Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2005-2007 Red Hat GmbH
4 *
5 * A target that delays reads and/or writes and can send
6 * them to different devices.
7 *
8 * This file is released under the GPL.
9 */
10
11#include <linux/module.h>
12#include <linux/init.h>
13#include <linux/blkdev.h>
14#include <linux/bio.h>
15#include <linux/slab.h>
16#include <linux/kthread.h>
17
18#include <linux/device-mapper.h>
19
20#define DM_MSG_PREFIX "delay"
21
22struct delay_class {
23 struct dm_dev *dev;
24 sector_t start;
25 unsigned int delay;
26 unsigned int ops;
27};
28
29struct delay_c {
30 struct timer_list delay_timer;
31 struct mutex process_bios_lock; /* hold while removing bios to be processed from list */
32 spinlock_t delayed_bios_lock; /* hold on all accesses to delayed_bios list */
33 struct workqueue_struct *kdelayd_wq;
34 struct work_struct flush_expired_bios;
35 struct list_head delayed_bios;
36 struct task_struct *worker;
37 bool may_delay;
38
39 struct delay_class read;
40 struct delay_class write;
41 struct delay_class flush;
42
43 int argc;
44};
45
46struct dm_delay_info {
47 struct delay_c *context;
48 struct delay_class *class;
49 struct list_head list;
50 unsigned long expires;
51};
52
53static void handle_delayed_timer(struct timer_list *t)
54{
55 struct delay_c *dc = from_timer(dc, t, delay_timer);
56
57 queue_work(dc->kdelayd_wq, &dc->flush_expired_bios);
58}
59
60static void queue_timeout(struct delay_c *dc, unsigned long expires)
61{
62 timer_reduce(&dc->delay_timer, expires);
63}
64
65static inline bool delay_is_fast(struct delay_c *dc)
66{
67 return !!dc->worker;
68}
69
70static void flush_bios(struct bio *bio)
71{
72 struct bio *n;
73
74 while (bio) {
75 n = bio->bi_next;
76 bio->bi_next = NULL;
77 dm_submit_bio_remap(bio, NULL);
78 bio = n;
79 }
80}
81
82static void flush_delayed_bios(struct delay_c *dc, bool flush_all)
83{
84 struct dm_delay_info *delayed, *next;
85 struct bio_list flush_bio_list;
86 LIST_HEAD(local_list);
87 unsigned long next_expires = 0;
88 bool start_timer = false;
89 bio_list_init(&flush_bio_list);
90
91 mutex_lock(&dc->process_bios_lock);
92 spin_lock(&dc->delayed_bios_lock);
93 list_replace_init(&dc->delayed_bios, &local_list);
94 spin_unlock(&dc->delayed_bios_lock);
95 list_for_each_entry_safe(delayed, next, &local_list, list) {
96 cond_resched();
97 if (flush_all || time_after_eq(jiffies, delayed->expires)) {
98 struct bio *bio = dm_bio_from_per_bio_data(delayed,
99 sizeof(struct dm_delay_info));
100 list_del(&delayed->list);
101 bio_list_add(&flush_bio_list, bio);
102 delayed->class->ops--;
103 continue;
104 }
105
106 if (!delay_is_fast(dc)) {
107 if (!start_timer) {
108 start_timer = true;
109 next_expires = delayed->expires;
110 } else {
111 next_expires = min(next_expires, delayed->expires);
112 }
113 }
114 }
115 spin_lock(&dc->delayed_bios_lock);
116 list_splice(&local_list, &dc->delayed_bios);
117 spin_unlock(&dc->delayed_bios_lock);
118 mutex_unlock(&dc->process_bios_lock);
119
120 if (start_timer)
121 queue_timeout(dc, next_expires);
122
123 flush_bios(bio_list_get(&flush_bio_list));
124}
125
126static int flush_worker_fn(void *data)
127{
128 struct delay_c *dc = data;
129
130 while (!kthread_should_stop()) {
131 flush_delayed_bios(dc, false);
132 spin_lock(&dc->delayed_bios_lock);
133 if (unlikely(list_empty(&dc->delayed_bios))) {
134 set_current_state(TASK_INTERRUPTIBLE);
135 spin_unlock(&dc->delayed_bios_lock);
136 schedule();
137 } else {
138 spin_unlock(&dc->delayed_bios_lock);
139 cond_resched();
140 }
141 }
142
143 return 0;
144}
145
146static void flush_expired_bios(struct work_struct *work)
147{
148 struct delay_c *dc;
149
150 dc = container_of(work, struct delay_c, flush_expired_bios);
151 flush_delayed_bios(dc, false);
152}
153
154static void delay_dtr(struct dm_target *ti)
155{
156 struct delay_c *dc = ti->private;
157
158 if (dc->kdelayd_wq) {
159 timer_shutdown_sync(&dc->delay_timer);
160 destroy_workqueue(dc->kdelayd_wq);
161 }
162
163 if (dc->read.dev)
164 dm_put_device(ti, dc->read.dev);
165 if (dc->write.dev)
166 dm_put_device(ti, dc->write.dev);
167 if (dc->flush.dev)
168 dm_put_device(ti, dc->flush.dev);
169 if (dc->worker)
170 kthread_stop(dc->worker);
171
172 mutex_destroy(&dc->process_bios_lock);
173
174 kfree(dc);
175}
176
177static int delay_class_ctr(struct dm_target *ti, struct delay_class *c, char **argv)
178{
179 int ret;
180 unsigned long long tmpll;
181 char dummy;
182
183 if (sscanf(argv[1], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
184 ti->error = "Invalid device sector";
185 return -EINVAL;
186 }
187 c->start = tmpll;
188
189 if (sscanf(argv[2], "%u%c", &c->delay, &dummy) != 1) {
190 ti->error = "Invalid delay";
191 return -EINVAL;
192 }
193
194 ret = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &c->dev);
195 if (ret) {
196 ti->error = "Device lookup failed";
197 return ret;
198 }
199
200 return 0;
201}
202
203/*
204 * Mapping parameters:
205 * <device> <offset> <delay> [<write_device> <write_offset> <write_delay>]
206 *
207 * With separate write parameters, the first set is only used for reads.
208 * Offsets are specified in sectors.
209 * Delays are specified in milliseconds.
210 */
211static int delay_ctr(struct dm_target *ti, unsigned int argc, char **argv)
212{
213 struct delay_c *dc;
214 int ret;
215 unsigned int max_delay;
216
217 if (argc != 3 && argc != 6 && argc != 9) {
218 ti->error = "Requires exactly 3, 6 or 9 arguments";
219 return -EINVAL;
220 }
221
222 dc = kzalloc(sizeof(*dc), GFP_KERNEL);
223 if (!dc) {
224 ti->error = "Cannot allocate context";
225 return -ENOMEM;
226 }
227
228 ti->private = dc;
229 INIT_LIST_HEAD(&dc->delayed_bios);
230 mutex_init(&dc->process_bios_lock);
231 spin_lock_init(&dc->delayed_bios_lock);
232 dc->may_delay = true;
233 dc->argc = argc;
234
235 ret = delay_class_ctr(ti, &dc->read, argv);
236 if (ret)
237 goto bad;
238 max_delay = dc->read.delay;
239
240 if (argc == 3) {
241 ret = delay_class_ctr(ti, &dc->write, argv);
242 if (ret)
243 goto bad;
244 ret = delay_class_ctr(ti, &dc->flush, argv);
245 if (ret)
246 goto bad;
247 goto out;
248 }
249
250 ret = delay_class_ctr(ti, &dc->write, argv + 3);
251 if (ret)
252 goto bad;
253 max_delay = max(max_delay, dc->write.delay);
254
255 if (argc == 6) {
256 ret = delay_class_ctr(ti, &dc->flush, argv + 3);
257 if (ret)
258 goto bad;
259 goto out;
260 }
261
262 ret = delay_class_ctr(ti, &dc->flush, argv + 6);
263 if (ret)
264 goto bad;
265 max_delay = max(max_delay, dc->flush.delay);
266
267out:
268 if (max_delay < 50) {
269 /*
270 * In case of small requested delays, use kthread instead of
271 * timers and workqueue to achieve better latency.
272 */
273 dc->worker = kthread_run(&flush_worker_fn, dc, "dm-delay-flush-worker");
274 if (IS_ERR(dc->worker)) {
275 ret = PTR_ERR(dc->worker);
276 dc->worker = NULL;
277 goto bad;
278 }
279 } else {
280 timer_setup(&dc->delay_timer, handle_delayed_timer, 0);
281 INIT_WORK(&dc->flush_expired_bios, flush_expired_bios);
282 dc->kdelayd_wq = alloc_workqueue("kdelayd", WQ_MEM_RECLAIM, 0);
283 if (!dc->kdelayd_wq) {
284 ret = -EINVAL;
285 DMERR("Couldn't start kdelayd");
286 goto bad;
287 }
288 }
289
290 ti->num_flush_bios = 1;
291 ti->num_discard_bios = 1;
292 ti->accounts_remapped_io = true;
293 ti->per_io_data_size = sizeof(struct dm_delay_info);
294 return 0;
295
296bad:
297 delay_dtr(ti);
298 return ret;
299}
300
301static int delay_bio(struct delay_c *dc, struct delay_class *c, struct bio *bio)
302{
303 struct dm_delay_info *delayed;
304 unsigned long expires = 0;
305
306 if (!c->delay)
307 return DM_MAPIO_REMAPPED;
308
309 delayed = dm_per_bio_data(bio, sizeof(struct dm_delay_info));
310
311 delayed->context = dc;
312 delayed->expires = expires = jiffies + msecs_to_jiffies(c->delay);
313
314 spin_lock(&dc->delayed_bios_lock);
315 if (unlikely(!dc->may_delay)) {
316 spin_unlock(&dc->delayed_bios_lock);
317 return DM_MAPIO_REMAPPED;
318 }
319 c->ops++;
320 list_add_tail(&delayed->list, &dc->delayed_bios);
321 spin_unlock(&dc->delayed_bios_lock);
322
323 if (delay_is_fast(dc))
324 wake_up_process(dc->worker);
325 else
326 queue_timeout(dc, expires);
327
328 return DM_MAPIO_SUBMITTED;
329}
330
331static void delay_presuspend(struct dm_target *ti)
332{
333 struct delay_c *dc = ti->private;
334
335 spin_lock(&dc->delayed_bios_lock);
336 dc->may_delay = false;
337 spin_unlock(&dc->delayed_bios_lock);
338
339 if (!delay_is_fast(dc))
340 timer_delete(&dc->delay_timer);
341 flush_delayed_bios(dc, true);
342}
343
344static void delay_resume(struct dm_target *ti)
345{
346 struct delay_c *dc = ti->private;
347
348 dc->may_delay = true;
349}
350
351static int delay_map(struct dm_target *ti, struct bio *bio)
352{
353 struct delay_c *dc = ti->private;
354 struct delay_class *c;
355 struct dm_delay_info *delayed = dm_per_bio_data(bio, sizeof(struct dm_delay_info));
356
357 if (bio_data_dir(bio) == WRITE) {
358 if (unlikely(bio->bi_opf & REQ_PREFLUSH))
359 c = &dc->flush;
360 else
361 c = &dc->write;
362 } else {
363 c = &dc->read;
364 }
365 delayed->class = c;
366 bio_set_dev(bio, c->dev->bdev);
367 bio->bi_iter.bi_sector = c->start + dm_target_offset(ti, bio->bi_iter.bi_sector);
368
369 return delay_bio(dc, c, bio);
370}
371
372#define DMEMIT_DELAY_CLASS(c) \
373 DMEMIT("%s %llu %u", (c)->dev->name, (unsigned long long)(c)->start, (c)->delay)
374
375static void delay_status(struct dm_target *ti, status_type_t type,
376 unsigned int status_flags, char *result, unsigned int maxlen)
377{
378 struct delay_c *dc = ti->private;
379 int sz = 0;
380
381 switch (type) {
382 case STATUSTYPE_INFO:
383 DMEMIT("%u %u %u", dc->read.ops, dc->write.ops, dc->flush.ops);
384 break;
385
386 case STATUSTYPE_TABLE:
387 DMEMIT_DELAY_CLASS(&dc->read);
388 if (dc->argc >= 6) {
389 DMEMIT(" ");
390 DMEMIT_DELAY_CLASS(&dc->write);
391 }
392 if (dc->argc >= 9) {
393 DMEMIT(" ");
394 DMEMIT_DELAY_CLASS(&dc->flush);
395 }
396 break;
397
398 case STATUSTYPE_IMA:
399 *result = '\0';
400 break;
401 }
402}
403
404static int delay_iterate_devices(struct dm_target *ti,
405 iterate_devices_callout_fn fn, void *data)
406{
407 struct delay_c *dc = ti->private;
408 int ret = 0;
409
410 ret = fn(ti, dc->read.dev, dc->read.start, ti->len, data);
411 if (ret)
412 goto out;
413 ret = fn(ti, dc->write.dev, dc->write.start, ti->len, data);
414 if (ret)
415 goto out;
416 ret = fn(ti, dc->flush.dev, dc->flush.start, ti->len, data);
417 if (ret)
418 goto out;
419
420out:
421 return ret;
422}
423
424static struct target_type delay_target = {
425 .name = "delay",
426 .version = {1, 4, 0},
427 .features = DM_TARGET_PASSES_INTEGRITY,
428 .module = THIS_MODULE,
429 .ctr = delay_ctr,
430 .dtr = delay_dtr,
431 .map = delay_map,
432 .presuspend = delay_presuspend,
433 .resume = delay_resume,
434 .status = delay_status,
435 .iterate_devices = delay_iterate_devices,
436};
437module_dm(delay);
438
439MODULE_DESCRIPTION(DM_NAME " delay target");
440MODULE_AUTHOR("Heinz Mauelshagen <mauelshagen@redhat.com>");
441MODULE_LICENSE("GPL");
1/*
2 * Copyright (C) 2005-2007 Red Hat GmbH
3 *
4 * A target that delays reads and/or writes and can send
5 * them to different devices.
6 *
7 * This file is released under the GPL.
8 */
9
10#include <linux/module.h>
11#include <linux/init.h>
12#include <linux/blkdev.h>
13#include <linux/bio.h>
14#include <linux/slab.h>
15
16#include <linux/device-mapper.h>
17
18#define DM_MSG_PREFIX "delay"
19
20struct delay_c {
21 struct timer_list delay_timer;
22 struct mutex timer_lock;
23 struct workqueue_struct *kdelayd_wq;
24 struct work_struct flush_expired_bios;
25 struct list_head delayed_bios;
26 atomic_t may_delay;
27
28 struct dm_dev *dev_read;
29 sector_t start_read;
30 unsigned read_delay;
31 unsigned reads;
32
33 struct dm_dev *dev_write;
34 sector_t start_write;
35 unsigned write_delay;
36 unsigned writes;
37};
38
39struct dm_delay_info {
40 struct delay_c *context;
41 struct list_head list;
42 unsigned long expires;
43};
44
45static DEFINE_MUTEX(delayed_bios_lock);
46
47static void handle_delayed_timer(struct timer_list *t)
48{
49 struct delay_c *dc = from_timer(dc, t, delay_timer);
50
51 queue_work(dc->kdelayd_wq, &dc->flush_expired_bios);
52}
53
54static void queue_timeout(struct delay_c *dc, unsigned long expires)
55{
56 mutex_lock(&dc->timer_lock);
57
58 if (!timer_pending(&dc->delay_timer) || expires < dc->delay_timer.expires)
59 mod_timer(&dc->delay_timer, expires);
60
61 mutex_unlock(&dc->timer_lock);
62}
63
64static void flush_bios(struct bio *bio)
65{
66 struct bio *n;
67
68 while (bio) {
69 n = bio->bi_next;
70 bio->bi_next = NULL;
71 generic_make_request(bio);
72 bio = n;
73 }
74}
75
76static struct bio *flush_delayed_bios(struct delay_c *dc, int flush_all)
77{
78 struct dm_delay_info *delayed, *next;
79 unsigned long next_expires = 0;
80 int start_timer = 0;
81 struct bio_list flush_bios = { };
82
83 mutex_lock(&delayed_bios_lock);
84 list_for_each_entry_safe(delayed, next, &dc->delayed_bios, list) {
85 if (flush_all || time_after_eq(jiffies, delayed->expires)) {
86 struct bio *bio = dm_bio_from_per_bio_data(delayed,
87 sizeof(struct dm_delay_info));
88 list_del(&delayed->list);
89 bio_list_add(&flush_bios, bio);
90 if ((bio_data_dir(bio) == WRITE))
91 delayed->context->writes--;
92 else
93 delayed->context->reads--;
94 continue;
95 }
96
97 if (!start_timer) {
98 start_timer = 1;
99 next_expires = delayed->expires;
100 } else
101 next_expires = min(next_expires, delayed->expires);
102 }
103
104 mutex_unlock(&delayed_bios_lock);
105
106 if (start_timer)
107 queue_timeout(dc, next_expires);
108
109 return bio_list_get(&flush_bios);
110}
111
112static void flush_expired_bios(struct work_struct *work)
113{
114 struct delay_c *dc;
115
116 dc = container_of(work, struct delay_c, flush_expired_bios);
117 flush_bios(flush_delayed_bios(dc, 0));
118}
119
120/*
121 * Mapping parameters:
122 * <device> <offset> <delay> [<write_device> <write_offset> <write_delay>]
123 *
124 * With separate write parameters, the first set is only used for reads.
125 * Offsets are specified in sectors.
126 * Delays are specified in milliseconds.
127 */
128static int delay_ctr(struct dm_target *ti, unsigned int argc, char **argv)
129{
130 struct delay_c *dc;
131 unsigned long long tmpll;
132 char dummy;
133 int ret;
134
135 if (argc != 3 && argc != 6) {
136 ti->error = "Requires exactly 3 or 6 arguments";
137 return -EINVAL;
138 }
139
140 dc = kmalloc(sizeof(*dc), GFP_KERNEL);
141 if (!dc) {
142 ti->error = "Cannot allocate context";
143 return -ENOMEM;
144 }
145
146 dc->reads = dc->writes = 0;
147
148 ret = -EINVAL;
149 if (sscanf(argv[1], "%llu%c", &tmpll, &dummy) != 1) {
150 ti->error = "Invalid device sector";
151 goto bad;
152 }
153 dc->start_read = tmpll;
154
155 if (sscanf(argv[2], "%u%c", &dc->read_delay, &dummy) != 1) {
156 ti->error = "Invalid delay";
157 goto bad;
158 }
159
160 ret = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table),
161 &dc->dev_read);
162 if (ret) {
163 ti->error = "Device lookup failed";
164 goto bad;
165 }
166
167 ret = -EINVAL;
168 dc->dev_write = NULL;
169 if (argc == 3)
170 goto out;
171
172 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
173 ti->error = "Invalid write device sector";
174 goto bad_dev_read;
175 }
176 dc->start_write = tmpll;
177
178 if (sscanf(argv[5], "%u%c", &dc->write_delay, &dummy) != 1) {
179 ti->error = "Invalid write delay";
180 goto bad_dev_read;
181 }
182
183 ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table),
184 &dc->dev_write);
185 if (ret) {
186 ti->error = "Write device lookup failed";
187 goto bad_dev_read;
188 }
189
190out:
191 ret = -EINVAL;
192 dc->kdelayd_wq = alloc_workqueue("kdelayd", WQ_MEM_RECLAIM, 0);
193 if (!dc->kdelayd_wq) {
194 DMERR("Couldn't start kdelayd");
195 goto bad_queue;
196 }
197
198 timer_setup(&dc->delay_timer, handle_delayed_timer, 0);
199
200 INIT_WORK(&dc->flush_expired_bios, flush_expired_bios);
201 INIT_LIST_HEAD(&dc->delayed_bios);
202 mutex_init(&dc->timer_lock);
203 atomic_set(&dc->may_delay, 1);
204
205 ti->num_flush_bios = 1;
206 ti->num_discard_bios = 1;
207 ti->per_io_data_size = sizeof(struct dm_delay_info);
208 ti->private = dc;
209 return 0;
210
211bad_queue:
212 if (dc->dev_write)
213 dm_put_device(ti, dc->dev_write);
214bad_dev_read:
215 dm_put_device(ti, dc->dev_read);
216bad:
217 kfree(dc);
218 return ret;
219}
220
221static void delay_dtr(struct dm_target *ti)
222{
223 struct delay_c *dc = ti->private;
224
225 destroy_workqueue(dc->kdelayd_wq);
226
227 dm_put_device(ti, dc->dev_read);
228
229 if (dc->dev_write)
230 dm_put_device(ti, dc->dev_write);
231
232 mutex_destroy(&dc->timer_lock);
233
234 kfree(dc);
235}
236
237static int delay_bio(struct delay_c *dc, int delay, struct bio *bio)
238{
239 struct dm_delay_info *delayed;
240 unsigned long expires = 0;
241
242 if (!delay || !atomic_read(&dc->may_delay))
243 return DM_MAPIO_REMAPPED;
244
245 delayed = dm_per_bio_data(bio, sizeof(struct dm_delay_info));
246
247 delayed->context = dc;
248 delayed->expires = expires = jiffies + msecs_to_jiffies(delay);
249
250 mutex_lock(&delayed_bios_lock);
251
252 if (bio_data_dir(bio) == WRITE)
253 dc->writes++;
254 else
255 dc->reads++;
256
257 list_add_tail(&delayed->list, &dc->delayed_bios);
258
259 mutex_unlock(&delayed_bios_lock);
260
261 queue_timeout(dc, expires);
262
263 return DM_MAPIO_SUBMITTED;
264}
265
266static void delay_presuspend(struct dm_target *ti)
267{
268 struct delay_c *dc = ti->private;
269
270 atomic_set(&dc->may_delay, 0);
271 del_timer_sync(&dc->delay_timer);
272 flush_bios(flush_delayed_bios(dc, 1));
273}
274
275static void delay_resume(struct dm_target *ti)
276{
277 struct delay_c *dc = ti->private;
278
279 atomic_set(&dc->may_delay, 1);
280}
281
282static int delay_map(struct dm_target *ti, struct bio *bio)
283{
284 struct delay_c *dc = ti->private;
285
286 if ((bio_data_dir(bio) == WRITE) && (dc->dev_write)) {
287 bio_set_dev(bio, dc->dev_write->bdev);
288 if (bio_sectors(bio))
289 bio->bi_iter.bi_sector = dc->start_write +
290 dm_target_offset(ti, bio->bi_iter.bi_sector);
291
292 return delay_bio(dc, dc->write_delay, bio);
293 }
294
295 bio_set_dev(bio, dc->dev_read->bdev);
296 bio->bi_iter.bi_sector = dc->start_read +
297 dm_target_offset(ti, bio->bi_iter.bi_sector);
298
299 return delay_bio(dc, dc->read_delay, bio);
300}
301
302static void delay_status(struct dm_target *ti, status_type_t type,
303 unsigned status_flags, char *result, unsigned maxlen)
304{
305 struct delay_c *dc = ti->private;
306 int sz = 0;
307
308 switch (type) {
309 case STATUSTYPE_INFO:
310 DMEMIT("%u %u", dc->reads, dc->writes);
311 break;
312
313 case STATUSTYPE_TABLE:
314 DMEMIT("%s %llu %u", dc->dev_read->name,
315 (unsigned long long) dc->start_read,
316 dc->read_delay);
317 if (dc->dev_write)
318 DMEMIT(" %s %llu %u", dc->dev_write->name,
319 (unsigned long long) dc->start_write,
320 dc->write_delay);
321 break;
322 }
323}
324
325static int delay_iterate_devices(struct dm_target *ti,
326 iterate_devices_callout_fn fn, void *data)
327{
328 struct delay_c *dc = ti->private;
329 int ret = 0;
330
331 ret = fn(ti, dc->dev_read, dc->start_read, ti->len, data);
332 if (ret)
333 goto out;
334
335 if (dc->dev_write)
336 ret = fn(ti, dc->dev_write, dc->start_write, ti->len, data);
337
338out:
339 return ret;
340}
341
342static struct target_type delay_target = {
343 .name = "delay",
344 .version = {1, 2, 1},
345 .features = DM_TARGET_PASSES_INTEGRITY,
346 .module = THIS_MODULE,
347 .ctr = delay_ctr,
348 .dtr = delay_dtr,
349 .map = delay_map,
350 .presuspend = delay_presuspend,
351 .resume = delay_resume,
352 .status = delay_status,
353 .iterate_devices = delay_iterate_devices,
354};
355
356static int __init dm_delay_init(void)
357{
358 int r;
359
360 r = dm_register_target(&delay_target);
361 if (r < 0) {
362 DMERR("register failed %d", r);
363 goto bad_register;
364 }
365
366 return 0;
367
368bad_register:
369 return r;
370}
371
372static void __exit dm_delay_exit(void)
373{
374 dm_unregister_target(&delay_target);
375}
376
377/* Module hooks */
378module_init(dm_delay_init);
379module_exit(dm_delay_exit);
380
381MODULE_DESCRIPTION(DM_NAME " delay target");
382MODULE_AUTHOR("Heinz Mauelshagen <mauelshagen@redhat.com>");
383MODULE_LICENSE("GPL");