Loading...
1// SPDX-License-Identifier: GPL-2.0
2// CAN bus driver for Bosch M_CAN controller
3// Copyright (C) 2014 Freescale Semiconductor, Inc.
4// Dong Aisheng <b29396@freescale.com>
5// Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/
6
7/* Bosch M_CAN user manual can be obtained from:
8 * https://github.com/linux-can/can-doc/tree/master/m_can
9 */
10
11#include <linux/bitfield.h>
12#include <linux/can/dev.h>
13#include <linux/ethtool.h>
14#include <linux/hrtimer.h>
15#include <linux/interrupt.h>
16#include <linux/io.h>
17#include <linux/iopoll.h>
18#include <linux/kernel.h>
19#include <linux/module.h>
20#include <linux/netdevice.h>
21#include <linux/of.h>
22#include <linux/phy/phy.h>
23#include <linux/pinctrl/consumer.h>
24#include <linux/platform_device.h>
25#include <linux/pm_runtime.h>
26
27#include "m_can.h"
28
29/* registers definition */
30enum m_can_reg {
31 M_CAN_CREL = 0x0,
32 M_CAN_ENDN = 0x4,
33 M_CAN_CUST = 0x8,
34 M_CAN_DBTP = 0xc,
35 M_CAN_TEST = 0x10,
36 M_CAN_RWD = 0x14,
37 M_CAN_CCCR = 0x18,
38 M_CAN_NBTP = 0x1c,
39 M_CAN_TSCC = 0x20,
40 M_CAN_TSCV = 0x24,
41 M_CAN_TOCC = 0x28,
42 M_CAN_TOCV = 0x2c,
43 M_CAN_ECR = 0x40,
44 M_CAN_PSR = 0x44,
45 /* TDCR Register only available for version >=3.1.x */
46 M_CAN_TDCR = 0x48,
47 M_CAN_IR = 0x50,
48 M_CAN_IE = 0x54,
49 M_CAN_ILS = 0x58,
50 M_CAN_ILE = 0x5c,
51 M_CAN_GFC = 0x80,
52 M_CAN_SIDFC = 0x84,
53 M_CAN_XIDFC = 0x88,
54 M_CAN_XIDAM = 0x90,
55 M_CAN_HPMS = 0x94,
56 M_CAN_NDAT1 = 0x98,
57 M_CAN_NDAT2 = 0x9c,
58 M_CAN_RXF0C = 0xa0,
59 M_CAN_RXF0S = 0xa4,
60 M_CAN_RXF0A = 0xa8,
61 M_CAN_RXBC = 0xac,
62 M_CAN_RXF1C = 0xb0,
63 M_CAN_RXF1S = 0xb4,
64 M_CAN_RXF1A = 0xb8,
65 M_CAN_RXESC = 0xbc,
66 M_CAN_TXBC = 0xc0,
67 M_CAN_TXFQS = 0xc4,
68 M_CAN_TXESC = 0xc8,
69 M_CAN_TXBRP = 0xcc,
70 M_CAN_TXBAR = 0xd0,
71 M_CAN_TXBCR = 0xd4,
72 M_CAN_TXBTO = 0xd8,
73 M_CAN_TXBCF = 0xdc,
74 M_CAN_TXBTIE = 0xe0,
75 M_CAN_TXBCIE = 0xe4,
76 M_CAN_TXEFC = 0xf0,
77 M_CAN_TXEFS = 0xf4,
78 M_CAN_TXEFA = 0xf8,
79};
80
81/* message ram configuration data length */
82#define MRAM_CFG_LEN 8
83
84/* Core Release Register (CREL) */
85#define CREL_REL_MASK GENMASK(31, 28)
86#define CREL_STEP_MASK GENMASK(27, 24)
87#define CREL_SUBSTEP_MASK GENMASK(23, 20)
88
89/* Data Bit Timing & Prescaler Register (DBTP) */
90#define DBTP_TDC BIT(23)
91#define DBTP_DBRP_MASK GENMASK(20, 16)
92#define DBTP_DTSEG1_MASK GENMASK(12, 8)
93#define DBTP_DTSEG2_MASK GENMASK(7, 4)
94#define DBTP_DSJW_MASK GENMASK(3, 0)
95
96/* Transmitter Delay Compensation Register (TDCR) */
97#define TDCR_TDCO_MASK GENMASK(14, 8)
98#define TDCR_TDCF_MASK GENMASK(6, 0)
99
100/* Test Register (TEST) */
101#define TEST_LBCK BIT(4)
102
103/* CC Control Register (CCCR) */
104#define CCCR_TXP BIT(14)
105#define CCCR_TEST BIT(7)
106#define CCCR_DAR BIT(6)
107#define CCCR_MON BIT(5)
108#define CCCR_CSR BIT(4)
109#define CCCR_CSA BIT(3)
110#define CCCR_ASM BIT(2)
111#define CCCR_CCE BIT(1)
112#define CCCR_INIT BIT(0)
113/* for version 3.0.x */
114#define CCCR_CMR_MASK GENMASK(11, 10)
115#define CCCR_CMR_CANFD 0x1
116#define CCCR_CMR_CANFD_BRS 0x2
117#define CCCR_CMR_CAN 0x3
118#define CCCR_CME_MASK GENMASK(9, 8)
119#define CCCR_CME_CAN 0
120#define CCCR_CME_CANFD 0x1
121#define CCCR_CME_CANFD_BRS 0x2
122/* for version >=3.1.x */
123#define CCCR_EFBI BIT(13)
124#define CCCR_PXHD BIT(12)
125#define CCCR_BRSE BIT(9)
126#define CCCR_FDOE BIT(8)
127/* for version >=3.2.x */
128#define CCCR_NISO BIT(15)
129/* for version >=3.3.x */
130#define CCCR_WMM BIT(11)
131#define CCCR_UTSU BIT(10)
132
133/* Nominal Bit Timing & Prescaler Register (NBTP) */
134#define NBTP_NSJW_MASK GENMASK(31, 25)
135#define NBTP_NBRP_MASK GENMASK(24, 16)
136#define NBTP_NTSEG1_MASK GENMASK(15, 8)
137#define NBTP_NTSEG2_MASK GENMASK(6, 0)
138
139/* Timestamp Counter Configuration Register (TSCC) */
140#define TSCC_TCP_MASK GENMASK(19, 16)
141#define TSCC_TSS_MASK GENMASK(1, 0)
142#define TSCC_TSS_DISABLE 0x0
143#define TSCC_TSS_INTERNAL 0x1
144#define TSCC_TSS_EXTERNAL 0x2
145
146/* Timestamp Counter Value Register (TSCV) */
147#define TSCV_TSC_MASK GENMASK(15, 0)
148
149/* Error Counter Register (ECR) */
150#define ECR_RP BIT(15)
151#define ECR_REC_MASK GENMASK(14, 8)
152#define ECR_TEC_MASK GENMASK(7, 0)
153
154/* Protocol Status Register (PSR) */
155#define PSR_BO BIT(7)
156#define PSR_EW BIT(6)
157#define PSR_EP BIT(5)
158#define PSR_LEC_MASK GENMASK(2, 0)
159#define PSR_DLEC_MASK GENMASK(10, 8)
160
161/* Interrupt Register (IR) */
162#define IR_ALL_INT 0xffffffff
163
164/* Renamed bits for versions > 3.1.x */
165#define IR_ARA BIT(29)
166#define IR_PED BIT(28)
167#define IR_PEA BIT(27)
168
169/* Bits for version 3.0.x */
170#define IR_STE BIT(31)
171#define IR_FOE BIT(30)
172#define IR_ACKE BIT(29)
173#define IR_BE BIT(28)
174#define IR_CRCE BIT(27)
175#define IR_WDI BIT(26)
176#define IR_BO BIT(25)
177#define IR_EW BIT(24)
178#define IR_EP BIT(23)
179#define IR_ELO BIT(22)
180#define IR_BEU BIT(21)
181#define IR_BEC BIT(20)
182#define IR_DRX BIT(19)
183#define IR_TOO BIT(18)
184#define IR_MRAF BIT(17)
185#define IR_TSW BIT(16)
186#define IR_TEFL BIT(15)
187#define IR_TEFF BIT(14)
188#define IR_TEFW BIT(13)
189#define IR_TEFN BIT(12)
190#define IR_TFE BIT(11)
191#define IR_TCF BIT(10)
192#define IR_TC BIT(9)
193#define IR_HPM BIT(8)
194#define IR_RF1L BIT(7)
195#define IR_RF1F BIT(6)
196#define IR_RF1W BIT(5)
197#define IR_RF1N BIT(4)
198#define IR_RF0L BIT(3)
199#define IR_RF0F BIT(2)
200#define IR_RF0W BIT(1)
201#define IR_RF0N BIT(0)
202#define IR_ERR_STATE (IR_BO | IR_EW | IR_EP)
203
204/* Interrupts for version 3.0.x */
205#define IR_ERR_LEC_30X (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
206#define IR_ERR_BUS_30X (IR_ERR_LEC_30X | IR_WDI | IR_BEU | IR_BEC | \
207 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
208 IR_RF0L)
209#define IR_ERR_ALL_30X (IR_ERR_STATE | IR_ERR_BUS_30X)
210
211/* Interrupts for version >= 3.1.x */
212#define IR_ERR_LEC_31X (IR_PED | IR_PEA)
213#define IR_ERR_BUS_31X (IR_ERR_LEC_31X | IR_WDI | IR_BEU | IR_BEC | \
214 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
215 IR_RF0L)
216#define IR_ERR_ALL_31X (IR_ERR_STATE | IR_ERR_BUS_31X)
217
218/* Interrupt Line Select (ILS) */
219#define ILS_ALL_INT0 0x0
220#define ILS_ALL_INT1 0xFFFFFFFF
221
222/* Interrupt Line Enable (ILE) */
223#define ILE_EINT1 BIT(1)
224#define ILE_EINT0 BIT(0)
225
226/* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
227#define RXFC_FWM_MASK GENMASK(30, 24)
228#define RXFC_FS_MASK GENMASK(22, 16)
229
230/* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
231#define RXFS_RFL BIT(25)
232#define RXFS_FF BIT(24)
233#define RXFS_FPI_MASK GENMASK(21, 16)
234#define RXFS_FGI_MASK GENMASK(13, 8)
235#define RXFS_FFL_MASK GENMASK(6, 0)
236
237/* Rx Buffer / FIFO Element Size Configuration (RXESC) */
238#define RXESC_RBDS_MASK GENMASK(10, 8)
239#define RXESC_F1DS_MASK GENMASK(6, 4)
240#define RXESC_F0DS_MASK GENMASK(2, 0)
241#define RXESC_64B 0x7
242
243/* Tx Buffer Configuration (TXBC) */
244#define TXBC_TFQS_MASK GENMASK(29, 24)
245#define TXBC_NDTB_MASK GENMASK(21, 16)
246
247/* Tx FIFO/Queue Status (TXFQS) */
248#define TXFQS_TFQF BIT(21)
249#define TXFQS_TFQPI_MASK GENMASK(20, 16)
250#define TXFQS_TFGI_MASK GENMASK(12, 8)
251#define TXFQS_TFFL_MASK GENMASK(5, 0)
252
253/* Tx Buffer Element Size Configuration (TXESC) */
254#define TXESC_TBDS_MASK GENMASK(2, 0)
255#define TXESC_TBDS_64B 0x7
256
257/* Tx Event FIFO Configuration (TXEFC) */
258#define TXEFC_EFWM_MASK GENMASK(29, 24)
259#define TXEFC_EFS_MASK GENMASK(21, 16)
260
261/* Tx Event FIFO Status (TXEFS) */
262#define TXEFS_TEFL BIT(25)
263#define TXEFS_EFF BIT(24)
264#define TXEFS_EFGI_MASK GENMASK(12, 8)
265#define TXEFS_EFFL_MASK GENMASK(5, 0)
266
267/* Tx Event FIFO Acknowledge (TXEFA) */
268#define TXEFA_EFAI_MASK GENMASK(4, 0)
269
270/* Message RAM Configuration (in bytes) */
271#define SIDF_ELEMENT_SIZE 4
272#define XIDF_ELEMENT_SIZE 8
273#define RXF0_ELEMENT_SIZE 72
274#define RXF1_ELEMENT_SIZE 72
275#define RXB_ELEMENT_SIZE 72
276#define TXE_ELEMENT_SIZE 8
277#define TXB_ELEMENT_SIZE 72
278
279/* Message RAM Elements */
280#define M_CAN_FIFO_ID 0x0
281#define M_CAN_FIFO_DLC 0x4
282#define M_CAN_FIFO_DATA 0x8
283
284/* Rx Buffer Element */
285/* R0 */
286#define RX_BUF_ESI BIT(31)
287#define RX_BUF_XTD BIT(30)
288#define RX_BUF_RTR BIT(29)
289/* R1 */
290#define RX_BUF_ANMF BIT(31)
291#define RX_BUF_FDF BIT(21)
292#define RX_BUF_BRS BIT(20)
293#define RX_BUF_RXTS_MASK GENMASK(15, 0)
294
295/* Tx Buffer Element */
296/* T0 */
297#define TX_BUF_ESI BIT(31)
298#define TX_BUF_XTD BIT(30)
299#define TX_BUF_RTR BIT(29)
300/* T1 */
301#define TX_BUF_EFC BIT(23)
302#define TX_BUF_FDF BIT(21)
303#define TX_BUF_BRS BIT(20)
304#define TX_BUF_MM_MASK GENMASK(31, 24)
305#define TX_BUF_DLC_MASK GENMASK(19, 16)
306
307/* Tx event FIFO Element */
308/* E1 */
309#define TX_EVENT_MM_MASK GENMASK(31, 24)
310#define TX_EVENT_TXTS_MASK GENMASK(15, 0)
311
312/* Hrtimer polling interval */
313#define HRTIMER_POLL_INTERVAL_MS 1
314
315/* The ID and DLC registers are adjacent in M_CAN FIFO memory,
316 * and we can save a (potentially slow) bus round trip by combining
317 * reads and writes to them.
318 */
319struct id_and_dlc {
320 u32 id;
321 u32 dlc;
322};
323
324struct m_can_fifo_element {
325 u32 id;
326 u32 dlc;
327 u8 data[CANFD_MAX_DLEN];
328};
329
330static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg)
331{
332 return cdev->ops->read_reg(cdev, reg);
333}
334
335static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg,
336 u32 val)
337{
338 cdev->ops->write_reg(cdev, reg, val);
339}
340
341static int
342m_can_fifo_read(struct m_can_classdev *cdev,
343 u32 fgi, unsigned int offset, void *val, size_t val_count)
344{
345 u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE +
346 offset;
347
348 if (val_count == 0)
349 return 0;
350
351 return cdev->ops->read_fifo(cdev, addr_offset, val, val_count);
352}
353
354static int
355m_can_fifo_write(struct m_can_classdev *cdev,
356 u32 fpi, unsigned int offset, const void *val, size_t val_count)
357{
358 u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE +
359 offset;
360
361 if (val_count == 0)
362 return 0;
363
364 return cdev->ops->write_fifo(cdev, addr_offset, val, val_count);
365}
366
367static inline int m_can_fifo_write_no_off(struct m_can_classdev *cdev,
368 u32 fpi, u32 val)
369{
370 return cdev->ops->write_fifo(cdev, fpi, &val, 1);
371}
372
373static int
374m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset, u32 *val)
375{
376 u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE +
377 offset;
378
379 return cdev->ops->read_fifo(cdev, addr_offset, val, 1);
380}
381
382static int m_can_cccr_update_bits(struct m_can_classdev *cdev, u32 mask, u32 val)
383{
384 u32 val_before = m_can_read(cdev, M_CAN_CCCR);
385 u32 val_after = (val_before & ~mask) | val;
386 size_t tries = 10;
387
388 if (!(mask & CCCR_INIT) && !(val_before & CCCR_INIT)) {
389 dev_err(cdev->dev,
390 "refusing to configure device when in normal mode\n");
391 return -EBUSY;
392 }
393
394 /* The chip should be in standby mode when changing the CCCR register,
395 * and some chips set the CSR and CSA bits when in standby. Furthermore,
396 * the CSR and CSA bits should be written as zeros, even when they read
397 * ones.
398 */
399 val_after &= ~(CCCR_CSR | CCCR_CSA);
400
401 while (tries--) {
402 u32 val_read;
403
404 /* Write the desired value in each try, as setting some bits in
405 * the CCCR register require other bits to be set first. E.g.
406 * setting the NISO bit requires setting the CCE bit first.
407 */
408 m_can_write(cdev, M_CAN_CCCR, val_after);
409
410 val_read = m_can_read(cdev, M_CAN_CCCR) & ~(CCCR_CSR | CCCR_CSA);
411
412 if (val_read == val_after)
413 return 0;
414
415 usleep_range(1, 5);
416 }
417
418 return -ETIMEDOUT;
419}
420
421static int m_can_config_enable(struct m_can_classdev *cdev)
422{
423 int err;
424
425 /* CCCR_INIT must be set in order to set CCCR_CCE, but access to
426 * configuration registers should only be enabled when in standby mode,
427 * where CCCR_INIT is always set.
428 */
429 err = m_can_cccr_update_bits(cdev, CCCR_CCE, CCCR_CCE);
430 if (err)
431 netdev_err(cdev->net, "failed to enable configuration mode\n");
432
433 return err;
434}
435
436static int m_can_config_disable(struct m_can_classdev *cdev)
437{
438 int err;
439
440 /* Only clear CCCR_CCE, since CCCR_INIT cannot be cleared while in
441 * standby mode
442 */
443 err = m_can_cccr_update_bits(cdev, CCCR_CCE, 0);
444 if (err)
445 netdev_err(cdev->net, "failed to disable configuration registers\n");
446
447 return err;
448}
449
450static void m_can_interrupt_enable(struct m_can_classdev *cdev, u32 interrupts)
451{
452 if (cdev->active_interrupts == interrupts)
453 return;
454 cdev->ops->write_reg(cdev, M_CAN_IE, interrupts);
455 cdev->active_interrupts = interrupts;
456}
457
458static void m_can_coalescing_disable(struct m_can_classdev *cdev)
459{
460 u32 new_interrupts = cdev->active_interrupts | IR_RF0N | IR_TEFN;
461
462 if (!cdev->net->irq)
463 return;
464
465 hrtimer_cancel(&cdev->hrtimer);
466 m_can_interrupt_enable(cdev, new_interrupts);
467}
468
469static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev)
470{
471 if (!cdev->net->irq) {
472 dev_dbg(cdev->dev, "Start hrtimer\n");
473 hrtimer_start(&cdev->hrtimer,
474 ms_to_ktime(HRTIMER_POLL_INTERVAL_MS),
475 HRTIMER_MODE_REL_PINNED);
476 }
477
478 /* Only interrupt line 0 is used in this driver */
479 m_can_write(cdev, M_CAN_ILE, ILE_EINT0);
480}
481
482static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev)
483{
484 m_can_coalescing_disable(cdev);
485 m_can_write(cdev, M_CAN_ILE, 0x0);
486
487 if (!cdev->net->irq) {
488 dev_dbg(cdev->dev, "Stop hrtimer\n");
489 hrtimer_try_to_cancel(&cdev->hrtimer);
490 }
491}
492
493/* Retrieve internal timestamp counter from TSCV.TSC, and shift it to 32-bit
494 * width.
495 */
496static u32 m_can_get_timestamp(struct m_can_classdev *cdev)
497{
498 u32 tscv;
499 u32 tsc;
500
501 tscv = m_can_read(cdev, M_CAN_TSCV);
502 tsc = FIELD_GET(TSCV_TSC_MASK, tscv);
503
504 return (tsc << 16);
505}
506
507static void m_can_clean(struct net_device *net)
508{
509 struct m_can_classdev *cdev = netdev_priv(net);
510 unsigned long irqflags;
511
512 if (cdev->tx_ops) {
513 for (int i = 0; i != cdev->tx_fifo_size; ++i) {
514 if (!cdev->tx_ops[i].skb)
515 continue;
516
517 net->stats.tx_errors++;
518 cdev->tx_ops[i].skb = NULL;
519 }
520 }
521
522 for (int i = 0; i != cdev->can.echo_skb_max; ++i)
523 can_free_echo_skb(cdev->net, i, NULL);
524
525 netdev_reset_queue(cdev->net);
526
527 spin_lock_irqsave(&cdev->tx_handling_spinlock, irqflags);
528 cdev->tx_fifo_in_flight = 0;
529 spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags);
530}
531
532/* For peripherals, pass skb to rx-offload, which will push skb from
533 * napi. For non-peripherals, RX is done in napi already, so push
534 * directly. timestamp is used to ensure good skb ordering in
535 * rx-offload and is ignored for non-peripherals.
536 */
537static void m_can_receive_skb(struct m_can_classdev *cdev,
538 struct sk_buff *skb,
539 u32 timestamp)
540{
541 if (cdev->is_peripheral) {
542 struct net_device_stats *stats = &cdev->net->stats;
543 int err;
544
545 err = can_rx_offload_queue_timestamp(&cdev->offload, skb,
546 timestamp);
547 if (err)
548 stats->rx_fifo_errors++;
549 } else {
550 netif_receive_skb(skb);
551 }
552}
553
554static int m_can_read_fifo(struct net_device *dev, u32 fgi)
555{
556 struct net_device_stats *stats = &dev->stats;
557 struct m_can_classdev *cdev = netdev_priv(dev);
558 struct canfd_frame *cf;
559 struct sk_buff *skb;
560 struct id_and_dlc fifo_header;
561 u32 timestamp = 0;
562 int err;
563
564 err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID, &fifo_header, 2);
565 if (err)
566 goto out_fail;
567
568 if (fifo_header.dlc & RX_BUF_FDF)
569 skb = alloc_canfd_skb(dev, &cf);
570 else
571 skb = alloc_can_skb(dev, (struct can_frame **)&cf);
572 if (!skb) {
573 stats->rx_dropped++;
574 return 0;
575 }
576
577 if (fifo_header.dlc & RX_BUF_FDF)
578 cf->len = can_fd_dlc2len((fifo_header.dlc >> 16) & 0x0F);
579 else
580 cf->len = can_cc_dlc2len((fifo_header.dlc >> 16) & 0x0F);
581
582 if (fifo_header.id & RX_BUF_XTD)
583 cf->can_id = (fifo_header.id & CAN_EFF_MASK) | CAN_EFF_FLAG;
584 else
585 cf->can_id = (fifo_header.id >> 18) & CAN_SFF_MASK;
586
587 if (fifo_header.id & RX_BUF_ESI) {
588 cf->flags |= CANFD_ESI;
589 netdev_dbg(dev, "ESI Error\n");
590 }
591
592 if (!(fifo_header.dlc & RX_BUF_FDF) && (fifo_header.id & RX_BUF_RTR)) {
593 cf->can_id |= CAN_RTR_FLAG;
594 } else {
595 if (fifo_header.dlc & RX_BUF_BRS)
596 cf->flags |= CANFD_BRS;
597
598 err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DATA,
599 cf->data, DIV_ROUND_UP(cf->len, 4));
600 if (err)
601 goto out_free_skb;
602
603 stats->rx_bytes += cf->len;
604 }
605 stats->rx_packets++;
606
607 timestamp = FIELD_GET(RX_BUF_RXTS_MASK, fifo_header.dlc) << 16;
608
609 m_can_receive_skb(cdev, skb, timestamp);
610
611 return 0;
612
613out_free_skb:
614 kfree_skb(skb);
615out_fail:
616 netdev_err(dev, "FIFO read returned %d\n", err);
617 return err;
618}
619
620static int m_can_do_rx_poll(struct net_device *dev, int quota)
621{
622 struct m_can_classdev *cdev = netdev_priv(dev);
623 u32 pkts = 0;
624 u32 rxfs;
625 u32 rx_count;
626 u32 fgi;
627 int ack_fgi = -1;
628 int i;
629 int err = 0;
630
631 rxfs = m_can_read(cdev, M_CAN_RXF0S);
632 if (!(rxfs & RXFS_FFL_MASK)) {
633 netdev_dbg(dev, "no messages in fifo0\n");
634 return 0;
635 }
636
637 rx_count = FIELD_GET(RXFS_FFL_MASK, rxfs);
638 fgi = FIELD_GET(RXFS_FGI_MASK, rxfs);
639
640 for (i = 0; i < rx_count && quota > 0; ++i) {
641 err = m_can_read_fifo(dev, fgi);
642 if (err)
643 break;
644
645 quota--;
646 pkts++;
647 ack_fgi = fgi;
648 fgi = (++fgi >= cdev->mcfg[MRAM_RXF0].num ? 0 : fgi);
649 }
650
651 if (ack_fgi != -1)
652 m_can_write(cdev, M_CAN_RXF0A, ack_fgi);
653
654 if (err)
655 return err;
656
657 return pkts;
658}
659
660static int m_can_handle_lost_msg(struct net_device *dev)
661{
662 struct m_can_classdev *cdev = netdev_priv(dev);
663 struct net_device_stats *stats = &dev->stats;
664 struct sk_buff *skb;
665 struct can_frame *frame;
666 u32 timestamp = 0;
667
668 netdev_err(dev, "msg lost in rxf0\n");
669
670 stats->rx_errors++;
671 stats->rx_over_errors++;
672
673 skb = alloc_can_err_skb(dev, &frame);
674 if (unlikely(!skb))
675 return 0;
676
677 frame->can_id |= CAN_ERR_CRTL;
678 frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
679
680 if (cdev->is_peripheral)
681 timestamp = m_can_get_timestamp(cdev);
682
683 m_can_receive_skb(cdev, skb, timestamp);
684
685 return 1;
686}
687
688static int m_can_handle_lec_err(struct net_device *dev,
689 enum m_can_lec_type lec_type)
690{
691 struct m_can_classdev *cdev = netdev_priv(dev);
692 struct net_device_stats *stats = &dev->stats;
693 struct can_frame *cf;
694 struct sk_buff *skb;
695 u32 timestamp = 0;
696
697 cdev->can.can_stats.bus_error++;
698
699 /* propagate the error condition to the CAN stack */
700 skb = alloc_can_err_skb(dev, &cf);
701
702 /* check for 'last error code' which tells us the
703 * type of the last error to occur on the CAN bus
704 */
705 if (likely(skb))
706 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
707
708 switch (lec_type) {
709 case LEC_STUFF_ERROR:
710 netdev_dbg(dev, "stuff error\n");
711 stats->rx_errors++;
712 if (likely(skb))
713 cf->data[2] |= CAN_ERR_PROT_STUFF;
714 break;
715 case LEC_FORM_ERROR:
716 netdev_dbg(dev, "form error\n");
717 stats->rx_errors++;
718 if (likely(skb))
719 cf->data[2] |= CAN_ERR_PROT_FORM;
720 break;
721 case LEC_ACK_ERROR:
722 netdev_dbg(dev, "ack error\n");
723 stats->tx_errors++;
724 if (likely(skb))
725 cf->data[3] = CAN_ERR_PROT_LOC_ACK;
726 break;
727 case LEC_BIT1_ERROR:
728 netdev_dbg(dev, "bit1 error\n");
729 stats->tx_errors++;
730 if (likely(skb))
731 cf->data[2] |= CAN_ERR_PROT_BIT1;
732 break;
733 case LEC_BIT0_ERROR:
734 netdev_dbg(dev, "bit0 error\n");
735 stats->tx_errors++;
736 if (likely(skb))
737 cf->data[2] |= CAN_ERR_PROT_BIT0;
738 break;
739 case LEC_CRC_ERROR:
740 netdev_dbg(dev, "CRC error\n");
741 stats->rx_errors++;
742 if (likely(skb))
743 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
744 break;
745 default:
746 break;
747 }
748
749 if (unlikely(!skb))
750 return 0;
751
752 if (cdev->is_peripheral)
753 timestamp = m_can_get_timestamp(cdev);
754
755 m_can_receive_skb(cdev, skb, timestamp);
756
757 return 1;
758}
759
760static int __m_can_get_berr_counter(const struct net_device *dev,
761 struct can_berr_counter *bec)
762{
763 struct m_can_classdev *cdev = netdev_priv(dev);
764 unsigned int ecr;
765
766 ecr = m_can_read(cdev, M_CAN_ECR);
767 bec->rxerr = FIELD_GET(ECR_REC_MASK, ecr);
768 bec->txerr = FIELD_GET(ECR_TEC_MASK, ecr);
769
770 return 0;
771}
772
773static int m_can_clk_start(struct m_can_classdev *cdev)
774{
775 if (cdev->pm_clock_support == 0)
776 return 0;
777
778 return pm_runtime_resume_and_get(cdev->dev);
779}
780
781static void m_can_clk_stop(struct m_can_classdev *cdev)
782{
783 if (cdev->pm_clock_support)
784 pm_runtime_put_sync(cdev->dev);
785}
786
787static int m_can_get_berr_counter(const struct net_device *dev,
788 struct can_berr_counter *bec)
789{
790 struct m_can_classdev *cdev = netdev_priv(dev);
791 int err;
792
793 err = m_can_clk_start(cdev);
794 if (err)
795 return err;
796
797 __m_can_get_berr_counter(dev, bec);
798
799 m_can_clk_stop(cdev);
800
801 return 0;
802}
803
804static int m_can_handle_state_change(struct net_device *dev,
805 enum can_state new_state)
806{
807 struct m_can_classdev *cdev = netdev_priv(dev);
808 struct can_frame *cf;
809 struct sk_buff *skb;
810 struct can_berr_counter bec;
811 unsigned int ecr;
812 u32 timestamp = 0;
813
814 switch (new_state) {
815 case CAN_STATE_ERROR_WARNING:
816 /* error warning state */
817 cdev->can.can_stats.error_warning++;
818 cdev->can.state = CAN_STATE_ERROR_WARNING;
819 break;
820 case CAN_STATE_ERROR_PASSIVE:
821 /* error passive state */
822 cdev->can.can_stats.error_passive++;
823 cdev->can.state = CAN_STATE_ERROR_PASSIVE;
824 break;
825 case CAN_STATE_BUS_OFF:
826 /* bus-off state */
827 cdev->can.state = CAN_STATE_BUS_OFF;
828 m_can_disable_all_interrupts(cdev);
829 cdev->can.can_stats.bus_off++;
830 can_bus_off(dev);
831 break;
832 default:
833 break;
834 }
835
836 /* propagate the error condition to the CAN stack */
837 skb = alloc_can_err_skb(dev, &cf);
838 if (unlikely(!skb))
839 return 0;
840
841 __m_can_get_berr_counter(dev, &bec);
842
843 switch (new_state) {
844 case CAN_STATE_ERROR_WARNING:
845 /* error warning state */
846 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
847 cf->data[1] = (bec.txerr > bec.rxerr) ?
848 CAN_ERR_CRTL_TX_WARNING :
849 CAN_ERR_CRTL_RX_WARNING;
850 cf->data[6] = bec.txerr;
851 cf->data[7] = bec.rxerr;
852 break;
853 case CAN_STATE_ERROR_PASSIVE:
854 /* error passive state */
855 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
856 ecr = m_can_read(cdev, M_CAN_ECR);
857 if (ecr & ECR_RP)
858 cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
859 if (bec.txerr > 127)
860 cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
861 cf->data[6] = bec.txerr;
862 cf->data[7] = bec.rxerr;
863 break;
864 case CAN_STATE_BUS_OFF:
865 /* bus-off state */
866 cf->can_id |= CAN_ERR_BUSOFF;
867 break;
868 default:
869 break;
870 }
871
872 if (cdev->is_peripheral)
873 timestamp = m_can_get_timestamp(cdev);
874
875 m_can_receive_skb(cdev, skb, timestamp);
876
877 return 1;
878}
879
880static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
881{
882 struct m_can_classdev *cdev = netdev_priv(dev);
883 int work_done = 0;
884
885 if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) {
886 netdev_dbg(dev, "entered error warning state\n");
887 work_done += m_can_handle_state_change(dev,
888 CAN_STATE_ERROR_WARNING);
889 }
890
891 if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) {
892 netdev_dbg(dev, "entered error passive state\n");
893 work_done += m_can_handle_state_change(dev,
894 CAN_STATE_ERROR_PASSIVE);
895 }
896
897 if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) {
898 netdev_dbg(dev, "entered error bus off state\n");
899 work_done += m_can_handle_state_change(dev,
900 CAN_STATE_BUS_OFF);
901 }
902
903 return work_done;
904}
905
906static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
907{
908 if (irqstatus & IR_WDI)
909 netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
910 if (irqstatus & IR_BEU)
911 netdev_err(dev, "Bit Error Uncorrected\n");
912 if (irqstatus & IR_BEC)
913 netdev_err(dev, "Bit Error Corrected\n");
914 if (irqstatus & IR_TOO)
915 netdev_err(dev, "Timeout reached\n");
916 if (irqstatus & IR_MRAF)
917 netdev_err(dev, "Message RAM access failure occurred\n");
918}
919
920static inline bool is_lec_err(u8 lec)
921{
922 return lec != LEC_NO_ERROR && lec != LEC_NO_CHANGE;
923}
924
925static inline bool m_can_is_protocol_err(u32 irqstatus)
926{
927 return irqstatus & IR_ERR_LEC_31X;
928}
929
930static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus)
931{
932 struct net_device_stats *stats = &dev->stats;
933 struct m_can_classdev *cdev = netdev_priv(dev);
934 struct can_frame *cf;
935 struct sk_buff *skb;
936 u32 timestamp = 0;
937
938 /* propagate the error condition to the CAN stack */
939 skb = alloc_can_err_skb(dev, &cf);
940
941 /* update tx error stats since there is protocol error */
942 stats->tx_errors++;
943
944 /* update arbitration lost status */
945 if (cdev->version >= 31 && (irqstatus & IR_PEA)) {
946 netdev_dbg(dev, "Protocol error in Arbitration fail\n");
947 cdev->can.can_stats.arbitration_lost++;
948 if (skb) {
949 cf->can_id |= CAN_ERR_LOSTARB;
950 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
951 }
952 }
953
954 if (unlikely(!skb)) {
955 netdev_dbg(dev, "allocation of skb failed\n");
956 return 0;
957 }
958
959 if (cdev->is_peripheral)
960 timestamp = m_can_get_timestamp(cdev);
961
962 m_can_receive_skb(cdev, skb, timestamp);
963
964 return 1;
965}
966
967static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
968 u32 psr)
969{
970 struct m_can_classdev *cdev = netdev_priv(dev);
971 int work_done = 0;
972
973 if (irqstatus & IR_RF0L)
974 work_done += m_can_handle_lost_msg(dev);
975
976 /* handle lec errors on the bus */
977 if (cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) {
978 u8 lec = FIELD_GET(PSR_LEC_MASK, psr);
979 u8 dlec = FIELD_GET(PSR_DLEC_MASK, psr);
980
981 if (is_lec_err(lec)) {
982 netdev_dbg(dev, "Arbitration phase error detected\n");
983 work_done += m_can_handle_lec_err(dev, lec);
984 }
985
986 if (is_lec_err(dlec)) {
987 netdev_dbg(dev, "Data phase error detected\n");
988 work_done += m_can_handle_lec_err(dev, dlec);
989 }
990 }
991
992 /* handle protocol errors in arbitration phase */
993 if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
994 m_can_is_protocol_err(irqstatus))
995 work_done += m_can_handle_protocol_error(dev, irqstatus);
996
997 /* other unproccessed error interrupts */
998 m_can_handle_other_err(dev, irqstatus);
999
1000 return work_done;
1001}
1002
1003static int m_can_rx_handler(struct net_device *dev, int quota, u32 irqstatus)
1004{
1005 struct m_can_classdev *cdev = netdev_priv(dev);
1006 int rx_work_or_err;
1007 int work_done = 0;
1008
1009 if (!irqstatus)
1010 goto end;
1011
1012 /* Errata workaround for issue "Needless activation of MRAF irq"
1013 * During frame reception while the MCAN is in Error Passive state
1014 * and the Receive Error Counter has the value MCAN_ECR.REC = 127,
1015 * it may happen that MCAN_IR.MRAF is set although there was no
1016 * Message RAM access failure.
1017 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated
1018 * The Message RAM Access Failure interrupt routine needs to check
1019 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127.
1020 * In this case, reset MCAN_IR.MRAF. No further action is required.
1021 */
1022 if (cdev->version <= 31 && irqstatus & IR_MRAF &&
1023 m_can_read(cdev, M_CAN_ECR) & ECR_RP) {
1024 struct can_berr_counter bec;
1025
1026 __m_can_get_berr_counter(dev, &bec);
1027 if (bec.rxerr == 127) {
1028 m_can_write(cdev, M_CAN_IR, IR_MRAF);
1029 irqstatus &= ~IR_MRAF;
1030 }
1031 }
1032
1033 if (irqstatus & IR_ERR_STATE)
1034 work_done += m_can_handle_state_errors(dev,
1035 m_can_read(cdev, M_CAN_PSR));
1036
1037 if (irqstatus & IR_ERR_BUS_30X)
1038 work_done += m_can_handle_bus_errors(dev, irqstatus,
1039 m_can_read(cdev, M_CAN_PSR));
1040
1041 if (irqstatus & IR_RF0N) {
1042 rx_work_or_err = m_can_do_rx_poll(dev, (quota - work_done));
1043 if (rx_work_or_err < 0)
1044 return rx_work_or_err;
1045
1046 work_done += rx_work_or_err;
1047 }
1048end:
1049 return work_done;
1050}
1051
1052static int m_can_poll(struct napi_struct *napi, int quota)
1053{
1054 struct net_device *dev = napi->dev;
1055 struct m_can_classdev *cdev = netdev_priv(dev);
1056 int work_done;
1057 u32 irqstatus;
1058
1059 irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR);
1060
1061 work_done = m_can_rx_handler(dev, quota, irqstatus);
1062
1063 /* Don't re-enable interrupts if the driver had a fatal error
1064 * (e.g., FIFO read failure).
1065 */
1066 if (work_done >= 0 && work_done < quota) {
1067 napi_complete_done(napi, work_done);
1068 m_can_enable_all_interrupts(cdev);
1069 }
1070
1071 return work_done;
1072}
1073
1074/* Echo tx skb and update net stats. Peripherals use rx-offload for
1075 * echo. timestamp is used for peripherals to ensure correct ordering
1076 * by rx-offload, and is ignored for non-peripherals.
1077 */
1078static unsigned int m_can_tx_update_stats(struct m_can_classdev *cdev,
1079 unsigned int msg_mark, u32 timestamp)
1080{
1081 struct net_device *dev = cdev->net;
1082 struct net_device_stats *stats = &dev->stats;
1083 unsigned int frame_len;
1084
1085 if (cdev->is_peripheral)
1086 stats->tx_bytes +=
1087 can_rx_offload_get_echo_skb_queue_timestamp(&cdev->offload,
1088 msg_mark,
1089 timestamp,
1090 &frame_len);
1091 else
1092 stats->tx_bytes += can_get_echo_skb(dev, msg_mark, &frame_len);
1093
1094 stats->tx_packets++;
1095
1096 return frame_len;
1097}
1098
1099static void m_can_finish_tx(struct m_can_classdev *cdev, int transmitted,
1100 unsigned int transmitted_frame_len)
1101{
1102 unsigned long irqflags;
1103
1104 netdev_completed_queue(cdev->net, transmitted, transmitted_frame_len);
1105
1106 spin_lock_irqsave(&cdev->tx_handling_spinlock, irqflags);
1107 if (cdev->tx_fifo_in_flight >= cdev->tx_fifo_size && transmitted > 0)
1108 netif_wake_queue(cdev->net);
1109 cdev->tx_fifo_in_flight -= transmitted;
1110 spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags);
1111}
1112
1113static netdev_tx_t m_can_start_tx(struct m_can_classdev *cdev)
1114{
1115 unsigned long irqflags;
1116 int tx_fifo_in_flight;
1117
1118 spin_lock_irqsave(&cdev->tx_handling_spinlock, irqflags);
1119 tx_fifo_in_flight = cdev->tx_fifo_in_flight + 1;
1120 if (tx_fifo_in_flight >= cdev->tx_fifo_size) {
1121 netif_stop_queue(cdev->net);
1122 if (tx_fifo_in_flight > cdev->tx_fifo_size) {
1123 netdev_err_once(cdev->net, "hard_xmit called while TX FIFO full\n");
1124 spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags);
1125 return NETDEV_TX_BUSY;
1126 }
1127 }
1128 cdev->tx_fifo_in_flight = tx_fifo_in_flight;
1129 spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags);
1130
1131 return NETDEV_TX_OK;
1132}
1133
1134static int m_can_echo_tx_event(struct net_device *dev)
1135{
1136 u32 txe_count = 0;
1137 u32 m_can_txefs;
1138 u32 fgi = 0;
1139 int ack_fgi = -1;
1140 int i = 0;
1141 int err = 0;
1142 unsigned int msg_mark;
1143 int processed = 0;
1144 unsigned int processed_frame_len = 0;
1145
1146 struct m_can_classdev *cdev = netdev_priv(dev);
1147
1148 /* read tx event fifo status */
1149 m_can_txefs = m_can_read(cdev, M_CAN_TXEFS);
1150
1151 /* Get Tx Event fifo element count */
1152 txe_count = FIELD_GET(TXEFS_EFFL_MASK, m_can_txefs);
1153 fgi = FIELD_GET(TXEFS_EFGI_MASK, m_can_txefs);
1154
1155 /* Get and process all sent elements */
1156 for (i = 0; i < txe_count; i++) {
1157 u32 txe, timestamp = 0;
1158
1159 /* get message marker, timestamp */
1160 err = m_can_txe_fifo_read(cdev, fgi, 4, &txe);
1161 if (err) {
1162 netdev_err(dev, "TXE FIFO read returned %d\n", err);
1163 break;
1164 }
1165
1166 msg_mark = FIELD_GET(TX_EVENT_MM_MASK, txe);
1167 timestamp = FIELD_GET(TX_EVENT_TXTS_MASK, txe) << 16;
1168
1169 ack_fgi = fgi;
1170 fgi = (++fgi >= cdev->mcfg[MRAM_TXE].num ? 0 : fgi);
1171
1172 /* update stats */
1173 processed_frame_len += m_can_tx_update_stats(cdev, msg_mark,
1174 timestamp);
1175
1176 ++processed;
1177 }
1178
1179 if (ack_fgi != -1)
1180 m_can_write(cdev, M_CAN_TXEFA, FIELD_PREP(TXEFA_EFAI_MASK,
1181 ack_fgi));
1182
1183 m_can_finish_tx(cdev, processed, processed_frame_len);
1184
1185 return err;
1186}
1187
1188static void m_can_coalescing_update(struct m_can_classdev *cdev, u32 ir)
1189{
1190 u32 new_interrupts = cdev->active_interrupts;
1191 bool enable_rx_timer = false;
1192 bool enable_tx_timer = false;
1193
1194 if (!cdev->net->irq)
1195 return;
1196
1197 if (cdev->rx_coalesce_usecs_irq > 0 && (ir & (IR_RF0N | IR_RF0W))) {
1198 enable_rx_timer = true;
1199 new_interrupts &= ~IR_RF0N;
1200 }
1201 if (cdev->tx_coalesce_usecs_irq > 0 && (ir & (IR_TEFN | IR_TEFW))) {
1202 enable_tx_timer = true;
1203 new_interrupts &= ~IR_TEFN;
1204 }
1205 if (!enable_rx_timer && !hrtimer_active(&cdev->hrtimer))
1206 new_interrupts |= IR_RF0N;
1207 if (!enable_tx_timer && !hrtimer_active(&cdev->hrtimer))
1208 new_interrupts |= IR_TEFN;
1209
1210 m_can_interrupt_enable(cdev, new_interrupts);
1211 if (enable_rx_timer | enable_tx_timer)
1212 hrtimer_start(&cdev->hrtimer, cdev->irq_timer_wait,
1213 HRTIMER_MODE_REL);
1214}
1215
1216/* This interrupt handler is called either from the interrupt thread or a
1217 * hrtimer. This has implications like cancelling a timer won't be possible
1218 * blocking.
1219 */
1220static int m_can_interrupt_handler(struct m_can_classdev *cdev)
1221{
1222 struct net_device *dev = cdev->net;
1223 u32 ir = 0, ir_read;
1224 int ret;
1225
1226 if (pm_runtime_suspended(cdev->dev))
1227 return IRQ_NONE;
1228
1229 /* The m_can controller signals its interrupt status as a level, but
1230 * depending in the integration the CPU may interpret the signal as
1231 * edge-triggered (for example with m_can_pci). For these
1232 * edge-triggered integrations, we must observe that IR is 0 at least
1233 * once to be sure that the next interrupt will generate an edge.
1234 */
1235 while ((ir_read = m_can_read(cdev, M_CAN_IR)) != 0) {
1236 ir |= ir_read;
1237
1238 /* ACK all irqs */
1239 m_can_write(cdev, M_CAN_IR, ir);
1240
1241 if (!cdev->irq_edge_triggered)
1242 break;
1243 }
1244
1245 m_can_coalescing_update(cdev, ir);
1246 if (!ir)
1247 return IRQ_NONE;
1248
1249 if (cdev->ops->clear_interrupts)
1250 cdev->ops->clear_interrupts(cdev);
1251
1252 /* schedule NAPI in case of
1253 * - rx IRQ
1254 * - state change IRQ
1255 * - bus error IRQ and bus error reporting
1256 */
1257 if (ir & (IR_RF0N | IR_RF0W | IR_ERR_ALL_30X)) {
1258 cdev->irqstatus = ir;
1259 if (!cdev->is_peripheral) {
1260 m_can_disable_all_interrupts(cdev);
1261 napi_schedule(&cdev->napi);
1262 } else {
1263 ret = m_can_rx_handler(dev, NAPI_POLL_WEIGHT, ir);
1264 if (ret < 0)
1265 return ret;
1266 }
1267 }
1268
1269 if (cdev->version == 30) {
1270 if (ir & IR_TC) {
1271 /* Transmission Complete Interrupt*/
1272 u32 timestamp = 0;
1273 unsigned int frame_len;
1274
1275 if (cdev->is_peripheral)
1276 timestamp = m_can_get_timestamp(cdev);
1277 frame_len = m_can_tx_update_stats(cdev, 0, timestamp);
1278 m_can_finish_tx(cdev, 1, frame_len);
1279 }
1280 } else {
1281 if (ir & (IR_TEFN | IR_TEFW)) {
1282 /* New TX FIFO Element arrived */
1283 ret = m_can_echo_tx_event(dev);
1284 if (ret != 0)
1285 return ret;
1286 }
1287 }
1288
1289 if (cdev->is_peripheral)
1290 can_rx_offload_threaded_irq_finish(&cdev->offload);
1291
1292 return IRQ_HANDLED;
1293}
1294
1295static irqreturn_t m_can_isr(int irq, void *dev_id)
1296{
1297 struct net_device *dev = (struct net_device *)dev_id;
1298 struct m_can_classdev *cdev = netdev_priv(dev);
1299 int ret;
1300
1301 ret = m_can_interrupt_handler(cdev);
1302 if (ret < 0) {
1303 m_can_disable_all_interrupts(cdev);
1304 return IRQ_HANDLED;
1305 }
1306
1307 return ret;
1308}
1309
1310static enum hrtimer_restart m_can_coalescing_timer(struct hrtimer *timer)
1311{
1312 struct m_can_classdev *cdev = container_of(timer, struct m_can_classdev, hrtimer);
1313
1314 if (cdev->can.state == CAN_STATE_BUS_OFF ||
1315 cdev->can.state == CAN_STATE_STOPPED)
1316 return HRTIMER_NORESTART;
1317
1318 irq_wake_thread(cdev->net->irq, cdev->net);
1319
1320 return HRTIMER_NORESTART;
1321}
1322
1323static const struct can_bittiming_const m_can_bittiming_const_30X = {
1324 .name = KBUILD_MODNAME,
1325 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
1326 .tseg1_max = 64,
1327 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
1328 .tseg2_max = 16,
1329 .sjw_max = 16,
1330 .brp_min = 1,
1331 .brp_max = 1024,
1332 .brp_inc = 1,
1333};
1334
1335static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
1336 .name = KBUILD_MODNAME,
1337 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
1338 .tseg1_max = 16,
1339 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
1340 .tseg2_max = 8,
1341 .sjw_max = 4,
1342 .brp_min = 1,
1343 .brp_max = 32,
1344 .brp_inc = 1,
1345};
1346
1347static const struct can_bittiming_const m_can_bittiming_const_31X = {
1348 .name = KBUILD_MODNAME,
1349 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
1350 .tseg1_max = 256,
1351 .tseg2_min = 2, /* Time segment 2 = phase_seg2 */
1352 .tseg2_max = 128,
1353 .sjw_max = 128,
1354 .brp_min = 1,
1355 .brp_max = 512,
1356 .brp_inc = 1,
1357};
1358
1359static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
1360 .name = KBUILD_MODNAME,
1361 .tseg1_min = 1, /* Time segment 1 = prop_seg + phase_seg1 */
1362 .tseg1_max = 32,
1363 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
1364 .tseg2_max = 16,
1365 .sjw_max = 16,
1366 .brp_min = 1,
1367 .brp_max = 32,
1368 .brp_inc = 1,
1369};
1370
1371static int m_can_set_bittiming(struct net_device *dev)
1372{
1373 struct m_can_classdev *cdev = netdev_priv(dev);
1374 const struct can_bittiming *bt = &cdev->can.bittiming;
1375 const struct can_bittiming *dbt = &cdev->can.data_bittiming;
1376 u16 brp, sjw, tseg1, tseg2;
1377 u32 reg_btp;
1378
1379 brp = bt->brp - 1;
1380 sjw = bt->sjw - 1;
1381 tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1382 tseg2 = bt->phase_seg2 - 1;
1383 reg_btp = FIELD_PREP(NBTP_NBRP_MASK, brp) |
1384 FIELD_PREP(NBTP_NSJW_MASK, sjw) |
1385 FIELD_PREP(NBTP_NTSEG1_MASK, tseg1) |
1386 FIELD_PREP(NBTP_NTSEG2_MASK, tseg2);
1387 m_can_write(cdev, M_CAN_NBTP, reg_btp);
1388
1389 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1390 reg_btp = 0;
1391 brp = dbt->brp - 1;
1392 sjw = dbt->sjw - 1;
1393 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1394 tseg2 = dbt->phase_seg2 - 1;
1395
1396 /* TDC is only needed for bitrates beyond 2.5 MBit/s.
1397 * This is mentioned in the "Bit Time Requirements for CAN FD"
1398 * paper presented at the International CAN Conference 2013
1399 */
1400 if (dbt->bitrate > 2500000) {
1401 u32 tdco, ssp;
1402
1403 /* Use the same value of secondary sampling point
1404 * as the data sampling point
1405 */
1406 ssp = dbt->sample_point;
1407
1408 /* Equation based on Bosch's M_CAN User Manual's
1409 * Transmitter Delay Compensation Section
1410 */
1411 tdco = (cdev->can.clock.freq / 1000) *
1412 ssp / dbt->bitrate;
1413
1414 /* Max valid TDCO value is 127 */
1415 if (tdco > 127) {
1416 netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
1417 tdco);
1418 tdco = 127;
1419 }
1420
1421 reg_btp |= DBTP_TDC;
1422 m_can_write(cdev, M_CAN_TDCR,
1423 FIELD_PREP(TDCR_TDCO_MASK, tdco));
1424 }
1425
1426 reg_btp |= FIELD_PREP(DBTP_DBRP_MASK, brp) |
1427 FIELD_PREP(DBTP_DSJW_MASK, sjw) |
1428 FIELD_PREP(DBTP_DTSEG1_MASK, tseg1) |
1429 FIELD_PREP(DBTP_DTSEG2_MASK, tseg2);
1430
1431 m_can_write(cdev, M_CAN_DBTP, reg_btp);
1432 }
1433
1434 return 0;
1435}
1436
1437/* Configure M_CAN chip:
1438 * - set rx buffer/fifo element size
1439 * - configure rx fifo
1440 * - accept non-matching frame into fifo 0
1441 * - configure tx buffer
1442 * - >= v3.1.x: TX FIFO is used
1443 * - configure mode
1444 * - setup bittiming
1445 * - configure timestamp generation
1446 */
1447static int m_can_chip_config(struct net_device *dev)
1448{
1449 struct m_can_classdev *cdev = netdev_priv(dev);
1450 u32 interrupts = IR_ALL_INT;
1451 u32 cccr, test;
1452 int err;
1453
1454 err = m_can_init_ram(cdev);
1455 if (err) {
1456 dev_err(cdev->dev, "Message RAM configuration failed\n");
1457 return err;
1458 }
1459
1460 /* Disable unused interrupts */
1461 interrupts &= ~(IR_ARA | IR_ELO | IR_DRX | IR_TEFF | IR_TFE | IR_TCF |
1462 IR_HPM | IR_RF1F | IR_RF1W | IR_RF1N | IR_RF0F |
1463 IR_TSW);
1464
1465 err = m_can_config_enable(cdev);
1466 if (err)
1467 return err;
1468
1469 /* RX Buffer/FIFO Element Size 64 bytes data field */
1470 m_can_write(cdev, M_CAN_RXESC,
1471 FIELD_PREP(RXESC_RBDS_MASK, RXESC_64B) |
1472 FIELD_PREP(RXESC_F1DS_MASK, RXESC_64B) |
1473 FIELD_PREP(RXESC_F0DS_MASK, RXESC_64B));
1474
1475 /* Accept Non-matching Frames Into FIFO 0 */
1476 m_can_write(cdev, M_CAN_GFC, 0x0);
1477
1478 if (cdev->version == 30) {
1479 /* only support one Tx Buffer currently */
1480 m_can_write(cdev, M_CAN_TXBC, FIELD_PREP(TXBC_NDTB_MASK, 1) |
1481 cdev->mcfg[MRAM_TXB].off);
1482 } else {
1483 /* TX FIFO is used for newer IP Core versions */
1484 m_can_write(cdev, M_CAN_TXBC,
1485 FIELD_PREP(TXBC_TFQS_MASK,
1486 cdev->mcfg[MRAM_TXB].num) |
1487 cdev->mcfg[MRAM_TXB].off);
1488 }
1489
1490 /* support 64 bytes payload */
1491 m_can_write(cdev, M_CAN_TXESC,
1492 FIELD_PREP(TXESC_TBDS_MASK, TXESC_TBDS_64B));
1493
1494 /* TX Event FIFO */
1495 if (cdev->version == 30) {
1496 m_can_write(cdev, M_CAN_TXEFC,
1497 FIELD_PREP(TXEFC_EFS_MASK, 1) |
1498 cdev->mcfg[MRAM_TXE].off);
1499 } else {
1500 /* Full TX Event FIFO is used */
1501 m_can_write(cdev, M_CAN_TXEFC,
1502 FIELD_PREP(TXEFC_EFWM_MASK,
1503 cdev->tx_max_coalesced_frames_irq) |
1504 FIELD_PREP(TXEFC_EFS_MASK,
1505 cdev->mcfg[MRAM_TXE].num) |
1506 cdev->mcfg[MRAM_TXE].off);
1507 }
1508
1509 /* rx fifo configuration, blocking mode, fifo size 1 */
1510 m_can_write(cdev, M_CAN_RXF0C,
1511 FIELD_PREP(RXFC_FWM_MASK, cdev->rx_max_coalesced_frames_irq) |
1512 FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF0].num) |
1513 cdev->mcfg[MRAM_RXF0].off);
1514
1515 m_can_write(cdev, M_CAN_RXF1C,
1516 FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF1].num) |
1517 cdev->mcfg[MRAM_RXF1].off);
1518
1519 cccr = m_can_read(cdev, M_CAN_CCCR);
1520 test = m_can_read(cdev, M_CAN_TEST);
1521 test &= ~TEST_LBCK;
1522 if (cdev->version == 30) {
1523 /* Version 3.0.x */
1524
1525 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR |
1526 FIELD_PREP(CCCR_CMR_MASK, FIELD_MAX(CCCR_CMR_MASK)) |
1527 FIELD_PREP(CCCR_CME_MASK, FIELD_MAX(CCCR_CME_MASK)));
1528
1529 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1530 cccr |= FIELD_PREP(CCCR_CME_MASK, CCCR_CME_CANFD_BRS);
1531
1532 } else {
1533 /* Version 3.1.x or 3.2.x */
1534 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE |
1535 CCCR_NISO | CCCR_DAR);
1536
1537 /* Only 3.2.x has NISO Bit implemented */
1538 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1539 cccr |= CCCR_NISO;
1540
1541 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1542 cccr |= (CCCR_BRSE | CCCR_FDOE);
1543 }
1544
1545 /* Loopback Mode */
1546 if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1547 cccr |= CCCR_TEST | CCCR_MON;
1548 test |= TEST_LBCK;
1549 }
1550
1551 /* Enable Monitoring (all versions) */
1552 if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1553 cccr |= CCCR_MON;
1554
1555 /* Disable Auto Retransmission (all versions) */
1556 if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
1557 cccr |= CCCR_DAR;
1558
1559 /* Write config */
1560 m_can_write(cdev, M_CAN_CCCR, cccr);
1561 m_can_write(cdev, M_CAN_TEST, test);
1562
1563 /* Enable interrupts */
1564 if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) {
1565 if (cdev->version == 30)
1566 interrupts &= ~(IR_ERR_LEC_30X);
1567 else
1568 interrupts &= ~(IR_ERR_LEC_31X);
1569 }
1570 cdev->active_interrupts = 0;
1571 m_can_interrupt_enable(cdev, interrupts);
1572
1573 /* route all interrupts to INT0 */
1574 m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0);
1575
1576 /* set bittiming params */
1577 m_can_set_bittiming(dev);
1578
1579 /* enable internal timestamp generation, with a prescaler of 16. The
1580 * prescaler is applied to the nominal bit timing
1581 */
1582 m_can_write(cdev, M_CAN_TSCC,
1583 FIELD_PREP(TSCC_TCP_MASK, 0xf) |
1584 FIELD_PREP(TSCC_TSS_MASK, TSCC_TSS_INTERNAL));
1585
1586 err = m_can_config_disable(cdev);
1587 if (err)
1588 return err;
1589
1590 if (cdev->ops->init)
1591 cdev->ops->init(cdev);
1592
1593 return 0;
1594}
1595
1596static int m_can_start(struct net_device *dev)
1597{
1598 struct m_can_classdev *cdev = netdev_priv(dev);
1599 int ret;
1600
1601 /* basic m_can configuration */
1602 ret = m_can_chip_config(dev);
1603 if (ret)
1604 return ret;
1605
1606 netdev_queue_set_dql_min_limit(netdev_get_tx_queue(cdev->net, 0),
1607 cdev->tx_max_coalesced_frames);
1608
1609 cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1610
1611 m_can_enable_all_interrupts(cdev);
1612
1613 if (cdev->version > 30)
1614 cdev->tx_fifo_putidx = FIELD_GET(TXFQS_TFQPI_MASK,
1615 m_can_read(cdev, M_CAN_TXFQS));
1616
1617 ret = m_can_cccr_update_bits(cdev, CCCR_INIT, 0);
1618 if (ret)
1619 netdev_err(dev, "failed to enter normal mode\n");
1620
1621 return ret;
1622}
1623
1624static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
1625{
1626 switch (mode) {
1627 case CAN_MODE_START:
1628 m_can_clean(dev);
1629 m_can_start(dev);
1630 netif_wake_queue(dev);
1631 break;
1632 default:
1633 return -EOPNOTSUPP;
1634 }
1635
1636 return 0;
1637}
1638
1639/* Checks core release number of M_CAN
1640 * returns 0 if an unsupported device is detected
1641 * else it returns the release and step coded as:
1642 * return value = 10 * <release> + 1 * <step>
1643 */
1644static int m_can_check_core_release(struct m_can_classdev *cdev)
1645{
1646 u32 crel_reg;
1647 u8 rel;
1648 u8 step;
1649 int res;
1650
1651 /* Read Core Release Version and split into version number
1652 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
1653 */
1654 crel_reg = m_can_read(cdev, M_CAN_CREL);
1655 rel = (u8)FIELD_GET(CREL_REL_MASK, crel_reg);
1656 step = (u8)FIELD_GET(CREL_STEP_MASK, crel_reg);
1657
1658 if (rel == 3) {
1659 /* M_CAN v3.x.y: create return value */
1660 res = 30 + step;
1661 } else {
1662 /* Unsupported M_CAN version */
1663 res = 0;
1664 }
1665
1666 return res;
1667}
1668
1669/* Selectable Non ISO support only in version 3.2.x
1670 * Return 1 if the bit is writable, 0 if it is not, or negative on error.
1671 */
1672static int m_can_niso_supported(struct m_can_classdev *cdev)
1673{
1674 int ret, niso;
1675
1676 ret = m_can_config_enable(cdev);
1677 if (ret)
1678 return ret;
1679
1680 /* First try to set the NISO bit. */
1681 niso = m_can_cccr_update_bits(cdev, CCCR_NISO, CCCR_NISO);
1682
1683 /* Then clear the it again. */
1684 ret = m_can_cccr_update_bits(cdev, CCCR_NISO, 0);
1685 if (ret) {
1686 dev_err(cdev->dev, "failed to revert the NON-ISO bit in CCCR\n");
1687 return ret;
1688 }
1689
1690 ret = m_can_config_disable(cdev);
1691 if (ret)
1692 return ret;
1693
1694 return niso == 0;
1695}
1696
1697static int m_can_dev_setup(struct m_can_classdev *cdev)
1698{
1699 struct net_device *dev = cdev->net;
1700 int m_can_version, err, niso;
1701
1702 m_can_version = m_can_check_core_release(cdev);
1703 /* return if unsupported version */
1704 if (!m_can_version) {
1705 dev_err(cdev->dev, "Unsupported version number: %2d",
1706 m_can_version);
1707 return -EINVAL;
1708 }
1709
1710 /* Write the INIT bit, in case no hardware reset has happened before
1711 * the probe (for example, it was observed that the Intel Elkhart Lake
1712 * SoCs do not properly reset the CAN controllers on reboot)
1713 */
1714 err = m_can_cccr_update_bits(cdev, CCCR_INIT, CCCR_INIT);
1715 if (err)
1716 return err;
1717
1718 if (!cdev->is_peripheral)
1719 netif_napi_add(dev, &cdev->napi, m_can_poll);
1720
1721 /* Shared properties of all M_CAN versions */
1722 cdev->version = m_can_version;
1723 cdev->can.do_set_mode = m_can_set_mode;
1724 cdev->can.do_get_berr_counter = m_can_get_berr_counter;
1725
1726 /* Set M_CAN supported operations */
1727 cdev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1728 CAN_CTRLMODE_LISTENONLY |
1729 CAN_CTRLMODE_BERR_REPORTING |
1730 CAN_CTRLMODE_FD |
1731 CAN_CTRLMODE_ONE_SHOT;
1732
1733 /* Set properties depending on M_CAN version */
1734 switch (cdev->version) {
1735 case 30:
1736 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
1737 err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1738 if (err)
1739 return err;
1740 cdev->can.bittiming_const = &m_can_bittiming_const_30X;
1741 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_30X;
1742 break;
1743 case 31:
1744 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
1745 err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1746 if (err)
1747 return err;
1748 cdev->can.bittiming_const = &m_can_bittiming_const_31X;
1749 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X;
1750 break;
1751 case 32:
1752 case 33:
1753 /* Support both MCAN version v3.2.x and v3.3.0 */
1754 cdev->can.bittiming_const = &m_can_bittiming_const_31X;
1755 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X;
1756
1757 niso = m_can_niso_supported(cdev);
1758 if (niso < 0)
1759 return niso;
1760 if (niso)
1761 cdev->can.ctrlmode_supported |= CAN_CTRLMODE_FD_NON_ISO;
1762 break;
1763 default:
1764 dev_err(cdev->dev, "Unsupported version number: %2d",
1765 cdev->version);
1766 return -EINVAL;
1767 }
1768
1769 return 0;
1770}
1771
1772static void m_can_stop(struct net_device *dev)
1773{
1774 struct m_can_classdev *cdev = netdev_priv(dev);
1775 int ret;
1776
1777 /* disable all interrupts */
1778 m_can_disable_all_interrupts(cdev);
1779
1780 /* Set init mode to disengage from the network */
1781 ret = m_can_cccr_update_bits(cdev, CCCR_INIT, CCCR_INIT);
1782 if (ret)
1783 netdev_err(dev, "failed to enter standby mode: %pe\n",
1784 ERR_PTR(ret));
1785
1786 /* set the state as STOPPED */
1787 cdev->can.state = CAN_STATE_STOPPED;
1788}
1789
1790static int m_can_close(struct net_device *dev)
1791{
1792 struct m_can_classdev *cdev = netdev_priv(dev);
1793
1794 netif_stop_queue(dev);
1795
1796 m_can_stop(dev);
1797 if (dev->irq)
1798 free_irq(dev->irq, dev);
1799
1800 m_can_clean(dev);
1801
1802 if (cdev->is_peripheral) {
1803 destroy_workqueue(cdev->tx_wq);
1804 cdev->tx_wq = NULL;
1805 can_rx_offload_disable(&cdev->offload);
1806 } else {
1807 napi_disable(&cdev->napi);
1808 }
1809
1810 close_candev(dev);
1811
1812 m_can_clk_stop(cdev);
1813 phy_power_off(cdev->transceiver);
1814
1815 return 0;
1816}
1817
1818static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev,
1819 struct sk_buff *skb)
1820{
1821 struct canfd_frame *cf = (struct canfd_frame *)skb->data;
1822 u8 len_padded = DIV_ROUND_UP(cf->len, 4);
1823 struct m_can_fifo_element fifo_element;
1824 struct net_device *dev = cdev->net;
1825 u32 cccr, fdflags;
1826 int err;
1827 u32 putidx;
1828 unsigned int frame_len = can_skb_get_frame_len(skb);
1829
1830 /* Generate ID field for TX buffer Element */
1831 /* Common to all supported M_CAN versions */
1832 if (cf->can_id & CAN_EFF_FLAG) {
1833 fifo_element.id = cf->can_id & CAN_EFF_MASK;
1834 fifo_element.id |= TX_BUF_XTD;
1835 } else {
1836 fifo_element.id = ((cf->can_id & CAN_SFF_MASK) << 18);
1837 }
1838
1839 if (cf->can_id & CAN_RTR_FLAG)
1840 fifo_element.id |= TX_BUF_RTR;
1841
1842 if (cdev->version == 30) {
1843 netif_stop_queue(dev);
1844
1845 fifo_element.dlc = can_fd_len2dlc(cf->len) << 16;
1846
1847 /* Write the frame ID, DLC, and payload to the FIFO element. */
1848 err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, &fifo_element, 2);
1849 if (err)
1850 goto out_fail;
1851
1852 err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_DATA,
1853 cf->data, len_padded);
1854 if (err)
1855 goto out_fail;
1856
1857 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1858 cccr = m_can_read(cdev, M_CAN_CCCR);
1859 cccr &= ~CCCR_CMR_MASK;
1860 if (can_is_canfd_skb(skb)) {
1861 if (cf->flags & CANFD_BRS)
1862 cccr |= FIELD_PREP(CCCR_CMR_MASK,
1863 CCCR_CMR_CANFD_BRS);
1864 else
1865 cccr |= FIELD_PREP(CCCR_CMR_MASK,
1866 CCCR_CMR_CANFD);
1867 } else {
1868 cccr |= FIELD_PREP(CCCR_CMR_MASK, CCCR_CMR_CAN);
1869 }
1870 m_can_write(cdev, M_CAN_CCCR, cccr);
1871 }
1872 m_can_write(cdev, M_CAN_TXBTIE, 0x1);
1873
1874 can_put_echo_skb(skb, dev, 0, frame_len);
1875
1876 m_can_write(cdev, M_CAN_TXBAR, 0x1);
1877 /* End of xmit function for version 3.0.x */
1878 } else {
1879 /* Transmit routine for version >= v3.1.x */
1880
1881 /* get put index for frame */
1882 putidx = cdev->tx_fifo_putidx;
1883
1884 /* Construct DLC Field, with CAN-FD configuration.
1885 * Use the put index of the fifo as the message marker,
1886 * used in the TX interrupt for sending the correct echo frame.
1887 */
1888
1889 /* get CAN FD configuration of frame */
1890 fdflags = 0;
1891 if (can_is_canfd_skb(skb)) {
1892 fdflags |= TX_BUF_FDF;
1893 if (cf->flags & CANFD_BRS)
1894 fdflags |= TX_BUF_BRS;
1895 }
1896
1897 fifo_element.dlc = FIELD_PREP(TX_BUF_MM_MASK, putidx) |
1898 FIELD_PREP(TX_BUF_DLC_MASK, can_fd_len2dlc(cf->len)) |
1899 fdflags | TX_BUF_EFC;
1900
1901 memcpy_and_pad(fifo_element.data, CANFD_MAX_DLEN, &cf->data,
1902 cf->len, 0);
1903
1904 err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID,
1905 &fifo_element, 2 + len_padded);
1906 if (err)
1907 goto out_fail;
1908
1909 /* Push loopback echo.
1910 * Will be looped back on TX interrupt based on message marker
1911 */
1912 can_put_echo_skb(skb, dev, putidx, frame_len);
1913
1914 if (cdev->is_peripheral) {
1915 /* Delay enabling TX FIFO element */
1916 cdev->tx_peripheral_submit |= BIT(putidx);
1917 } else {
1918 /* Enable TX FIFO element to start transfer */
1919 m_can_write(cdev, M_CAN_TXBAR, BIT(putidx));
1920 }
1921 cdev->tx_fifo_putidx = (++cdev->tx_fifo_putidx >= cdev->can.echo_skb_max ?
1922 0 : cdev->tx_fifo_putidx);
1923 }
1924
1925 return NETDEV_TX_OK;
1926
1927out_fail:
1928 netdev_err(dev, "FIFO write returned %d\n", err);
1929 m_can_disable_all_interrupts(cdev);
1930 return NETDEV_TX_BUSY;
1931}
1932
1933static void m_can_tx_submit(struct m_can_classdev *cdev)
1934{
1935 if (cdev->version == 30)
1936 return;
1937 if (!cdev->is_peripheral)
1938 return;
1939
1940 m_can_write(cdev, M_CAN_TXBAR, cdev->tx_peripheral_submit);
1941 cdev->tx_peripheral_submit = 0;
1942}
1943
1944static void m_can_tx_work_queue(struct work_struct *ws)
1945{
1946 struct m_can_tx_op *op = container_of(ws, struct m_can_tx_op, work);
1947 struct m_can_classdev *cdev = op->cdev;
1948 struct sk_buff *skb = op->skb;
1949
1950 op->skb = NULL;
1951 m_can_tx_handler(cdev, skb);
1952 if (op->submit)
1953 m_can_tx_submit(cdev);
1954}
1955
1956static void m_can_tx_queue_skb(struct m_can_classdev *cdev, struct sk_buff *skb,
1957 bool submit)
1958{
1959 cdev->tx_ops[cdev->next_tx_op].skb = skb;
1960 cdev->tx_ops[cdev->next_tx_op].submit = submit;
1961 queue_work(cdev->tx_wq, &cdev->tx_ops[cdev->next_tx_op].work);
1962
1963 ++cdev->next_tx_op;
1964 if (cdev->next_tx_op >= cdev->tx_fifo_size)
1965 cdev->next_tx_op = 0;
1966}
1967
1968static netdev_tx_t m_can_start_peripheral_xmit(struct m_can_classdev *cdev,
1969 struct sk_buff *skb)
1970{
1971 bool submit;
1972
1973 ++cdev->nr_txs_without_submit;
1974 if (cdev->nr_txs_without_submit >= cdev->tx_max_coalesced_frames ||
1975 !netdev_xmit_more()) {
1976 cdev->nr_txs_without_submit = 0;
1977 submit = true;
1978 } else {
1979 submit = false;
1980 }
1981 m_can_tx_queue_skb(cdev, skb, submit);
1982
1983 return NETDEV_TX_OK;
1984}
1985
1986static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
1987 struct net_device *dev)
1988{
1989 struct m_can_classdev *cdev = netdev_priv(dev);
1990 unsigned int frame_len;
1991 netdev_tx_t ret;
1992
1993 if (can_dev_dropped_skb(dev, skb))
1994 return NETDEV_TX_OK;
1995
1996 frame_len = can_skb_get_frame_len(skb);
1997
1998 if (cdev->can.state == CAN_STATE_BUS_OFF) {
1999 m_can_clean(cdev->net);
2000 return NETDEV_TX_OK;
2001 }
2002
2003 ret = m_can_start_tx(cdev);
2004 if (ret != NETDEV_TX_OK)
2005 return ret;
2006
2007 netdev_sent_queue(dev, frame_len);
2008
2009 if (cdev->is_peripheral)
2010 ret = m_can_start_peripheral_xmit(cdev, skb);
2011 else
2012 ret = m_can_tx_handler(cdev, skb);
2013
2014 if (ret != NETDEV_TX_OK)
2015 netdev_completed_queue(dev, 1, frame_len);
2016
2017 return ret;
2018}
2019
2020static enum hrtimer_restart hrtimer_callback(struct hrtimer *timer)
2021{
2022 struct m_can_classdev *cdev = container_of(timer, struct
2023 m_can_classdev, hrtimer);
2024 int ret;
2025
2026 if (cdev->can.state == CAN_STATE_BUS_OFF ||
2027 cdev->can.state == CAN_STATE_STOPPED)
2028 return HRTIMER_NORESTART;
2029
2030 ret = m_can_interrupt_handler(cdev);
2031
2032 /* On error or if napi is scheduled to read, stop the timer */
2033 if (ret < 0 || napi_is_scheduled(&cdev->napi))
2034 return HRTIMER_NORESTART;
2035
2036 hrtimer_forward_now(timer, ms_to_ktime(HRTIMER_POLL_INTERVAL_MS));
2037
2038 return HRTIMER_RESTART;
2039}
2040
2041static int m_can_open(struct net_device *dev)
2042{
2043 struct m_can_classdev *cdev = netdev_priv(dev);
2044 int err;
2045
2046 err = phy_power_on(cdev->transceiver);
2047 if (err)
2048 return err;
2049
2050 err = m_can_clk_start(cdev);
2051 if (err)
2052 goto out_phy_power_off;
2053
2054 /* open the can device */
2055 err = open_candev(dev);
2056 if (err) {
2057 netdev_err(dev, "failed to open can device\n");
2058 goto exit_disable_clks;
2059 }
2060
2061 if (cdev->is_peripheral)
2062 can_rx_offload_enable(&cdev->offload);
2063 else
2064 napi_enable(&cdev->napi);
2065
2066 /* register interrupt handler */
2067 if (cdev->is_peripheral) {
2068 cdev->tx_wq = alloc_ordered_workqueue("mcan_wq",
2069 WQ_FREEZABLE | WQ_MEM_RECLAIM);
2070 if (!cdev->tx_wq) {
2071 err = -ENOMEM;
2072 goto out_wq_fail;
2073 }
2074
2075 for (int i = 0; i != cdev->tx_fifo_size; ++i) {
2076 cdev->tx_ops[i].cdev = cdev;
2077 INIT_WORK(&cdev->tx_ops[i].work, m_can_tx_work_queue);
2078 }
2079
2080 err = request_threaded_irq(dev->irq, NULL, m_can_isr,
2081 IRQF_ONESHOT,
2082 dev->name, dev);
2083 } else if (dev->irq) {
2084 err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
2085 dev);
2086 }
2087
2088 if (err < 0) {
2089 netdev_err(dev, "failed to request interrupt\n");
2090 goto exit_irq_fail;
2091 }
2092
2093 /* start the m_can controller */
2094 err = m_can_start(dev);
2095 if (err)
2096 goto exit_start_fail;
2097
2098 netif_start_queue(dev);
2099
2100 return 0;
2101
2102exit_start_fail:
2103 if (cdev->is_peripheral || dev->irq)
2104 free_irq(dev->irq, dev);
2105exit_irq_fail:
2106 if (cdev->is_peripheral)
2107 destroy_workqueue(cdev->tx_wq);
2108out_wq_fail:
2109 if (cdev->is_peripheral)
2110 can_rx_offload_disable(&cdev->offload);
2111 else
2112 napi_disable(&cdev->napi);
2113 close_candev(dev);
2114exit_disable_clks:
2115 m_can_clk_stop(cdev);
2116out_phy_power_off:
2117 phy_power_off(cdev->transceiver);
2118 return err;
2119}
2120
2121static const struct net_device_ops m_can_netdev_ops = {
2122 .ndo_open = m_can_open,
2123 .ndo_stop = m_can_close,
2124 .ndo_start_xmit = m_can_start_xmit,
2125 .ndo_change_mtu = can_change_mtu,
2126};
2127
2128static int m_can_get_coalesce(struct net_device *dev,
2129 struct ethtool_coalesce *ec,
2130 struct kernel_ethtool_coalesce *kec,
2131 struct netlink_ext_ack *ext_ack)
2132{
2133 struct m_can_classdev *cdev = netdev_priv(dev);
2134
2135 ec->rx_max_coalesced_frames_irq = cdev->rx_max_coalesced_frames_irq;
2136 ec->rx_coalesce_usecs_irq = cdev->rx_coalesce_usecs_irq;
2137 ec->tx_max_coalesced_frames = cdev->tx_max_coalesced_frames;
2138 ec->tx_max_coalesced_frames_irq = cdev->tx_max_coalesced_frames_irq;
2139 ec->tx_coalesce_usecs_irq = cdev->tx_coalesce_usecs_irq;
2140
2141 return 0;
2142}
2143
2144static int m_can_set_coalesce(struct net_device *dev,
2145 struct ethtool_coalesce *ec,
2146 struct kernel_ethtool_coalesce *kec,
2147 struct netlink_ext_ack *ext_ack)
2148{
2149 struct m_can_classdev *cdev = netdev_priv(dev);
2150
2151 if (cdev->can.state != CAN_STATE_STOPPED) {
2152 netdev_err(dev, "Device is in use, please shut it down first\n");
2153 return -EBUSY;
2154 }
2155
2156 if (ec->rx_max_coalesced_frames_irq > cdev->mcfg[MRAM_RXF0].num) {
2157 netdev_err(dev, "rx-frames-irq %u greater than the RX FIFO %u\n",
2158 ec->rx_max_coalesced_frames_irq,
2159 cdev->mcfg[MRAM_RXF0].num);
2160 return -EINVAL;
2161 }
2162 if ((ec->rx_max_coalesced_frames_irq == 0) != (ec->rx_coalesce_usecs_irq == 0)) {
2163 netdev_err(dev, "rx-frames-irq and rx-usecs-irq can only be set together\n");
2164 return -EINVAL;
2165 }
2166 if (ec->tx_max_coalesced_frames_irq > cdev->mcfg[MRAM_TXE].num) {
2167 netdev_err(dev, "tx-frames-irq %u greater than the TX event FIFO %u\n",
2168 ec->tx_max_coalesced_frames_irq,
2169 cdev->mcfg[MRAM_TXE].num);
2170 return -EINVAL;
2171 }
2172 if (ec->tx_max_coalesced_frames_irq > cdev->mcfg[MRAM_TXB].num) {
2173 netdev_err(dev, "tx-frames-irq %u greater than the TX FIFO %u\n",
2174 ec->tx_max_coalesced_frames_irq,
2175 cdev->mcfg[MRAM_TXB].num);
2176 return -EINVAL;
2177 }
2178 if ((ec->tx_max_coalesced_frames_irq == 0) != (ec->tx_coalesce_usecs_irq == 0)) {
2179 netdev_err(dev, "tx-frames-irq and tx-usecs-irq can only be set together\n");
2180 return -EINVAL;
2181 }
2182 if (ec->tx_max_coalesced_frames > cdev->mcfg[MRAM_TXE].num) {
2183 netdev_err(dev, "tx-frames %u greater than the TX event FIFO %u\n",
2184 ec->tx_max_coalesced_frames,
2185 cdev->mcfg[MRAM_TXE].num);
2186 return -EINVAL;
2187 }
2188 if (ec->tx_max_coalesced_frames > cdev->mcfg[MRAM_TXB].num) {
2189 netdev_err(dev, "tx-frames %u greater than the TX FIFO %u\n",
2190 ec->tx_max_coalesced_frames,
2191 cdev->mcfg[MRAM_TXB].num);
2192 return -EINVAL;
2193 }
2194 if (ec->rx_coalesce_usecs_irq != 0 && ec->tx_coalesce_usecs_irq != 0 &&
2195 ec->rx_coalesce_usecs_irq != ec->tx_coalesce_usecs_irq) {
2196 netdev_err(dev, "rx-usecs-irq %u needs to be equal to tx-usecs-irq %u if both are enabled\n",
2197 ec->rx_coalesce_usecs_irq,
2198 ec->tx_coalesce_usecs_irq);
2199 return -EINVAL;
2200 }
2201
2202 cdev->rx_max_coalesced_frames_irq = ec->rx_max_coalesced_frames_irq;
2203 cdev->rx_coalesce_usecs_irq = ec->rx_coalesce_usecs_irq;
2204 cdev->tx_max_coalesced_frames = ec->tx_max_coalesced_frames;
2205 cdev->tx_max_coalesced_frames_irq = ec->tx_max_coalesced_frames_irq;
2206 cdev->tx_coalesce_usecs_irq = ec->tx_coalesce_usecs_irq;
2207
2208 if (cdev->rx_coalesce_usecs_irq)
2209 cdev->irq_timer_wait =
2210 ns_to_ktime(cdev->rx_coalesce_usecs_irq * NSEC_PER_USEC);
2211 else
2212 cdev->irq_timer_wait =
2213 ns_to_ktime(cdev->tx_coalesce_usecs_irq * NSEC_PER_USEC);
2214
2215 return 0;
2216}
2217
2218static const struct ethtool_ops m_can_ethtool_ops_coalescing = {
2219 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS_IRQ |
2220 ETHTOOL_COALESCE_RX_MAX_FRAMES_IRQ |
2221 ETHTOOL_COALESCE_TX_USECS_IRQ |
2222 ETHTOOL_COALESCE_TX_MAX_FRAMES |
2223 ETHTOOL_COALESCE_TX_MAX_FRAMES_IRQ,
2224 .get_ts_info = ethtool_op_get_ts_info,
2225 .get_coalesce = m_can_get_coalesce,
2226 .set_coalesce = m_can_set_coalesce,
2227};
2228
2229static const struct ethtool_ops m_can_ethtool_ops = {
2230 .get_ts_info = ethtool_op_get_ts_info,
2231};
2232
2233static int register_m_can_dev(struct m_can_classdev *cdev)
2234{
2235 struct net_device *dev = cdev->net;
2236
2237 dev->flags |= IFF_ECHO; /* we support local echo */
2238 dev->netdev_ops = &m_can_netdev_ops;
2239 if (dev->irq && cdev->is_peripheral)
2240 dev->ethtool_ops = &m_can_ethtool_ops_coalescing;
2241 else
2242 dev->ethtool_ops = &m_can_ethtool_ops;
2243
2244 return register_candev(dev);
2245}
2246
2247int m_can_check_mram_cfg(struct m_can_classdev *cdev, u32 mram_max_size)
2248{
2249 u32 total_size;
2250
2251 total_size = cdev->mcfg[MRAM_TXB].off - cdev->mcfg[MRAM_SIDF].off +
2252 cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
2253 if (total_size > mram_max_size) {
2254 dev_err(cdev->dev, "Total size of mram config(%u) exceeds mram(%u)\n",
2255 total_size, mram_max_size);
2256 return -EINVAL;
2257 }
2258
2259 return 0;
2260}
2261EXPORT_SYMBOL_GPL(m_can_check_mram_cfg);
2262
2263static void m_can_of_parse_mram(struct m_can_classdev *cdev,
2264 const u32 *mram_config_vals)
2265{
2266 cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0];
2267 cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1];
2268 cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off +
2269 cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
2270 cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2];
2271 cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off +
2272 cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
2273 cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
2274 FIELD_MAX(RXFC_FS_MASK);
2275 cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off +
2276 cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
2277 cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
2278 FIELD_MAX(RXFC_FS_MASK);
2279 cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off +
2280 cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
2281 cdev->mcfg[MRAM_RXB].num = mram_config_vals[5];
2282 cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off +
2283 cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
2284 cdev->mcfg[MRAM_TXE].num = mram_config_vals[6];
2285 cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off +
2286 cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
2287 cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] &
2288 FIELD_MAX(TXBC_NDTB_MASK);
2289
2290 dev_dbg(cdev->dev,
2291 "sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
2292 cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num,
2293 cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num,
2294 cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num,
2295 cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num,
2296 cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num,
2297 cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num,
2298 cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num);
2299}
2300
2301int m_can_init_ram(struct m_can_classdev *cdev)
2302{
2303 int end, i, start;
2304 int err = 0;
2305
2306 /* initialize the entire Message RAM in use to avoid possible
2307 * ECC/parity checksum errors when reading an uninitialized buffer
2308 */
2309 start = cdev->mcfg[MRAM_SIDF].off;
2310 end = cdev->mcfg[MRAM_TXB].off +
2311 cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
2312
2313 for (i = start; i < end; i += 4) {
2314 err = m_can_fifo_write_no_off(cdev, i, 0x0);
2315 if (err)
2316 break;
2317 }
2318
2319 return err;
2320}
2321EXPORT_SYMBOL_GPL(m_can_init_ram);
2322
2323int m_can_class_get_clocks(struct m_can_classdev *cdev)
2324{
2325 int ret = 0;
2326
2327 cdev->hclk = devm_clk_get(cdev->dev, "hclk");
2328 cdev->cclk = devm_clk_get(cdev->dev, "cclk");
2329
2330 if (IS_ERR(cdev->hclk) || IS_ERR(cdev->cclk)) {
2331 dev_err(cdev->dev, "no clock found\n");
2332 ret = -ENODEV;
2333 }
2334
2335 return ret;
2336}
2337EXPORT_SYMBOL_GPL(m_can_class_get_clocks);
2338
2339struct m_can_classdev *m_can_class_allocate_dev(struct device *dev,
2340 int sizeof_priv)
2341{
2342 struct m_can_classdev *class_dev = NULL;
2343 u32 mram_config_vals[MRAM_CFG_LEN];
2344 struct net_device *net_dev;
2345 u32 tx_fifo_size;
2346 int ret;
2347
2348 ret = fwnode_property_read_u32_array(dev_fwnode(dev),
2349 "bosch,mram-cfg",
2350 mram_config_vals,
2351 sizeof(mram_config_vals) / 4);
2352 if (ret) {
2353 dev_err(dev, "Could not get Message RAM configuration.");
2354 goto out;
2355 }
2356
2357 /* Get TX FIFO size
2358 * Defines the total amount of echo buffers for loopback
2359 */
2360 tx_fifo_size = mram_config_vals[7];
2361
2362 /* allocate the m_can device */
2363 net_dev = alloc_candev(sizeof_priv, tx_fifo_size);
2364 if (!net_dev) {
2365 dev_err(dev, "Failed to allocate CAN device");
2366 goto out;
2367 }
2368
2369 class_dev = netdev_priv(net_dev);
2370 class_dev->net = net_dev;
2371 class_dev->dev = dev;
2372 SET_NETDEV_DEV(net_dev, dev);
2373
2374 m_can_of_parse_mram(class_dev, mram_config_vals);
2375out:
2376 return class_dev;
2377}
2378EXPORT_SYMBOL_GPL(m_can_class_allocate_dev);
2379
2380void m_can_class_free_dev(struct net_device *net)
2381{
2382 free_candev(net);
2383}
2384EXPORT_SYMBOL_GPL(m_can_class_free_dev);
2385
2386int m_can_class_register(struct m_can_classdev *cdev)
2387{
2388 int ret;
2389
2390 cdev->tx_fifo_size = max(1, min(cdev->mcfg[MRAM_TXB].num,
2391 cdev->mcfg[MRAM_TXE].num));
2392 if (cdev->is_peripheral) {
2393 cdev->tx_ops =
2394 devm_kzalloc(cdev->dev,
2395 cdev->tx_fifo_size * sizeof(*cdev->tx_ops),
2396 GFP_KERNEL);
2397 if (!cdev->tx_ops) {
2398 dev_err(cdev->dev, "Failed to allocate tx_ops for workqueue\n");
2399 return -ENOMEM;
2400 }
2401 }
2402
2403 ret = m_can_clk_start(cdev);
2404 if (ret)
2405 return ret;
2406
2407 if (cdev->is_peripheral) {
2408 ret = can_rx_offload_add_manual(cdev->net, &cdev->offload,
2409 NAPI_POLL_WEIGHT);
2410 if (ret)
2411 goto clk_disable;
2412 }
2413
2414 if (!cdev->net->irq) {
2415 dev_dbg(cdev->dev, "Polling enabled, initialize hrtimer");
2416 hrtimer_init(&cdev->hrtimer, CLOCK_MONOTONIC,
2417 HRTIMER_MODE_REL_PINNED);
2418 cdev->hrtimer.function = &hrtimer_callback;
2419 } else {
2420 hrtimer_init(&cdev->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2421 cdev->hrtimer.function = m_can_coalescing_timer;
2422 }
2423
2424 ret = m_can_dev_setup(cdev);
2425 if (ret)
2426 goto rx_offload_del;
2427
2428 ret = register_m_can_dev(cdev);
2429 if (ret) {
2430 dev_err(cdev->dev, "registering %s failed (err=%d)\n",
2431 cdev->net->name, ret);
2432 goto rx_offload_del;
2433 }
2434
2435 of_can_transceiver(cdev->net);
2436
2437 dev_info(cdev->dev, "%s device registered (irq=%d, version=%d)\n",
2438 KBUILD_MODNAME, cdev->net->irq, cdev->version);
2439
2440 /* Probe finished
2441 * Stop clocks. They will be reactivated once the M_CAN device is opened
2442 */
2443 m_can_clk_stop(cdev);
2444
2445 return 0;
2446
2447rx_offload_del:
2448 if (cdev->is_peripheral)
2449 can_rx_offload_del(&cdev->offload);
2450clk_disable:
2451 m_can_clk_stop(cdev);
2452
2453 return ret;
2454}
2455EXPORT_SYMBOL_GPL(m_can_class_register);
2456
2457void m_can_class_unregister(struct m_can_classdev *cdev)
2458{
2459 if (cdev->is_peripheral)
2460 can_rx_offload_del(&cdev->offload);
2461 unregister_candev(cdev->net);
2462}
2463EXPORT_SYMBOL_GPL(m_can_class_unregister);
2464
2465int m_can_class_suspend(struct device *dev)
2466{
2467 struct m_can_classdev *cdev = dev_get_drvdata(dev);
2468 struct net_device *ndev = cdev->net;
2469
2470 if (netif_running(ndev)) {
2471 netif_stop_queue(ndev);
2472 netif_device_detach(ndev);
2473
2474 /* leave the chip running with rx interrupt enabled if it is
2475 * used as a wake-up source. Coalescing needs to be reset then,
2476 * the timer is cancelled here, interrupts are done in resume.
2477 */
2478 if (cdev->pm_wake_source) {
2479 hrtimer_cancel(&cdev->hrtimer);
2480 m_can_write(cdev, M_CAN_IE, IR_RF0N);
2481 } else {
2482 m_can_stop(ndev);
2483 }
2484
2485 m_can_clk_stop(cdev);
2486 }
2487
2488 pinctrl_pm_select_sleep_state(dev);
2489
2490 cdev->can.state = CAN_STATE_SLEEPING;
2491
2492 return 0;
2493}
2494EXPORT_SYMBOL_GPL(m_can_class_suspend);
2495
2496int m_can_class_resume(struct device *dev)
2497{
2498 struct m_can_classdev *cdev = dev_get_drvdata(dev);
2499 struct net_device *ndev = cdev->net;
2500
2501 pinctrl_pm_select_default_state(dev);
2502
2503 cdev->can.state = CAN_STATE_ERROR_ACTIVE;
2504
2505 if (netif_running(ndev)) {
2506 int ret;
2507
2508 ret = m_can_clk_start(cdev);
2509 if (ret)
2510 return ret;
2511
2512 if (cdev->pm_wake_source) {
2513 /* Restore active interrupts but disable coalescing as
2514 * we may have missed important waterlevel interrupts
2515 * between suspend and resume. Timers are already
2516 * stopped in suspend. Here we enable all interrupts
2517 * again.
2518 */
2519 cdev->active_interrupts |= IR_RF0N | IR_TEFN;
2520 m_can_write(cdev, M_CAN_IE, cdev->active_interrupts);
2521 } else {
2522 ret = m_can_start(ndev);
2523 if (ret) {
2524 m_can_clk_stop(cdev);
2525 return ret;
2526 }
2527 }
2528
2529 netif_device_attach(ndev);
2530 netif_start_queue(ndev);
2531 }
2532
2533 return 0;
2534}
2535EXPORT_SYMBOL_GPL(m_can_class_resume);
2536
2537MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
2538MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>");
2539MODULE_LICENSE("GPL v2");
2540MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");
1/*
2 * CAN bus driver for Bosch M_CAN controller
3 *
4 * Copyright (C) 2014 Freescale Semiconductor, Inc.
5 * Dong Aisheng <b29396@freescale.com>
6 *
7 * Bosch M_CAN user manual can be obtained from:
8 * http://www.bosch-semiconductors.de/media/pdf_1/ipmodules_1/m_can/
9 * mcan_users_manual_v302.pdf
10 *
11 * This file is licensed under the terms of the GNU General Public
12 * License version 2. This program is licensed "as is" without any
13 * warranty of any kind, whether express or implied.
14 */
15
16#include <linux/clk.h>
17#include <linux/delay.h>
18#include <linux/interrupt.h>
19#include <linux/io.h>
20#include <linux/kernel.h>
21#include <linux/module.h>
22#include <linux/netdevice.h>
23#include <linux/of.h>
24#include <linux/of_device.h>
25#include <linux/platform_device.h>
26#include <linux/pm_runtime.h>
27#include <linux/iopoll.h>
28#include <linux/can/dev.h>
29#include <linux/pinctrl/consumer.h>
30
31/* napi related */
32#define M_CAN_NAPI_WEIGHT 64
33
34/* message ram configuration data length */
35#define MRAM_CFG_LEN 8
36
37/* registers definition */
38enum m_can_reg {
39 M_CAN_CREL = 0x0,
40 M_CAN_ENDN = 0x4,
41 M_CAN_CUST = 0x8,
42 M_CAN_DBTP = 0xc,
43 M_CAN_TEST = 0x10,
44 M_CAN_RWD = 0x14,
45 M_CAN_CCCR = 0x18,
46 M_CAN_NBTP = 0x1c,
47 M_CAN_TSCC = 0x20,
48 M_CAN_TSCV = 0x24,
49 M_CAN_TOCC = 0x28,
50 M_CAN_TOCV = 0x2c,
51 M_CAN_ECR = 0x40,
52 M_CAN_PSR = 0x44,
53/* TDCR Register only available for version >=3.1.x */
54 M_CAN_TDCR = 0x48,
55 M_CAN_IR = 0x50,
56 M_CAN_IE = 0x54,
57 M_CAN_ILS = 0x58,
58 M_CAN_ILE = 0x5c,
59 M_CAN_GFC = 0x80,
60 M_CAN_SIDFC = 0x84,
61 M_CAN_XIDFC = 0x88,
62 M_CAN_XIDAM = 0x90,
63 M_CAN_HPMS = 0x94,
64 M_CAN_NDAT1 = 0x98,
65 M_CAN_NDAT2 = 0x9c,
66 M_CAN_RXF0C = 0xa0,
67 M_CAN_RXF0S = 0xa4,
68 M_CAN_RXF0A = 0xa8,
69 M_CAN_RXBC = 0xac,
70 M_CAN_RXF1C = 0xb0,
71 M_CAN_RXF1S = 0xb4,
72 M_CAN_RXF1A = 0xb8,
73 M_CAN_RXESC = 0xbc,
74 M_CAN_TXBC = 0xc0,
75 M_CAN_TXFQS = 0xc4,
76 M_CAN_TXESC = 0xc8,
77 M_CAN_TXBRP = 0xcc,
78 M_CAN_TXBAR = 0xd0,
79 M_CAN_TXBCR = 0xd4,
80 M_CAN_TXBTO = 0xd8,
81 M_CAN_TXBCF = 0xdc,
82 M_CAN_TXBTIE = 0xe0,
83 M_CAN_TXBCIE = 0xe4,
84 M_CAN_TXEFC = 0xf0,
85 M_CAN_TXEFS = 0xf4,
86 M_CAN_TXEFA = 0xf8,
87};
88
89/* m_can lec values */
90enum m_can_lec_type {
91 LEC_NO_ERROR = 0,
92 LEC_STUFF_ERROR,
93 LEC_FORM_ERROR,
94 LEC_ACK_ERROR,
95 LEC_BIT1_ERROR,
96 LEC_BIT0_ERROR,
97 LEC_CRC_ERROR,
98 LEC_UNUSED,
99};
100
101enum m_can_mram_cfg {
102 MRAM_SIDF = 0,
103 MRAM_XIDF,
104 MRAM_RXF0,
105 MRAM_RXF1,
106 MRAM_RXB,
107 MRAM_TXE,
108 MRAM_TXB,
109 MRAM_CFG_NUM,
110};
111
112/* Core Release Register (CREL) */
113#define CREL_REL_SHIFT 28
114#define CREL_REL_MASK (0xF << CREL_REL_SHIFT)
115#define CREL_STEP_SHIFT 24
116#define CREL_STEP_MASK (0xF << CREL_STEP_SHIFT)
117#define CREL_SUBSTEP_SHIFT 20
118#define CREL_SUBSTEP_MASK (0xF << CREL_SUBSTEP_SHIFT)
119
120/* Data Bit Timing & Prescaler Register (DBTP) */
121#define DBTP_TDC BIT(23)
122#define DBTP_DBRP_SHIFT 16
123#define DBTP_DBRP_MASK (0x1f << DBTP_DBRP_SHIFT)
124#define DBTP_DTSEG1_SHIFT 8
125#define DBTP_DTSEG1_MASK (0x1f << DBTP_DTSEG1_SHIFT)
126#define DBTP_DTSEG2_SHIFT 4
127#define DBTP_DTSEG2_MASK (0xf << DBTP_DTSEG2_SHIFT)
128#define DBTP_DSJW_SHIFT 0
129#define DBTP_DSJW_MASK (0xf << DBTP_DSJW_SHIFT)
130
131/* Transmitter Delay Compensation Register (TDCR) */
132#define TDCR_TDCO_SHIFT 8
133#define TDCR_TDCO_MASK (0x7F << TDCR_TDCO_SHIFT)
134#define TDCR_TDCF_SHIFT 0
135#define TDCR_TDCF_MASK (0x7F << TDCR_TDCF_SHIFT)
136
137/* Test Register (TEST) */
138#define TEST_LBCK BIT(4)
139
140/* CC Control Register(CCCR) */
141#define CCCR_CMR_MASK 0x3
142#define CCCR_CMR_SHIFT 10
143#define CCCR_CMR_CANFD 0x1
144#define CCCR_CMR_CANFD_BRS 0x2
145#define CCCR_CMR_CAN 0x3
146#define CCCR_CME_MASK 0x3
147#define CCCR_CME_SHIFT 8
148#define CCCR_CME_CAN 0
149#define CCCR_CME_CANFD 0x1
150#define CCCR_CME_CANFD_BRS 0x2
151#define CCCR_TXP BIT(14)
152#define CCCR_TEST BIT(7)
153#define CCCR_MON BIT(5)
154#define CCCR_CSR BIT(4)
155#define CCCR_CSA BIT(3)
156#define CCCR_ASM BIT(2)
157#define CCCR_CCE BIT(1)
158#define CCCR_INIT BIT(0)
159#define CCCR_CANFD 0x10
160/* for version >=3.1.x */
161#define CCCR_EFBI BIT(13)
162#define CCCR_PXHD BIT(12)
163#define CCCR_BRSE BIT(9)
164#define CCCR_FDOE BIT(8)
165/* only for version >=3.2.x */
166#define CCCR_NISO BIT(15)
167
168/* Nominal Bit Timing & Prescaler Register (NBTP) */
169#define NBTP_NSJW_SHIFT 25
170#define NBTP_NSJW_MASK (0x7f << NBTP_NSJW_SHIFT)
171#define NBTP_NBRP_SHIFT 16
172#define NBTP_NBRP_MASK (0x1ff << NBTP_NBRP_SHIFT)
173#define NBTP_NTSEG1_SHIFT 8
174#define NBTP_NTSEG1_MASK (0xff << NBTP_NTSEG1_SHIFT)
175#define NBTP_NTSEG2_SHIFT 0
176#define NBTP_NTSEG2_MASK (0x7f << NBTP_NTSEG2_SHIFT)
177
178/* Error Counter Register(ECR) */
179#define ECR_RP BIT(15)
180#define ECR_REC_SHIFT 8
181#define ECR_REC_MASK (0x7f << ECR_REC_SHIFT)
182#define ECR_TEC_SHIFT 0
183#define ECR_TEC_MASK 0xff
184
185/* Protocol Status Register(PSR) */
186#define PSR_BO BIT(7)
187#define PSR_EW BIT(6)
188#define PSR_EP BIT(5)
189#define PSR_LEC_MASK 0x7
190
191/* Interrupt Register(IR) */
192#define IR_ALL_INT 0xffffffff
193
194/* Renamed bits for versions > 3.1.x */
195#define IR_ARA BIT(29)
196#define IR_PED BIT(28)
197#define IR_PEA BIT(27)
198
199/* Bits for version 3.0.x */
200#define IR_STE BIT(31)
201#define IR_FOE BIT(30)
202#define IR_ACKE BIT(29)
203#define IR_BE BIT(28)
204#define IR_CRCE BIT(27)
205#define IR_WDI BIT(26)
206#define IR_BO BIT(25)
207#define IR_EW BIT(24)
208#define IR_EP BIT(23)
209#define IR_ELO BIT(22)
210#define IR_BEU BIT(21)
211#define IR_BEC BIT(20)
212#define IR_DRX BIT(19)
213#define IR_TOO BIT(18)
214#define IR_MRAF BIT(17)
215#define IR_TSW BIT(16)
216#define IR_TEFL BIT(15)
217#define IR_TEFF BIT(14)
218#define IR_TEFW BIT(13)
219#define IR_TEFN BIT(12)
220#define IR_TFE BIT(11)
221#define IR_TCF BIT(10)
222#define IR_TC BIT(9)
223#define IR_HPM BIT(8)
224#define IR_RF1L BIT(7)
225#define IR_RF1F BIT(6)
226#define IR_RF1W BIT(5)
227#define IR_RF1N BIT(4)
228#define IR_RF0L BIT(3)
229#define IR_RF0F BIT(2)
230#define IR_RF0W BIT(1)
231#define IR_RF0N BIT(0)
232#define IR_ERR_STATE (IR_BO | IR_EW | IR_EP)
233
234/* Interrupts for version 3.0.x */
235#define IR_ERR_LEC_30X (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
236#define IR_ERR_BUS_30X (IR_ERR_LEC_30X | IR_WDI | IR_ELO | IR_BEU | \
237 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
238 IR_RF1L | IR_RF0L)
239#define IR_ERR_ALL_30X (IR_ERR_STATE | IR_ERR_BUS_30X)
240/* Interrupts for version >= 3.1.x */
241#define IR_ERR_LEC_31X (IR_PED | IR_PEA)
242#define IR_ERR_BUS_31X (IR_ERR_LEC_31X | IR_WDI | IR_ELO | IR_BEU | \
243 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
244 IR_RF1L | IR_RF0L)
245#define IR_ERR_ALL_31X (IR_ERR_STATE | IR_ERR_BUS_31X)
246
247/* Interrupt Line Select (ILS) */
248#define ILS_ALL_INT0 0x0
249#define ILS_ALL_INT1 0xFFFFFFFF
250
251/* Interrupt Line Enable (ILE) */
252#define ILE_EINT1 BIT(1)
253#define ILE_EINT0 BIT(0)
254
255/* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
256#define RXFC_FWM_SHIFT 24
257#define RXFC_FWM_MASK (0x7f << RXFC_FWM_SHIFT)
258#define RXFC_FS_SHIFT 16
259#define RXFC_FS_MASK (0x7f << RXFC_FS_SHIFT)
260
261/* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
262#define RXFS_RFL BIT(25)
263#define RXFS_FF BIT(24)
264#define RXFS_FPI_SHIFT 16
265#define RXFS_FPI_MASK 0x3f0000
266#define RXFS_FGI_SHIFT 8
267#define RXFS_FGI_MASK 0x3f00
268#define RXFS_FFL_MASK 0x7f
269
270/* Rx Buffer / FIFO Element Size Configuration (RXESC) */
271#define M_CAN_RXESC_8BYTES 0x0
272#define M_CAN_RXESC_64BYTES 0x777
273
274/* Tx Buffer Configuration(TXBC) */
275#define TXBC_NDTB_SHIFT 16
276#define TXBC_NDTB_MASK (0x3f << TXBC_NDTB_SHIFT)
277#define TXBC_TFQS_SHIFT 24
278#define TXBC_TFQS_MASK (0x3f << TXBC_TFQS_SHIFT)
279
280/* Tx FIFO/Queue Status (TXFQS) */
281#define TXFQS_TFQF BIT(21)
282#define TXFQS_TFQPI_SHIFT 16
283#define TXFQS_TFQPI_MASK (0x1f << TXFQS_TFQPI_SHIFT)
284#define TXFQS_TFGI_SHIFT 8
285#define TXFQS_TFGI_MASK (0x1f << TXFQS_TFGI_SHIFT)
286#define TXFQS_TFFL_SHIFT 0
287#define TXFQS_TFFL_MASK (0x3f << TXFQS_TFFL_SHIFT)
288
289/* Tx Buffer Element Size Configuration(TXESC) */
290#define TXESC_TBDS_8BYTES 0x0
291#define TXESC_TBDS_64BYTES 0x7
292
293/* Tx Event FIFO Configuration (TXEFC) */
294#define TXEFC_EFS_SHIFT 16
295#define TXEFC_EFS_MASK (0x3f << TXEFC_EFS_SHIFT)
296
297/* Tx Event FIFO Status (TXEFS) */
298#define TXEFS_TEFL BIT(25)
299#define TXEFS_EFF BIT(24)
300#define TXEFS_EFGI_SHIFT 8
301#define TXEFS_EFGI_MASK (0x1f << TXEFS_EFGI_SHIFT)
302#define TXEFS_EFFL_SHIFT 0
303#define TXEFS_EFFL_MASK (0x3f << TXEFS_EFFL_SHIFT)
304
305/* Tx Event FIFO Acknowledge (TXEFA) */
306#define TXEFA_EFAI_SHIFT 0
307#define TXEFA_EFAI_MASK (0x1f << TXEFA_EFAI_SHIFT)
308
309/* Message RAM Configuration (in bytes) */
310#define SIDF_ELEMENT_SIZE 4
311#define XIDF_ELEMENT_SIZE 8
312#define RXF0_ELEMENT_SIZE 72
313#define RXF1_ELEMENT_SIZE 72
314#define RXB_ELEMENT_SIZE 72
315#define TXE_ELEMENT_SIZE 8
316#define TXB_ELEMENT_SIZE 72
317
318/* Message RAM Elements */
319#define M_CAN_FIFO_ID 0x0
320#define M_CAN_FIFO_DLC 0x4
321#define M_CAN_FIFO_DATA(n) (0x8 + ((n) << 2))
322
323/* Rx Buffer Element */
324/* R0 */
325#define RX_BUF_ESI BIT(31)
326#define RX_BUF_XTD BIT(30)
327#define RX_BUF_RTR BIT(29)
328/* R1 */
329#define RX_BUF_ANMF BIT(31)
330#define RX_BUF_FDF BIT(21)
331#define RX_BUF_BRS BIT(20)
332
333/* Tx Buffer Element */
334/* T0 */
335#define TX_BUF_ESI BIT(31)
336#define TX_BUF_XTD BIT(30)
337#define TX_BUF_RTR BIT(29)
338/* T1 */
339#define TX_BUF_EFC BIT(23)
340#define TX_BUF_FDF BIT(21)
341#define TX_BUF_BRS BIT(20)
342#define TX_BUF_MM_SHIFT 24
343#define TX_BUF_MM_MASK (0xff << TX_BUF_MM_SHIFT)
344
345/* Tx event FIFO Element */
346/* E1 */
347#define TX_EVENT_MM_SHIFT TX_BUF_MM_SHIFT
348#define TX_EVENT_MM_MASK (0xff << TX_EVENT_MM_SHIFT)
349
350/* address offset and element number for each FIFO/Buffer in the Message RAM */
351struct mram_cfg {
352 u16 off;
353 u8 num;
354};
355
356/* m_can private data structure */
357struct m_can_priv {
358 struct can_priv can; /* must be the first member */
359 struct napi_struct napi;
360 struct net_device *dev;
361 struct device *device;
362 struct clk *hclk;
363 struct clk *cclk;
364 void __iomem *base;
365 u32 irqstatus;
366 int version;
367
368 /* message ram configuration */
369 void __iomem *mram_base;
370 struct mram_cfg mcfg[MRAM_CFG_NUM];
371};
372
373static inline u32 m_can_read(const struct m_can_priv *priv, enum m_can_reg reg)
374{
375 return readl(priv->base + reg);
376}
377
378static inline void m_can_write(const struct m_can_priv *priv,
379 enum m_can_reg reg, u32 val)
380{
381 writel(val, priv->base + reg);
382}
383
384static inline u32 m_can_fifo_read(const struct m_can_priv *priv,
385 u32 fgi, unsigned int offset)
386{
387 return readl(priv->mram_base + priv->mcfg[MRAM_RXF0].off +
388 fgi * RXF0_ELEMENT_SIZE + offset);
389}
390
391static inline void m_can_fifo_write(const struct m_can_priv *priv,
392 u32 fpi, unsigned int offset, u32 val)
393{
394 writel(val, priv->mram_base + priv->mcfg[MRAM_TXB].off +
395 fpi * TXB_ELEMENT_SIZE + offset);
396}
397
398static inline u32 m_can_txe_fifo_read(const struct m_can_priv *priv,
399 u32 fgi,
400 u32 offset) {
401 return readl(priv->mram_base + priv->mcfg[MRAM_TXE].off +
402 fgi * TXE_ELEMENT_SIZE + offset);
403}
404
405static inline bool m_can_tx_fifo_full(const struct m_can_priv *priv)
406{
407 return !!(m_can_read(priv, M_CAN_TXFQS) & TXFQS_TFQF);
408}
409
410static inline void m_can_config_endisable(const struct m_can_priv *priv,
411 bool enable)
412{
413 u32 cccr = m_can_read(priv, M_CAN_CCCR);
414 u32 timeout = 10;
415 u32 val = 0;
416
417 if (enable) {
418 /* enable m_can configuration */
419 m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT);
420 udelay(5);
421 /* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
422 m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
423 } else {
424 m_can_write(priv, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
425 }
426
427 /* there's a delay for module initialization */
428 if (enable)
429 val = CCCR_INIT | CCCR_CCE;
430
431 while ((m_can_read(priv, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
432 if (timeout == 0) {
433 netdev_warn(priv->dev, "Failed to init module\n");
434 return;
435 }
436 timeout--;
437 udelay(1);
438 }
439}
440
441static inline void m_can_enable_all_interrupts(const struct m_can_priv *priv)
442{
443 /* Only interrupt line 0 is used in this driver */
444 m_can_write(priv, M_CAN_ILE, ILE_EINT0);
445}
446
447static inline void m_can_disable_all_interrupts(const struct m_can_priv *priv)
448{
449 m_can_write(priv, M_CAN_ILE, 0x0);
450}
451
452static void m_can_read_fifo(struct net_device *dev, u32 rxfs)
453{
454 struct net_device_stats *stats = &dev->stats;
455 struct m_can_priv *priv = netdev_priv(dev);
456 struct canfd_frame *cf;
457 struct sk_buff *skb;
458 u32 id, fgi, dlc;
459 int i;
460
461 /* calculate the fifo get index for where to read data */
462 fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_SHIFT;
463 dlc = m_can_fifo_read(priv, fgi, M_CAN_FIFO_DLC);
464 if (dlc & RX_BUF_FDF)
465 skb = alloc_canfd_skb(dev, &cf);
466 else
467 skb = alloc_can_skb(dev, (struct can_frame **)&cf);
468 if (!skb) {
469 stats->rx_dropped++;
470 return;
471 }
472
473 if (dlc & RX_BUF_FDF)
474 cf->len = can_dlc2len((dlc >> 16) & 0x0F);
475 else
476 cf->len = get_can_dlc((dlc >> 16) & 0x0F);
477
478 id = m_can_fifo_read(priv, fgi, M_CAN_FIFO_ID);
479 if (id & RX_BUF_XTD)
480 cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
481 else
482 cf->can_id = (id >> 18) & CAN_SFF_MASK;
483
484 if (id & RX_BUF_ESI) {
485 cf->flags |= CANFD_ESI;
486 netdev_dbg(dev, "ESI Error\n");
487 }
488
489 if (!(dlc & RX_BUF_FDF) && (id & RX_BUF_RTR)) {
490 cf->can_id |= CAN_RTR_FLAG;
491 } else {
492 if (dlc & RX_BUF_BRS)
493 cf->flags |= CANFD_BRS;
494
495 for (i = 0; i < cf->len; i += 4)
496 *(u32 *)(cf->data + i) =
497 m_can_fifo_read(priv, fgi,
498 M_CAN_FIFO_DATA(i / 4));
499 }
500
501 /* acknowledge rx fifo 0 */
502 m_can_write(priv, M_CAN_RXF0A, fgi);
503
504 stats->rx_packets++;
505 stats->rx_bytes += cf->len;
506
507 netif_receive_skb(skb);
508}
509
510static int m_can_do_rx_poll(struct net_device *dev, int quota)
511{
512 struct m_can_priv *priv = netdev_priv(dev);
513 u32 pkts = 0;
514 u32 rxfs;
515
516 rxfs = m_can_read(priv, M_CAN_RXF0S);
517 if (!(rxfs & RXFS_FFL_MASK)) {
518 netdev_dbg(dev, "no messages in fifo0\n");
519 return 0;
520 }
521
522 while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
523 if (rxfs & RXFS_RFL)
524 netdev_warn(dev, "Rx FIFO 0 Message Lost\n");
525
526 m_can_read_fifo(dev, rxfs);
527
528 quota--;
529 pkts++;
530 rxfs = m_can_read(priv, M_CAN_RXF0S);
531 }
532
533 if (pkts)
534 can_led_event(dev, CAN_LED_EVENT_RX);
535
536 return pkts;
537}
538
539static int m_can_handle_lost_msg(struct net_device *dev)
540{
541 struct net_device_stats *stats = &dev->stats;
542 struct sk_buff *skb;
543 struct can_frame *frame;
544
545 netdev_err(dev, "msg lost in rxf0\n");
546
547 stats->rx_errors++;
548 stats->rx_over_errors++;
549
550 skb = alloc_can_err_skb(dev, &frame);
551 if (unlikely(!skb))
552 return 0;
553
554 frame->can_id |= CAN_ERR_CRTL;
555 frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
556
557 netif_receive_skb(skb);
558
559 return 1;
560}
561
562static int m_can_handle_lec_err(struct net_device *dev,
563 enum m_can_lec_type lec_type)
564{
565 struct m_can_priv *priv = netdev_priv(dev);
566 struct net_device_stats *stats = &dev->stats;
567 struct can_frame *cf;
568 struct sk_buff *skb;
569
570 priv->can.can_stats.bus_error++;
571 stats->rx_errors++;
572
573 /* propagate the error condition to the CAN stack */
574 skb = alloc_can_err_skb(dev, &cf);
575 if (unlikely(!skb))
576 return 0;
577
578 /* check for 'last error code' which tells us the
579 * type of the last error to occur on the CAN bus
580 */
581 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
582
583 switch (lec_type) {
584 case LEC_STUFF_ERROR:
585 netdev_dbg(dev, "stuff error\n");
586 cf->data[2] |= CAN_ERR_PROT_STUFF;
587 break;
588 case LEC_FORM_ERROR:
589 netdev_dbg(dev, "form error\n");
590 cf->data[2] |= CAN_ERR_PROT_FORM;
591 break;
592 case LEC_ACK_ERROR:
593 netdev_dbg(dev, "ack error\n");
594 cf->data[3] = CAN_ERR_PROT_LOC_ACK;
595 break;
596 case LEC_BIT1_ERROR:
597 netdev_dbg(dev, "bit1 error\n");
598 cf->data[2] |= CAN_ERR_PROT_BIT1;
599 break;
600 case LEC_BIT0_ERROR:
601 netdev_dbg(dev, "bit0 error\n");
602 cf->data[2] |= CAN_ERR_PROT_BIT0;
603 break;
604 case LEC_CRC_ERROR:
605 netdev_dbg(dev, "CRC error\n");
606 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
607 break;
608 default:
609 break;
610 }
611
612 stats->rx_packets++;
613 stats->rx_bytes += cf->can_dlc;
614 netif_receive_skb(skb);
615
616 return 1;
617}
618
619static int __m_can_get_berr_counter(const struct net_device *dev,
620 struct can_berr_counter *bec)
621{
622 struct m_can_priv *priv = netdev_priv(dev);
623 unsigned int ecr;
624
625 ecr = m_can_read(priv, M_CAN_ECR);
626 bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT;
627 bec->txerr = (ecr & ECR_TEC_MASK) >> ECR_TEC_SHIFT;
628
629 return 0;
630}
631
632static int m_can_clk_start(struct m_can_priv *priv)
633{
634 int err;
635
636 err = pm_runtime_get_sync(priv->device);
637 if (err)
638 pm_runtime_put_noidle(priv->device);
639
640 return err;
641}
642
643static void m_can_clk_stop(struct m_can_priv *priv)
644{
645 pm_runtime_put_sync(priv->device);
646}
647
648static int m_can_get_berr_counter(const struct net_device *dev,
649 struct can_berr_counter *bec)
650{
651 struct m_can_priv *priv = netdev_priv(dev);
652 int err;
653
654 err = m_can_clk_start(priv);
655 if (err)
656 return err;
657
658 __m_can_get_berr_counter(dev, bec);
659
660 m_can_clk_stop(priv);
661
662 return 0;
663}
664
665static int m_can_handle_state_change(struct net_device *dev,
666 enum can_state new_state)
667{
668 struct m_can_priv *priv = netdev_priv(dev);
669 struct net_device_stats *stats = &dev->stats;
670 struct can_frame *cf;
671 struct sk_buff *skb;
672 struct can_berr_counter bec;
673 unsigned int ecr;
674
675 switch (new_state) {
676 case CAN_STATE_ERROR_ACTIVE:
677 /* error warning state */
678 priv->can.can_stats.error_warning++;
679 priv->can.state = CAN_STATE_ERROR_WARNING;
680 break;
681 case CAN_STATE_ERROR_PASSIVE:
682 /* error passive state */
683 priv->can.can_stats.error_passive++;
684 priv->can.state = CAN_STATE_ERROR_PASSIVE;
685 break;
686 case CAN_STATE_BUS_OFF:
687 /* bus-off state */
688 priv->can.state = CAN_STATE_BUS_OFF;
689 m_can_disable_all_interrupts(priv);
690 priv->can.can_stats.bus_off++;
691 can_bus_off(dev);
692 break;
693 default:
694 break;
695 }
696
697 /* propagate the error condition to the CAN stack */
698 skb = alloc_can_err_skb(dev, &cf);
699 if (unlikely(!skb))
700 return 0;
701
702 __m_can_get_berr_counter(dev, &bec);
703
704 switch (new_state) {
705 case CAN_STATE_ERROR_ACTIVE:
706 /* error warning state */
707 cf->can_id |= CAN_ERR_CRTL;
708 cf->data[1] = (bec.txerr > bec.rxerr) ?
709 CAN_ERR_CRTL_TX_WARNING :
710 CAN_ERR_CRTL_RX_WARNING;
711 cf->data[6] = bec.txerr;
712 cf->data[7] = bec.rxerr;
713 break;
714 case CAN_STATE_ERROR_PASSIVE:
715 /* error passive state */
716 cf->can_id |= CAN_ERR_CRTL;
717 ecr = m_can_read(priv, M_CAN_ECR);
718 if (ecr & ECR_RP)
719 cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
720 if (bec.txerr > 127)
721 cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
722 cf->data[6] = bec.txerr;
723 cf->data[7] = bec.rxerr;
724 break;
725 case CAN_STATE_BUS_OFF:
726 /* bus-off state */
727 cf->can_id |= CAN_ERR_BUSOFF;
728 break;
729 default:
730 break;
731 }
732
733 stats->rx_packets++;
734 stats->rx_bytes += cf->can_dlc;
735 netif_receive_skb(skb);
736
737 return 1;
738}
739
740static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
741{
742 struct m_can_priv *priv = netdev_priv(dev);
743 int work_done = 0;
744
745 if ((psr & PSR_EW) &&
746 (priv->can.state != CAN_STATE_ERROR_WARNING)) {
747 netdev_dbg(dev, "entered error warning state\n");
748 work_done += m_can_handle_state_change(dev,
749 CAN_STATE_ERROR_WARNING);
750 }
751
752 if ((psr & PSR_EP) &&
753 (priv->can.state != CAN_STATE_ERROR_PASSIVE)) {
754 netdev_dbg(dev, "entered error passive state\n");
755 work_done += m_can_handle_state_change(dev,
756 CAN_STATE_ERROR_PASSIVE);
757 }
758
759 if ((psr & PSR_BO) &&
760 (priv->can.state != CAN_STATE_BUS_OFF)) {
761 netdev_dbg(dev, "entered error bus off state\n");
762 work_done += m_can_handle_state_change(dev,
763 CAN_STATE_BUS_OFF);
764 }
765
766 return work_done;
767}
768
769static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
770{
771 if (irqstatus & IR_WDI)
772 netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
773 if (irqstatus & IR_ELO)
774 netdev_err(dev, "Error Logging Overflow\n");
775 if (irqstatus & IR_BEU)
776 netdev_err(dev, "Bit Error Uncorrected\n");
777 if (irqstatus & IR_BEC)
778 netdev_err(dev, "Bit Error Corrected\n");
779 if (irqstatus & IR_TOO)
780 netdev_err(dev, "Timeout reached\n");
781 if (irqstatus & IR_MRAF)
782 netdev_err(dev, "Message RAM access failure occurred\n");
783}
784
785static inline bool is_lec_err(u32 psr)
786{
787 psr &= LEC_UNUSED;
788
789 return psr && (psr != LEC_UNUSED);
790}
791
792static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
793 u32 psr)
794{
795 struct m_can_priv *priv = netdev_priv(dev);
796 int work_done = 0;
797
798 if (irqstatus & IR_RF0L)
799 work_done += m_can_handle_lost_msg(dev);
800
801 /* handle lec errors on the bus */
802 if ((priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
803 is_lec_err(psr))
804 work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);
805
806 /* other unproccessed error interrupts */
807 m_can_handle_other_err(dev, irqstatus);
808
809 return work_done;
810}
811
812static int m_can_poll(struct napi_struct *napi, int quota)
813{
814 struct net_device *dev = napi->dev;
815 struct m_can_priv *priv = netdev_priv(dev);
816 int work_done = 0;
817 u32 irqstatus, psr;
818
819 irqstatus = priv->irqstatus | m_can_read(priv, M_CAN_IR);
820 if (!irqstatus)
821 goto end;
822
823 psr = m_can_read(priv, M_CAN_PSR);
824 if (irqstatus & IR_ERR_STATE)
825 work_done += m_can_handle_state_errors(dev, psr);
826
827 if (irqstatus & IR_ERR_BUS_30X)
828 work_done += m_can_handle_bus_errors(dev, irqstatus, psr);
829
830 if (irqstatus & IR_RF0N)
831 work_done += m_can_do_rx_poll(dev, (quota - work_done));
832
833 if (work_done < quota) {
834 napi_complete_done(napi, work_done);
835 m_can_enable_all_interrupts(priv);
836 }
837
838end:
839 return work_done;
840}
841
842static void m_can_echo_tx_event(struct net_device *dev)
843{
844 u32 txe_count = 0;
845 u32 m_can_txefs;
846 u32 fgi = 0;
847 int i = 0;
848 unsigned int msg_mark;
849
850 struct m_can_priv *priv = netdev_priv(dev);
851 struct net_device_stats *stats = &dev->stats;
852
853 /* read tx event fifo status */
854 m_can_txefs = m_can_read(priv, M_CAN_TXEFS);
855
856 /* Get Tx Event fifo element count */
857 txe_count = (m_can_txefs & TXEFS_EFFL_MASK)
858 >> TXEFS_EFFL_SHIFT;
859
860 /* Get and process all sent elements */
861 for (i = 0; i < txe_count; i++) {
862 /* retrieve get index */
863 fgi = (m_can_read(priv, M_CAN_TXEFS) & TXEFS_EFGI_MASK)
864 >> TXEFS_EFGI_SHIFT;
865
866 /* get message marker */
867 msg_mark = (m_can_txe_fifo_read(priv, fgi, 4) &
868 TX_EVENT_MM_MASK) >> TX_EVENT_MM_SHIFT;
869
870 /* ack txe element */
871 m_can_write(priv, M_CAN_TXEFA, (TXEFA_EFAI_MASK &
872 (fgi << TXEFA_EFAI_SHIFT)));
873
874 /* update stats */
875 stats->tx_bytes += can_get_echo_skb(dev, msg_mark);
876 stats->tx_packets++;
877 }
878}
879
880static irqreturn_t m_can_isr(int irq, void *dev_id)
881{
882 struct net_device *dev = (struct net_device *)dev_id;
883 struct m_can_priv *priv = netdev_priv(dev);
884 struct net_device_stats *stats = &dev->stats;
885 u32 ir;
886
887 ir = m_can_read(priv, M_CAN_IR);
888 if (!ir)
889 return IRQ_NONE;
890
891 /* ACK all irqs */
892 if (ir & IR_ALL_INT)
893 m_can_write(priv, M_CAN_IR, ir);
894
895 /* schedule NAPI in case of
896 * - rx IRQ
897 * - state change IRQ
898 * - bus error IRQ and bus error reporting
899 */
900 if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
901 priv->irqstatus = ir;
902 m_can_disable_all_interrupts(priv);
903 napi_schedule(&priv->napi);
904 }
905
906 if (priv->version == 30) {
907 if (ir & IR_TC) {
908 /* Transmission Complete Interrupt*/
909 stats->tx_bytes += can_get_echo_skb(dev, 0);
910 stats->tx_packets++;
911 can_led_event(dev, CAN_LED_EVENT_TX);
912 netif_wake_queue(dev);
913 }
914 } else {
915 if (ir & IR_TEFN) {
916 /* New TX FIFO Element arrived */
917 m_can_echo_tx_event(dev);
918 can_led_event(dev, CAN_LED_EVENT_TX);
919 if (netif_queue_stopped(dev) &&
920 !m_can_tx_fifo_full(priv))
921 netif_wake_queue(dev);
922 }
923 }
924
925 return IRQ_HANDLED;
926}
927
928static const struct can_bittiming_const m_can_bittiming_const_30X = {
929 .name = KBUILD_MODNAME,
930 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
931 .tseg1_max = 64,
932 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
933 .tseg2_max = 16,
934 .sjw_max = 16,
935 .brp_min = 1,
936 .brp_max = 1024,
937 .brp_inc = 1,
938};
939
940static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
941 .name = KBUILD_MODNAME,
942 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
943 .tseg1_max = 16,
944 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
945 .tseg2_max = 8,
946 .sjw_max = 4,
947 .brp_min = 1,
948 .brp_max = 32,
949 .brp_inc = 1,
950};
951
952static const struct can_bittiming_const m_can_bittiming_const_31X = {
953 .name = KBUILD_MODNAME,
954 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
955 .tseg1_max = 256,
956 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
957 .tseg2_max = 128,
958 .sjw_max = 128,
959 .brp_min = 1,
960 .brp_max = 512,
961 .brp_inc = 1,
962};
963
964static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
965 .name = KBUILD_MODNAME,
966 .tseg1_min = 1, /* Time segment 1 = prop_seg + phase_seg1 */
967 .tseg1_max = 32,
968 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
969 .tseg2_max = 16,
970 .sjw_max = 16,
971 .brp_min = 1,
972 .brp_max = 32,
973 .brp_inc = 1,
974};
975
976static int m_can_set_bittiming(struct net_device *dev)
977{
978 struct m_can_priv *priv = netdev_priv(dev);
979 const struct can_bittiming *bt = &priv->can.bittiming;
980 const struct can_bittiming *dbt = &priv->can.data_bittiming;
981 u16 brp, sjw, tseg1, tseg2;
982 u32 reg_btp;
983
984 brp = bt->brp - 1;
985 sjw = bt->sjw - 1;
986 tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
987 tseg2 = bt->phase_seg2 - 1;
988 reg_btp = (brp << NBTP_NBRP_SHIFT) | (sjw << NBTP_NSJW_SHIFT) |
989 (tseg1 << NBTP_NTSEG1_SHIFT) | (tseg2 << NBTP_NTSEG2_SHIFT);
990 m_can_write(priv, M_CAN_NBTP, reg_btp);
991
992 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
993 reg_btp = 0;
994 brp = dbt->brp - 1;
995 sjw = dbt->sjw - 1;
996 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
997 tseg2 = dbt->phase_seg2 - 1;
998
999 /* TDC is only needed for bitrates beyond 2.5 MBit/s.
1000 * This is mentioned in the "Bit Time Requirements for CAN FD"
1001 * paper presented at the International CAN Conference 2013
1002 */
1003 if (dbt->bitrate > 2500000) {
1004 u32 tdco, ssp;
1005
1006 /* Use the same value of secondary sampling point
1007 * as the data sampling point
1008 */
1009 ssp = dbt->sample_point;
1010
1011 /* Equation based on Bosch's M_CAN User Manual's
1012 * Transmitter Delay Compensation Section
1013 */
1014 tdco = (priv->can.clock.freq / 1000) *
1015 ssp / dbt->bitrate;
1016
1017 /* Max valid TDCO value is 127 */
1018 if (tdco > 127) {
1019 netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
1020 tdco);
1021 tdco = 127;
1022 }
1023
1024 reg_btp |= DBTP_TDC;
1025 m_can_write(priv, M_CAN_TDCR,
1026 tdco << TDCR_TDCO_SHIFT);
1027 }
1028
1029 reg_btp |= (brp << DBTP_DBRP_SHIFT) |
1030 (sjw << DBTP_DSJW_SHIFT) |
1031 (tseg1 << DBTP_DTSEG1_SHIFT) |
1032 (tseg2 << DBTP_DTSEG2_SHIFT);
1033
1034 m_can_write(priv, M_CAN_DBTP, reg_btp);
1035 }
1036
1037 return 0;
1038}
1039
1040/* Configure M_CAN chip:
1041 * - set rx buffer/fifo element size
1042 * - configure rx fifo
1043 * - accept non-matching frame into fifo 0
1044 * - configure tx buffer
1045 * - >= v3.1.x: TX FIFO is used
1046 * - configure mode
1047 * - setup bittiming
1048 */
1049static void m_can_chip_config(struct net_device *dev)
1050{
1051 struct m_can_priv *priv = netdev_priv(dev);
1052 u32 cccr, test;
1053
1054 m_can_config_endisable(priv, true);
1055
1056 /* RX Buffer/FIFO Element Size 64 bytes data field */
1057 m_can_write(priv, M_CAN_RXESC, M_CAN_RXESC_64BYTES);
1058
1059 /* Accept Non-matching Frames Into FIFO 0 */
1060 m_can_write(priv, M_CAN_GFC, 0x0);
1061
1062 if (priv->version == 30) {
1063 /* only support one Tx Buffer currently */
1064 m_can_write(priv, M_CAN_TXBC, (1 << TXBC_NDTB_SHIFT) |
1065 priv->mcfg[MRAM_TXB].off);
1066 } else {
1067 /* TX FIFO is used for newer IP Core versions */
1068 m_can_write(priv, M_CAN_TXBC,
1069 (priv->mcfg[MRAM_TXB].num << TXBC_TFQS_SHIFT) |
1070 (priv->mcfg[MRAM_TXB].off));
1071 }
1072
1073 /* support 64 bytes payload */
1074 m_can_write(priv, M_CAN_TXESC, TXESC_TBDS_64BYTES);
1075
1076 /* TX Event FIFO */
1077 if (priv->version == 30) {
1078 m_can_write(priv, M_CAN_TXEFC, (1 << TXEFC_EFS_SHIFT) |
1079 priv->mcfg[MRAM_TXE].off);
1080 } else {
1081 /* Full TX Event FIFO is used */
1082 m_can_write(priv, M_CAN_TXEFC,
1083 ((priv->mcfg[MRAM_TXE].num << TXEFC_EFS_SHIFT)
1084 & TXEFC_EFS_MASK) |
1085 priv->mcfg[MRAM_TXE].off);
1086 }
1087
1088 /* rx fifo configuration, blocking mode, fifo size 1 */
1089 m_can_write(priv, M_CAN_RXF0C,
1090 (priv->mcfg[MRAM_RXF0].num << RXFC_FS_SHIFT) |
1091 priv->mcfg[MRAM_RXF0].off);
1092
1093 m_can_write(priv, M_CAN_RXF1C,
1094 (priv->mcfg[MRAM_RXF1].num << RXFC_FS_SHIFT) |
1095 priv->mcfg[MRAM_RXF1].off);
1096
1097 cccr = m_can_read(priv, M_CAN_CCCR);
1098 test = m_can_read(priv, M_CAN_TEST);
1099 test &= ~TEST_LBCK;
1100 if (priv->version == 30) {
1101 /* Version 3.0.x */
1102
1103 cccr &= ~(CCCR_TEST | CCCR_MON |
1104 (CCCR_CMR_MASK << CCCR_CMR_SHIFT) |
1105 (CCCR_CME_MASK << CCCR_CME_SHIFT));
1106
1107 if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
1108 cccr |= CCCR_CME_CANFD_BRS << CCCR_CME_SHIFT;
1109
1110 } else {
1111 /* Version 3.1.x or 3.2.x */
1112 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE);
1113
1114 /* Only 3.2.x has NISO Bit implemented */
1115 if (priv->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1116 cccr |= CCCR_NISO;
1117
1118 if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
1119 cccr |= (CCCR_BRSE | CCCR_FDOE);
1120 }
1121
1122 /* Loopback Mode */
1123 if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1124 cccr |= CCCR_TEST | CCCR_MON;
1125 test |= TEST_LBCK;
1126 }
1127
1128 /* Enable Monitoring (all versions) */
1129 if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1130 cccr |= CCCR_MON;
1131
1132 /* Write config */
1133 m_can_write(priv, M_CAN_CCCR, cccr);
1134 m_can_write(priv, M_CAN_TEST, test);
1135
1136 /* Enable interrupts */
1137 m_can_write(priv, M_CAN_IR, IR_ALL_INT);
1138 if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
1139 if (priv->version == 30)
1140 m_can_write(priv, M_CAN_IE, IR_ALL_INT &
1141 ~(IR_ERR_LEC_30X));
1142 else
1143 m_can_write(priv, M_CAN_IE, IR_ALL_INT &
1144 ~(IR_ERR_LEC_31X));
1145 else
1146 m_can_write(priv, M_CAN_IE, IR_ALL_INT);
1147
1148 /* route all interrupts to INT0 */
1149 m_can_write(priv, M_CAN_ILS, ILS_ALL_INT0);
1150
1151 /* set bittiming params */
1152 m_can_set_bittiming(dev);
1153
1154 m_can_config_endisable(priv, false);
1155}
1156
1157static void m_can_start(struct net_device *dev)
1158{
1159 struct m_can_priv *priv = netdev_priv(dev);
1160
1161 /* basic m_can configuration */
1162 m_can_chip_config(dev);
1163
1164 priv->can.state = CAN_STATE_ERROR_ACTIVE;
1165
1166 m_can_enable_all_interrupts(priv);
1167}
1168
1169static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
1170{
1171 switch (mode) {
1172 case CAN_MODE_START:
1173 m_can_start(dev);
1174 netif_wake_queue(dev);
1175 break;
1176 default:
1177 return -EOPNOTSUPP;
1178 }
1179
1180 return 0;
1181}
1182
1183/* Checks core release number of M_CAN
1184 * returns 0 if an unsupported device is detected
1185 * else it returns the release and step coded as:
1186 * return value = 10 * <release> + 1 * <step>
1187 */
1188static int m_can_check_core_release(void __iomem *m_can_base)
1189{
1190 u32 crel_reg;
1191 u8 rel;
1192 u8 step;
1193 int res;
1194 struct m_can_priv temp_priv = {
1195 .base = m_can_base
1196 };
1197
1198 /* Read Core Release Version and split into version number
1199 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
1200 */
1201 crel_reg = m_can_read(&temp_priv, M_CAN_CREL);
1202 rel = (u8)((crel_reg & CREL_REL_MASK) >> CREL_REL_SHIFT);
1203 step = (u8)((crel_reg & CREL_STEP_MASK) >> CREL_STEP_SHIFT);
1204
1205 if (rel == 3) {
1206 /* M_CAN v3.x.y: create return value */
1207 res = 30 + step;
1208 } else {
1209 /* Unsupported M_CAN version */
1210 res = 0;
1211 }
1212
1213 return res;
1214}
1215
1216/* Selectable Non ISO support only in version 3.2.x
1217 * This function checks if the bit is writable.
1218 */
1219static bool m_can_niso_supported(const struct m_can_priv *priv)
1220{
1221 u32 cccr_reg, cccr_poll;
1222 int niso_timeout;
1223
1224 m_can_config_endisable(priv, true);
1225 cccr_reg = m_can_read(priv, M_CAN_CCCR);
1226 cccr_reg |= CCCR_NISO;
1227 m_can_write(priv, M_CAN_CCCR, cccr_reg);
1228
1229 niso_timeout = readl_poll_timeout((priv->base + M_CAN_CCCR), cccr_poll,
1230 (cccr_poll == cccr_reg), 0, 10);
1231
1232 /* Clear NISO */
1233 cccr_reg &= ~(CCCR_NISO);
1234 m_can_write(priv, M_CAN_CCCR, cccr_reg);
1235
1236 m_can_config_endisable(priv, false);
1237
1238 /* return false if time out (-ETIMEDOUT), else return true */
1239 return !niso_timeout;
1240}
1241
1242static int m_can_dev_setup(struct platform_device *pdev, struct net_device *dev,
1243 void __iomem *addr)
1244{
1245 struct m_can_priv *priv;
1246 int m_can_version;
1247
1248 m_can_version = m_can_check_core_release(addr);
1249 /* return if unsupported version */
1250 if (!m_can_version) {
1251 dev_err(&pdev->dev, "Unsupported version number: %2d",
1252 m_can_version);
1253 return -EINVAL;
1254 }
1255
1256 priv = netdev_priv(dev);
1257 netif_napi_add(dev, &priv->napi, m_can_poll, M_CAN_NAPI_WEIGHT);
1258
1259 /* Shared properties of all M_CAN versions */
1260 priv->version = m_can_version;
1261 priv->dev = dev;
1262 priv->base = addr;
1263 priv->can.do_set_mode = m_can_set_mode;
1264 priv->can.do_get_berr_counter = m_can_get_berr_counter;
1265
1266 /* Set M_CAN supported operations */
1267 priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1268 CAN_CTRLMODE_LISTENONLY |
1269 CAN_CTRLMODE_BERR_REPORTING |
1270 CAN_CTRLMODE_FD;
1271
1272 /* Set properties depending on M_CAN version */
1273 switch (priv->version) {
1274 case 30:
1275 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
1276 can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1277 priv->can.bittiming_const = &m_can_bittiming_const_30X;
1278 priv->can.data_bittiming_const =
1279 &m_can_data_bittiming_const_30X;
1280 break;
1281 case 31:
1282 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
1283 can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1284 priv->can.bittiming_const = &m_can_bittiming_const_31X;
1285 priv->can.data_bittiming_const =
1286 &m_can_data_bittiming_const_31X;
1287 break;
1288 case 32:
1289 priv->can.bittiming_const = &m_can_bittiming_const_31X;
1290 priv->can.data_bittiming_const =
1291 &m_can_data_bittiming_const_31X;
1292 priv->can.ctrlmode_supported |= (m_can_niso_supported(priv)
1293 ? CAN_CTRLMODE_FD_NON_ISO
1294 : 0);
1295 break;
1296 default:
1297 dev_err(&pdev->dev, "Unsupported version number: %2d",
1298 priv->version);
1299 return -EINVAL;
1300 }
1301
1302 return 0;
1303}
1304
1305static int m_can_open(struct net_device *dev)
1306{
1307 struct m_can_priv *priv = netdev_priv(dev);
1308 int err;
1309
1310 err = m_can_clk_start(priv);
1311 if (err)
1312 return err;
1313
1314 /* open the can device */
1315 err = open_candev(dev);
1316 if (err) {
1317 netdev_err(dev, "failed to open can device\n");
1318 goto exit_disable_clks;
1319 }
1320
1321 /* register interrupt handler */
1322 err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
1323 dev);
1324 if (err < 0) {
1325 netdev_err(dev, "failed to request interrupt\n");
1326 goto exit_irq_fail;
1327 }
1328
1329 /* start the m_can controller */
1330 m_can_start(dev);
1331
1332 can_led_event(dev, CAN_LED_EVENT_OPEN);
1333 napi_enable(&priv->napi);
1334 netif_start_queue(dev);
1335
1336 return 0;
1337
1338exit_irq_fail:
1339 close_candev(dev);
1340exit_disable_clks:
1341 m_can_clk_stop(priv);
1342 return err;
1343}
1344
1345static void m_can_stop(struct net_device *dev)
1346{
1347 struct m_can_priv *priv = netdev_priv(dev);
1348
1349 /* disable all interrupts */
1350 m_can_disable_all_interrupts(priv);
1351
1352 /* set the state as STOPPED */
1353 priv->can.state = CAN_STATE_STOPPED;
1354}
1355
1356static int m_can_close(struct net_device *dev)
1357{
1358 struct m_can_priv *priv = netdev_priv(dev);
1359
1360 netif_stop_queue(dev);
1361 napi_disable(&priv->napi);
1362 m_can_stop(dev);
1363 m_can_clk_stop(priv);
1364 free_irq(dev->irq, dev);
1365 close_candev(dev);
1366 can_led_event(dev, CAN_LED_EVENT_STOP);
1367
1368 return 0;
1369}
1370
1371static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
1372{
1373 struct m_can_priv *priv = netdev_priv(dev);
1374 /*get wrap around for loopback skb index */
1375 unsigned int wrap = priv->can.echo_skb_max;
1376 int next_idx;
1377
1378 /* calculate next index */
1379 next_idx = (++putidx >= wrap ? 0 : putidx);
1380
1381 /* check if occupied */
1382 return !!priv->can.echo_skb[next_idx];
1383}
1384
1385static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
1386 struct net_device *dev)
1387{
1388 struct m_can_priv *priv = netdev_priv(dev);
1389 struct canfd_frame *cf = (struct canfd_frame *)skb->data;
1390 u32 id, cccr, fdflags;
1391 int i;
1392 int putidx;
1393
1394 if (can_dropped_invalid_skb(dev, skb))
1395 return NETDEV_TX_OK;
1396
1397 /* Generate ID field for TX buffer Element */
1398 /* Common to all supported M_CAN versions */
1399 if (cf->can_id & CAN_EFF_FLAG) {
1400 id = cf->can_id & CAN_EFF_MASK;
1401 id |= TX_BUF_XTD;
1402 } else {
1403 id = ((cf->can_id & CAN_SFF_MASK) << 18);
1404 }
1405
1406 if (cf->can_id & CAN_RTR_FLAG)
1407 id |= TX_BUF_RTR;
1408
1409 if (priv->version == 30) {
1410 netif_stop_queue(dev);
1411
1412 /* message ram configuration */
1413 m_can_fifo_write(priv, 0, M_CAN_FIFO_ID, id);
1414 m_can_fifo_write(priv, 0, M_CAN_FIFO_DLC,
1415 can_len2dlc(cf->len) << 16);
1416
1417 for (i = 0; i < cf->len; i += 4)
1418 m_can_fifo_write(priv, 0,
1419 M_CAN_FIFO_DATA(i / 4),
1420 *(u32 *)(cf->data + i));
1421
1422 can_put_echo_skb(skb, dev, 0);
1423
1424 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1425 cccr = m_can_read(priv, M_CAN_CCCR);
1426 cccr &= ~(CCCR_CMR_MASK << CCCR_CMR_SHIFT);
1427 if (can_is_canfd_skb(skb)) {
1428 if (cf->flags & CANFD_BRS)
1429 cccr |= CCCR_CMR_CANFD_BRS <<
1430 CCCR_CMR_SHIFT;
1431 else
1432 cccr |= CCCR_CMR_CANFD <<
1433 CCCR_CMR_SHIFT;
1434 } else {
1435 cccr |= CCCR_CMR_CAN << CCCR_CMR_SHIFT;
1436 }
1437 m_can_write(priv, M_CAN_CCCR, cccr);
1438 }
1439 m_can_write(priv, M_CAN_TXBTIE, 0x1);
1440 m_can_write(priv, M_CAN_TXBAR, 0x1);
1441 /* End of xmit function for version 3.0.x */
1442 } else {
1443 /* Transmit routine for version >= v3.1.x */
1444
1445 /* Check if FIFO full */
1446 if (m_can_tx_fifo_full(priv)) {
1447 /* This shouldn't happen */
1448 netif_stop_queue(dev);
1449 netdev_warn(dev,
1450 "TX queue active although FIFO is full.");
1451 return NETDEV_TX_BUSY;
1452 }
1453
1454 /* get put index for frame */
1455 putidx = ((m_can_read(priv, M_CAN_TXFQS) & TXFQS_TFQPI_MASK)
1456 >> TXFQS_TFQPI_SHIFT);
1457 /* Write ID Field to FIFO Element */
1458 m_can_fifo_write(priv, putidx, M_CAN_FIFO_ID, id);
1459
1460 /* get CAN FD configuration of frame */
1461 fdflags = 0;
1462 if (can_is_canfd_skb(skb)) {
1463 fdflags |= TX_BUF_FDF;
1464 if (cf->flags & CANFD_BRS)
1465 fdflags |= TX_BUF_BRS;
1466 }
1467
1468 /* Construct DLC Field. Also contains CAN-FD configuration
1469 * use put index of fifo as message marker
1470 * it is used in TX interrupt for
1471 * sending the correct echo frame
1472 */
1473 m_can_fifo_write(priv, putidx, M_CAN_FIFO_DLC,
1474 ((putidx << TX_BUF_MM_SHIFT) &
1475 TX_BUF_MM_MASK) |
1476 (can_len2dlc(cf->len) << 16) |
1477 fdflags | TX_BUF_EFC);
1478
1479 for (i = 0; i < cf->len; i += 4)
1480 m_can_fifo_write(priv, putidx, M_CAN_FIFO_DATA(i / 4),
1481 *(u32 *)(cf->data + i));
1482
1483 /* Push loopback echo.
1484 * Will be looped back on TX interrupt based on message marker
1485 */
1486 can_put_echo_skb(skb, dev, putidx);
1487
1488 /* Enable TX FIFO element to start transfer */
1489 m_can_write(priv, M_CAN_TXBAR, (1 << putidx));
1490
1491 /* stop network queue if fifo full */
1492 if (m_can_tx_fifo_full(priv) ||
1493 m_can_next_echo_skb_occupied(dev, putidx))
1494 netif_stop_queue(dev);
1495 }
1496
1497 return NETDEV_TX_OK;
1498}
1499
1500static const struct net_device_ops m_can_netdev_ops = {
1501 .ndo_open = m_can_open,
1502 .ndo_stop = m_can_close,
1503 .ndo_start_xmit = m_can_start_xmit,
1504 .ndo_change_mtu = can_change_mtu,
1505};
1506
1507static int register_m_can_dev(struct net_device *dev)
1508{
1509 dev->flags |= IFF_ECHO; /* we support local echo */
1510 dev->netdev_ops = &m_can_netdev_ops;
1511
1512 return register_candev(dev);
1513}
1514
1515static void m_can_init_ram(struct m_can_priv *priv)
1516{
1517 int end, i, start;
1518
1519 /* initialize the entire Message RAM in use to avoid possible
1520 * ECC/parity checksum errors when reading an uninitialized buffer
1521 */
1522 start = priv->mcfg[MRAM_SIDF].off;
1523 end = priv->mcfg[MRAM_TXB].off +
1524 priv->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1525 for (i = start; i < end; i += 4)
1526 writel(0x0, priv->mram_base + i);
1527}
1528
1529static void m_can_of_parse_mram(struct m_can_priv *priv,
1530 const u32 *mram_config_vals)
1531{
1532 priv->mcfg[MRAM_SIDF].off = mram_config_vals[0];
1533 priv->mcfg[MRAM_SIDF].num = mram_config_vals[1];
1534 priv->mcfg[MRAM_XIDF].off = priv->mcfg[MRAM_SIDF].off +
1535 priv->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
1536 priv->mcfg[MRAM_XIDF].num = mram_config_vals[2];
1537 priv->mcfg[MRAM_RXF0].off = priv->mcfg[MRAM_XIDF].off +
1538 priv->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
1539 priv->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
1540 (RXFC_FS_MASK >> RXFC_FS_SHIFT);
1541 priv->mcfg[MRAM_RXF1].off = priv->mcfg[MRAM_RXF0].off +
1542 priv->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
1543 priv->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
1544 (RXFC_FS_MASK >> RXFC_FS_SHIFT);
1545 priv->mcfg[MRAM_RXB].off = priv->mcfg[MRAM_RXF1].off +
1546 priv->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
1547 priv->mcfg[MRAM_RXB].num = mram_config_vals[5];
1548 priv->mcfg[MRAM_TXE].off = priv->mcfg[MRAM_RXB].off +
1549 priv->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
1550 priv->mcfg[MRAM_TXE].num = mram_config_vals[6];
1551 priv->mcfg[MRAM_TXB].off = priv->mcfg[MRAM_TXE].off +
1552 priv->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
1553 priv->mcfg[MRAM_TXB].num = mram_config_vals[7] &
1554 (TXBC_NDTB_MASK >> TXBC_NDTB_SHIFT);
1555
1556 dev_dbg(priv->device,
1557 "mram_base %p sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
1558 priv->mram_base,
1559 priv->mcfg[MRAM_SIDF].off, priv->mcfg[MRAM_SIDF].num,
1560 priv->mcfg[MRAM_XIDF].off, priv->mcfg[MRAM_XIDF].num,
1561 priv->mcfg[MRAM_RXF0].off, priv->mcfg[MRAM_RXF0].num,
1562 priv->mcfg[MRAM_RXF1].off, priv->mcfg[MRAM_RXF1].num,
1563 priv->mcfg[MRAM_RXB].off, priv->mcfg[MRAM_RXB].num,
1564 priv->mcfg[MRAM_TXE].off, priv->mcfg[MRAM_TXE].num,
1565 priv->mcfg[MRAM_TXB].off, priv->mcfg[MRAM_TXB].num);
1566
1567 m_can_init_ram(priv);
1568}
1569
1570static int m_can_plat_probe(struct platform_device *pdev)
1571{
1572 struct net_device *dev;
1573 struct m_can_priv *priv;
1574 struct resource *res;
1575 void __iomem *addr;
1576 void __iomem *mram_addr;
1577 struct clk *hclk, *cclk;
1578 int irq, ret;
1579 struct device_node *np;
1580 u32 mram_config_vals[MRAM_CFG_LEN];
1581 u32 tx_fifo_size;
1582
1583 np = pdev->dev.of_node;
1584
1585 hclk = devm_clk_get(&pdev->dev, "hclk");
1586 cclk = devm_clk_get(&pdev->dev, "cclk");
1587
1588 if (IS_ERR(hclk) || IS_ERR(cclk)) {
1589 dev_err(&pdev->dev, "no clock found\n");
1590 ret = -ENODEV;
1591 goto failed_ret;
1592 }
1593
1594 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "m_can");
1595 addr = devm_ioremap_resource(&pdev->dev, res);
1596 irq = platform_get_irq_byname(pdev, "int0");
1597
1598 if (IS_ERR(addr) || irq < 0) {
1599 ret = -EINVAL;
1600 goto failed_ret;
1601 }
1602
1603 /* message ram could be shared */
1604 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "message_ram");
1605 if (!res) {
1606 ret = -ENODEV;
1607 goto failed_ret;
1608 }
1609
1610 mram_addr = devm_ioremap(&pdev->dev, res->start, resource_size(res));
1611 if (!mram_addr) {
1612 ret = -ENOMEM;
1613 goto failed_ret;
1614 }
1615
1616 /* get message ram configuration */
1617 ret = of_property_read_u32_array(np, "bosch,mram-cfg",
1618 mram_config_vals,
1619 sizeof(mram_config_vals) / 4);
1620 if (ret) {
1621 dev_err(&pdev->dev, "Could not get Message RAM configuration.");
1622 goto failed_ret;
1623 }
1624
1625 /* Get TX FIFO size
1626 * Defines the total amount of echo buffers for loopback
1627 */
1628 tx_fifo_size = mram_config_vals[7];
1629
1630 /* allocate the m_can device */
1631 dev = alloc_candev(sizeof(*priv), tx_fifo_size);
1632 if (!dev) {
1633 ret = -ENOMEM;
1634 goto failed_ret;
1635 }
1636
1637 priv = netdev_priv(dev);
1638 dev->irq = irq;
1639 priv->device = &pdev->dev;
1640 priv->hclk = hclk;
1641 priv->cclk = cclk;
1642 priv->can.clock.freq = clk_get_rate(cclk);
1643 priv->mram_base = mram_addr;
1644
1645 m_can_of_parse_mram(priv, mram_config_vals);
1646
1647 platform_set_drvdata(pdev, dev);
1648 SET_NETDEV_DEV(dev, &pdev->dev);
1649
1650 /* Enable clocks. Necessary to read Core Release in order to determine
1651 * M_CAN version
1652 */
1653 pm_runtime_enable(&pdev->dev);
1654 ret = m_can_clk_start(priv);
1655 if (ret)
1656 goto pm_runtime_fail;
1657
1658 ret = m_can_dev_setup(pdev, dev, addr);
1659 if (ret)
1660 goto clk_disable;
1661
1662 ret = register_m_can_dev(dev);
1663 if (ret) {
1664 dev_err(&pdev->dev, "registering %s failed (err=%d)\n",
1665 KBUILD_MODNAME, ret);
1666 goto clk_disable;
1667 }
1668
1669 devm_can_led_init(dev);
1670
1671 of_can_transceiver(dev);
1672
1673 dev_info(&pdev->dev, "%s device registered (irq=%d, version=%d)\n",
1674 KBUILD_MODNAME, dev->irq, priv->version);
1675
1676 /* Probe finished
1677 * Stop clocks. They will be reactivated once the M_CAN device is opened
1678 */
1679clk_disable:
1680 m_can_clk_stop(priv);
1681pm_runtime_fail:
1682 if (ret) {
1683 pm_runtime_disable(&pdev->dev);
1684 free_candev(dev);
1685 }
1686failed_ret:
1687 return ret;
1688}
1689
1690/* TODO: runtime PM with power down or sleep mode */
1691
1692static __maybe_unused int m_can_suspend(struct device *dev)
1693{
1694 struct net_device *ndev = dev_get_drvdata(dev);
1695 struct m_can_priv *priv = netdev_priv(ndev);
1696
1697 if (netif_running(ndev)) {
1698 netif_stop_queue(ndev);
1699 netif_device_detach(ndev);
1700 m_can_stop(ndev);
1701 m_can_clk_stop(priv);
1702 }
1703
1704 pinctrl_pm_select_sleep_state(dev);
1705
1706 priv->can.state = CAN_STATE_SLEEPING;
1707
1708 return 0;
1709}
1710
1711static __maybe_unused int m_can_resume(struct device *dev)
1712{
1713 struct net_device *ndev = dev_get_drvdata(dev);
1714 struct m_can_priv *priv = netdev_priv(ndev);
1715
1716 pinctrl_pm_select_default_state(dev);
1717
1718 m_can_init_ram(priv);
1719
1720 priv->can.state = CAN_STATE_ERROR_ACTIVE;
1721
1722 if (netif_running(ndev)) {
1723 int ret;
1724
1725 ret = m_can_clk_start(priv);
1726 if (ret)
1727 return ret;
1728
1729 m_can_start(ndev);
1730 netif_device_attach(ndev);
1731 netif_start_queue(ndev);
1732 }
1733
1734 return 0;
1735}
1736
1737static void unregister_m_can_dev(struct net_device *dev)
1738{
1739 unregister_candev(dev);
1740}
1741
1742static int m_can_plat_remove(struct platform_device *pdev)
1743{
1744 struct net_device *dev = platform_get_drvdata(pdev);
1745
1746 unregister_m_can_dev(dev);
1747
1748 pm_runtime_disable(&pdev->dev);
1749
1750 platform_set_drvdata(pdev, NULL);
1751
1752 free_candev(dev);
1753
1754 return 0;
1755}
1756
1757static int __maybe_unused m_can_runtime_suspend(struct device *dev)
1758{
1759 struct net_device *ndev = dev_get_drvdata(dev);
1760 struct m_can_priv *priv = netdev_priv(ndev);
1761
1762 clk_disable_unprepare(priv->cclk);
1763 clk_disable_unprepare(priv->hclk);
1764
1765 return 0;
1766}
1767
1768static int __maybe_unused m_can_runtime_resume(struct device *dev)
1769{
1770 struct net_device *ndev = dev_get_drvdata(dev);
1771 struct m_can_priv *priv = netdev_priv(ndev);
1772 int err;
1773
1774 err = clk_prepare_enable(priv->hclk);
1775 if (err)
1776 return err;
1777
1778 err = clk_prepare_enable(priv->cclk);
1779 if (err)
1780 clk_disable_unprepare(priv->hclk);
1781
1782 return err;
1783}
1784
1785static const struct dev_pm_ops m_can_pmops = {
1786 SET_RUNTIME_PM_OPS(m_can_runtime_suspend,
1787 m_can_runtime_resume, NULL)
1788 SET_SYSTEM_SLEEP_PM_OPS(m_can_suspend, m_can_resume)
1789};
1790
1791static const struct of_device_id m_can_of_table[] = {
1792 { .compatible = "bosch,m_can", .data = NULL },
1793 { /* sentinel */ },
1794};
1795MODULE_DEVICE_TABLE(of, m_can_of_table);
1796
1797static struct platform_driver m_can_plat_driver = {
1798 .driver = {
1799 .name = KBUILD_MODNAME,
1800 .of_match_table = m_can_of_table,
1801 .pm = &m_can_pmops,
1802 },
1803 .probe = m_can_plat_probe,
1804 .remove = m_can_plat_remove,
1805};
1806
1807module_platform_driver(m_can_plat_driver);
1808
1809MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
1810MODULE_LICENSE("GPL v2");
1811MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");