Linux Audio

Check our new training course

Loading...
v6.13.7
   1/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
   2 */
   3/*
   4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
   5 * All Rights Reserved.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the
   9 * "Software"), to deal in the Software without restriction, including
  10 * without limitation the rights to use, copy, modify, merge, publish,
  11 * distribute, sub license, and/or sell copies of the Software, and to
  12 * permit persons to whom the Software is furnished to do so, subject to
  13 * the following conditions:
  14 *
  15 * The above copyright notice and this permission notice (including the
  16 * next paragraph) shall be included in all copies or substantial portions
  17 * of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
  22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
  23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
  25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  26 *
  27 */
  28
  29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30
  31#include <linux/slab.h>
  32#include <linux/sysrq.h>
  33
  34#include <drm/drm_drv.h>
  35
  36#include "display/intel_display_irq.h"
  37#include "display/intel_hotplug.h"
  38#include "display/intel_hotplug_irq.h"
  39#include "display/intel_lpe_audio.h"
  40#include "display/intel_psr_regs.h"
  41
  42#include "gt/intel_breadcrumbs.h"
  43#include "gt/intel_gt.h"
  44#include "gt/intel_gt_irq.h"
  45#include "gt/intel_gt_pm_irq.h"
  46#include "gt/intel_gt_regs.h"
  47#include "gt/intel_rps.h"
  48
  49#include "i915_driver.h"
  50#include "i915_drv.h"
  51#include "i915_irq.h"
  52#include "i915_reg.h"
  53
  54/**
  55 * DOC: interrupt handling
  56 *
  57 * These functions provide the basic support for enabling and disabling the
  58 * interrupt handling support. There's a lot more functionality in i915_irq.c
  59 * and related files, but that will be described in separate chapters.
  60 */
  61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  62/*
  63 * Interrupt statistic for PMU. Increments the counter only if the
  64 * interrupt originated from the GPU so interrupts from a device which
  65 * shares the interrupt line are not accounted.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  66 */
  67static inline void pmu_irq_stats(struct drm_i915_private *i915,
  68				 irqreturn_t res)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  69{
  70	if (unlikely(res != IRQ_HANDLED))
  71		return;
  72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  73	/*
  74	 * A clever compiler translates that into INC. A not so clever one
  75	 * should at least prevent store tearing.
  76	 */
  77	WRITE_ONCE(i915->pmu.irq_count, i915->pmu.irq_count + 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  78}
  79
  80void gen2_irq_reset(struct intel_uncore *uncore, struct i915_irq_regs regs)
 
  81{
  82	intel_uncore_write(uncore, regs.imr, 0xffffffff);
  83	intel_uncore_posting_read(uncore, regs.imr);
 
 
 
 
  84
  85	intel_uncore_write(uncore, regs.ier, 0);
 
 
 
 
  86
  87	/* IIR can theoretically queue up two events. Be paranoid. */
  88	intel_uncore_write(uncore, regs.iir, 0xffffffff);
  89	intel_uncore_posting_read(uncore, regs.iir);
  90	intel_uncore_write(uncore, regs.iir, 0xffffffff);
  91	intel_uncore_posting_read(uncore, regs.iir);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  92}
  93
  94/*
  95 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  96 */
  97void gen2_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg)
 
 
 
 
  98{
  99	u32 val = intel_uncore_read(uncore, reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 100
 101	if (val == 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 102		return;
 103
 104	drm_WARN(&uncore->i915->drm, 1,
 105		 "Interrupt register 0x%x is not zero: 0x%08x\n",
 106		 i915_mmio_reg_offset(reg), val);
 107	intel_uncore_write(uncore, reg, 0xffffffff);
 108	intel_uncore_posting_read(uncore, reg);
 109	intel_uncore_write(uncore, reg, 0xffffffff);
 110	intel_uncore_posting_read(uncore, reg);
 111}
 112
 113void gen2_irq_init(struct intel_uncore *uncore, struct i915_irq_regs regs,
 114		   u32 imr_val, u32 ier_val)
 115{
 116	gen2_assert_iir_is_zero(uncore, regs.iir);
 117
 118	intel_uncore_write(uncore, regs.ier, ier_val);
 119	intel_uncore_write(uncore, regs.imr, imr_val);
 120	intel_uncore_posting_read(uncore, regs.imr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 121}
 122
 
 123/**
 124 * ivb_parity_work - Workqueue called when a parity error interrupt
 125 * occurred.
 126 * @work: workqueue struct
 127 *
 128 * Doesn't actually do anything except notify userspace. As a consequence of
 129 * this event, userspace should try to remap the bad rows since statistically
 130 * it is likely the same row is more likely to go bad again.
 131 */
 132static void ivb_parity_work(struct work_struct *work)
 133{
 134	struct drm_i915_private *dev_priv =
 135		container_of(work, typeof(*dev_priv), l3_parity.error_work);
 136	struct intel_gt *gt = to_gt(dev_priv);
 137	u32 error_status, row, bank, subbank;
 138	char *parity_event[6];
 139	u32 misccpctl;
 140	u8 slice = 0;
 141
 142	/* We must turn off DOP level clock gating to access the L3 registers.
 143	 * In order to prevent a get/put style interface, acquire struct mutex
 144	 * any time we access those registers.
 145	 */
 146	mutex_lock(&dev_priv->drm.struct_mutex);
 147
 148	/* If we've screwed up tracking, just let the interrupt fire again */
 149	if (drm_WARN_ON(&dev_priv->drm, !dev_priv->l3_parity.which_slice))
 150		goto out;
 151
 152	misccpctl = intel_uncore_rmw(&dev_priv->uncore, GEN7_MISCCPCTL,
 153				     GEN7_DOP_CLOCK_GATE_ENABLE, 0);
 154	intel_uncore_posting_read(&dev_priv->uncore, GEN7_MISCCPCTL);
 155
 156	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
 157		i915_reg_t reg;
 158
 159		slice--;
 160		if (drm_WARN_ON_ONCE(&dev_priv->drm,
 161				     slice >= NUM_L3_SLICES(dev_priv)))
 162			break;
 163
 164		dev_priv->l3_parity.which_slice &= ~(1<<slice);
 165
 166		reg = GEN7_L3CDERRST1(slice);
 167
 168		error_status = intel_uncore_read(&dev_priv->uncore, reg);
 169		row = GEN7_PARITY_ERROR_ROW(error_status);
 170		bank = GEN7_PARITY_ERROR_BANK(error_status);
 171		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
 172
 173		intel_uncore_write(&dev_priv->uncore, reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
 174		intel_uncore_posting_read(&dev_priv->uncore, reg);
 175
 176		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
 177		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
 178		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
 179		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
 180		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
 181		parity_event[5] = NULL;
 182
 183		kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
 184				   KOBJ_CHANGE, parity_event);
 185
 186		drm_dbg(&dev_priv->drm,
 187			"Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
 188			slice, row, bank, subbank);
 189
 190		kfree(parity_event[4]);
 191		kfree(parity_event[3]);
 192		kfree(parity_event[2]);
 193		kfree(parity_event[1]);
 194	}
 195
 196	intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl);
 197
 198out:
 199	drm_WARN_ON(&dev_priv->drm, dev_priv->l3_parity.which_slice);
 200	spin_lock_irq(gt->irq_lock);
 201	gen5_gt_enable_irq(gt, GT_PARITY_ERROR(dev_priv));
 202	spin_unlock_irq(gt->irq_lock);
 203
 204	mutex_unlock(&dev_priv->drm.struct_mutex);
 205}
 206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 207static irqreturn_t valleyview_irq_handler(int irq, void *arg)
 208{
 209	struct drm_i915_private *dev_priv = arg;
 
 210	irqreturn_t ret = IRQ_NONE;
 211
 212	if (!intel_irqs_enabled(dev_priv))
 213		return IRQ_NONE;
 214
 215	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
 216	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
 217
 218	do {
 219		u32 iir, gt_iir, pm_iir;
 220		u32 pipe_stats[I915_MAX_PIPES] = {};
 221		u32 hotplug_status = 0;
 222		u32 ier = 0;
 223
 224		gt_iir = intel_uncore_read(&dev_priv->uncore, GTIIR);
 225		pm_iir = intel_uncore_read(&dev_priv->uncore, GEN6_PMIIR);
 226		iir = intel_uncore_read(&dev_priv->uncore, VLV_IIR);
 227
 228		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
 229			break;
 230
 231		ret = IRQ_HANDLED;
 232
 233		/*
 234		 * Theory on interrupt generation, based on empirical evidence:
 235		 *
 236		 * x = ((VLV_IIR & VLV_IER) ||
 237		 *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
 238		 *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
 239		 *
 240		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
 241		 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
 242		 * guarantee the CPU interrupt will be raised again even if we
 243		 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
 244		 * bits this time around.
 245		 */
 246		intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, 0);
 247		ier = intel_uncore_rmw(&dev_priv->uncore, VLV_IER, ~0, 0);
 
 248
 249		if (gt_iir)
 250			intel_uncore_write(&dev_priv->uncore, GTIIR, gt_iir);
 251		if (pm_iir)
 252			intel_uncore_write(&dev_priv->uncore, GEN6_PMIIR, pm_iir);
 253
 254		if (iir & I915_DISPLAY_PORT_INTERRUPT)
 255			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
 256
 257		/* Call regardless, as some status bits might not be
 258		 * signalled in IIR */
 259		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
 260
 261		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
 262			   I915_LPE_PIPE_B_INTERRUPT))
 263			intel_lpe_audio_irq_handler(dev_priv);
 264
 265		/*
 266		 * VLV_IIR is single buffered, and reflects the level
 267		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
 268		 */
 269		if (iir)
 270			intel_uncore_write(&dev_priv->uncore, VLV_IIR, iir);
 271
 272		intel_uncore_write(&dev_priv->uncore, VLV_IER, ier);
 273		intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
 
 274
 275		if (gt_iir)
 276			gen6_gt_irq_handler(to_gt(dev_priv), gt_iir);
 277		if (pm_iir)
 278			gen6_rps_irq_handler(&to_gt(dev_priv)->rps, pm_iir);
 279
 280		if (hotplug_status)
 281			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
 282
 283		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
 284	} while (0);
 285
 286	pmu_irq_stats(dev_priv, ret);
 287
 288	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
 289
 290	return ret;
 291}
 292
 293static irqreturn_t cherryview_irq_handler(int irq, void *arg)
 294{
 295	struct drm_i915_private *dev_priv = arg;
 
 296	irqreturn_t ret = IRQ_NONE;
 297
 298	if (!intel_irqs_enabled(dev_priv))
 299		return IRQ_NONE;
 300
 301	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
 302	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
 303
 304	do {
 305		u32 master_ctl, iir;
 306		u32 pipe_stats[I915_MAX_PIPES] = {};
 307		u32 hotplug_status = 0;
 
 308		u32 ier = 0;
 309
 310		master_ctl = intel_uncore_read(&dev_priv->uncore, GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
 311		iir = intel_uncore_read(&dev_priv->uncore, VLV_IIR);
 312
 313		if (master_ctl == 0 && iir == 0)
 314			break;
 315
 316		ret = IRQ_HANDLED;
 317
 318		/*
 319		 * Theory on interrupt generation, based on empirical evidence:
 320		 *
 321		 * x = ((VLV_IIR & VLV_IER) ||
 322		 *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
 323		 *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
 324		 *
 325		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
 326		 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
 327		 * guarantee the CPU interrupt will be raised again even if we
 328		 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
 329		 * bits this time around.
 330		 */
 331		intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, 0);
 332		ier = intel_uncore_rmw(&dev_priv->uncore, VLV_IER, ~0, 0);
 
 333
 334		gen8_gt_irq_handler(to_gt(dev_priv), master_ctl);
 335
 336		if (iir & I915_DISPLAY_PORT_INTERRUPT)
 337			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
 338
 339		/* Call regardless, as some status bits might not be
 340		 * signalled in IIR */
 341		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
 342
 343		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
 344			   I915_LPE_PIPE_B_INTERRUPT |
 345			   I915_LPE_PIPE_C_INTERRUPT))
 346			intel_lpe_audio_irq_handler(dev_priv);
 347
 348		/*
 349		 * VLV_IIR is single buffered, and reflects the level
 350		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
 351		 */
 352		if (iir)
 353			intel_uncore_write(&dev_priv->uncore, VLV_IIR, iir);
 354
 355		intel_uncore_write(&dev_priv->uncore, VLV_IER, ier);
 356		intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
 
 
 
 357
 358		if (hotplug_status)
 359			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
 360
 361		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
 362	} while (0);
 363
 364	pmu_irq_stats(dev_priv, ret);
 365
 366	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
 367
 368	return ret;
 369}
 370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 371/*
 372 * To handle irqs with the minimum potential races with fresh interrupts, we:
 373 * 1 - Disable Master Interrupt Control.
 374 * 2 - Find the source(s) of the interrupt.
 375 * 3 - Clear the Interrupt Identity bits (IIR).
 376 * 4 - Process the interrupt(s) that had bits set in the IIRs.
 377 * 5 - Re-enable Master Interrupt Control.
 378 */
 379static irqreturn_t ilk_irq_handler(int irq, void *arg)
 380{
 381	struct drm_i915_private *i915 = arg;
 382	void __iomem * const regs = intel_uncore_regs(&i915->uncore);
 383	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
 384	irqreturn_t ret = IRQ_NONE;
 385
 386	if (unlikely(!intel_irqs_enabled(i915)))
 387		return IRQ_NONE;
 388
 389	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
 390	disable_rpm_wakeref_asserts(&i915->runtime_pm);
 391
 392	/* disable master interrupt before clearing iir  */
 393	de_ier = raw_reg_read(regs, DEIER);
 394	raw_reg_write(regs, DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
 
 395
 396	/* Disable south interrupts. We'll only write to SDEIIR once, so further
 397	 * interrupts will will be stored on its back queue, and then we'll be
 398	 * able to process them after we restore SDEIER (as soon as we restore
 399	 * it, we'll get an interrupt if SDEIIR still has something to process
 400	 * due to its back queue). */
 401	if (!HAS_PCH_NOP(i915)) {
 402		sde_ier = raw_reg_read(regs, SDEIER);
 403		raw_reg_write(regs, SDEIER, 0);
 
 404	}
 405
 406	/* Find, clear, then process each source of interrupt */
 407
 408	gt_iir = raw_reg_read(regs, GTIIR);
 409	if (gt_iir) {
 410		raw_reg_write(regs, GTIIR, gt_iir);
 411		if (GRAPHICS_VER(i915) >= 6)
 412			gen6_gt_irq_handler(to_gt(i915), gt_iir);
 413		else
 414			gen5_gt_irq_handler(to_gt(i915), gt_iir);
 415		ret = IRQ_HANDLED;
 
 
 
 
 416	}
 417
 418	de_iir = raw_reg_read(regs, DEIIR);
 419	if (de_iir) {
 420		raw_reg_write(regs, DEIIR, de_iir);
 421		if (DISPLAY_VER(i915) >= 7)
 422			ivb_display_irq_handler(i915, de_iir);
 423		else
 424			ilk_display_irq_handler(i915, de_iir);
 425		ret = IRQ_HANDLED;
 
 
 
 
 426	}
 427
 428	if (GRAPHICS_VER(i915) >= 6) {
 429		u32 pm_iir = raw_reg_read(regs, GEN6_PMIIR);
 430		if (pm_iir) {
 431			raw_reg_write(regs, GEN6_PMIIR, pm_iir);
 432			gen6_rps_irq_handler(&to_gt(i915)->rps, pm_iir);
 433			ret = IRQ_HANDLED;
 
 434		}
 435	}
 436
 437	raw_reg_write(regs, DEIER, de_ier);
 438	if (sde_ier)
 439		raw_reg_write(regs, SDEIER, sde_ier);
 440
 441	pmu_irq_stats(i915, ret);
 
 442
 443	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
 444	enable_rpm_wakeref_asserts(&i915->runtime_pm);
 445
 446	return ret;
 447}
 448
 449static inline u32 gen8_master_intr_disable(void __iomem * const regs)
 
 
 450{
 451	raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
 452
 453	/*
 454	 * Now with master disabled, get a sample of level indications
 455	 * for this interrupt. Indications will be cleared on related acks.
 456	 * New indications can and will light up during processing,
 457	 * and will generate new interrupt after enabling master.
 458	 */
 459	return raw_reg_read(regs, GEN8_MASTER_IRQ);
 
 460}
 461
 462static inline void gen8_master_intr_enable(void __iomem * const regs)
 
 463{
 464	raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 465}
 466
 467static irqreturn_t gen8_irq_handler(int irq, void *arg)
 468{
 469	struct drm_i915_private *dev_priv = arg;
 470	void __iomem * const regs = intel_uncore_regs(&dev_priv->uncore);
 471	u32 master_ctl;
 
 472
 473	if (!intel_irqs_enabled(dev_priv))
 474		return IRQ_NONE;
 475
 476	master_ctl = gen8_master_intr_disable(regs);
 477	if (!master_ctl) {
 478		gen8_master_intr_enable(regs);
 479		return IRQ_NONE;
 480	}
 481
 482	/* Find, queue (onto bottom-halves), then clear each source */
 483	gen8_gt_irq_handler(to_gt(dev_priv), master_ctl);
 
 
 484
 485	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
 486	if (master_ctl & ~GEN8_GT_IRQS) {
 487		disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
 488		gen8_de_irq_handler(dev_priv, master_ctl);
 489		enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
 490	}
 491
 492	gen8_master_intr_enable(regs);
 493
 494	pmu_irq_stats(dev_priv, IRQ_HANDLED);
 495
 496	return IRQ_HANDLED;
 497}
 498
 499static inline u32 gen11_master_intr_disable(void __iomem * const regs)
 
 
 
 
 
 
 500{
 501	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 502
 503	/*
 504	 * Now with master disabled, get a sample of level indications
 505	 * for this interrupt. Indications will be cleared on related acks.
 506	 * New indications can and will light up during processing,
 507	 * and will generate new interrupt after enabling master.
 508	 */
 509	return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 510}
 511
 512static inline void gen11_master_intr_enable(void __iomem * const regs)
 
 
 513{
 514	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 515}
 516
 517static irqreturn_t gen11_irq_handler(int irq, void *arg)
 518{
 519	struct drm_i915_private *i915 = arg;
 520	void __iomem * const regs = intel_uncore_regs(&i915->uncore);
 521	struct intel_gt *gt = to_gt(i915);
 522	u32 master_ctl;
 523	u32 gu_misc_iir;
 524
 525	if (!intel_irqs_enabled(i915))
 526		return IRQ_NONE;
 527
 528	master_ctl = gen11_master_intr_disable(regs);
 529	if (!master_ctl) {
 530		gen11_master_intr_enable(regs);
 531		return IRQ_NONE;
 532	}
 533
 534	/* Find, queue (onto bottom-halves), then clear each source */
 535	gen11_gt_irq_handler(gt, master_ctl);
 536
 537	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
 538	if (master_ctl & GEN11_DISPLAY_IRQ)
 539		gen11_display_irq_handler(i915);
 540
 541	gu_misc_iir = gen11_gu_misc_irq_ack(i915, master_ctl);
 
 542
 543	gen11_master_intr_enable(regs);
 
 
 544
 545	gen11_gu_misc_irq_handler(i915, gu_misc_iir);
 
 
 
 
 
 
 
 546
 547	pmu_irq_stats(i915, IRQ_HANDLED);
 
 548
 549	return IRQ_HANDLED;
 550}
 551
 552static inline u32 dg1_master_intr_disable(void __iomem * const regs)
 
 
 
 
 
 
 
 553{
 554	u32 val;
 
 
 
 
 555
 556	/* First disable interrupts */
 557	raw_reg_write(regs, DG1_MSTR_TILE_INTR, 0);
 558
 559	/* Get the indication levels and ack the master unit */
 560	val = raw_reg_read(regs, DG1_MSTR_TILE_INTR);
 561	if (unlikely(!val))
 562		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 563
 564	raw_reg_write(regs, DG1_MSTR_TILE_INTR, val);
 
 565
 566	return val;
 
 
 567}
 568
 569static inline void dg1_master_intr_enable(void __iomem * const regs)
 570{
 571	raw_reg_write(regs, DG1_MSTR_TILE_INTR, DG1_MSTR_IRQ);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 572}
 573
 574static irqreturn_t dg1_irq_handler(int irq, void *arg)
 575{
 576	struct drm_i915_private * const i915 = arg;
 577	struct intel_gt *gt = to_gt(i915);
 578	void __iomem * const regs = intel_uncore_regs(gt->uncore);
 579	u32 master_tile_ctl, master_ctl;
 580	u32 gu_misc_iir;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 581
 582	if (!intel_irqs_enabled(i915))
 583		return IRQ_NONE;
 
 
 
 
 
 
 584
 585	master_tile_ctl = dg1_master_intr_disable(regs);
 586	if (!master_tile_ctl) {
 587		dg1_master_intr_enable(regs);
 588		return IRQ_NONE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 589	}
 590
 591	/* FIXME: we only support tile 0 for now. */
 592	if (master_tile_ctl & DG1_MSTR_TILE(0)) {
 593		master_ctl = raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
 594		raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, master_ctl);
 595	} else {
 596		drm_err(&i915->drm, "Tile not supported: 0x%08x\n",
 597			master_tile_ctl);
 598		dg1_master_intr_enable(regs);
 599		return IRQ_NONE;
 600	}
 601
 602	gen11_gt_irq_handler(gt, master_ctl);
 
 
 
 
 
 
 
 603
 604	if (master_ctl & GEN11_DISPLAY_IRQ)
 605		gen11_display_irq_handler(i915);
 
 
 
 
 606
 607	gu_misc_iir = gen11_gu_misc_irq_ack(i915, master_ctl);
 
 608
 609	dg1_master_intr_enable(regs);
 
 
 610
 611	gen11_gu_misc_irq_handler(i915, gu_misc_iir);
 
 
 
 
 
 
 612
 613	pmu_irq_stats(i915, IRQ_HANDLED);
 
 
 614
 615	return IRQ_HANDLED;
 616}
 617
 618static void ibx_irq_reset(struct drm_i915_private *dev_priv)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 619{
 620	struct intel_uncore *uncore = &dev_priv->uncore;
 
 
 
 621
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 622	if (HAS_PCH_NOP(dev_priv))
 623		return;
 624
 625	gen2_irq_reset(uncore, SDE_IRQ_REGS);
 626
 627	if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
 628		intel_uncore_write(&dev_priv->uncore, SERR_INT, 0xffffffff);
 629}
 630
 631/* drm_dma.h hooks
 632*/
 633static void ilk_irq_reset(struct drm_i915_private *dev_priv)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 634{
 635	struct intel_uncore *uncore = &dev_priv->uncore;
 
 
 
 
 
 
 
 
 
 
 
 
 
 636
 637	gen2_irq_reset(uncore, DE_IRQ_REGS);
 
 
 638	dev_priv->irq_mask = ~0u;
 
 639
 640	if (GRAPHICS_VER(dev_priv) == 7)
 641		intel_uncore_write(uncore, GEN7_ERR_INT, 0xffffffff);
 
 
 
 642
 643	if (IS_HASWELL(dev_priv)) {
 644		intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
 645		intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
 646	}
 647
 648	gen5_gt_irq_reset(to_gt(dev_priv));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 649
 650	ibx_irq_reset(dev_priv);
 651}
 652
 653static void valleyview_irq_reset(struct drm_i915_private *dev_priv)
 654{
 655	intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, 0);
 656	intel_uncore_posting_read(&dev_priv->uncore, VLV_MASTER_IER);
 
 
 657
 658	gen5_gt_irq_reset(to_gt(dev_priv));
 659
 660	spin_lock_irq(&dev_priv->irq_lock);
 661	if (dev_priv->display.irq.display_irqs_enabled)
 662		vlv_display_irq_reset(dev_priv);
 663	spin_unlock_irq(&dev_priv->irq_lock);
 664}
 665
 666static void gen8_irq_reset(struct drm_i915_private *dev_priv)
 
 
 
 
 
 
 
 
 667{
 668	struct intel_uncore *uncore = &dev_priv->uncore;
 
 669
 670	gen8_master_intr_disable(intel_uncore_regs(uncore));
 
 671
 672	gen8_gt_irq_reset(to_gt(dev_priv));
 673	gen8_display_irq_reset(dev_priv);
 674	gen2_irq_reset(uncore, GEN8_PCU_IRQ_REGS);
 
 
 
 
 
 
 
 675
 676	if (HAS_PCH_SPLIT(dev_priv))
 677		ibx_irq_reset(dev_priv);
 
 
 
 
 
 
 
 678
 
 
 
 
 
 
 679}
 680
 681static void gen11_irq_reset(struct drm_i915_private *dev_priv)
 682{
 683	struct intel_gt *gt = to_gt(dev_priv);
 684	struct intel_uncore *uncore = gt->uncore;
 685
 686	gen11_master_intr_disable(intel_uncore_regs(&dev_priv->uncore));
 
 687
 688	gen11_gt_irq_reset(gt);
 689	gen11_display_irq_reset(dev_priv);
 690
 691	gen2_irq_reset(uncore, GEN11_GU_MISC_IRQ_REGS);
 692	gen2_irq_reset(uncore, GEN8_PCU_IRQ_REGS);
 
 
 
 
 
 
 
 
 693}
 694
 695static void dg1_irq_reset(struct drm_i915_private *dev_priv)
 
 696{
 697	struct intel_uncore *uncore = &dev_priv->uncore;
 698	struct intel_gt *gt;
 699	unsigned int i;
 700
 701	dg1_master_intr_disable(intel_uncore_regs(&dev_priv->uncore));
 702
 703	for_each_gt(gt, dev_priv, i)
 704		gen11_gt_irq_reset(gt);
 
 
 705
 706	gen11_display_irq_reset(dev_priv);
 
 
 
 707
 708	gen2_irq_reset(uncore, GEN11_GU_MISC_IRQ_REGS);
 709	gen2_irq_reset(uncore, GEN8_PCU_IRQ_REGS);
 
 
 
 
 
 
 
 
 
 
 
 
 710
 711	intel_uncore_write(uncore, GEN11_GFX_MSTR_IRQ, ~0);
 
 
 
 
 
 
 712}
 713
 714static void cherryview_irq_reset(struct drm_i915_private *dev_priv)
 715{
 716	struct intel_uncore *uncore = &dev_priv->uncore;
 717
 718	intel_uncore_write(uncore, GEN8_MASTER_IRQ, 0);
 719	intel_uncore_posting_read(&dev_priv->uncore, GEN8_MASTER_IRQ);
 720
 721	gen8_gt_irq_reset(to_gt(dev_priv));
 722
 723	gen2_irq_reset(uncore, GEN8_PCU_IRQ_REGS);
 724
 725	spin_lock_irq(&dev_priv->irq_lock);
 726	if (dev_priv->display.irq.display_irqs_enabled)
 727		vlv_display_irq_reset(dev_priv);
 728	spin_unlock_irq(&dev_priv->irq_lock);
 729}
 730
 731static void ilk_irq_postinstall(struct drm_i915_private *dev_priv)
 
 732{
 733	gen5_gt_irq_postinstall(to_gt(dev_priv));
 
 734
 735	ilk_de_irq_postinstall(dev_priv);
 
 
 
 
 736}
 737
 738static void valleyview_irq_postinstall(struct drm_i915_private *dev_priv)
 739{
 740	gen5_gt_irq_postinstall(to_gt(dev_priv));
 741
 742	spin_lock_irq(&dev_priv->irq_lock);
 743	if (dev_priv->display.irq.display_irqs_enabled)
 744		vlv_display_irq_postinstall(dev_priv);
 745	spin_unlock_irq(&dev_priv->irq_lock);
 746
 747	intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
 748	intel_uncore_posting_read(&dev_priv->uncore, VLV_MASTER_IER);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 749}
 750
 751static void gen8_irq_postinstall(struct drm_i915_private *dev_priv)
 752{
 753	gen8_gt_irq_postinstall(to_gt(dev_priv));
 754	gen8_de_irq_postinstall(dev_priv);
 
 
 
 
 
 
 
 
 
 755
 756	gen8_master_intr_enable(intel_uncore_regs(&dev_priv->uncore));
 757}
 758
 759static void gen11_irq_postinstall(struct drm_i915_private *dev_priv)
 760{
 761	struct intel_gt *gt = to_gt(dev_priv);
 762	struct intel_uncore *uncore = gt->uncore;
 763	u32 gu_misc_masked = GEN11_GU_MISC_GSE;
 764
 765	gen11_gt_irq_postinstall(gt);
 766	gen11_de_irq_postinstall(dev_priv);
 
 
 
 
 
 767
 768	gen2_irq_init(uncore, GEN11_GU_MISC_IRQ_REGS, ~gu_misc_masked, gu_misc_masked);
 
 
 
 
 
 
 769
 770	gen11_master_intr_enable(intel_uncore_regs(uncore));
 771	intel_uncore_posting_read(&dev_priv->uncore, GEN11_GFX_MSTR_IRQ);
 
 772}
 773
 774static void dg1_irq_postinstall(struct drm_i915_private *dev_priv)
 775{
 776	struct intel_uncore *uncore = &dev_priv->uncore;
 777	u32 gu_misc_masked = GEN11_GU_MISC_GSE;
 778	struct intel_gt *gt;
 779	unsigned int i;
 780
 781	for_each_gt(gt, dev_priv, i)
 782		gen11_gt_irq_postinstall(gt);
 783
 784	gen2_irq_init(uncore, GEN11_GU_MISC_IRQ_REGS, ~gu_misc_masked, gu_misc_masked);
 
 
 
 785
 786	dg1_de_irq_postinstall(dev_priv);
 
 
 787
 788	dg1_master_intr_enable(intel_uncore_regs(uncore));
 789	intel_uncore_posting_read(uncore, DG1_MSTR_TILE_INTR);
 
 
 
 
 
 
 
 
 790}
 791
 792static void cherryview_irq_postinstall(struct drm_i915_private *dev_priv)
 793{
 794	gen8_gt_irq_postinstall(to_gt(dev_priv));
 795
 796	spin_lock_irq(&dev_priv->irq_lock);
 797	if (dev_priv->display.irq.display_irqs_enabled)
 798		vlv_display_irq_postinstall(dev_priv);
 799	spin_unlock_irq(&dev_priv->irq_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 800
 801	intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
 802	intel_uncore_posting_read(&dev_priv->uncore, GEN8_MASTER_IRQ);
 803}
 804
 805static u32 i9xx_error_mask(struct drm_i915_private *i915)
 
 806{
 
 
 
 
 
 
 
 
 
 
 
 807	/*
 808	 * On gen2/3 FBC generates (seemingly spurious)
 809	 * display INVALID_GTT/INVALID_GTT_PTE table errors.
 810	 *
 811	 * Also gen3 bspec has this to say:
 812	 * "DISPA_INVALID_GTT_PTE
 813	 "  [DevNapa] : Reserved. This bit does not reflect the page
 814	 "              table error for the display plane A."
 815	 *
 816	 * Unfortunately we can't mask off individual PGTBL_ER bits,
 817	 * so we just have to mask off all page table errors via EMR.
 818	 */
 819	if (HAS_FBC(i915))
 820		return ~I915_ERROR_MEMORY_REFRESH;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 821	else
 822		return ~(I915_ERROR_PAGE_TABLE |
 823			 I915_ERROR_MEMORY_REFRESH);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 824}
 825
 826static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
 827			       u32 *eir, u32 *eir_stuck)
 828{
 829	u32 emr;
 830
 831	*eir = intel_uncore_read(&dev_priv->uncore, EIR);
 832	intel_uncore_write(&dev_priv->uncore, EIR, *eir);
 
 
 
 
 
 
 
 
 833
 834	*eir_stuck = intel_uncore_read(&dev_priv->uncore, EIR);
 835	if (*eir_stuck == 0)
 
 
 
 836		return;
 837
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 838	/*
 839	 * Toggle all EMR bits to make sure we get an edge
 840	 * in the ISR master error bit if we don't clear
 841	 * all the EIR bits. Otherwise the edge triggered
 842	 * IIR on i965/g4x wouldn't notice that an interrupt
 843	 * is still pending. Also some EIR bits can't be
 844	 * cleared except by handling the underlying error
 845	 * (or by a GPU reset) so we mask any bit that
 846	 * remains set.
 847	 */
 848	emr = intel_uncore_read(&dev_priv->uncore, EMR);
 849	intel_uncore_write(&dev_priv->uncore, EMR, 0xffffffff);
 850	intel_uncore_write(&dev_priv->uncore, EMR, emr | *eir_stuck);
 851}
 852
 853static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
 854				   u32 eir, u32 eir_stuck)
 855{
 856	drm_dbg(&dev_priv->drm, "Master Error, EIR 0x%08x\n", eir);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 857
 858	if (eir_stuck)
 859		drm_dbg(&dev_priv->drm, "EIR stuck: 0x%08x, masked\n",
 860			eir_stuck);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 861
 862	drm_dbg(&dev_priv->drm, "PGTBL_ER: 0x%08x\n",
 863		intel_uncore_read(&dev_priv->uncore, PGTBL_ER));
 
 
 
 
 
 864}
 865
 866static void i915_irq_reset(struct drm_i915_private *dev_priv)
 867{
 868	struct intel_uncore *uncore = &dev_priv->uncore;
 869
 870	i9xx_display_irq_reset(dev_priv);
 
 871
 872	gen2_irq_reset(uncore, GEN2_IRQ_REGS);
 873	dev_priv->irq_mask = ~0u;
 
 
 
 
 
 
 
 
 874}
 875
 876static void i915_irq_postinstall(struct drm_i915_private *dev_priv)
 877{
 878	struct intel_uncore *uncore = &dev_priv->uncore;
 879	u32 enable_mask;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 880
 881	intel_uncore_write(uncore, EMR, i9xx_error_mask(dev_priv));
 
 882
 
 883	dev_priv->irq_mask =
 884		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
 885		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
 886		  I915_MASTER_ERROR_INTERRUPT);
 887
 888	enable_mask =
 889		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
 890		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
 891		I915_MASTER_ERROR_INTERRUPT |
 892		I915_USER_INTERRUPT;
 893
 894	if (DISPLAY_VER(dev_priv) >= 3) {
 895		dev_priv->irq_mask &= ~I915_ASLE_INTERRUPT;
 896		enable_mask |= I915_ASLE_INTERRUPT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 897	}
 898
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 899	if (I915_HAS_HOTPLUG(dev_priv)) {
 900		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
 901		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
 
 
 902	}
 903
 904	gen2_irq_init(uncore, GEN2_IRQ_REGS, dev_priv->irq_mask, enable_mask);
 905
 906	/* Interrupt setup is already guaranteed to be single-threaded, this is
 907	 * just to make the assert_spin_locked check happy. */
 908	spin_lock_irq(&dev_priv->irq_lock);
 909	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
 910	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
 911	spin_unlock_irq(&dev_priv->irq_lock);
 912
 913	i915_enable_asle_pipestat(dev_priv);
 
 
 914}
 915
 916static irqreturn_t i915_irq_handler(int irq, void *arg)
 917{
 918	struct drm_i915_private *dev_priv = arg;
 
 919	irqreturn_t ret = IRQ_NONE;
 920
 921	if (!intel_irqs_enabled(dev_priv))
 922		return IRQ_NONE;
 923
 924	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
 925	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
 926
 927	do {
 928		u32 pipe_stats[I915_MAX_PIPES] = {};
 929		u32 eir = 0, eir_stuck = 0;
 930		u32 hotplug_status = 0;
 931		u32 iir;
 932
 933		iir = intel_uncore_read(&dev_priv->uncore, GEN2_IIR);
 934		if (iir == 0)
 935			break;
 936
 937		ret = IRQ_HANDLED;
 938
 939		if (I915_HAS_HOTPLUG(dev_priv) &&
 940		    iir & I915_DISPLAY_PORT_INTERRUPT)
 941			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
 942
 943		/* Call regardless, as some status bits might not be
 944		 * signalled in IIR */
 945		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
 946
 947		if (iir & I915_MASTER_ERROR_INTERRUPT)
 948			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
 949
 950		intel_uncore_write(&dev_priv->uncore, GEN2_IIR, iir);
 951
 952		if (iir & I915_USER_INTERRUPT)
 953			intel_engine_cs_irq(to_gt(dev_priv)->engine[RCS0], iir);
 954
 955		if (iir & I915_MASTER_ERROR_INTERRUPT)
 956			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
 957
 958		if (hotplug_status)
 959			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
 960
 961		i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
 962	} while (0);
 963
 964	pmu_irq_stats(dev_priv, ret);
 965
 966	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
 967
 968	return ret;
 969}
 970
 971static void i965_irq_reset(struct drm_i915_private *dev_priv)
 972{
 973	struct intel_uncore *uncore = &dev_priv->uncore;
 974
 975	i9xx_display_irq_reset(dev_priv);
 
 976
 977	gen2_irq_reset(uncore, GEN2_IRQ_REGS);
 978	dev_priv->irq_mask = ~0u;
 
 
 
 979}
 980
 981static u32 i965_error_mask(struct drm_i915_private *i915)
 982{
 
 
 
 
 983	/*
 984	 * Enable some error detection, note the instruction error mask
 985	 * bit is reserved, so we leave it masked.
 986	 *
 987	 * i965 FBC no longer generates spurious GTT errors,
 988	 * so we can always enable the page table errors.
 989	 */
 990	if (IS_G4X(i915))
 991		return ~(GM45_ERROR_PAGE_TABLE |
 992			 GM45_ERROR_MEM_PRIV |
 993			 GM45_ERROR_CP_PRIV |
 994			 I915_ERROR_MEMORY_REFRESH);
 995	else
 996		return ~(I915_ERROR_PAGE_TABLE |
 997			 I915_ERROR_MEMORY_REFRESH);
 998}
 999
1000static void i965_irq_postinstall(struct drm_i915_private *dev_priv)
1001{
1002	struct intel_uncore *uncore = &dev_priv->uncore;
1003	u32 enable_mask;
1004
1005	intel_uncore_write(uncore, EMR, i965_error_mask(dev_priv));
1006
 
1007	dev_priv->irq_mask =
1008		~(I915_ASLE_INTERRUPT |
1009		  I915_DISPLAY_PORT_INTERRUPT |
1010		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
1011		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
1012		  I915_MASTER_ERROR_INTERRUPT);
1013
1014	enable_mask =
1015		I915_ASLE_INTERRUPT |
1016		I915_DISPLAY_PORT_INTERRUPT |
1017		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
1018		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
1019		I915_MASTER_ERROR_INTERRUPT |
1020		I915_USER_INTERRUPT;
1021
1022	if (IS_G4X(dev_priv))
1023		enable_mask |= I915_BSD_USER_INTERRUPT;
1024
1025	gen2_irq_init(uncore, GEN2_IRQ_REGS, dev_priv->irq_mask, enable_mask);
1026
1027	/* Interrupt setup is already guaranteed to be single-threaded, this is
1028	 * just to make the assert_spin_locked check happy. */
1029	spin_lock_irq(&dev_priv->irq_lock);
1030	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
1031	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
1032	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
1033	spin_unlock_irq(&dev_priv->irq_lock);
1034
1035	i915_enable_asle_pipestat(dev_priv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1036}
1037
1038static irqreturn_t i965_irq_handler(int irq, void *arg)
1039{
1040	struct drm_i915_private *dev_priv = arg;
 
1041	irqreturn_t ret = IRQ_NONE;
1042
1043	if (!intel_irqs_enabled(dev_priv))
1044		return IRQ_NONE;
1045
1046	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1047	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1048
1049	do {
1050		u32 pipe_stats[I915_MAX_PIPES] = {};
1051		u32 eir = 0, eir_stuck = 0;
1052		u32 hotplug_status = 0;
1053		u32 iir;
1054
1055		iir = intel_uncore_read(&dev_priv->uncore, GEN2_IIR);
1056		if (iir == 0)
1057			break;
1058
1059		ret = IRQ_HANDLED;
1060
1061		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1062			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1063
1064		/* Call regardless, as some status bits might not be
1065		 * signalled in IIR */
1066		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1067
1068		if (iir & I915_MASTER_ERROR_INTERRUPT)
1069			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
1070
1071		intel_uncore_write(&dev_priv->uncore, GEN2_IIR, iir);
1072
1073		if (iir & I915_USER_INTERRUPT)
1074			intel_engine_cs_irq(to_gt(dev_priv)->engine[RCS0],
1075					    iir);
1076
1077		if (iir & I915_BSD_USER_INTERRUPT)
1078			intel_engine_cs_irq(to_gt(dev_priv)->engine[VCS0],
1079					    iir >> 25);
1080
1081		if (iir & I915_MASTER_ERROR_INTERRUPT)
1082			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
1083
1084		if (hotplug_status)
1085			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1086
1087		i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
1088	} while (0);
1089
1090	pmu_irq_stats(dev_priv, IRQ_HANDLED);
1091
1092	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1093
1094	return ret;
1095}
1096
1097/**
1098 * intel_irq_init - initializes irq support
1099 * @dev_priv: i915 device instance
1100 *
1101 * This function initializes all the irq support including work items, timers
1102 * and all the vtables. It does not setup the interrupt itself though.
1103 */
1104void intel_irq_init(struct drm_i915_private *dev_priv)
1105{
 
 
1106	int i;
1107
1108	INIT_WORK(&dev_priv->l3_parity.error_work, ivb_parity_work);
 
 
 
 
1109	for (i = 0; i < MAX_L3_SLICES; ++i)
1110		dev_priv->l3_parity.remap_info[i] = NULL;
1111
1112	/* pre-gen11 the guc irqs bits are in the upper 16 bits of the pm reg */
1113	if (HAS_GT_UC(dev_priv) && GRAPHICS_VER(dev_priv) < 11)
1114		to_gt(dev_priv)->pm_guc_events = GUC_INTR_GUC2HOST << 16;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1115}
1116
1117/**
1118 * intel_irq_fini - deinitializes IRQ support
1119 * @i915: i915 device instance
1120 *
1121 * This function deinitializes all the IRQ support.
1122 */
1123void intel_irq_fini(struct drm_i915_private *i915)
1124{
1125	int i;
1126
1127	for (i = 0; i < MAX_L3_SLICES; ++i)
1128		kfree(i915->l3_parity.remap_info[i]);
1129}
1130
1131static irq_handler_t intel_irq_handler(struct drm_i915_private *dev_priv)
1132{
1133	if (HAS_GMCH(dev_priv)) {
1134		if (IS_CHERRYVIEW(dev_priv))
1135			return cherryview_irq_handler;
1136		else if (IS_VALLEYVIEW(dev_priv))
1137			return valleyview_irq_handler;
1138		else if (GRAPHICS_VER(dev_priv) == 4)
1139			return i965_irq_handler;
1140		else
1141			return i915_irq_handler;
1142	} else {
1143		if (GRAPHICS_VER_FULL(dev_priv) >= IP_VER(12, 10))
1144			return dg1_irq_handler;
1145		else if (GRAPHICS_VER(dev_priv) >= 11)
1146			return gen11_irq_handler;
1147		else if (GRAPHICS_VER(dev_priv) >= 8)
1148			return gen8_irq_handler;
1149		else
1150			return ilk_irq_handler;
1151	}
1152}
1153
1154static void intel_irq_reset(struct drm_i915_private *dev_priv)
1155{
1156	if (HAS_GMCH(dev_priv)) {
1157		if (IS_CHERRYVIEW(dev_priv))
1158			cherryview_irq_reset(dev_priv);
1159		else if (IS_VALLEYVIEW(dev_priv))
1160			valleyview_irq_reset(dev_priv);
1161		else if (GRAPHICS_VER(dev_priv) == 4)
1162			i965_irq_reset(dev_priv);
1163		else
1164			i915_irq_reset(dev_priv);
1165	} else {
1166		if (GRAPHICS_VER_FULL(dev_priv) >= IP_VER(12, 10))
1167			dg1_irq_reset(dev_priv);
1168		else if (GRAPHICS_VER(dev_priv) >= 11)
1169			gen11_irq_reset(dev_priv);
1170		else if (GRAPHICS_VER(dev_priv) >= 8)
1171			gen8_irq_reset(dev_priv);
1172		else
1173			ilk_irq_reset(dev_priv);
1174	}
1175}
1176
1177static void intel_irq_postinstall(struct drm_i915_private *dev_priv)
1178{
1179	if (HAS_GMCH(dev_priv)) {
1180		if (IS_CHERRYVIEW(dev_priv))
1181			cherryview_irq_postinstall(dev_priv);
1182		else if (IS_VALLEYVIEW(dev_priv))
1183			valleyview_irq_postinstall(dev_priv);
1184		else if (GRAPHICS_VER(dev_priv) == 4)
1185			i965_irq_postinstall(dev_priv);
1186		else
1187			i915_irq_postinstall(dev_priv);
1188	} else {
1189		if (GRAPHICS_VER_FULL(dev_priv) >= IP_VER(12, 10))
1190			dg1_irq_postinstall(dev_priv);
1191		else if (GRAPHICS_VER(dev_priv) >= 11)
1192			gen11_irq_postinstall(dev_priv);
1193		else if (GRAPHICS_VER(dev_priv) >= 8)
1194			gen8_irq_postinstall(dev_priv);
1195		else
1196			ilk_irq_postinstall(dev_priv);
1197	}
1198}
1199
1200/**
1201 * intel_irq_install - enables the hardware interrupt
1202 * @dev_priv: i915 device instance
1203 *
1204 * This function enables the hardware interrupt handling, but leaves the hotplug
1205 * handling still disabled. It is called after intel_irq_init().
1206 *
1207 * In the driver load and resume code we need working interrupts in a few places
1208 * but don't want to deal with the hassle of concurrent probe and hotplug
1209 * workers. Hence the split into this two-stage approach.
1210 */
1211int intel_irq_install(struct drm_i915_private *dev_priv)
1212{
1213	int irq = to_pci_dev(dev_priv->drm.dev)->irq;
1214	int ret;
1215
1216	/*
1217	 * We enable some interrupt sources in our postinstall hooks, so mark
1218	 * interrupts as enabled _before_ actually enabling them to avoid
1219	 * special cases in our ordering checks.
1220	 */
1221	dev_priv->irqs_enabled = true;
1222
1223	intel_irq_reset(dev_priv);
1224
1225	ret = request_irq(irq, intel_irq_handler(dev_priv),
1226			  IRQF_SHARED, DRIVER_NAME, dev_priv);
1227	if (ret < 0) {
1228		dev_priv->irqs_enabled = false;
1229		return ret;
1230	}
1231
1232	intel_irq_postinstall(dev_priv);
1233
1234	return ret;
1235}
1236
1237/**
1238 * intel_irq_uninstall - finilizes all irq handling
1239 * @dev_priv: i915 device instance
1240 *
1241 * This stops interrupt and hotplug handling and unregisters and frees all
1242 * resources acquired in the init functions.
1243 */
1244void intel_irq_uninstall(struct drm_i915_private *dev_priv)
1245{
1246	int irq = to_pci_dev(dev_priv->drm.dev)->irq;
1247
1248	if (drm_WARN_ON(&dev_priv->drm, !dev_priv->irqs_enabled))
1249		return;
1250
1251	intel_irq_reset(dev_priv);
1252
1253	free_irq(irq, dev_priv);
1254
1255	intel_hpd_cancel_work(dev_priv);
1256	dev_priv->irqs_enabled = false;
1257}
1258
1259/**
1260 * intel_irq_suspend - Suspend interrupts
1261 * @i915: i915 device instance
1262 *
1263 * This function is used to disable interrupts at runtime.
 
1264 */
1265void intel_irq_suspend(struct drm_i915_private *i915)
1266{
1267	intel_irq_reset(i915);
1268	i915->irqs_enabled = false;
1269	intel_synchronize_irq(i915);
1270}
1271
1272/**
1273 * intel_irq_resume - Resume interrupts
1274 * @i915: i915 device instance
1275 *
1276 * This function is used to enable interrupts at runtime.
 
1277 */
1278void intel_irq_resume(struct drm_i915_private *i915)
1279{
1280	i915->irqs_enabled = true;
1281	intel_irq_reset(i915);
1282	intel_irq_postinstall(i915);
1283}
1284
1285bool intel_irqs_enabled(struct drm_i915_private *dev_priv)
1286{
1287	return dev_priv->irqs_enabled;
1288}
1289
1290void intel_synchronize_irq(struct drm_i915_private *i915)
1291{
1292	synchronize_irq(to_pci_dev(i915->drm.dev)->irq);
1293}
1294
1295void intel_synchronize_hardirq(struct drm_i915_private *i915)
1296{
1297	synchronize_hardirq(to_pci_dev(i915->drm.dev)->irq);
 
 
1298}
v4.17
   1/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
   2 */
   3/*
   4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
   5 * All Rights Reserved.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the
   9 * "Software"), to deal in the Software without restriction, including
  10 * without limitation the rights to use, copy, modify, merge, publish,
  11 * distribute, sub license, and/or sell copies of the Software, and to
  12 * permit persons to whom the Software is furnished to do so, subject to
  13 * the following conditions:
  14 *
  15 * The above copyright notice and this permission notice (including the
  16 * next paragraph) shall be included in all copies or substantial portions
  17 * of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
  22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
  23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
  25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  26 *
  27 */
  28
  29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30
 
  31#include <linux/sysrq.h>
  32#include <linux/slab.h>
  33#include <linux/circ_buf.h>
  34#include <drm/drmP.h>
  35#include <drm/i915_drm.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
  36#include "i915_drv.h"
  37#include "i915_trace.h"
  38#include "intel_drv.h"
  39
  40/**
  41 * DOC: interrupt handling
  42 *
  43 * These functions provide the basic support for enabling and disabling the
  44 * interrupt handling support. There's a lot more functionality in i915_irq.c
  45 * and related files, but that will be described in separate chapters.
  46 */
  47
  48static const u32 hpd_ilk[HPD_NUM_PINS] = {
  49	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
  50};
  51
  52static const u32 hpd_ivb[HPD_NUM_PINS] = {
  53	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
  54};
  55
  56static const u32 hpd_bdw[HPD_NUM_PINS] = {
  57	[HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
  58};
  59
  60static const u32 hpd_ibx[HPD_NUM_PINS] = {
  61	[HPD_CRT] = SDE_CRT_HOTPLUG,
  62	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
  63	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
  64	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
  65	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
  66};
  67
  68static const u32 hpd_cpt[HPD_NUM_PINS] = {
  69	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
  70	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
  71	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  72	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  73	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
  74};
  75
  76static const u32 hpd_spt[HPD_NUM_PINS] = {
  77	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
  78	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  79	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  80	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
  81	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
  82};
  83
  84static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
  85	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
  86	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
  87	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
  88	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
  89	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
  90	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
  91};
  92
  93static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
  94	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
  95	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
  96	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
  97	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
  98	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
  99	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
 100};
 101
 102static const u32 hpd_status_i915[HPD_NUM_PINS] = {
 103	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
 104	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
 105	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
 106	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
 107	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
 108	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
 109};
 110
 111/* BXT hpd list */
 112static const u32 hpd_bxt[HPD_NUM_PINS] = {
 113	[HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
 114	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
 115	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
 116};
 117
 118/* IIR can theoretically queue up two events. Be paranoid. */
 119#define GEN8_IRQ_RESET_NDX(type, which) do { \
 120	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
 121	POSTING_READ(GEN8_##type##_IMR(which)); \
 122	I915_WRITE(GEN8_##type##_IER(which), 0); \
 123	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
 124	POSTING_READ(GEN8_##type##_IIR(which)); \
 125	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
 126	POSTING_READ(GEN8_##type##_IIR(which)); \
 127} while (0)
 128
 129#define GEN3_IRQ_RESET(type) do { \
 130	I915_WRITE(type##IMR, 0xffffffff); \
 131	POSTING_READ(type##IMR); \
 132	I915_WRITE(type##IER, 0); \
 133	I915_WRITE(type##IIR, 0xffffffff); \
 134	POSTING_READ(type##IIR); \
 135	I915_WRITE(type##IIR, 0xffffffff); \
 136	POSTING_READ(type##IIR); \
 137} while (0)
 138
 139#define GEN2_IRQ_RESET(type) do { \
 140	I915_WRITE16(type##IMR, 0xffff); \
 141	POSTING_READ16(type##IMR); \
 142	I915_WRITE16(type##IER, 0); \
 143	I915_WRITE16(type##IIR, 0xffff); \
 144	POSTING_READ16(type##IIR); \
 145	I915_WRITE16(type##IIR, 0xffff); \
 146	POSTING_READ16(type##IIR); \
 147} while (0)
 148
 149/*
 150 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
 151 */
 152static void gen3_assert_iir_is_zero(struct drm_i915_private *dev_priv,
 153				    i915_reg_t reg)
 154{
 155	u32 val = I915_READ(reg);
 156
 157	if (val == 0)
 158		return;
 159
 160	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
 161	     i915_mmio_reg_offset(reg), val);
 162	I915_WRITE(reg, 0xffffffff);
 163	POSTING_READ(reg);
 164	I915_WRITE(reg, 0xffffffff);
 165	POSTING_READ(reg);
 166}
 167
 168static void gen2_assert_iir_is_zero(struct drm_i915_private *dev_priv,
 169				    i915_reg_t reg)
 170{
 171	u16 val = I915_READ16(reg);
 172
 173	if (val == 0)
 174		return;
 175
 176	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
 177	     i915_mmio_reg_offset(reg), val);
 178	I915_WRITE16(reg, 0xffff);
 179	POSTING_READ16(reg);
 180	I915_WRITE16(reg, 0xffff);
 181	POSTING_READ16(reg);
 182}
 183
 184#define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
 185	gen3_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
 186	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
 187	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
 188	POSTING_READ(GEN8_##type##_IMR(which)); \
 189} while (0)
 190
 191#define GEN3_IRQ_INIT(type, imr_val, ier_val) do { \
 192	gen3_assert_iir_is_zero(dev_priv, type##IIR); \
 193	I915_WRITE(type##IER, (ier_val)); \
 194	I915_WRITE(type##IMR, (imr_val)); \
 195	POSTING_READ(type##IMR); \
 196} while (0)
 197
 198#define GEN2_IRQ_INIT(type, imr_val, ier_val) do { \
 199	gen2_assert_iir_is_zero(dev_priv, type##IIR); \
 200	I915_WRITE16(type##IER, (ier_val)); \
 201	I915_WRITE16(type##IMR, (imr_val)); \
 202	POSTING_READ16(type##IMR); \
 203} while (0)
 204
 205static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
 206static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
 207
 208/* For display hotplug interrupt */
 209static inline void
 210i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
 211				     uint32_t mask,
 212				     uint32_t bits)
 213{
 214	uint32_t val;
 215
 216	lockdep_assert_held(&dev_priv->irq_lock);
 217	WARN_ON(bits & ~mask);
 218
 219	val = I915_READ(PORT_HOTPLUG_EN);
 220	val &= ~mask;
 221	val |= bits;
 222	I915_WRITE(PORT_HOTPLUG_EN, val);
 223}
 224
 225/**
 226 * i915_hotplug_interrupt_update - update hotplug interrupt enable
 227 * @dev_priv: driver private
 228 * @mask: bits to update
 229 * @bits: bits to enable
 230 * NOTE: the HPD enable bits are modified both inside and outside
 231 * of an interrupt context. To avoid that read-modify-write cycles
 232 * interfer, these bits are protected by a spinlock. Since this
 233 * function is usually not called from a context where the lock is
 234 * held already, this function acquires the lock itself. A non-locking
 235 * version is also available.
 236 */
 237void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
 238				   uint32_t mask,
 239				   uint32_t bits)
 240{
 241	spin_lock_irq(&dev_priv->irq_lock);
 242	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
 243	spin_unlock_irq(&dev_priv->irq_lock);
 244}
 245
 246/**
 247 * ilk_update_display_irq - update DEIMR
 248 * @dev_priv: driver private
 249 * @interrupt_mask: mask of interrupt bits to update
 250 * @enabled_irq_mask: mask of interrupt bits to enable
 251 */
 252void ilk_update_display_irq(struct drm_i915_private *dev_priv,
 253			    uint32_t interrupt_mask,
 254			    uint32_t enabled_irq_mask)
 255{
 256	uint32_t new_val;
 257
 258	lockdep_assert_held(&dev_priv->irq_lock);
 259
 260	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 261
 262	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 263		return;
 264
 265	new_val = dev_priv->irq_mask;
 266	new_val &= ~interrupt_mask;
 267	new_val |= (~enabled_irq_mask & interrupt_mask);
 268
 269	if (new_val != dev_priv->irq_mask) {
 270		dev_priv->irq_mask = new_val;
 271		I915_WRITE(DEIMR, dev_priv->irq_mask);
 272		POSTING_READ(DEIMR);
 273	}
 274}
 275
 276/**
 277 * ilk_update_gt_irq - update GTIMR
 278 * @dev_priv: driver private
 279 * @interrupt_mask: mask of interrupt bits to update
 280 * @enabled_irq_mask: mask of interrupt bits to enable
 281 */
 282static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
 283			      uint32_t interrupt_mask,
 284			      uint32_t enabled_irq_mask)
 285{
 286	lockdep_assert_held(&dev_priv->irq_lock);
 287
 288	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 289
 290	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 291		return;
 292
 293	dev_priv->gt_irq_mask &= ~interrupt_mask;
 294	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
 295	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
 296}
 297
 298void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
 299{
 300	ilk_update_gt_irq(dev_priv, mask, mask);
 301	POSTING_READ_FW(GTIMR);
 302}
 303
 304void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
 305{
 306	ilk_update_gt_irq(dev_priv, mask, 0);
 307}
 308
 309static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
 310{
 311	return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
 312}
 313
 314static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
 315{
 316	return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
 317}
 318
 319static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
 320{
 321	return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
 322}
 323
 324/**
 325 * snb_update_pm_irq - update GEN6_PMIMR
 326 * @dev_priv: driver private
 327 * @interrupt_mask: mask of interrupt bits to update
 328 * @enabled_irq_mask: mask of interrupt bits to enable
 329 */
 330static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
 331			      uint32_t interrupt_mask,
 332			      uint32_t enabled_irq_mask)
 333{
 334	uint32_t new_val;
 335
 336	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 337
 338	lockdep_assert_held(&dev_priv->irq_lock);
 339
 340	new_val = dev_priv->pm_imr;
 341	new_val &= ~interrupt_mask;
 342	new_val |= (~enabled_irq_mask & interrupt_mask);
 343
 344	if (new_val != dev_priv->pm_imr) {
 345		dev_priv->pm_imr = new_val;
 346		I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
 347		POSTING_READ(gen6_pm_imr(dev_priv));
 348	}
 349}
 350
 351void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
 352{
 353	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 354		return;
 355
 356	snb_update_pm_irq(dev_priv, mask, mask);
 357}
 358
 359static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
 360{
 361	snb_update_pm_irq(dev_priv, mask, 0);
 362}
 363
 364void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
 365{
 366	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 367		return;
 368
 369	__gen6_mask_pm_irq(dev_priv, mask);
 370}
 371
 372static void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
 373{
 374	i915_reg_t reg = gen6_pm_iir(dev_priv);
 375
 376	lockdep_assert_held(&dev_priv->irq_lock);
 377
 378	I915_WRITE(reg, reset_mask);
 379	I915_WRITE(reg, reset_mask);
 380	POSTING_READ(reg);
 381}
 382
 383static void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
 384{
 385	lockdep_assert_held(&dev_priv->irq_lock);
 386
 387	dev_priv->pm_ier |= enable_mask;
 388	I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
 389	gen6_unmask_pm_irq(dev_priv, enable_mask);
 390	/* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
 391}
 392
 393static void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
 394{
 395	lockdep_assert_held(&dev_priv->irq_lock);
 396
 397	dev_priv->pm_ier &= ~disable_mask;
 398	__gen6_mask_pm_irq(dev_priv, disable_mask);
 399	I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
 400	/* though a barrier is missing here, but don't really need a one */
 401}
 402
 403void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
 404{
 405	spin_lock_irq(&dev_priv->irq_lock);
 406	gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events);
 407	dev_priv->gt_pm.rps.pm_iir = 0;
 408	spin_unlock_irq(&dev_priv->irq_lock);
 409}
 410
 411void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
 412{
 413	struct intel_rps *rps = &dev_priv->gt_pm.rps;
 414
 415	if (READ_ONCE(rps->interrupts_enabled))
 416		return;
 417
 418	if (WARN_ON_ONCE(IS_GEN11(dev_priv)))
 419		return;
 420
 421	spin_lock_irq(&dev_priv->irq_lock);
 422	WARN_ON_ONCE(rps->pm_iir);
 423	WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
 424	rps->interrupts_enabled = true;
 425	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
 426
 427	spin_unlock_irq(&dev_priv->irq_lock);
 428}
 429
 430void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
 431{
 432	struct intel_rps *rps = &dev_priv->gt_pm.rps;
 433
 434	if (!READ_ONCE(rps->interrupts_enabled))
 435		return;
 436
 437	if (WARN_ON_ONCE(IS_GEN11(dev_priv)))
 438		return;
 439
 440	spin_lock_irq(&dev_priv->irq_lock);
 441	rps->interrupts_enabled = false;
 442
 443	I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
 444
 445	gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
 446
 447	spin_unlock_irq(&dev_priv->irq_lock);
 448	synchronize_irq(dev_priv->drm.irq);
 449
 450	/* Now that we will not be generating any more work, flush any
 451	 * outstanding tasks. As we are called on the RPS idle path,
 452	 * we will reset the GPU to minimum frequencies, so the current
 453	 * state of the worker can be discarded.
 454	 */
 455	cancel_work_sync(&rps->work);
 456	gen6_reset_rps_interrupts(dev_priv);
 457}
 458
 459void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
 460{
 461	assert_rpm_wakelock_held(dev_priv);
 462
 463	spin_lock_irq(&dev_priv->irq_lock);
 464	gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
 465	spin_unlock_irq(&dev_priv->irq_lock);
 466}
 467
 468void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
 469{
 470	assert_rpm_wakelock_held(dev_priv);
 471
 472	spin_lock_irq(&dev_priv->irq_lock);
 473	if (!dev_priv->guc.interrupts_enabled) {
 474		WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
 475				       dev_priv->pm_guc_events);
 476		dev_priv->guc.interrupts_enabled = true;
 477		gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
 478	}
 479	spin_unlock_irq(&dev_priv->irq_lock);
 480}
 481
 482void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
 483{
 484	assert_rpm_wakelock_held(dev_priv);
 485
 486	spin_lock_irq(&dev_priv->irq_lock);
 487	dev_priv->guc.interrupts_enabled = false;
 488
 489	gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
 490
 491	spin_unlock_irq(&dev_priv->irq_lock);
 492	synchronize_irq(dev_priv->drm.irq);
 493
 494	gen9_reset_guc_interrupts(dev_priv);
 495}
 496
 497/**
 498 * bdw_update_port_irq - update DE port interrupt
 499 * @dev_priv: driver private
 500 * @interrupt_mask: mask of interrupt bits to update
 501 * @enabled_irq_mask: mask of interrupt bits to enable
 502 */
 503static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
 504				uint32_t interrupt_mask,
 505				uint32_t enabled_irq_mask)
 506{
 507	uint32_t new_val;
 508	uint32_t old_val;
 509
 510	lockdep_assert_held(&dev_priv->irq_lock);
 511
 512	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 513
 514	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 515		return;
 516
 517	old_val = I915_READ(GEN8_DE_PORT_IMR);
 518
 519	new_val = old_val;
 520	new_val &= ~interrupt_mask;
 521	new_val |= (~enabled_irq_mask & interrupt_mask);
 522
 523	if (new_val != old_val) {
 524		I915_WRITE(GEN8_DE_PORT_IMR, new_val);
 525		POSTING_READ(GEN8_DE_PORT_IMR);
 526	}
 527}
 528
 529/**
 530 * bdw_update_pipe_irq - update DE pipe interrupt
 531 * @dev_priv: driver private
 532 * @pipe: pipe whose interrupt to update
 533 * @interrupt_mask: mask of interrupt bits to update
 534 * @enabled_irq_mask: mask of interrupt bits to enable
 535 */
 536void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
 537			 enum pipe pipe,
 538			 uint32_t interrupt_mask,
 539			 uint32_t enabled_irq_mask)
 540{
 541	uint32_t new_val;
 542
 543	lockdep_assert_held(&dev_priv->irq_lock);
 544
 545	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 546
 547	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 548		return;
 549
 550	new_val = dev_priv->de_irq_mask[pipe];
 551	new_val &= ~interrupt_mask;
 552	new_val |= (~enabled_irq_mask & interrupt_mask);
 553
 554	if (new_val != dev_priv->de_irq_mask[pipe]) {
 555		dev_priv->de_irq_mask[pipe] = new_val;
 556		I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
 557		POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
 558	}
 559}
 560
 561/**
 562 * ibx_display_interrupt_update - update SDEIMR
 563 * @dev_priv: driver private
 564 * @interrupt_mask: mask of interrupt bits to update
 565 * @enabled_irq_mask: mask of interrupt bits to enable
 566 */
 567void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
 568				  uint32_t interrupt_mask,
 569				  uint32_t enabled_irq_mask)
 570{
 571	uint32_t sdeimr = I915_READ(SDEIMR);
 572	sdeimr &= ~interrupt_mask;
 573	sdeimr |= (~enabled_irq_mask & interrupt_mask);
 574
 575	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 576
 577	lockdep_assert_held(&dev_priv->irq_lock);
 578
 579	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 580		return;
 581
 582	I915_WRITE(SDEIMR, sdeimr);
 583	POSTING_READ(SDEIMR);
 584}
 585
 586u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
 587			      enum pipe pipe)
 588{
 589	u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
 590	u32 enable_mask = status_mask << 16;
 591
 592	lockdep_assert_held(&dev_priv->irq_lock);
 593
 594	if (INTEL_GEN(dev_priv) < 5)
 595		goto out;
 596
 597	/*
 598	 * On pipe A we don't support the PSR interrupt yet,
 599	 * on pipe B and C the same bit MBZ.
 600	 */
 601	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
 602		return 0;
 603	/*
 604	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
 605	 * A the same bit is for perf counters which we don't use either.
 606	 */
 607	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
 608		return 0;
 609
 610	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
 611			 SPRITE0_FLIP_DONE_INT_EN_VLV |
 612			 SPRITE1_FLIP_DONE_INT_EN_VLV);
 613	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
 614		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
 615	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
 616		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
 617
 618out:
 619	WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
 620		  status_mask & ~PIPESTAT_INT_STATUS_MASK,
 621		  "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
 622		  pipe_name(pipe), enable_mask, status_mask);
 623
 624	return enable_mask;
 625}
 626
 627void i915_enable_pipestat(struct drm_i915_private *dev_priv,
 628			  enum pipe pipe, u32 status_mask)
 629{
 630	i915_reg_t reg = PIPESTAT(pipe);
 631	u32 enable_mask;
 632
 633	WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
 634		  "pipe %c: status_mask=0x%x\n",
 635		  pipe_name(pipe), status_mask);
 636
 637	lockdep_assert_held(&dev_priv->irq_lock);
 638	WARN_ON(!intel_irqs_enabled(dev_priv));
 639
 640	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
 641		return;
 642
 643	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
 644	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
 645
 646	I915_WRITE(reg, enable_mask | status_mask);
 647	POSTING_READ(reg);
 648}
 649
 650void i915_disable_pipestat(struct drm_i915_private *dev_priv,
 651			   enum pipe pipe, u32 status_mask)
 652{
 653	i915_reg_t reg = PIPESTAT(pipe);
 654	u32 enable_mask;
 655
 656	WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
 657		  "pipe %c: status_mask=0x%x\n",
 658		  pipe_name(pipe), status_mask);
 659
 660	lockdep_assert_held(&dev_priv->irq_lock);
 661	WARN_ON(!intel_irqs_enabled(dev_priv));
 662
 663	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
 664		return;
 665
 666	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
 667	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
 668
 669	I915_WRITE(reg, enable_mask | status_mask);
 670	POSTING_READ(reg);
 671}
 672
 673/**
 674 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
 675 * @dev_priv: i915 device private
 676 */
 677static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
 678{
 679	if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
 680		return;
 681
 682	spin_lock_irq(&dev_priv->irq_lock);
 683
 684	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
 685	if (INTEL_GEN(dev_priv) >= 4)
 686		i915_enable_pipestat(dev_priv, PIPE_A,
 687				     PIPE_LEGACY_BLC_EVENT_STATUS);
 688
 689	spin_unlock_irq(&dev_priv->irq_lock);
 690}
 691
 692/*
 693 * This timing diagram depicts the video signal in and
 694 * around the vertical blanking period.
 695 *
 696 * Assumptions about the fictitious mode used in this example:
 697 *  vblank_start >= 3
 698 *  vsync_start = vblank_start + 1
 699 *  vsync_end = vblank_start + 2
 700 *  vtotal = vblank_start + 3
 701 *
 702 *           start of vblank:
 703 *           latch double buffered registers
 704 *           increment frame counter (ctg+)
 705 *           generate start of vblank interrupt (gen4+)
 706 *           |
 707 *           |          frame start:
 708 *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
 709 *           |          may be shifted forward 1-3 extra lines via PIPECONF
 710 *           |          |
 711 *           |          |  start of vsync:
 712 *           |          |  generate vsync interrupt
 713 *           |          |  |
 714 * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
 715 *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
 716 * ----va---> <-----------------vb--------------------> <--------va-------------
 717 *       |          |       <----vs----->                     |
 718 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
 719 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
 720 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
 721 *       |          |                                         |
 722 *       last visible pixel                                   first visible pixel
 723 *                  |                                         increment frame counter (gen3/4)
 724 *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
 725 *
 726 * x  = horizontal active
 727 * _  = horizontal blanking
 728 * hs = horizontal sync
 729 * va = vertical active
 730 * vb = vertical blanking
 731 * vs = vertical sync
 732 * vbs = vblank_start (number)
 733 *
 734 * Summary:
 735 * - most events happen at the start of horizontal sync
 736 * - frame start happens at the start of horizontal blank, 1-4 lines
 737 *   (depending on PIPECONF settings) after the start of vblank
 738 * - gen3/4 pixel and frame counter are synchronized with the start
 739 *   of horizontal active on the first line of vertical active
 740 */
 741
 742/* Called from drm generic code, passed a 'crtc', which
 743 * we use as a pipe index
 744 */
 745static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
 746{
 747	struct drm_i915_private *dev_priv = to_i915(dev);
 748	i915_reg_t high_frame, low_frame;
 749	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
 750	const struct drm_display_mode *mode = &dev->vblank[pipe].hwmode;
 751	unsigned long irqflags;
 752
 753	htotal = mode->crtc_htotal;
 754	hsync_start = mode->crtc_hsync_start;
 755	vbl_start = mode->crtc_vblank_start;
 756	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
 757		vbl_start = DIV_ROUND_UP(vbl_start, 2);
 758
 759	/* Convert to pixel count */
 760	vbl_start *= htotal;
 761
 762	/* Start of vblank event occurs at start of hsync */
 763	vbl_start -= htotal - hsync_start;
 764
 765	high_frame = PIPEFRAME(pipe);
 766	low_frame = PIPEFRAMEPIXEL(pipe);
 767
 768	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
 769
 770	/*
 771	 * High & low register fields aren't synchronized, so make sure
 772	 * we get a low value that's stable across two reads of the high
 773	 * register.
 774	 */
 775	do {
 776		high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
 777		low   = I915_READ_FW(low_frame);
 778		high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
 779	} while (high1 != high2);
 780
 781	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
 782
 783	high1 >>= PIPE_FRAME_HIGH_SHIFT;
 784	pixel = low & PIPE_PIXEL_MASK;
 785	low >>= PIPE_FRAME_LOW_SHIFT;
 786
 787	/*
 788	 * The frame counter increments at beginning of active.
 789	 * Cook up a vblank counter by also checking the pixel
 790	 * counter against vblank start.
 791	 */
 792	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
 793}
 794
 795static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
 796{
 797	struct drm_i915_private *dev_priv = to_i915(dev);
 798
 799	return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
 800}
 801
 802/*
 803 * On certain encoders on certain platforms, pipe
 804 * scanline register will not work to get the scanline,
 805 * since the timings are driven from the PORT or issues
 806 * with scanline register updates.
 807 * This function will use Framestamp and current
 808 * timestamp registers to calculate the scanline.
 809 */
 810static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
 811{
 812	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 813	struct drm_vblank_crtc *vblank =
 814		&crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
 815	const struct drm_display_mode *mode = &vblank->hwmode;
 816	u32 vblank_start = mode->crtc_vblank_start;
 817	u32 vtotal = mode->crtc_vtotal;
 818	u32 htotal = mode->crtc_htotal;
 819	u32 clock = mode->crtc_clock;
 820	u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
 821
 822	/*
 823	 * To avoid the race condition where we might cross into the
 824	 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
 825	 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
 826	 * during the same frame.
 827	 */
 828	do {
 829		/*
 830		 * This field provides read back of the display
 831		 * pipe frame time stamp. The time stamp value
 832		 * is sampled at every start of vertical blank.
 833		 */
 834		scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
 835
 836		/*
 837		 * The TIMESTAMP_CTR register has the current
 838		 * time stamp value.
 839		 */
 840		scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR);
 841
 842		scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
 843	} while (scan_post_time != scan_prev_time);
 844
 845	scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
 846					clock), 1000 * htotal);
 847	scanline = min(scanline, vtotal - 1);
 848	scanline = (scanline + vblank_start) % vtotal;
 849
 850	return scanline;
 851}
 852
 853/* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
 854static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
 855{
 856	struct drm_device *dev = crtc->base.dev;
 857	struct drm_i915_private *dev_priv = to_i915(dev);
 858	const struct drm_display_mode *mode;
 859	struct drm_vblank_crtc *vblank;
 860	enum pipe pipe = crtc->pipe;
 861	int position, vtotal;
 862
 863	if (!crtc->active)
 864		return -1;
 865
 866	vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
 867	mode = &vblank->hwmode;
 868
 869	if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
 870		return __intel_get_crtc_scanline_from_timestamp(crtc);
 871
 872	vtotal = mode->crtc_vtotal;
 873	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
 874		vtotal /= 2;
 875
 876	if (IS_GEN2(dev_priv))
 877		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
 878	else
 879		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
 880
 881	/*
 882	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
 883	 * read it just before the start of vblank.  So try it again
 884	 * so we don't accidentally end up spanning a vblank frame
 885	 * increment, causing the pipe_update_end() code to squak at us.
 886	 *
 887	 * The nature of this problem means we can't simply check the ISR
 888	 * bit and return the vblank start value; nor can we use the scanline
 889	 * debug register in the transcoder as it appears to have the same
 890	 * problem.  We may need to extend this to include other platforms,
 891	 * but so far testing only shows the problem on HSW.
 892	 */
 893	if (HAS_DDI(dev_priv) && !position) {
 894		int i, temp;
 895
 896		for (i = 0; i < 100; i++) {
 897			udelay(1);
 898			temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
 899			if (temp != position) {
 900				position = temp;
 901				break;
 902			}
 903		}
 904	}
 905
 906	/*
 907	 * See update_scanline_offset() for the details on the
 908	 * scanline_offset adjustment.
 909	 */
 910	return (position + crtc->scanline_offset) % vtotal;
 911}
 912
 913static bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
 914				     bool in_vblank_irq, int *vpos, int *hpos,
 915				     ktime_t *stime, ktime_t *etime,
 916				     const struct drm_display_mode *mode)
 917{
 918	struct drm_i915_private *dev_priv = to_i915(dev);
 919	struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
 920								pipe);
 921	int position;
 922	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
 923	unsigned long irqflags;
 924
 925	if (WARN_ON(!mode->crtc_clock)) {
 926		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
 927				 "pipe %c\n", pipe_name(pipe));
 928		return false;
 929	}
 930
 931	htotal = mode->crtc_htotal;
 932	hsync_start = mode->crtc_hsync_start;
 933	vtotal = mode->crtc_vtotal;
 934	vbl_start = mode->crtc_vblank_start;
 935	vbl_end = mode->crtc_vblank_end;
 936
 937	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
 938		vbl_start = DIV_ROUND_UP(vbl_start, 2);
 939		vbl_end /= 2;
 940		vtotal /= 2;
 941	}
 942
 943	/*
 944	 * Lock uncore.lock, as we will do multiple timing critical raw
 945	 * register reads, potentially with preemption disabled, so the
 946	 * following code must not block on uncore.lock.
 947	 */
 948	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
 949
 950	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
 951
 952	/* Get optional system timestamp before query. */
 953	if (stime)
 954		*stime = ktime_get();
 955
 956	if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
 957		/* No obvious pixelcount register. Only query vertical
 958		 * scanout position from Display scan line register.
 959		 */
 960		position = __intel_get_crtc_scanline(intel_crtc);
 961	} else {
 962		/* Have access to pixelcount since start of frame.
 963		 * We can split this into vertical and horizontal
 964		 * scanout position.
 965		 */
 966		position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
 967
 968		/* convert to pixel counts */
 969		vbl_start *= htotal;
 970		vbl_end *= htotal;
 971		vtotal *= htotal;
 972
 973		/*
 974		 * In interlaced modes, the pixel counter counts all pixels,
 975		 * so one field will have htotal more pixels. In order to avoid
 976		 * the reported position from jumping backwards when the pixel
 977		 * counter is beyond the length of the shorter field, just
 978		 * clamp the position the length of the shorter field. This
 979		 * matches how the scanline counter based position works since
 980		 * the scanline counter doesn't count the two half lines.
 981		 */
 982		if (position >= vtotal)
 983			position = vtotal - 1;
 984
 985		/*
 986		 * Start of vblank interrupt is triggered at start of hsync,
 987		 * just prior to the first active line of vblank. However we
 988		 * consider lines to start at the leading edge of horizontal
 989		 * active. So, should we get here before we've crossed into
 990		 * the horizontal active of the first line in vblank, we would
 991		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
 992		 * always add htotal-hsync_start to the current pixel position.
 993		 */
 994		position = (position + htotal - hsync_start) % vtotal;
 995	}
 996
 997	/* Get optional system timestamp after query. */
 998	if (etime)
 999		*etime = ktime_get();
1000
1001	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
1002
1003	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1004
1005	/*
1006	 * While in vblank, position will be negative
1007	 * counting up towards 0 at vbl_end. And outside
1008	 * vblank, position will be positive counting
1009	 * up since vbl_end.
1010	 */
1011	if (position >= vbl_start)
1012		position -= vbl_end;
1013	else
1014		position += vtotal - vbl_end;
1015
1016	if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
1017		*vpos = position;
1018		*hpos = 0;
1019	} else {
1020		*vpos = position / htotal;
1021		*hpos = position - (*vpos * htotal);
1022	}
1023
1024	return true;
1025}
1026
1027int intel_get_crtc_scanline(struct intel_crtc *crtc)
1028{
1029	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1030	unsigned long irqflags;
1031	int position;
1032
1033	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1034	position = __intel_get_crtc_scanline(crtc);
1035	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1036
1037	return position;
1038}
1039
1040static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
1041{
1042	u32 busy_up, busy_down, max_avg, min_avg;
1043	u8 new_delay;
1044
1045	spin_lock(&mchdev_lock);
1046
1047	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1048
1049	new_delay = dev_priv->ips.cur_delay;
1050
1051	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1052	busy_up = I915_READ(RCPREVBSYTUPAVG);
1053	busy_down = I915_READ(RCPREVBSYTDNAVG);
1054	max_avg = I915_READ(RCBMAXAVG);
1055	min_avg = I915_READ(RCBMINAVG);
1056
1057	/* Handle RCS change request from hw */
1058	if (busy_up > max_avg) {
1059		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1060			new_delay = dev_priv->ips.cur_delay - 1;
1061		if (new_delay < dev_priv->ips.max_delay)
1062			new_delay = dev_priv->ips.max_delay;
1063	} else if (busy_down < min_avg) {
1064		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1065			new_delay = dev_priv->ips.cur_delay + 1;
1066		if (new_delay > dev_priv->ips.min_delay)
1067			new_delay = dev_priv->ips.min_delay;
1068	}
1069
1070	if (ironlake_set_drps(dev_priv, new_delay))
1071		dev_priv->ips.cur_delay = new_delay;
1072
1073	spin_unlock(&mchdev_lock);
1074
1075	return;
1076}
1077
1078static void notify_ring(struct intel_engine_cs *engine)
1079{
1080	struct i915_request *rq = NULL;
1081	struct intel_wait *wait;
1082
1083	if (!engine->breadcrumbs.irq_armed)
1084		return;
1085
1086	atomic_inc(&engine->irq_count);
1087	set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
1088
1089	spin_lock(&engine->breadcrumbs.irq_lock);
1090	wait = engine->breadcrumbs.irq_wait;
1091	if (wait) {
1092		bool wakeup = engine->irq_seqno_barrier;
1093
1094		/* We use a callback from the dma-fence to submit
1095		 * requests after waiting on our own requests. To
1096		 * ensure minimum delay in queuing the next request to
1097		 * hardware, signal the fence now rather than wait for
1098		 * the signaler to be woken up. We still wake up the
1099		 * waiter in order to handle the irq-seqno coherency
1100		 * issues (we may receive the interrupt before the
1101		 * seqno is written, see __i915_request_irq_complete())
1102		 * and to handle coalescing of multiple seqno updates
1103		 * and many waiters.
1104		 */
1105		if (i915_seqno_passed(intel_engine_get_seqno(engine),
1106				      wait->seqno)) {
1107			struct i915_request *waiter = wait->request;
1108
1109			wakeup = true;
1110			if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1111				      &waiter->fence.flags) &&
1112			    intel_wait_check_request(wait, waiter))
1113				rq = i915_request_get(waiter);
1114		}
1115
1116		if (wakeup)
1117			wake_up_process(wait->tsk);
1118	} else {
1119		if (engine->breadcrumbs.irq_armed)
1120			__intel_engine_disarm_breadcrumbs(engine);
1121	}
1122	spin_unlock(&engine->breadcrumbs.irq_lock);
1123
1124	if (rq) {
1125		dma_fence_signal(&rq->fence);
1126		GEM_BUG_ON(!i915_request_completed(rq));
1127		i915_request_put(rq);
1128	}
1129
1130	trace_intel_engine_notify(engine, wait);
1131}
1132
1133static void vlv_c0_read(struct drm_i915_private *dev_priv,
1134			struct intel_rps_ei *ei)
1135{
1136	ei->ktime = ktime_get_raw();
1137	ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1138	ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1139}
1140
1141void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1142{
1143	memset(&dev_priv->gt_pm.rps.ei, 0, sizeof(dev_priv->gt_pm.rps.ei));
1144}
1145
1146static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1147{
1148	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1149	const struct intel_rps_ei *prev = &rps->ei;
1150	struct intel_rps_ei now;
1151	u32 events = 0;
1152
1153	if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1154		return 0;
1155
1156	vlv_c0_read(dev_priv, &now);
1157
1158	if (prev->ktime) {
1159		u64 time, c0;
1160		u32 render, media;
1161
1162		time = ktime_us_delta(now.ktime, prev->ktime);
1163
1164		time *= dev_priv->czclk_freq;
1165
1166		/* Workload can be split between render + media,
1167		 * e.g. SwapBuffers being blitted in X after being rendered in
1168		 * mesa. To account for this we need to combine both engines
1169		 * into our activity counter.
1170		 */
1171		render = now.render_c0 - prev->render_c0;
1172		media = now.media_c0 - prev->media_c0;
1173		c0 = max(render, media);
1174		c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1175
1176		if (c0 > time * rps->up_threshold)
1177			events = GEN6_PM_RP_UP_THRESHOLD;
1178		else if (c0 < time * rps->down_threshold)
1179			events = GEN6_PM_RP_DOWN_THRESHOLD;
1180	}
1181
1182	rps->ei = now;
1183	return events;
1184}
1185
1186static void gen6_pm_rps_work(struct work_struct *work)
1187{
1188	struct drm_i915_private *dev_priv =
1189		container_of(work, struct drm_i915_private, gt_pm.rps.work);
1190	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1191	bool client_boost = false;
1192	int new_delay, adj, min, max;
1193	u32 pm_iir = 0;
1194
1195	spin_lock_irq(&dev_priv->irq_lock);
1196	if (rps->interrupts_enabled) {
1197		pm_iir = fetch_and_zero(&rps->pm_iir);
1198		client_boost = atomic_read(&rps->num_waiters);
1199	}
1200	spin_unlock_irq(&dev_priv->irq_lock);
1201
1202	/* Make sure we didn't queue anything we're not going to process. */
1203	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1204	if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1205		goto out;
1206
1207	mutex_lock(&dev_priv->pcu_lock);
1208
1209	pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1210
1211	adj = rps->last_adj;
1212	new_delay = rps->cur_freq;
1213	min = rps->min_freq_softlimit;
1214	max = rps->max_freq_softlimit;
1215	if (client_boost)
1216		max = rps->max_freq;
1217	if (client_boost && new_delay < rps->boost_freq) {
1218		new_delay = rps->boost_freq;
1219		adj = 0;
1220	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1221		if (adj > 0)
1222			adj *= 2;
1223		else /* CHV needs even encode values */
1224			adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1225
1226		if (new_delay >= rps->max_freq_softlimit)
1227			adj = 0;
1228	} else if (client_boost) {
1229		adj = 0;
1230	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1231		if (rps->cur_freq > rps->efficient_freq)
1232			new_delay = rps->efficient_freq;
1233		else if (rps->cur_freq > rps->min_freq_softlimit)
1234			new_delay = rps->min_freq_softlimit;
1235		adj = 0;
1236	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1237		if (adj < 0)
1238			adj *= 2;
1239		else /* CHV needs even encode values */
1240			adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1241
1242		if (new_delay <= rps->min_freq_softlimit)
1243			adj = 0;
1244	} else { /* unknown event */
1245		adj = 0;
1246	}
1247
1248	rps->last_adj = adj;
1249
1250	/* sysfs frequency interfaces may have snuck in while servicing the
1251	 * interrupt
1252	 */
1253	new_delay += adj;
1254	new_delay = clamp_t(int, new_delay, min, max);
1255
1256	if (intel_set_rps(dev_priv, new_delay)) {
1257		DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1258		rps->last_adj = 0;
1259	}
1260
1261	mutex_unlock(&dev_priv->pcu_lock);
1262
1263out:
1264	/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1265	spin_lock_irq(&dev_priv->irq_lock);
1266	if (rps->interrupts_enabled)
1267		gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1268	spin_unlock_irq(&dev_priv->irq_lock);
1269}
1270
1271
1272/**
1273 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1274 * occurred.
1275 * @work: workqueue struct
1276 *
1277 * Doesn't actually do anything except notify userspace. As a consequence of
1278 * this event, userspace should try to remap the bad rows since statistically
1279 * it is likely the same row is more likely to go bad again.
1280 */
1281static void ivybridge_parity_work(struct work_struct *work)
1282{
1283	struct drm_i915_private *dev_priv =
1284		container_of(work, typeof(*dev_priv), l3_parity.error_work);
 
1285	u32 error_status, row, bank, subbank;
1286	char *parity_event[6];
1287	uint32_t misccpctl;
1288	uint8_t slice = 0;
1289
1290	/* We must turn off DOP level clock gating to access the L3 registers.
1291	 * In order to prevent a get/put style interface, acquire struct mutex
1292	 * any time we access those registers.
1293	 */
1294	mutex_lock(&dev_priv->drm.struct_mutex);
1295
1296	/* If we've screwed up tracking, just let the interrupt fire again */
1297	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1298		goto out;
1299
1300	misccpctl = I915_READ(GEN7_MISCCPCTL);
1301	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1302	POSTING_READ(GEN7_MISCCPCTL);
1303
1304	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1305		i915_reg_t reg;
1306
1307		slice--;
1308		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
 
1309			break;
1310
1311		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1312
1313		reg = GEN7_L3CDERRST1(slice);
1314
1315		error_status = I915_READ(reg);
1316		row = GEN7_PARITY_ERROR_ROW(error_status);
1317		bank = GEN7_PARITY_ERROR_BANK(error_status);
1318		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1319
1320		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1321		POSTING_READ(reg);
1322
1323		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1324		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1325		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1326		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1327		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1328		parity_event[5] = NULL;
1329
1330		kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1331				   KOBJ_CHANGE, parity_event);
1332
1333		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1334			  slice, row, bank, subbank);
 
1335
1336		kfree(parity_event[4]);
1337		kfree(parity_event[3]);
1338		kfree(parity_event[2]);
1339		kfree(parity_event[1]);
1340	}
1341
1342	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1343
1344out:
1345	WARN_ON(dev_priv->l3_parity.which_slice);
1346	spin_lock_irq(&dev_priv->irq_lock);
1347	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1348	spin_unlock_irq(&dev_priv->irq_lock);
1349
1350	mutex_unlock(&dev_priv->drm.struct_mutex);
1351}
1352
1353static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1354					       u32 iir)
1355{
1356	if (!HAS_L3_DPF(dev_priv))
1357		return;
1358
1359	spin_lock(&dev_priv->irq_lock);
1360	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1361	spin_unlock(&dev_priv->irq_lock);
1362
1363	iir &= GT_PARITY_ERROR(dev_priv);
1364	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1365		dev_priv->l3_parity.which_slice |= 1 << 1;
1366
1367	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1368		dev_priv->l3_parity.which_slice |= 1 << 0;
1369
1370	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1371}
1372
1373static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1374			       u32 gt_iir)
1375{
1376	if (gt_iir & GT_RENDER_USER_INTERRUPT)
1377		notify_ring(dev_priv->engine[RCS]);
1378	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1379		notify_ring(dev_priv->engine[VCS]);
1380}
1381
1382static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1383			       u32 gt_iir)
1384{
1385	if (gt_iir & GT_RENDER_USER_INTERRUPT)
1386		notify_ring(dev_priv->engine[RCS]);
1387	if (gt_iir & GT_BSD_USER_INTERRUPT)
1388		notify_ring(dev_priv->engine[VCS]);
1389	if (gt_iir & GT_BLT_USER_INTERRUPT)
1390		notify_ring(dev_priv->engine[BCS]);
1391
1392	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1393		      GT_BSD_CS_ERROR_INTERRUPT |
1394		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1395		DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1396
1397	if (gt_iir & GT_PARITY_ERROR(dev_priv))
1398		ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1399}
1400
1401static void
1402gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1403{
1404	struct intel_engine_execlists * const execlists = &engine->execlists;
1405	bool tasklet = false;
1406
1407	if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift)) {
1408		if (READ_ONCE(engine->execlists.active)) {
1409			__set_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1410			tasklet = true;
1411		}
1412	}
1413
1414	if (iir & (GT_RENDER_USER_INTERRUPT << test_shift)) {
1415		notify_ring(engine);
1416		tasklet |= USES_GUC_SUBMISSION(engine->i915);
1417	}
1418
1419	if (tasklet)
1420		tasklet_hi_schedule(&execlists->tasklet);
1421}
1422
1423static void gen8_gt_irq_ack(struct drm_i915_private *i915,
1424			    u32 master_ctl, u32 gt_iir[4])
1425{
1426	void __iomem * const regs = i915->regs;
1427
1428#define GEN8_GT_IRQS (GEN8_GT_RCS_IRQ | \
1429		      GEN8_GT_BCS_IRQ | \
1430		      GEN8_GT_VCS1_IRQ | \
1431		      GEN8_GT_VCS2_IRQ | \
1432		      GEN8_GT_VECS_IRQ | \
1433		      GEN8_GT_PM_IRQ | \
1434		      GEN8_GT_GUC_IRQ)
1435
1436	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1437		gt_iir[0] = raw_reg_read(regs, GEN8_GT_IIR(0));
1438		if (likely(gt_iir[0]))
1439			raw_reg_write(regs, GEN8_GT_IIR(0), gt_iir[0]);
1440	}
1441
1442	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1443		gt_iir[1] = raw_reg_read(regs, GEN8_GT_IIR(1));
1444		if (likely(gt_iir[1]))
1445			raw_reg_write(regs, GEN8_GT_IIR(1), gt_iir[1]);
1446	}
1447
1448	if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1449		gt_iir[2] = raw_reg_read(regs, GEN8_GT_IIR(2));
1450		if (likely(gt_iir[2] & (i915->pm_rps_events |
1451					i915->pm_guc_events)))
1452			raw_reg_write(regs, GEN8_GT_IIR(2),
1453				      gt_iir[2] & (i915->pm_rps_events |
1454						   i915->pm_guc_events));
1455	}
1456
1457	if (master_ctl & GEN8_GT_VECS_IRQ) {
1458		gt_iir[3] = raw_reg_read(regs, GEN8_GT_IIR(3));
1459		if (likely(gt_iir[3]))
1460			raw_reg_write(regs, GEN8_GT_IIR(3), gt_iir[3]);
1461	}
1462}
1463
1464static void gen8_gt_irq_handler(struct drm_i915_private *i915,
1465				u32 master_ctl, u32 gt_iir[4])
1466{
1467	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1468		gen8_cs_irq_handler(i915->engine[RCS],
1469				    gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1470		gen8_cs_irq_handler(i915->engine[BCS],
1471				    gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1472	}
1473
1474	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1475		gen8_cs_irq_handler(i915->engine[VCS],
1476				    gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1477		gen8_cs_irq_handler(i915->engine[VCS2],
1478				    gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1479	}
1480
1481	if (master_ctl & GEN8_GT_VECS_IRQ) {
1482		gen8_cs_irq_handler(i915->engine[VECS],
1483				    gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1484	}
1485
1486	if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1487		gen6_rps_irq_handler(i915, gt_iir[2]);
1488		gen9_guc_irq_handler(i915, gt_iir[2]);
1489	}
1490}
1491
1492static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1493{
1494	switch (port) {
1495	case PORT_A:
1496		return val & PORTA_HOTPLUG_LONG_DETECT;
1497	case PORT_B:
1498		return val & PORTB_HOTPLUG_LONG_DETECT;
1499	case PORT_C:
1500		return val & PORTC_HOTPLUG_LONG_DETECT;
1501	default:
1502		return false;
1503	}
1504}
1505
1506static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1507{
1508	switch (port) {
1509	case PORT_E:
1510		return val & PORTE_HOTPLUG_LONG_DETECT;
1511	default:
1512		return false;
1513	}
1514}
1515
1516static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1517{
1518	switch (port) {
1519	case PORT_A:
1520		return val & PORTA_HOTPLUG_LONG_DETECT;
1521	case PORT_B:
1522		return val & PORTB_HOTPLUG_LONG_DETECT;
1523	case PORT_C:
1524		return val & PORTC_HOTPLUG_LONG_DETECT;
1525	case PORT_D:
1526		return val & PORTD_HOTPLUG_LONG_DETECT;
1527	default:
1528		return false;
1529	}
1530}
1531
1532static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1533{
1534	switch (port) {
1535	case PORT_A:
1536		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1537	default:
1538		return false;
1539	}
1540}
1541
1542static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1543{
1544	switch (port) {
1545	case PORT_B:
1546		return val & PORTB_HOTPLUG_LONG_DETECT;
1547	case PORT_C:
1548		return val & PORTC_HOTPLUG_LONG_DETECT;
1549	case PORT_D:
1550		return val & PORTD_HOTPLUG_LONG_DETECT;
1551	default:
1552		return false;
1553	}
1554}
1555
1556static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1557{
1558	switch (port) {
1559	case PORT_B:
1560		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1561	case PORT_C:
1562		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1563	case PORT_D:
1564		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1565	default:
1566		return false;
1567	}
1568}
1569
1570/*
1571 * Get a bit mask of pins that have triggered, and which ones may be long.
1572 * This can be called multiple times with the same masks to accumulate
1573 * hotplug detection results from several registers.
1574 *
1575 * Note that the caller is expected to zero out the masks initially.
1576 */
1577static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1578			       u32 *pin_mask, u32 *long_mask,
1579			       u32 hotplug_trigger, u32 dig_hotplug_reg,
1580			       const u32 hpd[HPD_NUM_PINS],
1581			       bool long_pulse_detect(enum port port, u32 val))
1582{
1583	enum port port;
1584	int i;
1585
1586	for_each_hpd_pin(i) {
1587		if ((hpd[i] & hotplug_trigger) == 0)
1588			continue;
1589
1590		*pin_mask |= BIT(i);
1591
1592		port = intel_hpd_pin_to_port(dev_priv, i);
1593		if (port == PORT_NONE)
1594			continue;
1595
1596		if (long_pulse_detect(port, dig_hotplug_reg))
1597			*long_mask |= BIT(i);
1598	}
1599
1600	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1601			 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1602
1603}
1604
1605static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1606{
1607	wake_up_all(&dev_priv->gmbus_wait_queue);
1608}
1609
1610static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1611{
1612	wake_up_all(&dev_priv->gmbus_wait_queue);
1613}
1614
1615#if defined(CONFIG_DEBUG_FS)
1616static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1617					 enum pipe pipe,
1618					 uint32_t crc0, uint32_t crc1,
1619					 uint32_t crc2, uint32_t crc3,
1620					 uint32_t crc4)
1621{
1622	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1623	struct intel_pipe_crc_entry *entry;
1624	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1625	struct drm_driver *driver = dev_priv->drm.driver;
1626	uint32_t crcs[5];
1627	int head, tail;
1628
1629	spin_lock(&pipe_crc->lock);
1630	if (pipe_crc->source) {
1631		if (!pipe_crc->entries) {
1632			spin_unlock(&pipe_crc->lock);
1633			DRM_DEBUG_KMS("spurious interrupt\n");
1634			return;
1635		}
1636
1637		head = pipe_crc->head;
1638		tail = pipe_crc->tail;
1639
1640		if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1641			spin_unlock(&pipe_crc->lock);
1642			DRM_ERROR("CRC buffer overflowing\n");
1643			return;
1644		}
1645
1646		entry = &pipe_crc->entries[head];
1647
1648		entry->frame = driver->get_vblank_counter(&dev_priv->drm, pipe);
1649		entry->crc[0] = crc0;
1650		entry->crc[1] = crc1;
1651		entry->crc[2] = crc2;
1652		entry->crc[3] = crc3;
1653		entry->crc[4] = crc4;
1654
1655		head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1656		pipe_crc->head = head;
1657
1658		spin_unlock(&pipe_crc->lock);
1659
1660		wake_up_interruptible(&pipe_crc->wq);
1661	} else {
1662		/*
1663		 * For some not yet identified reason, the first CRC is
1664		 * bonkers. So let's just wait for the next vblank and read
1665		 * out the buggy result.
1666		 *
1667		 * On GEN8+ sometimes the second CRC is bonkers as well, so
1668		 * don't trust that one either.
1669		 */
1670		if (pipe_crc->skipped == 0 ||
1671		    (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1672			pipe_crc->skipped++;
1673			spin_unlock(&pipe_crc->lock);
1674			return;
1675		}
1676		spin_unlock(&pipe_crc->lock);
1677		crcs[0] = crc0;
1678		crcs[1] = crc1;
1679		crcs[2] = crc2;
1680		crcs[3] = crc3;
1681		crcs[4] = crc4;
1682		drm_crtc_add_crc_entry(&crtc->base, true,
1683				       drm_crtc_accurate_vblank_count(&crtc->base),
1684				       crcs);
1685	}
1686}
1687#else
1688static inline void
1689display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1690			     enum pipe pipe,
1691			     uint32_t crc0, uint32_t crc1,
1692			     uint32_t crc2, uint32_t crc3,
1693			     uint32_t crc4) {}
1694#endif
1695
1696
1697static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1698				     enum pipe pipe)
1699{
1700	display_pipe_crc_irq_handler(dev_priv, pipe,
1701				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1702				     0, 0, 0, 0);
1703}
1704
1705static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1706				     enum pipe pipe)
1707{
1708	display_pipe_crc_irq_handler(dev_priv, pipe,
1709				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1710				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1711				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1712				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1713				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1714}
1715
1716static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1717				      enum pipe pipe)
1718{
1719	uint32_t res1, res2;
1720
1721	if (INTEL_GEN(dev_priv) >= 3)
1722		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1723	else
1724		res1 = 0;
1725
1726	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1727		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1728	else
1729		res2 = 0;
1730
1731	display_pipe_crc_irq_handler(dev_priv, pipe,
1732				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1733				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1734				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1735				     res1, res2);
1736}
1737
1738/* The RPS events need forcewake, so we add them to a work queue and mask their
1739 * IMR bits until the work is done. Other interrupts can be processed without
1740 * the work queue. */
1741static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1742{
1743	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1744
1745	if (pm_iir & dev_priv->pm_rps_events) {
1746		spin_lock(&dev_priv->irq_lock);
1747		gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1748		if (rps->interrupts_enabled) {
1749			rps->pm_iir |= pm_iir & dev_priv->pm_rps_events;
1750			schedule_work(&rps->work);
1751		}
1752		spin_unlock(&dev_priv->irq_lock);
1753	}
1754
1755	if (INTEL_GEN(dev_priv) >= 8)
1756		return;
1757
1758	if (HAS_VEBOX(dev_priv)) {
1759		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1760			notify_ring(dev_priv->engine[VECS]);
1761
1762		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1763			DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1764	}
1765}
1766
1767static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1768{
1769	if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT) {
1770		/* Sample the log buffer flush related bits & clear them out now
1771		 * itself from the message identity register to minimize the
1772		 * probability of losing a flush interrupt, when there are back
1773		 * to back flush interrupts.
1774		 * There can be a new flush interrupt, for different log buffer
1775		 * type (like for ISR), whilst Host is handling one (for DPC).
1776		 * Since same bit is used in message register for ISR & DPC, it
1777		 * could happen that GuC sets the bit for 2nd interrupt but Host
1778		 * clears out the bit on handling the 1st interrupt.
1779		 */
1780		u32 msg, flush;
1781
1782		msg = I915_READ(SOFT_SCRATCH(15));
1783		flush = msg & (INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED |
1784			       INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER);
1785		if (flush) {
1786			/* Clear the message bits that are handled */
1787			I915_WRITE(SOFT_SCRATCH(15), msg & ~flush);
1788
1789			/* Handle flush interrupt in bottom half */
1790			queue_work(dev_priv->guc.log.runtime.flush_wq,
1791				   &dev_priv->guc.log.runtime.flush_work);
1792
1793			dev_priv->guc.log.flush_interrupt_count++;
1794		} else {
1795			/* Not clearing of unhandled event bits won't result in
1796			 * re-triggering of the interrupt.
1797			 */
1798		}
1799	}
1800}
1801
1802static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1803{
1804	enum pipe pipe;
1805
1806	for_each_pipe(dev_priv, pipe) {
1807		I915_WRITE(PIPESTAT(pipe),
1808			   PIPESTAT_INT_STATUS_MASK |
1809			   PIPE_FIFO_UNDERRUN_STATUS);
1810
1811		dev_priv->pipestat_irq_mask[pipe] = 0;
1812	}
1813}
1814
1815static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1816				  u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1817{
1818	int pipe;
1819
1820	spin_lock(&dev_priv->irq_lock);
1821
1822	if (!dev_priv->display_irqs_enabled) {
1823		spin_unlock(&dev_priv->irq_lock);
1824		return;
1825	}
1826
1827	for_each_pipe(dev_priv, pipe) {
1828		i915_reg_t reg;
1829		u32 status_mask, enable_mask, iir_bit = 0;
1830
1831		/*
1832		 * PIPESTAT bits get signalled even when the interrupt is
1833		 * disabled with the mask bits, and some of the status bits do
1834		 * not generate interrupts at all (like the underrun bit). Hence
1835		 * we need to be careful that we only handle what we want to
1836		 * handle.
1837		 */
1838
1839		/* fifo underruns are filterered in the underrun handler. */
1840		status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1841
1842		switch (pipe) {
1843		case PIPE_A:
1844			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1845			break;
1846		case PIPE_B:
1847			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1848			break;
1849		case PIPE_C:
1850			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1851			break;
1852		}
1853		if (iir & iir_bit)
1854			status_mask |= dev_priv->pipestat_irq_mask[pipe];
1855
1856		if (!status_mask)
1857			continue;
1858
1859		reg = PIPESTAT(pipe);
1860		pipe_stats[pipe] = I915_READ(reg) & status_mask;
1861		enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1862
1863		/*
1864		 * Clear the PIPE*STAT regs before the IIR
1865		 */
1866		if (pipe_stats[pipe])
1867			I915_WRITE(reg, enable_mask | pipe_stats[pipe]);
1868	}
1869	spin_unlock(&dev_priv->irq_lock);
1870}
1871
1872static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1873				      u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1874{
1875	enum pipe pipe;
1876
1877	for_each_pipe(dev_priv, pipe) {
1878		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1879			drm_handle_vblank(&dev_priv->drm, pipe);
1880
1881		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1882			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1883
1884		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1885			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1886	}
1887}
1888
1889static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1890				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1891{
1892	bool blc_event = false;
1893	enum pipe pipe;
1894
1895	for_each_pipe(dev_priv, pipe) {
1896		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1897			drm_handle_vblank(&dev_priv->drm, pipe);
1898
1899		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1900			blc_event = true;
1901
1902		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1903			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1904
1905		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1906			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1907	}
1908
1909	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1910		intel_opregion_asle_intr(dev_priv);
1911}
1912
1913static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1914				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1915{
1916	bool blc_event = false;
1917	enum pipe pipe;
1918
1919	for_each_pipe(dev_priv, pipe) {
1920		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1921			drm_handle_vblank(&dev_priv->drm, pipe);
1922
1923		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1924			blc_event = true;
1925
1926		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1927			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1928
1929		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1930			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1931	}
1932
1933	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1934		intel_opregion_asle_intr(dev_priv);
1935
1936	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1937		gmbus_irq_handler(dev_priv);
1938}
1939
1940static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1941					    u32 pipe_stats[I915_MAX_PIPES])
1942{
1943	enum pipe pipe;
1944
1945	for_each_pipe(dev_priv, pipe) {
1946		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1947			drm_handle_vblank(&dev_priv->drm, pipe);
1948
1949		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1950			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1951
1952		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1953			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1954	}
1955
1956	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1957		gmbus_irq_handler(dev_priv);
1958}
1959
1960static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1961{
1962	u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1963
1964	if (hotplug_status)
1965		I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1966
1967	return hotplug_status;
1968}
1969
1970static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1971				 u32 hotplug_status)
1972{
1973	u32 pin_mask = 0, long_mask = 0;
1974
1975	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1976	    IS_CHERRYVIEW(dev_priv)) {
1977		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1978
1979		if (hotplug_trigger) {
1980			intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1981					   hotplug_trigger, hotplug_trigger,
1982					   hpd_status_g4x,
1983					   i9xx_port_hotplug_long_detect);
1984
1985			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1986		}
1987
1988		if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1989			dp_aux_irq_handler(dev_priv);
1990	} else {
1991		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1992
1993		if (hotplug_trigger) {
1994			intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1995					   hotplug_trigger, hotplug_trigger,
1996					   hpd_status_i915,
1997					   i9xx_port_hotplug_long_detect);
1998			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1999		}
2000	}
2001}
2002
2003static irqreturn_t valleyview_irq_handler(int irq, void *arg)
2004{
2005	struct drm_device *dev = arg;
2006	struct drm_i915_private *dev_priv = to_i915(dev);
2007	irqreturn_t ret = IRQ_NONE;
2008
2009	if (!intel_irqs_enabled(dev_priv))
2010		return IRQ_NONE;
2011
2012	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2013	disable_rpm_wakeref_asserts(dev_priv);
2014
2015	do {
2016		u32 iir, gt_iir, pm_iir;
2017		u32 pipe_stats[I915_MAX_PIPES] = {};
2018		u32 hotplug_status = 0;
2019		u32 ier = 0;
2020
2021		gt_iir = I915_READ(GTIIR);
2022		pm_iir = I915_READ(GEN6_PMIIR);
2023		iir = I915_READ(VLV_IIR);
2024
2025		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
2026			break;
2027
2028		ret = IRQ_HANDLED;
2029
2030		/*
2031		 * Theory on interrupt generation, based on empirical evidence:
2032		 *
2033		 * x = ((VLV_IIR & VLV_IER) ||
2034		 *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
2035		 *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
2036		 *
2037		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2038		 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
2039		 * guarantee the CPU interrupt will be raised again even if we
2040		 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
2041		 * bits this time around.
2042		 */
2043		I915_WRITE(VLV_MASTER_IER, 0);
2044		ier = I915_READ(VLV_IER);
2045		I915_WRITE(VLV_IER, 0);
2046
2047		if (gt_iir)
2048			I915_WRITE(GTIIR, gt_iir);
2049		if (pm_iir)
2050			I915_WRITE(GEN6_PMIIR, pm_iir);
2051
2052		if (iir & I915_DISPLAY_PORT_INTERRUPT)
2053			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2054
2055		/* Call regardless, as some status bits might not be
2056		 * signalled in iir */
2057		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2058
2059		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2060			   I915_LPE_PIPE_B_INTERRUPT))
2061			intel_lpe_audio_irq_handler(dev_priv);
2062
2063		/*
2064		 * VLV_IIR is single buffered, and reflects the level
2065		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2066		 */
2067		if (iir)
2068			I915_WRITE(VLV_IIR, iir);
2069
2070		I915_WRITE(VLV_IER, ier);
2071		I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2072		POSTING_READ(VLV_MASTER_IER);
2073
2074		if (gt_iir)
2075			snb_gt_irq_handler(dev_priv, gt_iir);
2076		if (pm_iir)
2077			gen6_rps_irq_handler(dev_priv, pm_iir);
2078
2079		if (hotplug_status)
2080			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2081
2082		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2083	} while (0);
2084
2085	enable_rpm_wakeref_asserts(dev_priv);
 
 
2086
2087	return ret;
2088}
2089
2090static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2091{
2092	struct drm_device *dev = arg;
2093	struct drm_i915_private *dev_priv = to_i915(dev);
2094	irqreturn_t ret = IRQ_NONE;
2095
2096	if (!intel_irqs_enabled(dev_priv))
2097		return IRQ_NONE;
2098
2099	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2100	disable_rpm_wakeref_asserts(dev_priv);
2101
2102	do {
2103		u32 master_ctl, iir;
2104		u32 pipe_stats[I915_MAX_PIPES] = {};
2105		u32 hotplug_status = 0;
2106		u32 gt_iir[4];
2107		u32 ier = 0;
2108
2109		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2110		iir = I915_READ(VLV_IIR);
2111
2112		if (master_ctl == 0 && iir == 0)
2113			break;
2114
2115		ret = IRQ_HANDLED;
2116
2117		/*
2118		 * Theory on interrupt generation, based on empirical evidence:
2119		 *
2120		 * x = ((VLV_IIR & VLV_IER) ||
2121		 *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
2122		 *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
2123		 *
2124		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2125		 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
2126		 * guarantee the CPU interrupt will be raised again even if we
2127		 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
2128		 * bits this time around.
2129		 */
2130		I915_WRITE(GEN8_MASTER_IRQ, 0);
2131		ier = I915_READ(VLV_IER);
2132		I915_WRITE(VLV_IER, 0);
2133
2134		gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2135
2136		if (iir & I915_DISPLAY_PORT_INTERRUPT)
2137			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2138
2139		/* Call regardless, as some status bits might not be
2140		 * signalled in iir */
2141		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2142
2143		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2144			   I915_LPE_PIPE_B_INTERRUPT |
2145			   I915_LPE_PIPE_C_INTERRUPT))
2146			intel_lpe_audio_irq_handler(dev_priv);
2147
2148		/*
2149		 * VLV_IIR is single buffered, and reflects the level
2150		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2151		 */
2152		if (iir)
2153			I915_WRITE(VLV_IIR, iir);
2154
2155		I915_WRITE(VLV_IER, ier);
2156		I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2157		POSTING_READ(GEN8_MASTER_IRQ);
2158
2159		gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
2160
2161		if (hotplug_status)
2162			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2163
2164		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2165	} while (0);
2166
2167	enable_rpm_wakeref_asserts(dev_priv);
 
 
2168
2169	return ret;
2170}
2171
2172static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2173				u32 hotplug_trigger,
2174				const u32 hpd[HPD_NUM_PINS])
2175{
2176	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2177
2178	/*
2179	 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2180	 * unless we touch the hotplug register, even if hotplug_trigger is
2181	 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2182	 * errors.
2183	 */
2184	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2185	if (!hotplug_trigger) {
2186		u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2187			PORTD_HOTPLUG_STATUS_MASK |
2188			PORTC_HOTPLUG_STATUS_MASK |
2189			PORTB_HOTPLUG_STATUS_MASK;
2190		dig_hotplug_reg &= ~mask;
2191	}
2192
2193	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2194	if (!hotplug_trigger)
2195		return;
2196
2197	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2198			   dig_hotplug_reg, hpd,
2199			   pch_port_hotplug_long_detect);
2200
2201	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2202}
2203
2204static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2205{
2206	int pipe;
2207	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2208
2209	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2210
2211	if (pch_iir & SDE_AUDIO_POWER_MASK) {
2212		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2213			       SDE_AUDIO_POWER_SHIFT);
2214		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2215				 port_name(port));
2216	}
2217
2218	if (pch_iir & SDE_AUX_MASK)
2219		dp_aux_irq_handler(dev_priv);
2220
2221	if (pch_iir & SDE_GMBUS)
2222		gmbus_irq_handler(dev_priv);
2223
2224	if (pch_iir & SDE_AUDIO_HDCP_MASK)
2225		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2226
2227	if (pch_iir & SDE_AUDIO_TRANS_MASK)
2228		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2229
2230	if (pch_iir & SDE_POISON)
2231		DRM_ERROR("PCH poison interrupt\n");
2232
2233	if (pch_iir & SDE_FDI_MASK)
2234		for_each_pipe(dev_priv, pipe)
2235			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2236					 pipe_name(pipe),
2237					 I915_READ(FDI_RX_IIR(pipe)));
2238
2239	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2240		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2241
2242	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2243		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2244
2245	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2246		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2247
2248	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2249		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2250}
2251
2252static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2253{
2254	u32 err_int = I915_READ(GEN7_ERR_INT);
2255	enum pipe pipe;
2256
2257	if (err_int & ERR_INT_POISON)
2258		DRM_ERROR("Poison interrupt\n");
2259
2260	for_each_pipe(dev_priv, pipe) {
2261		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2262			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2263
2264		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2265			if (IS_IVYBRIDGE(dev_priv))
2266				ivb_pipe_crc_irq_handler(dev_priv, pipe);
2267			else
2268				hsw_pipe_crc_irq_handler(dev_priv, pipe);
2269		}
2270	}
2271
2272	I915_WRITE(GEN7_ERR_INT, err_int);
2273}
2274
2275static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2276{
2277	u32 serr_int = I915_READ(SERR_INT);
2278	enum pipe pipe;
2279
2280	if (serr_int & SERR_INT_POISON)
2281		DRM_ERROR("PCH poison interrupt\n");
2282
2283	for_each_pipe(dev_priv, pipe)
2284		if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
2285			intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
2286
2287	I915_WRITE(SERR_INT, serr_int);
2288}
2289
2290static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2291{
2292	int pipe;
2293	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2294
2295	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2296
2297	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2298		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2299			       SDE_AUDIO_POWER_SHIFT_CPT);
2300		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2301				 port_name(port));
2302	}
2303
2304	if (pch_iir & SDE_AUX_MASK_CPT)
2305		dp_aux_irq_handler(dev_priv);
2306
2307	if (pch_iir & SDE_GMBUS_CPT)
2308		gmbus_irq_handler(dev_priv);
2309
2310	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2311		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2312
2313	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2314		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2315
2316	if (pch_iir & SDE_FDI_MASK_CPT)
2317		for_each_pipe(dev_priv, pipe)
2318			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2319					 pipe_name(pipe),
2320					 I915_READ(FDI_RX_IIR(pipe)));
2321
2322	if (pch_iir & SDE_ERROR_CPT)
2323		cpt_serr_int_handler(dev_priv);
2324}
2325
2326static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2327{
2328	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2329		~SDE_PORTE_HOTPLUG_SPT;
2330	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2331	u32 pin_mask = 0, long_mask = 0;
2332
2333	if (hotplug_trigger) {
2334		u32 dig_hotplug_reg;
2335
2336		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2337		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2338
2339		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2340				   hotplug_trigger, dig_hotplug_reg, hpd_spt,
2341				   spt_port_hotplug_long_detect);
2342	}
2343
2344	if (hotplug2_trigger) {
2345		u32 dig_hotplug_reg;
2346
2347		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2348		I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2349
2350		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2351				   hotplug2_trigger, dig_hotplug_reg, hpd_spt,
2352				   spt_port_hotplug2_long_detect);
2353	}
2354
2355	if (pin_mask)
2356		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2357
2358	if (pch_iir & SDE_GMBUS_CPT)
2359		gmbus_irq_handler(dev_priv);
2360}
2361
2362static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2363				u32 hotplug_trigger,
2364				const u32 hpd[HPD_NUM_PINS])
2365{
2366	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2367
2368	dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2369	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2370
2371	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2372			   dig_hotplug_reg, hpd,
2373			   ilk_port_hotplug_long_detect);
2374
2375	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2376}
2377
2378static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2379				    u32 de_iir)
2380{
2381	enum pipe pipe;
2382	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2383
2384	if (hotplug_trigger)
2385		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2386
2387	if (de_iir & DE_AUX_CHANNEL_A)
2388		dp_aux_irq_handler(dev_priv);
2389
2390	if (de_iir & DE_GSE)
2391		intel_opregion_asle_intr(dev_priv);
2392
2393	if (de_iir & DE_POISON)
2394		DRM_ERROR("Poison interrupt\n");
2395
2396	for_each_pipe(dev_priv, pipe) {
2397		if (de_iir & DE_PIPE_VBLANK(pipe))
2398			drm_handle_vblank(&dev_priv->drm, pipe);
2399
2400		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2401			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2402
2403		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2404			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2405	}
2406
2407	/* check event from PCH */
2408	if (de_iir & DE_PCH_EVENT) {
2409		u32 pch_iir = I915_READ(SDEIIR);
2410
2411		if (HAS_PCH_CPT(dev_priv))
2412			cpt_irq_handler(dev_priv, pch_iir);
2413		else
2414			ibx_irq_handler(dev_priv, pch_iir);
2415
2416		/* should clear PCH hotplug event before clear CPU irq */
2417		I915_WRITE(SDEIIR, pch_iir);
2418	}
2419
2420	if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2421		ironlake_rps_change_irq_handler(dev_priv);
2422}
2423
2424static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2425				    u32 de_iir)
2426{
2427	enum pipe pipe;
2428	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2429
2430	if (hotplug_trigger)
2431		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2432
2433	if (de_iir & DE_ERR_INT_IVB)
2434		ivb_err_int_handler(dev_priv);
2435
2436	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2437		dp_aux_irq_handler(dev_priv);
2438
2439	if (de_iir & DE_GSE_IVB)
2440		intel_opregion_asle_intr(dev_priv);
2441
2442	for_each_pipe(dev_priv, pipe) {
2443		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2444			drm_handle_vblank(&dev_priv->drm, pipe);
2445	}
2446
2447	/* check event from PCH */
2448	if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2449		u32 pch_iir = I915_READ(SDEIIR);
2450
2451		cpt_irq_handler(dev_priv, pch_iir);
2452
2453		/* clear PCH hotplug event before clear CPU irq */
2454		I915_WRITE(SDEIIR, pch_iir);
2455	}
2456}
2457
2458/*
2459 * To handle irqs with the minimum potential races with fresh interrupts, we:
2460 * 1 - Disable Master Interrupt Control.
2461 * 2 - Find the source(s) of the interrupt.
2462 * 3 - Clear the Interrupt Identity bits (IIR).
2463 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2464 * 5 - Re-enable Master Interrupt Control.
2465 */
2466static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2467{
2468	struct drm_device *dev = arg;
2469	struct drm_i915_private *dev_priv = to_i915(dev);
2470	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2471	irqreturn_t ret = IRQ_NONE;
2472
2473	if (!intel_irqs_enabled(dev_priv))
2474		return IRQ_NONE;
2475
2476	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2477	disable_rpm_wakeref_asserts(dev_priv);
2478
2479	/* disable master interrupt before clearing iir  */
2480	de_ier = I915_READ(DEIER);
2481	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2482	POSTING_READ(DEIER);
2483
2484	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2485	 * interrupts will will be stored on its back queue, and then we'll be
2486	 * able to process them after we restore SDEIER (as soon as we restore
2487	 * it, we'll get an interrupt if SDEIIR still has something to process
2488	 * due to its back queue). */
2489	if (!HAS_PCH_NOP(dev_priv)) {
2490		sde_ier = I915_READ(SDEIER);
2491		I915_WRITE(SDEIER, 0);
2492		POSTING_READ(SDEIER);
2493	}
2494
2495	/* Find, clear, then process each source of interrupt */
2496
2497	gt_iir = I915_READ(GTIIR);
2498	if (gt_iir) {
2499		I915_WRITE(GTIIR, gt_iir);
 
 
 
 
2500		ret = IRQ_HANDLED;
2501		if (INTEL_GEN(dev_priv) >= 6)
2502			snb_gt_irq_handler(dev_priv, gt_iir);
2503		else
2504			ilk_gt_irq_handler(dev_priv, gt_iir);
2505	}
2506
2507	de_iir = I915_READ(DEIIR);
2508	if (de_iir) {
2509		I915_WRITE(DEIIR, de_iir);
 
 
 
 
2510		ret = IRQ_HANDLED;
2511		if (INTEL_GEN(dev_priv) >= 7)
2512			ivb_display_irq_handler(dev_priv, de_iir);
2513		else
2514			ilk_display_irq_handler(dev_priv, de_iir);
2515	}
2516
2517	if (INTEL_GEN(dev_priv) >= 6) {
2518		u32 pm_iir = I915_READ(GEN6_PMIIR);
2519		if (pm_iir) {
2520			I915_WRITE(GEN6_PMIIR, pm_iir);
 
2521			ret = IRQ_HANDLED;
2522			gen6_rps_irq_handler(dev_priv, pm_iir);
2523		}
2524	}
2525
2526	I915_WRITE(DEIER, de_ier);
2527	POSTING_READ(DEIER);
2528	if (!HAS_PCH_NOP(dev_priv)) {
2529		I915_WRITE(SDEIER, sde_ier);
2530		POSTING_READ(SDEIER);
2531	}
2532
2533	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2534	enable_rpm_wakeref_asserts(dev_priv);
2535
2536	return ret;
2537}
2538
2539static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2540				u32 hotplug_trigger,
2541				const u32 hpd[HPD_NUM_PINS])
2542{
2543	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2544
2545	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2546	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2547
2548	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2549			   dig_hotplug_reg, hpd,
2550			   bxt_port_hotplug_long_detect);
2551
2552	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2553}
2554
2555static irqreturn_t
2556gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2557{
2558	irqreturn_t ret = IRQ_NONE;
2559	u32 iir;
2560	enum pipe pipe;
2561
2562	if (master_ctl & GEN8_DE_MISC_IRQ) {
2563		iir = I915_READ(GEN8_DE_MISC_IIR);
2564		if (iir) {
2565			I915_WRITE(GEN8_DE_MISC_IIR, iir);
2566			ret = IRQ_HANDLED;
2567			if (iir & GEN8_DE_MISC_GSE)
2568				intel_opregion_asle_intr(dev_priv);
2569			else
2570				DRM_ERROR("Unexpected DE Misc interrupt\n");
2571		}
2572		else
2573			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2574	}
2575
2576	if (master_ctl & GEN8_DE_PORT_IRQ) {
2577		iir = I915_READ(GEN8_DE_PORT_IIR);
2578		if (iir) {
2579			u32 tmp_mask;
2580			bool found = false;
2581
2582			I915_WRITE(GEN8_DE_PORT_IIR, iir);
2583			ret = IRQ_HANDLED;
2584
2585			tmp_mask = GEN8_AUX_CHANNEL_A;
2586			if (INTEL_GEN(dev_priv) >= 9)
2587				tmp_mask |= GEN9_AUX_CHANNEL_B |
2588					    GEN9_AUX_CHANNEL_C |
2589					    GEN9_AUX_CHANNEL_D;
2590
2591			if (IS_CNL_WITH_PORT_F(dev_priv))
2592				tmp_mask |= CNL_AUX_CHANNEL_F;
2593
2594			if (iir & tmp_mask) {
2595				dp_aux_irq_handler(dev_priv);
2596				found = true;
2597			}
2598
2599			if (IS_GEN9_LP(dev_priv)) {
2600				tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2601				if (tmp_mask) {
2602					bxt_hpd_irq_handler(dev_priv, tmp_mask,
2603							    hpd_bxt);
2604					found = true;
2605				}
2606			} else if (IS_BROADWELL(dev_priv)) {
2607				tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2608				if (tmp_mask) {
2609					ilk_hpd_irq_handler(dev_priv,
2610							    tmp_mask, hpd_bdw);
2611					found = true;
2612				}
2613			}
2614
2615			if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2616				gmbus_irq_handler(dev_priv);
2617				found = true;
2618			}
2619
2620			if (!found)
2621				DRM_ERROR("Unexpected DE Port interrupt\n");
2622		}
2623		else
2624			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2625	}
2626
2627	for_each_pipe(dev_priv, pipe) {
2628		u32 fault_errors;
2629
2630		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2631			continue;
2632
2633		iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2634		if (!iir) {
2635			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2636			continue;
2637		}
2638
2639		ret = IRQ_HANDLED;
2640		I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2641
2642		if (iir & GEN8_PIPE_VBLANK)
2643			drm_handle_vblank(&dev_priv->drm, pipe);
2644
2645		if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2646			hsw_pipe_crc_irq_handler(dev_priv, pipe);
2647
2648		if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2649			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2650
2651		fault_errors = iir;
2652		if (INTEL_GEN(dev_priv) >= 9)
2653			fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2654		else
2655			fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2656
2657		if (fault_errors)
2658			DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2659				  pipe_name(pipe),
2660				  fault_errors);
2661	}
2662
2663	if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2664	    master_ctl & GEN8_DE_PCH_IRQ) {
2665		/*
2666		 * FIXME(BDW): Assume for now that the new interrupt handling
2667		 * scheme also closed the SDE interrupt handling race we've seen
2668		 * on older pch-split platforms. But this needs testing.
2669		 */
2670		iir = I915_READ(SDEIIR);
2671		if (iir) {
2672			I915_WRITE(SDEIIR, iir);
2673			ret = IRQ_HANDLED;
2674
2675			if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
2676			    HAS_PCH_CNP(dev_priv))
2677				spt_irq_handler(dev_priv, iir);
2678			else
2679				cpt_irq_handler(dev_priv, iir);
2680		} else {
2681			/*
2682			 * Like on previous PCH there seems to be something
2683			 * fishy going on with forwarding PCH interrupts.
2684			 */
2685			DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2686		}
2687	}
2688
2689	return ret;
2690}
2691
2692static irqreturn_t gen8_irq_handler(int irq, void *arg)
2693{
2694	struct drm_i915_private *dev_priv = to_i915(arg);
 
2695	u32 master_ctl;
2696	u32 gt_iir[4];
2697
2698	if (!intel_irqs_enabled(dev_priv))
2699		return IRQ_NONE;
2700
2701	master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2702	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2703	if (!master_ctl)
2704		return IRQ_NONE;
 
2705
2706	I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2707
2708	/* Find, clear, then process each source of interrupt */
2709	gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2710
2711	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2712	if (master_ctl & ~GEN8_GT_IRQS) {
2713		disable_rpm_wakeref_asserts(dev_priv);
2714		gen8_de_irq_handler(dev_priv, master_ctl);
2715		enable_rpm_wakeref_asserts(dev_priv);
2716	}
2717
2718	I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2719
2720	gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
2721
2722	return IRQ_HANDLED;
2723}
2724
2725struct wedge_me {
2726	struct delayed_work work;
2727	struct drm_i915_private *i915;
2728	const char *name;
2729};
2730
2731static void wedge_me(struct work_struct *work)
2732{
2733	struct wedge_me *w = container_of(work, typeof(*w), work.work);
2734
2735	dev_err(w->i915->drm.dev,
2736		"%s timed out, cancelling all in-flight rendering.\n",
2737		w->name);
2738	i915_gem_set_wedged(w->i915);
2739}
2740
2741static void __init_wedge(struct wedge_me *w,
2742			 struct drm_i915_private *i915,
2743			 long timeout,
2744			 const char *name)
2745{
2746	w->i915 = i915;
2747	w->name = name;
2748
2749	INIT_DELAYED_WORK_ONSTACK(&w->work, wedge_me);
2750	schedule_delayed_work(&w->work, timeout);
2751}
2752
2753static void __fini_wedge(struct wedge_me *w)
2754{
2755	cancel_delayed_work_sync(&w->work);
2756	destroy_delayed_work_on_stack(&w->work);
2757	w->i915 = NULL;
2758}
2759
2760#define i915_wedge_on_timeout(W, DEV, TIMEOUT)				\
2761	for (__init_wedge((W), (DEV), (TIMEOUT), __func__);		\
2762	     (W)->i915;							\
2763	     __fini_wedge((W)))
2764
2765static __always_inline void
2766gen11_cs_irq_handler(struct intel_engine_cs * const engine, const u32 iir)
2767{
2768	gen8_cs_irq_handler(engine, iir, 0);
2769}
2770
2771static void
2772gen11_gt_engine_irq_handler(struct drm_i915_private * const i915,
2773			    const unsigned int bank,
2774			    const unsigned int engine_n,
2775			    const u16 iir)
2776{
2777	struct intel_engine_cs ** const engine = i915->engine;
2778
2779	switch (bank) {
2780	case 0:
2781		switch (engine_n) {
2782
2783		case GEN11_RCS0:
2784			return gen11_cs_irq_handler(engine[RCS], iir);
2785
2786		case GEN11_BCS:
2787			return gen11_cs_irq_handler(engine[BCS], iir);
2788		}
2789	case 1:
2790		switch (engine_n) {
2791
2792		case GEN11_VCS(0):
2793			return gen11_cs_irq_handler(engine[_VCS(0)], iir);
2794		case GEN11_VCS(1):
2795			return gen11_cs_irq_handler(engine[_VCS(1)], iir);
2796		case GEN11_VCS(2):
2797			return gen11_cs_irq_handler(engine[_VCS(2)], iir);
2798		case GEN11_VCS(3):
2799			return gen11_cs_irq_handler(engine[_VCS(3)], iir);
2800
2801		case GEN11_VECS(0):
2802			return gen11_cs_irq_handler(engine[_VECS(0)], iir);
2803		case GEN11_VECS(1):
2804			return gen11_cs_irq_handler(engine[_VECS(1)], iir);
2805		}
2806	}
2807}
2808
2809static u32
2810gen11_gt_engine_intr(struct drm_i915_private * const i915,
2811		     const unsigned int bank, const unsigned int bit)
2812{
2813	void __iomem * const regs = i915->regs;
2814	u32 timeout_ts;
2815	u32 ident;
2816
2817	raw_reg_write(regs, GEN11_IIR_REG_SELECTOR(bank), BIT(bit));
2818
2819	/*
2820	 * NB: Specs do not specify how long to spin wait,
2821	 * so we do ~100us as an educated guess.
 
 
2822	 */
2823	timeout_ts = (local_clock() >> 10) + 100;
2824	do {
2825		ident = raw_reg_read(regs, GEN11_INTR_IDENTITY_REG(bank));
2826	} while (!(ident & GEN11_INTR_DATA_VALID) &&
2827		 !time_after32(local_clock() >> 10, timeout_ts));
2828
2829	if (unlikely(!(ident & GEN11_INTR_DATA_VALID))) {
2830		DRM_ERROR("INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n",
2831			  bank, bit, ident);
2832		return 0;
2833	}
2834
2835	raw_reg_write(regs, GEN11_INTR_IDENTITY_REG(bank),
2836		      GEN11_INTR_DATA_VALID);
2837
2838	return ident & GEN11_INTR_ENGINE_MASK;
2839}
2840
2841static void
2842gen11_gt_irq_handler(struct drm_i915_private * const i915,
2843		     const u32 master_ctl)
2844{
2845	void __iomem * const regs = i915->regs;
2846	unsigned int bank;
2847
2848	for (bank = 0; bank < 2; bank++) {
2849		unsigned long intr_dw;
2850		unsigned int bit;
2851
2852		if (!(master_ctl & GEN11_GT_DW_IRQ(bank)))
2853			continue;
2854
2855		intr_dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
2856
2857		if (unlikely(!intr_dw)) {
2858			DRM_ERROR("GT_INTR_DW%u blank!\n", bank);
2859			continue;
2860		}
2861
2862		for_each_set_bit(bit, &intr_dw, 32) {
2863			const u16 iir = gen11_gt_engine_intr(i915, bank, bit);
2864
2865			if (unlikely(!iir))
2866				continue;
2867
2868			gen11_gt_engine_irq_handler(i915, bank, bit, iir);
2869		}
2870
2871		/* Clear must be after shared has been served for engine */
2872		raw_reg_write(regs, GEN11_GT_INTR_DW(bank), intr_dw);
2873	}
2874}
2875
2876static irqreturn_t gen11_irq_handler(int irq, void *arg)
2877{
2878	struct drm_i915_private * const i915 = to_i915(arg);
2879	void __iomem * const regs = i915->regs;
 
2880	u32 master_ctl;
 
2881
2882	if (!intel_irqs_enabled(i915))
2883		return IRQ_NONE;
2884
2885	master_ctl = raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
2886	master_ctl &= ~GEN11_MASTER_IRQ;
2887	if (!master_ctl)
2888		return IRQ_NONE;
 
 
 
 
2889
2890	/* Disable interrupts. */
2891	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
 
2892
2893	/* Find, clear, then process each source of interrupt. */
2894	gen11_gt_irq_handler(i915, master_ctl);
2895
2896	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2897	if (master_ctl & GEN11_DISPLAY_IRQ) {
2898		const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
2899
2900		disable_rpm_wakeref_asserts(i915);
2901		/*
2902		 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
2903		 * for the display related bits.
2904		 */
2905		gen8_de_irq_handler(i915, disp_ctl);
2906		enable_rpm_wakeref_asserts(i915);
2907	}
2908
2909	/* Acknowledge and enable interrupts. */
2910	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ | master_ctl);
2911
2912	return IRQ_HANDLED;
2913}
2914
2915/**
2916 * i915_reset_device - do process context error handling work
2917 * @dev_priv: i915 device private
2918 *
2919 * Fire an error uevent so userspace can see that a hang or error
2920 * was detected.
2921 */
2922static void i915_reset_device(struct drm_i915_private *dev_priv)
2923{
2924	struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
2925	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2926	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2927	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2928	struct wedge_me w;
2929
2930	kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
 
2931
2932	DRM_DEBUG_DRIVER("resetting chip\n");
2933	kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
2934
2935	/* Use a watchdog to ensure that our reset completes */
2936	i915_wedge_on_timeout(&w, dev_priv, 5*HZ) {
2937		intel_prepare_reset(dev_priv);
2938
2939		/* Signal that locked waiters should reset the GPU */
2940		set_bit(I915_RESET_HANDOFF, &dev_priv->gpu_error.flags);
2941		wake_up_all(&dev_priv->gpu_error.wait_queue);
2942
2943		/* Wait for anyone holding the lock to wakeup, without
2944		 * blocking indefinitely on struct_mutex.
2945		 */
2946		do {
2947			if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
2948				i915_reset(dev_priv, 0);
2949				mutex_unlock(&dev_priv->drm.struct_mutex);
2950			}
2951		} while (wait_on_bit_timeout(&dev_priv->gpu_error.flags,
2952					     I915_RESET_HANDOFF,
2953					     TASK_UNINTERRUPTIBLE,
2954					     1));
2955
2956		intel_finish_reset(dev_priv);
2957	}
2958
2959	if (!test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
2960		kobject_uevent_env(kobj,
2961				   KOBJ_CHANGE, reset_done_event);
2962}
2963
2964static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
2965{
2966	u32 eir;
2967
2968	if (!IS_GEN2(dev_priv))
2969		I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
2970
2971	if (INTEL_GEN(dev_priv) < 4)
2972		I915_WRITE(IPEIR, I915_READ(IPEIR));
2973	else
2974		I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
2975
2976	I915_WRITE(EIR, I915_READ(EIR));
2977	eir = I915_READ(EIR);
2978	if (eir) {
2979		/*
2980		 * some errors might have become stuck,
2981		 * mask them.
2982		 */
2983		DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
2984		I915_WRITE(EMR, I915_READ(EMR) | eir);
2985		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2986	}
2987}
2988
2989/**
2990 * i915_handle_error - handle a gpu error
2991 * @dev_priv: i915 device private
2992 * @engine_mask: mask representing engines that are hung
2993 * @fmt: Error message format string
2994 *
2995 * Do some basic checking of register state at error time and
2996 * dump it to the syslog.  Also call i915_capture_error_state() to make
2997 * sure we get a record and make it available in debugfs.  Fire a uevent
2998 * so userspace knows something bad happened (should trigger collection
2999 * of a ring dump etc.).
3000 */
3001void i915_handle_error(struct drm_i915_private *dev_priv,
3002		       u32 engine_mask,
3003		       const char *fmt, ...)
3004{
3005	struct intel_engine_cs *engine;
3006	unsigned int tmp;
3007	va_list args;
3008	char error_msg[80];
3009
3010	va_start(args, fmt);
3011	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
3012	va_end(args);
3013
3014	/*
3015	 * In most cases it's guaranteed that we get here with an RPM
3016	 * reference held, for example because there is a pending GPU
3017	 * request that won't finish until the reset is done. This
3018	 * isn't the case at least when we get here by doing a
3019	 * simulated reset via debugfs, so get an RPM reference.
3020	 */
3021	intel_runtime_pm_get(dev_priv);
3022
3023	i915_capture_error_state(dev_priv, engine_mask, error_msg);
3024	i915_clear_error_registers(dev_priv);
3025
3026	/*
3027	 * Try engine reset when available. We fall back to full reset if
3028	 * single reset fails.
3029	 */
3030	if (intel_has_reset_engine(dev_priv)) {
3031		for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
3032			BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE);
3033			if (test_and_set_bit(I915_RESET_ENGINE + engine->id,
3034					     &dev_priv->gpu_error.flags))
3035				continue;
3036
3037			if (i915_reset_engine(engine, 0) == 0)
3038				engine_mask &= ~intel_engine_flag(engine);
3039
3040			clear_bit(I915_RESET_ENGINE + engine->id,
3041				  &dev_priv->gpu_error.flags);
3042			wake_up_bit(&dev_priv->gpu_error.flags,
3043				    I915_RESET_ENGINE + engine->id);
3044		}
3045	}
3046
3047	if (!engine_mask)
3048		goto out;
3049
3050	/* Full reset needs the mutex, stop any other user trying to do so. */
3051	if (test_and_set_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags)) {
3052		wait_event(dev_priv->gpu_error.reset_queue,
3053			   !test_bit(I915_RESET_BACKOFF,
3054				     &dev_priv->gpu_error.flags));
3055		goto out;
3056	}
3057
3058	/* Prevent any other reset-engine attempt. */
3059	for_each_engine(engine, dev_priv, tmp) {
3060		while (test_and_set_bit(I915_RESET_ENGINE + engine->id,
3061					&dev_priv->gpu_error.flags))
3062			wait_on_bit(&dev_priv->gpu_error.flags,
3063				    I915_RESET_ENGINE + engine->id,
3064				    TASK_UNINTERRUPTIBLE);
3065	}
3066
3067	i915_reset_device(dev_priv);
3068
3069	for_each_engine(engine, dev_priv, tmp) {
3070		clear_bit(I915_RESET_ENGINE + engine->id,
3071			  &dev_priv->gpu_error.flags);
3072	}
3073
3074	clear_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags);
3075	wake_up_all(&dev_priv->gpu_error.reset_queue);
3076
3077out:
3078	intel_runtime_pm_put(dev_priv);
3079}
3080
3081/* Called from drm generic code, passed 'crtc' which
3082 * we use as a pipe index
3083 */
3084static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
3085{
3086	struct drm_i915_private *dev_priv = to_i915(dev);
3087	unsigned long irqflags;
3088
3089	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3090	i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
3091	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3092
3093	return 0;
3094}
3095
3096static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
3097{
3098	struct drm_i915_private *dev_priv = to_i915(dev);
3099	unsigned long irqflags;
3100
3101	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3102	i915_enable_pipestat(dev_priv, pipe,
3103			     PIPE_START_VBLANK_INTERRUPT_STATUS);
3104	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3105
3106	return 0;
3107}
3108
3109static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
3110{
3111	struct drm_i915_private *dev_priv = to_i915(dev);
3112	unsigned long irqflags;
3113	uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
3114		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3115
3116	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3117	ilk_enable_display_irq(dev_priv, bit);
3118	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3119
3120	/* Even though there is no DMC, frame counter can get stuck when
3121	 * PSR is active as no frames are generated.
3122	 */
3123	if (HAS_PSR(dev_priv))
3124		drm_vblank_restore(dev, pipe);
3125
3126	return 0;
3127}
3128
3129static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
3130{
3131	struct drm_i915_private *dev_priv = to_i915(dev);
3132	unsigned long irqflags;
3133
3134	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3135	bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3136	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3137
3138	/* Even if there is no DMC, frame counter can get stuck when
3139	 * PSR is active as no frames are generated, so check only for PSR.
3140	 */
3141	if (HAS_PSR(dev_priv))
3142		drm_vblank_restore(dev, pipe);
3143
3144	return 0;
3145}
3146
3147/* Called from drm generic code, passed 'crtc' which
3148 * we use as a pipe index
3149 */
3150static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
3151{
3152	struct drm_i915_private *dev_priv = to_i915(dev);
3153	unsigned long irqflags;
3154
3155	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3156	i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
3157	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3158}
3159
3160static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
3161{
3162	struct drm_i915_private *dev_priv = to_i915(dev);
3163	unsigned long irqflags;
3164
3165	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3166	i915_disable_pipestat(dev_priv, pipe,
3167			      PIPE_START_VBLANK_INTERRUPT_STATUS);
3168	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3169}
3170
3171static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
3172{
3173	struct drm_i915_private *dev_priv = to_i915(dev);
3174	unsigned long irqflags;
3175	uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
3176		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3177
3178	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3179	ilk_disable_display_irq(dev_priv, bit);
3180	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3181}
3182
3183static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
3184{
3185	struct drm_i915_private *dev_priv = to_i915(dev);
3186	unsigned long irqflags;
3187
3188	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3189	bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3190	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3191}
3192
3193static void ibx_irq_reset(struct drm_i915_private *dev_priv)
3194{
3195	if (HAS_PCH_NOP(dev_priv))
3196		return;
3197
3198	GEN3_IRQ_RESET(SDE);
3199
3200	if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3201		I915_WRITE(SERR_INT, 0xffffffff);
3202}
3203
3204/*
3205 * SDEIER is also touched by the interrupt handler to work around missed PCH
3206 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3207 * instead we unconditionally enable all PCH interrupt sources here, but then
3208 * only unmask them as needed with SDEIMR.
3209 *
3210 * This function needs to be called before interrupts are enabled.
3211 */
3212static void ibx_irq_pre_postinstall(struct drm_device *dev)
3213{
3214	struct drm_i915_private *dev_priv = to_i915(dev);
3215
3216	if (HAS_PCH_NOP(dev_priv))
3217		return;
3218
3219	WARN_ON(I915_READ(SDEIER) != 0);
3220	I915_WRITE(SDEIER, 0xffffffff);
3221	POSTING_READ(SDEIER);
3222}
3223
3224static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
3225{
3226	GEN3_IRQ_RESET(GT);
3227	if (INTEL_GEN(dev_priv) >= 6)
3228		GEN3_IRQ_RESET(GEN6_PM);
3229}
3230
3231static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3232{
3233	if (IS_CHERRYVIEW(dev_priv))
3234		I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3235	else
3236		I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3237
3238	i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3239	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3240
3241	i9xx_pipestat_irq_reset(dev_priv);
3242
3243	GEN3_IRQ_RESET(VLV_);
3244	dev_priv->irq_mask = ~0u;
3245}
3246
3247static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3248{
3249	u32 pipestat_mask;
3250	u32 enable_mask;
3251	enum pipe pipe;
3252
3253	pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
 
 
 
3254
3255	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3256	for_each_pipe(dev_priv, pipe)
3257		i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3258
3259	enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3260		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3261		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3262		I915_LPE_PIPE_A_INTERRUPT |
3263		I915_LPE_PIPE_B_INTERRUPT;
3264
3265	if (IS_CHERRYVIEW(dev_priv))
3266		enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
3267			I915_LPE_PIPE_C_INTERRUPT;
3268
3269	WARN_ON(dev_priv->irq_mask != ~0u);
3270
3271	dev_priv->irq_mask = ~enable_mask;
3272
3273	GEN3_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
3274}
3275
3276/* drm_dma.h hooks
3277*/
3278static void ironlake_irq_reset(struct drm_device *dev)
3279{
3280	struct drm_i915_private *dev_priv = to_i915(dev);
3281
3282	if (IS_GEN5(dev_priv))
3283		I915_WRITE(HWSTAM, 0xffffffff);
3284
3285	GEN3_IRQ_RESET(DE);
3286	if (IS_GEN7(dev_priv))
3287		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3288
3289	gen5_gt_irq_reset(dev_priv);
3290
3291	ibx_irq_reset(dev_priv);
3292}
3293
3294static void valleyview_irq_reset(struct drm_device *dev)
3295{
3296	struct drm_i915_private *dev_priv = to_i915(dev);
3297
3298	I915_WRITE(VLV_MASTER_IER, 0);
3299	POSTING_READ(VLV_MASTER_IER);
3300
3301	gen5_gt_irq_reset(dev_priv);
3302
3303	spin_lock_irq(&dev_priv->irq_lock);
3304	if (dev_priv->display_irqs_enabled)
3305		vlv_display_irq_reset(dev_priv);
3306	spin_unlock_irq(&dev_priv->irq_lock);
3307}
3308
3309static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3310{
3311	GEN8_IRQ_RESET_NDX(GT, 0);
3312	GEN8_IRQ_RESET_NDX(GT, 1);
3313	GEN8_IRQ_RESET_NDX(GT, 2);
3314	GEN8_IRQ_RESET_NDX(GT, 3);
3315}
3316
3317static void gen8_irq_reset(struct drm_device *dev)
3318{
3319	struct drm_i915_private *dev_priv = to_i915(dev);
3320	int pipe;
3321
3322	I915_WRITE(GEN8_MASTER_IRQ, 0);
3323	POSTING_READ(GEN8_MASTER_IRQ);
3324
3325	gen8_gt_irq_reset(dev_priv);
3326
3327	for_each_pipe(dev_priv, pipe)
3328		if (intel_display_power_is_enabled(dev_priv,
3329						   POWER_DOMAIN_PIPE(pipe)))
3330			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3331
3332	GEN3_IRQ_RESET(GEN8_DE_PORT_);
3333	GEN3_IRQ_RESET(GEN8_DE_MISC_);
3334	GEN3_IRQ_RESET(GEN8_PCU_);
3335
3336	if (HAS_PCH_SPLIT(dev_priv))
3337		ibx_irq_reset(dev_priv);
3338}
3339
3340static void gen11_gt_irq_reset(struct drm_i915_private *dev_priv)
3341{
3342	/* Disable RCS, BCS, VCS and VECS class engines. */
3343	I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, 0);
3344	I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE,	  0);
3345
3346	/* Restore masks irqs on RCS, BCS, VCS and VECS engines. */
3347	I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK,	~0);
3348	I915_WRITE(GEN11_BCS_RSVD_INTR_MASK,	~0);
3349	I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK,	~0);
3350	I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK,	~0);
3351	I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK,	~0);
3352}
3353
3354static void gen11_irq_reset(struct drm_device *dev)
3355{
3356	struct drm_i915_private *dev_priv = dev->dev_private;
3357	int pipe;
3358
3359	I915_WRITE(GEN11_GFX_MSTR_IRQ, 0);
3360	POSTING_READ(GEN11_GFX_MSTR_IRQ);
3361
3362	gen11_gt_irq_reset(dev_priv);
 
3363
3364	I915_WRITE(GEN11_DISPLAY_INT_CTL, 0);
3365
3366	for_each_pipe(dev_priv, pipe)
3367		if (intel_display_power_is_enabled(dev_priv,
3368						   POWER_DOMAIN_PIPE(pipe)))
3369			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3370
3371	GEN3_IRQ_RESET(GEN8_DE_PORT_);
3372	GEN3_IRQ_RESET(GEN8_DE_MISC_);
3373	GEN3_IRQ_RESET(GEN8_PCU_);
3374}
3375
3376void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3377				     u8 pipe_mask)
3378{
3379	uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3380	enum pipe pipe;
 
3381
3382	spin_lock_irq(&dev_priv->irq_lock);
3383
3384	if (!intel_irqs_enabled(dev_priv)) {
3385		spin_unlock_irq(&dev_priv->irq_lock);
3386		return;
3387	}
3388
3389	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3390		GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3391				  dev_priv->de_irq_mask[pipe],
3392				  ~dev_priv->de_irq_mask[pipe] | extra_ier);
3393
3394	spin_unlock_irq(&dev_priv->irq_lock);
3395}
3396
3397void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3398				     u8 pipe_mask)
3399{
3400	enum pipe pipe;
3401
3402	spin_lock_irq(&dev_priv->irq_lock);
3403
3404	if (!intel_irqs_enabled(dev_priv)) {
3405		spin_unlock_irq(&dev_priv->irq_lock);
3406		return;
3407	}
3408
3409	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3410		GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3411
3412	spin_unlock_irq(&dev_priv->irq_lock);
3413
3414	/* make sure we're done processing display irqs */
3415	synchronize_irq(dev_priv->drm.irq);
3416}
3417
3418static void cherryview_irq_reset(struct drm_device *dev)
3419{
3420	struct drm_i915_private *dev_priv = to_i915(dev);
3421
3422	I915_WRITE(GEN8_MASTER_IRQ, 0);
3423	POSTING_READ(GEN8_MASTER_IRQ);
3424
3425	gen8_gt_irq_reset(dev_priv);
3426
3427	GEN3_IRQ_RESET(GEN8_PCU_);
3428
3429	spin_lock_irq(&dev_priv->irq_lock);
3430	if (dev_priv->display_irqs_enabled)
3431		vlv_display_irq_reset(dev_priv);
3432	spin_unlock_irq(&dev_priv->irq_lock);
3433}
3434
3435static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3436				  const u32 hpd[HPD_NUM_PINS])
3437{
3438	struct intel_encoder *encoder;
3439	u32 enabled_irqs = 0;
3440
3441	for_each_intel_encoder(&dev_priv->drm, encoder)
3442		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3443			enabled_irqs |= hpd[encoder->hpd_pin];
3444
3445	return enabled_irqs;
3446}
3447
3448static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3449{
3450	u32 hotplug;
 
 
 
 
 
3451
3452	/*
3453	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3454	 * duration to 2ms (which is the minimum in the Display Port spec).
3455	 * The pulse duration bits are reserved on LPT+.
3456	 */
3457	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3458	hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3459		     PORTC_PULSE_DURATION_MASK |
3460		     PORTD_PULSE_DURATION_MASK);
3461	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3462	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3463	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3464	/*
3465	 * When CPU and PCH are on the same package, port A
3466	 * HPD must be enabled in both north and south.
3467	 */
3468	if (HAS_PCH_LPT_LP(dev_priv))
3469		hotplug |= PORTA_HOTPLUG_ENABLE;
3470	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3471}
3472
3473static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3474{
3475	u32 hotplug_irqs, enabled_irqs;
3476
3477	if (HAS_PCH_IBX(dev_priv)) {
3478		hotplug_irqs = SDE_HOTPLUG_MASK;
3479		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3480	} else {
3481		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3482		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3483	}
3484
3485	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3486
3487	ibx_hpd_detection_setup(dev_priv);
3488}
3489
3490static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3491{
3492	u32 val, hotplug;
 
 
3493
3494	/* Display WA #1179 WaHardHangonHotPlug: cnp */
3495	if (HAS_PCH_CNP(dev_priv)) {
3496		val = I915_READ(SOUTH_CHICKEN1);
3497		val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3498		val |= CHASSIS_CLK_REQ_DURATION(0xf);
3499		I915_WRITE(SOUTH_CHICKEN1, val);
3500	}
3501
3502	/* Enable digital hotplug on the PCH */
3503	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3504	hotplug |= PORTA_HOTPLUG_ENABLE |
3505		   PORTB_HOTPLUG_ENABLE |
3506		   PORTC_HOTPLUG_ENABLE |
3507		   PORTD_HOTPLUG_ENABLE;
3508	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3509
3510	hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3511	hotplug |= PORTE_HOTPLUG_ENABLE;
3512	I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3513}
3514
3515static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3516{
3517	u32 hotplug_irqs, enabled_irqs;
 
 
 
3518
3519	hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3520	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3521
3522	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3523
3524	spt_hpd_detection_setup(dev_priv);
3525}
3526
3527static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3528{
3529	u32 hotplug;
3530
3531	/*
3532	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3533	 * duration to 2ms (which is the minimum in the Display Port spec)
3534	 * The pulse duration bits are reserved on HSW+.
3535	 */
3536	hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3537	hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3538	hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3539		   DIGITAL_PORTA_PULSE_DURATION_2ms;
3540	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3541}
3542
3543static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3544{
3545	u32 hotplug_irqs, enabled_irqs;
3546
3547	if (INTEL_GEN(dev_priv) >= 8) {
3548		hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3549		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3550
3551		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3552	} else if (INTEL_GEN(dev_priv) >= 7) {
3553		hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3554		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3555
3556		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3557	} else {
3558		hotplug_irqs = DE_DP_A_HOTPLUG;
3559		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3560
3561		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3562	}
3563
3564	ilk_hpd_detection_setup(dev_priv);
3565
3566	ibx_hpd_irq_setup(dev_priv);
 
3567}
3568
3569static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3570				      u32 enabled_irqs)
3571{
3572	u32 hotplug;
3573
3574	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3575	hotplug |= PORTA_HOTPLUG_ENABLE |
3576		   PORTB_HOTPLUG_ENABLE |
3577		   PORTC_HOTPLUG_ENABLE;
3578
3579	DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3580		      hotplug, enabled_irqs);
3581	hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3582
3583	/*
3584	 * For BXT invert bit has to be set based on AOB design
3585	 * for HPD detection logic, update it based on VBT fields.
 
 
 
 
 
 
 
 
3586	 */
3587	if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3588	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3589		hotplug |= BXT_DDIA_HPD_INVERT;
3590	if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3591	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3592		hotplug |= BXT_DDIB_HPD_INVERT;
3593	if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3594	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3595		hotplug |= BXT_DDIC_HPD_INVERT;
3596
3597	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3598}
3599
3600static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3601{
3602	__bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3603}
3604
3605static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3606{
3607	u32 hotplug_irqs, enabled_irqs;
3608
3609	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3610	hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3611
3612	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3613
3614	__bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3615}
3616
3617static void ibx_irq_postinstall(struct drm_device *dev)
3618{
3619	struct drm_i915_private *dev_priv = to_i915(dev);
3620	u32 mask;
3621
3622	if (HAS_PCH_NOP(dev_priv))
3623		return;
3624
3625	if (HAS_PCH_IBX(dev_priv))
3626		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3627	else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3628		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3629	else
3630		mask = SDE_GMBUS_CPT;
3631
3632	gen3_assert_iir_is_zero(dev_priv, SDEIIR);
3633	I915_WRITE(SDEIMR, ~mask);
3634
3635	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3636	    HAS_PCH_LPT(dev_priv))
3637		ibx_hpd_detection_setup(dev_priv);
3638	else
3639		spt_hpd_detection_setup(dev_priv);
3640}
3641
3642static void gen5_gt_irq_postinstall(struct drm_device *dev)
3643{
3644	struct drm_i915_private *dev_priv = to_i915(dev);
3645	u32 pm_irqs, gt_irqs;
3646
3647	pm_irqs = gt_irqs = 0;
3648
3649	dev_priv->gt_irq_mask = ~0;
3650	if (HAS_L3_DPF(dev_priv)) {
3651		/* L3 parity interrupt is always unmasked. */
3652		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
3653		gt_irqs |= GT_PARITY_ERROR(dev_priv);
3654	}
3655
3656	gt_irqs |= GT_RENDER_USER_INTERRUPT;
3657	if (IS_GEN5(dev_priv)) {
3658		gt_irqs |= ILK_BSD_USER_INTERRUPT;
3659	} else {
3660		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3661	}
3662
3663	GEN3_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3664
3665	if (INTEL_GEN(dev_priv) >= 6) {
3666		/*
3667		 * RPS interrupts will get enabled/disabled on demand when RPS
3668		 * itself is enabled/disabled.
3669		 */
3670		if (HAS_VEBOX(dev_priv)) {
3671			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3672			dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
3673		}
3674
3675		dev_priv->pm_imr = 0xffffffff;
3676		GEN3_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
3677	}
3678}
3679
3680static int ironlake_irq_postinstall(struct drm_device *dev)
3681{
3682	struct drm_i915_private *dev_priv = to_i915(dev);
3683	u32 display_mask, extra_mask;
3684
3685	if (INTEL_GEN(dev_priv) >= 7) {
3686		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3687				DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
3688		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3689			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3690			      DE_DP_A_HOTPLUG_IVB);
3691	} else {
3692		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3693				DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3694				DE_PIPEA_CRC_DONE | DE_POISON);
3695		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3696			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3697			      DE_DP_A_HOTPLUG);
3698	}
3699
3700	dev_priv->irq_mask = ~display_mask;
3701
3702	ibx_irq_pre_postinstall(dev);
3703
3704	GEN3_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3705
3706	gen5_gt_irq_postinstall(dev);
3707
3708	ilk_hpd_detection_setup(dev_priv);
3709
3710	ibx_irq_postinstall(dev);
3711
3712	if (IS_IRONLAKE_M(dev_priv)) {
3713		/* Enable PCU event interrupts
3714		 *
3715		 * spinlocking not required here for correctness since interrupt
3716		 * setup is guaranteed to run in single-threaded context. But we
3717		 * need it to make the assert_spin_locked happy. */
3718		spin_lock_irq(&dev_priv->irq_lock);
3719		ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3720		spin_unlock_irq(&dev_priv->irq_lock);
3721	}
3722
3723	return 0;
3724}
3725
3726void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
 
3727{
3728	lockdep_assert_held(&dev_priv->irq_lock);
3729
3730	if (dev_priv->display_irqs_enabled)
3731		return;
3732
3733	dev_priv->display_irqs_enabled = true;
3734
3735	if (intel_irqs_enabled(dev_priv)) {
3736		vlv_display_irq_reset(dev_priv);
3737		vlv_display_irq_postinstall(dev_priv);
3738	}
3739}
3740
3741void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3742{
3743	lockdep_assert_held(&dev_priv->irq_lock);
3744
3745	if (!dev_priv->display_irqs_enabled)
3746		return;
3747
3748	dev_priv->display_irqs_enabled = false;
3749
3750	if (intel_irqs_enabled(dev_priv))
3751		vlv_display_irq_reset(dev_priv);
3752}
3753
3754
3755static int valleyview_irq_postinstall(struct drm_device *dev)
3756{
3757	struct drm_i915_private *dev_priv = to_i915(dev);
3758
3759	gen5_gt_irq_postinstall(dev);
3760
3761	spin_lock_irq(&dev_priv->irq_lock);
3762	if (dev_priv->display_irqs_enabled)
3763		vlv_display_irq_postinstall(dev_priv);
3764	spin_unlock_irq(&dev_priv->irq_lock);
3765
3766	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3767	POSTING_READ(VLV_MASTER_IER);
3768
3769	return 0;
3770}
3771
3772static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3773{
3774	/* These are interrupts we'll toggle with the ring mask register */
3775	uint32_t gt_interrupts[] = {
3776		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3777			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3778			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3779			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3780		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3781			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3782			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3783			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3784		0,
3785		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3786			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3787		};
3788
3789	if (HAS_L3_DPF(dev_priv))
3790		gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3791
3792	dev_priv->pm_ier = 0x0;
3793	dev_priv->pm_imr = ~dev_priv->pm_ier;
3794	GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3795	GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3796	/*
3797	 * RPS interrupts will get enabled/disabled on demand when RPS itself
3798	 * is enabled/disabled. Same wil be the case for GuC interrupts.
 
 
 
 
 
 
3799	 */
3800	GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
3801	GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
 
3802}
3803
3804static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
 
3805{
3806	uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3807	uint32_t de_pipe_enables;
3808	u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3809	u32 de_port_enables;
3810	u32 de_misc_masked = GEN8_DE_MISC_GSE;
3811	enum pipe pipe;
3812
3813	if (INTEL_GEN(dev_priv) >= 9) {
3814		de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3815		de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3816				  GEN9_AUX_CHANNEL_D;
3817		if (IS_GEN9_LP(dev_priv))
3818			de_port_masked |= BXT_DE_PORT_GMBUS;
3819	} else {
3820		de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3821	}
3822
3823	if (IS_CNL_WITH_PORT_F(dev_priv))
3824		de_port_masked |= CNL_AUX_CHANNEL_F;
3825
3826	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3827					   GEN8_PIPE_FIFO_UNDERRUN;
3828
3829	de_port_enables = de_port_masked;
3830	if (IS_GEN9_LP(dev_priv))
3831		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3832	else if (IS_BROADWELL(dev_priv))
3833		de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3834
3835	for_each_pipe(dev_priv, pipe) {
3836		dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
3837
3838		if (intel_display_power_is_enabled(dev_priv,
3839				POWER_DOMAIN_PIPE(pipe)))
3840			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3841					  dev_priv->de_irq_mask[pipe],
3842					  de_pipe_enables);
3843	}
3844
3845	GEN3_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3846	GEN3_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3847
3848	if (IS_GEN9_LP(dev_priv))
3849		bxt_hpd_detection_setup(dev_priv);
3850	else if (IS_BROADWELL(dev_priv))
3851		ilk_hpd_detection_setup(dev_priv);
3852}
3853
3854static int gen8_irq_postinstall(struct drm_device *dev)
3855{
3856	struct drm_i915_private *dev_priv = to_i915(dev);
3857
3858	if (HAS_PCH_SPLIT(dev_priv))
3859		ibx_irq_pre_postinstall(dev);
3860
3861	gen8_gt_irq_postinstall(dev_priv);
3862	gen8_de_irq_postinstall(dev_priv);
3863
3864	if (HAS_PCH_SPLIT(dev_priv))
3865		ibx_irq_postinstall(dev);
3866
3867	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3868	POSTING_READ(GEN8_MASTER_IRQ);
3869
3870	return 0;
3871}
3872
3873static void gen11_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3874{
3875	const u32 irqs = GT_RENDER_USER_INTERRUPT | GT_CONTEXT_SWITCH_INTERRUPT;
3876
3877	BUILD_BUG_ON(irqs & 0xffff0000);
3878
3879	/* Enable RCS, BCS, VCS and VECS class interrupts. */
3880	I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, irqs << 16 | irqs);
3881	I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE,	  irqs << 16 | irqs);
3882
3883	/* Unmask irqs on RCS, BCS, VCS and VECS engines. */
3884	I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK,	~(irqs << 16));
3885	I915_WRITE(GEN11_BCS_RSVD_INTR_MASK,	~(irqs << 16));
3886	I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK,	~(irqs | irqs << 16));
3887	I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK,	~(irqs | irqs << 16));
3888	I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK,	~(irqs | irqs << 16));
3889
3890	dev_priv->pm_imr = 0xffffffff; /* TODO */
3891}
3892
3893static int gen11_irq_postinstall(struct drm_device *dev)
3894{
3895	struct drm_i915_private *dev_priv = dev->dev_private;
3896
3897	gen11_gt_irq_postinstall(dev_priv);
3898	gen8_de_irq_postinstall(dev_priv);
3899
3900	I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
3901
3902	I915_WRITE(GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
3903	POSTING_READ(GEN11_GFX_MSTR_IRQ);
3904
3905	return 0;
3906}
3907
3908static int cherryview_irq_postinstall(struct drm_device *dev)
3909{
3910	struct drm_i915_private *dev_priv = to_i915(dev);
3911
3912	gen8_gt_irq_postinstall(dev_priv);
3913
3914	spin_lock_irq(&dev_priv->irq_lock);
3915	if (dev_priv->display_irqs_enabled)
3916		vlv_display_irq_postinstall(dev_priv);
3917	spin_unlock_irq(&dev_priv->irq_lock);
3918
3919	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3920	POSTING_READ(GEN8_MASTER_IRQ);
3921
3922	return 0;
3923}
3924
3925static void i8xx_irq_reset(struct drm_device *dev)
3926{
3927	struct drm_i915_private *dev_priv = to_i915(dev);
3928
3929	i9xx_pipestat_irq_reset(dev_priv);
3930
3931	I915_WRITE16(HWSTAM, 0xffff);
3932
3933	GEN2_IRQ_RESET();
3934}
3935
3936static int i8xx_irq_postinstall(struct drm_device *dev)
3937{
3938	struct drm_i915_private *dev_priv = to_i915(dev);
3939	u16 enable_mask;
3940
3941	I915_WRITE16(EMR, ~(I915_ERROR_PAGE_TABLE |
3942			    I915_ERROR_MEMORY_REFRESH));
3943
3944	/* Unmask the interrupts that we always want on. */
3945	dev_priv->irq_mask =
3946		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3947		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT);
 
3948
3949	enable_mask =
3950		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3951		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
 
3952		I915_USER_INTERRUPT;
3953
3954	GEN2_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
3955
3956	/* Interrupt setup is already guaranteed to be single-threaded, this is
3957	 * just to make the assert_spin_locked check happy. */
3958	spin_lock_irq(&dev_priv->irq_lock);
3959	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3960	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3961	spin_unlock_irq(&dev_priv->irq_lock);
3962
3963	return 0;
3964}
3965
3966static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3967{
3968	struct drm_device *dev = arg;
3969	struct drm_i915_private *dev_priv = to_i915(dev);
3970	irqreturn_t ret = IRQ_NONE;
3971
3972	if (!intel_irqs_enabled(dev_priv))
3973		return IRQ_NONE;
3974
3975	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3976	disable_rpm_wakeref_asserts(dev_priv);
3977
3978	do {
3979		u32 pipe_stats[I915_MAX_PIPES] = {};
3980		u16 iir;
3981
3982		iir = I915_READ16(IIR);
3983		if (iir == 0)
3984			break;
3985
3986		ret = IRQ_HANDLED;
3987
3988		/* Call regardless, as some status bits might not be
3989		 * signalled in iir */
3990		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3991
3992		I915_WRITE16(IIR, iir);
3993
3994		if (iir & I915_USER_INTERRUPT)
3995			notify_ring(dev_priv->engine[RCS]);
3996
3997		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3998			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3999
4000		i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4001	} while (0);
4002
4003	enable_rpm_wakeref_asserts(dev_priv);
4004
4005	return ret;
4006}
4007
4008static void i915_irq_reset(struct drm_device *dev)
4009{
4010	struct drm_i915_private *dev_priv = to_i915(dev);
4011
4012	if (I915_HAS_HOTPLUG(dev_priv)) {
4013		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4014		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4015	}
4016
4017	i9xx_pipestat_irq_reset(dev_priv);
4018
4019	I915_WRITE(HWSTAM, 0xffffffff);
4020
4021	GEN3_IRQ_RESET();
4022}
4023
4024static int i915_irq_postinstall(struct drm_device *dev)
4025{
4026	struct drm_i915_private *dev_priv = to_i915(dev);
4027	u32 enable_mask;
4028
4029	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
4030			  I915_ERROR_MEMORY_REFRESH));
4031
4032	/* Unmask the interrupts that we always want on. */
4033	dev_priv->irq_mask =
4034		~(I915_ASLE_INTERRUPT |
4035		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4036		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT);
4037
4038	enable_mask =
4039		I915_ASLE_INTERRUPT |
4040		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4041		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4042		I915_USER_INTERRUPT;
4043
4044	if (I915_HAS_HOTPLUG(dev_priv)) {
4045		/* Enable in IER... */
4046		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4047		/* and unmask in IMR */
4048		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4049	}
4050
4051	GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
4052
4053	/* Interrupt setup is already guaranteed to be single-threaded, this is
4054	 * just to make the assert_spin_locked check happy. */
4055	spin_lock_irq(&dev_priv->irq_lock);
4056	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4057	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4058	spin_unlock_irq(&dev_priv->irq_lock);
4059
4060	i915_enable_asle_pipestat(dev_priv);
4061
4062	return 0;
4063}
4064
4065static irqreturn_t i915_irq_handler(int irq, void *arg)
4066{
4067	struct drm_device *dev = arg;
4068	struct drm_i915_private *dev_priv = to_i915(dev);
4069	irqreturn_t ret = IRQ_NONE;
4070
4071	if (!intel_irqs_enabled(dev_priv))
4072		return IRQ_NONE;
4073
4074	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4075	disable_rpm_wakeref_asserts(dev_priv);
4076
4077	do {
4078		u32 pipe_stats[I915_MAX_PIPES] = {};
 
4079		u32 hotplug_status = 0;
4080		u32 iir;
4081
4082		iir = I915_READ(IIR);
4083		if (iir == 0)
4084			break;
4085
4086		ret = IRQ_HANDLED;
4087
4088		if (I915_HAS_HOTPLUG(dev_priv) &&
4089		    iir & I915_DISPLAY_PORT_INTERRUPT)
4090			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4091
4092		/* Call regardless, as some status bits might not be
4093		 * signalled in iir */
4094		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4095
4096		I915_WRITE(IIR, iir);
 
 
 
4097
4098		if (iir & I915_USER_INTERRUPT)
4099			notify_ring(dev_priv->engine[RCS]);
4100
4101		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4102			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4103
4104		if (hotplug_status)
4105			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4106
4107		i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4108	} while (0);
4109
4110	enable_rpm_wakeref_asserts(dev_priv);
 
 
4111
4112	return ret;
4113}
4114
4115static void i965_irq_reset(struct drm_device *dev)
4116{
4117	struct drm_i915_private *dev_priv = to_i915(dev);
4118
4119	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4120	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4121
4122	i9xx_pipestat_irq_reset(dev_priv);
4123
4124	I915_WRITE(HWSTAM, 0xffffffff);
4125
4126	GEN3_IRQ_RESET();
4127}
4128
4129static int i965_irq_postinstall(struct drm_device *dev)
4130{
4131	struct drm_i915_private *dev_priv = to_i915(dev);
4132	u32 enable_mask;
4133	u32 error_mask;
4134
4135	/*
4136	 * Enable some error detection, note the instruction error mask
4137	 * bit is reserved, so we leave it masked.
 
 
 
4138	 */
4139	if (IS_G4X(dev_priv)) {
4140		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4141			       GM45_ERROR_MEM_PRIV |
4142			       GM45_ERROR_CP_PRIV |
4143			       I915_ERROR_MEMORY_REFRESH);
4144	} else {
4145		error_mask = ~(I915_ERROR_PAGE_TABLE |
4146			       I915_ERROR_MEMORY_REFRESH);
4147	}
4148	I915_WRITE(EMR, error_mask);
 
 
 
 
 
 
4149
4150	/* Unmask the interrupts that we always want on. */
4151	dev_priv->irq_mask =
4152		~(I915_ASLE_INTERRUPT |
4153		  I915_DISPLAY_PORT_INTERRUPT |
4154		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4155		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4156		  I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4157
4158	enable_mask =
4159		I915_ASLE_INTERRUPT |
4160		I915_DISPLAY_PORT_INTERRUPT |
4161		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4162		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4163		I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
4164		I915_USER_INTERRUPT;
4165
4166	if (IS_G4X(dev_priv))
4167		enable_mask |= I915_BSD_USER_INTERRUPT;
4168
4169	GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
4170
4171	/* Interrupt setup is already guaranteed to be single-threaded, this is
4172	 * just to make the assert_spin_locked check happy. */
4173	spin_lock_irq(&dev_priv->irq_lock);
4174	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4175	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4176	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4177	spin_unlock_irq(&dev_priv->irq_lock);
4178
4179	i915_enable_asle_pipestat(dev_priv);
4180
4181	return 0;
4182}
4183
4184static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4185{
4186	u32 hotplug_en;
4187
4188	lockdep_assert_held(&dev_priv->irq_lock);
4189
4190	/* Note HDMI and DP share hotplug bits */
4191	/* enable bits are the same for all generations */
4192	hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4193	/* Programming the CRT detection parameters tends
4194	   to generate a spurious hotplug event about three
4195	   seconds later.  So just do it once.
4196	*/
4197	if (IS_G4X(dev_priv))
4198		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4199	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4200
4201	/* Ignore TV since it's buggy */
4202	i915_hotplug_interrupt_update_locked(dev_priv,
4203					     HOTPLUG_INT_EN_MASK |
4204					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4205					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4206					     hotplug_en);
4207}
4208
4209static irqreturn_t i965_irq_handler(int irq, void *arg)
4210{
4211	struct drm_device *dev = arg;
4212	struct drm_i915_private *dev_priv = to_i915(dev);
4213	irqreturn_t ret = IRQ_NONE;
4214
4215	if (!intel_irqs_enabled(dev_priv))
4216		return IRQ_NONE;
4217
4218	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4219	disable_rpm_wakeref_asserts(dev_priv);
4220
4221	do {
4222		u32 pipe_stats[I915_MAX_PIPES] = {};
 
4223		u32 hotplug_status = 0;
4224		u32 iir;
4225
4226		iir = I915_READ(IIR);
4227		if (iir == 0)
4228			break;
4229
4230		ret = IRQ_HANDLED;
4231
4232		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4233			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4234
4235		/* Call regardless, as some status bits might not be
4236		 * signalled in iir */
4237		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4238
4239		I915_WRITE(IIR, iir);
 
 
 
4240
4241		if (iir & I915_USER_INTERRUPT)
4242			notify_ring(dev_priv->engine[RCS]);
 
4243
4244		if (iir & I915_BSD_USER_INTERRUPT)
4245			notify_ring(dev_priv->engine[VCS]);
 
4246
4247		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4248			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4249
4250		if (hotplug_status)
4251			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4252
4253		i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4254	} while (0);
4255
4256	enable_rpm_wakeref_asserts(dev_priv);
 
 
4257
4258	return ret;
4259}
4260
4261/**
4262 * intel_irq_init - initializes irq support
4263 * @dev_priv: i915 device instance
4264 *
4265 * This function initializes all the irq support including work items, timers
4266 * and all the vtables. It does not setup the interrupt itself though.
4267 */
4268void intel_irq_init(struct drm_i915_private *dev_priv)
4269{
4270	struct drm_device *dev = &dev_priv->drm;
4271	struct intel_rps *rps = &dev_priv->gt_pm.rps;
4272	int i;
4273
4274	intel_hpd_init_work(dev_priv);
4275
4276	INIT_WORK(&rps->work, gen6_pm_rps_work);
4277
4278	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4279	for (i = 0; i < MAX_L3_SLICES; ++i)
4280		dev_priv->l3_parity.remap_info[i] = NULL;
4281
4282	if (HAS_GUC_SCHED(dev_priv))
4283		dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4284
4285	/* Let's track the enabled rps events */
4286	if (IS_VALLEYVIEW(dev_priv))
4287		/* WaGsvRC0ResidencyMethod:vlv */
4288		dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4289	else
4290		dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4291
4292	rps->pm_intrmsk_mbz = 0;
4293
4294	/*
4295	 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4296	 * if GEN6_PM_UP_EI_EXPIRED is masked.
4297	 *
4298	 * TODO: verify if this can be reproduced on VLV,CHV.
4299	 */
4300	if (INTEL_GEN(dev_priv) <= 7)
4301		rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4302
4303	if (INTEL_GEN(dev_priv) >= 8)
4304		rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4305
4306	if (IS_GEN2(dev_priv)) {
4307		/* Gen2 doesn't have a hardware frame counter */
4308		dev->max_vblank_count = 0;
4309	} else if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
4310		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4311		dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4312	} else {
4313		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4314		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4315	}
4316
4317	/*
4318	 * Opt out of the vblank disable timer on everything except gen2.
4319	 * Gen2 doesn't have a hardware frame counter and so depends on
4320	 * vblank interrupts to produce sane vblank seuquence numbers.
4321	 */
4322	if (!IS_GEN2(dev_priv))
4323		dev->vblank_disable_immediate = true;
4324
4325	/* Most platforms treat the display irq block as an always-on
4326	 * power domain. vlv/chv can disable it at runtime and need
4327	 * special care to avoid writing any of the display block registers
4328	 * outside of the power domain. We defer setting up the display irqs
4329	 * in this case to the runtime pm.
4330	 */
4331	dev_priv->display_irqs_enabled = true;
4332	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4333		dev_priv->display_irqs_enabled = false;
4334
4335	dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4336
4337	dev->driver->get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos;
4338	dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4339
4340	if (IS_CHERRYVIEW(dev_priv)) {
4341		dev->driver->irq_handler = cherryview_irq_handler;
4342		dev->driver->irq_preinstall = cherryview_irq_reset;
4343		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4344		dev->driver->irq_uninstall = cherryview_irq_reset;
4345		dev->driver->enable_vblank = i965_enable_vblank;
4346		dev->driver->disable_vblank = i965_disable_vblank;
4347		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4348	} else if (IS_VALLEYVIEW(dev_priv)) {
4349		dev->driver->irq_handler = valleyview_irq_handler;
4350		dev->driver->irq_preinstall = valleyview_irq_reset;
4351		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4352		dev->driver->irq_uninstall = valleyview_irq_reset;
4353		dev->driver->enable_vblank = i965_enable_vblank;
4354		dev->driver->disable_vblank = i965_disable_vblank;
4355		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4356	} else if (INTEL_GEN(dev_priv) >= 11) {
4357		dev->driver->irq_handler = gen11_irq_handler;
4358		dev->driver->irq_preinstall = gen11_irq_reset;
4359		dev->driver->irq_postinstall = gen11_irq_postinstall;
4360		dev->driver->irq_uninstall = gen11_irq_reset;
4361		dev->driver->enable_vblank = gen8_enable_vblank;
4362		dev->driver->disable_vblank = gen8_disable_vblank;
4363		dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4364	} else if (INTEL_GEN(dev_priv) >= 8) {
4365		dev->driver->irq_handler = gen8_irq_handler;
4366		dev->driver->irq_preinstall = gen8_irq_reset;
4367		dev->driver->irq_postinstall = gen8_irq_postinstall;
4368		dev->driver->irq_uninstall = gen8_irq_reset;
4369		dev->driver->enable_vblank = gen8_enable_vblank;
4370		dev->driver->disable_vblank = gen8_disable_vblank;
4371		if (IS_GEN9_LP(dev_priv))
4372			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4373		else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
4374			 HAS_PCH_CNP(dev_priv))
4375			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4376		else
4377			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4378	} else if (HAS_PCH_SPLIT(dev_priv)) {
4379		dev->driver->irq_handler = ironlake_irq_handler;
4380		dev->driver->irq_preinstall = ironlake_irq_reset;
4381		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4382		dev->driver->irq_uninstall = ironlake_irq_reset;
4383		dev->driver->enable_vblank = ironlake_enable_vblank;
4384		dev->driver->disable_vblank = ironlake_disable_vblank;
4385		dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4386	} else {
4387		if (IS_GEN2(dev_priv)) {
4388			dev->driver->irq_preinstall = i8xx_irq_reset;
4389			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4390			dev->driver->irq_handler = i8xx_irq_handler;
4391			dev->driver->irq_uninstall = i8xx_irq_reset;
4392			dev->driver->enable_vblank = i8xx_enable_vblank;
4393			dev->driver->disable_vblank = i8xx_disable_vblank;
4394		} else if (IS_GEN3(dev_priv)) {
4395			dev->driver->irq_preinstall = i915_irq_reset;
4396			dev->driver->irq_postinstall = i915_irq_postinstall;
4397			dev->driver->irq_uninstall = i915_irq_reset;
4398			dev->driver->irq_handler = i915_irq_handler;
4399			dev->driver->enable_vblank = i8xx_enable_vblank;
4400			dev->driver->disable_vblank = i8xx_disable_vblank;
4401		} else {
4402			dev->driver->irq_preinstall = i965_irq_reset;
4403			dev->driver->irq_postinstall = i965_irq_postinstall;
4404			dev->driver->irq_uninstall = i965_irq_reset;
4405			dev->driver->irq_handler = i965_irq_handler;
4406			dev->driver->enable_vblank = i965_enable_vblank;
4407			dev->driver->disable_vblank = i965_disable_vblank;
4408		}
4409		if (I915_HAS_HOTPLUG(dev_priv))
4410			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4411	}
4412}
4413
4414/**
4415 * intel_irq_fini - deinitializes IRQ support
4416 * @i915: i915 device instance
4417 *
4418 * This function deinitializes all the IRQ support.
4419 */
4420void intel_irq_fini(struct drm_i915_private *i915)
4421{
4422	int i;
4423
4424	for (i = 0; i < MAX_L3_SLICES; ++i)
4425		kfree(i915->l3_parity.remap_info[i]);
4426}
4427
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4428/**
4429 * intel_irq_install - enables the hardware interrupt
4430 * @dev_priv: i915 device instance
4431 *
4432 * This function enables the hardware interrupt handling, but leaves the hotplug
4433 * handling still disabled. It is called after intel_irq_init().
4434 *
4435 * In the driver load and resume code we need working interrupts in a few places
4436 * but don't want to deal with the hassle of concurrent probe and hotplug
4437 * workers. Hence the split into this two-stage approach.
4438 */
4439int intel_irq_install(struct drm_i915_private *dev_priv)
4440{
 
 
 
4441	/*
4442	 * We enable some interrupt sources in our postinstall hooks, so mark
4443	 * interrupts as enabled _before_ actually enabling them to avoid
4444	 * special cases in our ordering checks.
4445	 */
4446	dev_priv->runtime_pm.irqs_enabled = true;
 
 
 
 
 
 
 
 
 
 
 
4447
4448	return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4449}
4450
4451/**
4452 * intel_irq_uninstall - finilizes all irq handling
4453 * @dev_priv: i915 device instance
4454 *
4455 * This stops interrupt and hotplug handling and unregisters and frees all
4456 * resources acquired in the init functions.
4457 */
4458void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4459{
4460	drm_irq_uninstall(&dev_priv->drm);
 
 
 
 
 
 
 
 
4461	intel_hpd_cancel_work(dev_priv);
4462	dev_priv->runtime_pm.irqs_enabled = false;
4463}
4464
4465/**
4466 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4467 * @dev_priv: i915 device instance
4468 *
4469 * This function is used to disable interrupts at runtime, both in the runtime
4470 * pm and the system suspend/resume code.
4471 */
4472void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4473{
4474	dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4475	dev_priv->runtime_pm.irqs_enabled = false;
4476	synchronize_irq(dev_priv->drm.irq);
4477}
4478
4479/**
4480 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4481 * @dev_priv: i915 device instance
4482 *
4483 * This function is used to enable interrupts at runtime, both in the runtime
4484 * pm and the system suspend/resume code.
4485 */
4486void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4487{
4488	dev_priv->runtime_pm.irqs_enabled = true;
4489	dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4490	dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4491}