.ops = &ksz88xx_dev_ops,
1509		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1510		.mib_names = ksz88xx_mib_names,
1511		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1512		.reg_mib_cnt = MIB_COUNTER_NUM,
1513		.regs = ksz8895_regs,
1514		.masks = ksz8895_masks,
1515		.shifts = ksz8895_shifts,
1516		.supports_mii = {false, false, false, false, true},
1517		.supports_rmii = {false, false, false, false, true},
1518		.internal_phy = {true, true, true, true, false},
1519	},
1520
1521	[KSZ9477] = {
1522		.chip_id = KSZ9477_CHIP_ID,
1523		.dev_name = "KSZ9477",
1524		.num_vlans = 4096,
1525		.num_alus = 4096,
1526		.num_statics = 16,
1527		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1528		.port_cnt = 7,		/* total physical port count */
1529		.port_nirqs = 4,
1530		.num_tx_queues = 4,
1531		.num_ipms = 8,
1532		.tc_cbs_supported = true,
1533		.ops = &ksz9477_dev_ops,
1534		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1535		.phy_errata_9477 = true,
1536		.mib_names = ksz9477_mib_names,
1537		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1538		.reg_mib_cnt = MIB_COUNTER_NUM,
1539		.regs = ksz9477_regs,
1540		.masks = ksz9477_masks,
1541		.shifts = ksz9477_shifts,
1542		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1543		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1544		.supports_mii	= {false, false, false, false,
1545				   false, true, false},
1546		.supports_rmii	= {false, false, false, false,
1547				   false, true, false},
1548		.supports_rgmii = {false, false, false, false,
1549				   false, true, false},
1550		.internal_phy	= {true, true, true, true,
1551				   true, false, false},
1552		.gbit_capable	= {true, true, true, true, true, true, true},
1553		.wr_table = &ksz9477_register_set,
1554		.rd_table = &ksz9477_register_set,
1555	},
1556
1557	[KSZ9896] = {
1558		.chip_id = KSZ9896_CHIP_ID,
1559		.dev_name = "KSZ9896",
1560		.num_vlans = 4096,
1561		.num_alus = 4096,
1562		.num_statics = 16,
1563		.cpu_ports = 0x3F,	/* can be configured as cpu port */
1564		.port_cnt = 6,		/* total physical port count */
1565		.port_nirqs = 2,
1566		.num_tx_queues = 4,
1567		.num_ipms = 8,
1568		.ops = &ksz9477_dev_ops,
1569		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1570		.phy_errata_9477 = true,
1571		.mib_names = ksz9477_mib_names,
1572		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1573		.reg_mib_cnt = MIB_COUNTER_NUM,
1574		.regs = ksz9477_regs,
1575		.masks = ksz9477_masks,
1576		.shifts = ksz9477_shifts,
1577		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1578		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1579		.supports_mii	= {false, false, false, false,
1580				   false, true},
1581		.supports_rmii	= {false, false, false, false,
1582				   false, true},
1583		.supports_rgmii = {false, false, false, false,
1584				   false, true},
1585		.internal_phy	= {true, true, true, true,
1586				   true, false},
1587		.gbit_capable	= {true, true, true, true, true, true},
1588		.wr_table = &ksz9896_register_set,
1589		.rd_table = &ksz9896_register_set,
1590	},
1591
1592	[KSZ9897] = {
1593		.chip_id = KSZ9897_CHIP_ID,
1594		.dev_name = "KSZ9897",
1595		.num_vlans = 4096,
1596		.num_alus = 4096,
1597		.num_statics = 16,
1598		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1599		.port_cnt = 7,		/* total physical port count */
1600		.port_nirqs = 2,
1601		.num_tx_queues = 4,
1602		.num_ipms = 8,
1603		.ops = &ksz9477_dev_ops,
1604		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1605		.phy_errata_9477 = true,
1606		.mib_names = ksz9477_mib_names,
1607		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1608		.reg_mib_cnt = MIB_COUNTER_NUM,
1609		.regs = ksz9477_regs,
1610		.masks = ksz9477_masks,
1611		.shifts = ksz9477_shifts,
1612		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1613		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1614		.supports_mii	= {false, false, false, false,
1615				   false, true, true},
1616		.supports_rmii	= {false, false, false, false,
1617				   false, true, true},
1618		.supports_rgmii = {false, false, false, false,
1619				   false, true, true},
1620		.internal_phy	= {true, true, true, true,
1621				   true, false, false},
1622		.gbit_capable	= {true, true, true, true, true, true, true},
1623	},
1624
1625	[KSZ9893] = {
1626		.chip_id = KSZ9893_CHIP_ID,
1627		.dev_name = "KSZ9893",
1628		.num_vlans = 4096,
1629		.num_alus = 4096,
1630		.num_statics = 16,
1631		.cpu_ports = 0x07,	/* can be configured as cpu port */
1632		.port_cnt = 3,		/* total port count */
1633		.port_nirqs = 2,
1634		.num_tx_queues = 4,
1635		.num_ipms = 8,
1636		.ops = &ksz9477_dev_ops,
1637		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1638		.mib_names = ksz9477_mib_names,
1639		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1640		.reg_mib_cnt = MIB_COUNTER_NUM,
1641		.regs = ksz9477_regs,
1642		.masks = ksz9477_masks,
1643		.shifts = ksz9477_shifts,
1644		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1645		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1646		.supports_mii = {false, false, true},
1647		.supports_rmii = {false, false, true},
1648		.supports_rgmii = {false, false, true},
1649		.internal_phy = {true, true, false},
1650		.gbit_capable = {true, true, true},
1651	},
1652
1653	[KSZ9563] = {
1654		.chip_id = KSZ9563_CHIP_ID,
1655		.dev_name = "KSZ9563",
1656		.num_vlans = 4096,
1657		.num_alus = 4096,
1658		.num_statics = 16,
1659		.cpu_ports = 0x07,	/* can be configured as cpu port */
1660		.port_cnt = 3,		/* total port count */
1661		.port_nirqs = 3,
1662		.num_tx_queues = 4,
1663		.num_ipms = 8,
1664		.tc_cbs_supported = true,
1665		.ops = &ksz9477_dev_ops,
1666		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1667		.mib_names = ksz9477_mib_names,
1668		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1669		.reg_mib_cnt = MIB_COUNTER_NUM,
1670		.regs = ksz9477_regs,
1671		.masks = ksz9477_masks,
1672		.shifts = ksz9477_shifts,
1673		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1674		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1675		.supports_mii = {false, false, true},
1676		.supports_rmii = {false, false, true},
1677		.supports_rgmii = {false, false, true},
1678		.internal_phy = {true, true, false},
1679		.gbit_capable = {true, true, true},
1680	},
1681
1682	[KSZ8567] = {
1683		.chip_id = KSZ8567_CHIP_ID,
1684		.dev_name = "KSZ8567",
1685		.num_vlans = 4096,
1686		.num_alus = 4096,
1687		.num_statics = 16,
1688		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1689		.port_cnt = 7,		/* total port count */
1690		.port_nirqs = 3,
1691		.num_tx_queues = 4,
1692		.num_ipms = 8,
1693		.tc_cbs_supported = true,
1694		.ops = &ksz9477_dev_ops,
1695		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1696		.phy_errata_9477 = true,
1697		.mib_names = ksz9477_mib_names,
1698		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1699		.reg_mib_cnt = MIB_COUNTER_NUM,
1700		.regs = ksz9477_regs,
1701		.masks = ksz9477_masks,
1702		.shifts = ksz9477_shifts,
1703		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1704		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1705		.supports_mii	= {false, false, false, false,
1706				   false, true, true},
1707		.supports_rmii	= {false, false, false, false,
1708				   false, true, true},
1709		.supports_rgmii = {false, false, false, false,
1710				   false, true, true},
1711		.internal_phy	= {true, true, true, true,
1712				   true, false, false},
1713		.gbit_capable	= {false, false, false, false, false,
1714				   true, true},
1715	},
1716
1717	[KSZ9567] = {
1718		.chip_id = KSZ9567_CHIP_ID,
1719		.dev_name = "KSZ9567",
1720		.num_vlans = 4096,
1721		.num_alus = 4096,
1722		.num_statics = 16,
1723		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1724		.port_cnt = 7,		/* total physical port count */
1725		.port_nirqs = 3,
1726		.num_tx_queues = 4,
1727		.num_ipms = 8,
1728		.tc_cbs_supported = true,
1729		.ops = &ksz9477_dev_ops,
1730		.mib_names = ksz9477_mib_names,
1731		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1732		.reg_mib_cnt = MIB_COUNTER_NUM,
1733		.regs = ksz9477_regs,
1734		.masks = ksz9477_masks,
1735		.shifts = ksz9477_shifts,
1736		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1737		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1738		.supports_mii	= {false, false, false, false,
1739				   false, true, true},
1740		.supports_rmii	= {false, false, false, false,
1741				   false, true, true},
1742		.supports_rgmii = {false, false, false, false,
1743				   false, true, true},
1744		.internal_phy	= {true, true, true, true,
1745				   true, false, false},
1746		.gbit_capable	= {true, true, true, true, true, true, true},
1747	},
1748
1749	[LAN9370] = {
1750		.chip_id = LAN9370_CHIP_ID,
1751		.dev_name = "LAN9370",
1752		.num_vlans = 4096,
1753		.num_alus = 1024,
1754		.num_statics = 256,
1755		.cpu_ports = 0x10,	/* can be configured as cpu port */
1756		.port_cnt = 5,		/* total physical port count */
1757		.port_nirqs = 6,
1758		.num_tx_queues = 8,
1759		.num_ipms = 8,
1760		.tc_cbs_supported = true,
1761		.phy_side_mdio_supported = true,
1762		.ops = &lan937x_dev_ops,
1763		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1764		.mib_names = ksz9477_mib_names,
1765		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1766		.reg_mib_cnt = MIB_COUNTER_NUM,
1767		.regs = ksz9477_regs,
1768		.masks = lan937x_masks,
1769		.shifts = lan937x_shifts,
1770		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1771		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1772		.supports_mii = {false, false, false, false, true},
1773		.supports_rmii = {false, false, false, false, true},
1774		.supports_rgmii = {false, false, false, false, true},
1775		.internal_phy = {true, true, true, true, false},
1776	},
1777
1778	[LAN9371] = {
1779		.chip_id = LAN9371_CHIP_ID,
1780		.dev_name = "LAN9371",
1781		.num_vlans = 4096,
1782		.num_alus = 1024,
1783		.num_statics = 256,
1784		.cpu_ports = 0x30,	/* can be configured as cpu port */
1785		.port_cnt = 6,		/* total physical port count */
1786		.port_nirqs = 6,
1787		.num_tx_queues = 8,
1788		.num_ipms = 8,
1789		.tc_cbs_supported = true,
1790		.phy_side_mdio_supported = true,
1791		.ops = &lan937x_dev_ops,
1792		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1793		.mib_names = ksz9477_mib_names,
1794		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1795		.reg_mib_cnt = MIB_COUNTER_NUM,
1796		.regs = ksz9477_regs,
1797		.masks = lan937x_masks,
1798		.shifts = lan937x_shifts,
1799		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1800		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1801		.supports_mii = {false, false, false, false, true, true},
1802		.supports_rmii = {false, false, false, false, true, true},
1803		.supports_rgmii = {false, false, false, false, true, true},
1804		.internal_phy = {true, true, true, true, false, false},
1805	},
1806
1807	[LAN9372] = {
1808		.chip_id = LAN9372_CHIP_ID,
1809		.dev_name = "LAN9372",
1810		.num_vlans = 4096,
1811		.num_alus = 1024,
1812		.num_statics = 256,
1813		.cpu_ports = 0x30,	/* can be configured as cpu port */
1814		.port_cnt = 8,		/* total physical port count */
1815		.port_nirqs = 6,
1816		.num_tx_queues = 8,
1817		.num_ipms = 8,
1818		.tc_cbs_supported = true,
1819		.phy_side_mdio_supported = true,
1820		.ops = &lan937x_dev_ops,
1821		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1822		.mib_names = ksz9477_mib_names,
1823		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1824		.reg_mib_cnt = MIB_COUNTER_NUM,
1825		.regs = ksz9477_regs,
1826		.masks = lan937x_masks,
1827		.shifts = lan937x_shifts,
1828		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1829		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1830		.supports_mii	= {false, false, false, false,
1831				   true, true, false, false},
1832		.supports_rmii	= {false, false, false, false,
1833				   true, true, false, false},
1834		.supports_rgmii = {false, false, false, false,
1835				   true, true, false, false},
1836		.internal_phy	= {true, true, true, true,
1837				   false, false, true, true},
1838	},
1839
1840	[LAN9373] = {
1841		.chip_id = LAN9373_CHIP_ID,
1842		.dev_name = "LAN9373",
1843		.num_vlans = 4096,
1844		.num_alus = 1024,
1845		.num_statics = 256,
1846		.cpu_ports = 0x38,	/* can be configured as cpu port */
1847		.port_cnt = 5,		/* total physical port count */
1848		.port_nirqs = 6,
1849		.num_tx_queues = 8,
1850		.num_ipms = 8,
1851		.tc_cbs_supported = true,
1852		.phy_side_mdio_supported = true,
1853		.ops = &lan937x_dev_ops,
1854		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1855		.mib_names = ksz9477_mib_names,
1856		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1857		.reg_mib_cnt = MIB_COUNTER_NUM,
1858		.regs = ksz9477_regs,
1859		.masks = lan937x_masks,
1860		.shifts = lan937x_shifts,
1861		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1862		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1863		.supports_mii	= {false, false, false, false,
1864				   true, true, false, false},
1865		.supports_rmii	= {false, false, false, false,
1866				   true, true, false, false},
1867		.supports_rgmii = {false, false, false, false,
1868				   true, true, false, false},
1869		.internal_phy	= {true, true, true, false,
1870				   false, false, true, true},
1871	},
1872
1873	[LAN9374] = {
1874		.chip_id = LAN9374_CHIP_ID,
1875		.dev_name = "LAN9374",
1876		.num_vlans = 4096,
1877		.num_alus = 1024,
1878		.num_statics = 256,
1879		.cpu_ports = 0x30,	/* can be configured as cpu port */
1880		.port_cnt = 8,		/* total physical port count */
1881		.port_nirqs = 6,
1882		.num_tx_queues = 8,
1883		.num_ipms = 8,
1884		.tc_cbs_supported = true,
1885		.phy_side_mdio_supported = true,
1886		.ops = &lan937x_dev_ops,
1887		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1888		.mib_names = ksz9477_mib_names,
1889		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1890		.reg_mib_cnt = MIB_COUNTER_NUM,
1891		.regs = ksz9477_regs,
1892		.masks = lan937x_masks,
1893		.shifts = lan937x_shifts,
1894		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1895		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1896		.supports_mii	= {false, false, false, false,
1897				   true, true, false, false},
1898		.supports_rmii	= {false, false, false, false,
1899				   true, true, false, false},
1900		.supports_rgmii = {false, false, false, false,
1901				   true, true, false, false},
1902		.internal_phy	= {true, true, true, true,
1903				   false, false, true, true},
1904	},
1905
1906	[LAN9646] = {
1907		.chip_id = LAN9646_CHIP_ID,
1908		.dev_name = "LAN9646",
1909		.num_vlans = 4096,
1910		.num_alus = 4096,
1911		.num_statics = 16,
1912		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1913		.port_cnt = 7,		/* total physical port count */
1914		.port_nirqs = 4,
1915		.num_tx_queues = 4,
1916		.num_ipms = 8,
1917		.ops = &ksz9477_dev_ops,
1918		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1919		.phy_errata_9477 = true,
1920		.mib_names = ksz9477_mib_names,
1921		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1922		.reg_mib_cnt = MIB_COUNTER_NUM,
1923		.regs = ksz9477_regs,
1924		.masks = ksz9477_masks,
1925		.shifts = ksz9477_shifts,
1926		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1927		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1928		.supports_mii	= {false, false, false, false,
1929				   false, true, true},
1930		.supports_rmii	= {false, false, false, false,
1931				   false, true, true},
1932		.supports_rgmii = {false, false, false, false,
1933				   false, true, true},
1934		.internal_phy	= {true, true, true, true,
1935				   true, false, false},
1936		.gbit_capable	= {true, true, true, true, true, true, true},
1937		.wr_table = &ksz9477_register_set,
1938		.rd_table = &ksz9477_register_set,
1939	},
1940};
1941EXPORT_SYMBOL_GPL(ksz_switch_chips);
1942
1943static const struct ksz_chip_data *ksz_lookup_info(unsigned int prod_num)
1944{
1945	int i;
1946
1947	for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) {
1948		const struct ksz_chip_data *chip = &ksz_switch_chips[i];
1949
1950		if (chip->chip_id == prod_num)
1951			return chip;
1952	}
1953
1954	return NULL;
 
 
 
 
 
1955}
1956
1957static int ksz_check_device_id(struct ksz_device *dev)
1958{
1959	const struct ksz_chip_data *expected_chip_data;
1960	u32 expected_chip_id;
1961
1962	if (dev->pdata) {
1963		expected_chip_id = dev->pdata->chip_id;
1964		expected_chip_data = ksz_lookup_info(expected_chip_id);
1965		if (WARN_ON(!expected_chip_data))
1966			return -ENODEV;
1967	} else {
1968		expected_chip_data = of_device_get_match_data(dev->dev);
1969		expected_chip_id = expected_chip_data->chip_id;
1970	}
1971
1972	if (expected_chip_id != dev->chip_id) {
1973		dev_err(dev->dev,
1974			"Device tree specifies chip %s but found %s, please fix it!\n",
1975			expected_chip_data->dev_name, dev->info->dev_name);
1976		return -ENODEV;
1977	}
1978
1979	return 0;
 
 
 
 
 
1980}
1981
1982static void ksz_phylink_get_caps(struct dsa_switch *ds, int port,
1983				 struct phylink_config *config)
1984{
1985	struct ksz_device *dev = ds->priv;
1986
1987	if (dev->info->supports_mii[port])
1988		__set_bit(PHY_INTERFACE_MODE_MII, config->supported_interfaces);
1989
1990	if (dev->info->supports_rmii[port])
1991		__set_bit(PHY_INTERFACE_MODE_RMII,
1992			  config->supported_interfaces);
1993
1994	if (dev->info->supports_rgmii[port])
1995		phy_interface_set_rgmii(config->supported_interfaces);
1996
1997	if (dev->info->internal_phy[port]) {
1998		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1999			  config->supported_interfaces);
2000		/* Compatibility for phylib's default interface type when the
2001		 * phy-mode property is absent
2002		 */
2003		__set_bit(PHY_INTERFACE_MODE_GMII,
2004			  config->supported_interfaces);
2005	}
2006
2007	if (dev->dev_ops->get_caps)
2008		dev->dev_ops->get_caps(dev, port, config);
2009}
2010
2011void ksz_r_mib_stats64(struct ksz_device *dev, int port)
2012{
2013	struct ethtool_pause_stats *pstats;
2014	struct rtnl_link_stats64 *stats;
2015	struct ksz_stats_raw *raw;
2016	struct ksz_port_mib *mib;
2017	int ret;
2018
2019	mib = &dev->ports[port].mib;
2020	stats = &mib->stats64;
2021	pstats = &mib->pause_stats;
2022	raw = (struct ksz_stats_raw *)mib->counters;
2023
2024	spin_lock(&mib->stats64_lock);
2025
2026	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
2027		raw->rx_pause;
2028	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
2029		raw->tx_pause;
2030
2031	/* HW counters are counting bytes + FCS which is not acceptable
2032	 * for rtnl_link_stats64 interface
2033	 */
2034	stats->rx_bytes = raw->rx_total - stats->rx_packets * ETH_FCS_LEN;
2035	stats->tx_bytes = raw->tx_total - stats->tx_packets * ETH_FCS_LEN;
2036
2037	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
2038		raw->rx_oversize;
2039
2040	stats->rx_crc_errors = raw->rx_crc_err;
2041	stats->rx_frame_errors = raw->rx_align_err;
2042	stats->rx_dropped = raw->rx_discards;
2043	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
2044		stats->rx_frame_errors  + stats->rx_dropped;
2045
2046	stats->tx_window_errors = raw->tx_late_col;
2047	stats->tx_fifo_errors = raw->tx_discards;
2048	stats->tx_aborted_errors = raw->tx_exc_col;
2049	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
2050		stats->tx_aborted_errors;
2051
2052	stats->multicast = raw->rx_mcast;
2053	stats->collisions = raw->tx_total_col;
2054
2055	pstats->tx_pause_frames = raw->tx_pause;
2056	pstats->rx_pause_frames = raw->rx_pause;
2057
2058	spin_unlock(&mib->stats64_lock);
2059
2060	if (dev->info->phy_errata_9477) {
2061		ret = ksz9477_errata_monitor(dev, port, raw->tx_late_col);
2062		if (ret)
2063			dev_err(dev->dev, "Failed to monitor transmission halt\n");
2064	}
2065}
2066
2067void ksz88xx_r_mib_stats64(struct ksz_device *dev, int port)
 
2068{
2069	struct ethtool_pause_stats *pstats;
2070	struct rtnl_link_stats64 *stats;
2071	struct ksz88xx_stats_raw *raw;
2072	struct ksz_port_mib *mib;
2073
2074	mib = &dev->ports[port].mib;
2075	stats = &mib->stats64;
2076	pstats = &mib->pause_stats;
2077	raw = (struct ksz88xx_stats_raw *)mib->counters;
2078
2079	spin_lock(&mib->stats64_lock);
2080
2081	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
2082		raw->rx_pause;
2083	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
2084		raw->tx_pause;
2085
2086	/* HW counters are counting bytes + FCS which is not acceptable
2087	 * for rtnl_link_stats64 interface
2088	 */
2089	stats->rx_bytes = raw->rx + raw->rx_hi - stats->rx_packets * ETH_FCS_LEN;
2090	stats->tx_bytes = raw->tx + raw->tx_hi - stats->tx_packets * ETH_FCS_LEN;
2091
2092	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
2093		raw->rx_oversize;
2094
2095	stats->rx_crc_errors = raw->rx_crc_err;
2096	stats->rx_frame_errors = raw->rx_align_err;
2097	stats->rx_dropped = raw->rx_discards;
2098	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
2099		stats->rx_frame_errors  + stats->rx_dropped;
2100
2101	stats->tx_window_errors = raw->tx_late_col;
2102	stats->tx_fifo_errors = raw->tx_discards;
2103	stats->tx_aborted_errors = raw->tx_exc_col;
2104	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
2105		stats->tx_aborted_errors;
2106
2107	stats->multicast = raw->rx_mcast;
2108	stats->collisions = raw->tx_total_col;
2109
2110	pstats->tx_pause_frames = raw->tx_pause;
2111	pstats->rx_pause_frames = raw->rx_pause;
2112
2113	spin_unlock(&mib->stats64_lock);
2114}
2115
2116static void ksz_get_stats64(struct dsa_switch *ds, int port,
2117			    struct rtnl_link_stats64 *s)
2118{
2119	struct ksz_device *dev = ds->priv;
2120	struct ksz_port_mib *mib;
2121
2122	mib = &dev->ports[port].mib;
2123
2124	spin_lock(&mib->stats64_lock);
2125	memcpy(s, &mib->stats64, sizeof(*s));
2126	spin_unlock(&mib->stats64_lock);
2127}
2128
2129static void ksz_get_pause_stats(struct dsa_switch *ds, int port,
2130				struct ethtool_pause_stats *pause_stats)
2131{
2132	struct ksz_device *dev = ds->priv;
2133	struct ksz_port_mib *mib;
 
2134
2135	mib = &dev->ports[port].mib;
 
2136
2137	spin_lock(&mib->stats64_lock);
2138	memcpy(pause_stats, &mib->pause_stats, sizeof(*pause_stats));
2139	spin_unlock(&mib->stats64_lock);
2140}
2141
2142static void ksz_get_strings(struct dsa_switch *ds, int port,
2143			    u32 stringset, uint8_t *buf)
2144{
2145	struct ksz_device *dev = ds->priv;
2146	int i;
2147
2148	if (stringset != ETH_SS_STATS)
2149		return;
2150
2151	for (i = 0; i < dev->info->mib_cnt; i++)
2152		ethtool_puts(&buf, dev->info->mib_names[i].string);
2153}
2154
2155/**
2156 * ksz_update_port_member - Adjust port forwarding rules based on STP state and
2157 *			    isolation settings.
2158 * @dev: A pointer to the struct ksz_device representing the device.
2159 * @port: The port number to adjust.
2160 *
2161 * This function dynamically adjusts the port membership configuration for a
2162 * specified port and other device ports, based on Spanning Tree Protocol (STP)
2163 * states and port isolation settings. Each port, including the CPU port, has a
2164 * membership register, represented as a bitfield, where each bit corresponds
2165 * to a port number. A set bit indicates permission to forward frames to that
2166 * port. This function iterates over all ports, updating the membership register
2167 * to reflect current forwarding permissions:
2168 *
2169 * 1. Forwards frames only to ports that are part of the same bridge group and
2170 *    in the BR_STATE_FORWARDING state.
2171 * 2. Takes into account the isolation status of ports; ports in the
2172 *    BR_STATE_FORWARDING state with BR_ISOLATED configuration will not forward
2173 *    frames to each other, even if they are in the same bridge group.
2174 * 3. Ensures that the CPU port is included in the membership based on its
2175 *    upstream port configuration, allowing for management and control traffic
2176 *    to flow as required.
2177 */
2178static void ksz_update_port_member(struct ksz_device *dev, int port)
2179{
2180	struct ksz_port *p = &dev->ports[port];
2181	struct dsa_switch *ds = dev->ds;
2182	u8 port_member = 0, cpu_port;
2183	const struct dsa_port *dp;
2184	int i, j;
2185
2186	if (!dsa_is_user_port(ds, port))
2187		return;
2188
2189	dp = dsa_to_port(ds, port);
2190	cpu_port = BIT(dsa_upstream_port(ds, port));
2191
2192	for (i = 0; i < ds->num_ports; i++) {
2193		const struct dsa_port *other_dp = dsa_to_port(ds, i);
2194		struct ksz_port *other_p = &dev->ports[i];
2195		u8 val = 0;
2196
2197		if (!dsa_is_user_port(ds, i))
2198			continue;
2199		if (port == i)
2200			continue;
2201		if (!dsa_port_bridge_same(dp, other_dp))
2202			continue;
2203		if (other_p->stp_state != BR_STATE_FORWARDING)
2204			continue;
2205
2206		/* At this point we know that "port" and "other" port [i] are in
2207		 * the same bridge group and that "other" port [i] is in
2208		 * forwarding stp state. If "port" is also in forwarding stp
2209		 * state, we can allow forwarding from port [port] to port [i].
2210		 * Except if both ports are isolated.
2211		 */
2212		if (p->stp_state == BR_STATE_FORWARDING &&
2213		    !(p->isolated && other_p->isolated)) {
2214			val |= BIT(port);
2215			port_member |= BIT(i);
2216		}
2217
2218		/* Retain port [i]'s relationship to other ports than [port] */
2219		for (j = 0; j < ds->num_ports; j++) {
2220			const struct dsa_port *third_dp;
2221			struct ksz_port *third_p;
2222
2223			if (j == i)
2224				continue;
2225			if (j == port)
2226				continue;
2227			if (!dsa_is_user_port(ds, j))
2228				continue;
2229			third_p = &dev->ports[j];
2230			if (third_p->stp_state != BR_STATE_FORWARDING)
2231				continue;
2232
2233			third_dp = dsa_to_port(ds, j);
2234
2235			/* Now we updating relation of the "other" port [i] to
2236			 * the "third" port [j]. We already know that "other"
2237			 * port [i] is in forwarding stp state and that "third"
2238			 * port [j] is in forwarding stp state too.
2239			 * We need to check if "other" port [i] and "third" port
2240			 * [j] are in the same bridge group and not isolated
2241			 * before allowing forwarding from port [i] to port [j].
2242			 */
2243			if (dsa_port_bridge_same(other_dp, third_dp) &&
2244			    !(other_p->isolated && third_p->isolated))
2245				val |= BIT(j);
2246		}
2247
2248		dev->dev_ops->cfg_port_member(dev, i, val | cpu_port);
2249	}
2250
2251	dev->dev_ops->cfg_port_member(dev, port, port_member | cpu_port);
2252}
2253
2254static int ksz_sw_mdio_read(struct mii_bus *bus, int addr, int regnum)
2255{
2256	struct ksz_device *dev = bus->priv;
2257	u16 val;
2258	int ret;
2259
2260	ret = dev->dev_ops->r_phy(dev, addr, regnum, &val);
2261	if (ret < 0)
2262		return ret;
2263
2264	return val;
2265}
2266
2267static int ksz_sw_mdio_write(struct mii_bus *bus, int addr, int regnum,
2268			     u16 val)
2269{
2270	struct ksz_device *dev = bus->priv;
2271
2272	return dev->dev_ops->w_phy(dev, addr, regnum, val);
2273}
2274
2275/**
2276 * ksz_parent_mdio_read - Read data from a PHY register on the parent MDIO bus.
2277 * @bus: MDIO bus structure.
2278 * @addr: PHY address on the parent MDIO bus.
2279 * @regnum: Register number to read.
2280 *
2281 * This function provides a direct read operation on the parent MDIO bus for
2282 * accessing PHY registers. By bypassing SPI or I2C, it uses the parent MDIO bus
2283 * to retrieve data from the PHY registers at the specified address and register
2284 * number.
2285 *
2286 * Return: Value of the PHY register, or a negative error code on failure.
2287 */
2288static int ksz_parent_mdio_read(struct mii_bus *bus, int addr, int regnum)
2289{
2290	struct ksz_device *dev = bus->priv;
2291
2292	return mdiobus_read_nested(dev->parent_mdio_bus, addr, regnum);
2293}
2294
2295/**
2296 * ksz_parent_mdio_write - Write data to a PHY register on the parent MDIO bus.
2297 * @bus: MDIO bus structure.
2298 * @addr: PHY address on the parent MDIO bus.
2299 * @regnum: Register number to write to.
2300 * @val: Value to write to the PHY register.
2301 *
2302 * This function provides a direct write operation on the parent MDIO bus for
2303 * accessing PHY registers. Bypassing SPI or I2C, it uses the parent MDIO bus
2304 * to modify the PHY register values at the specified address.
2305 *
2306 * Return: 0 on success, or a negative error code on failure.
2307 */
2308static int ksz_parent_mdio_write(struct mii_bus *bus, int addr, int regnum,
2309				 u16 val)
2310{
2311	struct ksz_device *dev = bus->priv;
2312
2313	return mdiobus_write_nested(dev->parent_mdio_bus, addr, regnum, val);
2314}
2315
2316/**
2317 * ksz_phy_addr_to_port - Map a PHY address to the corresponding switch port.
2318 * @dev: Pointer to device structure.
2319 * @addr: PHY address to map to a port.
2320 *
2321 * This function finds the corresponding switch port for a given PHY address by
2322 * iterating over all user ports on the device. It checks if a port's PHY
2323 * address in `phy_addr_map` matches the specified address and if the port
2324 * contains an internal PHY. If a match is found, the index of the port is
2325 * returned.
2326 *
2327 * Return: Port index on success, or -EINVAL if no matching port is found.
2328 */
2329static int ksz_phy_addr_to_port(struct ksz_device *dev, int addr)
2330{
2331	struct dsa_switch *ds = dev->ds;
2332	struct dsa_port *dp;
2333
2334	dsa_switch_for_each_user_port(dp, ds) {
2335		if (dev->info->internal_phy[dp->index] &&
2336		    dev->phy_addr_map[dp->index] == addr)
2337			return dp->index;
 
2338	}
2339
2340	return -EINVAL;
2341}
 
2342
2343/**
2344 * ksz_irq_phy_setup - Configure IRQs for PHYs in the KSZ device.
2345 * @dev: Pointer to the KSZ device structure.
2346 *
2347 * Sets up IRQs for each active PHY connected to the KSZ switch by mapping the
2348 * appropriate IRQs for each PHY and assigning them to the `user_mii_bus` in
2349 * the DSA switch structure. Each IRQ is mapped based on the port's IRQ domain.
2350 *
2351 * Return: 0 on success, or a negative error code on failure.
2352 */
2353static int ksz_irq_phy_setup(struct ksz_device *dev)
2354{
2355	struct dsa_switch *ds = dev->ds;
2356	int phy, port;
2357	int irq;
2358	int ret;
2359
2360	for (phy = 0; phy < PHY_MAX_ADDR; phy++) {
2361		if (BIT(phy) & ds->phys_mii_mask) {
2362			port = ksz_phy_addr_to_port(dev, phy);
2363			if (port < 0) {
2364				ret = port;
2365				goto out;
2366			}
2367
2368			irq = irq_find_mapping(dev->ports[port].pirq.domain,
2369					       PORT_SRC_PHY_INT);
2370			if (irq < 0) {
2371				ret = irq;
2372				goto out;
2373			}
2374			ds->user_mii_bus->irq[phy] = irq;
2375		}
2376	}
2377	return 0;
2378out:
2379	while (phy--)
2380		if (BIT(phy) & ds->phys_mii_mask)
2381			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
2382
2383	return ret;
2384}
2385
2386/**
2387 * ksz_irq_phy_free - Release IRQ mappings for PHYs in the KSZ device.
2388 * @dev: Pointer to the KSZ device structure.
2389 *
2390 * Releases any IRQ mappings previously assigned to active PHYs in the KSZ
2391 * switch by disposing of each mapped IRQ in the `user_mii_bus` structure.
2392 */
2393static void ksz_irq_phy_free(struct ksz_device *dev)
2394{
2395	struct dsa_switch *ds = dev->ds;
2396	int phy;
2397
2398	for (phy = 0; phy < PHY_MAX_ADDR; phy++)
2399		if (BIT(phy) & ds->phys_mii_mask)
2400			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
2401}
2402
2403/**
2404 * ksz_parse_dt_phy_config - Parse and validate PHY configuration from DT
2405 * @dev: pointer to the KSZ device structure
2406 * @bus: pointer to the MII bus structure
2407 * @mdio_np: pointer to the MDIO node in the device tree
2408 *
2409 * This function parses and validates PHY configurations for each user port
2410 * defined in the device tree for a KSZ switch device. It verifies that the
2411 * `phy-handle` properties are correctly set and that the internal PHYs match
2412 * expected addresses and parent nodes. Sets up the PHY mask in the MII bus if
2413 * all validations pass. Logs error messages for any mismatches or missing data.
2414 *
2415 * Return: 0 on success, or a negative error code on failure.
2416 */
2417static int ksz_parse_dt_phy_config(struct ksz_device *dev, struct mii_bus *bus,
2418				   struct device_node *mdio_np)
2419{
2420	struct device_node *phy_node, *phy_parent_node;
2421	bool phys_are_valid = true;
2422	struct dsa_port *dp;
2423	u32 phy_addr;
2424	int ret;
2425
2426	dsa_switch_for_each_user_port(dp, dev->ds) {
2427		if (!dev->info->internal_phy[dp->index])
2428			continue;
2429
2430		phy_node = of_parse_phandle(dp->dn, "phy-handle", 0);
2431		if (!phy_node) {
2432			dev_err(dev->dev, "failed to parse phy-handle for port %d.\n",
2433				dp->index);
2434			phys_are_valid = false;
2435			continue;
2436		}
2437
2438		phy_parent_node = of_get_parent(phy_node);
2439		if (!phy_parent_node) {
2440			dev_err(dev->dev, "failed to get PHY-parent node for port %d\n",
2441				dp->index);
2442			phys_are_valid = false;
2443		} else if (phy_parent_node != mdio_np) {
2444			dev_err(dev->dev, "PHY-parent node mismatch for port %d, expected %pOF, got %pOF\n",
2445				dp->index, mdio_np, phy_parent_node);
2446			phys_are_valid = false;
2447		} else {
2448			ret = of_property_read_u32(phy_node, "reg", &phy_addr);
2449			if (ret < 0) {
2450				dev_err(dev->dev, "failed to read PHY address for port %d. Error %d\n",
2451					dp->index, ret);
2452				phys_are_valid = false;
2453			} else if (phy_addr != dev->phy_addr_map[dp->index]) {
2454				dev_err(dev->dev, "PHY address mismatch for port %d, expected 0x%x, got 0x%x\n",
2455					dp->index, dev->phy_addr_map[dp->index],
2456					phy_addr);
2457				phys_are_valid = false;
2458			} else {
2459				bus->phy_mask |= BIT(phy_addr);
2460			}
2461		}
2462
2463		of_node_put(phy_node);
2464		of_node_put(phy_parent_node);
2465	}
2466
2467	if (!phys_are_valid)
2468		return -EINVAL;
2469
2470	return 0;
2471}
2472
2473/**
2474 * ksz_mdio_register - Register and configure the MDIO bus for the KSZ device.
2475 * @dev: Pointer to the KSZ device structure.
2476 *
2477 * This function sets up and registers an MDIO bus for the KSZ switch device,
2478 * allowing access to its internal PHYs. If the device supports side MDIO,
2479 * the function will configure the external MDIO controller specified by the
2480 * "mdio-parent-bus" device tree property to directly manage internal PHYs.
2481 * Otherwise, SPI or I2C access is set up for PHY access.
2482 *
2483 * Return: 0 on success, or a negative error code on failure.
2484 */
2485static int ksz_mdio_register(struct ksz_device *dev)
2486{
2487	struct device_node *parent_bus_node;
2488	struct mii_bus *parent_bus = NULL;
2489	struct dsa_switch *ds = dev->ds;
2490	struct device_node *mdio_np;
2491	struct mii_bus *bus;
2492	int ret, i;
2493
2494	mdio_np = of_get_child_by_name(dev->dev->of_node, "mdio");
2495	if (!mdio_np)
2496		return 0;
2497
2498	parent_bus_node = of_parse_phandle(mdio_np, "mdio-parent-bus", 0);
2499	if (parent_bus_node && !dev->info->phy_side_mdio_supported) {
2500		dev_err(dev->dev, "Side MDIO bus is not supported for this HW, ignoring 'mdio-parent-bus' property.\n");
2501		ret = -EINVAL;
2502
2503		goto put_mdio_node;
2504	} else if (parent_bus_node) {
2505		parent_bus = of_mdio_find_bus(parent_bus_node);
2506		if (!parent_bus) {
2507			ret = -EPROBE_DEFER;
2508
2509			goto put_mdio_node;
2510		}
2511
2512		dev->parent_mdio_bus = parent_bus;
2513	}
2514
2515	bus = devm_mdiobus_alloc(ds->dev);
2516	if (!bus) {
2517		ret = -ENOMEM;
2518		goto put_mdio_node;
2519	}
2520
2521	if (dev->dev_ops->mdio_bus_preinit) {
2522		ret = dev->dev_ops->mdio_bus_preinit(dev, !!parent_bus);
2523		if (ret)
2524			goto put_mdio_node;
2525	}
2526
2527	if (dev->dev_ops->create_phy_addr_map) {
2528		ret = dev->dev_ops->create_phy_addr_map(dev, !!parent_bus);
2529		if (ret)
2530			goto put_mdio_node;
2531	} else {
2532		for (i = 0; i < dev->info->port_cnt; i++)
2533			dev->phy_addr_map[i] = i;
2534	}
2535
2536	bus->priv = dev;
2537	if (parent_bus) {
2538		bus->read = ksz_parent_mdio_read;
2539		bus->write = ksz_parent_mdio_write;
2540		bus->name = "KSZ side MDIO";
2541		snprintf(bus->id, MII_BUS_ID_SIZE, "ksz-side-mdio-%d",
2542			 ds->index);
2543	} else {
2544		bus->read = ksz_sw_mdio_read;
2545		bus->write = ksz_sw_mdio_write;
2546		bus->name = "ksz user smi";
2547		snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d", ds->index);
2548	}
2549
2550	ret = ksz_parse_dt_phy_config(dev, bus, mdio_np);
2551	if (ret)
2552		goto put_mdio_node;
2553
2554	ds->phys_mii_mask = bus->phy_mask;
2555	bus->parent = ds->dev;
2556
2557	ds->user_mii_bus = bus;
 
 
 
2558
2559	if (dev->irq > 0) {
2560		ret = ksz_irq_phy_setup(dev);
2561		if (ret)
2562			goto put_mdio_node;
2563	}
2564
2565	ret = devm_of_mdiobus_register(ds->dev, bus, mdio_np);
2566	if (ret) {
2567		dev_err(ds->dev, "unable to register MDIO bus %s\n",
2568			bus->id);
2569		if (dev->irq > 0)
2570			ksz_irq_phy_free(dev);
2571	}
2572
2573put_mdio_node:
2574	of_node_put(mdio_np);
2575	of_node_put(parent_bus_node);
2576
2577	return ret;
2578}
2579
2580static void ksz_irq_mask(struct irq_data *d)
2581{
2582	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2583
2584	kirq->masked |= BIT(d->hwirq);
2585}
2586
2587static void ksz_irq_unmask(struct irq_data *d)
2588{
2589	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2590
2591	kirq->masked &= ~BIT(d->hwirq);
 
 
 
2592}
2593
2594static void ksz_irq_bus_lock(struct irq_data *d)
2595{
2596	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2597
2598	mutex_lock(&kirq->dev->lock_irq);
 
 
 
2599}
2600
2601static void ksz_irq_bus_sync_unlock(struct irq_data *d)
2602{
2603	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2604	struct ksz_device *dev = kirq->dev;
2605	int ret;
2606
2607	ret = ksz_write8(dev, kirq->reg_mask, kirq->masked);
2608	if (ret)
2609		dev_err(dev->dev, "failed to change IRQ mask\n");
2610
2611	mutex_unlock(&dev->lock_irq);
2612}
 
 
 
 
2613
2614static const struct irq_chip ksz_irq_chip = {
2615	.name			= "ksz-irq",
2616	.irq_mask		= ksz_irq_mask,
2617	.irq_unmask		= ksz_irq_unmask,
2618	.irq_bus_lock		= ksz_irq_bus_lock,
2619	.irq_bus_sync_unlock	= ksz_irq_bus_sync_unlock,
2620};
2621
2622static int ksz_irq_domain_map(struct irq_domain *d,
2623			      unsigned int irq, irq_hw_number_t hwirq)
2624{
2625	irq_set_chip_data(irq, d->host_data);
2626	irq_set_chip_and_handler(irq, &ksz_irq_chip, handle_level_irq);
2627	irq_set_noprobe(irq);
2628
2629	return 0;
2630}
2631
2632static const struct irq_domain_ops ksz_irq_domain_ops = {
2633	.map	= ksz_irq_domain_map,
2634	.xlate	= irq_domain_xlate_twocell,
2635};
2636
2637static void ksz_irq_free(struct ksz_irq *kirq)
2638{
2639	int irq, virq;
2640
2641	free_irq(kirq->irq_num, kirq);
 
 
 
 
 
2642
2643	for (irq = 0; irq < kirq->nirqs; irq++) {
2644		virq = irq_find_mapping(kirq->domain, irq);
2645		irq_dispose_mapping(virq);
2646	}
2647
2648	irq_domain_remove(kirq->domain);
2649}
2650
2651static irqreturn_t ksz_irq_thread_fn(int irq, void *dev_id)
2652{
2653	struct ksz_irq *kirq = dev_id;
2654	unsigned int nhandled = 0;
2655	struct ksz_device *dev;
2656	unsigned int sub_irq;
2657	u8 data;
2658	int ret;
2659	u8 n;
2660
2661	dev = kirq->dev;
 
2662
2663	/* Read interrupt status register */
2664	ret = ksz_read8(dev, kirq->reg_status, &data);
2665	if (ret)
2666		goto out;
 
 
 
 
 
 
 
 
 
 
 
2667
2668	for (n = 0; n < kirq->nirqs; ++n) {
2669		if (data & BIT(n)) {
2670			sub_irq = irq_find_mapping(kirq->domain, n);
2671			handle_nested_irq(sub_irq);
2672			++nhandled;
2673		}
2674	}
2675out:
2676	return (nhandled > 0 ? IRQ_HANDLED : IRQ_NONE);
2677}
2678
2679static int ksz_irq_common_setup(struct ksz_device *dev, struct ksz_irq *kirq)
2680{
2681	int ret, n;
2682
2683	kirq->dev = dev;
2684	kirq->masked = ~0;
2685
2686	kirq->domain = irq_domain_add_simple(dev->dev->of_node, kirq->nirqs, 0,
2687					     &ksz_irq_domain_ops, kirq);
2688	if (!kirq->domain)
2689		return -ENOMEM;
2690
2691	for (n = 0; n < kirq->nirqs; n++)
2692		irq_create_mapping(kirq->domain, n);
2693
2694	ret = request_threaded_irq(kirq->irq_num, NULL, ksz_irq_thread_fn,
2695				   IRQF_ONESHOT, kirq->name, kirq);
2696	if (ret)
2697		goto out;
2698
2699	return 0;
 
 
2700
2701out:
2702	ksz_irq_free(kirq);
2703
2704	return ret;
2705}
2706
2707static int ksz_girq_setup(struct ksz_device *dev)
2708{
2709	struct ksz_irq *girq = &dev->girq;
 
 
2710
2711	girq->nirqs = dev->info->port_cnt;
2712	girq->reg_mask = REG_SW_PORT_INT_MASK__1;
2713	girq->reg_status = REG_SW_PORT_INT_STATUS__1;
2714	snprintf(girq->name, sizeof(girq->name), "global_port_irq");
2715
2716	girq->irq_num = dev->irq;
 
 
 
 
 
 
2717
2718	return ksz_irq_common_setup(dev, girq);
 
2719}
2720
2721static int ksz_pirq_setup(struct ksz_device *dev, u8 p)
2722{
2723	struct ksz_irq *pirq = &dev->ports[p].pirq;
 
2724
2725	pirq->nirqs = dev->info->port_nirqs;
2726	pirq->reg_mask = dev->dev_ops->get_port_addr(p, REG_PORT_INT_MASK);
2727	pirq->reg_status = dev->dev_ops->get_port_addr(p, REG_PORT_INT_STATUS);
2728	snprintf(pirq->name, sizeof(pirq->name), "port_irq-%d", p);
2729
2730	pirq->irq_num = irq_find_mapping(dev->girq.domain, p);
2731	if (pirq->irq_num < 0)
2732		return pirq->irq_num;
2733
2734	return ksz_irq_common_setup(dev, pirq);
 
 
 
2735}
2736
2737static int ksz_parse_drive_strength(struct ksz_device *dev);
2738
2739static int ksz_setup(struct dsa_switch *ds)
2740{
2741	struct ksz_device *dev = ds->priv;
2742	struct dsa_port *dp;
2743	struct ksz_port *p;
2744	const u16 *regs;
2745	int ret;
2746
2747	regs = dev->info->regs;
2748
2749	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
2750				       dev->info->num_vlans, GFP_KERNEL);
2751	if (!dev->vlan_cache)
2752		return -ENOMEM;
2753
2754	ret = dev->dev_ops->reset(dev);
2755	if (ret) {
2756		dev_err(ds->dev, "failed to reset switch\n");
2757		return ret;
2758	}
2759
2760	ret = ksz_parse_drive_strength(dev);
2761	if (ret)
2762		return ret;
2763
2764	/* set broadcast storm protection 10% rate */
2765	regmap_update_bits(ksz_regmap_16(dev), regs[S_BROADCAST_CTRL],
2766			   BROADCAST_STORM_RATE,
2767			   (BROADCAST_STORM_VALUE *
2768			   BROADCAST_STORM_PROT_RATE) / 100);
2769
2770	dev->dev_ops->config_cpu_port(ds);
2771
2772	dev->dev_ops->enable_stp_addr(dev);
2773
2774	ds->num_tx_queues = dev->info->num_tx_queues;
2775
2776	regmap_update_bits(ksz_regmap_8(dev), regs[S_MULTICAST_CTRL],
2777			   MULTICAST_STORM_DISABLE, MULTICAST_STORM_DISABLE);
2778
2779	ksz_init_mib_timer(dev);
2780
2781	ds->configure_vlan_while_not_filtering = false;
2782	ds->dscp_prio_mapping_is_global = true;
2783
2784	if (dev->dev_ops->setup) {
2785		ret = dev->dev_ops->setup(ds);
2786		if (ret)
2787			return ret;
2788	}
2789
2790	/* Start with learning disabled on standalone user ports, and enabled
2791	 * on the CPU port. In lack of other finer mechanisms, learning on the
2792	 * CPU port will avoid flooding bridge local addresses on the network
2793	 * in some cases.
2794	 */
2795	p = &dev->ports[dev->cpu_port];
2796	p->learning = true;
2797
2798	if (dev->irq > 0) {
2799		ret = ksz_girq_setup(dev);
2800		if (ret)
2801			return ret;
2802
2803		dsa_switch_for_each_user_port(dp, dev->ds) {
2804			ret = ksz_pirq_setup(dev, dp->index);
2805			if (ret)
2806				goto out_girq;
2807
2808			ret = ksz_ptp_irq_setup(ds, dp->index);
2809			if (ret)
2810				goto out_pirq;
2811		}
2812	}
2813
2814	ret = ksz_ptp_clock_register(ds);
2815	if (ret) {
2816		dev_err(dev->dev, "Failed to register PTP clock: %d\n", ret);
2817		goto out_ptpirq;
2818	}
2819
2820	ret = ksz_mdio_register(dev);
2821	if (ret < 0) {
2822		dev_err(dev->dev, "failed to register the mdio");
2823		goto out_ptp_clock_unregister;
2824	}
2825
2826	ret = ksz_dcb_init(dev);
2827	if (ret)
2828		goto out_ptp_clock_unregister;
2829
2830	/* start switch */
2831	regmap_update_bits(ksz_regmap_8(dev), regs[S_START_CTRL],
2832			   SW_START, SW_START);
2833
2834	return 0;
2835
2836out_ptp_clock_unregister:
2837	ksz_ptp_clock_unregister(ds);
2838out_ptpirq:
2839	if (dev->irq > 0)
2840		dsa_switch_for_each_user_port(dp, dev->ds)
2841			ksz_ptp_irq_free(ds, dp->index);
2842out_pirq:
2843	if (dev->irq > 0)
2844		dsa_switch_for_each_user_port(dp, dev->ds)
2845			ksz_irq_free(&dev->ports[dp->index].pirq);
2846out_girq:
2847	if (dev->irq > 0)
2848		ksz_irq_free(&dev->girq);
2849
2850	return ret;
2851}
2852
2853static void ksz_teardown(struct dsa_switch *ds)
2854{
2855	struct ksz_device *dev = ds->priv;
2856	struct dsa_port *dp;
2857
2858	ksz_ptp_clock_unregister(ds);
2859
2860	if (dev->irq > 0) {
2861		dsa_switch_for_each_user_port(dp, dev->ds) {
2862			ksz_ptp_irq_free(ds, dp->index);
2863
2864			ksz_irq_free(&dev->ports[dp->index].pirq);
2865		}
2866
2867		ksz_irq_free(&dev->girq);
2868	}
2869
2870	if (dev->dev_ops->teardown)
2871		dev->dev_ops->teardown(ds);
2872}
2873
2874static void port_r_cnt(struct ksz_device *dev, int port)
2875{
2876	struct ksz_port_mib *mib = &dev->ports[port].mib;
2877	u64 *dropped;
2878
2879	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
2880	while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
2881		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
2882					&mib->counters[mib->cnt_ptr]);
2883		++mib->cnt_ptr;
2884	}
2885
2886	/* last one in storage */
2887	dropped = &mib->counters[dev->info->mib_cnt];
2888
2889	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
2890	while (mib->cnt_ptr < dev->info->mib_cnt) {
2891		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
2892					dropped, &mib->counters[mib->cnt_ptr]);
2893		++mib->cnt_ptr;
2894	}
2895	mib->cnt_ptr = 0;
2896}
2897
2898static void ksz_mib_read_work(struct work_struct *work)
2899{
2900	struct ksz_device *dev = container_of(work, struct ksz_device,
2901					      mib_read.work);
2902	struct ksz_port_mib *mib;
2903	struct ksz_port *p;
2904	int i;
2905
2906	for (i = 0; i < dev->info->port_cnt; i++) {
2907		if (dsa_is_unused_port(dev->ds, i))
2908			continue;
2909
2910		p = &dev->ports[i];
2911		mib = &p->mib;
2912		mutex_lock(&mib->cnt_mutex);
2913
2914		/* Only read MIB counters when the port is told to do.
2915		 * If not, read only dropped counters when link is not up.
2916		 */
2917		if (!p->read) {
2918			const struct dsa_port *dp = dsa_to_port(dev->ds, i);
2919
2920			if (!netif_carrier_ok(dp->user))
2921				mib->cnt_ptr = dev->info->reg_mib_cnt;
2922		}
2923		port_r_cnt(dev, i);
2924		p->read = false;
2925
2926		if (dev->dev_ops->r_mib_stat64)
2927			dev->dev_ops->r_mib_stat64(dev, i);
2928
2929		mutex_unlock(&mib->cnt_mutex);
2930	}
2931
2932	schedule_delayed_work(&dev->mib_read, dev->mib_read_interval);
2933}
2934
2935void ksz_init_mib_timer(struct ksz_device *dev)
2936{
2937	int i;
2938
2939	INIT_DELAYED_WORK(&dev->mib_read, ksz_mib_read_work);
2940
2941	for (i = 0; i < dev->info->port_cnt; i++) {
2942		struct ksz_port_mib *mib = &dev->ports[i].mib;
2943
2944		dev->dev_ops->port_init_cnt(dev, i);
2945
2946		mib->cnt_ptr = 0;
2947		memset(mib->counters, 0, dev->info->mib_cnt * sizeof(u64));
2948	}
2949}
2950
2951static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg)
2952{
2953	struct ksz_device *dev = ds->priv;
2954	u16 val = 0xffff;
2955	int ret;
2956
2957	ret = dev->dev_ops->r_phy(dev, addr, reg, &val);
2958	if (ret)
2959		return ret;
2960
2961	return val;
2962}
2963
2964static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
2965{
2966	struct ksz_device *dev = ds->priv;
2967	int ret;
2968
2969	ret = dev->dev_ops->w_phy(dev, addr, reg, val);
2970	if (ret)
2971		return ret;
2972
2973	return 0;
2974}
2975
2976static u32 ksz_get_phy_flags(struct dsa_switch *ds, int port)
2977{
2978	struct ksz_device *dev = ds->priv;
2979
2980	switch (dev->chip_id) {
2981	case KSZ88X3_CHIP_ID:
2982		/* Silicon Errata Sheet (DS80000830A):
2983		 * Port 1 does not work with LinkMD Cable-Testing.
2984		 * Port 1 does not respond to received PAUSE control frames.
2985		 */
2986		if (!port)
2987			return MICREL_KSZ8_P1_ERRATA;
2988		break;
2989	case KSZ8567_CHIP_ID:
2990		/* KSZ8567R Errata DS80000752C Module 4 */
2991	case KSZ8765_CHIP_ID:
2992	case KSZ8794_CHIP_ID:
2993	case KSZ8795_CHIP_ID:
2994		/* KSZ879x/KSZ877x/KSZ876x Errata DS80000687C Module 2 */
2995	case KSZ9477_CHIP_ID:
2996		/* KSZ9477S Errata DS80000754A Module 4 */
2997	case KSZ9567_CHIP_ID:
2998		/* KSZ9567S Errata DS80000756A Module 4 */
2999	case KSZ9896_CHIP_ID:
3000		/* KSZ9896C Errata DS80000757A Module 3 */
3001	case KSZ9897_CHIP_ID:
3002	case LAN9646_CHIP_ID:
3003		/* KSZ9897R Errata DS80000758C Module 4 */
3004		/* Energy Efficient Ethernet (EEE) feature select must be manually disabled
3005		 *   The EEE feature is enabled by default, but it is not fully
3006		 *   operational. It must be manually disabled through register
3007		 *   controls. If not disabled, the PHY ports can auto-negotiate
3008		 *   to enable EEE, and this feature can cause link drops when
3009		 *   linked to another device supporting EEE.
3010		 *
3011		 * The same item appears in the errata for all switches above.
3012		 */
3013		return MICREL_NO_EEE;
3014	}
3015
3016	return 0;
3017}
3018
3019static void ksz_phylink_mac_link_down(struct phylink_config *config,
3020				      unsigned int mode,
3021				      phy_interface_t interface)
3022{
3023	struct dsa_port *dp = dsa_phylink_to_port(config);
3024	struct ksz_device *dev = dp->ds->priv;
3025
3026	/* Read all MIB counters when the link is going down. */
3027	dev->ports[dp->index].read = true;
3028	/* timer started */
3029	if (dev->mib_read_interval)
3030		schedule_delayed_work(&dev->mib_read, 0);
3031}
3032
3033static int ksz_sset_count(struct dsa_switch *ds, int port, int sset)
3034{
3035	struct ksz_device *dev = ds->priv;
3036
3037	if (sset != ETH_SS_STATS)
3038		return 0;
3039
3040	return dev->info->mib_cnt;
3041}
3042
3043static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
3044				  uint64_t *buf)
3045{
3046	const struct dsa_port *dp = dsa_to_port(ds, port);
3047	struct ksz_device *dev = ds->priv;
3048	struct ksz_port_mib *mib;
3049
3050	mib = &dev->ports[port].mib;
3051	mutex_lock(&mib->cnt_mutex);
3052
3053	/* Only read dropped counters if no link. */
3054	if (!netif_carrier_ok(dp->user))
3055		mib->cnt_ptr = dev->info->reg_mib_cnt;
3056	port_r_cnt(dev, port);
3057	memcpy(buf, mib->counters, dev->info->mib_cnt * sizeof(u64));
3058	mutex_unlock(&mib->cnt_mutex);
3059}
3060
3061static int ksz_port_bridge_join(struct dsa_switch *ds, int port,
3062				struct dsa_bridge bridge,
3063				bool *tx_fwd_offload,
3064				struct netlink_ext_ack *extack)
3065{
3066	/* port_stp_state_set() will be called after to put the port in
3067	 * appropriate state so there is no need to do anything.
3068	 */
3069
3070	return 0;
3071}
3072
3073static void ksz_port_bridge_leave(struct dsa_switch *ds, int port,
3074				  struct dsa_bridge bridge)
3075{
3076	/* port_stp_state_set() will be called after to put the port in
3077	 * forwarding state so there is no need to do anything.
3078	 */
3079}
3080
3081static void ksz_port_fast_age(struct dsa_switch *ds, int port)
3082{
3083	struct ksz_device *dev = ds->priv;
3084
3085	dev->dev_ops->flush_dyn_mac_table(dev, port);
3086}
3087
3088static int ksz_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
3089{
3090	struct ksz_device *dev = ds->priv;
3091
3092	if (!dev->dev_ops->set_ageing_time)
3093		return -EOPNOTSUPP;
3094
3095	return dev->dev_ops->set_ageing_time(dev, msecs);
3096}
3097
3098static int ksz_port_fdb_add(struct dsa_switch *ds, int port,
3099			    const unsigned char *addr, u16 vid,
3100			    struct dsa_db db)
3101{
3102	struct ksz_device *dev = ds->priv;
3103
3104	if (!dev->dev_ops->fdb_add)
3105		return -EOPNOTSUPP;
3106
3107	return dev->dev_ops->fdb_add(dev, port, addr, vid, db);
3108}
3109
3110static int ksz_port_fdb_del(struct dsa_switch *ds, int port,
3111			    const unsigned char *addr,
3112			    u16 vid, struct dsa_db db)
3113{
3114	struct ksz_device *dev = ds->priv;
3115
3116	if (!dev->dev_ops->fdb_del)
3117		return -EOPNOTSUPP;
3118
3119	return dev->dev_ops->fdb_del(dev, port, addr, vid, db);
3120}
3121
3122static int ksz_port_fdb_dump(struct dsa_switch *ds, int port,
3123			     dsa_fdb_dump_cb_t *cb, void *data)
3124{
3125	struct ksz_device *dev = ds->priv;
3126
3127	if (!dev->dev_ops->fdb_dump)
3128		return -EOPNOTSUPP;
3129
3130	return dev->dev_ops->fdb_dump(dev, port, cb, data);
3131}
3132
3133static int ksz_port_mdb_add(struct dsa_switch *ds, int port,
3134			    const struct switchdev_obj_port_mdb *mdb,
3135			    struct dsa_db db)
3136{
3137	struct ksz_device *dev = ds->priv;
3138
3139	if (!dev->dev_ops->mdb_add)
3140		return -EOPNOTSUPP;
3141
3142	return dev->dev_ops->mdb_add(dev, port, mdb, db);
3143}
3144
3145static int ksz_port_mdb_del(struct dsa_switch *ds, int port,
3146			    const struct switchdev_obj_port_mdb *mdb,
3147			    struct dsa_db db)
3148{
3149	struct ksz_device *dev = ds->priv;
3150
3151	if (!dev->dev_ops->mdb_del)
3152		return -EOPNOTSUPP;
3153
3154	return dev->dev_ops->mdb_del(dev, port, mdb, db);
3155}
3156
3157static int ksz9477_set_default_prio_queue_mapping(struct ksz_device *dev,
3158						  int port)
3159{
3160	u32 queue_map = 0;
3161	int ipm;
3162
3163	for (ipm = 0; ipm < dev->info->num_ipms; ipm++) {
3164		int queue;
3165
3166		/* Traffic Type (TT) is corresponding to the Internal Priority
3167		 * Map (IPM) in the switch. Traffic Class (TC) is
3168		 * corresponding to the queue in the switch.
3169		 */
3170		queue = ieee8021q_tt_to_tc(ipm, dev->info->num_tx_queues);
3171		if (queue < 0)
3172			return queue;
3173
3174		queue_map |= queue << (ipm * KSZ9477_PORT_TC_MAP_S);
 
 
3175	}
3176
3177	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
3178}
3179
3180static int ksz_port_setup(struct dsa_switch *ds, int port)
 
3181{
3182	struct ksz_device *dev = ds->priv;
3183	int ret;
 
 
3184
3185	if (!dsa_is_user_port(ds, port))
3186		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3187
3188	/* setup user port */
3189	dev->dev_ops->port_setup(dev, port, false);
3190
3191	if (!is_ksz8(dev)) {
3192		ret = ksz9477_set_default_prio_queue_mapping(dev, port);
3193		if (ret)
3194			return ret;
3195	}
3196
3197	/* port_stp_state_set() will be called after to enable the port so
3198	 * there is no need to do anything.
3199	 */
3200
3201	return ksz_dcb_init_port(dev, port);
3202}
3203
3204void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
3205{
3206	struct ksz_device *dev = ds->priv;
3207	struct ksz_port *p;
3208	const u16 *regs;
3209	u8 data;
3210
3211	regs = dev->info->regs;
3212
3213	ksz_pread8(dev, port, regs[P_STP_CTRL], &data);
3214	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
3215
3216	p = &dev->ports[port];
3217
3218	switch (state) {
3219	case BR_STATE_DISABLED:
3220		data |= PORT_LEARN_DISABLE;
3221		break;
3222	case BR_STATE_LISTENING:
3223		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
3224		break;
3225	case BR_STATE_LEARNING:
3226		data |= PORT_RX_ENABLE;
3227		if (!p->learning)
3228			data |= PORT_LEARN_DISABLE;
3229		break;
3230	case BR_STATE_FORWARDING:
3231		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
3232		if (!p->learning)
3233			data |= PORT_LEARN_DISABLE;
3234		break;
3235	case BR_STATE_BLOCKING:
3236		data |= PORT_LEARN_DISABLE;
3237		break;
3238	default:
3239		dev_err(ds->dev, "invalid STP state: %d\n", state);
3240		return;
3241	}
3242
3243	ksz_pwrite8(dev, port, regs[P_STP_CTRL], data);
3244
3245	p->stp_state = state;
3246
3247	ksz_update_port_member(dev, port);
3248}
3249
3250static void ksz_port_teardown(struct dsa_switch *ds, int port)
3251{
3252	struct ksz_device *dev = ds->priv;
 
3253
3254	switch (dev->chip_id) {
3255	case KSZ8563_CHIP_ID:
3256	case KSZ8567_CHIP_ID:
3257	case KSZ9477_CHIP_ID:
3258	case KSZ9563_CHIP_ID:
3259	case KSZ9567_CHIP_ID:
3260	case KSZ9893_CHIP_ID:
3261	case KSZ9896_CHIP_ID:
3262	case KSZ9897_CHIP_ID:
3263	case LAN9646_CHIP_ID:
3264		if (dsa_is_user_port(ds, port))
3265			ksz9477_port_acl_free(dev, port);
3266	}
3267}
3268
3269static int ksz_port_pre_bridge_flags(struct dsa_switch *ds, int port,
3270				     struct switchdev_brport_flags flags,
3271				     struct netlink_ext_ack *extack)
3272{
3273	if (flags.mask & ~(BR_LEARNING | BR_ISOLATED))
3274		return -EINVAL;
3275
3276	return 0;
 
3277}
3278
3279static int ksz_port_bridge_flags(struct dsa_switch *ds, int port,
3280				 struct switchdev_brport_flags flags,
3281				 struct netlink_ext_ack *extack)
3282{
3283	struct ksz_device *dev = ds->priv;
3284	struct ksz_port *p = &dev->ports[port];
3285
3286	if (flags.mask & (BR_LEARNING | BR_ISOLATED)) {
3287		if (flags.mask & BR_LEARNING)
3288			p->learning = !!(flags.val & BR_LEARNING);
3289
3290		if (flags.mask & BR_ISOLATED)
3291			p->isolated = !!(flags.val & BR_ISOLATED);
3292
3293		/* Make the change take effect immediately */
3294		ksz_port_stp_state_set(ds, port, p->stp_state);
 
 
 
 
 
3295	}
3296
3297	return 0;
3298}
3299
3300static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds,
3301						  int port,
3302						  enum dsa_tag_protocol mp)
3303{
3304	struct ksz_device *dev = ds->priv;
3305	enum dsa_tag_protocol proto = DSA_TAG_PROTO_NONE;
3306
3307	if (ksz_is_ksz87xx(dev) || ksz_is_8895_family(dev))
3308		proto = DSA_TAG_PROTO_KSZ8795;
3309
3310	if (dev->chip_id == KSZ88X3_CHIP_ID ||
3311	    dev->chip_id == KSZ8563_CHIP_ID ||
3312	    dev->chip_id == KSZ9893_CHIP_ID ||
3313	    dev->chip_id == KSZ9563_CHIP_ID)
3314		proto = DSA_TAG_PROTO_KSZ9893;
3315
3316	if (dev->chip_id == KSZ8567_CHIP_ID ||
3317	    dev->chip_id == KSZ9477_CHIP_ID ||
3318	    dev->chip_id == KSZ9896_CHIP_ID ||
3319	    dev->chip_id == KSZ9897_CHIP_ID ||
3320	    dev->chip_id == KSZ9567_CHIP_ID ||
3321	    dev->chip_id == LAN9646_CHIP_ID)
3322		proto = DSA_TAG_PROTO_KSZ9477;
3323
3324	if (is_lan937x(dev))
3325		proto = DSA_TAG_PROTO_LAN937X;
3326
3327	return proto;
3328}
3329
3330static int ksz_connect_tag_protocol(struct dsa_switch *ds,
3331				    enum dsa_tag_protocol proto)
3332{
3333	struct ksz_tagger_data *tagger_data;
3334
3335	switch (proto) {
3336	case DSA_TAG_PROTO_KSZ8795:
3337		return 0;
3338	case DSA_TAG_PROTO_KSZ9893:
3339	case DSA_TAG_PROTO_KSZ9477:
3340	case DSA_TAG_PROTO_LAN937X:
3341		tagger_data = ksz_tagger_data(ds);
3342		tagger_data->xmit_work_fn = ksz_port_deferred_xmit;
3343		return 0;
3344	default:
3345		return -EPROTONOSUPPORT;
3346	}
3347}
3348
3349static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port,
3350				   bool flag, struct netlink_ext_ack *extack)
3351{
3352	struct ksz_device *dev = ds->priv;
 
 
 
3353
3354	if (!dev->dev_ops->vlan_filtering)
3355		return -EOPNOTSUPP;
 
 
 
3356
3357	return dev->dev_ops->vlan_filtering(dev, port, flag, extack);
3358}
 
 
 
 
3359
3360static int ksz_port_vlan_add(struct dsa_switch *ds, int port,
3361			     const struct switchdev_obj_port_vlan *vlan,
3362			     struct netlink_ext_ack *extack)
3363{
3364	struct ksz_device *dev = ds->priv;
3365
3366	if (!dev->dev_ops->vlan_add)
3367		return -EOPNOTSUPP;
 
 
3368
3369	return dev->dev_ops->vlan_add(dev, port, vlan, extack);
 
 
 
3370}
3371
3372static int ksz_port_vlan_del(struct dsa_switch *ds, int port,
3373			     const struct switchdev_obj_port_vlan *vlan)
3374{
3375	struct ksz_device *dev = ds->priv;
 
 
 
 
 
 
 
 
 
 
 
 
 
3376
3377	if (!dev->dev_ops->vlan_del)
3378		return -EOPNOTSUPP;
3379
3380	return dev->dev_ops->vlan_del(dev, port, vlan);
3381}
3382
3383static int ksz_port_mirror_add(struct dsa_switch *ds, int port,
3384			       struct dsa_mall_mirror_tc_entry *mirror,
3385			       bool ingress, struct netlink_ext_ack *extack)
3386{
3387	struct ksz_device *dev = ds->priv;
3388
3389	if (!dev->dev_ops->mirror_add)
3390		return -EOPNOTSUPP;
3391
3392	return dev->dev_ops->mirror_add(dev, port, mirror, ingress, extack);
3393}
 
 
 
3394
3395static void ksz_port_mirror_del(struct dsa_switch *ds, int port,
3396				struct dsa_mall_mirror_tc_entry *mirror)
3397{
3398	struct ksz_device *dev = ds->priv;
3399
3400	if (dev->dev_ops->mirror_del)
3401		dev->dev_ops->mirror_del(dev, port, mirror);
3402}
3403
3404static int ksz_change_mtu(struct dsa_switch *ds, int port, int mtu)
3405{
3406	struct ksz_device *dev = ds->priv;
3407
3408	if (!dev->dev_ops->change_mtu)
3409		return -EOPNOTSUPP;
3410
3411	return dev->dev_ops->change_mtu(dev, port, mtu);
3412}
 
 
 
 
 
 
 
 
 
3413
3414static int ksz_max_mtu(struct dsa_switch *ds, int port)
 
3415{
3416	struct ksz_device *dev = ds->priv;
 
 
 
3417
3418	switch (dev->chip_id) {
3419	case KSZ8795_CHIP_ID:
3420	case KSZ8794_CHIP_ID:
3421	case KSZ8765_CHIP_ID:
3422		return KSZ8795_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3423	case KSZ88X3_CHIP_ID:
3424	case KSZ8864_CHIP_ID:
3425	case KSZ8895_CHIP_ID:
3426		return KSZ8863_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3427	case KSZ8563_CHIP_ID:
3428	case KSZ8567_CHIP_ID:
3429	case KSZ9477_CHIP_ID:
3430	case KSZ9563_CHIP_ID:
3431	case KSZ9567_CHIP_ID:
3432	case KSZ9893_CHIP_ID:
3433	case KSZ9896_CHIP_ID:
3434	case KSZ9897_CHIP_ID:
3435	case LAN9370_CHIP_ID:
3436	case LAN9371_CHIP_ID:
3437	case LAN9372_CHIP_ID:
3438	case LAN9373_CHIP_ID:
3439	case LAN9374_CHIP_ID:
3440	case LAN9646_CHIP_ID:
3441		return KSZ9477_MAX_FRAME_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3442	}
3443
3444	return -EOPNOTSUPP;
3445}
 
 
3446
3447static int ksz_validate_eee(struct dsa_switch *ds, int port)
3448{
3449	struct ksz_device *dev = ds->priv;
3450
3451	if (!dev->info->internal_phy[port])
3452		return -EOPNOTSUPP;
3453
3454	switch (dev->chip_id) {
3455	case KSZ8563_CHIP_ID:
3456	case KSZ8567_CHIP_ID:
3457	case KSZ9477_CHIP_ID:
3458	case KSZ9563_CHIP_ID:
3459	case KSZ9567_CHIP_ID:
3460	case KSZ9893_CHIP_ID:
3461	case KSZ9896_CHIP_ID:
3462	case KSZ9897_CHIP_ID:
3463	case LAN9646_CHIP_ID:
3464		return 0;
3465	}
3466
3467	return -EOPNOTSUPP;
3468}
3469
3470static int ksz_get_mac_eee(struct dsa_switch *ds, int port,
3471			   struct ethtool_keee *e)
3472{
3473	int ret;
 
 
 
 
 
3474
3475	ret = ksz_validate_eee(ds, port);
3476	if (ret)
3477		return ret;
3478
3479	/* There is no documented control of Tx LPI configuration. */
3480	e->tx_lpi_enabled = true;
3481
3482	/* There is no documented control of Tx LPI timer. According to tests
3483	 * Tx LPI timer seems to be set by default to minimal value.
3484	 */
3485	e->tx_lpi_timer = 0;
3486
3487	return 0;
 
 
 
3488}
3489
3490static int ksz_set_mac_eee(struct dsa_switch *ds, int port,
3491			   struct ethtool_keee *e)
3492{
3493	struct ksz_device *dev = ds->priv;
3494	int ret;
 
 
3495
3496	ret = ksz_validate_eee(ds, port);
3497	if (ret)
3498		return ret;
3499
3500	if (!e->tx_lpi_enabled) {
3501		dev_err(dev->dev, "Disabling EEE Tx LPI is not supported\n");
3502		return -EINVAL;
3503	}
3504
3505	if (e->tx_lpi_timer) {
3506		dev_err(dev->dev, "Setting EEE Tx LPI timer is not supported\n");
3507		return -EINVAL;
3508	}
3509
3510	return 0;
3511}
3512
3513static void ksz_set_xmii(struct ksz_device *dev, int port,
3514			 phy_interface_t interface)
3515{
3516	const u8 *bitval = dev->info->xmii_ctrl1;
3517	struct ksz_port *p = &dev->ports[port];
3518	const u16 *regs = dev->info->regs;
3519	u8 data8;
3520
3521	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3522
3523	data8 &= ~(P_MII_SEL_M | P_RGMII_ID_IG_ENABLE |
3524		   P_RGMII_ID_EG_ENABLE);
3525
3526	switch (interface) {
3527	case PHY_INTERFACE_MODE_MII:
3528		data8 |= bitval[P_MII_SEL];
3529		break;
3530	case PHY_INTERFACE_MODE_RMII:
3531		data8 |= bitval[P_RMII_SEL];
3532		break;
3533	case PHY_INTERFACE_MODE_GMII:
3534		data8 |= bitval[P_GMII_SEL];
3535		break;
3536	case PHY_INTERFACE_MODE_RGMII:
3537	case PHY_INTERFACE_MODE_RGMII_ID:
3538	case PHY_INTERFACE_MODE_RGMII_TXID:
3539	case PHY_INTERFACE_MODE_RGMII_RXID:
3540		data8 |= bitval[P_RGMII_SEL];
3541		/* On KSZ9893, disable RGMII in-band status support */
3542		if (dev->chip_id == KSZ9893_CHIP_ID ||
3543		    dev->chip_id == KSZ8563_CHIP_ID ||
3544		    dev->chip_id == KSZ9563_CHIP_ID ||
3545		    is_lan937x(dev))
3546			data8 &= ~P_MII_MAC_MODE;
3547		break;
3548	default:
3549		dev_err(dev->dev, "Unsupported interface '%s' for port %d\n",
3550			phy_modes(interface), port);
3551		return;
3552	}
3553
3554	if (p->rgmii_tx_val)
3555		data8 |= P_RGMII_ID_EG_ENABLE;
3556
3557	if (p->rgmii_rx_val)
3558		data8 |= P_RGMII_ID_IG_ENABLE;
3559
3560	/* Write the updated value */
3561	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
3562}
3563
3564phy_interface_t ksz_get_xmii(struct ksz_device *dev, int port, bool gbit)
3565{
3566	const u8 *bitval = dev->info->xmii_ctrl1;
3567	const u16 *regs = dev->info->regs;
3568	phy_interface_t interface;
3569	u8 data8;
3570	u8 val;
3571
3572	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3573
3574	val = FIELD_GET(P_MII_SEL_M, data8);
3575
3576	if (val == bitval[P_MII_SEL]) {
3577		if (gbit)
3578			interface = PHY_INTERFACE_MODE_GMII;
3579		else
3580			interface = PHY_INTERFACE_MODE_MII;
3581	} else if (val == bitval[P_RMII_SEL]) {
3582		interface = PHY_INTERFACE_MODE_RMII;
3583	} else {
3584		interface = PHY_INTERFACE_MODE_RGMII;
3585		if (data8 & P_RGMII_ID_EG_ENABLE)
3586			interface = PHY_INTERFACE_MODE_RGMII_TXID;
3587		if (data8 & P_RGMII_ID_IG_ENABLE) {
3588			interface = PHY_INTERFACE_MODE_RGMII_RXID;
3589			if (data8 & P_RGMII_ID_EG_ENABLE)
3590				interface = PHY_INTERFACE_MODE_RGMII_ID;
3591		}
 
 
 
 
 
3592	}
3593
3594	return interface;
3595}
3596
3597static void ksz88x3_phylink_mac_config(struct phylink_config *config,
3598				       unsigned int mode,
3599				       const struct phylink_link_state *state)
3600{
3601	struct dsa_port *dp = dsa_phylink_to_port(config);
3602	struct ksz_device *dev = dp->ds->priv;
3603
3604	dev->ports[dp->index].manual_flow = !(state->pause & MLO_PAUSE_AN);
3605}
3606
3607static void ksz_phylink_mac_config(struct phylink_config *config,
3608				   unsigned int mode,
3609				   const struct phylink_link_state *state)
3610{
3611	struct dsa_port *dp = dsa_phylink_to_port(config);
3612	struct ksz_device *dev = dp->ds->priv;
3613	int port = dp->index;
3614
3615	/* Internal PHYs */
3616	if (dev->info->internal_phy[port])
3617		return;
3618
3619	if (phylink_autoneg_inband(mode)) {
3620		dev_err(dev->dev, "In-band AN not supported!\n");
3621		return;
3622	}
3623
3624	ksz_set_xmii(dev, port, state->interface);
3625
3626	if (dev->dev_ops->setup_rgmii_delay)
3627		dev->dev_ops->setup_rgmii_delay(dev, port);
3628}
3629
3630bool ksz_get_gbit(struct ksz_device *dev, int port)
3631{
3632	const u8 *bitval = dev->info->xmii_ctrl1;
3633	const u16 *regs = dev->info->regs;
3634	bool gbit = false;
3635	u8 data8;
3636	bool val;
3637
3638	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3639
3640	val = FIELD_GET(P_GMII_1GBIT_M, data8);
3641
3642	if (val == bitval[P_GMII_1GBIT])
3643		gbit = true;
3644
3645	return gbit;
3646}
3647
3648static void ksz_set_gbit(struct ksz_device *dev, int port, bool gbit)
3649{
3650	const u8 *bitval = dev->info->xmii_ctrl1;
3651	const u16 *regs = dev->info->regs;
3652	u8 data8;
3653
3654	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3655
3656	data8 &= ~P_GMII_1GBIT_M;
3657
3658	if (gbit)
3659		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_1GBIT]);
3660	else
3661		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_NOT_1GBIT]);
3662
3663	/* Write the updated value */
3664	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
3665}
3666
3667static void ksz_set_100_10mbit(struct ksz_device *dev, int port, int speed)
3668{
3669	const u8 *bitval = dev->info->xmii_ctrl0;
3670	const u16 *regs = dev->info->regs;
3671	u8 data8;
3672
3673	ksz_pread8(dev, port, regs[P_XMII_CTRL_0], &data8);
3674
3675	data8 &= ~P_MII_100MBIT_M;
3676
3677	if (speed == SPEED_100)
3678		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_100MBIT]);
3679	else
3680		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_10MBIT]);
3681
3682	/* Write the updated value */
3683	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_0], data8);
3684}
3685
3686static void ksz_port_set_xmii_speed(struct ksz_device *dev, int port, int speed)
3687{
3688	if (speed == SPEED_1000)
3689		ksz_set_gbit(dev, port, true);
3690	else
3691		ksz_set_gbit(dev, port, false);
3692
3693	if (speed == SPEED_100 || speed == SPEED_10)
3694		ksz_set_100_10mbit(dev, port, speed);
3695}
3696
3697static void ksz_duplex_flowctrl(struct ksz_device *dev, int port, int duplex,
3698				bool tx_pause, bool rx_pause)
3699{
3700	const u8 *bitval = dev->info->xmii_ctrl0;
3701	const u32 *masks = dev->info->masks;
3702	const u16 *regs = dev->info->regs;
3703	u8 mask;
3704	u8 val;
3705
3706	mask = P_MII_DUPLEX_M | masks[P_MII_TX_FLOW_CTRL] |
3707	       masks[P_MII_RX_FLOW_CTRL];
3708
3709	if (duplex == DUPLEX_FULL)
3710		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_FULL_DUPLEX]);
3711	else
3712		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_HALF_DUPLEX]);
3713
3714	if (tx_pause)
3715		val |= masks[P_MII_TX_FLOW_CTRL];
3716
3717	if (rx_pause)
3718		val |= masks[P_MII_RX_FLOW_CTRL];
3719
3720	ksz_prmw8(dev, port, regs[P_XMII_CTRL_0], mask, val);
3721}
3722
3723static void ksz9477_phylink_mac_link_up(struct phylink_config *config,
3724					struct phy_device *phydev,
3725					unsigned int mode,
3726					phy_interface_t interface,
3727					int speed, int duplex, bool tx_pause,
3728					bool rx_pause)
3729{
3730	struct dsa_port *dp = dsa_phylink_to_port(config);
3731	struct ksz_device *dev = dp->ds->priv;
3732	int port = dp->index;
3733	struct ksz_port *p;
3734
3735	p = &dev->ports[port];
3736
3737	/* Internal PHYs */
3738	if (dev->info->internal_phy[port])
3739		return;
3740
3741	p->phydev.speed = speed;
3742
3743	ksz_port_set_xmii_speed(dev, port, speed);
3744
3745	ksz_duplex_flowctrl(dev, port, duplex, tx_pause, rx_pause);
 
 
 
3746}
3747
3748static int ksz_switch_detect(struct ksz_device *dev)
 
3749{
3750	u8 id1, id2, id4;
3751	u16 id16;
3752	u32 id32;
3753	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3754
3755	/* read chip id */
3756	ret = ksz_read16(dev, REG_CHIP_ID0, &id16);
3757	if (ret)
3758		return ret;
3759
3760	id1 = FIELD_GET(SW_FAMILY_ID_M, id16);
3761	id2 = FIELD_GET(SW_CHIP_ID_M, id16);
3762
3763	switch (id1) {
3764	case KSZ87_FAMILY_ID:
3765		if (id2 == KSZ87_CHIP_ID_95) {
3766			u8 val;
3767
3768			dev->chip_id = KSZ8795_CHIP_ID;
3769
3770			ksz_read8(dev, KSZ8_PORT_STATUS_0, &val);
3771			if (val & KSZ8_PORT_FIBER_MODE)
3772				dev->chip_id = KSZ8765_CHIP_ID;
3773		} else if (id2 == KSZ87_CHIP_ID_94) {
3774			dev->chip_id = KSZ8794_CHIP_ID;
3775		} else {
3776			return -ENODEV;
3777		}
3778		break;
3779	case KSZ88_FAMILY_ID:
3780		if (id2 == KSZ88_CHIP_ID_63)
3781			dev->chip_id = KSZ88X3_CHIP_ID;
3782		else
3783			return -ENODEV;
3784		break;
3785	case KSZ8895_FAMILY_ID:
3786		if (id2 == KSZ8895_CHIP_ID_95 ||
3787		    id2 == KSZ8895_CHIP_ID_95R)
3788			dev->chip_id = KSZ8895_CHIP_ID;
3789		else
3790			return -ENODEV;
3791		ret = ksz_read8(dev, REG_KSZ8864_CHIP_ID, &id4);
3792		if (ret)
3793			return ret;
3794		if (id4 & SW_KSZ8864)
3795			dev->chip_id = KSZ8864_CHIP_ID;
3796		break;
3797	default:
3798		ret = ksz_read32(dev, REG_CHIP_ID0, &id32);
3799		if (ret)
3800			return ret;
3801
3802		dev->chip_rev = FIELD_GET(SW_REV_ID_M, id32);
3803		id32 &= ~0xFF;
3804
3805		switch (id32) {
3806		case KSZ9477_CHIP_ID:
3807		case KSZ9896_CHIP_ID:
3808		case KSZ9897_CHIP_ID:
3809		case KSZ9567_CHIP_ID:
3810		case KSZ8567_CHIP_ID:
3811		case LAN9370_CHIP_ID:
3812		case LAN9371_CHIP_ID:
3813		case LAN9372_CHIP_ID:
3814		case LAN9373_CHIP_ID:
3815		case LAN9374_CHIP_ID:
3816
3817			/* LAN9646 does not have its own chip id. */
3818			if (dev->chip_id != LAN9646_CHIP_ID)
3819				dev->chip_id = id32;
3820			break;
3821		case KSZ9893_CHIP_ID:
3822			ret = ksz_read8(dev, REG_CHIP_ID4,
3823					&id4);
3824			if (ret)
3825				return ret;
3826
3827			if (id4 == SKU_ID_KSZ8563)
3828				dev->chip_id = KSZ8563_CHIP_ID;
3829			else if (id4 == SKU_ID_KSZ9563)
3830				dev->chip_id = KSZ9563_CHIP_ID;
3831			else
3832				dev->chip_id = KSZ9893_CHIP_ID;
3833
3834			break;
3835		default:
3836			dev_err(dev->dev,
3837				"unsupported switch detected %x)\n", id32);
3838			return -ENODEV;
3839		}
3840	}
3841	return 0;
3842}
3843
3844static int ksz_cls_flower_add(struct dsa_switch *ds, int port,
3845			      struct flow_cls_offload *cls, bool ingress)
3846{
3847	struct ksz_device *dev = ds->priv;
3848
3849	switch (dev->chip_id) {
3850	case KSZ8563_CHIP_ID:
3851	case KSZ8567_CHIP_ID:
3852	case KSZ9477_CHIP_ID:
3853	case KSZ9563_CHIP_ID:
3854	case KSZ9567_CHIP_ID:
3855	case KSZ9893_CHIP_ID:
3856	case KSZ9896_CHIP_ID:
3857	case KSZ9897_CHIP_ID:
3858	case LAN9646_CHIP_ID:
3859		return ksz9477_cls_flower_add(ds, port, cls, ingress);
3860	}
3861
3862	return -EOPNOTSUPP;
3863}
3864
3865static int ksz_cls_flower_del(struct dsa_switch *ds, int port,
3866			      struct flow_cls_offload *cls, bool ingress)
3867{
3868	struct ksz_device *dev = ds->priv;
3869
3870	switch (dev->chip_id) {
3871	case KSZ8563_CHIP_ID:
3872	case KSZ8567_CHIP_ID:
3873	case KSZ9477_CHIP_ID:
3874	case KSZ9563_CHIP_ID:
3875	case KSZ9567_CHIP_ID:
3876	case KSZ9893_CHIP_ID:
3877	case KSZ9896_CHIP_ID:
3878	case KSZ9897_CHIP_ID:
3879	case LAN9646_CHIP_ID:
3880		return ksz9477_cls_flower_del(ds, port, cls, ingress);
3881	}
3882
3883	return -EOPNOTSUPP;
3884}
3885
3886/* Bandwidth is calculated by idle slope/transmission speed. Then the Bandwidth
3887 * is converted to Hex-decimal using the successive multiplication method. On
3888 * every step, integer part is taken and decimal part is carry forwarded.
3889 */
3890static int cinc_cal(s32 idle_slope, s32 send_slope, u32 *bw)
3891{
3892	u32 cinc = 0;
3893	u32 txrate;
3894	u32 rate;
3895	u8 temp;
3896	u8 i;
3897
3898	txrate = idle_slope - send_slope;
3899
3900	if (!txrate)
3901		return -EINVAL;
3902
3903	rate = idle_slope;
3904
3905	/* 24 bit register */
3906	for (i = 0; i < 6; i++) {
3907		rate = rate * 16;
3908
3909		temp = rate / txrate;
3910
3911		rate %= txrate;
3912
3913		cinc = ((cinc << 4) | temp);
3914	}
3915
3916	*bw = cinc;
3917
3918	return 0;
3919}
3920
3921static int ksz_setup_tc_mode(struct ksz_device *dev, int port, u8 scheduler,
3922			     u8 shaper)
3923{
3924	return ksz_pwrite8(dev, port, REG_PORT_MTI_QUEUE_CTRL_0,
3925			   FIELD_PREP(MTI_SCHEDULE_MODE_M, scheduler) |
3926			   FIELD_PREP(MTI_SHAPING_M, shaper));
3927}
3928
3929static int ksz_setup_tc_cbs(struct dsa_switch *ds, int port,
3930			    struct tc_cbs_qopt_offload *qopt)
3931{
3932	struct ksz_device *dev = ds->priv;
3933	int ret;
3934	u32 bw;
3935
3936	if (!dev->info->tc_cbs_supported)
3937		return -EOPNOTSUPP;
3938
3939	if (qopt->queue > dev->info->num_tx_queues)
3940		return -EINVAL;
3941
3942	/* Queue Selection */
3943	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, qopt->queue);
3944	if (ret)
3945		return ret;
3946
3947	if (!qopt->enable)
3948		return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
3949					 MTI_SHAPING_OFF);
3950
3951	/* High Credit */
3952	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_HI_WATER_MARK,
3953			   qopt->hicredit);
3954	if (ret)
3955		return ret;
3956
3957	/* Low Credit */
3958	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_LO_WATER_MARK,
3959			   qopt->locredit);
3960	if (ret)
3961		return ret;
3962
3963	/* Credit Increment Register */
3964	ret = cinc_cal(qopt->idleslope, qopt->sendslope, &bw);
3965	if (ret)
3966		return ret;
3967
3968	if (dev->dev_ops->tc_cbs_set_cinc) {
3969		ret = dev->dev_ops->tc_cbs_set_cinc(dev, port, bw);
3970		if (ret)
3971			return ret;
3972	}
3973
3974	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
3975				 MTI_SHAPING_SRP);
3976}
3977
3978static int ksz_disable_egress_rate_limit(struct ksz_device *dev, int port)
3979{
3980	int queue, ret;
3981
3982	/* Configuration will not take effect until the last Port Queue X
3983	 * Egress Limit Control Register is written.
3984	 */
3985	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
3986		ret = ksz_pwrite8(dev, port, KSZ9477_REG_PORT_OUT_RATE_0 + queue,
3987				  KSZ9477_OUT_RATE_NO_LIMIT);
3988		if (ret)
3989			return ret;
3990	}
3991
3992	return 0;
3993}
3994
3995static int ksz_ets_band_to_queue(struct tc_ets_qopt_offload_replace_params *p,
3996				 int band)
3997{
3998	/* Compared to queues, bands prioritize packets differently. In strict
3999	 * priority mode, the lowest priority is assigned to Queue 0 while the
4000	 * highest priority is given to Band 0.
4001	 */
4002	return p->bands - 1 - band;
4003}
4004
4005static int ksz_queue_set_strict(struct ksz_device *dev, int port, int queue)
4006{
4007	int ret;
4008
4009	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
4010	if (ret)
4011		return ret;
4012
4013	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
4014				 MTI_SHAPING_OFF);
4015}
4016
4017static int ksz_queue_set_wrr(struct ksz_device *dev, int port, int queue,
4018			     int weight)
4019{
4020	int ret;
4021
4022	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
4023	if (ret)
4024		return ret;
4025
4026	ret = ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
4027				MTI_SHAPING_OFF);
4028	if (ret)
4029		return ret;
4030
4031	return ksz_pwrite8(dev, port, KSZ9477_PORT_MTI_QUEUE_CTRL_1, weight);
4032}
4033
4034static int ksz_tc_ets_add(struct ksz_device *dev, int port,
4035			  struct tc_ets_qopt_offload_replace_params *p)
4036{
4037	int ret, band, tc_prio;
4038	u32 queue_map = 0;
4039
4040	/* In order to ensure proper prioritization, it is necessary to set the
4041	 * rate limit for the related queue to zero. Otherwise strict priority
4042	 * or WRR mode will not work. This is a hardware limitation.
4043	 */
4044	ret = ksz_disable_egress_rate_limit(dev, port);
4045	if (ret)
4046		return ret;
4047
4048	/* Configure queue scheduling mode for all bands. Currently only strict
4049	 * prio mode is supported.
4050	 */
4051	for (band = 0; band < p->bands; band++) {
4052		int queue = ksz_ets_band_to_queue(p, band);
4053
4054		ret = ksz_queue_set_strict(dev, port, queue);
4055		if (ret)
4056			return ret;
4057	}
4058
4059	/* Configure the mapping between traffic classes and queues. Note:
4060	 * priomap variable support 16 traffic classes, but the chip can handle
4061	 * only 8 classes.
4062	 */
4063	for (tc_prio = 0; tc_prio < ARRAY_SIZE(p->priomap); tc_prio++) {
4064		int queue;
4065
4066		if (tc_prio >= dev->info->num_ipms)
 
 
 
 
 
 
 
 
 
4067			break;
4068
4069		queue = ksz_ets_band_to_queue(p, p->priomap[tc_prio]);
4070		queue_map |= queue << (tc_prio * KSZ9477_PORT_TC_MAP_S);
4071	}
4072
4073	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
4074}
4075
4076static int ksz_tc_ets_del(struct ksz_device *dev, int port)
4077{
4078	int ret, queue;
4079
4080	/* To restore the default chip configuration, set all queues to use the
4081	 * WRR scheduler with a weight of 1.
4082	 */
4083	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
4084		ret = ksz_queue_set_wrr(dev, port, queue,
4085					KSZ9477_DEFAULT_WRR_WEIGHT);
4086		if (ret)
4087			return ret;
4088	}
4089
4090	/* Revert the queue mapping for TC-priority to its default setting on
4091	 * the chip.
4092	 */
4093	return ksz9477_set_default_prio_queue_mapping(dev, port);
4094}
4095
4096static int ksz_tc_ets_validate(struct ksz_device *dev, int port,
4097			       struct tc_ets_qopt_offload_replace_params *p)
4098{
4099	int band;
4100
4101	/* Since it is not feasible to share one port among multiple qdisc,
4102	 * the user must configure all available queues appropriately.
4103	 */
4104	if (p->bands != dev->info->num_tx_queues) {
4105		dev_err(dev->dev, "Not supported amount of bands. It should be %d\n",
4106			dev->info->num_tx_queues);
4107		return -EOPNOTSUPP;
4108	}
4109
4110	for (band = 0; band < p->bands; ++band) {
4111		/* The KSZ switches utilize a weighted round robin configuration
4112		 * where a certain number of packets can be transmitted from a
4113		 * queue before the next queue is serviced. For more information
4114		 * on this, refer to section 5.2.8.4 of the KSZ8565R
4115		 * documentation on the Port Transmit Queue Control 1 Register.
4116		 * However, the current ETS Qdisc implementation (as of February
4117		 * 2023) assigns a weight to each queue based on the number of
4118		 * bytes or extrapolated bandwidth in percentages. Since this
4119		 * differs from the KSZ switches' method and we don't want to
4120		 * fake support by converting bytes to packets, it is better to
4121		 * return an error instead.
4122		 */
4123		if (p->quanta[band]) {
4124			dev_err(dev->dev, "Quanta/weights configuration is not supported.\n");
4125			return -EOPNOTSUPP;
4126		}
4127	}
4128
4129	return 0;
4130}
4131
4132static int ksz_tc_setup_qdisc_ets(struct dsa_switch *ds, int port,
4133				  struct tc_ets_qopt_offload *qopt)
4134{
4135	struct ksz_device *dev = ds->priv;
4136	int ret;
4137
4138	if (is_ksz8(dev))
4139		return -EOPNOTSUPP;
4140
4141	if (qopt->parent != TC_H_ROOT) {
4142		dev_err(dev->dev, "Parent should be \"root\"\n");
4143		return -EOPNOTSUPP;
4144	}
4145
4146	switch (qopt->command) {
4147	case TC_ETS_REPLACE:
4148		ret = ksz_tc_ets_validate(dev, port, &qopt->replace_params);
4149		if (ret)
4150			return ret;
4151
4152		return ksz_tc_ets_add(dev, port, &qopt->replace_params);
4153	case TC_ETS_DESTROY:
4154		return ksz_tc_ets_del(dev, port);
4155	case TC_ETS_STATS:
4156	case TC_ETS_GRAFT:
4157		return -EOPNOTSUPP;
4158	}
4159
4160	return -EOPNOTSUPP;
4161}
4162
4163static int ksz_setup_tc(struct dsa_switch *ds, int port,
4164			enum tc_setup_type type, void *type_data)
4165{
4166	switch (type) {
4167	case TC_SETUP_QDISC_CBS:
4168		return ksz_setup_tc_cbs(ds, port, type_data);
4169	case TC_SETUP_QDISC_ETS:
4170		return ksz_tc_setup_qdisc_ets(ds, port, type_data);
4171	default:
4172		return -EOPNOTSUPP;
4173	}
4174}
4175
4176/**
4177 * ksz_handle_wake_reason - Handle wake reason on a specified port.
4178 * @dev: The device structure.
4179 * @port: The port number.
4180 *
4181 * This function reads the PME (Power Management Event) status register of a
4182 * specified port to determine the wake reason. If there is no wake event, it
4183 * returns early. Otherwise, it logs the wake reason which could be due to a
4184 * "Magic Packet", "Link Up", or "Energy Detect" event. The PME status register
4185 * is then cleared to acknowledge the handling of the wake event.
4186 *
4187 * Return: 0 on success, or an error code on failure.
4188 */
4189int ksz_handle_wake_reason(struct ksz_device *dev, int port)
4190{
4191	const struct ksz_dev_ops *ops = dev->dev_ops;
4192	const u16 *regs = dev->info->regs;
4193	u8 pme_status;
4194	int ret;
4195
4196	ret = ops->pme_pread8(dev, port, regs[REG_PORT_PME_STATUS],
4197			      &pme_status);
4198	if (ret)
4199		return ret;
4200
4201	if (!pme_status)
4202		return 0;
4203
4204	dev_dbg(dev->dev, "Wake event on port %d due to:%s%s%s\n", port,
4205		pme_status & PME_WOL_MAGICPKT ? " \"Magic Packet\"" : "",
4206		pme_status & PME_WOL_LINKUP ? " \"Link Up\"" : "",
4207		pme_status & PME_WOL_ENERGY ? " \"Energy detect\"" : "");
4208
4209	return ops->pme_pwrite8(dev, port, regs[REG_PORT_PME_STATUS],
4210				pme_status);
4211}
4212
4213/**
4214 * ksz_get_wol - Get Wake-on-LAN settings for a specified port.
4215 * @ds: The dsa_switch structure.
4216 * @port: The port number.
4217 * @wol: Pointer to ethtool Wake-on-LAN settings structure.
4218 *
4219 * This function checks the device PME wakeup_source flag and chip_id.
4220 * If enabled and supported, it sets the supported and active WoL
4221 * flags.
4222 */
4223static void ksz_get_wol(struct dsa_switch *ds, int port,
4224			struct ethtool_wolinfo *wol)
4225{
4226	struct ksz_device *dev = ds->priv;
4227	const u16 *regs = dev->info->regs;
4228	u8 pme_ctrl;
4229	int ret;
4230
4231	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
4232		return;
4233
4234	if (!dev->wakeup_source)
4235		return;
4236
4237	wol->supported = WAKE_PHY;
4238
4239	/* Check if the current MAC address on this port can be set
4240	 * as global for WAKE_MAGIC support. The result may vary
4241	 * dynamically based on other ports configurations.
4242	 */
4243	if (ksz_is_port_mac_global_usable(dev->ds, port))
4244		wol->supported |= WAKE_MAGIC;
4245
4246	ret = dev->dev_ops->pme_pread8(dev, port, regs[REG_PORT_PME_CTRL],
4247				       &pme_ctrl);
4248	if (ret)
4249		return;
4250
4251	if (pme_ctrl & PME_WOL_MAGICPKT)
4252		wol->wolopts |= WAKE_MAGIC;
4253	if (pme_ctrl & (PME_WOL_LINKUP | PME_WOL_ENERGY))
4254		wol->wolopts |= WAKE_PHY;
4255}
4256
4257/**
4258 * ksz_set_wol - Set Wake-on-LAN settings for a specified port.
4259 * @ds: The dsa_switch structure.
4260 * @port: The port number.
4261 * @wol: Pointer to ethtool Wake-on-LAN settings structure.
4262 *
4263 * This function configures Wake-on-LAN (WoL) settings for a specified
4264 * port. It validates the provided WoL options, checks if PME is
4265 * enabled and supported, clears any previous wake reasons, and sets
4266 * the Magic Packet flag in the port's PME control register if
4267 * specified.
4268 *
4269 * Return: 0 on success, or other error codes on failure.
4270 */
4271static int ksz_set_wol(struct dsa_switch *ds, int port,
4272		       struct ethtool_wolinfo *wol)
4273{
4274	u8 pme_ctrl = 0, pme_ctrl_old = 0;
4275	struct ksz_device *dev = ds->priv;
4276	const u16 *regs = dev->info->regs;
4277	bool magic_switched_off;
4278	bool magic_switched_on;
4279	int ret;
4280
4281	if (wol->wolopts & ~(WAKE_PHY | WAKE_MAGIC))
4282		return -EINVAL;
4283
4284	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
4285		return -EOPNOTSUPP;
 
4286
4287	if (!dev->wakeup_source)
4288		return -EOPNOTSUPP;
4289
4290	ret = ksz_handle_wake_reason(dev, port);
4291	if (ret)
4292		return ret;
4293
4294	if (wol->wolopts & WAKE_MAGIC)
4295		pme_ctrl |= PME_WOL_MAGICPKT;
4296	if (wol->wolopts & WAKE_PHY)
4297		pme_ctrl |= PME_WOL_LINKUP | PME_WOL_ENERGY;
4298
4299	ret = dev->dev_ops->pme_pread8(dev, port, regs[REG_PORT_PME_CTRL],
4300				       &pme_ctrl_old);
4301	if (ret)
4302		return ret;
4303
4304	if (pme_ctrl_old == pme_ctrl)
4305		return 0;
4306
4307	magic_switched_off = (pme_ctrl_old & PME_WOL_MAGICPKT) &&
4308			    !(pme_ctrl & PME_WOL_MAGICPKT);
4309	magic_switched_on = !(pme_ctrl_old & PME_WOL_MAGICPKT) &&
4310			    (pme_ctrl & PME_WOL_MAGICPKT);
4311
4312	/* To keep reference count of MAC address, we should do this
4313	 * operation only on change of WOL settings.
4314	 */
4315	if (magic_switched_on) {
4316		ret = ksz_switch_macaddr_get(dev->ds, port, NULL);
4317		if (ret)
4318			return ret;
4319	} else if (magic_switched_off) {
4320		ksz_switch_macaddr_put(dev->ds);
4321	}
4322
4323	ret = dev->dev_ops->pme_pwrite8(dev, port, regs[REG_PORT_PME_CTRL],
4324					pme_ctrl);
4325	if (ret) {
4326		if (magic_switched_on)
4327			ksz_switch_macaddr_put(dev->ds);
4328		return ret;
4329	}
4330
4331	return 0;
4332}
4333
4334/**
4335 * ksz_wol_pre_shutdown - Prepares the switch device for shutdown while
4336 *                        considering Wake-on-LAN (WoL) settings.
4337 * @dev: The switch device structure.
4338 * @wol_enabled: Pointer to a boolean which will be set to true if WoL is
4339 *               enabled on any port.
4340 *
4341 * This function prepares the switch device for a safe shutdown while taking
4342 * into account the Wake-on-LAN (WoL) settings on the user ports. It updates
4343 * the wol_enabled flag accordingly to reflect whether WoL is active on any
4344 * port.
4345 */
4346static void ksz_wol_pre_shutdown(struct ksz_device *dev, bool *wol_enabled)
4347{
4348	const struct ksz_dev_ops *ops = dev->dev_ops;
4349	const u16 *regs = dev->info->regs;
4350	u8 pme_pin_en = PME_ENABLE;
4351	struct dsa_port *dp;
4352	int ret;
4353
4354	*wol_enabled = false;
4355
4356	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
4357		return;
4358
4359	if (!dev->wakeup_source)
4360		return;
4361
4362	dsa_switch_for_each_user_port(dp, dev->ds) {
4363		u8 pme_ctrl = 0;
4364
4365		ret = ops->pme_pread8(dev, dp->index,
4366				      regs[REG_PORT_PME_CTRL], &pme_ctrl);
4367		if (!ret && pme_ctrl)
4368			*wol_enabled = true;
4369
4370		/* make sure there are no pending wake events which would
4371		 * prevent the device from going to sleep/shutdown.
4372		 */
4373		ksz_handle_wake_reason(dev, dp->index);
4374	}
4375
4376	/* Now we are save to enable PME pin. */
4377	if (*wol_enabled) {
4378		if (dev->pme_active_high)
4379			pme_pin_en |= PME_POLARITY;
4380		ops->pme_write8(dev, regs[REG_SW_PME_CTRL], pme_pin_en);
4381		if (ksz_is_ksz87xx(dev))
4382			ksz_write8(dev, KSZ87XX_REG_INT_EN, KSZ87XX_INT_PME_MASK);
4383	}
4384}
4385
4386static int ksz_port_set_mac_address(struct dsa_switch *ds, int port,
4387				    const unsigned char *addr)
4388{
4389	struct dsa_port *dp = dsa_to_port(ds, port);
4390	struct ethtool_wolinfo wol;
4391
4392	if (dp->hsr_dev) {
4393		dev_err(ds->dev,
4394			"Cannot change MAC address on port %d with active HSR offload\n",
4395			port);
4396		return -EBUSY;
 
 
4397	}
4398
4399	/* Need to initialize variable as the code to fill in settings may
4400	 * not be executed.
4401	 */
4402	wol.wolopts = 0;
4403
4404	ksz_get_wol(ds, dp->index, &wol);
4405	if (wol.wolopts & WAKE_MAGIC) {
4406		dev_err(ds->dev,
4407			"Cannot change MAC address on port %d with active Wake on Magic Packet\n",
4408			port);
4409		return -EBUSY;
4410	}
4411
4412	return 0;
4413}
4414
4415/**
4416 * ksz_is_port_mac_global_usable - Check if the MAC address on a given port
4417 *                                 can be used as a global address.
4418 * @ds: Pointer to the DSA switch structure.
4419 * @port: The port number on which the MAC address is to be checked.
4420 *
4421 * This function examines the MAC address set on the specified port and
4422 * determines if it can be used as a global address for the switch.
4423 *
4424 * Return: true if the port's MAC address can be used as a global address, false
4425 * otherwise.
4426 */
4427bool ksz_is_port_mac_global_usable(struct dsa_switch *ds, int port)
4428{
4429	struct net_device *user = dsa_to_port(ds, port)->user;
4430	const unsigned char *addr = user->dev_addr;
4431	struct ksz_switch_macaddr *switch_macaddr;
4432	struct ksz_device *dev = ds->priv;
4433
4434	ASSERT_RTNL();
4435
4436	switch_macaddr = dev->switch_macaddr;
4437	if (switch_macaddr && !ether_addr_equal(switch_macaddr->addr, addr))
4438		return false;
4439
4440	return true;
4441}
4442
4443/**
4444 * ksz_switch_macaddr_get - Program the switch's MAC address register.
4445 * @ds: DSA switch instance.
4446 * @port: Port number.
4447 * @extack: Netlink extended acknowledgment.
4448 *
4449 * This function programs the switch's MAC address register with the MAC address
4450 * of the requesting user port. This single address is used by the switch for
4451 * multiple features like HSR self-address filtering and WoL. Other user ports
4452 * can share ownership of this address as long as their MAC address is the same.
4453 * The MAC addresses of user ports must not change while they have ownership of
4454 * the switch MAC address.
4455 *
4456 * Return: 0 on success, or other error codes on failure.
4457 */
4458int ksz_switch_macaddr_get(struct dsa_switch *ds, int port,
4459			   struct netlink_ext_ack *extack)
4460{
4461	struct net_device *user = dsa_to_port(ds, port)->user;
4462	const unsigned char *addr = user->dev_addr;
4463	struct ksz_switch_macaddr *switch_macaddr;
4464	struct ksz_device *dev = ds->priv;
4465	const u16 *regs = dev->info->regs;
4466	int i, ret;
4467
4468	/* Make sure concurrent MAC address changes are blocked */
4469	ASSERT_RTNL();
4470
4471	switch_macaddr = dev->switch_macaddr;
4472	if (switch_macaddr) {
4473		if (!ether_addr_equal(switch_macaddr->addr, addr)) {
4474			NL_SET_ERR_MSG_FMT_MOD(extack,
4475					       "Switch already configured for MAC address %pM",
4476					       switch_macaddr->addr);
4477			return -EBUSY;
4478		}
4479
4480		refcount_inc(&switch_macaddr->refcount);
4481		return 0;
4482	}
4483
4484	switch_macaddr = kzalloc(sizeof(*switch_macaddr), GFP_KERNEL);
4485	if (!switch_macaddr)
4486		return -ENOMEM;
4487
4488	ether_addr_copy(switch_macaddr->addr, addr);
4489	refcount_set(&switch_macaddr->refcount, 1);
4490	dev->switch_macaddr = switch_macaddr;
4491
4492	/* Program the switch MAC address to hardware */
4493	for (i = 0; i < ETH_ALEN; i++) {
4494		ret = ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, addr[i]);
4495		if (ret)
4496			goto macaddr_drop;
4497	}
4498
4499	return 0;
 
 
 
4500
4501macaddr_drop:
4502	dev->switch_macaddr = NULL;
4503	refcount_set(&switch_macaddr->refcount, 0);
4504	kfree(switch_macaddr);
4505
4506	return ret;
4507}
4508
4509void ksz_switch_macaddr_put(struct dsa_switch *ds)
4510{
4511	struct ksz_switch_macaddr *switch_macaddr;
4512	struct ksz_device *dev = ds->priv;
4513	const u16 *regs = dev->info->regs;
4514	int i;
4515
4516	/* Make sure concurrent MAC address changes are blocked */
4517	ASSERT_RTNL();
4518
4519	switch_macaddr = dev->switch_macaddr;
4520	if (!refcount_dec_and_test(&switch_macaddr->refcount))
4521		return;
4522
4523	for (i = 0; i < ETH_ALEN; i++)
4524		ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, 0);
4525
4526	dev->switch_macaddr = NULL;
4527	kfree(switch_macaddr);
4528}
4529
4530static int ksz_hsr_join(struct dsa_switch *ds, int port, struct net_device *hsr,
4531			struct netlink_ext_ack *extack)
4532{
4533	struct ksz_device *dev = ds->priv;
4534	enum hsr_version ver;
4535	int ret;
4536
4537	ret = hsr_get_version(hsr, &ver);
4538	if (ret)
4539		return ret;
4540
4541	if (dev->chip_id != KSZ9477_CHIP_ID) {
4542		NL_SET_ERR_MSG_MOD(extack, "Chip does not support HSR offload");
4543		return -EOPNOTSUPP;
4544	}
4545
4546	/* KSZ9477 can support HW offloading of only 1 HSR device */
4547	if (dev->hsr_dev && hsr != dev->hsr_dev) {
4548		NL_SET_ERR_MSG_MOD(extack, "Offload supported for a single HSR");
4549		return -EOPNOTSUPP;
4550	}
4551
4552	/* KSZ9477 only supports HSR v0 and v1 */
4553	if (!(ver == HSR_V0 || ver == HSR_V1)) {
4554		NL_SET_ERR_MSG_MOD(extack, "Only HSR v0 and v1 supported");
4555		return -EOPNOTSUPP;
4556	}
4557
4558	/* KSZ9477 can only perform HSR offloading for up to two ports */
4559	if (hweight8(dev->hsr_ports) >= 2) {
4560		NL_SET_ERR_MSG_MOD(extack,
4561				   "Cannot offload more than two ports - using software HSR");
4562		return -EOPNOTSUPP;
4563	}
4564
4565	/* Self MAC address filtering, to avoid frames traversing
4566	 * the HSR ring more than once.
4567	 */
4568	ret = ksz_switch_macaddr_get(ds, port, extack);
4569	if (ret)
4570		return ret;
4571
4572	ksz9477_hsr_join(ds, port, hsr);
4573	dev->hsr_dev = hsr;
4574	dev->hsr_ports |= BIT(port);
4575
4576	return 0;
4577}
4578
4579static int ksz_hsr_leave(struct dsa_switch *ds, int port,
4580			 struct net_device *hsr)
4581{
4582	struct ksz_device *dev = ds->priv;
 
4583
4584	WARN_ON(dev->chip_id != KSZ9477_CHIP_ID);
4585
4586	ksz9477_hsr_leave(ds, port, hsr);
4587	dev->hsr_ports &= ~BIT(port);
4588	if (!dev->hsr_ports)
4589		dev->hsr_dev = NULL;
4590
4591	ksz_switch_macaddr_put(ds);
4592
4593	return 0;
 
 
4594}
4595
4596static const struct dsa_switch_ops ksz_switch_ops = {
4597	.get_tag_protocol	= ksz_get_tag_protocol,
4598	.connect_tag_protocol   = ksz_connect_tag_protocol,
4599	.get_phy_flags		= ksz_get_phy_flags,
4600	.setup			= ksz_setup,
4601	.teardown		= ksz_teardown,
4602	.phy_read		= ksz_phy_read16,
4603	.phy_write		= ksz_phy_write16,
4604	.phylink_get_caps	= ksz_phylink_get_caps,
4605	.port_setup		= ksz_port_setup,
4606	.set_ageing_time	= ksz_set_ageing_time,
4607	.get_strings		= ksz_get_strings,
4608	.get_ethtool_stats	= ksz_get_ethtool_stats,
4609	.get_sset_count		= ksz_sset_count,
4610	.port_bridge_join	= ksz_port_bridge_join,
4611	.port_bridge_leave	= ksz_port_bridge_leave,
4612	.port_hsr_join		= ksz_hsr_join,
4613	.port_hsr_leave		= ksz_hsr_leave,
4614	.port_set_mac_address	= ksz_port_set_mac_address,
4615	.port_stp_state_set	= ksz_port_stp_state_set,
4616	.port_teardown		= ksz_port_teardown,
4617	.port_pre_bridge_flags	= ksz_port_pre_bridge_flags,
4618	.port_bridge_flags	= ksz_port_bridge_flags,
4619	.port_fast_age		= ksz_port_fast_age,
4620	.port_vlan_filtering	= ksz_port_vlan_filtering,
 
4621	.port_vlan_add		= ksz_port_vlan_add,
4622	.port_vlan_del		= ksz_port_vlan_del,
4623	.port_fdb_dump		= ksz_port_fdb_dump,
4624	.port_fdb_add		= ksz_port_fdb_add,
4625	.port_fdb_del		= ksz_port_fdb_del,
 
4626	.port_mdb_add           = ksz_port_mdb_add,
4627	.port_mdb_del           = ksz_port_mdb_del,
4628	.port_mirror_add	= ksz_port_mirror_add,
4629	.port_mirror_del	= ksz_port_mirror_del,
4630	.get_stats64		= ksz_get_stats64,
4631	.get_pause_stats	= ksz_get_pause_stats,
4632	.port_change_mtu	= ksz_change_mtu,
4633	.port_max_mtu		= ksz_max_mtu,
4634	.get_wol		= ksz_get_wol,
4635	.set_wol		= ksz_set_wol,
4636	.get_ts_info		= ksz_get_ts_info,
4637	.port_hwtstamp_get	= ksz_hwtstamp_get,
4638	.port_hwtstamp_set	= ksz_hwtstamp_set,
4639	.port_txtstamp		= ksz_port_txtstamp,
4640	.port_rxtstamp		= ksz_port_rxtstamp,
4641	.cls_flower_add		= ksz_cls_flower_add,
4642	.cls_flower_del		= ksz_cls_flower_del,
4643	.port_setup_tc		= ksz_setup_tc,
4644	.get_mac_eee		= ksz_get_mac_eee,
4645	.set_mac_eee		= ksz_set_mac_eee,
4646	.port_get_default_prio	= ksz_port_get_default_prio,
4647	.port_set_default_prio	= ksz_port_set_default_prio,
4648	.port_get_dscp_prio	= ksz_port_get_dscp_prio,
4649	.port_add_dscp_prio	= ksz_port_add_dscp_prio,
4650	.port_del_dscp_prio	= ksz_port_del_dscp_prio,
4651	.port_get_apptrust	= ksz_port_get_apptrust,
4652	.port_set_apptrust	= ksz_port_set_apptrust,
4653};
4654
4655struct ksz_device *ksz_switch_alloc(struct device *base, void *priv)
4656{
4657	struct dsa_switch *ds;
4658	struct ksz_device *swdev;
4659
4660	ds = devm_kzalloc(base, sizeof(*ds), GFP_KERNEL);
4661	if (!ds)
4662		return NULL;
4663
4664	ds->dev = base;
4665	ds->num_ports = DSA_MAX_PORTS;
4666	ds->ops = &ksz_switch_ops;
4667
4668	swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL);
4669	if (!swdev)
4670		return NULL;
4671
4672	ds->priv = swdev;
4673	swdev->dev = base;
4674
4675	swdev->ds = ds;
4676	swdev->priv = priv;
4677
4678	return swdev;
4679}
4680EXPORT_SYMBOL(ksz_switch_alloc);
4681
4682/**
4683 * ksz_switch_shutdown - Shutdown routine for the switch device.
4684 * @dev: The switch device structure.
4685 *
4686 * This function is responsible for initiating a shutdown sequence for the
4687 * switch device. It invokes the reset operation defined in the device
4688 * operations, if available, to reset the switch. Subsequently, it calls the
4689 * DSA framework's shutdown function to ensure a proper shutdown of the DSA
4690 * switch.
4691 */
4692void ksz_switch_shutdown(struct ksz_device *dev)
4693{
4694	bool wol_enabled = false;
4695
4696	ksz_wol_pre_shutdown(dev, &wol_enabled);
4697
4698	if (dev->dev_ops->reset && !wol_enabled)
4699		dev->dev_ops->reset(dev);
4700
4701	dsa_switch_shutdown(dev->ds);
4702}
4703EXPORT_SYMBOL(ksz_switch_shutdown);
4704
4705static void ksz_parse_rgmii_delay(struct ksz_device *dev, int port_num,
4706				  struct device_node *port_dn)
4707{
4708	phy_interface_t phy_mode = dev->ports[port_num].interface;
4709	int rx_delay = -1, tx_delay = -1;
4710
4711	if (!phy_interface_mode_is_rgmii(phy_mode))
4712		return;
4713
4714	of_property_read_u32(port_dn, "rx-internal-delay-ps", &rx_delay);
4715	of_property_read_u32(port_dn, "tx-internal-delay-ps", &tx_delay);
4716
4717	if (rx_delay == -1 && tx_delay == -1) {
4718		dev_warn(dev->dev,
4719			 "Port %d interpreting RGMII delay settings based on \"phy-mode\" property, "
4720			 "please update device tree to specify \"rx-internal-delay-ps\" and "
4721			 "\"tx-internal-delay-ps\"",
4722			 port_num);
4723
4724		if (phy_mode == PHY_INTERFACE_MODE_RGMII_RXID ||
4725		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
4726			rx_delay = 2000;
4727
4728		if (phy_mode == PHY_INTERFACE_MODE_RGMII_TXID ||
4729		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
4730			tx_delay = 2000;
4731	}
4732
4733	if (rx_delay < 0)
4734		rx_delay = 0;
4735	if (tx_delay < 0)
4736		tx_delay = 0;
4737
4738	dev->ports[port_num].rgmii_rx_val = rx_delay;
4739	dev->ports[port_num].rgmii_tx_val = tx_delay;
4740}
 
 
 
4741
4742/**
4743 * ksz_drive_strength_to_reg() - Convert drive strength value to corresponding
4744 *				 register value.
4745 * @array:	The array of drive strength values to search.
4746 * @array_size:	The size of the array.
4747 * @microamp:	The drive strength value in microamp to be converted.
4748 *
4749 * This function searches the array of drive strength values for the given
4750 * microamp value and returns the corresponding register value for that drive.
4751 *
4752 * Returns: If found, the corresponding register value for that drive strength
4753 * is returned. Otherwise, -EINVAL is returned indicating an invalid value.
4754 */
4755static int ksz_drive_strength_to_reg(const struct ksz_drive_strength *array,
4756				     size_t array_size, int microamp)
4757{
4758	int i;
4759
4760	for (i = 0; i < array_size; i++) {
4761		if (array[i].microamp == microamp)
4762			return array[i].reg_val;
4763	}
4764
4765	return -EINVAL;
4766}
4767
4768/**
4769 * ksz_drive_strength_error() - Report invalid drive strength value
4770 * @dev:	ksz device
4771 * @array:	The array of drive strength values to search.
4772 * @array_size:	The size of the array.
4773 * @microamp:	Invalid drive strength value in microamp
4774 *
4775 * This function logs an error message when an unsupported drive strength value
4776 * is detected. It lists out all the supported drive strength values for
4777 * reference in the error message.
4778 */
4779static void ksz_drive_strength_error(struct ksz_device *dev,
4780				     const struct ksz_drive_strength *array,
4781				     size_t array_size, int microamp)
4782{
4783	char supported_values[100];
4784	size_t remaining_size;
4785	int added_len;
4786	char *ptr;
4787	int i;
4788
4789	remaining_size = sizeof(supported_values);
4790	ptr = supported_values;
4791
4792	for (i = 0; i < array_size; i++) {
4793		added_len = snprintf(ptr, remaining_size,
4794				     i == 0 ? "%d" : ", %d", array[i].microamp);
 
 
 
 
4795
4796		if (added_len >= remaining_size)
4797			break;
4798
4799		ptr += added_len;
4800		remaining_size -= added_len;
4801	}
4802
4803	dev_err(dev->dev, "Invalid drive strength %d, supported values are %s\n",
4804		microamp, supported_values);
4805}
4806
4807/**
4808 * ksz9477_drive_strength_write() - Set the drive strength for specific KSZ9477
4809 *				    chip variants.
4810 * @dev:       ksz device
4811 * @props:     Array of drive strength properties to be applied
4812 * @num_props: Number of properties in the array
4813 *
4814 * This function configures the drive strength for various KSZ9477 chip variants
4815 * based on the provided properties. It handles chip-specific nuances and
4816 * ensures only valid drive strengths are written to the respective chip.
4817 *
4818 * Return: 0 on successful configuration, a negative error code on failure.
4819 */
4820static int ksz9477_drive_strength_write(struct ksz_device *dev,
4821					struct ksz_driver_strength_prop *props,
4822					int num_props)
4823{
4824	size_t array_size = ARRAY_SIZE(ksz9477_drive_strengths);
4825	int i, ret, reg;
4826	u8 mask = 0;
4827	u8 val = 0;
4828
4829	if (props[KSZ_DRIVER_STRENGTH_IO].value != -1)
4830		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4831			 props[KSZ_DRIVER_STRENGTH_IO].name);
4832
4833	if (dev->chip_id == KSZ8795_CHIP_ID ||
4834	    dev->chip_id == KSZ8794_CHIP_ID ||
4835	    dev->chip_id == KSZ8765_CHIP_ID)
4836		reg = KSZ8795_REG_SW_CTRL_20;
4837	else
4838		reg = KSZ9477_REG_SW_IO_STRENGTH;
4839
4840	for (i = 0; i < num_props; i++) {
4841		if (props[i].value == -1)
4842			continue;
4843
4844		ret = ksz_drive_strength_to_reg(ksz9477_drive_strengths,
4845						array_size, props[i].value);
4846		if (ret < 0) {
4847			ksz_drive_strength_error(dev, ksz9477_drive_strengths,
4848						 array_size, props[i].value);
4849			return ret;
4850		}
4851
4852		mask |= SW_DRIVE_STRENGTH_M << props[i].offset;
4853		val |= ret << props[i].offset;
4854	}
4855
4856	return ksz_rmw8(dev, reg, mask, val);
4857}
4858
4859/**
4860 * ksz88x3_drive_strength_write() - Set the drive strength configuration for
4861 *				    KSZ8863 compatible chip variants.
4862 * @dev:       ksz device
4863 * @props:     Array of drive strength properties to be set
4864 * @num_props: Number of properties in the array
4865 *
4866 * This function applies the specified drive strength settings to KSZ88X3 chip
4867 * variants (KSZ8873, KSZ8863).
4868 * It ensures the configurations align with what the chip variant supports and
4869 * warns or errors out on unsupported settings.
4870 *
4871 * Return: 0 on success, error code otherwise
4872 */
4873static int ksz88x3_drive_strength_write(struct ksz_device *dev,
4874					struct ksz_driver_strength_prop *props,
4875					int num_props)
4876{
4877	size_t array_size = ARRAY_SIZE(ksz88x3_drive_strengths);
4878	int microamp;
4879	int i, ret;
4880
4881	for (i = 0; i < num_props; i++) {
4882		if (props[i].value == -1 || i == KSZ_DRIVER_STRENGTH_IO)
4883			continue;
4884
4885		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4886			 props[i].name);
4887	}
4888
4889	microamp = props[KSZ_DRIVER_STRENGTH_IO].value;
4890	ret = ksz_drive_strength_to_reg(ksz88x3_drive_strengths, array_size,
4891					microamp);
4892	if (ret < 0) {
4893		ksz_drive_strength_error(dev, ksz88x3_drive_strengths,
4894					 array_size, microamp);
4895		return ret;
4896	}
4897
4898	return ksz_rmw8(dev, KSZ8873_REG_GLOBAL_CTRL_12,
4899			KSZ8873_DRIVE_STRENGTH_16MA, ret);
4900}
4901
4902/**
4903 * ksz_parse_drive_strength() - Extract and apply drive strength configurations
4904 *				from device tree properties.
4905 * @dev:	ksz device
4906 *
4907 * This function reads the specified drive strength properties from the
4908 * device tree, validates against the supported chip variants, and sets
4909 * them accordingly. An error should be critical here, as the drive strength
4910 * settings are crucial for EMI compliance.
4911 *
4912 * Return: 0 on success, error code otherwise
4913 */
4914static int ksz_parse_drive_strength(struct ksz_device *dev)
4915{
4916	struct ksz_driver_strength_prop of_props[] = {
4917		[KSZ_DRIVER_STRENGTH_HI] = {
4918			.name = "microchip,hi-drive-strength-microamp",
4919			.offset = SW_HI_SPEED_DRIVE_STRENGTH_S,
4920			.value = -1,
4921		},
4922		[KSZ_DRIVER_STRENGTH_LO] = {
4923			.name = "microchip,lo-drive-strength-microamp",
4924			.offset = SW_LO_SPEED_DRIVE_STRENGTH_S,
4925			.value = -1,
4926		},
4927		[KSZ_DRIVER_STRENGTH_IO] = {
4928			.name = "microchip,io-drive-strength-microamp",
4929			.offset = 0, /* don't care */
4930			.value = -1,
4931		},
4932	};
4933	struct device_node *np = dev->dev->of_node;
4934	bool have_any_prop = false;
4935	int i, ret;
4936
4937	for (i = 0; i < ARRAY_SIZE(of_props); i++) {
4938		ret = of_property_read_u32(np, of_props[i].name,
4939					   &of_props[i].value);
4940		if (ret && ret != -EINVAL)
4941			dev_warn(dev->dev, "Failed to read %s\n",
4942				 of_props[i].name);
4943		if (ret)
4944			continue;
4945
4946		have_any_prop = true;
4947	}
 
4948
4949	if (!have_any_prop)
4950		return 0;
 
4951
4952	switch (dev->chip_id) {
4953	case KSZ88X3_CHIP_ID:
4954		return ksz88x3_drive_strength_write(dev, of_props,
4955						    ARRAY_SIZE(of_props));
4956	case KSZ8795_CHIP_ID:
4957	case KSZ8794_CHIP_ID:
4958	case KSZ8765_CHIP_ID:
4959	case KSZ8563_CHIP_ID:
4960	case KSZ8567_CHIP_ID:
4961	case KSZ9477_CHIP_ID:
4962	case KSZ9563_CHIP_ID:
4963	case KSZ9567_CHIP_ID:
4964	case KSZ9893_CHIP_ID:
4965	case KSZ9896_CHIP_ID:
4966	case KSZ9897_CHIP_ID:
4967	case LAN9646_CHIP_ID:
4968		return ksz9477_drive_strength_write(dev, of_props,
4969						    ARRAY_SIZE(of_props));
4970	default:
4971		for (i = 0; i < ARRAY_SIZE(of_props); i++) {
4972			if (of_props[i].value == -1)
4973				continue;
4974
4975			dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4976				 of_props[i].name);
4977		}
4978	}
4979
4980	return 0;
4981}
 
4982
4983int ksz_switch_register(struct ksz_device *dev)
4984{
4985	const struct ksz_chip_data *info;
4986	struct device_node *ports;
4987	phy_interface_t interface;
4988	unsigned int port_num;
4989	int ret;
4990	int i;
4991
4992	dev->reset_gpio = devm_gpiod_get_optional(dev->dev, "reset",
4993						  GPIOD_OUT_LOW);
4994	if (IS_ERR(dev->reset_gpio))
4995		return PTR_ERR(dev->reset_gpio);
4996
4997	if (dev->reset_gpio) {
4998		gpiod_set_value_cansleep(dev->reset_gpio, 1);
4999		usleep_range(10000, 12000);
5000		gpiod_set_value_cansleep(dev->reset_gpio, 0);
5001		msleep(100);
5002	}
5003
5004	mutex_init(&dev->dev_mutex);
5005	mutex_init(&dev->regmap_mutex);
5006	mutex_init(&dev->alu_mutex);
5007	mutex_init(&dev->vlan_mutex);
5008
5009	ret = ksz_switch_detect(dev);
5010	if (ret)
5011		return ret;
5012
5013	info = ksz_lookup_info(dev->chip_id);
5014	if (!info)
5015		return -ENODEV;
5016
5017	/* Update the compatible info with the probed one */
5018	dev->info = info;
5019
5020	dev_info(dev->dev, "found switch: %s, rev %i\n",
5021		 dev->info->dev_name, dev->chip_rev);
5022
5023	ret = ksz_check_device_id(dev);
5024	if (ret)
5025		return ret;
5026
5027	dev->dev_ops = dev->info->ops;
5028
5029	ret = dev->dev_ops->init(dev);
5030	if (ret)
5031		return ret;
5032
5033	dev->ports = devm_kzalloc(dev->dev,
5034				  dev->info->port_cnt * sizeof(struct ksz_port),
5035				  GFP_KERNEL);
5036	if (!dev->ports)
5037		return -ENOMEM;
5038
5039	for (i = 0; i < dev->info->port_cnt; i++) {
5040		spin_lock_init(&dev->ports[i].mib.stats64_lock);
5041		mutex_init(&dev->ports[i].mib.cnt_mutex);
5042		dev->ports[i].mib.counters =
5043			devm_kzalloc(dev->dev,
5044				     sizeof(u64) * (dev->info->mib_cnt + 1),
5045				     GFP_KERNEL);
5046		if (!dev->ports[i].mib.counters)
5047			return -ENOMEM;
5048
5049		dev->ports[i].ksz_dev = dev;
5050		dev->ports[i].num = i;
5051	}
5052
5053	/* set the real number of ports */
5054	dev->ds->num_ports = dev->info->port_cnt;
5055
5056	/* set the phylink ops */
5057	dev->ds->phylink_mac_ops = dev->info->phylink_mac_ops;
5058
5059	/* Host port interface will be self detected, or specifically set in
5060	 * device tree.
5061	 */
5062	for (port_num = 0; port_num < dev->info->port_cnt; ++port_num)
5063		dev->ports[port_num].interface = PHY_INTERFACE_MODE_NA;
5064	if (dev->dev->of_node) {
5065		ret = of_get_phy_mode(dev->dev->of_node, &interface);
5066		if (ret == 0)
5067			dev->compat_interface = interface;
5068		ports = of_get_child_by_name(dev->dev->of_node, "ethernet-ports");
5069		if (!ports)
5070			ports = of_get_child_by_name(dev->dev->of_node, "ports");
5071		if (ports) {
5072			for_each_available_child_of_node_scoped(ports, port) {
5073				if (of_property_read_u32(port, "reg",
5074							 &port_num))
5075					continue;
5076				if (!(dev->port_mask & BIT(port_num))) {
5077					of_node_put(ports);
5078					return -EINVAL;
5079				}
5080				of_get_phy_mode(port,
5081						&dev->ports[port_num].interface);
5082
5083				ksz_parse_rgmii_delay(dev, port_num, port);
5084			}
5085			of_node_put(ports);
5086		}
5087		dev->synclko_125 = of_property_read_bool(dev->dev->of_node,
5088							 "microchip,synclko-125");
5089		dev->synclko_disable = of_property_read_bool(dev->dev->of_node,
5090							     "microchip,synclko-disable");
5091		if (dev->synclko_125 && dev->synclko_disable) {
5092			dev_err(dev->dev, "inconsistent synclko settings\n");
5093			return -EINVAL;
5094		}
5095
5096		dev->wakeup_source = of_property_read_bool(dev->dev->of_node,
5097							   "wakeup-source");
5098		dev->pme_active_high = of_property_read_bool(dev->dev->of_node,
5099							     "microchip,pme-active-high");
5100	}
5101
5102	ret = dsa_register_switch(dev->ds);
5103	if (ret) {
5104		dev->dev_ops->exit(dev);
5105		return ret;
5106	}
5107
5108	/* Read MIB counters every 30 seconds to avoid overflow. */
5109	dev->mib_read_interval = msecs_to_jiffies(5000);
5110
5111	/* Start the MIB timer. */
5112	schedule_delayed_work(&dev->mib_read, 0);
5113
5114	return ret;
5115}
5116EXPORT_SYMBOL(ksz_switch_register);
5117
5118void ksz_switch_remove(struct ksz_device *dev)
5119{
5120	/* timer started */
5121	if (dev->mib_read_interval) {
5122		dev->mib_read_interval = 0;
5123		cancel_delayed_work_sync(&dev->mib_read);
5124	}
5125
5126	dev->dev_ops->exit(dev);
5127	dsa_unregister_switch(dev->ds);
5128
5129	if (dev->reset_gpio)
5130		gpiod_set_value_cansleep(dev->reset_gpio, 1);
5131
5132}
5133EXPORT_SYMBOL(ksz_switch_remove);
5134
5135MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
5136MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver");
5137MODULE_LICENSE("GPL");
v4.17
 
   1/*
   2 * Microchip switch driver main logic
   3 *
   4 * Copyright (C) 2017
   5 *
   6 * Permission to use, copy, modify, and/or distribute this software for any
   7 * purpose with or without fee is hereby granted, provided that the above
   8 * copyright notice and this permission notice appear in all copies.
   9 *
  10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  17 */
  18
  19#include <linux/delay.h>
 
  20#include <linux/export.h>
  21#include <linux/gpio.h>
  22#include <linux/kernel.h>
  23#include <linux/module.h>
  24#include <linux/platform_data/microchip-ksz.h>
  25#include <linux/phy.h>
  26#include <linux/etherdevice.h>
  27#include <linux/if_bridge.h>
 
 
 
 
 
 
 
 
  28#include <net/dsa.h>
 
 
  29#include <net/switchdev.h>
  30
  31#include "ksz_priv.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  32
  33static const struct {
  34	int index;
  35	char string[ETH_GSTRING_LEN];
  36} mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  37	{ 0x00, "rx_hi" },
  38	{ 0x01, "rx_undersize" },
  39	{ 0x02, "rx_fragments" },
  40	{ 0x03, "rx_oversize" },
  41	{ 0x04, "rx_jabbers" },
  42	{ 0x05, "rx_symbol_err" },
  43	{ 0x06, "rx_crc_err" },
  44	{ 0x07, "rx_align_err" },
  45	{ 0x08, "rx_mac_ctrl" },
  46	{ 0x09, "rx_pause" },
  47	{ 0x0A, "rx_bcast" },
  48	{ 0x0B, "rx_mcast" },
  49	{ 0x0C, "rx_ucast" },
  50	{ 0x0D, "rx_64_or_less" },
  51	{ 0x0E, "rx_65_127" },
  52	{ 0x0F, "rx_128_255" },
  53	{ 0x10, "rx_256_511" },
  54	{ 0x11, "rx_512_1023" },
  55	{ 0x12, "rx_1024_1522" },
  56	{ 0x13, "rx_1523_2000" },
  57	{ 0x14, "rx_2001" },
  58	{ 0x15, "tx_hi" },
  59	{ 0x16, "tx_late_col" },
  60	{ 0x17, "tx_pause" },
  61	{ 0x18, "tx_bcast" },
  62	{ 0x19, "tx_mcast" },
  63	{ 0x1A, "tx_ucast" },
  64	{ 0x1B, "tx_deferred" },
  65	{ 0x1C, "tx_total_col" },
  66	{ 0x1D, "tx_exc_col" },
  67	{ 0x1E, "tx_single_col" },
  68	{ 0x1F, "tx_mult_col" },
  69	{ 0x80, "rx_total" },
  70	{ 0x81, "tx_total" },
  71	{ 0x82, "rx_discards" },
  72	{ 0x83, "tx_discards" },
  73};
  74
  75static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  76{
  77	u8 data;
 
 
 
 
 
 
 
  78
  79	ksz_read8(dev, addr, &data);
  80	if (set)
  81		data |= bits;
  82	else
  83		data &= ~bits;
  84	ksz_write8(dev, addr, data);
  85}
  86
  87static void ksz_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
  88{
  89	u32 data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  90
  91	ksz_read32(dev, addr, &data);
  92	if (set)
  93		data |= bits;
  94	else
  95		data &= ~bits;
  96	ksz_write32(dev, addr, data);
  97}
  98
  99static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
 100			 bool set)
 101{
 102	u32 addr;
 103	u8 data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 104
 105	addr = PORT_CTRL_ADDR(port, offset);
 106	ksz_read8(dev, addr, &data);
 
 107
 108	if (set)
 109		data |= bits;
 110	else
 111		data &= ~bits;
 
 
 
 112
 113	ksz_write8(dev, addr, data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 114}
 115
 116static void ksz_port_cfg32(struct ksz_device *dev, int port, int offset,
 117			   u32 bits, bool set)
 118{
 119	u32 addr;
 120	u32 data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 121
 122	addr = PORT_CTRL_ADDR(port, offset);
 123	ksz_read32(dev, addr, &data);
 
 
 
 124
 125	if (set)
 126		data |= bits;
 127	else
 128		data &= ~bits;
 
 
 
 
 
 
 
 129
 130	ksz_write32(dev, addr, data);
 131}
 132
 133static int wait_vlan_ctrl_ready(struct ksz_device *dev, u32 waiton, int timeout)
 
 134{
 135	u8 data;
 
 
 
 
 
 
 
 
 136
 137	do {
 138		ksz_read8(dev, REG_SW_VLAN_CTRL, &data);
 139		if (!(data & waiton))
 140			break;
 141		usleep_range(1, 10);
 142	} while (timeout-- > 0);
 143
 144	if (timeout <= 0)
 145		return -ETIMEDOUT;
 146
 147	return 0;
 
 
 148}
 149
 150static int get_vlan_table(struct dsa_switch *ds, u16 vid, u32 *vlan_table)
 
 151{
 152	struct ksz_device *dev = ds->priv;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 153	int ret;
 154
 155	mutex_lock(&dev->vlan_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 156
 157	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
 158	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 159
 160	/* wait to be cleared */
 161	ret = wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
 162	if (ret < 0) {
 163		dev_dbg(dev->dev, "Failed to read vlan table\n");
 164		goto exit;
 165	}
 166
 167	ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
 168	ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
 169	ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
 170
 171	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 172
 173exit:
 174	mutex_unlock(&dev->vlan_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 175
 176	return ret;
 177}
 178
 179static int set_vlan_table(struct dsa_switch *ds, u16 vid, u32 *vlan_table)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 180{
 181	struct ksz_device *dev = ds->priv;
 
 
 
 182	int ret;
 183
 184	mutex_lock(&dev->vlan_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 185
 186	ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
 187	ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
 188	ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
 
 
 189
 190	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
 191	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
 
 
 
 
 
 
 192
 193	/* wait to be cleared */
 194	ret = wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
 195	if (ret < 0) {
 196		dev_dbg(dev->dev, "Failed to write vlan table\n");
 197		goto exit;
 
 
 
 
 
 
 
 198	}
 199
 200	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
 
 
 
 
 
 201
 202	/* update vlan cache table */
 203	dev->vlan_cache[vid].table[0] = vlan_table[0];
 204	dev->vlan_cache[vid].table[1] = vlan_table[1];
 205	dev->vlan_cache[vid].table[2] = vlan_table[2];
 206
 207exit:
 208	mutex_unlock(&dev->vlan_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 209
 210	return ret;
 211}
 212
 213static void read_table(struct dsa_switch *ds, u32 *table)
 
 
 
 
 
 
 
 214{
 215	struct ksz_device *dev = ds->priv;
 216
 217	ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
 218	ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
 219	ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
 220	ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
 221}
 222
 223static void write_table(struct dsa_switch *ds, u32 *table)
 224{
 225	struct ksz_device *dev = ds->priv;
 226
 227	ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
 228	ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
 229	ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
 230	ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
 231}
 232
 233static int wait_alu_ready(struct ksz_device *dev, u32 waiton, int timeout)
 234{
 235	u32 data;
 
 
 
 
 
 
 236
 237	do {
 238		ksz_read32(dev, REG_SW_ALU_CTRL__4, &data);
 239		if (!(data & waiton))
 240			break;
 241		usleep_range(1, 10);
 242	} while (timeout-- > 0);
 243
 244	if (timeout <= 0)
 245		return -ETIMEDOUT;
 
 
 
 
 
 
 
 
 
 
 
 
 246
 247	return 0;
 248}
 249
 250static int wait_alu_sta_ready(struct ksz_device *dev, u32 waiton, int timeout)
 
 
 
 
 
 251{
 252	u32 data;
 253
 254	do {
 255		ksz_read32(dev, REG_SW_ALU_STAT_CTRL__4, &data);
 256		if (!(data & waiton))
 257			break;
 258		usleep_range(1, 10);
 259	} while (timeout-- > 0);
 260
 261	if (timeout <= 0)
 262		return -ETIMEDOUT;
 
 
 263
 264	return 0;
 265}
 266
 267static int ksz_reset_switch(struct dsa_switch *ds)
 268{
 269	struct ksz_device *dev = ds->priv;
 270	u8 data8;
 271	u16 data16;
 272	u32 data32;
 
 
 
 273
 274	/* reset switch */
 275	ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
 276
 277	/* turn off SPI DO Edge select */
 278	ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
 279	data8 &= ~SPI_AUTO_EDGE_DETECTION;
 280	ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
 281
 282	/* default configuration */
 283	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
 284	data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
 285	      SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
 286	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
 287
 288	/* disable interrupts */
 289	ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
 290	ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
 291	ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
 292
 293	/* set broadcast storm protection 10% rate */
 294	ksz_read16(dev, REG_SW_MAC_CTRL_2, &data16);
 295	data16 &= ~BROADCAST_STORM_RATE;
 296	data16 |= (BROADCAST_STORM_VALUE * BROADCAST_STORM_PROT_RATE) / 100;
 297	ksz_write16(dev, REG_SW_MAC_CTRL_2, data16);
 298
 299	return 0;
 
 
 300}
 301
 302static void port_setup(struct ksz_device *dev, int port, bool cpu_port)
 303{
 304	u8 data8;
 305	u16 data16;
 
 
 306
 307	/* enable tag tail for host port */
 308	if (cpu_port)
 309		ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
 310			     true);
 311
 312	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
 
 313
 314	/* set back pressure */
 315	ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
 
 
 316
 317	/* set flow control */
 318	ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
 319		     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL, true);
 320
 321	/* enable broadcast storm limit */
 322	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
 323
 324	/* disable DiffServ priority */
 325	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
 326
 327	/* replace priority */
 328	ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
 329		     false);
 330	ksz_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
 331		       MTI_PVID_REPLACE, false);
 332
 333	/* enable 802.1p priority */
 334	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
 
 
 335
 336	/* configure MAC to 1G & RGMII mode */
 337	ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
 338	data8 |= PORT_RGMII_ID_EG_ENABLE;
 339	data8 &= ~PORT_MII_NOT_1GBIT;
 340	data8 &= ~PORT_MII_SEL_M;
 341	data8 |= PORT_RGMII_SEL;
 342	ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
 343
 344	/* clear pending interrupts */
 345	ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
 346}
 347
 348static void ksz_config_cpu_port(struct dsa_switch *ds)
 349{
 350	struct ksz_device *dev = ds->priv;
 351	int i;
 352
 353	ds->num_ports = dev->port_cnt;
 
 
 
 354
 355	for (i = 0; i < ds->num_ports; i++) {
 356		if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
 357			dev->cpu_port = i;
 358
 359			/* enable cpu port */
 360			port_setup(dev, i, true);
 361		}
 362	}
 363}
 364
 
 
 365static int ksz_setup(struct dsa_switch *ds)
 366{
 367	struct ksz_device *dev = ds->priv;
 368	int ret = 0;
 
 
 
 
 
 369
 370	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
 371				       dev->num_vlans, GFP_KERNEL);
 372	if (!dev->vlan_cache)
 373		return -ENOMEM;
 374
 375	ret = ksz_reset_switch(ds);
 376	if (ret) {
 377		dev_err(ds->dev, "failed to reset switch\n");
 378		return ret;
 379	}
 380
 381	/* accept packet up to 2000bytes */
 382	ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 383
 384	ksz_config_cpu_port(ds);
 
 
 
 385
 386	ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);
 
 
 
 
 387
 388	/* queue based egress rate limit */
 389	ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 390
 391	/* start switch */
 392	ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);
 
 393
 394	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 395}
 396
 397static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds,
 398						  int port)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 399{
 400	return DSA_TAG_PROTO_KSZ;
 
 
 
 
 
 
 
 
 
 
 
 401}
 402
 403static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg)
 404{
 405	struct ksz_device *dev = ds->priv;
 406	u16 val = 0;
 
 407
 408	ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
 
 
 409
 410	return val;
 411}
 412
 413static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
 414{
 415	struct ksz_device *dev = ds->priv;
 
 
 
 
 
 
 
 
 
 
 
 
 416
 417	ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 418
 419	return 0;
 420}
 421
 422static int ksz_enable_port(struct dsa_switch *ds, int port,
 423			   struct phy_device *phy)
 
 
 
 
 
 
 
 
 
 
 
 
 
 424{
 425	struct ksz_device *dev = ds->priv;
 426
 427	/* setup slave port */
 428	port_setup(dev, port, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 429
 430	return 0;
 431}
 432
 433static void ksz_disable_port(struct dsa_switch *ds, int port,
 434			     struct phy_device *phy)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 435{
 436	struct ksz_device *dev = ds->priv;
 437
 438	/* there is no port disable */
 439	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, true);
 
 
 440}
 441
 442static int ksz_sset_count(struct dsa_switch *ds, int port)
 
 
 443{
 444	return TOTAL_SWITCH_COUNTER_NUM;
 
 
 
 
 
 445}
 446
 447static void ksz_get_strings(struct dsa_switch *ds, int port, uint8_t *buf)
 
 448{
 449	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 450
 451	for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
 452		memcpy(buf + i * ETH_GSTRING_LEN, mib_names[i].string,
 453		       ETH_GSTRING_LEN);
 454	}
 
 
 455}
 456
 457static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
 458				  uint64_t *buf)
 459{
 460	struct ksz_device *dev = ds->priv;
 461	int i;
 462	u32 data;
 463	int timeout;
 464
 465	mutex_lock(&dev->stats_mutex);
 466
 467	for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
 468		data = MIB_COUNTER_READ;
 469		data |= ((mib_names[i].index & 0xFF) << MIB_COUNTER_INDEX_S);
 470		ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
 471
 472		timeout = 1000;
 473		do {
 474			ksz_pread32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
 475				    &data);
 476			usleep_range(1, 10);
 477			if (!(data & MIB_COUNTER_READ))
 478				break;
 479		} while (timeout-- > 0);
 480
 481		/* failed to read MIB. get out of loop */
 482		if (!timeout) {
 483			dev_dbg(dev->dev, "Failed to get MIB\n");
 484			break;
 485		}
 486
 487		/* count resets upon read */
 488		ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
 489
 490		dev->mib_value[i] += (uint64_t)data;
 491		buf[i] = dev->mib_value[i];
 
 
 492	}
 493
 494	mutex_unlock(&dev->stats_mutex);
 
 
 
 
 495}
 496
 497static void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
 498{
 499	struct ksz_device *dev = ds->priv;
 
 
 500	u8 data;
 501
 502	ksz_pread8(dev, port, P_STP_CTRL, &data);
 
 
 503	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
 504
 
 
 505	switch (state) {
 506	case BR_STATE_DISABLED:
 507		data |= PORT_LEARN_DISABLE;
 508		break;
 509	case BR_STATE_LISTENING:
 510		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
 511		break;
 512	case BR_STATE_LEARNING:
 513		data |= PORT_RX_ENABLE;
 
 
 514		break;
 515	case BR_STATE_FORWARDING:
 516		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
 
 
 517		break;
 518	case BR_STATE_BLOCKING:
 519		data |= PORT_LEARN_DISABLE;
 520		break;
 521	default:
 522		dev_err(ds->dev, "invalid STP state: %d\n", state);
 523		return;
 524	}
 525
 526	ksz_pwrite8(dev, port, P_STP_CTRL, data);
 
 
 
 
 527}
 528
 529static void ksz_port_fast_age(struct dsa_switch *ds, int port)
 530{
 531	struct ksz_device *dev = ds->priv;
 532	u8 data8;
 533
 534	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
 535	data8 |= SW_FAST_AGING;
 536	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 537
 538	data8 &= ~SW_FAST_AGING;
 539	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
 540}
 541
 542static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port, bool flag)
 
 
 543{
 544	struct ksz_device *dev = ds->priv;
 
 
 
 
 
 545
 546	if (flag) {
 547		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
 548			     PORT_VLAN_LOOKUP_VID_0, true);
 549		ksz_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY, true);
 550		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
 551	} else {
 552		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
 553		ksz_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY, false);
 554		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
 555			     PORT_VLAN_LOOKUP_VID_0, false);
 556	}
 557
 558	return 0;
 559}
 560
 561static int ksz_port_vlan_prepare(struct dsa_switch *ds, int port,
 562				 const struct switchdev_obj_port_vlan *vlan)
 
 563{
 564	/* nothing needed */
 
 
 
 
 565
 566	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 567}
 568
 569static void ksz_port_vlan_add(struct dsa_switch *ds, int port,
 570			      const struct switchdev_obj_port_vlan *vlan)
 571{
 572	struct ksz_device *dev = ds->priv;
 573	u32 vlan_table[3];
 574	u16 vid;
 575	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
 576
 577	for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
 578		if (get_vlan_table(ds, vid, vlan_table)) {
 579			dev_dbg(dev->dev, "Failed to get vlan table\n");
 580			return;
 581		}
 582
 583		vlan_table[0] = VLAN_VALID | (vid & VLAN_FID_M);
 584		if (untagged)
 585			vlan_table[1] |= BIT(port);
 586		else
 587			vlan_table[1] &= ~BIT(port);
 588		vlan_table[1] &= ~(BIT(dev->cpu_port));
 589
 590		vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
 
 
 
 
 591
 592		if (set_vlan_table(ds, vid, vlan_table)) {
 593			dev_dbg(dev->dev, "Failed to set vlan table\n");
 594			return;
 595		}
 596
 597		/* change PVID */
 598		if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
 599			ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vid);
 600	}
 601}
 602
 603static int ksz_port_vlan_del(struct dsa_switch *ds, int port,
 604			     const struct switchdev_obj_port_vlan *vlan)
 605{
 606	struct ksz_device *dev = ds->priv;
 607	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
 608	u32 vlan_table[3];
 609	u16 vid;
 610	u16 pvid;
 611
 612	ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
 613	pvid = pvid & 0xFFF;
 614
 615	for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
 616		if (get_vlan_table(ds, vid, vlan_table)) {
 617			dev_dbg(dev->dev, "Failed to get vlan table\n");
 618			return -ETIMEDOUT;
 619		}
 620
 621		vlan_table[2] &= ~BIT(port);
 
 
 
 
 622
 623		if (pvid == vid)
 624			pvid = 1;
 
 
 
 625
 626		if (untagged)
 627			vlan_table[1] &= ~BIT(port);
 628
 629		if (set_vlan_table(ds, vid, vlan_table)) {
 630			dev_dbg(dev->dev, "Failed to set vlan table\n");
 631			return -ETIMEDOUT;
 632		}
 633	}
 634
 635	ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
 
 
 
 636
 637	return 0;
 
 638}
 639
 640struct alu_struct {
 641	/* entry 1 */
 642	u8	is_static:1;
 643	u8	is_src_filter:1;
 644	u8	is_dst_filter:1;
 645	u8	prio_age:3;
 646	u32	_reserv_0_1:23;
 647	u8	mstp:3;
 648	/* entry 2 */
 649	u8	is_override:1;
 650	u8	is_use_fid:1;
 651	u32	_reserv_1_1:23;
 652	u8	port_forward:7;
 653	/* entry 3 & 4*/
 654	u32	_reserv_2_1:9;
 655	u8	fid:7;
 656	u8	mac[ETH_ALEN];
 657};
 658
 659static int ksz_port_fdb_add(struct dsa_switch *ds, int port,
 660			    const unsigned char *addr, u16 vid)
 661{
 662	struct ksz_device *dev = ds->priv;
 663	u32 alu_table[4];
 664	u32 data;
 665	int ret = 0;
 666
 667	mutex_lock(&dev->alu_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 668
 669	/* find any entry with mac & vid */
 670	data = vid << ALU_FID_INDEX_S;
 671	data |= ((addr[0] << 8) | addr[1]);
 672	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
 673
 674	data = ((addr[2] << 24) | (addr[3] << 16));
 675	data |= ((addr[4] << 8) | addr[5]);
 676	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
 677
 678	/* start read operation */
 679	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
 680
 681	/* wait to be finished */
 682	ret = wait_alu_ready(dev, ALU_START, 1000);
 683	if (ret < 0) {
 684		dev_dbg(dev->dev, "Failed to read ALU\n");
 685		goto exit;
 
 
 
 
 
 
 686	}
 687
 688	/* read ALU entry */
 689	read_table(ds, alu_table);
 690
 691	/* update ALU entry */
 692	alu_table[0] = ALU_V_STATIC_VALID;
 693	alu_table[1] |= BIT(port);
 694	if (vid)
 695		alu_table[1] |= ALU_V_USE_FID;
 696	alu_table[2] = (vid << ALU_V_FID_S);
 697	alu_table[2] |= ((addr[0] << 8) | addr[1]);
 698	alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
 699	alu_table[3] |= ((addr[4] << 8) | addr[5]);
 700
 701	write_table(ds, alu_table);
 
 
 702
 703	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
 
 704
 705	/* wait to be finished */
 706	ret = wait_alu_ready(dev, ALU_START, 1000);
 707	if (ret < 0)
 708		dev_dbg(dev->dev, "Failed to write ALU\n");
 709
 710exit:
 711	mutex_unlock(&dev->alu_mutex);
 712
 713	return ret;
 714}
 715
 716static int ksz_port_fdb_del(struct dsa_switch *ds, int port,
 717			    const unsigned char *addr, u16 vid)
 718{
 719	struct ksz_device *dev = ds->priv;
 720	u32 alu_table[4];
 721	u32 data;
 722	int ret = 0;
 723
 724	mutex_lock(&dev->alu_mutex);
 
 
 725
 726	/* read any entry with mac & vid */
 727	data = vid << ALU_FID_INDEX_S;
 728	data |= ((addr[0] << 8) | addr[1]);
 729	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
 730
 731	data = ((addr[2] << 24) | (addr[3] << 16));
 732	data |= ((addr[4] << 8) | addr[5]);
 733	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
 
 734
 735	/* start read operation */
 736	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
 737
 738	/* wait to be finished */
 739	ret = wait_alu_ready(dev, ALU_START, 1000);
 740	if (ret < 0) {
 741		dev_dbg(dev->dev, "Failed to read ALU\n");
 742		goto exit;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 743	}
 744
 745	ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
 746	if (alu_table[0] & ALU_V_STATIC_VALID) {
 747		ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
 748		ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
 749		ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
 750
 751		/* clear forwarding port */
 752		alu_table[2] &= ~BIT(port);
 753
 754		/* if there is no port to forward, clear table */
 755		if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
 756			alu_table[0] = 0;
 757			alu_table[1] = 0;
 758			alu_table[2] = 0;
 759			alu_table[3] = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 760		}
 761	} else {
 762		alu_table[0] = 0;
 763		alu_table[1] = 0;
 764		alu_table[2] = 0;
 765		alu_table[3] = 0;
 766	}
 767
 768	write_table(ds, alu_table);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 769
 770	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
 771
 772	/* wait to be finished */
 773	ret = wait_alu_ready(dev, ALU_START, 1000);
 774	if (ret < 0)
 775		dev_dbg(dev->dev, "Failed to write ALU\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 776
 777exit:
 778	mutex_unlock(&dev->alu_mutex);
 779
 780	return ret;
 781}
 782
 783static void convert_alu(struct alu_struct *alu, u32 *alu_table)
 
 
 
 
 
 784{
 785	alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
 786	alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
 787	alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
 788	alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
 789			ALU_V_PRIO_AGE_CNT_M;
 790	alu->mstp = alu_table[0] & ALU_V_MSTP_M;
 791
 792	alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
 793	alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
 794	alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
 795
 796	alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
 797
 798	alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
 799	alu->mac[1] = alu_table[2] & 0xFF;
 800	alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
 801	alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
 802	alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
 803	alu->mac[5] = alu_table[3] & 0xFF;
 804}
 805
 806static int ksz_port_fdb_dump(struct dsa_switch *ds, int port,
 807			     dsa_fdb_dump_cb_t *cb, void *data)
 808{
 809	struct ksz_device *dev = ds->priv;
 810	int ret = 0;
 811	u32 ksz_data;
 812	u32 alu_table[4];
 813	struct alu_struct alu;
 814	int timeout;
 815
 816	mutex_lock(&dev->alu_mutex);
 817
 818	/* start ALU search */
 819	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
 820
 821	do {
 822		timeout = 1000;
 823		do {
 824			ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
 825			if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
 826				break;
 827			usleep_range(1, 10);
 828		} while (timeout-- > 0);
 829
 830		if (!timeout) {
 831			dev_dbg(dev->dev, "Failed to search ALU\n");
 832			ret = -ETIMEDOUT;
 833			goto exit;
 834		}
 835
 836		/* read ALU table */
 837		read_table(ds, alu_table);
 
 
 838
 839		convert_alu(&alu, alu_table);
 
 840
 841		if (alu.port_forward & BIT(port)) {
 842			ret = cb(alu.mac, alu.fid, alu.is_static, data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 843			if (ret)
 844				goto exit;
 
 
 
 
 
 
 
 
 
 
 
 
 
 845		}
 846	} while (ksz_data & ALU_START);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 847
 848exit:
 
 849
 850	/* stop ALU search */
 851	ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
 
 
 852
 853	mutex_unlock(&dev->alu_mutex);
 
 
 
 
 
 
 
 
 
 
 
 854
 855	return ret;
 856}
 857
 858static int ksz_port_mdb_prepare(struct dsa_switch *ds, int port,
 859				const struct switchdev_obj_port_mdb *mdb)
 
 
 
 860{
 861	/* nothing to do */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 862	return 0;
 863}
 864
 865static void ksz_port_mdb_add(struct dsa_switch *ds, int port,
 866			     const struct switchdev_obj_port_mdb *mdb)
 
 
 
 
 
 
 
 
 867{
 868	struct ksz_device *dev = ds->priv;
 869	u32 static_table[4];
 870	u32 data;
 871	int index;
 872	u32 mac_hi, mac_lo;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 873
 874	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
 875	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
 876	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 877
 878	mutex_lock(&dev->alu_mutex);
 
 
 
 
 879
 880	for (index = 0; index < dev->num_statics; index++) {
 881		/* find empty slot first */
 882		data = (index << ALU_STAT_INDEX_S) |
 883			ALU_STAT_READ | ALU_STAT_START;
 884		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
 
 
 885
 886		/* wait to be finished */
 887		if (wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0) {
 888			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
 889			goto exit;
 890		}
 
 
 
 
 
 891
 892		/* read ALU static table */
 893		read_table(ds, static_table);
 
 
 
 
 894
 895		if (static_table[0] & ALU_V_STATIC_VALID) {
 896			/* check this has same vid & mac address */
 897			if (((static_table[2] >> ALU_V_FID_S) == (mdb->vid)) &&
 898			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
 899			    (static_table[3] == mac_lo)) {
 900				/* found matching one */
 901				break;
 902			}
 903		} else {
 904			/* found empty one */
 905			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 906		}
 907	}
 908
 909	/* no available entry */
 910	if (index == dev->num_statics)
 911		goto exit;
 912
 913	/* add entry */
 914	static_table[0] = ALU_V_STATIC_VALID;
 915	static_table[1] |= BIT(port);
 916	if (mdb->vid)
 917		static_table[1] |= ALU_V_USE_FID;
 918	static_table[2] = (mdb->vid << ALU_V_FID_S);
 919	static_table[2] |= mac_hi;
 920	static_table[3] = mac_lo;
 921
 922	write_table(ds, static_table);
 923
 924	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
 925	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
 926
 927	/* wait to be finished */
 928	if (wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0)
 929		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 930
 931exit:
 932	mutex_unlock(&dev->alu_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 933}
 934
 935static int ksz_port_mdb_del(struct dsa_switch *ds, int port,
 936			    const struct switchdev_obj_port_mdb *mdb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 937{
 
 938	struct ksz_device *dev = ds->priv;
 939	u32 static_table[4];
 940	u32 data;
 941	int index;
 942	int ret = 0;
 943	u32 mac_hi, mac_lo;
 
 
 944
 945	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
 946	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
 947	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
 948
 949	mutex_lock(&dev->alu_mutex);
 
 950
 951	for (index = 0; index < dev->num_statics; index++) {
 952		/* find empty slot first */
 953		data = (index << ALU_STAT_INDEX_S) |
 954			ALU_STAT_READ | ALU_STAT_START;
 955		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 956
 957		/* wait to be finished */
 958		ret = wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
 959		if (ret < 0) {
 960			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
 961			goto exit;
 962		}
 
 
 
 
 
 
 
 963
 964		/* read ALU static table */
 965		read_table(ds, static_table);
 
 
 
 
 
 
 
 966
 967		if (static_table[0] & ALU_V_STATIC_VALID) {
 968			/* check this has same vid & mac address */
 
 
 
 969
 970			if (((static_table[2] >> ALU_V_FID_S) == (mdb->vid)) &&
 971			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
 972			    (static_table[3] == mac_lo)) {
 973				/* found matching one */
 974				break;
 975			}
 976		}
 977	}
 978
 979	/* no available entry */
 980	if (index == dev->num_statics) {
 981		ret = -EINVAL;
 982		goto exit;
 
 
 
 
 
 
 
 983	}
 984
 985	/* clear port */
 986	static_table[1] &= ~BIT(port);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 987
 988	if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
 989		/* delete entry */
 990		static_table[0] = 0;
 991		static_table[1] = 0;
 992		static_table[2] = 0;
 993		static_table[3] = 0;
 
 
 
 
 
 994	}
 995
 996	write_table(ds, static_table);
 
 
 997
 998	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
 999	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
 
 
 
 
 
 
 
 
1000
1001	/* wait to be finished */
1002	ret = wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
1003	if (ret < 0)
1004		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
1005
1006exit:
1007	mutex_unlock(&dev->alu_mutex);
 
 
1008
1009	return ret;
1010}
1011
1012static int ksz_port_mirror_add(struct dsa_switch *ds, int port,
1013			       struct dsa_mall_mirror_tc_entry *mirror,
1014			       bool ingress)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1015{
1016	struct ksz_device *dev = ds->priv;
 
 
 
 
 
 
1017
1018	if (ingress)
1019		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
1020	else
1021		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
 
 
 
 
 
 
 
 
 
 
 
 
1022
1023	ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
 
 
 
 
 
1024
1025	/* configure mirror port */
1026	ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1027		     PORT_MIRROR_SNIFFER, true);
 
 
 
1028
1029	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
 
 
1030
1031	return 0;
1032}
1033
1034static void ksz_port_mirror_del(struct dsa_switch *ds, int port,
1035				struct dsa_mall_mirror_tc_entry *mirror)
1036{
1037	struct ksz_device *dev = ds->priv;
1038	u8 data;
1039
1040	if (mirror->ingress)
1041		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1042	else
1043		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
 
 
1044
1045	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1046
1047	if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
1048		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1049			     PORT_MIRROR_SNIFFER, false);
1050}
1051
1052static const struct dsa_switch_ops ksz_switch_ops = {
1053	.get_tag_protocol	= ksz_get_tag_protocol,
 
 
1054	.setup			= ksz_setup,
 
1055	.phy_read		= ksz_phy_read16,
1056	.phy_write		= ksz_phy_write16,
1057	.port_enable		= ksz_enable_port,
1058	.port_disable		= ksz_disable_port,
 
1059	.get_strings		= ksz_get_strings,
1060	.get_ethtool_stats	= ksz_get_ethtool_stats,
1061	.get_sset_count		= ksz_sset_count,
 
 
 
 
 
1062	.port_stp_state_set	= ksz_port_stp_state_set,
 
 
 
1063	.port_fast_age		= ksz_port_fast_age,
1064	.port_vlan_filtering	= ksz_port_vlan_filtering,
1065	.port_vlan_prepare	= ksz_port_vlan_prepare,
1066	.port_vlan_add		= ksz_port_vlan_add,
1067	.port_vlan_del		= ksz_port_vlan_del,
1068	.port_fdb_dump		= ksz_port_fdb_dump,
1069	.port_fdb_add		= ksz_port_fdb_add,
1070	.port_fdb_del		= ksz_port_fdb_del,
1071	.port_mdb_prepare       = ksz_port_mdb_prepare,
1072	.port_mdb_add           = ksz_port_mdb_add,
1073	.port_mdb_del           = ksz_port_mdb_del,
1074	.port_mirror_add	= ksz_port_mirror_add,
1075	.port_mirror_del	= ksz_port_mirror_del,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1076};
1077
1078struct ksz_chip_data {
1079	u32 chip_id;
1080	const char *dev_name;
1081	int num_vlans;
1082	int num_alus;
1083	int num_statics;
1084	int cpu_ports;
1085	int port_cnt;
1086};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1087
1088static const struct ksz_chip_data ksz_switch_chips[] = {
1089	{
1090		.chip_id = 0x00947700,
1091		.dev_name = "KSZ9477",
1092		.num_vlans = 4096,
1093		.num_alus = 4096,
1094		.num_statics = 16,
1095		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1096		.port_cnt = 7,		/* total physical port count */
1097	},
1098};
1099
1100static int ksz_switch_init(struct ksz_device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1101{
1102	int i;
1103
1104	mutex_init(&dev->reg_mutex);
1105	mutex_init(&dev->stats_mutex);
1106	mutex_init(&dev->alu_mutex);
1107	mutex_init(&dev->vlan_mutex);
 
 
 
1108
1109	dev->ds->ops = &ksz_switch_ops;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1110
1111	for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) {
1112		const struct ksz_chip_data *chip = &ksz_switch_chips[i];
1113
1114		if (dev->chip_id == chip->chip_id) {
1115			dev->name = chip->dev_name;
1116			dev->num_vlans = chip->num_vlans;
1117			dev->num_alus = chip->num_alus;
1118			dev->num_statics = chip->num_statics;
1119			dev->port_cnt = chip->port_cnt;
1120			dev->cpu_ports = chip->cpu_ports;
1121
 
1122			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1123		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1124	}
1125
1126	/* no switch found */
1127	if (!dev->port_cnt)
1128		return -ENODEV;
 
 
 
 
 
1129
1130	return 0;
 
1131}
1132
1133struct ksz_device *ksz_switch_alloc(struct device *base,
1134				    const struct ksz_io_ops *ops,
1135				    void *priv)
 
 
 
 
 
 
 
 
 
 
1136{
1137	struct dsa_switch *ds;
1138	struct ksz_device *swdev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1139
1140	ds = dsa_switch_alloc(base, DSA_MAX_PORTS);
1141	if (!ds)
1142		return NULL;
1143
1144	swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL);
1145	if (!swdev)
1146		return NULL;
1147
1148	ds->priv = swdev;
1149	swdev->dev = base;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1150
1151	swdev->ds = ds;
1152	swdev->priv = priv;
1153	swdev->ops = ops;
 
1154
1155	return swdev;
1156}
1157EXPORT_SYMBOL(ksz_switch_alloc);
1158
1159int ksz_switch_detect(struct ksz_device *dev)
1160{
1161	u8 data8;
1162	u32 id32;
 
 
1163	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
1164
1165	/* turn off SPI DO Edge select */
1166	ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
 
 
 
 
1167	if (ret)
1168		return ret;
1169
1170	data8 &= ~SPI_AUTO_EDGE_DETECTION;
1171	ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
 
 
 
 
 
 
 
 
 
1172	if (ret)
1173		return ret;
1174
1175	/* read chip id */
1176	ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
 
1177	if (ret)
1178		return ret;
1179
1180	dev->chip_id = id32;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1181
1182	return 0;
1183}
1184EXPORT_SYMBOL(ksz_switch_detect);
 
 
1185
1186int ksz_switch_register(struct ksz_device *dev)
1187{
1188	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1189
1190	if (dev->pdata)
1191		dev->chip_id = dev->pdata->chip_id;
 
 
 
 
 
 
 
 
 
 
1192
1193	if (ksz_switch_detect(dev))
1194		return -EINVAL;
 
 
 
1195
1196	ret = ksz_switch_init(dev);
1197	if (ret)
 
1198		return ret;
 
 
 
 
1199
1200	return dsa_register_switch(dev->ds);
 
 
 
1201}
1202EXPORT_SYMBOL(ksz_switch_register);
1203
1204void ksz_switch_remove(struct ksz_device *dev)
1205{
 
 
 
 
 
 
 
1206	dsa_unregister_switch(dev->ds);
 
 
 
 
1207}
1208EXPORT_SYMBOL(ksz_switch_remove);
1209
1210MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1211MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver");
1212MODULE_LICENSE("GPL");