Linux Audio

Check our new training course

Loading...
v6.13.7
   1/*
   2 * Copyright (c) 2004 Topspin Communications.  All rights reserved.
   3 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
   4 *
   5 * This software is available to you under a choice of one of two
   6 * licenses.  You may choose to be licensed under the terms of the GNU
   7 * General Public License (GPL) Version 2, available from the file
   8 * COPYING in the main directory of this source tree, or the
   9 * OpenIB.org BSD license below:
  10 *
  11 *     Redistribution and use in source and binary forms, with or
  12 *     without modification, are permitted provided that the following
  13 *     conditions are met:
  14 *
  15 *      - Redistributions of source code must retain the above
  16 *        copyright notice, this list of conditions and the following
  17 *        disclaimer.
  18 *
  19 *      - Redistributions in binary form must reproduce the above
  20 *        copyright notice, this list of conditions and the following
  21 *        disclaimer in the documentation and/or other materials
  22 *        provided with the distribution.
  23 *
  24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  31 * SOFTWARE.
  32 */
  33
  34#include <linux/module.h>
  35#include <linux/string.h>
  36#include <linux/errno.h>
  37#include <linux/kernel.h>
  38#include <linux/slab.h>
  39#include <linux/init.h>
 
  40#include <linux/netdevice.h>
  41#include <net/net_namespace.h>
  42#include <linux/security.h>
  43#include <linux/notifier.h>
  44#include <linux/hashtable.h>
  45#include <rdma/rdma_netlink.h>
  46#include <rdma/ib_addr.h>
  47#include <rdma/ib_cache.h>
  48#include <rdma/rdma_counter.h>
  49
  50#include "core_priv.h"
  51#include "restrack.h"
  52
  53MODULE_AUTHOR("Roland Dreier");
  54MODULE_DESCRIPTION("core kernel InfiniBand API");
  55MODULE_LICENSE("Dual BSD/GPL");
  56
 
 
 
 
 
 
 
 
 
  57struct workqueue_struct *ib_comp_wq;
  58struct workqueue_struct *ib_comp_unbound_wq;
  59struct workqueue_struct *ib_wq;
  60EXPORT_SYMBOL_GPL(ib_wq);
  61static struct workqueue_struct *ib_unreg_wq;
  62
  63/*
  64 * Each of the three rwsem locks (devices, clients, client_data) protects the
  65 * xarray of the same name. Specifically it allows the caller to assert that
  66 * the MARK will/will not be changing under the lock, and for devices and
  67 * clients, that the value in the xarray is still a valid pointer. Change of
  68 * the MARK is linked to the object state, so holding the lock and testing the
  69 * MARK also asserts that the contained object is in a certain state.
  70 *
  71 * This is used to build a two stage register/unregister flow where objects
  72 * can continue to be in the xarray even though they are still in progress to
  73 * register/unregister.
  74 *
  75 * The xarray itself provides additional locking, and restartable iteration,
  76 * which is also relied on.
  77 *
  78 * Locks should not be nested, with the exception of client_data, which is
  79 * allowed to nest under the read side of the other two locks.
  80 *
  81 * The devices_rwsem also protects the device name list, any change or
  82 * assignment of device name must also hold the write side to guarantee unique
  83 * names.
  84 */
  85
  86/*
  87 * devices contains devices that have had their names assigned. The
  88 * devices may not be registered. Users that care about the registration
  89 * status need to call ib_device_try_get() on the device to ensure it is
  90 * registered, and keep it registered, for the required duration.
  91 *
  92 */
  93static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
  94static DECLARE_RWSEM(devices_rwsem);
  95#define DEVICE_REGISTERED XA_MARK_1
  96
  97static u32 highest_client_id;
  98#define CLIENT_REGISTERED XA_MARK_1
  99static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
 100static DECLARE_RWSEM(clients_rwsem);
 101
 102static void ib_client_put(struct ib_client *client)
 103{
 104	if (refcount_dec_and_test(&client->uses))
 105		complete(&client->uses_zero);
 106}
 107
 108/*
 109 * If client_data is registered then the corresponding client must also still
 110 * be registered.
 111 */
 112#define CLIENT_DATA_REGISTERED XA_MARK_1
 113
 114unsigned int rdma_dev_net_id;
 
 
 
 
 115
 116/*
 117 * A list of net namespaces is maintained in an xarray. This is necessary
 118 * because we can't get the locking right using the existing net ns list. We
 119 * would require a init_net callback after the list is updated.
 120 */
 121static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC);
 122/*
 123 * rwsem to protect accessing the rdma_nets xarray entries.
 124 */
 125static DECLARE_RWSEM(rdma_nets_rwsem);
 126
 127bool ib_devices_shared_netns = true;
 128module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444);
 129MODULE_PARM_DESC(netns_mode,
 130		 "Share device among net namespaces; default=1 (shared)");
 131/**
 132 * rdma_dev_access_netns() - Return whether an rdma device can be accessed
 133 *			     from a specified net namespace or not.
 134 * @dev:	Pointer to rdma device which needs to be checked
 135 * @net:	Pointer to net namesapce for which access to be checked
 136 *
 137 * When the rdma device is in shared mode, it ignores the net namespace.
 138 * When the rdma device is exclusive to a net namespace, rdma device net
 139 * namespace is checked against the specified one.
 140 */
 141bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net)
 142{
 143	return (ib_devices_shared_netns ||
 144		net_eq(read_pnet(&dev->coredev.rdma_net), net));
 145}
 146EXPORT_SYMBOL(rdma_dev_access_netns);
 147
 148/*
 149 * xarray has this behavior where it won't iterate over NULL values stored in
 150 * allocated arrays.  So we need our own iterator to see all values stored in
 151 * the array. This does the same thing as xa_for_each except that it also
 152 * returns NULL valued entries if the array is allocating. Simplified to only
 153 * work on simple xarrays.
 154 */
 155static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
 156			     xa_mark_t filter)
 157{
 158	XA_STATE(xas, xa, *indexp);
 159	void *entry;
 160
 161	rcu_read_lock();
 162	do {
 163		entry = xas_find_marked(&xas, ULONG_MAX, filter);
 164		if (xa_is_zero(entry))
 165			break;
 166	} while (xas_retry(&xas, entry));
 167	rcu_read_unlock();
 168
 169	if (entry) {
 170		*indexp = xas.xa_index;
 171		if (xa_is_zero(entry))
 172			return NULL;
 173		return entry;
 174	}
 175	return XA_ERROR(-ENOENT);
 176}
 177#define xan_for_each_marked(xa, index, entry, filter)                          \
 178	for (index = 0, entry = xan_find_marked(xa, &(index), filter);         \
 179	     !xa_is_err(entry);                                                \
 180	     (index)++, entry = xan_find_marked(xa, &(index), filter))
 181
 182/* RCU hash table mapping netdevice pointers to struct ib_port_data */
 183static DEFINE_SPINLOCK(ndev_hash_lock);
 184static DECLARE_HASHTABLE(ndev_hash, 5);
 185
 186static void free_netdevs(struct ib_device *ib_dev);
 187static void ib_unregister_work(struct work_struct *work);
 188static void __ib_unregister_device(struct ib_device *device);
 189static int ib_security_change(struct notifier_block *nb, unsigned long event,
 190			      void *lsm_data);
 191static void ib_policy_change_task(struct work_struct *work);
 192static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
 193
 194static void __ibdev_printk(const char *level, const struct ib_device *ibdev,
 195			   struct va_format *vaf)
 196{
 197	if (ibdev && ibdev->dev.parent)
 198		dev_printk_emit(level[1] - '0',
 199				ibdev->dev.parent,
 200				"%s %s %s: %pV",
 201				dev_driver_string(ibdev->dev.parent),
 202				dev_name(ibdev->dev.parent),
 203				dev_name(&ibdev->dev),
 204				vaf);
 205	else if (ibdev)
 206		printk("%s%s: %pV",
 207		       level, dev_name(&ibdev->dev), vaf);
 208	else
 209		printk("%s(NULL ib_device): %pV", level, vaf);
 210}
 211
 212void ibdev_printk(const char *level, const struct ib_device *ibdev,
 213		  const char *format, ...)
 214{
 215	struct va_format vaf;
 216	va_list args;
 217
 218	va_start(args, format);
 219
 220	vaf.fmt = format;
 221	vaf.va = &args;
 222
 223	__ibdev_printk(level, ibdev, &vaf);
 224
 225	va_end(args);
 226}
 227EXPORT_SYMBOL(ibdev_printk);
 228
 229#define define_ibdev_printk_level(func, level)                  \
 230void func(const struct ib_device *ibdev, const char *fmt, ...)  \
 231{                                                               \
 232	struct va_format vaf;                                   \
 233	va_list args;                                           \
 234								\
 235	va_start(args, fmt);                                    \
 236								\
 237	vaf.fmt = fmt;                                          \
 238	vaf.va = &args;                                         \
 239								\
 240	__ibdev_printk(level, ibdev, &vaf);                     \
 241								\
 242	va_end(args);                                           \
 243}                                                               \
 244EXPORT_SYMBOL(func);
 245
 246define_ibdev_printk_level(ibdev_emerg, KERN_EMERG);
 247define_ibdev_printk_level(ibdev_alert, KERN_ALERT);
 248define_ibdev_printk_level(ibdev_crit, KERN_CRIT);
 249define_ibdev_printk_level(ibdev_err, KERN_ERR);
 250define_ibdev_printk_level(ibdev_warn, KERN_WARNING);
 251define_ibdev_printk_level(ibdev_notice, KERN_NOTICE);
 252define_ibdev_printk_level(ibdev_info, KERN_INFO);
 253
 254static struct notifier_block ibdev_lsm_nb = {
 255	.notifier_call = ib_security_change,
 256};
 257
 258static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
 259				 struct net *net);
 260
 261/* Pointer to the RCU head at the start of the ib_port_data array */
 262struct ib_port_data_rcu {
 263	struct rcu_head rcu_head;
 264	struct ib_port_data pdata[];
 265};
 266
 267static void ib_device_check_mandatory(struct ib_device *device)
 268{
 269#define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
 270	static const struct {
 271		size_t offset;
 272		char  *name;
 273	} mandatory_table[] = {
 274		IB_MANDATORY_FUNC(query_device),
 275		IB_MANDATORY_FUNC(query_port),
 
 276		IB_MANDATORY_FUNC(alloc_pd),
 277		IB_MANDATORY_FUNC(dealloc_pd),
 
 
 278		IB_MANDATORY_FUNC(create_qp),
 279		IB_MANDATORY_FUNC(modify_qp),
 280		IB_MANDATORY_FUNC(destroy_qp),
 281		IB_MANDATORY_FUNC(post_send),
 282		IB_MANDATORY_FUNC(post_recv),
 283		IB_MANDATORY_FUNC(create_cq),
 284		IB_MANDATORY_FUNC(destroy_cq),
 285		IB_MANDATORY_FUNC(poll_cq),
 286		IB_MANDATORY_FUNC(req_notify_cq),
 287		IB_MANDATORY_FUNC(get_dma_mr),
 288		IB_MANDATORY_FUNC(reg_user_mr),
 289		IB_MANDATORY_FUNC(dereg_mr),
 290		IB_MANDATORY_FUNC(get_port_immutable)
 291	};
 292	int i;
 293
 294	device->kverbs_provider = true;
 295	for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
 296		if (!*(void **) ((void *) &device->ops +
 297				 mandatory_table[i].offset)) {
 298			device->kverbs_provider = false;
 299			break;
 300		}
 301	}
 302}
 303
 304/*
 305 * Caller must perform ib_device_put() to return the device reference count
 306 * when ib_device_get_by_index() returns valid device pointer.
 307 */
 308struct ib_device *ib_device_get_by_index(const struct net *net, u32 index)
 309{
 310	struct ib_device *device;
 311
 312	down_read(&devices_rwsem);
 313	device = xa_load(&devices, index);
 314	if (device) {
 315		if (!rdma_dev_access_netns(device, net)) {
 316			device = NULL;
 317			goto out;
 318		}
 319
 320		if (!ib_device_try_get(device))
 321			device = NULL;
 322	}
 323out:
 324	up_read(&devices_rwsem);
 325	return device;
 326}
 327
 328/**
 329 * ib_device_put - Release IB device reference
 330 * @device: device whose reference to be released
 331 *
 332 * ib_device_put() releases reference to the IB device to allow it to be
 333 * unregistered and eventually free.
 334 */
 335void ib_device_put(struct ib_device *device)
 336{
 337	if (refcount_dec_and_test(&device->refcount))
 338		complete(&device->unreg_completion);
 339}
 340EXPORT_SYMBOL(ib_device_put);
 341
 342static struct ib_device *__ib_device_get_by_name(const char *name)
 343{
 344	struct ib_device *device;
 345	unsigned long index;
 346
 347	xa_for_each (&devices, index, device)
 348		if (!strcmp(name, dev_name(&device->dev)))
 349			return device;
 350
 351	return NULL;
 352}
 353
 354/**
 355 * ib_device_get_by_name - Find an IB device by name
 356 * @name: The name to look for
 357 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
 358 *
 359 * Find and hold an ib_device by its name. The caller must call
 360 * ib_device_put() on the returned pointer.
 361 */
 362struct ib_device *ib_device_get_by_name(const char *name,
 363					enum rdma_driver_id driver_id)
 364{
 365	struct ib_device *device;
 366
 367	down_read(&devices_rwsem);
 368	device = __ib_device_get_by_name(name);
 369	if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
 370	    device->ops.driver_id != driver_id)
 371		device = NULL;
 372
 373	if (device) {
 374		if (!ib_device_try_get(device))
 375			device = NULL;
 376	}
 377	up_read(&devices_rwsem);
 378	return device;
 379}
 380EXPORT_SYMBOL(ib_device_get_by_name);
 381
 382static int rename_compat_devs(struct ib_device *device)
 383{
 384	struct ib_core_device *cdev;
 385	unsigned long index;
 386	int ret = 0;
 387
 388	mutex_lock(&device->compat_devs_mutex);
 389	xa_for_each (&device->compat_devs, index, cdev) {
 390		ret = device_rename(&cdev->dev, dev_name(&device->dev));
 391		if (ret) {
 392			dev_warn(&cdev->dev,
 393				 "Fail to rename compatdev to new name %s\n",
 394				 dev_name(&device->dev));
 395			break;
 396		}
 397	}
 398	mutex_unlock(&device->compat_devs_mutex);
 399	return ret;
 400}
 401
 402int ib_device_rename(struct ib_device *ibdev, const char *name)
 403{
 404	unsigned long index;
 405	void *client_data;
 406	int ret;
 407
 408	down_write(&devices_rwsem);
 409	if (!strcmp(name, dev_name(&ibdev->dev))) {
 410		up_write(&devices_rwsem);
 411		return 0;
 412	}
 413
 414	if (__ib_device_get_by_name(name)) {
 415		up_write(&devices_rwsem);
 416		return -EEXIST;
 417	}
 418
 419	ret = device_rename(&ibdev->dev, name);
 420	if (ret) {
 421		up_write(&devices_rwsem);
 422		return ret;
 423	}
 424
 425	strscpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
 426	ret = rename_compat_devs(ibdev);
 427
 428	downgrade_write(&devices_rwsem);
 429	down_read(&ibdev->client_data_rwsem);
 430	xan_for_each_marked(&ibdev->client_data, index, client_data,
 431			    CLIENT_DATA_REGISTERED) {
 432		struct ib_client *client = xa_load(&clients, index);
 433
 434		if (!client || !client->rename)
 435			continue;
 436
 437		client->rename(ibdev, client_data);
 438	}
 439	up_read(&ibdev->client_data_rwsem);
 440	rdma_nl_notify_event(ibdev, 0, RDMA_RENAME_EVENT);
 441	up_read(&devices_rwsem);
 442	return 0;
 443}
 444
 445int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim)
 446{
 447	if (use_dim > 1)
 448		return -EINVAL;
 449	ibdev->use_cq_dim = use_dim;
 450
 451	return 0;
 452}
 453
 454static int alloc_name(struct ib_device *ibdev, const char *name)
 455{
 
 
 456	struct ib_device *device;
 457	unsigned long index;
 458	struct ida inuse;
 459	int rc;
 460	int i;
 461
 462	lockdep_assert_held_write(&devices_rwsem);
 463	ida_init(&inuse);
 464	xa_for_each (&devices, index, device) {
 465		char buf[IB_DEVICE_NAME_MAX];
 466
 467		if (sscanf(dev_name(&device->dev), name, &i) != 1)
 
 468			continue;
 469		if (i < 0 || i >= INT_MAX)
 470			continue;
 471		snprintf(buf, sizeof buf, name, i);
 472		if (strcmp(buf, dev_name(&device->dev)) != 0)
 473			continue;
 474
 475		rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL);
 476		if (rc < 0)
 477			goto out;
 478	}
 479
 480	rc = ida_alloc(&inuse, GFP_KERNEL);
 481	if (rc < 0)
 482		goto out;
 483
 484	rc = dev_set_name(&ibdev->dev, name, rc);
 485out:
 486	ida_destroy(&inuse);
 487	return rc;
 
 488}
 489
 490static void ib_device_release(struct device *device)
 491{
 492	struct ib_device *dev = container_of(device, struct ib_device, dev);
 493
 494	free_netdevs(dev);
 495	WARN_ON(refcount_read(&dev->refcount));
 496	if (dev->hw_stats_data)
 497		ib_device_release_hw_stats(dev->hw_stats_data);
 498	if (dev->port_data) {
 
 
 499		ib_cache_release_one(dev);
 500		ib_security_release_port_pkey_list(dev);
 501		rdma_counter_release(dev);
 502		kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
 503				       pdata[0]),
 504			  rcu_head);
 505	}
 506
 507	mutex_destroy(&dev->subdev_lock);
 508	mutex_destroy(&dev->unregistration_lock);
 509	mutex_destroy(&dev->compat_devs_mutex);
 510
 511	xa_destroy(&dev->compat_devs);
 512	xa_destroy(&dev->client_data);
 513	kfree_rcu(dev, rcu_head);
 514}
 515
 516static int ib_device_uevent(const struct device *device,
 517			    struct kobj_uevent_env *env)
 518{
 519	if (add_uevent_var(env, "NAME=%s", dev_name(device)))
 
 
 520		return -ENOMEM;
 521
 522	/*
 523	 * It would be nice to pass the node GUID with the event...
 524	 */
 525
 526	return 0;
 527}
 528
 529static const void *net_namespace(const struct device *d)
 530{
 531	const struct ib_core_device *coredev =
 532			container_of(d, struct ib_core_device, dev);
 533
 534	return read_pnet(&coredev->rdma_net);
 535}
 536
 537static struct class ib_class = {
 538	.name    = "infiniband",
 539	.dev_release = ib_device_release,
 540	.dev_uevent = ib_device_uevent,
 541	.ns_type = &net_ns_type_operations,
 542	.namespace = net_namespace,
 543};
 544
 545static void rdma_init_coredev(struct ib_core_device *coredev,
 546			      struct ib_device *dev, struct net *net)
 547{
 548	/* This BUILD_BUG_ON is intended to catch layout change
 549	 * of union of ib_core_device and device.
 550	 * dev must be the first element as ib_core and providers
 551	 * driver uses it. Adding anything in ib_core_device before
 552	 * device will break this assumption.
 553	 */
 554	BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) !=
 555		     offsetof(struct ib_device, dev));
 556
 557	coredev->dev.class = &ib_class;
 558	coredev->dev.groups = dev->groups;
 559	device_initialize(&coredev->dev);
 560	coredev->owner = dev;
 561	INIT_LIST_HEAD(&coredev->port_list);
 562	write_pnet(&coredev->rdma_net, net);
 563}
 564
 565/**
 566 * _ib_alloc_device - allocate an IB device struct
 567 * @size:size of structure to allocate
 568 *
 569 * Low-level drivers should use ib_alloc_device() to allocate &struct
 570 * ib_device.  @size is the size of the structure to be allocated,
 571 * including any private data used by the low-level driver.
 572 * ib_dealloc_device() must be used to free structures allocated with
 573 * ib_alloc_device().
 574 */
 575struct ib_device *_ib_alloc_device(size_t size)
 576{
 577	struct ib_device *device;
 578	unsigned int i;
 579
 580	if (WARN_ON(size < sizeof(struct ib_device)))
 581		return NULL;
 582
 583	device = kzalloc(size, GFP_KERNEL);
 584	if (!device)
 585		return NULL;
 586
 587	if (rdma_restrack_init(device)) {
 588		kfree(device);
 589		return NULL;
 590	}
 591
 592	rdma_init_coredev(&device->coredev, device, &init_net);
 
 
 
 593
 594	INIT_LIST_HEAD(&device->event_handler_list);
 595	spin_lock_init(&device->qp_open_list_lock);
 596	init_rwsem(&device->event_handler_rwsem);
 597	mutex_init(&device->unregistration_lock);
 598	/*
 599	 * client_data needs to be alloc because we don't want our mark to be
 600	 * destroyed if the user stores NULL in the client data.
 601	 */
 602	xa_init_flags(&device->client_data, XA_FLAGS_ALLOC);
 603	init_rwsem(&device->client_data_rwsem);
 604	xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC);
 605	mutex_init(&device->compat_devs_mutex);
 606	init_completion(&device->unreg_completion);
 607	INIT_WORK(&device->unregistration_work, ib_unregister_work);
 608
 609	spin_lock_init(&device->cq_pools_lock);
 610	for (i = 0; i < ARRAY_SIZE(device->cq_pools); i++)
 611		INIT_LIST_HEAD(&device->cq_pools[i]);
 612
 613	rwlock_init(&device->cache_lock);
 614
 615	device->uverbs_cmd_mask =
 616		BIT_ULL(IB_USER_VERBS_CMD_ALLOC_MW) |
 617		BIT_ULL(IB_USER_VERBS_CMD_ALLOC_PD) |
 618		BIT_ULL(IB_USER_VERBS_CMD_ATTACH_MCAST) |
 619		BIT_ULL(IB_USER_VERBS_CMD_CLOSE_XRCD) |
 620		BIT_ULL(IB_USER_VERBS_CMD_CREATE_AH) |
 621		BIT_ULL(IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) |
 622		BIT_ULL(IB_USER_VERBS_CMD_CREATE_CQ) |
 623		BIT_ULL(IB_USER_VERBS_CMD_CREATE_QP) |
 624		BIT_ULL(IB_USER_VERBS_CMD_CREATE_SRQ) |
 625		BIT_ULL(IB_USER_VERBS_CMD_CREATE_XSRQ) |
 626		BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_MW) |
 627		BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_PD) |
 628		BIT_ULL(IB_USER_VERBS_CMD_DEREG_MR) |
 629		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_AH) |
 630		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_CQ) |
 631		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_QP) |
 632		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_SRQ) |
 633		BIT_ULL(IB_USER_VERBS_CMD_DETACH_MCAST) |
 634		BIT_ULL(IB_USER_VERBS_CMD_GET_CONTEXT) |
 635		BIT_ULL(IB_USER_VERBS_CMD_MODIFY_QP) |
 636		BIT_ULL(IB_USER_VERBS_CMD_MODIFY_SRQ) |
 637		BIT_ULL(IB_USER_VERBS_CMD_OPEN_QP) |
 638		BIT_ULL(IB_USER_VERBS_CMD_OPEN_XRCD) |
 639		BIT_ULL(IB_USER_VERBS_CMD_QUERY_DEVICE) |
 640		BIT_ULL(IB_USER_VERBS_CMD_QUERY_PORT) |
 641		BIT_ULL(IB_USER_VERBS_CMD_QUERY_QP) |
 642		BIT_ULL(IB_USER_VERBS_CMD_QUERY_SRQ) |
 643		BIT_ULL(IB_USER_VERBS_CMD_REG_MR) |
 644		BIT_ULL(IB_USER_VERBS_CMD_REREG_MR) |
 645		BIT_ULL(IB_USER_VERBS_CMD_RESIZE_CQ);
 646
 647	mutex_init(&device->subdev_lock);
 648	INIT_LIST_HEAD(&device->subdev_list_head);
 649	INIT_LIST_HEAD(&device->subdev_list);
 650
 651	return device;
 652}
 653EXPORT_SYMBOL(_ib_alloc_device);
 654
 655/**
 656 * ib_dealloc_device - free an IB device struct
 657 * @device:structure to free
 658 *
 659 * Free a structure allocated with ib_alloc_device().
 660 */
 661void ib_dealloc_device(struct ib_device *device)
 662{
 663	if (device->ops.dealloc_driver)
 664		device->ops.dealloc_driver(device);
 665
 666	/*
 667	 * ib_unregister_driver() requires all devices to remain in the xarray
 668	 * while their ops are callable. The last op we call is dealloc_driver
 669	 * above.  This is needed to create a fence on op callbacks prior to
 670	 * allowing the driver module to unload.
 671	 */
 672	down_write(&devices_rwsem);
 673	if (xa_load(&devices, device->index) == device)
 674		xa_erase(&devices, device->index);
 675	up_write(&devices_rwsem);
 676
 677	/* Expedite releasing netdev references */
 678	free_netdevs(device);
 679
 680	WARN_ON(!xa_empty(&device->compat_devs));
 681	WARN_ON(!xa_empty(&device->client_data));
 682	WARN_ON(refcount_read(&device->refcount));
 683	rdma_restrack_clean(device);
 684	/* Balances with device_initialize */
 685	put_device(&device->dev);
 686}
 687EXPORT_SYMBOL(ib_dealloc_device);
 688
 689/*
 690 * add_client_context() and remove_client_context() must be safe against
 691 * parallel calls on the same device - registration/unregistration of both the
 692 * device and client can be occurring in parallel.
 693 *
 694 * The routines need to be a fence, any caller must not return until the add
 695 * or remove is fully completed.
 696 */
 697static int add_client_context(struct ib_device *device,
 698			      struct ib_client *client)
 699{
 700	int ret = 0;
 701
 702	if (!device->kverbs_provider && !client->no_kverbs_req)
 703		return 0;
 704
 705	down_write(&device->client_data_rwsem);
 706	/*
 707	 * So long as the client is registered hold both the client and device
 708	 * unregistration locks.
 709	 */
 710	if (!refcount_inc_not_zero(&client->uses))
 711		goto out_unlock;
 712	refcount_inc(&device->refcount);
 713
 714	/*
 715	 * Another caller to add_client_context got here first and has already
 716	 * completely initialized context.
 717	 */
 718	if (xa_get_mark(&device->client_data, client->client_id,
 719		    CLIENT_DATA_REGISTERED))
 720		goto out;
 721
 722	ret = xa_err(xa_store(&device->client_data, client->client_id, NULL,
 723			      GFP_KERNEL));
 724	if (ret)
 725		goto out;
 726	downgrade_write(&device->client_data_rwsem);
 727	if (client->add) {
 728		if (client->add(device)) {
 729			/*
 730			 * If a client fails to add then the error code is
 731			 * ignored, but we won't call any more ops on this
 732			 * client.
 733			 */
 734			xa_erase(&device->client_data, client->client_id);
 735			up_read(&device->client_data_rwsem);
 736			ib_device_put(device);
 737			ib_client_put(client);
 738			return 0;
 739		}
 740	}
 741
 742	/* Readers shall not see a client until add has been completed */
 743	xa_set_mark(&device->client_data, client->client_id,
 744		    CLIENT_DATA_REGISTERED);
 745	up_read(&device->client_data_rwsem);
 746	return 0;
 747
 748out:
 749	ib_device_put(device);
 750	ib_client_put(client);
 751out_unlock:
 752	up_write(&device->client_data_rwsem);
 753	return ret;
 754}
 755
 756static void remove_client_context(struct ib_device *device,
 757				  unsigned int client_id)
 758{
 759	struct ib_client *client;
 760	void *client_data;
 761
 762	down_write(&device->client_data_rwsem);
 763	if (!xa_get_mark(&device->client_data, client_id,
 764			 CLIENT_DATA_REGISTERED)) {
 765		up_write(&device->client_data_rwsem);
 766		return;
 767	}
 768	client_data = xa_load(&device->client_data, client_id);
 769	xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED);
 770	client = xa_load(&clients, client_id);
 771	up_write(&device->client_data_rwsem);
 772
 773	/*
 774	 * Notice we cannot be holding any exclusive locks when calling the
 775	 * remove callback as the remove callback can recurse back into any
 776	 * public functions in this module and thus try for any locks those
 777	 * functions take.
 778	 *
 779	 * For this reason clients and drivers should not call the
 780	 * unregistration functions will holdling any locks.
 781	 */
 782	if (client->remove)
 783		client->remove(device, client_data);
 784
 785	xa_erase(&device->client_data, client_id);
 786	ib_device_put(device);
 787	ib_client_put(client);
 788}
 789
 790static int alloc_port_data(struct ib_device *device)
 791{
 792	struct ib_port_data_rcu *pdata_rcu;
 793	u32 port;
 794
 795	if (device->port_data)
 796		return 0;
 797
 798	/* This can only be called once the physical port range is defined */
 799	if (WARN_ON(!device->phys_port_cnt))
 800		return -EINVAL;
 801
 802	/* Reserve U32_MAX so the logic to go over all the ports is sane */
 803	if (WARN_ON(device->phys_port_cnt == U32_MAX))
 804		return -EINVAL;
 805
 806	/*
 807	 * device->port_data is indexed directly by the port number to make
 808	 * access to this data as efficient as possible.
 809	 *
 810	 * Therefore port_data is declared as a 1 based array with potential
 811	 * empty slots at the beginning.
 812	 */
 813	pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
 814					size_add(rdma_end_port(device), 1)),
 815			    GFP_KERNEL);
 816	if (!pdata_rcu)
 817		return -ENOMEM;
 818	/*
 819	 * The rcu_head is put in front of the port data array and the stored
 820	 * pointer is adjusted since we never need to see that member until
 821	 * kfree_rcu.
 822	 */
 823	device->port_data = pdata_rcu->pdata;
 824
 825	rdma_for_each_port (device, port) {
 826		struct ib_port_data *pdata = &device->port_data[port];
 
 
 
 
 
 
 
 827
 828		pdata->ib_dev = device;
 829		spin_lock_init(&pdata->pkey_list_lock);
 830		INIT_LIST_HEAD(&pdata->pkey_list);
 831		spin_lock_init(&pdata->netdev_lock);
 832		INIT_HLIST_NODE(&pdata->ndev_hash_link);
 833	}
 834	return 0;
 835}
 836
 837static int verify_immutable(const struct ib_device *dev, u32 port)
 838{
 839	return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
 840			    rdma_max_mad_size(dev, port) != 0);
 841}
 842
 843static int setup_port_data(struct ib_device *device)
 844{
 845	u32 port;
 846	int ret;
 
 
 
 847
 848	ret = alloc_port_data(device);
 849	if (ret)
 850		return ret;
 851
 852	rdma_for_each_port (device, port) {
 853		struct ib_port_data *pdata = &device->port_data[port];
 
 
 
 
 
 
 854
 855		ret = device->ops.get_port_immutable(device, port,
 856						     &pdata->immutable);
 
 857		if (ret)
 858			return ret;
 859
 860		if (verify_immutable(device, port))
 861			return -EINVAL;
 862	}
 863	return 0;
 864}
 865
 866/**
 867 * ib_port_immutable_read() - Read rdma port's immutable data
 868 * @dev: IB device
 869 * @port: port number whose immutable data to read. It starts with index 1 and
 870 *        valid upto including rdma_end_port().
 871 */
 872const struct ib_port_immutable*
 873ib_port_immutable_read(struct ib_device *dev, unsigned int port)
 874{
 875	WARN_ON(!rdma_is_port_valid(dev, port));
 876	return &dev->port_data[port].immutable;
 877}
 878EXPORT_SYMBOL(ib_port_immutable_read);
 879
 880void ib_get_device_fw_str(struct ib_device *dev, char *str)
 881{
 882	if (dev->ops.get_dev_fw_str)
 883		dev->ops.get_dev_fw_str(dev, str);
 884	else
 885		str[0] = '\0';
 886}
 887EXPORT_SYMBOL(ib_get_device_fw_str);
 888
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 889static void ib_policy_change_task(struct work_struct *work)
 890{
 891	struct ib_device *dev;
 892	unsigned long index;
 893
 894	down_read(&devices_rwsem);
 895	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
 896		unsigned int i;
 897
 898		rdma_for_each_port (dev, i) {
 899			u64 sp;
 900			ib_get_cached_subnet_prefix(dev, i, &sp);
 901			ib_security_cache_change(dev, i, sp);
 
 
 
 
 
 
 
 902		}
 903	}
 904	up_read(&devices_rwsem);
 905}
 906
 907static int ib_security_change(struct notifier_block *nb, unsigned long event,
 908			      void *lsm_data)
 909{
 910	if (event != LSM_POLICY_CHANGE)
 911		return NOTIFY_DONE;
 912
 913	schedule_work(&ib_policy_change_work);
 914	ib_mad_agent_security_change();
 915
 916	return NOTIFY_OK;
 917}
 918
 919static void compatdev_release(struct device *dev)
 920{
 921	struct ib_core_device *cdev =
 922		container_of(dev, struct ib_core_device, dev);
 923
 924	kfree(cdev);
 925}
 926
 927static int add_one_compat_dev(struct ib_device *device,
 928			      struct rdma_dev_net *rnet)
 929{
 930	struct ib_core_device *cdev;
 931	int ret;
 932
 933	lockdep_assert_held(&rdma_nets_rwsem);
 934	if (!ib_devices_shared_netns)
 935		return 0;
 936
 937	/*
 938	 * Create and add compat device in all namespaces other than where it
 939	 * is currently bound to.
 940	 */
 941	if (net_eq(read_pnet(&rnet->net),
 942		   read_pnet(&device->coredev.rdma_net)))
 943		return 0;
 944
 945	/*
 946	 * The first of init_net() or ib_register_device() to take the
 947	 * compat_devs_mutex wins and gets to add the device. Others will wait
 948	 * for completion here.
 949	 */
 950	mutex_lock(&device->compat_devs_mutex);
 951	cdev = xa_load(&device->compat_devs, rnet->id);
 952	if (cdev) {
 953		ret = 0;
 954		goto done;
 955	}
 956	ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL);
 957	if (ret)
 958		goto done;
 959
 960	cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
 961	if (!cdev) {
 962		ret = -ENOMEM;
 963		goto cdev_err;
 964	}
 965
 966	cdev->dev.parent = device->dev.parent;
 967	rdma_init_coredev(cdev, device, read_pnet(&rnet->net));
 968	cdev->dev.release = compatdev_release;
 969	ret = dev_set_name(&cdev->dev, "%s", dev_name(&device->dev));
 970	if (ret)
 971		goto add_err;
 972
 973	ret = device_add(&cdev->dev);
 974	if (ret)
 975		goto add_err;
 976	ret = ib_setup_port_attrs(cdev);
 977	if (ret)
 978		goto port_err;
 979
 980	ret = xa_err(xa_store(&device->compat_devs, rnet->id,
 981			      cdev, GFP_KERNEL));
 982	if (ret)
 983		goto insert_err;
 984
 985	mutex_unlock(&device->compat_devs_mutex);
 986	return 0;
 987
 988insert_err:
 989	ib_free_port_attrs(cdev);
 990port_err:
 991	device_del(&cdev->dev);
 992add_err:
 993	put_device(&cdev->dev);
 994cdev_err:
 995	xa_release(&device->compat_devs, rnet->id);
 996done:
 997	mutex_unlock(&device->compat_devs_mutex);
 998	return ret;
 999}
1000
1001static void remove_one_compat_dev(struct ib_device *device, u32 id)
1002{
1003	struct ib_core_device *cdev;
1004
1005	mutex_lock(&device->compat_devs_mutex);
1006	cdev = xa_erase(&device->compat_devs, id);
1007	mutex_unlock(&device->compat_devs_mutex);
1008	if (cdev) {
1009		ib_free_port_attrs(cdev);
1010		device_del(&cdev->dev);
1011		put_device(&cdev->dev);
1012	}
1013}
1014
1015static void remove_compat_devs(struct ib_device *device)
1016{
1017	struct ib_core_device *cdev;
1018	unsigned long index;
1019
1020	xa_for_each (&device->compat_devs, index, cdev)
1021		remove_one_compat_dev(device, index);
1022}
1023
1024static int add_compat_devs(struct ib_device *device)
1025{
1026	struct rdma_dev_net *rnet;
1027	unsigned long index;
1028	int ret = 0;
1029
1030	lockdep_assert_held(&devices_rwsem);
1031
1032	down_read(&rdma_nets_rwsem);
1033	xa_for_each (&rdma_nets, index, rnet) {
1034		ret = add_one_compat_dev(device, rnet);
1035		if (ret)
1036			break;
1037	}
1038	up_read(&rdma_nets_rwsem);
1039	return ret;
1040}
1041
1042static void remove_all_compat_devs(void)
1043{
1044	struct ib_compat_device *cdev;
1045	struct ib_device *dev;
1046	unsigned long index;
1047
1048	down_read(&devices_rwsem);
1049	xa_for_each (&devices, index, dev) {
1050		unsigned long c_index = 0;
1051
1052		/* Hold nets_rwsem so that any other thread modifying this
1053		 * system param can sync with this thread.
1054		 */
1055		down_read(&rdma_nets_rwsem);
1056		xa_for_each (&dev->compat_devs, c_index, cdev)
1057			remove_one_compat_dev(dev, c_index);
1058		up_read(&rdma_nets_rwsem);
1059	}
1060	up_read(&devices_rwsem);
1061}
1062
1063static int add_all_compat_devs(void)
1064{
1065	struct rdma_dev_net *rnet;
1066	struct ib_device *dev;
1067	unsigned long index;
1068	int ret = 0;
1069
1070	down_read(&devices_rwsem);
1071	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1072		unsigned long net_index = 0;
1073
1074		/* Hold nets_rwsem so that any other thread modifying this
1075		 * system param can sync with this thread.
1076		 */
1077		down_read(&rdma_nets_rwsem);
1078		xa_for_each (&rdma_nets, net_index, rnet) {
1079			ret = add_one_compat_dev(dev, rnet);
1080			if (ret)
1081				break;
1082		}
1083		up_read(&rdma_nets_rwsem);
1084	}
1085	up_read(&devices_rwsem);
1086	if (ret)
1087		remove_all_compat_devs();
1088	return ret;
1089}
1090
1091int rdma_compatdev_set(u8 enable)
1092{
1093	struct rdma_dev_net *rnet;
1094	unsigned long index;
1095	int ret = 0;
1096
1097	down_write(&rdma_nets_rwsem);
1098	if (ib_devices_shared_netns == enable) {
1099		up_write(&rdma_nets_rwsem);
1100		return 0;
1101	}
1102
1103	/* enable/disable of compat devices is not supported
1104	 * when more than default init_net exists.
1105	 */
1106	xa_for_each (&rdma_nets, index, rnet) {
1107		ret++;
1108		break;
1109	}
1110	if (!ret)
1111		ib_devices_shared_netns = enable;
1112	up_write(&rdma_nets_rwsem);
1113	if (ret)
1114		return -EBUSY;
1115
1116	if (enable)
1117		ret = add_all_compat_devs();
1118	else
1119		remove_all_compat_devs();
1120	return ret;
1121}
1122
1123static void rdma_dev_exit_net(struct net *net)
1124{
1125	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1126	struct ib_device *dev;
1127	unsigned long index;
1128	int ret;
 
 
 
1129
1130	down_write(&rdma_nets_rwsem);
1131	/*
1132	 * Prevent the ID from being re-used and hide the id from xa_for_each.
1133	 */
1134	ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL));
1135	WARN_ON(ret);
1136	up_write(&rdma_nets_rwsem);
1137
1138	down_read(&devices_rwsem);
1139	xa_for_each (&devices, index, dev) {
1140		get_device(&dev->dev);
1141		/*
1142		 * Release the devices_rwsem so that pontentially blocking
1143		 * device_del, doesn't hold the devices_rwsem for too long.
 
1144		 */
1145		up_read(&devices_rwsem);
1146
1147		remove_one_compat_dev(dev, rnet->id);
1148
 
 
 
 
 
 
 
 
 
 
 
1149		/*
1150		 * If the real device is in the NS then move it back to init.
 
1151		 */
1152		rdma_dev_change_netns(dev, net, &init_net);
1153
1154		put_device(&dev->dev);
1155		down_read(&devices_rwsem);
1156	}
1157	up_read(&devices_rwsem);
1158
1159	rdma_nl_net_exit(rnet);
1160	xa_erase(&rdma_nets, rnet->id);
1161}
1162
1163static __net_init int rdma_dev_init_net(struct net *net)
1164{
1165	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1166	unsigned long index;
1167	struct ib_device *dev;
1168	int ret;
1169
1170	write_pnet(&rnet->net, net);
1171
1172	ret = rdma_nl_net_init(rnet);
1173	if (ret)
1174		return ret;
1175
1176	/* No need to create any compat devices in default init_net. */
1177	if (net_eq(net, &init_net))
1178		return 0;
1179
1180	ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL);
1181	if (ret) {
1182		rdma_nl_net_exit(rnet);
1183		return ret;
1184	}
1185
1186	down_read(&devices_rwsem);
1187	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1188		/* Hold nets_rwsem so that netlink command cannot change
1189		 * system configuration for device sharing mode.
1190		 */
1191		down_read(&rdma_nets_rwsem);
1192		ret = add_one_compat_dev(dev, rnet);
1193		up_read(&rdma_nets_rwsem);
1194		if (ret)
1195			break;
1196	}
1197	up_read(&devices_rwsem);
1198
1199	if (ret)
1200		rdma_dev_exit_net(net);
1201
1202	return ret;
1203}
1204
1205/*
1206 * Assign the unique string device name and the unique device index. This is
1207 * undone by ib_dealloc_device.
1208 */
1209static int assign_name(struct ib_device *device, const char *name)
1210{
1211	static u32 last_id;
1212	int ret;
1213
1214	down_write(&devices_rwsem);
1215	/* Assign a unique name to the device */
1216	if (strchr(name, '%'))
1217		ret = alloc_name(device, name);
1218	else
1219		ret = dev_set_name(&device->dev, name);
1220	if (ret)
1221		goto out;
1222
1223	if (__ib_device_get_by_name(dev_name(&device->dev))) {
1224		ret = -ENFILE;
1225		goto out;
1226	}
1227	strscpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
1228
1229	ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b,
1230			&last_id, GFP_KERNEL);
1231	if (ret > 0)
1232		ret = 0;
1233
1234out:
1235	up_write(&devices_rwsem);
1236	return ret;
1237}
1238
1239/*
1240 * setup_device() allocates memory and sets up data that requires calling the
1241 * device ops, this is the only reason these actions are not done during
1242 * ib_alloc_device. It is undone by ib_dealloc_device().
1243 */
1244static int setup_device(struct ib_device *device)
1245{
1246	struct ib_udata uhw = {.outlen = 0, .inlen = 0};
1247	int ret;
1248
1249	ib_device_check_mandatory(device);
1250
1251	ret = setup_port_data(device);
1252	if (ret) {
1253		dev_warn(&device->dev, "Couldn't create per-port data\n");
1254		return ret;
 
1255	}
1256
1257	memset(&device->attrs, 0, sizeof(device->attrs));
1258	ret = device->ops.query_device(device, &device->attrs, &uhw);
1259	if (ret) {
1260		dev_warn(&device->dev,
1261			 "Couldn't query the device attributes\n");
1262		return ret;
1263	}
1264
1265	return 0;
1266}
1267
1268static void disable_device(struct ib_device *device)
1269{
1270	u32 cid;
1271
1272	WARN_ON(!refcount_read(&device->refcount));
1273
1274	down_write(&devices_rwsem);
1275	xa_clear_mark(&devices, device->index, DEVICE_REGISTERED);
1276	up_write(&devices_rwsem);
1277
1278	/*
1279	 * Remove clients in LIFO order, see assign_client_id. This could be
1280	 * more efficient if xarray learns to reverse iterate. Since no new
1281	 * clients can be added to this ib_device past this point we only need
1282	 * the maximum possible client_id value here.
1283	 */
1284	down_read(&clients_rwsem);
1285	cid = highest_client_id;
1286	up_read(&clients_rwsem);
1287	while (cid) {
1288		cid--;
1289		remove_client_context(device, cid);
1290	}
1291
1292	ib_cq_pool_cleanup(device);
1293
1294	/* Pairs with refcount_set in enable_device */
1295	ib_device_put(device);
1296	wait_for_completion(&device->unreg_completion);
1297
1298	/*
1299	 * compat devices must be removed after device refcount drops to zero.
1300	 * Otherwise init_net() may add more compatdevs after removing compat
1301	 * devices and before device is disabled.
1302	 */
1303	remove_compat_devs(device);
1304}
1305
1306/*
1307 * An enabled device is visible to all clients and to all the public facing
1308 * APIs that return a device pointer. This always returns with a new get, even
1309 * if it fails.
1310 */
1311static int enable_device_and_get(struct ib_device *device)
1312{
1313	struct ib_client *client;
1314	unsigned long index;
1315	int ret = 0;
1316
1317	/*
1318	 * One ref belongs to the xa and the other belongs to this
1319	 * thread. This is needed to guard against parallel unregistration.
1320	 */
1321	refcount_set(&device->refcount, 2);
1322	down_write(&devices_rwsem);
1323	xa_set_mark(&devices, device->index, DEVICE_REGISTERED);
1324
1325	/*
1326	 * By using downgrade_write() we ensure that no other thread can clear
1327	 * DEVICE_REGISTERED while we are completing the client setup.
1328	 */
1329	downgrade_write(&devices_rwsem);
1330
1331	if (device->ops.enable_driver) {
1332		ret = device->ops.enable_driver(device);
1333		if (ret)
1334			goto out;
1335	}
1336
1337	down_read(&clients_rwsem);
1338	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1339		ret = add_client_context(device, client);
1340		if (ret)
1341			break;
1342	}
1343	up_read(&clients_rwsem);
1344	if (!ret)
1345		ret = add_compat_devs(device);
1346out:
1347	up_read(&devices_rwsem);
1348	return ret;
1349}
1350
1351static void prevent_dealloc_device(struct ib_device *ib_dev)
1352{
1353}
1354
1355static void ib_device_notify_register(struct ib_device *device)
1356{
1357	struct net_device *netdev;
1358	u32 port;
1359	int ret;
1360
1361	ret = rdma_nl_notify_event(device, 0, RDMA_REGISTER_EVENT);
1362	if (ret)
1363		return;
1364
1365	rdma_for_each_port(device, port) {
1366		netdev = ib_device_get_netdev(device, port);
1367		if (!netdev)
1368			continue;
1369
1370		ret = rdma_nl_notify_event(device, port,
1371					   RDMA_NETDEV_ATTACH_EVENT);
1372		dev_put(netdev);
1373		if (ret)
1374			return;
1375	}
1376}
1377
1378/**
1379 * ib_register_device - Register an IB device with IB core
1380 * @device: Device to register
1381 * @name: unique string device name. This may include a '%' which will
1382 * 	  cause a unique index to be added to the passed device name.
1383 * @dma_device: pointer to a DMA-capable device. If %NULL, then the IB
1384 *	        device will be used. In this case the caller should fully
1385 *		setup the ibdev for DMA. This usually means using dma_virt_ops.
1386 *
1387 * Low-level drivers use ib_register_device() to register their
1388 * devices with the IB core.  All registered clients will receive a
1389 * callback for each device that is added. @device must be allocated
1390 * with ib_alloc_device().
1391 *
1392 * If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
1393 * asynchronously then the device pointer may become freed as soon as this
1394 * function returns.
1395 */
1396int ib_register_device(struct ib_device *device, const char *name,
1397		       struct device *dma_device)
1398{
1399	int ret;
1400
1401	ret = assign_name(device, name);
1402	if (ret)
1403		return ret;
1404
1405	/*
1406	 * If the caller does not provide a DMA capable device then the IB core
1407	 * will set up ib_sge and scatterlist structures that stash the kernel
1408	 * virtual address into the address field.
1409	 */
1410	WARN_ON(dma_device && !dma_device->dma_parms);
1411	device->dma_device = dma_device;
1412
1413	ret = setup_device(device);
1414	if (ret)
1415		return ret;
1416
1417	ret = ib_cache_setup_one(device);
1418	if (ret) {
1419		dev_warn(&device->dev,
1420			 "Couldn't set up InfiniBand P_Key/GID cache\n");
1421		return ret;
1422	}
1423
1424	device->groups[0] = &ib_dev_attr_group;
1425	device->groups[1] = device->ops.device_group;
1426	ret = ib_setup_device_attrs(device);
1427	if (ret)
1428		goto cache_cleanup;
 
1429
1430	ib_device_register_rdmacg(device);
1431
1432	rdma_counter_init(device);
1433
1434	/*
1435	 * Ensure that ADD uevent is not fired because it
1436	 * is too early amd device is not initialized yet.
1437	 */
1438	dev_set_uevent_suppress(&device->dev, true);
1439	ret = device_add(&device->dev);
1440	if (ret)
1441		goto cg_cleanup;
1442
1443	ret = ib_setup_port_attrs(&device->coredev);
1444	if (ret) {
1445		dev_warn(&device->dev,
1446			 "Couldn't register device with driver model\n");
1447		goto dev_cleanup;
1448	}
1449
1450	ret = enable_device_and_get(device);
1451	if (ret) {
1452		void (*dealloc_fn)(struct ib_device *);
1453
1454		/*
1455		 * If we hit this error flow then we don't want to
1456		 * automatically dealloc the device since the caller is
1457		 * expected to call ib_dealloc_device() after
1458		 * ib_register_device() fails. This is tricky due to the
1459		 * possibility for a parallel unregistration along with this
1460		 * error flow. Since we have a refcount here we know any
1461		 * parallel flow is stopped in disable_device and will see the
1462		 * special dealloc_driver pointer, causing the responsibility to
1463		 * ib_dealloc_device() to revert back to this thread.
1464		 */
1465		dealloc_fn = device->ops.dealloc_driver;
1466		device->ops.dealloc_driver = prevent_dealloc_device;
1467		ib_device_put(device);
1468		__ib_unregister_device(device);
1469		device->ops.dealloc_driver = dealloc_fn;
1470		dev_set_uevent_suppress(&device->dev, false);
1471		return ret;
1472	}
1473	dev_set_uevent_suppress(&device->dev, false);
1474	/* Mark for userspace that device is ready */
1475	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1476
1477	ib_device_notify_register(device);
1478	ib_device_put(device);
1479
 
 
 
 
 
 
 
 
 
1480	return 0;
1481
1482dev_cleanup:
1483	device_del(&device->dev);
1484cg_cleanup:
1485	dev_set_uevent_suppress(&device->dev, false);
1486	ib_device_unregister_rdmacg(device);
1487cache_cleanup:
1488	ib_cache_cleanup_one(device);
 
 
 
 
 
1489	return ret;
1490}
1491EXPORT_SYMBOL(ib_register_device);
1492
1493/* Callers must hold a get on the device. */
1494static void __ib_unregister_device(struct ib_device *ib_dev)
1495{
1496	struct ib_device *sub, *tmp;
1497
1498	mutex_lock(&ib_dev->subdev_lock);
1499	list_for_each_entry_safe_reverse(sub, tmp,
1500					 &ib_dev->subdev_list_head,
1501					 subdev_list) {
1502		list_del(&sub->subdev_list);
1503		ib_dev->ops.del_sub_dev(sub);
1504		ib_device_put(ib_dev);
1505	}
1506	mutex_unlock(&ib_dev->subdev_lock);
1507
1508	/*
1509	 * We have a registration lock so that all the calls to unregister are
1510	 * fully fenced, once any unregister returns the device is truely
1511	 * unregistered even if multiple callers are unregistering it at the
1512	 * same time. This also interacts with the registration flow and
1513	 * provides sane semantics if register and unregister are racing.
1514	 */
1515	mutex_lock(&ib_dev->unregistration_lock);
1516	if (!refcount_read(&ib_dev->refcount))
1517		goto out;
1518
1519	disable_device(ib_dev);
1520	rdma_nl_notify_event(ib_dev, 0, RDMA_UNREGISTER_EVENT);
1521
1522	/* Expedite removing unregistered pointers from the hash table */
1523	free_netdevs(ib_dev);
1524
1525	ib_free_port_attrs(&ib_dev->coredev);
1526	device_del(&ib_dev->dev);
1527	ib_device_unregister_rdmacg(ib_dev);
1528	ib_cache_cleanup_one(ib_dev);
1529
1530	/*
1531	 * Drivers using the new flow may not call ib_dealloc_device except
1532	 * in error unwind prior to registration success.
1533	 */
1534	if (ib_dev->ops.dealloc_driver &&
1535	    ib_dev->ops.dealloc_driver != prevent_dealloc_device) {
1536		WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
1537		ib_dealloc_device(ib_dev);
1538	}
1539out:
1540	mutex_unlock(&ib_dev->unregistration_lock);
1541}
1542
1543/**
1544 * ib_unregister_device - Unregister an IB device
1545 * @ib_dev: The device to unregister
1546 *
1547 * Unregister an IB device.  All clients will receive a remove callback.
1548 *
1549 * Callers should call this routine only once, and protect against races with
1550 * registration. Typically it should only be called as part of a remove
1551 * callback in an implementation of driver core's struct device_driver and
1552 * related.
1553 *
1554 * If ops.dealloc_driver is used then ib_dev will be freed upon return from
1555 * this function.
1556 */
1557void ib_unregister_device(struct ib_device *ib_dev)
1558{
1559	get_device(&ib_dev->dev);
1560	__ib_unregister_device(ib_dev);
1561	put_device(&ib_dev->dev);
1562}
1563EXPORT_SYMBOL(ib_unregister_device);
1564
1565/**
1566 * ib_unregister_device_and_put - Unregister a device while holding a 'get'
1567 * @ib_dev: The device to unregister
1568 *
1569 * This is the same as ib_unregister_device(), except it includes an internal
1570 * ib_device_put() that should match a 'get' obtained by the caller.
1571 *
1572 * It is safe to call this routine concurrently from multiple threads while
1573 * holding the 'get'. When the function returns the device is fully
1574 * unregistered.
1575 *
1576 * Drivers using this flow MUST use the driver_unregister callback to clean up
1577 * their resources associated with the device and dealloc it.
1578 */
1579void ib_unregister_device_and_put(struct ib_device *ib_dev)
1580{
1581	WARN_ON(!ib_dev->ops.dealloc_driver);
1582	get_device(&ib_dev->dev);
1583	ib_device_put(ib_dev);
1584	__ib_unregister_device(ib_dev);
1585	put_device(&ib_dev->dev);
1586}
1587EXPORT_SYMBOL(ib_unregister_device_and_put);
1588
1589/**
1590 * ib_unregister_driver - Unregister all IB devices for a driver
1591 * @driver_id: The driver to unregister
1592 *
1593 * This implements a fence for device unregistration. It only returns once all
1594 * devices associated with the driver_id have fully completed their
1595 * unregistration and returned from ib_unregister_device*().
1596 *
1597 * If device's are not yet unregistered it goes ahead and starts unregistering
1598 * them.
1599 *
1600 * This does not block creation of new devices with the given driver_id, that
1601 * is the responsibility of the caller.
1602 */
1603void ib_unregister_driver(enum rdma_driver_id driver_id)
1604{
1605	struct ib_device *ib_dev;
1606	unsigned long index;
1607
1608	down_read(&devices_rwsem);
1609	xa_for_each (&devices, index, ib_dev) {
1610		if (ib_dev->ops.driver_id != driver_id)
1611			continue;
1612
1613		get_device(&ib_dev->dev);
1614		up_read(&devices_rwsem);
1615
1616		WARN_ON(!ib_dev->ops.dealloc_driver);
1617		__ib_unregister_device(ib_dev);
1618
1619		put_device(&ib_dev->dev);
1620		down_read(&devices_rwsem);
1621	}
1622	up_read(&devices_rwsem);
1623}
1624EXPORT_SYMBOL(ib_unregister_driver);
1625
1626static void ib_unregister_work(struct work_struct *work)
1627{
1628	struct ib_device *ib_dev =
1629		container_of(work, struct ib_device, unregistration_work);
1630
1631	__ib_unregister_device(ib_dev);
1632	put_device(&ib_dev->dev);
1633}
1634
1635/**
1636 * ib_unregister_device_queued - Unregister a device using a work queue
1637 * @ib_dev: The device to unregister
1638 *
1639 * This schedules an asynchronous unregistration using a WQ for the device. A
1640 * driver should use this to avoid holding locks while doing unregistration,
1641 * such as holding the RTNL lock.
1642 *
1643 * Drivers using this API must use ib_unregister_driver before module unload
1644 * to ensure that all scheduled unregistrations have completed.
1645 */
1646void ib_unregister_device_queued(struct ib_device *ib_dev)
1647{
1648	WARN_ON(!refcount_read(&ib_dev->refcount));
1649	WARN_ON(!ib_dev->ops.dealloc_driver);
1650	get_device(&ib_dev->dev);
1651	if (!queue_work(ib_unreg_wq, &ib_dev->unregistration_work))
1652		put_device(&ib_dev->dev);
1653}
1654EXPORT_SYMBOL(ib_unregister_device_queued);
1655
1656/*
1657 * The caller must pass in a device that has the kref held and the refcount
1658 * released. If the device is in cur_net and still registered then it is moved
1659 * into net.
1660 */
1661static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
1662				 struct net *net)
1663{
1664	int ret2 = -EINVAL;
1665	int ret;
1666
1667	mutex_lock(&device->unregistration_lock);
1668
1669	/*
1670	 * If a device not under ib_device_get() or if the unregistration_lock
1671	 * is not held, the namespace can be changed, or it can be unregistered.
1672	 * Check again under the lock.
1673	 */
1674	if (refcount_read(&device->refcount) == 0 ||
1675	    !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) {
1676		ret = -ENODEV;
1677		goto out;
1678	}
1679
1680	kobject_uevent(&device->dev.kobj, KOBJ_REMOVE);
1681	disable_device(device);
1682
1683	/*
1684	 * At this point no one can be using the device, so it is safe to
1685	 * change the namespace.
1686	 */
1687	write_pnet(&device->coredev.rdma_net, net);
1688
1689	down_read(&devices_rwsem);
1690	/*
1691	 * Currently rdma devices are system wide unique. So the device name
1692	 * is guaranteed free in the new namespace. Publish the new namespace
1693	 * at the sysfs level.
1694	 */
1695	ret = device_rename(&device->dev, dev_name(&device->dev));
1696	up_read(&devices_rwsem);
1697	if (ret) {
1698		dev_warn(&device->dev,
1699			 "%s: Couldn't rename device after namespace change\n",
1700			 __func__);
1701		/* Try and put things back and re-enable the device */
1702		write_pnet(&device->coredev.rdma_net, cur_net);
1703	}
1704
1705	ret2 = enable_device_and_get(device);
1706	if (ret2) {
1707		/*
1708		 * This shouldn't really happen, but if it does, let the user
1709		 * retry at later point. So don't disable the device.
1710		 */
1711		dev_warn(&device->dev,
1712			 "%s: Couldn't re-enable device after namespace change\n",
1713			 __func__);
1714	}
1715	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1716
1717	ib_device_put(device);
1718out:
1719	mutex_unlock(&device->unregistration_lock);
1720	if (ret)
1721		return ret;
1722	return ret2;
1723}
1724
1725int ib_device_set_netns_put(struct sk_buff *skb,
1726			    struct ib_device *dev, u32 ns_fd)
1727{
1728	struct net *net;
1729	int ret;
1730
1731	net = get_net_ns_by_fd(ns_fd);
1732	if (IS_ERR(net)) {
1733		ret = PTR_ERR(net);
1734		goto net_err;
1735	}
1736
1737	if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
1738		ret = -EPERM;
1739		goto ns_err;
1740	}
1741
1742	/*
1743	 * All the ib_clients, including uverbs, are reset when the namespace is
1744	 * changed and this cannot be blocked waiting for userspace to do
1745	 * something, so disassociation is mandatory.
1746	 */
1747	if (!dev->ops.disassociate_ucontext || ib_devices_shared_netns) {
1748		ret = -EOPNOTSUPP;
1749		goto ns_err;
 
 
 
 
1750	}
 
1751
1752	get_device(&dev->dev);
1753	ib_device_put(dev);
1754	ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net);
1755	put_device(&dev->dev);
1756
1757	put_net(net);
1758	return ret;
1759
1760ns_err:
1761	put_net(net);
1762net_err:
1763	ib_device_put(dev);
1764	return ret;
1765}
1766
1767static struct pernet_operations rdma_dev_net_ops = {
1768	.init = rdma_dev_init_net,
1769	.exit = rdma_dev_exit_net,
1770	.id = &rdma_dev_net_id,
1771	.size = sizeof(struct rdma_dev_net),
1772};
1773
1774static int assign_client_id(struct ib_client *client)
1775{
1776	int ret;
1777
1778	lockdep_assert_held(&clients_rwsem);
1779	/*
1780	 * The add/remove callbacks must be called in FIFO/LIFO order. To
1781	 * achieve this we assign client_ids so they are sorted in
1782	 * registration order.
1783	 */
1784	client->client_id = highest_client_id;
1785	ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL);
1786	if (ret)
1787		return ret;
1788
1789	highest_client_id++;
1790	xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED);
1791	return 0;
1792}
 
 
1793
1794static void remove_client_id(struct ib_client *client)
1795{
1796	down_write(&clients_rwsem);
1797	xa_erase(&clients, client->client_id);
1798	for (; highest_client_id; highest_client_id--)
1799		if (xa_load(&clients, highest_client_id - 1))
1800			break;
1801	up_write(&clients_rwsem);
1802}
 
1803
1804/**
1805 * ib_register_client - Register an IB client
1806 * @client:Client to register
1807 *
1808 * Upper level users of the IB drivers can use ib_register_client() to
1809 * register callbacks for IB device addition and removal.  When an IB
1810 * device is added, each registered client's add method will be called
1811 * (in the order the clients were registered), and when a device is
1812 * removed, each client's remove method will be called (in the reverse
1813 * order that clients were registered).  In addition, when
1814 * ib_register_client() is called, the client will receive an add
1815 * callback for all devices already registered.
1816 */
1817int ib_register_client(struct ib_client *client)
1818{
1819	struct ib_device *device;
1820	unsigned long index;
1821	bool need_unreg = false;
1822	int ret;
1823
1824	refcount_set(&client->uses, 1);
1825	init_completion(&client->uses_zero);
1826
1827	/*
1828	 * The devices_rwsem is held in write mode to ensure that a racing
1829	 * ib_register_device() sees a consisent view of clients and devices.
1830	 */
1831	down_write(&devices_rwsem);
1832	down_write(&clients_rwsem);
1833	ret = assign_client_id(client);
1834	if (ret)
1835		goto out;
1836
1837	need_unreg = true;
1838	xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
1839		ret = add_client_context(device, client);
1840		if (ret)
1841			goto out;
1842	}
1843	ret = 0;
1844out:
1845	up_write(&clients_rwsem);
1846	up_write(&devices_rwsem);
1847	if (need_unreg && ret)
1848		ib_unregister_client(client);
1849	return ret;
1850}
1851EXPORT_SYMBOL(ib_register_client);
1852
1853/**
1854 * ib_unregister_client - Unregister an IB client
1855 * @client:Client to unregister
1856 *
1857 * Upper level users use ib_unregister_client() to remove their client
1858 * registration.  When ib_unregister_client() is called, the client
1859 * will receive a remove callback for each IB device still registered.
1860 *
1861 * This is a full fence, once it returns no client callbacks will be called,
1862 * or are running in another thread.
1863 */
1864void ib_unregister_client(struct ib_client *client)
1865{
 
1866	struct ib_device *device;
1867	unsigned long index;
1868
1869	down_write(&clients_rwsem);
1870	ib_client_put(client);
1871	xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED);
1872	up_write(&clients_rwsem);
1873
1874	/* We do not want to have locks while calling client->remove() */
1875	rcu_read_lock();
1876	xa_for_each (&devices, index, device) {
1877		if (!ib_device_try_get(device))
1878			continue;
1879		rcu_read_unlock();
1880
1881		remove_client_context(device, client->client_id);
1882
1883		ib_device_put(device);
1884		rcu_read_lock();
1885	}
1886	rcu_read_unlock();
1887
1888	/*
1889	 * remove_client_context() is not a fence, it can return even though a
1890	 * removal is ongoing. Wait until all removals are completed.
1891	 */
1892	wait_for_completion(&client->uses_zero);
1893	remove_client_id(client);
1894}
1895EXPORT_SYMBOL(ib_unregister_client);
1896
1897static int __ib_get_global_client_nl_info(const char *client_name,
1898					  struct ib_client_nl_info *res)
1899{
1900	struct ib_client *client;
1901	unsigned long index;
1902	int ret = -ENOENT;
1903
1904	down_read(&clients_rwsem);
1905	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1906		if (strcmp(client->name, client_name) != 0)
1907			continue;
1908		if (!client->get_global_nl_info) {
1909			ret = -EOPNOTSUPP;
1910			break;
1911		}
1912		ret = client->get_global_nl_info(res);
1913		if (WARN_ON(ret == -ENOENT))
1914			ret = -EINVAL;
1915		if (!ret && res->cdev)
1916			get_device(res->cdev);
1917		break;
1918	}
1919	up_read(&clients_rwsem);
1920	return ret;
1921}
1922
1923static int __ib_get_client_nl_info(struct ib_device *ibdev,
1924				   const char *client_name,
1925				   struct ib_client_nl_info *res)
1926{
1927	unsigned long index;
1928	void *client_data;
1929	int ret = -ENOENT;
1930
1931	down_read(&ibdev->client_data_rwsem);
1932	xan_for_each_marked (&ibdev->client_data, index, client_data,
1933			     CLIENT_DATA_REGISTERED) {
1934		struct ib_client *client = xa_load(&clients, index);
1935
1936		if (!client || strcmp(client->name, client_name) != 0)
 
 
 
 
 
 
1937			continue;
1938		if (!client->get_nl_info) {
1939			ret = -EOPNOTSUPP;
1940			break;
1941		}
1942		ret = client->get_nl_info(ibdev, client_data, res);
1943		if (WARN_ON(ret == -ENOENT))
1944			ret = -EINVAL;
1945
1946		/*
1947		 * The cdev is guaranteed valid as long as we are inside the
1948		 * client_data_rwsem as remove_one can't be called. Keep it
1949		 * valid for the caller.
1950		 */
1951		if (!ret && res->cdev)
1952			get_device(res->cdev);
1953		break;
1954	}
1955	up_read(&ibdev->client_data_rwsem);
1956
1957	return ret;
1958}
 
1959
1960/**
1961 * ib_get_client_nl_info - Fetch the nl_info from a client
1962 * @ibdev: IB device
1963 * @client_name: Name of the client
1964 * @res: Result of the query
 
 
1965 */
1966int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name,
1967			  struct ib_client_nl_info *res)
1968{
1969	int ret;
 
 
1970
1971	if (ibdev)
1972		ret = __ib_get_client_nl_info(ibdev, client_name, res);
1973	else
1974		ret = __ib_get_global_client_nl_info(client_name, res);
1975#ifdef CONFIG_MODULES
1976	if (ret == -ENOENT) {
1977		request_module("rdma-client-%s", client_name);
1978		if (ibdev)
1979			ret = __ib_get_client_nl_info(ibdev, client_name, res);
1980		else
1981			ret = __ib_get_global_client_nl_info(client_name, res);
1982	}
1983#endif
1984	if (ret) {
1985		if (ret == -ENOENT)
1986			return -EOPNOTSUPP;
1987		return ret;
1988	}
1989
1990	if (WARN_ON(!res->cdev))
1991		return -EINVAL;
1992	return 0;
1993}
 
1994
1995/**
1996 * ib_set_client_data - Set IB client context
1997 * @device:Device to set context for
1998 * @client:Client to set context for
1999 * @data:Context to set
2000 *
2001 * ib_set_client_data() sets client context data that can be retrieved with
2002 * ib_get_client_data(). This can only be called while the client is
2003 * registered to the device, once the ib_client remove() callback returns this
2004 * cannot be called.
2005 */
2006void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2007			void *data)
2008{
2009	void *rc;
 
 
 
 
 
 
 
 
2010
2011	if (WARN_ON(IS_ERR(data)))
2012		data = NULL;
2013
2014	rc = xa_store(&device->client_data, client->client_id, data,
2015		      GFP_KERNEL);
2016	WARN_ON(xa_is_err(rc));
2017}
2018EXPORT_SYMBOL(ib_set_client_data);
2019
2020/**
2021 * ib_register_event_handler - Register an IB event handler
2022 * @event_handler:Handler to register
2023 *
2024 * ib_register_event_handler() registers an event handler that will be
2025 * called back when asynchronous IB events occur (as defined in
2026 * chapter 11 of the InfiniBand Architecture Specification). This
2027 * callback occurs in workqueue context.
2028 */
2029void ib_register_event_handler(struct ib_event_handler *event_handler)
2030{
2031	down_write(&event_handler->device->event_handler_rwsem);
 
 
2032	list_add_tail(&event_handler->list,
2033		      &event_handler->device->event_handler_list);
2034	up_write(&event_handler->device->event_handler_rwsem);
2035}
2036EXPORT_SYMBOL(ib_register_event_handler);
2037
2038/**
2039 * ib_unregister_event_handler - Unregister an event handler
2040 * @event_handler:Handler to unregister
2041 *
2042 * Unregister an event handler registered with
2043 * ib_register_event_handler().
2044 */
2045void ib_unregister_event_handler(struct ib_event_handler *event_handler)
2046{
2047	down_write(&event_handler->device->event_handler_rwsem);
 
 
2048	list_del(&event_handler->list);
2049	up_write(&event_handler->device->event_handler_rwsem);
2050}
2051EXPORT_SYMBOL(ib_unregister_event_handler);
2052
2053void ib_dispatch_event_clients(struct ib_event *event)
 
 
 
 
 
 
 
 
2054{
 
2055	struct ib_event_handler *handler;
2056
2057	down_read(&event->device->event_handler_rwsem);
2058
2059	list_for_each_entry(handler, &event->device->event_handler_list, list)
2060		handler->handler(handler, event);
2061
2062	up_read(&event->device->event_handler_rwsem);
2063}
2064
2065static int iw_query_port(struct ib_device *device,
2066			   u32 port_num,
2067			   struct ib_port_attr *port_attr)
2068{
2069	struct in_device *inetdev;
2070	struct net_device *netdev;
2071
2072	memset(port_attr, 0, sizeof(*port_attr));
2073
2074	netdev = ib_device_get_netdev(device, port_num);
2075	if (!netdev)
2076		return -ENODEV;
2077
2078	port_attr->max_mtu = IB_MTU_4096;
2079	port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu);
2080
2081	if (!netif_carrier_ok(netdev)) {
2082		port_attr->state = IB_PORT_DOWN;
2083		port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED;
2084	} else {
2085		rcu_read_lock();
2086		inetdev = __in_dev_get_rcu(netdev);
2087
2088		if (inetdev && inetdev->ifa_list) {
2089			port_attr->state = IB_PORT_ACTIVE;
2090			port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP;
2091		} else {
2092			port_attr->state = IB_PORT_INIT;
2093			port_attr->phys_state =
2094				IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING;
2095		}
2096
2097		rcu_read_unlock();
2098	}
2099
2100	dev_put(netdev);
2101	return device->ops.query_port(device, port_num, port_attr);
2102}
2103
2104static int __ib_query_port(struct ib_device *device,
2105			   u32 port_num,
2106			   struct ib_port_attr *port_attr)
2107{
2108	int err;
2109
2110	memset(port_attr, 0, sizeof(*port_attr));
2111
2112	err = device->ops.query_port(device, port_num, port_attr);
2113	if (err || port_attr->subnet_prefix)
2114		return err;
2115
2116	if (rdma_port_get_link_layer(device, port_num) !=
2117	    IB_LINK_LAYER_INFINIBAND)
2118		return 0;
2119
2120	ib_get_cached_subnet_prefix(device, port_num,
2121				    &port_attr->subnet_prefix);
2122	return 0;
2123}
 
2124
2125/**
2126 * ib_query_port - Query IB port attributes
2127 * @device:Device to query
2128 * @port_num:Port number to query
2129 * @port_attr:Port attributes
2130 *
2131 * ib_query_port() returns the attributes of a port through the
2132 * @port_attr pointer.
2133 */
2134int ib_query_port(struct ib_device *device,
2135		  u32 port_num,
2136		  struct ib_port_attr *port_attr)
2137{
 
 
 
2138	if (!rdma_is_port_valid(device, port_num))
2139		return -EINVAL;
2140
2141	if (rdma_protocol_iwarp(device, port_num))
2142		return iw_query_port(device, port_num, port_attr);
2143	else
2144		return __ib_query_port(device, port_num, port_attr);
2145}
2146EXPORT_SYMBOL(ib_query_port);
2147
2148static void add_ndev_hash(struct ib_port_data *pdata)
2149{
2150	unsigned long flags;
2151
2152	might_sleep();
 
 
2153
2154	spin_lock_irqsave(&ndev_hash_lock, flags);
2155	if (hash_hashed(&pdata->ndev_hash_link)) {
2156		hash_del_rcu(&pdata->ndev_hash_link);
2157		spin_unlock_irqrestore(&ndev_hash_lock, flags);
2158		/*
2159		 * We cannot do hash_add_rcu after a hash_del_rcu until the
2160		 * grace period
2161		 */
2162		synchronize_rcu();
2163		spin_lock_irqsave(&ndev_hash_lock, flags);
2164	}
2165	if (pdata->netdev)
2166		hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
2167			     (uintptr_t)pdata->netdev);
2168	spin_unlock_irqrestore(&ndev_hash_lock, flags);
2169}
 
2170
2171/**
2172 * ib_device_set_netdev - Associate the ib_dev with an underlying net_device
2173 * @ib_dev: Device to modify
2174 * @ndev: net_device to affiliate, may be NULL
2175 * @port: IB port the net_device is connected to
2176 *
2177 * Drivers should use this to link the ib_device to a netdev so the netdev
2178 * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
2179 * affiliated with any port.
2180 *
2181 * The caller must ensure that the given ndev is not unregistered or
2182 * unregistering, and that either the ib_device is unregistered or
2183 * ib_device_set_netdev() is called with NULL when the ndev sends a
2184 * NETDEV_UNREGISTER event.
2185 */
2186int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
2187			 u32 port)
 
2188{
2189	enum rdma_nl_notify_event_type etype;
2190	struct net_device *old_ndev;
2191	struct ib_port_data *pdata;
2192	unsigned long flags;
2193	int ret;
2194
2195	if (!rdma_is_port_valid(ib_dev, port))
2196		return -EINVAL;
2197
2198	/*
2199	 * Drivers wish to call this before ib_register_driver, so we have to
2200	 * setup the port data early.
2201	 */
2202	ret = alloc_port_data(ib_dev);
2203	if (ret)
2204		return ret;
2205
2206	pdata = &ib_dev->port_data[port];
2207	spin_lock_irqsave(&pdata->netdev_lock, flags);
2208	old_ndev = rcu_dereference_protected(
2209		pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2210	if (old_ndev == ndev) {
2211		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2212		return 0;
2213	}
2214
2215	rcu_assign_pointer(pdata->netdev, ndev);
2216	netdev_put(old_ndev, &pdata->netdev_tracker);
2217	netdev_hold(ndev, &pdata->netdev_tracker, GFP_ATOMIC);
2218	spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2219
2220	add_ndev_hash(pdata);
2221
2222	/* Make sure that the device is registered before we send events */
2223	if (xa_load(&devices, ib_dev->index) != ib_dev)
2224		return 0;
2225
2226	etype = ndev ? RDMA_NETDEV_ATTACH_EVENT : RDMA_NETDEV_DETACH_EVENT;
2227	rdma_nl_notify_event(ib_dev, port, etype);
2228
2229	return 0;
2230}
2231EXPORT_SYMBOL(ib_device_set_netdev);
2232
2233static void free_netdevs(struct ib_device *ib_dev)
2234{
2235	unsigned long flags;
2236	u32 port;
2237
2238	if (!ib_dev->port_data)
2239		return;
2240
2241	rdma_for_each_port (ib_dev, port) {
2242		struct ib_port_data *pdata = &ib_dev->port_data[port];
2243		struct net_device *ndev;
2244
2245		spin_lock_irqsave(&pdata->netdev_lock, flags);
2246		ndev = rcu_dereference_protected(
2247			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2248		if (ndev) {
2249			spin_lock(&ndev_hash_lock);
2250			hash_del_rcu(&pdata->ndev_hash_link);
2251			spin_unlock(&ndev_hash_lock);
2252
2253			/*
2254			 * If this is the last dev_put there is still a
2255			 * synchronize_rcu before the netdev is kfreed, so we
2256			 * can continue to rely on unlocked pointer
2257			 * comparisons after the put
2258			 */
2259			rcu_assign_pointer(pdata->netdev, NULL);
2260			netdev_put(ndev, &pdata->netdev_tracker);
2261		}
2262		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2263	}
2264}
2265
2266struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
2267					u32 port)
2268{
2269	struct ib_port_data *pdata;
2270	struct net_device *res;
2271
2272	if (!rdma_is_port_valid(ib_dev, port))
2273		return NULL;
2274
2275	if (!ib_dev->port_data)
2276		return NULL;
2277
2278	pdata = &ib_dev->port_data[port];
2279
2280	/*
2281	 * New drivers should use ib_device_set_netdev() not the legacy
2282	 * get_netdev().
2283	 */
2284	if (ib_dev->ops.get_netdev)
2285		res = ib_dev->ops.get_netdev(ib_dev, port);
2286	else {
2287		spin_lock(&pdata->netdev_lock);
2288		res = rcu_dereference_protected(
2289			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2290		dev_hold(res);
2291		spin_unlock(&pdata->netdev_lock);
2292	}
2293
2294	return res;
2295}
2296EXPORT_SYMBOL(ib_device_get_netdev);
2297
2298/**
2299 * ib_device_get_by_netdev - Find an IB device associated with a netdev
2300 * @ndev: netdev to locate
2301 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
2302 *
2303 * Find and hold an ib_device that is associated with a netdev via
2304 * ib_device_set_netdev(). The caller must call ib_device_put() on the
2305 * returned pointer.
2306 */
2307struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
2308					  enum rdma_driver_id driver_id)
2309{
2310	struct ib_device *res = NULL;
2311	struct ib_port_data *cur;
2312
2313	rcu_read_lock();
2314	hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
2315				    (uintptr_t)ndev) {
2316		if (rcu_access_pointer(cur->netdev) == ndev &&
2317		    (driver_id == RDMA_DRIVER_UNKNOWN ||
2318		     cur->ib_dev->ops.driver_id == driver_id) &&
2319		    ib_device_try_get(cur->ib_dev)) {
2320			res = cur->ib_dev;
2321			break;
2322		}
2323	}
2324	rcu_read_unlock();
2325
2326	return res;
2327}
2328EXPORT_SYMBOL(ib_device_get_by_netdev);
2329
2330/**
2331 * ib_enum_roce_netdev - enumerate all RoCE ports
2332 * @ib_dev : IB device we want to query
2333 * @filter: Should we call the callback?
2334 * @filter_cookie: Cookie passed to filter
2335 * @cb: Callback to call for each found RoCE ports
2336 * @cookie: Cookie passed back to the callback
2337 *
2338 * Enumerates all of the physical RoCE ports of ib_dev
2339 * which are related to netdevice and calls callback() on each
2340 * device for which filter() function returns non zero.
2341 */
2342void ib_enum_roce_netdev(struct ib_device *ib_dev,
2343			 roce_netdev_filter filter,
2344			 void *filter_cookie,
2345			 roce_netdev_callback cb,
2346			 void *cookie)
2347{
2348	u32 port;
2349
2350	rdma_for_each_port (ib_dev, port)
 
2351		if (rdma_protocol_roce(ib_dev, port)) {
2352			struct net_device *idev =
2353				ib_device_get_netdev(ib_dev, port);
 
 
 
 
 
 
 
 
2354
2355			if (filter(ib_dev, port, idev, filter_cookie))
2356				cb(ib_dev, port, idev, cookie);
2357			dev_put(idev);
 
 
2358		}
2359}
2360
2361/**
2362 * ib_enum_all_roce_netdevs - enumerate all RoCE devices
2363 * @filter: Should we call the callback?
2364 * @filter_cookie: Cookie passed to filter
2365 * @cb: Callback to call for each found RoCE ports
2366 * @cookie: Cookie passed back to the callback
2367 *
2368 * Enumerates all RoCE devices' physical ports which are related
2369 * to netdevices and calls callback() on each device for which
2370 * filter() function returns non zero.
2371 */
2372void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
2373			      void *filter_cookie,
2374			      roce_netdev_callback cb,
2375			      void *cookie)
2376{
2377	struct ib_device *dev;
2378	unsigned long index;
2379
2380	down_read(&devices_rwsem);
2381	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
2382		ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
2383	up_read(&devices_rwsem);
2384}
2385
2386/*
2387 * ib_enum_all_devs - enumerate all ib_devices
2388 * @cb: Callback to call for each found ib_device
2389 *
2390 * Enumerates all ib_devices and calls callback() on each device.
2391 */
2392int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
2393		     struct netlink_callback *cb)
2394{
2395	unsigned long index;
2396	struct ib_device *dev;
2397	unsigned int idx = 0;
2398	int ret = 0;
2399
2400	down_read(&devices_rwsem);
2401	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
2402		if (!rdma_dev_access_netns(dev, sock_net(skb->sk)))
2403			continue;
2404
2405		ret = nldev_cb(dev, skb, cb, idx);
2406		if (ret)
2407			break;
2408		idx++;
2409	}
2410	up_read(&devices_rwsem);
 
2411	return ret;
2412}
2413
2414/**
2415 * ib_query_pkey - Get P_Key table entry
2416 * @device:Device to query
2417 * @port_num:Port number to query
2418 * @index:P_Key table index to query
2419 * @pkey:Returned P_Key
2420 *
2421 * ib_query_pkey() fetches the specified P_Key table entry.
2422 */
2423int ib_query_pkey(struct ib_device *device,
2424		  u32 port_num, u16 index, u16 *pkey)
2425{
2426	if (!rdma_is_port_valid(device, port_num))
2427		return -EINVAL;
2428
2429	if (!device->ops.query_pkey)
2430		return -EOPNOTSUPP;
2431
2432	return device->ops.query_pkey(device, port_num, index, pkey);
2433}
2434EXPORT_SYMBOL(ib_query_pkey);
2435
2436/**
2437 * ib_modify_device - Change IB device attributes
2438 * @device:Device to modify
2439 * @device_modify_mask:Mask of attributes to change
2440 * @device_modify:New attribute values
2441 *
2442 * ib_modify_device() changes a device's attributes as specified by
2443 * the @device_modify_mask and @device_modify structure.
2444 */
2445int ib_modify_device(struct ib_device *device,
2446		     int device_modify_mask,
2447		     struct ib_device_modify *device_modify)
2448{
2449	if (!device->ops.modify_device)
2450		return -EOPNOTSUPP;
2451
2452	return device->ops.modify_device(device, device_modify_mask,
2453					 device_modify);
2454}
2455EXPORT_SYMBOL(ib_modify_device);
2456
2457/**
2458 * ib_modify_port - Modifies the attributes for the specified port.
2459 * @device: The device to modify.
2460 * @port_num: The number of the port to modify.
2461 * @port_modify_mask: Mask used to specify which attributes of the port
2462 *   to change.
2463 * @port_modify: New attribute values for the port.
2464 *
2465 * ib_modify_port() changes a port's attributes as specified by the
2466 * @port_modify_mask and @port_modify structure.
2467 */
2468int ib_modify_port(struct ib_device *device,
2469		   u32 port_num, int port_modify_mask,
2470		   struct ib_port_modify *port_modify)
2471{
2472	int rc;
2473
2474	if (!rdma_is_port_valid(device, port_num))
2475		return -EINVAL;
2476
2477	if (device->ops.modify_port)
2478		rc = device->ops.modify_port(device, port_num,
2479					     port_modify_mask,
2480					     port_modify);
2481	else if (rdma_protocol_roce(device, port_num) &&
2482		 ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 ||
2483		  (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0))
2484		rc = 0;
2485	else
2486		rc = -EOPNOTSUPP;
2487	return rc;
2488}
2489EXPORT_SYMBOL(ib_modify_port);
2490
2491/**
2492 * ib_find_gid - Returns the port number and GID table index where
2493 *   a specified GID value occurs. Its searches only for IB link layer.
2494 * @device: The device to query.
2495 * @gid: The GID value to search for.
2496 * @port_num: The port number of the device where the GID value was found.
2497 * @index: The index into the GID table where the GID was found.  This
2498 *   parameter may be NULL.
2499 */
2500int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2501		u32 *port_num, u16 *index)
2502{
2503	union ib_gid tmp_gid;
2504	u32 port;
2505	int ret, i;
2506
2507	rdma_for_each_port (device, port) {
2508		if (!rdma_protocol_ib(device, port))
2509			continue;
2510
2511		for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
2512		     ++i) {
2513			ret = rdma_query_gid(device, port, i, &tmp_gid);
2514			if (ret)
2515				continue;
2516
2517			if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
2518				*port_num = port;
2519				if (index)
2520					*index = i;
2521				return 0;
2522			}
2523		}
2524	}
2525
2526	return -ENOENT;
2527}
2528EXPORT_SYMBOL(ib_find_gid);
2529
2530/**
2531 * ib_find_pkey - Returns the PKey table index where a specified
2532 *   PKey value occurs.
2533 * @device: The device to query.
2534 * @port_num: The port number of the device to search for the PKey.
2535 * @pkey: The PKey value to search for.
2536 * @index: The index into the PKey table where the PKey was found.
2537 */
2538int ib_find_pkey(struct ib_device *device,
2539		 u32 port_num, u16 pkey, u16 *index)
2540{
2541	int ret, i;
2542	u16 tmp_pkey;
2543	int partial_ix = -1;
2544
2545	for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
2546	     ++i) {
2547		ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
2548		if (ret)
2549			return ret;
2550		if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
2551			/* if there is full-member pkey take it.*/
2552			if (tmp_pkey & 0x8000) {
2553				*index = i;
2554				return 0;
2555			}
2556			if (partial_ix < 0)
2557				partial_ix = i;
2558		}
2559	}
2560
2561	/*no full-member, if exists take the limited*/
2562	if (partial_ix >= 0) {
2563		*index = partial_ix;
2564		return 0;
2565	}
2566	return -ENOENT;
2567}
2568EXPORT_SYMBOL(ib_find_pkey);
2569
2570/**
2571 * ib_get_net_dev_by_params() - Return the appropriate net_dev
2572 * for a received CM request
2573 * @dev:	An RDMA device on which the request has been received.
2574 * @port:	Port number on the RDMA device.
2575 * @pkey:	The Pkey the request came on.
2576 * @gid:	A GID that the net_dev uses to communicate.
2577 * @addr:	Contains the IP address that the request specified as its
2578 *		destination.
2579 *
2580 */
2581struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
2582					    u32 port,
2583					    u16 pkey,
2584					    const union ib_gid *gid,
2585					    const struct sockaddr *addr)
2586{
2587	struct net_device *net_dev = NULL;
2588	unsigned long index;
2589	void *client_data;
2590
2591	if (!rdma_protocol_ib(dev, port))
2592		return NULL;
2593
2594	/*
2595	 * Holding the read side guarantees that the client will not become
2596	 * unregistered while we are calling get_net_dev_by_params()
2597	 */
2598	down_read(&dev->client_data_rwsem);
2599	xan_for_each_marked (&dev->client_data, index, client_data,
2600			     CLIENT_DATA_REGISTERED) {
2601		struct ib_client *client = xa_load(&clients, index);
2602
2603		if (!client || !client->get_net_dev_by_params)
 
 
 
2604			continue;
2605
2606		net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
2607							addr, client_data);
2608		if (net_dev)
2609			break;
 
 
 
2610	}
2611	up_read(&dev->client_data_rwsem);
 
2612
2613	return net_dev;
2614}
2615EXPORT_SYMBOL(ib_get_net_dev_by_params);
2616
2617void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
2618{
2619	struct ib_device_ops *dev_ops = &dev->ops;
2620#define SET_DEVICE_OP(ptr, name)                                               \
2621	do {                                                                   \
2622		if (ops->name)                                                 \
2623			if (!((ptr)->name))				       \
2624				(ptr)->name = ops->name;                       \
2625	} while (0)
2626
2627#define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
2628
2629	if (ops->driver_id != RDMA_DRIVER_UNKNOWN) {
2630		WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN &&
2631			dev_ops->driver_id != ops->driver_id);
2632		dev_ops->driver_id = ops->driver_id;
2633	}
2634	if (ops->owner) {
2635		WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner);
2636		dev_ops->owner = ops->owner;
2637	}
2638	if (ops->uverbs_abi_ver)
2639		dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver;
2640
2641	dev_ops->uverbs_no_driver_id_binding |=
2642		ops->uverbs_no_driver_id_binding;
2643
2644	SET_DEVICE_OP(dev_ops, add_gid);
2645	SET_DEVICE_OP(dev_ops, add_sub_dev);
2646	SET_DEVICE_OP(dev_ops, advise_mr);
2647	SET_DEVICE_OP(dev_ops, alloc_dm);
2648	SET_DEVICE_OP(dev_ops, alloc_hw_device_stats);
2649	SET_DEVICE_OP(dev_ops, alloc_hw_port_stats);
2650	SET_DEVICE_OP(dev_ops, alloc_mr);
2651	SET_DEVICE_OP(dev_ops, alloc_mr_integrity);
2652	SET_DEVICE_OP(dev_ops, alloc_mw);
2653	SET_DEVICE_OP(dev_ops, alloc_pd);
2654	SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
2655	SET_DEVICE_OP(dev_ops, alloc_ucontext);
2656	SET_DEVICE_OP(dev_ops, alloc_xrcd);
2657	SET_DEVICE_OP(dev_ops, attach_mcast);
2658	SET_DEVICE_OP(dev_ops, check_mr_status);
2659	SET_DEVICE_OP(dev_ops, counter_alloc_stats);
2660	SET_DEVICE_OP(dev_ops, counter_bind_qp);
2661	SET_DEVICE_OP(dev_ops, counter_dealloc);
2662	SET_DEVICE_OP(dev_ops, counter_unbind_qp);
2663	SET_DEVICE_OP(dev_ops, counter_update_stats);
2664	SET_DEVICE_OP(dev_ops, create_ah);
2665	SET_DEVICE_OP(dev_ops, create_counters);
2666	SET_DEVICE_OP(dev_ops, create_cq);
2667	SET_DEVICE_OP(dev_ops, create_flow);
2668	SET_DEVICE_OP(dev_ops, create_qp);
2669	SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
2670	SET_DEVICE_OP(dev_ops, create_srq);
2671	SET_DEVICE_OP(dev_ops, create_user_ah);
2672	SET_DEVICE_OP(dev_ops, create_wq);
2673	SET_DEVICE_OP(dev_ops, dealloc_dm);
2674	SET_DEVICE_OP(dev_ops, dealloc_driver);
2675	SET_DEVICE_OP(dev_ops, dealloc_mw);
2676	SET_DEVICE_OP(dev_ops, dealloc_pd);
2677	SET_DEVICE_OP(dev_ops, dealloc_ucontext);
2678	SET_DEVICE_OP(dev_ops, dealloc_xrcd);
2679	SET_DEVICE_OP(dev_ops, del_gid);
2680	SET_DEVICE_OP(dev_ops, del_sub_dev);
2681	SET_DEVICE_OP(dev_ops, dereg_mr);
2682	SET_DEVICE_OP(dev_ops, destroy_ah);
2683	SET_DEVICE_OP(dev_ops, destroy_counters);
2684	SET_DEVICE_OP(dev_ops, destroy_cq);
2685	SET_DEVICE_OP(dev_ops, destroy_flow);
2686	SET_DEVICE_OP(dev_ops, destroy_flow_action);
2687	SET_DEVICE_OP(dev_ops, destroy_qp);
2688	SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
2689	SET_DEVICE_OP(dev_ops, destroy_srq);
2690	SET_DEVICE_OP(dev_ops, destroy_wq);
2691	SET_DEVICE_OP(dev_ops, device_group);
2692	SET_DEVICE_OP(dev_ops, detach_mcast);
2693	SET_DEVICE_OP(dev_ops, disassociate_ucontext);
2694	SET_DEVICE_OP(dev_ops, drain_rq);
2695	SET_DEVICE_OP(dev_ops, drain_sq);
2696	SET_DEVICE_OP(dev_ops, enable_driver);
2697	SET_DEVICE_OP(dev_ops, fill_res_cm_id_entry);
2698	SET_DEVICE_OP(dev_ops, fill_res_cq_entry);
2699	SET_DEVICE_OP(dev_ops, fill_res_cq_entry_raw);
2700	SET_DEVICE_OP(dev_ops, fill_res_mr_entry);
2701	SET_DEVICE_OP(dev_ops, fill_res_mr_entry_raw);
2702	SET_DEVICE_OP(dev_ops, fill_res_qp_entry);
2703	SET_DEVICE_OP(dev_ops, fill_res_qp_entry_raw);
2704	SET_DEVICE_OP(dev_ops, fill_res_srq_entry);
2705	SET_DEVICE_OP(dev_ops, fill_res_srq_entry_raw);
2706	SET_DEVICE_OP(dev_ops, fill_stat_mr_entry);
2707	SET_DEVICE_OP(dev_ops, get_dev_fw_str);
2708	SET_DEVICE_OP(dev_ops, get_dma_mr);
2709	SET_DEVICE_OP(dev_ops, get_hw_stats);
2710	SET_DEVICE_OP(dev_ops, get_link_layer);
2711	SET_DEVICE_OP(dev_ops, get_netdev);
2712	SET_DEVICE_OP(dev_ops, get_numa_node);
2713	SET_DEVICE_OP(dev_ops, get_port_immutable);
2714	SET_DEVICE_OP(dev_ops, get_vector_affinity);
2715	SET_DEVICE_OP(dev_ops, get_vf_config);
2716	SET_DEVICE_OP(dev_ops, get_vf_guid);
2717	SET_DEVICE_OP(dev_ops, get_vf_stats);
2718	SET_DEVICE_OP(dev_ops, iw_accept);
2719	SET_DEVICE_OP(dev_ops, iw_add_ref);
2720	SET_DEVICE_OP(dev_ops, iw_connect);
2721	SET_DEVICE_OP(dev_ops, iw_create_listen);
2722	SET_DEVICE_OP(dev_ops, iw_destroy_listen);
2723	SET_DEVICE_OP(dev_ops, iw_get_qp);
2724	SET_DEVICE_OP(dev_ops, iw_reject);
2725	SET_DEVICE_OP(dev_ops, iw_rem_ref);
2726	SET_DEVICE_OP(dev_ops, map_mr_sg);
2727	SET_DEVICE_OP(dev_ops, map_mr_sg_pi);
2728	SET_DEVICE_OP(dev_ops, mmap);
2729	SET_DEVICE_OP(dev_ops, mmap_free);
2730	SET_DEVICE_OP(dev_ops, modify_ah);
2731	SET_DEVICE_OP(dev_ops, modify_cq);
2732	SET_DEVICE_OP(dev_ops, modify_device);
2733	SET_DEVICE_OP(dev_ops, modify_hw_stat);
2734	SET_DEVICE_OP(dev_ops, modify_port);
2735	SET_DEVICE_OP(dev_ops, modify_qp);
2736	SET_DEVICE_OP(dev_ops, modify_srq);
2737	SET_DEVICE_OP(dev_ops, modify_wq);
2738	SET_DEVICE_OP(dev_ops, peek_cq);
2739	SET_DEVICE_OP(dev_ops, poll_cq);
2740	SET_DEVICE_OP(dev_ops, port_groups);
2741	SET_DEVICE_OP(dev_ops, post_recv);
2742	SET_DEVICE_OP(dev_ops, post_send);
2743	SET_DEVICE_OP(dev_ops, post_srq_recv);
2744	SET_DEVICE_OP(dev_ops, process_mad);
2745	SET_DEVICE_OP(dev_ops, query_ah);
2746	SET_DEVICE_OP(dev_ops, query_device);
2747	SET_DEVICE_OP(dev_ops, query_gid);
2748	SET_DEVICE_OP(dev_ops, query_pkey);
2749	SET_DEVICE_OP(dev_ops, query_port);
2750	SET_DEVICE_OP(dev_ops, query_qp);
2751	SET_DEVICE_OP(dev_ops, query_srq);
2752	SET_DEVICE_OP(dev_ops, query_ucontext);
2753	SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
2754	SET_DEVICE_OP(dev_ops, read_counters);
2755	SET_DEVICE_OP(dev_ops, reg_dm_mr);
2756	SET_DEVICE_OP(dev_ops, reg_user_mr);
2757	SET_DEVICE_OP(dev_ops, reg_user_mr_dmabuf);
2758	SET_DEVICE_OP(dev_ops, req_notify_cq);
2759	SET_DEVICE_OP(dev_ops, rereg_user_mr);
2760	SET_DEVICE_OP(dev_ops, resize_cq);
2761	SET_DEVICE_OP(dev_ops, set_vf_guid);
2762	SET_DEVICE_OP(dev_ops, set_vf_link_state);
2763	SET_DEVICE_OP(dev_ops, ufile_hw_cleanup);
2764
2765	SET_OBJ_SIZE(dev_ops, ib_ah);
2766	SET_OBJ_SIZE(dev_ops, ib_counters);
2767	SET_OBJ_SIZE(dev_ops, ib_cq);
2768	SET_OBJ_SIZE(dev_ops, ib_mw);
2769	SET_OBJ_SIZE(dev_ops, ib_pd);
2770	SET_OBJ_SIZE(dev_ops, ib_qp);
2771	SET_OBJ_SIZE(dev_ops, ib_rwq_ind_table);
2772	SET_OBJ_SIZE(dev_ops, ib_srq);
2773	SET_OBJ_SIZE(dev_ops, ib_ucontext);
2774	SET_OBJ_SIZE(dev_ops, ib_xrcd);
2775}
2776EXPORT_SYMBOL(ib_set_device_ops);
2777
2778int ib_add_sub_device(struct ib_device *parent,
2779		      enum rdma_nl_dev_type type,
2780		      const char *name)
2781{
2782	struct ib_device *sub;
2783	int ret = 0;
2784
2785	if (!parent->ops.add_sub_dev || !parent->ops.del_sub_dev)
2786		return -EOPNOTSUPP;
2787
2788	if (!ib_device_try_get(parent))
2789		return -EINVAL;
2790
2791	sub = parent->ops.add_sub_dev(parent, type, name);
2792	if (IS_ERR(sub)) {
2793		ib_device_put(parent);
2794		return PTR_ERR(sub);
2795	}
2796
2797	sub->type = type;
2798	sub->parent = parent;
2799
2800	mutex_lock(&parent->subdev_lock);
2801	list_add_tail(&parent->subdev_list_head, &sub->subdev_list);
2802	mutex_unlock(&parent->subdev_lock);
2803
2804	return ret;
2805}
2806EXPORT_SYMBOL(ib_add_sub_device);
2807
2808int ib_del_sub_device_and_put(struct ib_device *sub)
2809{
2810	struct ib_device *parent = sub->parent;
2811
2812	if (!parent)
2813		return -EOPNOTSUPP;
2814
2815	mutex_lock(&parent->subdev_lock);
2816	list_del(&sub->subdev_list);
2817	mutex_unlock(&parent->subdev_lock);
2818
2819	ib_device_put(sub);
2820	parent->ops.del_sub_dev(sub);
2821	ib_device_put(parent);
2822
2823	return 0;
2824}
2825EXPORT_SYMBOL(ib_del_sub_device_and_put);
2826
2827#ifdef CONFIG_INFINIBAND_VIRT_DMA
2828int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents)
2829{
2830	struct scatterlist *s;
2831	int i;
2832
2833	for_each_sg(sg, s, nents, i) {
2834		sg_dma_address(s) = (uintptr_t)sg_virt(s);
2835		sg_dma_len(s) = s->length;
2836	}
2837	return nents;
2838}
2839EXPORT_SYMBOL(ib_dma_virt_map_sg);
2840#endif /* CONFIG_INFINIBAND_VIRT_DMA */
2841
2842static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
2843	[RDMA_NL_LS_OP_RESOLVE] = {
2844		.doit = ib_nl_handle_resolve_resp,
2845		.flags = RDMA_NL_ADMIN_PERM,
2846	},
2847	[RDMA_NL_LS_OP_SET_TIMEOUT] = {
2848		.doit = ib_nl_handle_set_timeout,
2849		.flags = RDMA_NL_ADMIN_PERM,
2850	},
2851	[RDMA_NL_LS_OP_IP_RESOLVE] = {
2852		.doit = ib_nl_handle_ip_res_resp,
2853		.flags = RDMA_NL_ADMIN_PERM,
2854	},
2855};
2856
2857static int ib_netdevice_event(struct notifier_block *this,
2858			      unsigned long event, void *ptr)
2859{
2860	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
2861	struct net_device *ib_ndev;
2862	struct ib_device *ibdev;
2863	u32 port;
2864
2865	switch (event) {
2866	case NETDEV_CHANGENAME:
2867		ibdev = ib_device_get_by_netdev(ndev, RDMA_DRIVER_UNKNOWN);
2868		if (!ibdev)
2869			return NOTIFY_DONE;
2870
2871		rdma_for_each_port(ibdev, port) {
2872			ib_ndev = ib_device_get_netdev(ibdev, port);
2873			if (ndev == ib_ndev)
2874				rdma_nl_notify_event(ibdev, port,
2875						     RDMA_NETDEV_RENAME_EVENT);
2876			dev_put(ib_ndev);
2877		}
2878		ib_device_put(ibdev);
2879		break;
2880	default:
2881		break;
2882	}
2883
2884	return NOTIFY_DONE;
2885}
2886
2887static struct notifier_block nb_netdevice = {
2888	.notifier_call = ib_netdevice_event,
2889};
2890
2891static int __init ib_core_init(void)
2892{
2893	int ret = -ENOMEM;
2894
2895	ib_wq = alloc_workqueue("infiniband", 0, 0);
2896	if (!ib_wq)
2897		return -ENOMEM;
2898
2899	ib_unreg_wq = alloc_workqueue("ib-unreg-wq", WQ_UNBOUND,
2900				      WQ_UNBOUND_MAX_ACTIVE);
2901	if (!ib_unreg_wq)
2902		goto err;
2903
2904	ib_comp_wq = alloc_workqueue("ib-comp-wq",
2905			WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2906	if (!ib_comp_wq)
2907		goto err_unbound;
2908
2909	ib_comp_unbound_wq =
2910		alloc_workqueue("ib-comp-unb-wq",
2911				WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
2912				WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
2913	if (!ib_comp_unbound_wq)
2914		goto err_comp;
2915
2916	ret = class_register(&ib_class);
2917	if (ret) {
2918		pr_warn("Couldn't create InfiniBand device class\n");
2919		goto err_comp_unbound;
2920	}
2921
2922	rdma_nl_init();
 
 
 
 
2923
2924	ret = addr_init();
2925	if (ret) {
2926		pr_warn("Couldn't init IB address resolution\n");
2927		goto err_ibnl;
2928	}
2929
2930	ret = ib_mad_init();
2931	if (ret) {
2932		pr_warn("Couldn't init IB MAD\n");
2933		goto err_addr;
2934	}
2935
2936	ret = ib_sa_init();
2937	if (ret) {
2938		pr_warn("Couldn't init SA\n");
2939		goto err_mad;
2940	}
2941
2942	ret = register_blocking_lsm_notifier(&ibdev_lsm_nb);
2943	if (ret) {
2944		pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
2945		goto err_sa;
2946	}
2947
2948	ret = register_pernet_device(&rdma_dev_net_ops);
2949	if (ret) {
2950		pr_warn("Couldn't init compat dev. ret %d\n", ret);
2951		goto err_compat;
2952	}
2953
2954	nldev_init();
2955	rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
2956	ret = roce_gid_mgmt_init();
2957	if (ret) {
2958		pr_warn("Couldn't init RoCE GID management\n");
2959		goto err_parent;
2960	}
2961
2962	register_netdevice_notifier(&nb_netdevice);
2963
2964	return 0;
2965
2966err_parent:
2967	rdma_nl_unregister(RDMA_NL_LS);
2968	nldev_exit();
2969	unregister_pernet_device(&rdma_dev_net_ops);
2970err_compat:
2971	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2972err_sa:
2973	ib_sa_cleanup();
2974err_mad:
2975	ib_mad_cleanup();
2976err_addr:
2977	addr_cleanup();
2978err_ibnl:
 
 
2979	class_unregister(&ib_class);
2980err_comp_unbound:
2981	destroy_workqueue(ib_comp_unbound_wq);
2982err_comp:
2983	destroy_workqueue(ib_comp_wq);
2984err_unbound:
2985	destroy_workqueue(ib_unreg_wq);
2986err:
2987	destroy_workqueue(ib_wq);
2988	return ret;
2989}
2990
2991static void __exit ib_core_cleanup(void)
2992{
2993	unregister_netdevice_notifier(&nb_netdevice);
2994	roce_gid_mgmt_cleanup();
2995	rdma_nl_unregister(RDMA_NL_LS);
2996	nldev_exit();
2997	unregister_pernet_device(&rdma_dev_net_ops);
2998	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2999	ib_sa_cleanup();
3000	ib_mad_cleanup();
3001	addr_cleanup();
3002	rdma_nl_exit();
3003	class_unregister(&ib_class);
3004	destroy_workqueue(ib_comp_unbound_wq);
3005	destroy_workqueue(ib_comp_wq);
3006	/* Make sure that any pending umem accounting work is done. */
3007	destroy_workqueue(ib_wq);
3008	destroy_workqueue(ib_unreg_wq);
3009	WARN_ON(!xa_empty(&clients));
3010	WARN_ON(!xa_empty(&devices));
3011}
3012
3013MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
3014
3015/* ib core relies on netdev stack to first register net_ns_type_operations
3016 * ns kobject type before ib_core initialization.
3017 */
3018fs_initcall(ib_core_init);
3019module_exit(ib_core_cleanup);
v4.17
   1/*
   2 * Copyright (c) 2004 Topspin Communications.  All rights reserved.
   3 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
   4 *
   5 * This software is available to you under a choice of one of two
   6 * licenses.  You may choose to be licensed under the terms of the GNU
   7 * General Public License (GPL) Version 2, available from the file
   8 * COPYING in the main directory of this source tree, or the
   9 * OpenIB.org BSD license below:
  10 *
  11 *     Redistribution and use in source and binary forms, with or
  12 *     without modification, are permitted provided that the following
  13 *     conditions are met:
  14 *
  15 *      - Redistributions of source code must retain the above
  16 *        copyright notice, this list of conditions and the following
  17 *        disclaimer.
  18 *
  19 *      - Redistributions in binary form must reproduce the above
  20 *        copyright notice, this list of conditions and the following
  21 *        disclaimer in the documentation and/or other materials
  22 *        provided with the distribution.
  23 *
  24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  31 * SOFTWARE.
  32 */
  33
  34#include <linux/module.h>
  35#include <linux/string.h>
  36#include <linux/errno.h>
  37#include <linux/kernel.h>
  38#include <linux/slab.h>
  39#include <linux/init.h>
  40#include <linux/mutex.h>
  41#include <linux/netdevice.h>
 
  42#include <linux/security.h>
  43#include <linux/notifier.h>
 
  44#include <rdma/rdma_netlink.h>
  45#include <rdma/ib_addr.h>
  46#include <rdma/ib_cache.h>
 
  47
  48#include "core_priv.h"
 
  49
  50MODULE_AUTHOR("Roland Dreier");
  51MODULE_DESCRIPTION("core kernel InfiniBand API");
  52MODULE_LICENSE("Dual BSD/GPL");
  53
  54struct ib_client_data {
  55	struct list_head  list;
  56	struct ib_client *client;
  57	void *            data;
  58	/* The device or client is going down. Do not call client or device
  59	 * callbacks other than remove(). */
  60	bool		  going_down;
  61};
  62
  63struct workqueue_struct *ib_comp_wq;
 
  64struct workqueue_struct *ib_wq;
  65EXPORT_SYMBOL_GPL(ib_wq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  66
  67/* The device_list and client_list contain devices and clients after their
  68 * registration has completed, and the devices and clients are removed
  69 * during unregistration. */
  70static LIST_HEAD(device_list);
  71static LIST_HEAD(client_list);
  72
  73/*
  74 * device_mutex and lists_rwsem protect access to both device_list and
  75 * client_list.  device_mutex protects writer access by device and client
  76 * registration / de-registration.  lists_rwsem protects reader access to
  77 * these lists.  Iterators of these lists must lock it for read, while updates
  78 * to the lists must be done with a write lock. A special case is when the
  79 * device_mutex is locked. In this case locking the lists for read access is
  80 * not necessary as the device_mutex implies it.
 
 
 
 
 
 
 
 
 
 
 
 
  81 *
  82 * lists_rwsem also protects access to the client data list.
 
 
  83 */
  84static DEFINE_MUTEX(device_mutex);
  85static DECLARE_RWSEM(lists_rwsem);
 
 
 
 
  86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  87static int ib_security_change(struct notifier_block *nb, unsigned long event,
  88			      void *lsm_data);
  89static void ib_policy_change_task(struct work_struct *work);
  90static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
  91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  92static struct notifier_block ibdev_lsm_nb = {
  93	.notifier_call = ib_security_change,
  94};
  95
  96static int ib_device_check_mandatory(struct ib_device *device)
 
 
 
 
 
 
 
 
 
  97{
  98#define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device, x), #x }
  99	static const struct {
 100		size_t offset;
 101		char  *name;
 102	} mandatory_table[] = {
 103		IB_MANDATORY_FUNC(query_device),
 104		IB_MANDATORY_FUNC(query_port),
 105		IB_MANDATORY_FUNC(query_pkey),
 106		IB_MANDATORY_FUNC(alloc_pd),
 107		IB_MANDATORY_FUNC(dealloc_pd),
 108		IB_MANDATORY_FUNC(create_ah),
 109		IB_MANDATORY_FUNC(destroy_ah),
 110		IB_MANDATORY_FUNC(create_qp),
 111		IB_MANDATORY_FUNC(modify_qp),
 112		IB_MANDATORY_FUNC(destroy_qp),
 113		IB_MANDATORY_FUNC(post_send),
 114		IB_MANDATORY_FUNC(post_recv),
 115		IB_MANDATORY_FUNC(create_cq),
 116		IB_MANDATORY_FUNC(destroy_cq),
 117		IB_MANDATORY_FUNC(poll_cq),
 118		IB_MANDATORY_FUNC(req_notify_cq),
 119		IB_MANDATORY_FUNC(get_dma_mr),
 
 120		IB_MANDATORY_FUNC(dereg_mr),
 121		IB_MANDATORY_FUNC(get_port_immutable)
 122	};
 123	int i;
 124
 
 125	for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
 126		if (!*(void **) ((void *) device + mandatory_table[i].offset)) {
 127			pr_warn("Device %s is missing mandatory function %s\n",
 128				device->name, mandatory_table[i].name);
 129			return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 130		}
 
 
 
 131	}
 
 
 
 
 132
 133	return 0;
 
 
 
 
 
 
 
 
 
 
 134}
 
 135
 136static struct ib_device *__ib_device_get_by_index(u32 index)
 137{
 138	struct ib_device *device;
 
 139
 140	list_for_each_entry(device, &device_list, core_list)
 141		if (device->index == index)
 142			return device;
 143
 144	return NULL;
 145}
 146
 147/*
 148 * Caller is responsible to return refrerence count by calling put_device()
 
 
 
 
 
 149 */
 150struct ib_device *ib_device_get_by_index(u32 index)
 
 151{
 152	struct ib_device *device;
 153
 154	down_read(&lists_rwsem);
 155	device = __ib_device_get_by_index(index);
 156	if (device)
 157		get_device(&device->dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 158
 159	up_read(&lists_rwsem);
 160	return device;
 
 
 
 
 
 
 
 
 
 
 161}
 162
 163static struct ib_device *__ib_device_get_by_name(const char *name)
 164{
 165	struct ib_device *device;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 166
 167	list_for_each_entry(device, &device_list, core_list)
 168		if (!strncmp(name, device->name, IB_DEVICE_NAME_MAX))
 169			return device;
 
 
 170
 171	return NULL;
 172}
 173
 174static int alloc_name(char *name)
 175{
 176	unsigned long *inuse;
 177	char buf[IB_DEVICE_NAME_MAX];
 178	struct ib_device *device;
 
 
 
 179	int i;
 180
 181	inuse = (unsigned long *) get_zeroed_page(GFP_KERNEL);
 182	if (!inuse)
 183		return -ENOMEM;
 
 184
 185	list_for_each_entry(device, &device_list, core_list) {
 186		if (!sscanf(device->name, name, &i))
 187			continue;
 188		if (i < 0 || i >= PAGE_SIZE * 8)
 189			continue;
 190		snprintf(buf, sizeof buf, name, i);
 191		if (!strncmp(buf, device->name, IB_DEVICE_NAME_MAX))
 192			set_bit(i, inuse);
 
 
 
 
 193	}
 194
 195	i = find_first_zero_bit(inuse, PAGE_SIZE * 8);
 196	free_page((unsigned long) inuse);
 197	snprintf(buf, sizeof buf, name, i);
 198
 199	if (__ib_device_get_by_name(buf))
 200		return -ENFILE;
 201
 202	strlcpy(name, buf, IB_DEVICE_NAME_MAX);
 203	return 0;
 204}
 205
 206static void ib_device_release(struct device *device)
 207{
 208	struct ib_device *dev = container_of(device, struct ib_device, dev);
 209
 210	WARN_ON(dev->reg_state == IB_DEV_REGISTERED);
 211	if (dev->reg_state == IB_DEV_UNREGISTERED) {
 212		/*
 213		 * In IB_DEV_UNINITIALIZED state, cache or port table
 214		 * is not even created. Free cache and port table only when
 215		 * device reaches UNREGISTERED state.
 216		 */
 217		ib_cache_release_one(dev);
 218		kfree(dev->port_immutable);
 
 
 
 
 219	}
 220	kfree(dev);
 
 
 
 
 
 
 
 221}
 222
 223static int ib_device_uevent(struct device *device,
 224			    struct kobj_uevent_env *env)
 225{
 226	struct ib_device *dev = container_of(device, struct ib_device, dev);
 227
 228	if (add_uevent_var(env, "NAME=%s", dev->name))
 229		return -ENOMEM;
 230
 231	/*
 232	 * It would be nice to pass the node GUID with the event...
 233	 */
 234
 235	return 0;
 236}
 237
 
 
 
 
 
 
 
 
 238static struct class ib_class = {
 239	.name    = "infiniband",
 240	.dev_release = ib_device_release,
 241	.dev_uevent = ib_device_uevent,
 
 
 242};
 243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 244/**
 245 * ib_alloc_device - allocate an IB device struct
 246 * @size:size of structure to allocate
 247 *
 248 * Low-level drivers should use ib_alloc_device() to allocate &struct
 249 * ib_device.  @size is the size of the structure to be allocated,
 250 * including any private data used by the low-level driver.
 251 * ib_dealloc_device() must be used to free structures allocated with
 252 * ib_alloc_device().
 253 */
 254struct ib_device *ib_alloc_device(size_t size)
 255{
 256	struct ib_device *device;
 
 257
 258	if (WARN_ON(size < sizeof(struct ib_device)))
 259		return NULL;
 260
 261	device = kzalloc(size, GFP_KERNEL);
 262	if (!device)
 263		return NULL;
 264
 265	rdma_restrack_init(&device->res);
 
 
 
 266
 267	device->dev.class = &ib_class;
 268	device_initialize(&device->dev);
 269
 270	dev_set_drvdata(&device->dev, device);
 271
 272	INIT_LIST_HEAD(&device->event_handler_list);
 273	spin_lock_init(&device->event_handler_lock);
 274	spin_lock_init(&device->client_data_lock);
 275	INIT_LIST_HEAD(&device->client_data_list);
 276	INIT_LIST_HEAD(&device->port_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 277
 278	return device;
 279}
 280EXPORT_SYMBOL(ib_alloc_device);
 281
 282/**
 283 * ib_dealloc_device - free an IB device struct
 284 * @device:structure to free
 285 *
 286 * Free a structure allocated with ib_alloc_device().
 287 */
 288void ib_dealloc_device(struct ib_device *device)
 289{
 290	WARN_ON(device->reg_state != IB_DEV_UNREGISTERED &&
 291		device->reg_state != IB_DEV_UNINITIALIZED);
 292	rdma_restrack_clean(&device->res);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 293	put_device(&device->dev);
 294}
 295EXPORT_SYMBOL(ib_dealloc_device);
 296
 297static int add_client_context(struct ib_device *device, struct ib_client *client)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 298{
 299	struct ib_client_data *context;
 300	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 301
 302	context = kmalloc(sizeof *context, GFP_KERNEL);
 303	if (!context)
 
 
 
 
 
 
 
 
 
 304		return -ENOMEM;
 
 
 
 
 
 
 305
 306	context->client = client;
 307	context->data   = NULL;
 308	context->going_down = false;
 309
 310	down_write(&lists_rwsem);
 311	spin_lock_irqsave(&device->client_data_lock, flags);
 312	list_add(&context->list, &device->client_data_list);
 313	spin_unlock_irqrestore(&device->client_data_lock, flags);
 314	up_write(&lists_rwsem);
 315
 
 
 
 
 
 
 316	return 0;
 317}
 318
 319static int verify_immutable(const struct ib_device *dev, u8 port)
 320{
 321	return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
 322			    rdma_max_mad_size(dev, port) != 0);
 323}
 324
 325static int read_port_immutable(struct ib_device *device)
 326{
 
 327	int ret;
 328	u8 start_port = rdma_start_port(device);
 329	u8 end_port = rdma_end_port(device);
 330	u8 port;
 331
 332	/**
 333	 * device->port_immutable is indexed directly by the port number to make
 334	 * access to this data as efficient as possible.
 335	 *
 336	 * Therefore port_immutable is declared as a 1 based array with
 337	 * potential empty slots at the beginning.
 338	 */
 339	device->port_immutable = kzalloc(sizeof(*device->port_immutable)
 340					 * (end_port + 1),
 341					 GFP_KERNEL);
 342	if (!device->port_immutable)
 343		return -ENOMEM;
 344
 345	for (port = start_port; port <= end_port; ++port) {
 346		ret = device->get_port_immutable(device, port,
 347						 &device->port_immutable[port]);
 348		if (ret)
 349			return ret;
 350
 351		if (verify_immutable(device, port))
 352			return -EINVAL;
 353	}
 354	return 0;
 355}
 356
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 357void ib_get_device_fw_str(struct ib_device *dev, char *str)
 358{
 359	if (dev->get_dev_fw_str)
 360		dev->get_dev_fw_str(dev, str);
 361	else
 362		str[0] = '\0';
 363}
 364EXPORT_SYMBOL(ib_get_device_fw_str);
 365
 366static int setup_port_pkey_list(struct ib_device *device)
 367{
 368	int i;
 369
 370	/**
 371	 * device->port_pkey_list is indexed directly by the port number,
 372	 * Therefore it is declared as a 1 based array with potential empty
 373	 * slots at the beginning.
 374	 */
 375	device->port_pkey_list = kcalloc(rdma_end_port(device) + 1,
 376					 sizeof(*device->port_pkey_list),
 377					 GFP_KERNEL);
 378
 379	if (!device->port_pkey_list)
 380		return -ENOMEM;
 381
 382	for (i = 0; i < (rdma_end_port(device) + 1); i++) {
 383		spin_lock_init(&device->port_pkey_list[i].list_lock);
 384		INIT_LIST_HEAD(&device->port_pkey_list[i].pkey_list);
 385	}
 386
 387	return 0;
 388}
 389
 390static void ib_policy_change_task(struct work_struct *work)
 391{
 392	struct ib_device *dev;
 
 393
 394	down_read(&lists_rwsem);
 395	list_for_each_entry(dev, &device_list, core_list) {
 396		int i;
 397
 398		for (i = rdma_start_port(dev); i <= rdma_end_port(dev); i++) {
 399			u64 sp;
 400			int ret = ib_get_cached_subnet_prefix(dev,
 401							      i,
 402							      &sp);
 403
 404			WARN_ONCE(ret,
 405				  "ib_get_cached_subnet_prefix err: %d, this should never happen here\n",
 406				  ret);
 407			if (!ret)
 408				ib_security_cache_change(dev, i, sp);
 409		}
 410	}
 411	up_read(&lists_rwsem);
 412}
 413
 414static int ib_security_change(struct notifier_block *nb, unsigned long event,
 415			      void *lsm_data)
 416{
 417	if (event != LSM_POLICY_CHANGE)
 418		return NOTIFY_DONE;
 419
 420	schedule_work(&ib_policy_change_work);
 
 421
 422	return NOTIFY_OK;
 423}
 424
 425/**
 426 *	__dev_new_index	-	allocate an device index
 427 *
 428 *	Returns a suitable unique value for a new device interface
 429 *	number.  It assumes that there are less than 2^32-1 ib devices
 430 *	will be present in the system.
 431 */
 432static u32 __dev_new_index(void)
 
 
 433{
 
 
 
 
 
 
 
 434	/*
 435	 * The device index to allow stable naming.
 436	 * Similar to struct net -> ifindex.
 437	 */
 438	static u32 index;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 439
 440	for (;;) {
 441		if (!(++index))
 442			index = 1;
 443
 444		if (!__ib_device_get_by_index(index))
 445			return index;
 
 
 
 
 
 446	}
 
 447}
 448
 449/**
 450 * ib_register_device - Register an IB device with IB core
 451 * @device:Device to register
 452 *
 453 * Low-level drivers use ib_register_device() to register their
 454 * devices with the IB core.  All registered clients will receive a
 455 * callback for each device that is added. @device must be allocated
 456 * with ib_alloc_device().
 457 */
 458int ib_register_device(struct ib_device *device,
 459		       int (*port_callback)(struct ib_device *,
 460					    u8, struct kobject *))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 461{
 
 
 
 462	int ret;
 463	struct ib_client *client;
 464	struct ib_udata uhw = {.outlen = 0, .inlen = 0};
 465	struct device *parent = device->dev.parent;
 466
 467	WARN_ON_ONCE(device->dma_device);
 468	if (device->dev.dma_ops) {
 
 
 
 
 
 
 
 
 
 469		/*
 470		 * The caller provided custom DMA operations. Copy the
 471		 * DMA-related fields that are used by e.g. dma_alloc_coherent()
 472		 * into device->dev.
 473		 */
 474		device->dma_device = &device->dev;
 475		if (!device->dev.dma_mask) {
 476			if (parent)
 477				device->dev.dma_mask = parent->dma_mask;
 478			else
 479				WARN_ON_ONCE(true);
 480		}
 481		if (!device->dev.coherent_dma_mask) {
 482			if (parent)
 483				device->dev.coherent_dma_mask =
 484					parent->coherent_dma_mask;
 485			else
 486				WARN_ON_ONCE(true);
 487		}
 488	} else {
 489		/*
 490		 * The caller did not provide custom DMA operations. Use the
 491		 * DMA mapping operations of the parent device.
 492		 */
 493		WARN_ON_ONCE(!parent);
 494		device->dma_device = parent;
 
 
 495	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 496
 497	mutex_lock(&device_mutex);
 
 
 
 
 498
 499	if (strchr(device->name, '%')) {
 500		ret = alloc_name(device->name);
 
 
 
 
 
 
 501		if (ret)
 502			goto out;
 503	}
 
 504
 505	if (ib_device_check_mandatory(device)) {
 506		ret = -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 507		goto out;
 508	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 509
 510	ret = read_port_immutable(device);
 
 
 511	if (ret) {
 512		pr_warn("Couldn't create per port immutable data %s\n",
 513			device->name);
 514		goto out;
 515	}
 516
 517	ret = setup_port_pkey_list(device);
 
 518	if (ret) {
 519		pr_warn("Couldn't create per port_pkey_list\n");
 520		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 521	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 522
 523	ret = ib_cache_setup_one(device);
 524	if (ret) {
 525		pr_warn("Couldn't set up InfiniBand P_Key/GID cache\n");
 526		goto port_cleanup;
 
 527	}
 528
 529	ret = ib_device_register_rdmacg(device);
 530	if (ret) {
 531		pr_warn("Couldn't register device with rdma cgroup\n");
 
 532		goto cache_cleanup;
 533	}
 534
 535	memset(&device->attrs, 0, sizeof(device->attrs));
 536	ret = device->query_device(device, &device->attrs, &uhw);
 
 
 
 
 
 
 
 
 
 
 
 
 537	if (ret) {
 538		pr_warn("Couldn't query the device attributes\n");
 539		goto cg_cleanup;
 
 540	}
 541
 542	ret = ib_device_register_sysfs(device, port_callback);
 543	if (ret) {
 544		pr_warn("Couldn't register device %s with driver model\n",
 545			device->name);
 546		goto cg_cleanup;
 547	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 548
 549	device->reg_state = IB_DEV_REGISTERED;
 
 550
 551	list_for_each_entry(client, &client_list, list)
 552		if (!add_client_context(device, client) && client->add)
 553			client->add(device);
 554
 555	device->index = __dev_new_index();
 556	down_write(&lists_rwsem);
 557	list_add_tail(&device->core_list, &device_list);
 558	up_write(&lists_rwsem);
 559	mutex_unlock(&device_mutex);
 560	return 0;
 561
 
 
 562cg_cleanup:
 
 563	ib_device_unregister_rdmacg(device);
 564cache_cleanup:
 565	ib_cache_cleanup_one(device);
 566	ib_cache_release_one(device);
 567port_cleanup:
 568	kfree(device->port_immutable);
 569out:
 570	mutex_unlock(&device_mutex);
 571	return ret;
 572}
 573EXPORT_SYMBOL(ib_register_device);
 574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 575/**
 576 * ib_unregister_device - Unregister an IB device
 577 * @device:Device to unregister
 578 *
 579 * Unregister an IB device.  All clients will receive a remove callback.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 580 */
 581void ib_unregister_device(struct ib_device *device)
 
 582{
 583	struct ib_client_data *context, *tmp;
 584	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 585
 586	mutex_lock(&device_mutex);
 
 
 
 587
 588	down_write(&lists_rwsem);
 589	list_del(&device->core_list);
 590	spin_lock_irqsave(&device->client_data_lock, flags);
 591	list_for_each_entry_safe(context, tmp, &device->client_data_list, list)
 592		context->going_down = true;
 593	spin_unlock_irqrestore(&device->client_data_lock, flags);
 594	downgrade_write(&lists_rwsem);
 595
 596	list_for_each_entry_safe(context, tmp, &device->client_data_list,
 597				 list) {
 598		if (context->client->remove)
 599			context->client->remove(device, context->data);
 600	}
 601	up_read(&lists_rwsem);
 602
 603	ib_device_unregister_rdmacg(device);
 604	ib_device_unregister_sysfs(device);
 
 
 
 
 
 
 
 
 
 
 
 
 605
 606	mutex_unlock(&device_mutex);
 
 
 
 
 
 607
 608	ib_cache_cleanup_one(device);
 
 
 609
 610	ib_security_destroy_port_pkey_list(device);
 611	kfree(device->port_pkey_list);
 
 
 
 
 
 
 
 
 612
 613	down_write(&lists_rwsem);
 614	spin_lock_irqsave(&device->client_data_lock, flags);
 615	list_for_each_entry_safe(context, tmp, &device->client_data_list, list)
 616		kfree(context);
 617	spin_unlock_irqrestore(&device->client_data_lock, flags);
 618	up_write(&lists_rwsem);
 619
 620	device->reg_state = IB_DEV_UNREGISTERED;
 
 
 
 
 
 
 
 621}
 622EXPORT_SYMBOL(ib_unregister_device);
 623
 624/**
 625 * ib_register_client - Register an IB client
 626 * @client:Client to register
 627 *
 628 * Upper level users of the IB drivers can use ib_register_client() to
 629 * register callbacks for IB device addition and removal.  When an IB
 630 * device is added, each registered client's add method will be called
 631 * (in the order the clients were registered), and when a device is
 632 * removed, each client's remove method will be called (in the reverse
 633 * order that clients were registered).  In addition, when
 634 * ib_register_client() is called, the client will receive an add
 635 * callback for all devices already registered.
 636 */
 637int ib_register_client(struct ib_client *client)
 638{
 639	struct ib_device *device;
 
 
 
 640
 641	mutex_lock(&device_mutex);
 
 642
 643	list_for_each_entry(device, &device_list, core_list)
 644		if (!add_client_context(device, client) && client->add)
 645			client->add(device);
 
 
 
 
 
 
 646
 647	down_write(&lists_rwsem);
 648	list_add_tail(&client->list, &client_list);
 649	up_write(&lists_rwsem);
 650
 651	mutex_unlock(&device_mutex);
 652
 653	return 0;
 
 
 
 
 
 
 654}
 655EXPORT_SYMBOL(ib_register_client);
 656
 657/**
 658 * ib_unregister_client - Unregister an IB client
 659 * @client:Client to unregister
 660 *
 661 * Upper level users use ib_unregister_client() to remove their client
 662 * registration.  When ib_unregister_client() is called, the client
 663 * will receive a remove callback for each IB device still registered.
 
 
 
 664 */
 665void ib_unregister_client(struct ib_client *client)
 666{
 667	struct ib_client_data *context, *tmp;
 668	struct ib_device *device;
 669	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 670
 671	mutex_lock(&device_mutex);
 
 
 
 
 
 672
 673	down_write(&lists_rwsem);
 674	list_del(&client->list);
 675	up_write(&lists_rwsem);
 676
 677	list_for_each_entry(device, &device_list, core_list) {
 678		struct ib_client_data *found_context = NULL;
 679
 680		down_write(&lists_rwsem);
 681		spin_lock_irqsave(&device->client_data_lock, flags);
 682		list_for_each_entry_safe(context, tmp, &device->client_data_list, list)
 683			if (context->client == client) {
 684				context->going_down = true;
 685				found_context = context;
 686				break;
 687			}
 688		spin_unlock_irqrestore(&device->client_data_lock, flags);
 689		up_write(&lists_rwsem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 690
 691		if (client->remove)
 692			client->remove(device, found_context ?
 693					       found_context->data : NULL);
 694
 695		if (!found_context) {
 696			pr_warn("No client context found for %s/%s\n",
 697				device->name, client->name);
 698			continue;
 
 
 
 699		}
 
 
 
 700
 701		down_write(&lists_rwsem);
 702		spin_lock_irqsave(&device->client_data_lock, flags);
 703		list_del(&found_context->list);
 704		kfree(found_context);
 705		spin_unlock_irqrestore(&device->client_data_lock, flags);
 706		up_write(&lists_rwsem);
 
 
 707	}
 
 708
 709	mutex_unlock(&device_mutex);
 710}
 711EXPORT_SYMBOL(ib_unregister_client);
 712
 713/**
 714 * ib_get_client_data - Get IB client context
 715 * @device:Device to get context for
 716 * @client:Client to get context for
 717 *
 718 * ib_get_client_data() returns client context set with
 719 * ib_set_client_data().
 720 */
 721void *ib_get_client_data(struct ib_device *device, struct ib_client *client)
 
 722{
 723	struct ib_client_data *context;
 724	void *ret = NULL;
 725	unsigned long flags;
 726
 727	spin_lock_irqsave(&device->client_data_lock, flags);
 728	list_for_each_entry(context, &device->client_data_list, list)
 729		if (context->client == client) {
 730			ret = context->data;
 731			break;
 732		}
 733	spin_unlock_irqrestore(&device->client_data_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 734
 735	return ret;
 
 
 736}
 737EXPORT_SYMBOL(ib_get_client_data);
 738
 739/**
 740 * ib_set_client_data - Set IB client context
 741 * @device:Device to set context for
 742 * @client:Client to set context for
 743 * @data:Context to set
 744 *
 745 * ib_set_client_data() sets client context that can be retrieved with
 746 * ib_get_client_data().
 
 
 747 */
 748void ib_set_client_data(struct ib_device *device, struct ib_client *client,
 749			void *data)
 750{
 751	struct ib_client_data *context;
 752	unsigned long flags;
 753
 754	spin_lock_irqsave(&device->client_data_lock, flags);
 755	list_for_each_entry(context, &device->client_data_list, list)
 756		if (context->client == client) {
 757			context->data = data;
 758			goto out;
 759		}
 760
 761	pr_warn("No client context found for %s/%s\n",
 762		device->name, client->name);
 763
 764out:
 765	spin_unlock_irqrestore(&device->client_data_lock, flags);
 
 766}
 767EXPORT_SYMBOL(ib_set_client_data);
 768
 769/**
 770 * ib_register_event_handler - Register an IB event handler
 771 * @event_handler:Handler to register
 772 *
 773 * ib_register_event_handler() registers an event handler that will be
 774 * called back when asynchronous IB events occur (as defined in
 775 * chapter 11 of the InfiniBand Architecture Specification).  This
 776 * callback may occur in interrupt context.
 777 */
 778void ib_register_event_handler(struct ib_event_handler *event_handler)
 779{
 780	unsigned long flags;
 781
 782	spin_lock_irqsave(&event_handler->device->event_handler_lock, flags);
 783	list_add_tail(&event_handler->list,
 784		      &event_handler->device->event_handler_list);
 785	spin_unlock_irqrestore(&event_handler->device->event_handler_lock, flags);
 786}
 787EXPORT_SYMBOL(ib_register_event_handler);
 788
 789/**
 790 * ib_unregister_event_handler - Unregister an event handler
 791 * @event_handler:Handler to unregister
 792 *
 793 * Unregister an event handler registered with
 794 * ib_register_event_handler().
 795 */
 796void ib_unregister_event_handler(struct ib_event_handler *event_handler)
 797{
 798	unsigned long flags;
 799
 800	spin_lock_irqsave(&event_handler->device->event_handler_lock, flags);
 801	list_del(&event_handler->list);
 802	spin_unlock_irqrestore(&event_handler->device->event_handler_lock, flags);
 803}
 804EXPORT_SYMBOL(ib_unregister_event_handler);
 805
 806/**
 807 * ib_dispatch_event - Dispatch an asynchronous event
 808 * @event:Event to dispatch
 809 *
 810 * Low-level drivers must call ib_dispatch_event() to dispatch the
 811 * event to all registered event handlers when an asynchronous event
 812 * occurs.
 813 */
 814void ib_dispatch_event(struct ib_event *event)
 815{
 816	unsigned long flags;
 817	struct ib_event_handler *handler;
 818
 819	spin_lock_irqsave(&event->device->event_handler_lock, flags);
 820
 821	list_for_each_entry(handler, &event->device->event_handler_list, list)
 822		handler->handler(handler, event);
 823
 824	spin_unlock_irqrestore(&event->device->event_handler_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 825}
 826EXPORT_SYMBOL(ib_dispatch_event);
 827
 828/**
 829 * ib_query_port - Query IB port attributes
 830 * @device:Device to query
 831 * @port_num:Port number to query
 832 * @port_attr:Port attributes
 833 *
 834 * ib_query_port() returns the attributes of a port through the
 835 * @port_attr pointer.
 836 */
 837int ib_query_port(struct ib_device *device,
 838		  u8 port_num,
 839		  struct ib_port_attr *port_attr)
 840{
 841	union ib_gid gid;
 842	int err;
 843
 844	if (!rdma_is_port_valid(device, port_num))
 845		return -EINVAL;
 846
 847	memset(port_attr, 0, sizeof(*port_attr));
 848	err = device->query_port(device, port_num, port_attr);
 849	if (err || port_attr->subnet_prefix)
 850		return err;
 
 
 851
 852	if (rdma_port_get_link_layer(device, port_num) != IB_LINK_LAYER_INFINIBAND)
 853		return 0;
 
 854
 855	err = device->query_gid(device, port_num, 0, &gid);
 856	if (err)
 857		return err;
 858
 859	port_attr->subnet_prefix = be64_to_cpu(gid.global.subnet_prefix);
 860	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 861}
 862EXPORT_SYMBOL(ib_query_port);
 863
 864/**
 865 * ib_query_gid - Get GID table entry
 866 * @device:Device to query
 867 * @port_num:Port number to query
 868 * @index:GID table index to query
 869 * @gid:Returned GID
 870 * @attr: Returned GID attributes related to this GID index (only in RoCE).
 871 *   NULL means ignore.
 
 872 *
 873 * ib_query_gid() fetches the specified GID table entry from the cache.
 
 
 
 874 */
 875int ib_query_gid(struct ib_device *device,
 876		 u8 port_num, int index, union ib_gid *gid,
 877		 struct ib_gid_attr *attr)
 878{
 879	return ib_get_cached_gid(device, port_num, index, gid, attr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 880}
 881EXPORT_SYMBOL(ib_query_gid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 882
 883/**
 884 * ib_enum_roce_netdev - enumerate all RoCE ports
 885 * @ib_dev : IB device we want to query
 886 * @filter: Should we call the callback?
 887 * @filter_cookie: Cookie passed to filter
 888 * @cb: Callback to call for each found RoCE ports
 889 * @cookie: Cookie passed back to the callback
 890 *
 891 * Enumerates all of the physical RoCE ports of ib_dev
 892 * which are related to netdevice and calls callback() on each
 893 * device for which filter() function returns non zero.
 894 */
 895void ib_enum_roce_netdev(struct ib_device *ib_dev,
 896			 roce_netdev_filter filter,
 897			 void *filter_cookie,
 898			 roce_netdev_callback cb,
 899			 void *cookie)
 900{
 901	u8 port;
 902
 903	for (port = rdma_start_port(ib_dev); port <= rdma_end_port(ib_dev);
 904	     port++)
 905		if (rdma_protocol_roce(ib_dev, port)) {
 906			struct net_device *idev = NULL;
 907
 908			if (ib_dev->get_netdev)
 909				idev = ib_dev->get_netdev(ib_dev, port);
 910
 911			if (idev &&
 912			    idev->reg_state >= NETREG_UNREGISTERED) {
 913				dev_put(idev);
 914				idev = NULL;
 915			}
 916
 917			if (filter(ib_dev, port, idev, filter_cookie))
 918				cb(ib_dev, port, idev, cookie);
 919
 920			if (idev)
 921				dev_put(idev);
 922		}
 923}
 924
 925/**
 926 * ib_enum_all_roce_netdevs - enumerate all RoCE devices
 927 * @filter: Should we call the callback?
 928 * @filter_cookie: Cookie passed to filter
 929 * @cb: Callback to call for each found RoCE ports
 930 * @cookie: Cookie passed back to the callback
 931 *
 932 * Enumerates all RoCE devices' physical ports which are related
 933 * to netdevices and calls callback() on each device for which
 934 * filter() function returns non zero.
 935 */
 936void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
 937			      void *filter_cookie,
 938			      roce_netdev_callback cb,
 939			      void *cookie)
 940{
 941	struct ib_device *dev;
 
 942
 943	down_read(&lists_rwsem);
 944	list_for_each_entry(dev, &device_list, core_list)
 945		ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
 946	up_read(&lists_rwsem);
 947}
 948
 949/**
 950 * ib_enum_all_devs - enumerate all ib_devices
 951 * @cb: Callback to call for each found ib_device
 952 *
 953 * Enumerates all ib_devices and calls callback() on each device.
 954 */
 955int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
 956		     struct netlink_callback *cb)
 957{
 
 958	struct ib_device *dev;
 959	unsigned int idx = 0;
 960	int ret = 0;
 961
 962	down_read(&lists_rwsem);
 963	list_for_each_entry(dev, &device_list, core_list) {
 
 
 
 964		ret = nldev_cb(dev, skb, cb, idx);
 965		if (ret)
 966			break;
 967		idx++;
 968	}
 969
 970	up_read(&lists_rwsem);
 971	return ret;
 972}
 973
 974/**
 975 * ib_query_pkey - Get P_Key table entry
 976 * @device:Device to query
 977 * @port_num:Port number to query
 978 * @index:P_Key table index to query
 979 * @pkey:Returned P_Key
 980 *
 981 * ib_query_pkey() fetches the specified P_Key table entry.
 982 */
 983int ib_query_pkey(struct ib_device *device,
 984		  u8 port_num, u16 index, u16 *pkey)
 985{
 986	return device->query_pkey(device, port_num, index, pkey);
 
 
 
 
 
 
 987}
 988EXPORT_SYMBOL(ib_query_pkey);
 989
 990/**
 991 * ib_modify_device - Change IB device attributes
 992 * @device:Device to modify
 993 * @device_modify_mask:Mask of attributes to change
 994 * @device_modify:New attribute values
 995 *
 996 * ib_modify_device() changes a device's attributes as specified by
 997 * the @device_modify_mask and @device_modify structure.
 998 */
 999int ib_modify_device(struct ib_device *device,
1000		     int device_modify_mask,
1001		     struct ib_device_modify *device_modify)
1002{
1003	if (!device->modify_device)
1004		return -ENOSYS;
1005
1006	return device->modify_device(device, device_modify_mask,
1007				     device_modify);
1008}
1009EXPORT_SYMBOL(ib_modify_device);
1010
1011/**
1012 * ib_modify_port - Modifies the attributes for the specified port.
1013 * @device: The device to modify.
1014 * @port_num: The number of the port to modify.
1015 * @port_modify_mask: Mask used to specify which attributes of the port
1016 *   to change.
1017 * @port_modify: New attribute values for the port.
1018 *
1019 * ib_modify_port() changes a port's attributes as specified by the
1020 * @port_modify_mask and @port_modify structure.
1021 */
1022int ib_modify_port(struct ib_device *device,
1023		   u8 port_num, int port_modify_mask,
1024		   struct ib_port_modify *port_modify)
1025{
1026	int rc;
1027
1028	if (!rdma_is_port_valid(device, port_num))
1029		return -EINVAL;
1030
1031	if (device->modify_port)
1032		rc = device->modify_port(device, port_num, port_modify_mask,
1033					   port_modify);
 
 
 
 
 
1034	else
1035		rc = rdma_protocol_roce(device, port_num) ? 0 : -ENOSYS;
1036	return rc;
1037}
1038EXPORT_SYMBOL(ib_modify_port);
1039
1040/**
1041 * ib_find_gid - Returns the port number and GID table index where
1042 *   a specified GID value occurs. Its searches only for IB link layer.
1043 * @device: The device to query.
1044 * @gid: The GID value to search for.
1045 * @port_num: The port number of the device where the GID value was found.
1046 * @index: The index into the GID table where the GID was found.  This
1047 *   parameter may be NULL.
1048 */
1049int ib_find_gid(struct ib_device *device, union ib_gid *gid,
1050		u8 *port_num, u16 *index)
1051{
1052	union ib_gid tmp_gid;
1053	int ret, port, i;
 
1054
1055	for (port = rdma_start_port(device); port <= rdma_end_port(device); ++port) {
1056		if (!rdma_protocol_ib(device, port))
1057			continue;
1058
1059		for (i = 0; i < device->port_immutable[port].gid_tbl_len; ++i) {
1060			ret = ib_query_gid(device, port, i, &tmp_gid, NULL);
 
1061			if (ret)
1062				return ret;
 
1063			if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
1064				*port_num = port;
1065				if (index)
1066					*index = i;
1067				return 0;
1068			}
1069		}
1070	}
1071
1072	return -ENOENT;
1073}
1074EXPORT_SYMBOL(ib_find_gid);
1075
1076/**
1077 * ib_find_pkey - Returns the PKey table index where a specified
1078 *   PKey value occurs.
1079 * @device: The device to query.
1080 * @port_num: The port number of the device to search for the PKey.
1081 * @pkey: The PKey value to search for.
1082 * @index: The index into the PKey table where the PKey was found.
1083 */
1084int ib_find_pkey(struct ib_device *device,
1085		 u8 port_num, u16 pkey, u16 *index)
1086{
1087	int ret, i;
1088	u16 tmp_pkey;
1089	int partial_ix = -1;
1090
1091	for (i = 0; i < device->port_immutable[port_num].pkey_tbl_len; ++i) {
 
1092		ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
1093		if (ret)
1094			return ret;
1095		if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
1096			/* if there is full-member pkey take it.*/
1097			if (tmp_pkey & 0x8000) {
1098				*index = i;
1099				return 0;
1100			}
1101			if (partial_ix < 0)
1102				partial_ix = i;
1103		}
1104	}
1105
1106	/*no full-member, if exists take the limited*/
1107	if (partial_ix >= 0) {
1108		*index = partial_ix;
1109		return 0;
1110	}
1111	return -ENOENT;
1112}
1113EXPORT_SYMBOL(ib_find_pkey);
1114
1115/**
1116 * ib_get_net_dev_by_params() - Return the appropriate net_dev
1117 * for a received CM request
1118 * @dev:	An RDMA device on which the request has been received.
1119 * @port:	Port number on the RDMA device.
1120 * @pkey:	The Pkey the request came on.
1121 * @gid:	A GID that the net_dev uses to communicate.
1122 * @addr:	Contains the IP address that the request specified as its
1123 *		destination.
 
1124 */
1125struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
1126					    u8 port,
1127					    u16 pkey,
1128					    const union ib_gid *gid,
1129					    const struct sockaddr *addr)
1130{
1131	struct net_device *net_dev = NULL;
1132	struct ib_client_data *context;
 
1133
1134	if (!rdma_protocol_ib(dev, port))
1135		return NULL;
1136
1137	down_read(&lists_rwsem);
 
 
 
 
 
 
 
1138
1139	list_for_each_entry(context, &dev->client_data_list, list) {
1140		struct ib_client *client = context->client;
1141
1142		if (context->going_down)
1143			continue;
1144
1145		if (client->get_net_dev_by_params) {
1146			net_dev = client->get_net_dev_by_params(dev, port, pkey,
1147								gid, addr,
1148								context->data);
1149			if (net_dev)
1150				break;
1151		}
1152	}
1153
1154	up_read(&lists_rwsem);
1155
1156	return net_dev;
1157}
1158EXPORT_SYMBOL(ib_get_net_dev_by_params);
1159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1160static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
1161	[RDMA_NL_LS_OP_RESOLVE] = {
1162		.doit = ib_nl_handle_resolve_resp,
1163		.flags = RDMA_NL_ADMIN_PERM,
1164	},
1165	[RDMA_NL_LS_OP_SET_TIMEOUT] = {
1166		.doit = ib_nl_handle_set_timeout,
1167		.flags = RDMA_NL_ADMIN_PERM,
1168	},
1169	[RDMA_NL_LS_OP_IP_RESOLVE] = {
1170		.doit = ib_nl_handle_ip_res_resp,
1171		.flags = RDMA_NL_ADMIN_PERM,
1172	},
1173};
1174
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1175static int __init ib_core_init(void)
1176{
1177	int ret;
1178
1179	ib_wq = alloc_workqueue("infiniband", 0, 0);
1180	if (!ib_wq)
1181		return -ENOMEM;
1182
 
 
 
 
 
1183	ib_comp_wq = alloc_workqueue("ib-comp-wq",
1184			WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
1185	if (!ib_comp_wq) {
1186		ret = -ENOMEM;
1187		goto err;
1188	}
 
 
 
 
 
1189
1190	ret = class_register(&ib_class);
1191	if (ret) {
1192		pr_warn("Couldn't create InfiniBand device class\n");
1193		goto err_comp;
1194	}
1195
1196	ret = rdma_nl_init();
1197	if (ret) {
1198		pr_warn("Couldn't init IB netlink interface: err %d\n", ret);
1199		goto err_sysfs;
1200	}
1201
1202	ret = addr_init();
1203	if (ret) {
1204		pr_warn("Could't init IB address resolution\n");
1205		goto err_ibnl;
1206	}
1207
1208	ret = ib_mad_init();
1209	if (ret) {
1210		pr_warn("Couldn't init IB MAD\n");
1211		goto err_addr;
1212	}
1213
1214	ret = ib_sa_init();
1215	if (ret) {
1216		pr_warn("Couldn't init SA\n");
1217		goto err_mad;
1218	}
1219
1220	ret = register_lsm_notifier(&ibdev_lsm_nb);
1221	if (ret) {
1222		pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
1223		goto err_sa;
1224	}
1225
 
 
 
 
 
 
1226	nldev_init();
1227	rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
1228	ib_cache_setup();
 
 
 
 
 
 
1229
1230	return 0;
1231
 
 
 
 
 
 
1232err_sa:
1233	ib_sa_cleanup();
1234err_mad:
1235	ib_mad_cleanup();
1236err_addr:
1237	addr_cleanup();
1238err_ibnl:
1239	rdma_nl_exit();
1240err_sysfs:
1241	class_unregister(&ib_class);
 
 
1242err_comp:
1243	destroy_workqueue(ib_comp_wq);
 
 
1244err:
1245	destroy_workqueue(ib_wq);
1246	return ret;
1247}
1248
1249static void __exit ib_core_cleanup(void)
1250{
1251	ib_cache_cleanup();
 
 
1252	nldev_exit();
1253	rdma_nl_unregister(RDMA_NL_LS);
1254	unregister_lsm_notifier(&ibdev_lsm_nb);
1255	ib_sa_cleanup();
1256	ib_mad_cleanup();
1257	addr_cleanup();
1258	rdma_nl_exit();
1259	class_unregister(&ib_class);
 
1260	destroy_workqueue(ib_comp_wq);
1261	/* Make sure that any pending umem accounting work is done. */
1262	destroy_workqueue(ib_wq);
 
 
 
1263}
1264
1265MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
1266
1267subsys_initcall(ib_core_init);
 
 
 
1268module_exit(ib_core_cleanup);