Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Driver for OHCI 1394 controllers
   4 *
   5 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#include <linux/bitops.h>
   9#include <linux/bug.h>
  10#include <linux/compiler.h>
  11#include <linux/delay.h>
  12#include <linux/device.h>
  13#include <linux/dma-mapping.h>
  14#include <linux/firewire.h>
  15#include <linux/firewire-constants.h>
  16#include <linux/init.h>
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/kernel.h>
  20#include <linux/list.h>
  21#include <linux/mm.h>
  22#include <linux/module.h>
  23#include <linux/moduleparam.h>
  24#include <linux/mutex.h>
  25#include <linux/pci.h>
  26#include <linux/pci_ids.h>
  27#include <linux/slab.h>
  28#include <linux/spinlock.h>
  29#include <linux/string.h>
  30#include <linux/time.h>
  31#include <linux/vmalloc.h>
  32#include <linux/workqueue.h>
  33
  34#include <asm/byteorder.h>
  35#include <asm/page.h>
  36
  37#ifdef CONFIG_PPC_PMAC
  38#include <asm/pmac_feature.h>
  39#endif
  40
  41#include "core.h"
  42#include "ohci.h"
  43#include "packet-header-definitions.h"
  44#include "phy-packet-definitions.h"
  45
  46#include <trace/events/firewire.h>
  47
  48static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk);
  49
  50#define CREATE_TRACE_POINTS
  51#include <trace/events/firewire_ohci.h>
  52
 
  53#define ohci_notice(ohci, f, args...)	dev_notice(ohci->card.device, f, ##args)
  54#define ohci_err(ohci, f, args...)	dev_err(ohci->card.device, f, ##args)
  55
  56#define DESCRIPTOR_OUTPUT_MORE		0
  57#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
  58#define DESCRIPTOR_INPUT_MORE		(2 << 12)
  59#define DESCRIPTOR_INPUT_LAST		(3 << 12)
  60#define DESCRIPTOR_STATUS		(1 << 11)
  61#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
  62#define DESCRIPTOR_PING			(1 << 7)
  63#define DESCRIPTOR_YY			(1 << 6)
  64#define DESCRIPTOR_NO_IRQ		(0 << 4)
  65#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
  66#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
  67#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
  68#define DESCRIPTOR_WAIT			(3 << 0)
  69
  70#define DESCRIPTOR_CMD			(0xf << 12)
  71
  72struct descriptor {
  73	__le16 req_count;
  74	__le16 control;
  75	__le32 data_address;
  76	__le32 branch_address;
  77	__le16 res_count;
  78	__le16 transfer_status;
  79} __aligned(16);
  80
  81#define CONTROL_SET(regs)	(regs)
  82#define CONTROL_CLEAR(regs)	((regs) + 4)
  83#define COMMAND_PTR(regs)	((regs) + 12)
  84#define CONTEXT_MATCH(regs)	((regs) + 16)
  85
  86#define AR_BUFFER_SIZE	(32*1024)
  87#define AR_BUFFERS_MIN	DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
  88/* we need at least two pages for proper list management */
  89#define AR_BUFFERS	(AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
  90
  91#define MAX_ASYNC_PAYLOAD	4096
  92#define MAX_AR_PACKET_SIZE	(16 + MAX_ASYNC_PAYLOAD + 4)
  93#define AR_WRAPAROUND_PAGES	DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
  94
  95struct ar_context {
  96	struct fw_ohci *ohci;
  97	struct page *pages[AR_BUFFERS];
  98	void *buffer;
  99	struct descriptor *descriptors;
 100	dma_addr_t descriptors_bus;
 101	void *pointer;
 102	unsigned int last_buffer_index;
 103	u32 regs;
 104	struct tasklet_struct tasklet;
 105};
 106
 107struct context;
 108
 109typedef int (*descriptor_callback_t)(struct context *ctx,
 110				     struct descriptor *d,
 111				     struct descriptor *last);
 112
 113/*
 114 * A buffer that contains a block of DMA-able coherent memory used for
 115 * storing a portion of a DMA descriptor program.
 116 */
 117struct descriptor_buffer {
 118	struct list_head list;
 119	dma_addr_t buffer_bus;
 120	size_t buffer_size;
 121	size_t used;
 122	struct descriptor buffer[];
 123};
 124
 125struct context {
 126	struct fw_ohci *ohci;
 127	u32 regs;
 128	int total_allocation;
 129	u32 current_bus;
 130	bool running;
 131	bool flushing;
 132
 133	/*
 134	 * List of page-sized buffers for storing DMA descriptors.
 135	 * Head of list contains buffers in use and tail of list contains
 136	 * free buffers.
 137	 */
 138	struct list_head buffer_list;
 139
 140	/*
 141	 * Pointer to a buffer inside buffer_list that contains the tail
 142	 * end of the current DMA program.
 143	 */
 144	struct descriptor_buffer *buffer_tail;
 145
 146	/*
 147	 * The descriptor containing the branch address of the first
 148	 * descriptor that has not yet been filled by the device.
 149	 */
 150	struct descriptor *last;
 151
 152	/*
 153	 * The last descriptor block in the DMA program. It contains the branch
 154	 * address that must be updated upon appending a new descriptor.
 155	 */
 156	struct descriptor *prev;
 157	int prev_z;
 158
 159	descriptor_callback_t callback;
 160
 161	struct tasklet_struct tasklet;
 162};
 163
 
 
 
 
 
 
 
 164struct iso_context {
 165	struct fw_iso_context base;
 166	struct context context;
 167	void *header;
 168	size_t header_length;
 169	unsigned long flushing_completions;
 170	u32 mc_buffer_bus;
 171	u16 mc_completed;
 172	u16 last_timestamp;
 173	u8 sync;
 174	u8 tags;
 175};
 176
 177#define CONFIG_ROM_SIZE		(CSR_CONFIG_ROM_END - CSR_CONFIG_ROM)
 178
 179struct fw_ohci {
 180	struct fw_card card;
 181
 182	__iomem char *registers;
 183	int node_id;
 184	int generation;
 185	int request_generation;	/* for timestamping incoming requests */
 186	unsigned quirks;
 187	unsigned int pri_req_max;
 188	u32 bus_time;
 189	bool bus_time_running;
 190	bool is_root;
 191	bool csr_state_setclear_abdicate;
 192	int n_ir;
 193	int n_it;
 194	/*
 195	 * Spinlock for accessing fw_ohci data.  Never call out of
 196	 * this driver with this lock held.
 197	 */
 198	spinlock_t lock;
 199
 200	struct mutex phy_reg_mutex;
 201
 202	void *misc_buffer;
 203	dma_addr_t misc_buffer_bus;
 204
 205	struct ar_context ar_request_ctx;
 206	struct ar_context ar_response_ctx;
 207	struct context at_request_ctx;
 208	struct context at_response_ctx;
 209
 210	u32 it_context_support;
 211	u32 it_context_mask;     /* unoccupied IT contexts */
 212	struct iso_context *it_context_list;
 213	u64 ir_context_channels; /* unoccupied channels */
 214	u32 ir_context_support;
 215	u32 ir_context_mask;     /* unoccupied IR contexts */
 216	struct iso_context *ir_context_list;
 217	u64 mc_channels; /* channels in use by the multichannel IR context */
 218	bool mc_allocated;
 219
 220	__be32    *config_rom;
 221	dma_addr_t config_rom_bus;
 222	__be32    *next_config_rom;
 223	dma_addr_t next_config_rom_bus;
 224	__be32     next_header;
 225
 226	__le32    *self_id;
 227	dma_addr_t self_id_bus;
 228	struct work_struct bus_reset_work;
 229
 230	u32 self_id_buffer[512];
 231};
 232
 233static struct workqueue_struct *selfid_workqueue;
 234
 235static inline struct fw_ohci *fw_ohci(struct fw_card *card)
 236{
 237	return container_of(card, struct fw_ohci, card);
 238}
 239
 240#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
 241#define IR_CONTEXT_BUFFER_FILL		0x80000000
 242#define IR_CONTEXT_ISOCH_HEADER		0x40000000
 243#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
 244#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
 245#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
 246
 247#define CONTEXT_RUN	0x8000
 248#define CONTEXT_WAKE	0x1000
 249#define CONTEXT_DEAD	0x0800
 250#define CONTEXT_ACTIVE	0x0400
 251
 252#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
 253#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
 254#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8
 255
 256#define OHCI1394_REGISTER_SIZE		0x800
 257#define OHCI1394_PCI_HCI_Control	0x40
 258#define SELF_ID_BUF_SIZE		0x800
 
 259#define OHCI_VERSION_1_1		0x010010
 260
 261static char ohci_driver_name[] = KBUILD_MODNAME;
 262
 263#define PCI_VENDOR_ID_PINNACLE_SYSTEMS	0x11bd
 264#define PCI_DEVICE_ID_AGERE_FW643	0x5901
 265#define PCI_DEVICE_ID_CREATIVE_SB1394	0x4001
 266#define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
 267#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009
 268#define PCI_DEVICE_ID_TI_TSB12LV26	0x8020
 269#define PCI_DEVICE_ID_TI_TSB82AA2	0x8025
 270#define PCI_DEVICE_ID_VIA_VT630X	0x3044
 271#define PCI_REV_ID_VIA_VT6306		0x46
 272#define PCI_DEVICE_ID_VIA_VT6315	0x3403
 273
 274#define QUIRK_CYCLE_TIMER		0x1
 275#define QUIRK_RESET_PACKET		0x2
 276#define QUIRK_BE_HEADERS		0x4
 277#define QUIRK_NO_1394A			0x8
 278#define QUIRK_NO_MSI			0x10
 279#define QUIRK_TI_SLLZ059		0x20
 280#define QUIRK_IR_WAKE			0x40
 281
 282// On PCI Express Root Complex in any type of AMD Ryzen machine, VIA VT6306/6307/6308 with Asmedia
 283// ASM1083/1085 brings an inconvenience that the read accesses to 'Isochronous Cycle Timer' register
 284// (at offset 0xf0 in PCI I/O space) often causes unexpected system reboot. The mechanism is not
 285// clear, since the read access to the other registers is enough safe; e.g. 'Node ID' register,
 286// while it is probable due to detection of any type of PCIe error.
 287#define QUIRK_REBOOT_BY_CYCLE_TIMER_READ	0x80000000
 288
 289#if IS_ENABLED(CONFIG_X86)
 290
 291static bool has_reboot_by_cycle_timer_read_quirk(const struct fw_ohci *ohci)
 292{
 293	return !!(ohci->quirks & QUIRK_REBOOT_BY_CYCLE_TIMER_READ);
 294}
 295
 296#define PCI_DEVICE_ID_ASMEDIA_ASM108X	0x1080
 297
 298static bool detect_vt630x_with_asm1083_on_amd_ryzen_machine(const struct pci_dev *pdev)
 299{
 300	const struct pci_dev *pcie_to_pci_bridge;
 301
 302	// Detect any type of AMD Ryzen machine.
 303	if (!static_cpu_has(X86_FEATURE_ZEN))
 304		return false;
 305
 306	// Detect VIA VT6306/6307/6308.
 307	if (pdev->vendor != PCI_VENDOR_ID_VIA)
 308		return false;
 309	if (pdev->device != PCI_DEVICE_ID_VIA_VT630X)
 310		return false;
 311
 312	// Detect Asmedia ASM1083/1085.
 313	pcie_to_pci_bridge = pdev->bus->self;
 314	if (pcie_to_pci_bridge->vendor != PCI_VENDOR_ID_ASMEDIA)
 315		return false;
 316	if (pcie_to_pci_bridge->device != PCI_DEVICE_ID_ASMEDIA_ASM108X)
 317		return false;
 318
 319	return true;
 320}
 321
 322#else
 323#define has_reboot_by_cycle_timer_read_quirk(ohci) false
 324#define detect_vt630x_with_asm1083_on_amd_ryzen_machine(pdev)	false
 325#endif
 326
 327/* In case of multiple matches in ohci_quirks[], only the first one is used. */
 328static const struct {
 329	unsigned short vendor, device, revision, flags;
 330} ohci_quirks[] = {
 331	{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
 332		QUIRK_CYCLE_TIMER},
 333
 334	{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
 335		QUIRK_BE_HEADERS},
 336
 337	{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
 338		QUIRK_NO_MSI},
 339
 340	{PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
 341		QUIRK_RESET_PACKET},
 342
 343	{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
 344		QUIRK_NO_MSI},
 345
 346	{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
 347		QUIRK_CYCLE_TIMER},
 348
 349	{PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
 350		QUIRK_NO_MSI},
 351
 352	{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
 353		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
 354
 355	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
 356		QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
 357
 358	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
 359		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
 360
 361	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
 362		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
 363
 364	{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
 365		QUIRK_RESET_PACKET},
 366
 367	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
 368		QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
 369
 370	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
 371		QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
 372
 373	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
 374		QUIRK_NO_MSI},
 375
 376	{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
 377		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
 378};
 379
 380/* This overrides anything that was found in ohci_quirks[]. */
 381static int param_quirks;
 382module_param_named(quirks, param_quirks, int, 0644);
 383MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
 384	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
 385	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
 386	", AR/selfID endianness = "	__stringify(QUIRK_BE_HEADERS)
 387	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
 388	", disable MSI = "		__stringify(QUIRK_NO_MSI)
 389	", TI SLLZ059 erratum = "	__stringify(QUIRK_TI_SLLZ059)
 390	", IR wake unreliable = "	__stringify(QUIRK_IR_WAKE)
 391	")");
 392
 393#define OHCI_PARAM_DEBUG_AT_AR		1
 394#define OHCI_PARAM_DEBUG_SELFIDS	2
 395#define OHCI_PARAM_DEBUG_IRQS		4
 
 396
 397static int param_debug;
 398module_param_named(debug, param_debug, int, 0644);
 399MODULE_PARM_DESC(debug, "Verbose logging, deprecated in v6.11 kernel or later. (default = 0"
 400	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
 401	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
 402	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
 
 403	", or a combination, or all = -1)");
 404
 405static bool param_remote_dma;
 406module_param_named(remote_dma, param_remote_dma, bool, 0444);
 407MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
 408
 409static void log_irqs(struct fw_ohci *ohci, u32 evt)
 410{
 411	if (likely(!(param_debug & OHCI_PARAM_DEBUG_IRQS)))
 
 
 
 
 
 412		return;
 413
 414	ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
 415	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
 416	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
 417	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
 418	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
 419	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
 420	    evt & OHCI1394_isochRx		? " IR"			: "",
 421	    evt & OHCI1394_isochTx		? " IT"			: "",
 422	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
 423	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
 424	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
 425	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
 426	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
 427	    evt & OHCI1394_unrecoverableError	? " unrecoverableError"	: "",
 428	    evt & OHCI1394_busReset		? " busReset"		: "",
 429	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
 430		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
 431		    OHCI1394_respTxComplete | OHCI1394_isochRx |
 432		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
 433		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
 434		    OHCI1394_cycleInconsistent |
 435		    OHCI1394_regAccessFail | OHCI1394_busReset)
 436						? " ?"			: "");
 437}
 438
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 439static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
 440{
 441	static const char *const speed[] = {
 442		[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
 443	};
 444	static const char *const power[] = {
 445		[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
 446		[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
 447	};
 448	static const char port[] = {
 449		[PHY_PACKET_SELF_ID_PORT_STATUS_NONE] = '.',
 450		[PHY_PACKET_SELF_ID_PORT_STATUS_NCONN] = '-',
 451		[PHY_PACKET_SELF_ID_PORT_STATUS_PARENT] = 'p',
 452		[PHY_PACKET_SELF_ID_PORT_STATUS_CHILD] = 'c',
 453	};
 454	struct self_id_sequence_enumerator enumerator = {
 455		.cursor = ohci->self_id_buffer,
 456		.quadlet_count = self_id_count,
 457	};
 458
 459	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
 460		return;
 461
 462	ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
 463		    self_id_count, generation, ohci->node_id);
 464
 465	while (enumerator.quadlet_count > 0) {
 466		unsigned int quadlet_count;
 467		unsigned int port_index;
 468		const u32 *s;
 469		int i;
 470
 471		s = self_id_sequence_enumerator_next(&enumerator, &quadlet_count);
 472		if (IS_ERR(s))
 473			break;
 474
 475		ohci_notice(ohci,
 476		    "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
 477		    *s,
 478		    phy_packet_self_id_get_phy_id(*s),
 479		    port[self_id_sequence_get_port_status(s, quadlet_count, 0)],
 480		    port[self_id_sequence_get_port_status(s, quadlet_count, 1)],
 481		    port[self_id_sequence_get_port_status(s, quadlet_count, 2)],
 482		    speed[*s >> 14 & 3], *s >> 16 & 63,
 483		    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
 484		    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
 485
 486		port_index = 3;
 487		for (i = 1; i < quadlet_count; ++i) {
 488			ohci_notice(ohci,
 489			    "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
 490			    s[i],
 491			    phy_packet_self_id_get_phy_id(s[i]),
 492			    port[self_id_sequence_get_port_status(s, quadlet_count, port_index)],
 493			    port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 1)],
 494			    port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 2)],
 495			    port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 3)],
 496			    port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 4)],
 497			    port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 5)],
 498			    port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 6)],
 499			    port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 7)]
 500			);
 501
 502			port_index += 8;
 503		}
 504	}
 505}
 506
 507static const char *evts[] = {
 508	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
 509	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
 510	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
 511	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
 512	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
 513	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
 514	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
 515	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
 516	[0x10] = "-reserved-",		[0x11] = "ack_complete",
 517	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
 518	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
 519	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
 520	[0x18] = "-reserved-",		[0x19] = "-reserved-",
 521	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
 522	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
 523	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
 524	[0x20] = "pending/cancelled",
 525};
 
 
 
 
 
 
 
 
 
 
 526
 527static void log_ar_at_event(struct fw_ohci *ohci,
 528			    char dir, int speed, u32 *header, int evt)
 529{
 530	static const char *const tcodes[] = {
 531		[TCODE_WRITE_QUADLET_REQUEST]	= "QW req",
 532		[TCODE_WRITE_BLOCK_REQUEST]	= "BW req",
 533		[TCODE_WRITE_RESPONSE]		= "W resp",
 534		[0x3]				= "-reserved-",
 535		[TCODE_READ_QUADLET_REQUEST]	= "QR req",
 536		[TCODE_READ_BLOCK_REQUEST]	= "BR req",
 537		[TCODE_READ_QUADLET_RESPONSE]	= "QR resp",
 538		[TCODE_READ_BLOCK_RESPONSE]	= "BR resp",
 539		[TCODE_CYCLE_START]		= "cycle start",
 540		[TCODE_LOCK_REQUEST]		= "Lk req",
 541		[TCODE_STREAM_DATA]		= "async stream packet",
 542		[TCODE_LOCK_RESPONSE]		= "Lk resp",
 543		[0xc]				= "-reserved-",
 544		[0xd]				= "-reserved-",
 545		[TCODE_LINK_INTERNAL]		= "link internal",
 546		[0xf]				= "-reserved-",
 547	};
 548	int tcode = async_header_get_tcode(header);
 549	char specific[12];
 550
 551	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
 552		return;
 553
 554	if (unlikely(evt >= ARRAY_SIZE(evts)))
 555		evt = 0x1f;
 556
 557	if (evt == OHCI1394_evt_bus_reset) {
 558		ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
 559			    dir, (header[2] >> 16) & 0xff);
 560		return;
 561	}
 562
 563	switch (tcode) {
 564	case TCODE_WRITE_QUADLET_REQUEST:
 565	case TCODE_READ_QUADLET_RESPONSE:
 566	case TCODE_CYCLE_START:
 567		snprintf(specific, sizeof(specific), " = %08x",
 568			 be32_to_cpu((__force __be32)header[3]));
 569		break;
 570	case TCODE_WRITE_BLOCK_REQUEST:
 571	case TCODE_READ_BLOCK_REQUEST:
 572	case TCODE_READ_BLOCK_RESPONSE:
 573	case TCODE_LOCK_REQUEST:
 574	case TCODE_LOCK_RESPONSE:
 575		snprintf(specific, sizeof(specific), " %x,%x",
 576			 async_header_get_data_length(header),
 577			 async_header_get_extended_tcode(header));
 578		break;
 579	default:
 580		specific[0] = '\0';
 581	}
 582
 583	switch (tcode) {
 584	case TCODE_STREAM_DATA:
 585		ohci_notice(ohci, "A%c %s, %s\n",
 586			    dir, evts[evt], tcodes[tcode]);
 587		break;
 588	case TCODE_LINK_INTERNAL:
 589		ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
 590			    dir, evts[evt], header[1], header[2]);
 591		break;
 592	case TCODE_WRITE_QUADLET_REQUEST:
 593	case TCODE_WRITE_BLOCK_REQUEST:
 594	case TCODE_READ_QUADLET_REQUEST:
 595	case TCODE_READ_BLOCK_REQUEST:
 596	case TCODE_LOCK_REQUEST:
 597		ohci_notice(ohci,
 598			    "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %012llx%s\n",
 599			    dir, speed, async_header_get_tlabel(header),
 600			    async_header_get_source(header), async_header_get_destination(header),
 601			    evts[evt], tcodes[tcode], async_header_get_offset(header), specific);
 602		break;
 603	default:
 604		ohci_notice(ohci,
 605			    "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
 606			    dir, speed, async_header_get_tlabel(header),
 607			    async_header_get_source(header), async_header_get_destination(header),
 608			    evts[evt], tcodes[tcode], specific);
 609	}
 610}
 611
 612static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
 613{
 614	writel(data, ohci->registers + offset);
 615}
 616
 617static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
 618{
 619	return readl(ohci->registers + offset);
 620}
 621
 622static inline void flush_writes(const struct fw_ohci *ohci)
 623{
 624	/* Do a dummy read to flush writes. */
 625	reg_read(ohci, OHCI1394_Version);
 626}
 627
 628/*
 629 * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
 630 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
 631 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
 632 * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
 633 */
 634static int read_phy_reg(struct fw_ohci *ohci, int addr)
 635{
 636	u32 val;
 637	int i;
 638
 639	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
 640	for (i = 0; i < 3 + 100; i++) {
 641		val = reg_read(ohci, OHCI1394_PhyControl);
 642		if (!~val)
 643			return -ENODEV; /* Card was ejected. */
 644
 645		if (val & OHCI1394_PhyControl_ReadDone)
 646			return OHCI1394_PhyControl_ReadData(val);
 647
 648		/*
 649		 * Try a few times without waiting.  Sleeping is necessary
 650		 * only when the link/PHY interface is busy.
 651		 */
 652		if (i >= 3)
 653			msleep(1);
 654	}
 655	ohci_err(ohci, "failed to read phy reg %d\n", addr);
 656	dump_stack();
 657
 658	return -EBUSY;
 659}
 660
 661static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
 662{
 663	int i;
 664
 665	reg_write(ohci, OHCI1394_PhyControl,
 666		  OHCI1394_PhyControl_Write(addr, val));
 667	for (i = 0; i < 3 + 100; i++) {
 668		val = reg_read(ohci, OHCI1394_PhyControl);
 669		if (!~val)
 670			return -ENODEV; /* Card was ejected. */
 671
 672		if (!(val & OHCI1394_PhyControl_WritePending))
 673			return 0;
 674
 675		if (i >= 3)
 676			msleep(1);
 677	}
 678	ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
 679	dump_stack();
 680
 681	return -EBUSY;
 682}
 683
 684static int update_phy_reg(struct fw_ohci *ohci, int addr,
 685			  int clear_bits, int set_bits)
 686{
 687	int ret = read_phy_reg(ohci, addr);
 688	if (ret < 0)
 689		return ret;
 690
 691	/*
 692	 * The interrupt status bits are cleared by writing a one bit.
 693	 * Avoid clearing them unless explicitly requested in set_bits.
 694	 */
 695	if (addr == 5)
 696		clear_bits |= PHY_INT_STATUS_BITS;
 697
 698	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
 699}
 700
 701static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
 702{
 703	int ret;
 704
 705	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
 706	if (ret < 0)
 707		return ret;
 708
 709	return read_phy_reg(ohci, addr);
 710}
 711
 712static int ohci_read_phy_reg(struct fw_card *card, int addr)
 713{
 714	struct fw_ohci *ohci = fw_ohci(card);
 
 715
 716	guard(mutex)(&ohci->phy_reg_mutex);
 
 
 717
 718	return read_phy_reg(ohci, addr);
 719}
 720
 721static int ohci_update_phy_reg(struct fw_card *card, int addr,
 722			       int clear_bits, int set_bits)
 723{
 724	struct fw_ohci *ohci = fw_ohci(card);
 
 725
 726	guard(mutex)(&ohci->phy_reg_mutex);
 
 
 727
 728	return update_phy_reg(ohci, addr, clear_bits, set_bits);
 729}
 730
 731static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
 732{
 733	return page_private(ctx->pages[i]);
 734}
 735
 736static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
 737{
 738	struct descriptor *d;
 739
 740	d = &ctx->descriptors[index];
 741	d->branch_address  &= cpu_to_le32(~0xf);
 742	d->res_count       =  cpu_to_le16(PAGE_SIZE);
 743	d->transfer_status =  0;
 744
 745	wmb(); /* finish init of new descriptors before branch_address update */
 746	d = &ctx->descriptors[ctx->last_buffer_index];
 747	d->branch_address  |= cpu_to_le32(1);
 748
 749	ctx->last_buffer_index = index;
 750
 751	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
 752}
 753
 754static void ar_context_release(struct ar_context *ctx)
 755{
 756	struct device *dev = ctx->ohci->card.device;
 757	unsigned int i;
 758
 759	if (!ctx->buffer)
 760		return;
 761
 762	vunmap(ctx->buffer);
 763
 764	for (i = 0; i < AR_BUFFERS; i++) {
 765		if (ctx->pages[i])
 766			dma_free_pages(dev, PAGE_SIZE, ctx->pages[i],
 767				       ar_buffer_bus(ctx, i), DMA_FROM_DEVICE);
 768	}
 
 
 769}
 770
 771static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
 772{
 773	struct fw_ohci *ohci = ctx->ohci;
 774
 775	if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
 776		reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
 777		flush_writes(ohci);
 778
 779		ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
 780	}
 781	/* FIXME: restart? */
 782}
 783
 784static inline unsigned int ar_next_buffer_index(unsigned int index)
 785{
 786	return (index + 1) % AR_BUFFERS;
 787}
 788
 789static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
 790{
 791	return ar_next_buffer_index(ctx->last_buffer_index);
 792}
 793
 794/*
 795 * We search for the buffer that contains the last AR packet DMA data written
 796 * by the controller.
 797 */
 798static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
 799						 unsigned int *buffer_offset)
 800{
 801	unsigned int i, next_i, last = ctx->last_buffer_index;
 802	__le16 res_count, next_res_count;
 803
 804	i = ar_first_buffer_index(ctx);
 805	res_count = READ_ONCE(ctx->descriptors[i].res_count);
 806
 807	/* A buffer that is not yet completely filled must be the last one. */
 808	while (i != last && res_count == 0) {
 809
 810		/* Peek at the next descriptor. */
 811		next_i = ar_next_buffer_index(i);
 812		rmb(); /* read descriptors in order */
 813		next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
 814		/*
 815		 * If the next descriptor is still empty, we must stop at this
 816		 * descriptor.
 817		 */
 818		if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
 819			/*
 820			 * The exception is when the DMA data for one packet is
 821			 * split over three buffers; in this case, the middle
 822			 * buffer's descriptor might be never updated by the
 823			 * controller and look still empty, and we have to peek
 824			 * at the third one.
 825			 */
 826			if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
 827				next_i = ar_next_buffer_index(next_i);
 828				rmb();
 829				next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
 830				if (next_res_count != cpu_to_le16(PAGE_SIZE))
 831					goto next_buffer_is_active;
 832			}
 833
 834			break;
 835		}
 836
 837next_buffer_is_active:
 838		i = next_i;
 839		res_count = next_res_count;
 840	}
 841
 842	rmb(); /* read res_count before the DMA data */
 843
 844	*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
 845	if (*buffer_offset > PAGE_SIZE) {
 846		*buffer_offset = 0;
 847		ar_context_abort(ctx, "corrupted descriptor");
 848	}
 849
 850	return i;
 851}
 852
 853static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
 854				    unsigned int end_buffer_index,
 855				    unsigned int end_buffer_offset)
 856{
 857	unsigned int i;
 858
 859	i = ar_first_buffer_index(ctx);
 860	while (i != end_buffer_index) {
 861		dma_sync_single_for_cpu(ctx->ohci->card.device,
 862					ar_buffer_bus(ctx, i),
 863					PAGE_SIZE, DMA_FROM_DEVICE);
 864		i = ar_next_buffer_index(i);
 865	}
 866	if (end_buffer_offset > 0)
 867		dma_sync_single_for_cpu(ctx->ohci->card.device,
 868					ar_buffer_bus(ctx, i),
 869					end_buffer_offset, DMA_FROM_DEVICE);
 870}
 871
 872#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
 873static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk)
 874{
 875	return has_be_header_quirk ? (__force __u32)value : le32_to_cpu(value);
 876}
 877
 878static bool has_be_header_quirk(const struct fw_ohci *ohci)
 879{
 880	return !!(ohci->quirks & QUIRK_BE_HEADERS);
 881}
 882#else
 883static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk __maybe_unused)
 884{
 885	return le32_to_cpu(value);
 886}
 887
 888static bool has_be_header_quirk(const struct fw_ohci *ohci)
 889{
 890	return false;
 891}
 892#endif
 893
 894static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
 895{
 896	struct fw_ohci *ohci = ctx->ohci;
 897	struct fw_packet p;
 898	u32 status, length, tcode;
 899	int evt;
 900
 901	p.header[0] = cond_le32_to_cpu(buffer[0], has_be_header_quirk(ohci));
 902	p.header[1] = cond_le32_to_cpu(buffer[1], has_be_header_quirk(ohci));
 903	p.header[2] = cond_le32_to_cpu(buffer[2], has_be_header_quirk(ohci));
 904
 905	tcode = async_header_get_tcode(p.header);
 906	switch (tcode) {
 907	case TCODE_WRITE_QUADLET_REQUEST:
 908	case TCODE_READ_QUADLET_RESPONSE:
 909		p.header[3] = (__force __u32) buffer[3];
 910		p.header_length = 16;
 911		p.payload_length = 0;
 912		break;
 913
 914	case TCODE_READ_BLOCK_REQUEST :
 915		p.header[3] = cond_le32_to_cpu(buffer[3], has_be_header_quirk(ohci));
 916		p.header_length = 16;
 917		p.payload_length = 0;
 918		break;
 919
 920	case TCODE_WRITE_BLOCK_REQUEST:
 921	case TCODE_READ_BLOCK_RESPONSE:
 922	case TCODE_LOCK_REQUEST:
 923	case TCODE_LOCK_RESPONSE:
 924		p.header[3] = cond_le32_to_cpu(buffer[3], has_be_header_quirk(ohci));
 925		p.header_length = 16;
 926		p.payload_length = async_header_get_data_length(p.header);
 927		if (p.payload_length > MAX_ASYNC_PAYLOAD) {
 928			ar_context_abort(ctx, "invalid packet length");
 929			return NULL;
 930		}
 931		break;
 932
 933	case TCODE_WRITE_RESPONSE:
 934	case TCODE_READ_QUADLET_REQUEST:
 935	case TCODE_LINK_INTERNAL:
 936		p.header_length = 12;
 937		p.payload_length = 0;
 938		break;
 939
 940	default:
 941		ar_context_abort(ctx, "invalid tcode");
 942		return NULL;
 943	}
 944
 945	p.payload = (void *) buffer + p.header_length;
 946
 947	/* FIXME: What to do about evt_* errors? */
 948	length = (p.header_length + p.payload_length + 3) / 4;
 949	status = cond_le32_to_cpu(buffer[length], has_be_header_quirk(ohci));
 950	evt    = (status >> 16) & 0x1f;
 951
 952	p.ack        = evt - 16;
 953	p.speed      = (status >> 21) & 0x7;
 954	p.timestamp  = status & 0xffff;
 955	p.generation = ohci->request_generation;
 956
 957	log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
 958
 959	/*
 960	 * Several controllers, notably from NEC and VIA, forget to
 961	 * write ack_complete status at PHY packet reception.
 962	 */
 963	if (evt == OHCI1394_evt_no_status && tcode == TCODE_LINK_INTERNAL)
 
 964		p.ack = ACK_COMPLETE;
 965
 966	/*
 967	 * The OHCI bus reset handler synthesizes a PHY packet with
 968	 * the new generation number when a bus reset happens (see
 969	 * section 8.4.2.3).  This helps us determine when a request
 970	 * was received and make sure we send the response in the same
 971	 * generation.  We only need this for requests; for responses
 972	 * we use the unique tlabel for finding the matching
 973	 * request.
 974	 *
 975	 * Alas some chips sometimes emit bus reset packets with a
 976	 * wrong generation.  We set the correct generation for these
 977	 * at a slightly incorrect time (in bus_reset_work).
 978	 */
 979	if (evt == OHCI1394_evt_bus_reset) {
 980		if (!(ohci->quirks & QUIRK_RESET_PACKET))
 981			ohci->request_generation = (p.header[2] >> 16) & 0xff;
 982	} else if (ctx == &ohci->ar_request_ctx) {
 983		fw_core_handle_request(&ohci->card, &p);
 984	} else {
 985		fw_core_handle_response(&ohci->card, &p);
 986	}
 987
 988	return buffer + length + 1;
 989}
 990
 991static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
 992{
 993	void *next;
 994
 995	while (p < end) {
 996		next = handle_ar_packet(ctx, p);
 997		if (!next)
 998			return p;
 999		p = next;
1000	}
1001
1002	return p;
1003}
1004
1005static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
1006{
1007	unsigned int i;
1008
1009	i = ar_first_buffer_index(ctx);
1010	while (i != end_buffer) {
1011		dma_sync_single_for_device(ctx->ohci->card.device,
1012					   ar_buffer_bus(ctx, i),
1013					   PAGE_SIZE, DMA_FROM_DEVICE);
1014		ar_context_link_page(ctx, i);
1015		i = ar_next_buffer_index(i);
1016	}
1017}
1018
1019static void ar_context_tasklet(unsigned long data)
1020{
1021	struct ar_context *ctx = (struct ar_context *)data;
1022	unsigned int end_buffer_index, end_buffer_offset;
1023	void *p, *end;
1024
1025	p = ctx->pointer;
1026	if (!p)
1027		return;
1028
1029	end_buffer_index = ar_search_last_active_buffer(ctx,
1030							&end_buffer_offset);
1031	ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
1032	end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
1033
1034	if (end_buffer_index < ar_first_buffer_index(ctx)) {
1035		/*
1036		 * The filled part of the overall buffer wraps around; handle
1037		 * all packets up to the buffer end here.  If the last packet
1038		 * wraps around, its tail will be visible after the buffer end
1039		 * because the buffer start pages are mapped there again.
1040		 */
1041		void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
1042		p = handle_ar_packets(ctx, p, buffer_end);
1043		if (p < buffer_end)
1044			goto error;
1045		/* adjust p to point back into the actual buffer */
1046		p -= AR_BUFFERS * PAGE_SIZE;
1047	}
1048
1049	p = handle_ar_packets(ctx, p, end);
1050	if (p != end) {
1051		if (p > end)
1052			ar_context_abort(ctx, "inconsistent descriptor");
1053		goto error;
1054	}
1055
1056	ctx->pointer = p;
1057	ar_recycle_buffers(ctx, end_buffer_index);
1058
1059	return;
1060
1061error:
1062	ctx->pointer = NULL;
1063}
1064
1065static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
1066			   unsigned int descriptors_offset, u32 regs)
1067{
1068	struct device *dev = ohci->card.device;
1069	unsigned int i;
1070	dma_addr_t dma_addr;
1071	struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
1072	struct descriptor *d;
1073
1074	ctx->regs        = regs;
1075	ctx->ohci        = ohci;
1076	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
1077
1078	for (i = 0; i < AR_BUFFERS; i++) {
1079		ctx->pages[i] = dma_alloc_pages(dev, PAGE_SIZE, &dma_addr,
1080						DMA_FROM_DEVICE, GFP_KERNEL);
1081		if (!ctx->pages[i])
1082			goto out_of_memory;
 
 
 
 
 
 
 
1083		set_page_private(ctx->pages[i], dma_addr);
1084		dma_sync_single_for_device(dev, dma_addr, PAGE_SIZE,
1085					   DMA_FROM_DEVICE);
1086	}
1087
1088	for (i = 0; i < AR_BUFFERS; i++)
1089		pages[i]              = ctx->pages[i];
1090	for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1091		pages[AR_BUFFERS + i] = ctx->pages[i];
1092	ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
1093	if (!ctx->buffer)
1094		goto out_of_memory;
1095
1096	ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
1097	ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1098
1099	for (i = 0; i < AR_BUFFERS; i++) {
1100		d = &ctx->descriptors[i];
1101		d->req_count      = cpu_to_le16(PAGE_SIZE);
1102		d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1103						DESCRIPTOR_STATUS |
1104						DESCRIPTOR_BRANCH_ALWAYS);
1105		d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
1106		d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1107			ar_next_buffer_index(i) * sizeof(struct descriptor));
1108	}
1109
1110	return 0;
1111
1112out_of_memory:
1113	ar_context_release(ctx);
1114
1115	return -ENOMEM;
1116}
1117
1118static void ar_context_run(struct ar_context *ctx)
1119{
1120	unsigned int i;
1121
1122	for (i = 0; i < AR_BUFFERS; i++)
1123		ar_context_link_page(ctx, i);
1124
1125	ctx->pointer = ctx->buffer;
1126
1127	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1128	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1129}
1130
1131static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1132{
1133	__le16 branch;
1134
1135	branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1136
1137	/* figure out which descriptor the branch address goes in */
1138	if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1139		return d;
1140	else
1141		return d + z - 1;
1142}
1143
1144static void context_retire_descriptors(struct context *ctx)
1145{
 
1146	struct descriptor *d, *last;
1147	u32 address;
1148	int z;
1149	struct descriptor_buffer *desc;
1150
1151	desc = list_entry(ctx->buffer_list.next,
1152			struct descriptor_buffer, list);
1153	last = ctx->last;
1154	while (last->branch_address != 0) {
1155		struct descriptor_buffer *old_desc = desc;
1156		address = le32_to_cpu(last->branch_address);
1157		z = address & 0xf;
1158		address &= ~0xf;
1159		ctx->current_bus = address;
1160
1161		/* If the branch address points to a buffer outside of the
1162		 * current buffer, advance to the next buffer. */
1163		if (address < desc->buffer_bus ||
1164				address >= desc->buffer_bus + desc->used)
1165			desc = list_entry(desc->list.next,
1166					struct descriptor_buffer, list);
1167		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1168		last = find_branch_descriptor(d, z);
1169
1170		if (!ctx->callback(ctx, d, last))
1171			break;
1172
1173		if (old_desc != desc) {
1174			// If we've advanced to the next buffer, move the previous buffer to the
1175			// free list.
 
1176			old_desc->used = 0;
1177			guard(spinlock_irqsave)(&ctx->ohci->lock);
1178			list_move_tail(&old_desc->list, &ctx->buffer_list);
 
1179		}
1180		ctx->last = last;
1181	}
1182}
1183
1184static void context_tasklet(unsigned long data)
1185{
1186	struct context *ctx = (struct context *) data;
1187
1188	context_retire_descriptors(ctx);
1189}
1190
1191static void ohci_isoc_context_work(struct work_struct *work)
1192{
1193	struct fw_iso_context *base = container_of(work, struct fw_iso_context, work);
1194	struct iso_context *isoc_ctx = container_of(base, struct iso_context, base);
1195
1196	context_retire_descriptors(&isoc_ctx->context);
1197}
1198
1199/*
1200 * Allocate a new buffer and add it to the list of free buffers for this
1201 * context.  Must be called with ohci->lock held.
1202 */
1203static int context_add_buffer(struct context *ctx)
1204{
1205	struct descriptor_buffer *desc;
1206	dma_addr_t bus_addr;
1207	int offset;
1208
1209	/*
1210	 * 16MB of descriptors should be far more than enough for any DMA
1211	 * program.  This will catch run-away userspace or DoS attacks.
1212	 */
1213	if (ctx->total_allocation >= 16*1024*1024)
1214		return -ENOMEM;
1215
1216	desc = dmam_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE, &bus_addr, GFP_ATOMIC);
 
1217	if (!desc)
1218		return -ENOMEM;
1219
1220	offset = (void *)&desc->buffer - (void *)desc;
1221	/*
1222	 * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
1223	 * for descriptors, even 0x10-byte ones. This can cause page faults when
1224	 * an IOMMU is in use and the oversized read crosses a page boundary.
1225	 * Work around this by always leaving at least 0x10 bytes of padding.
1226	 */
1227	desc->buffer_size = PAGE_SIZE - offset - 0x10;
1228	desc->buffer_bus = bus_addr + offset;
1229	desc->used = 0;
1230
1231	list_add_tail(&desc->list, &ctx->buffer_list);
1232	ctx->total_allocation += PAGE_SIZE;
1233
1234	return 0;
1235}
1236
1237static int context_init(struct context *ctx, struct fw_ohci *ohci,
1238			u32 regs, descriptor_callback_t callback)
1239{
1240	ctx->ohci = ohci;
1241	ctx->regs = regs;
1242	ctx->total_allocation = 0;
1243
1244	INIT_LIST_HEAD(&ctx->buffer_list);
1245	if (context_add_buffer(ctx) < 0)
1246		return -ENOMEM;
1247
1248	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1249			struct descriptor_buffer, list);
1250
1251	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1252	ctx->callback = callback;
1253
1254	/*
1255	 * We put a dummy descriptor in the buffer that has a NULL
1256	 * branch address and looks like it's been sent.  That way we
1257	 * have a descriptor to append DMA programs to.
1258	 */
1259	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1260	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1261	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1262	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1263	ctx->last = ctx->buffer_tail->buffer;
1264	ctx->prev = ctx->buffer_tail->buffer;
1265	ctx->prev_z = 1;
1266
1267	return 0;
1268}
1269
1270static void context_release(struct context *ctx)
1271{
1272	struct fw_card *card = &ctx->ohci->card;
1273	struct descriptor_buffer *desc, *tmp;
1274
1275	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list) {
1276		dmam_free_coherent(card->device, PAGE_SIZE, desc,
1277				   desc->buffer_bus - ((void *)&desc->buffer - (void *)desc));
1278	}
1279}
1280
1281/* Must be called with ohci->lock held */
1282static struct descriptor *context_get_descriptors(struct context *ctx,
1283						  int z, dma_addr_t *d_bus)
1284{
1285	struct descriptor *d = NULL;
1286	struct descriptor_buffer *desc = ctx->buffer_tail;
1287
1288	if (z * sizeof(*d) > desc->buffer_size)
1289		return NULL;
1290
1291	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1292		/* No room for the descriptor in this buffer, so advance to the
1293		 * next one. */
1294
1295		if (desc->list.next == &ctx->buffer_list) {
1296			/* If there is no free buffer next in the list,
1297			 * allocate one. */
1298			if (context_add_buffer(ctx) < 0)
1299				return NULL;
1300		}
1301		desc = list_entry(desc->list.next,
1302				struct descriptor_buffer, list);
1303		ctx->buffer_tail = desc;
1304	}
1305
1306	d = desc->buffer + desc->used / sizeof(*d);
1307	memset(d, 0, z * sizeof(*d));
1308	*d_bus = desc->buffer_bus + desc->used;
1309
1310	return d;
1311}
1312
1313static void context_run(struct context *ctx, u32 extra)
1314{
1315	struct fw_ohci *ohci = ctx->ohci;
1316
1317	reg_write(ohci, COMMAND_PTR(ctx->regs),
1318		  le32_to_cpu(ctx->last->branch_address));
1319	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1320	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1321	ctx->running = true;
1322	flush_writes(ohci);
1323}
1324
1325static void context_append(struct context *ctx,
1326			   struct descriptor *d, int z, int extra)
1327{
1328	dma_addr_t d_bus;
1329	struct descriptor_buffer *desc = ctx->buffer_tail;
1330	struct descriptor *d_branch;
1331
1332	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1333
1334	desc->used += (z + extra) * sizeof(*d);
1335
1336	wmb(); /* finish init of new descriptors before branch_address update */
1337
1338	d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1339	d_branch->branch_address = cpu_to_le32(d_bus | z);
1340
1341	/*
1342	 * VT6306 incorrectly checks only the single descriptor at the
1343	 * CommandPtr when the wake bit is written, so if it's a
1344	 * multi-descriptor block starting with an INPUT_MORE, put a copy of
1345	 * the branch address in the first descriptor.
1346	 *
1347	 * Not doing this for transmit contexts since not sure how it interacts
1348	 * with skip addresses.
1349	 */
1350	if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1351	    d_branch != ctx->prev &&
1352	    (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1353	     cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1354		ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1355	}
1356
1357	ctx->prev = d;
1358	ctx->prev_z = z;
1359}
1360
1361static void context_stop(struct context *ctx)
1362{
1363	struct fw_ohci *ohci = ctx->ohci;
1364	u32 reg;
1365	int i;
1366
1367	reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1368	ctx->running = false;
1369
1370	for (i = 0; i < 1000; i++) {
1371		reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1372		if ((reg & CONTEXT_ACTIVE) == 0)
1373			return;
1374
1375		if (i)
1376			udelay(10);
1377	}
1378	ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1379}
1380
1381struct driver_data {
1382	u8 inline_data[8];
1383	struct fw_packet *packet;
1384};
1385
1386/*
1387 * This function appends a packet to the DMA queue for transmission.
1388 * Must always be called with the ochi->lock held to ensure proper
1389 * generation handling and locking around packet queue manipulation.
1390 */
1391static int at_context_queue_packet(struct context *ctx,
1392				   struct fw_packet *packet)
1393{
1394	struct fw_ohci *ohci = ctx->ohci;
1395	dma_addr_t d_bus, payload_bus;
1396	struct driver_data *driver_data;
1397	struct descriptor *d, *last;
1398	__le32 *header;
1399	int z, tcode;
1400
1401	d = context_get_descriptors(ctx, 4, &d_bus);
1402	if (d == NULL) {
1403		packet->ack = RCODE_SEND_ERROR;
1404		return -1;
1405	}
1406
1407	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1408	d[0].res_count = cpu_to_le16(packet->timestamp);
1409
1410	tcode = async_header_get_tcode(packet->header);
 
 
 
 
 
 
1411	header = (__le32 *) &d[1];
1412	switch (tcode) {
1413	case TCODE_WRITE_QUADLET_REQUEST:
1414	case TCODE_WRITE_BLOCK_REQUEST:
1415	case TCODE_WRITE_RESPONSE:
1416	case TCODE_READ_QUADLET_REQUEST:
1417	case TCODE_READ_BLOCK_REQUEST:
1418	case TCODE_READ_QUADLET_RESPONSE:
1419	case TCODE_READ_BLOCK_RESPONSE:
1420	case TCODE_LOCK_REQUEST:
1421	case TCODE_LOCK_RESPONSE:
1422		ohci1394_at_data_set_src_bus_id(header, false);
1423		ohci1394_at_data_set_speed(header, packet->speed);
1424		ohci1394_at_data_set_tlabel(header, async_header_get_tlabel(packet->header));
1425		ohci1394_at_data_set_retry(header, async_header_get_retry(packet->header));
1426		ohci1394_at_data_set_tcode(header, tcode);
1427
1428		ohci1394_at_data_set_destination_id(header,
1429						    async_header_get_destination(packet->header));
1430
1431		if (ctx == &ctx->ohci->at_response_ctx) {
1432			ohci1394_at_data_set_rcode(header, async_header_get_rcode(packet->header));
1433		} else {
1434			ohci1394_at_data_set_destination_offset(header,
1435							async_header_get_offset(packet->header));
1436		}
1437
1438		if (tcode_is_block_packet(tcode))
1439			header[3] = cpu_to_le32(packet->header[3]);
1440		else
1441			header[3] = (__force __le32) packet->header[3];
1442
1443		d[0].req_count = cpu_to_le16(packet->header_length);
1444		break;
1445	case TCODE_LINK_INTERNAL:
1446		ohci1394_at_data_set_speed(header, packet->speed);
1447		ohci1394_at_data_set_tcode(header, TCODE_LINK_INTERNAL);
1448
 
 
 
1449		header[1] = cpu_to_le32(packet->header[1]);
1450		header[2] = cpu_to_le32(packet->header[2]);
1451		d[0].req_count = cpu_to_le16(12);
1452
1453		if (is_ping_packet(&packet->header[1]))
1454			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1455		break;
1456
1457	case TCODE_STREAM_DATA:
1458		ohci1394_it_data_set_speed(header, packet->speed);
1459		ohci1394_it_data_set_tag(header, isoc_header_get_tag(packet->header[0]));
1460		ohci1394_it_data_set_channel(header, isoc_header_get_channel(packet->header[0]));
1461		ohci1394_it_data_set_tcode(header, TCODE_STREAM_DATA);
1462		ohci1394_it_data_set_sync(header, isoc_header_get_sy(packet->header[0]));
1463
1464		ohci1394_it_data_set_data_length(header, isoc_header_get_data_length(packet->header[0]));
1465
1466		d[0].req_count = cpu_to_le16(8);
1467		break;
1468
1469	default:
1470		/* BUG(); */
1471		packet->ack = RCODE_SEND_ERROR;
1472		return -1;
1473	}
1474
1475	BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1476	driver_data = (struct driver_data *) &d[3];
1477	driver_data->packet = packet;
1478	packet->driver_data = driver_data;
1479
1480	if (packet->payload_length > 0) {
1481		if (packet->payload_length > sizeof(driver_data->inline_data)) {
1482			payload_bus = dma_map_single(ohci->card.device,
1483						     packet->payload,
1484						     packet->payload_length,
1485						     DMA_TO_DEVICE);
1486			if (dma_mapping_error(ohci->card.device, payload_bus)) {
1487				packet->ack = RCODE_SEND_ERROR;
1488				return -1;
1489			}
1490			packet->payload_bus	= payload_bus;
1491			packet->payload_mapped	= true;
1492		} else {
1493			memcpy(driver_data->inline_data, packet->payload,
1494			       packet->payload_length);
1495			payload_bus = d_bus + 3 * sizeof(*d);
1496		}
1497
1498		d[2].req_count    = cpu_to_le16(packet->payload_length);
1499		d[2].data_address = cpu_to_le32(payload_bus);
1500		last = &d[2];
1501		z = 3;
1502	} else {
1503		last = &d[0];
1504		z = 2;
1505	}
1506
1507	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1508				     DESCRIPTOR_IRQ_ALWAYS |
1509				     DESCRIPTOR_BRANCH_ALWAYS);
1510
1511	/* FIXME: Document how the locking works. */
1512	if (ohci->generation != packet->generation) {
1513		if (packet->payload_mapped)
1514			dma_unmap_single(ohci->card.device, payload_bus,
1515					 packet->payload_length, DMA_TO_DEVICE);
1516		packet->ack = RCODE_GENERATION;
1517		return -1;
1518	}
1519
1520	context_append(ctx, d, z, 4 - z);
1521
1522	if (ctx->running)
1523		reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1524	else
1525		context_run(ctx, 0);
1526
1527	return 0;
1528}
1529
1530static void at_context_flush(struct context *ctx)
1531{
1532	tasklet_disable(&ctx->tasklet);
1533
1534	ctx->flushing = true;
1535	context_tasklet((unsigned long)ctx);
1536	ctx->flushing = false;
1537
1538	tasklet_enable(&ctx->tasklet);
1539}
1540
1541static int handle_at_packet(struct context *context,
1542			    struct descriptor *d,
1543			    struct descriptor *last)
1544{
1545	struct driver_data *driver_data;
1546	struct fw_packet *packet;
1547	struct fw_ohci *ohci = context->ohci;
1548	int evt;
1549
1550	if (last->transfer_status == 0 && !context->flushing)
1551		/* This descriptor isn't done yet, stop iteration. */
1552		return 0;
1553
1554	driver_data = (struct driver_data *) &d[3];
1555	packet = driver_data->packet;
1556	if (packet == NULL)
1557		/* This packet was cancelled, just continue. */
1558		return 1;
1559
1560	if (packet->payload_mapped)
1561		dma_unmap_single(ohci->card.device, packet->payload_bus,
1562				 packet->payload_length, DMA_TO_DEVICE);
1563
1564	evt = le16_to_cpu(last->transfer_status) & 0x1f;
1565	packet->timestamp = le16_to_cpu(last->res_count);
1566
1567	log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1568
1569	switch (evt) {
1570	case OHCI1394_evt_timeout:
1571		/* Async response transmit timed out. */
1572		packet->ack = RCODE_CANCELLED;
1573		break;
1574
1575	case OHCI1394_evt_flushed:
1576		/*
1577		 * The packet was flushed should give same error as
1578		 * when we try to use a stale generation count.
1579		 */
1580		packet->ack = RCODE_GENERATION;
1581		break;
1582
1583	case OHCI1394_evt_missing_ack:
1584		if (context->flushing)
1585			packet->ack = RCODE_GENERATION;
1586		else {
1587			/*
1588			 * Using a valid (current) generation count, but the
1589			 * node is not on the bus or not sending acks.
1590			 */
1591			packet->ack = RCODE_NO_ACK;
1592		}
1593		break;
1594
1595	case ACK_COMPLETE + 0x10:
1596	case ACK_PENDING + 0x10:
1597	case ACK_BUSY_X + 0x10:
1598	case ACK_BUSY_A + 0x10:
1599	case ACK_BUSY_B + 0x10:
1600	case ACK_DATA_ERROR + 0x10:
1601	case ACK_TYPE_ERROR + 0x10:
1602		packet->ack = evt - 0x10;
1603		break;
1604
1605	case OHCI1394_evt_no_status:
1606		if (context->flushing) {
1607			packet->ack = RCODE_GENERATION;
1608			break;
1609		}
1610		fallthrough;
1611
1612	default:
1613		packet->ack = RCODE_SEND_ERROR;
1614		break;
1615	}
1616
1617	packet->callback(packet, &ohci->card, packet->ack);
1618
1619	return 1;
1620}
1621
1622static u32 get_cycle_time(struct fw_ohci *ohci);
 
 
 
 
1623
1624static void handle_local_rom(struct fw_ohci *ohci,
1625			     struct fw_packet *packet, u32 csr)
1626{
1627	struct fw_packet response;
1628	int tcode, length, i;
1629
1630	tcode = async_header_get_tcode(packet->header);
1631	if (tcode_is_block_packet(tcode))
1632		length = async_header_get_data_length(packet->header);
1633	else
1634		length = 4;
1635
1636	i = csr - CSR_CONFIG_ROM;
1637	if (i + length > CONFIG_ROM_SIZE) {
1638		fw_fill_response(&response, packet->header,
1639				 RCODE_ADDRESS_ERROR, NULL, 0);
1640	} else if (!tcode_is_read_request(tcode)) {
1641		fw_fill_response(&response, packet->header,
1642				 RCODE_TYPE_ERROR, NULL, 0);
1643	} else {
1644		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1645				 (void *) ohci->config_rom + i, length);
1646	}
1647
1648	// Timestamping on behalf of the hardware.
1649	response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1650	fw_core_handle_response(&ohci->card, &response);
1651}
1652
1653static void handle_local_lock(struct fw_ohci *ohci,
1654			      struct fw_packet *packet, u32 csr)
1655{
1656	struct fw_packet response;
1657	int tcode, length, ext_tcode, sel, try;
1658	__be32 *payload, lock_old;
1659	u32 lock_arg, lock_data;
1660
1661	tcode = async_header_get_tcode(packet->header);
1662	length = async_header_get_data_length(packet->header);
1663	payload = packet->payload;
1664	ext_tcode = async_header_get_extended_tcode(packet->header);
1665
1666	if (tcode == TCODE_LOCK_REQUEST &&
1667	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1668		lock_arg = be32_to_cpu(payload[0]);
1669		lock_data = be32_to_cpu(payload[1]);
1670	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1671		lock_arg = 0;
1672		lock_data = 0;
1673	} else {
1674		fw_fill_response(&response, packet->header,
1675				 RCODE_TYPE_ERROR, NULL, 0);
1676		goto out;
1677	}
1678
1679	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1680	reg_write(ohci, OHCI1394_CSRData, lock_data);
1681	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1682	reg_write(ohci, OHCI1394_CSRControl, sel);
1683
1684	for (try = 0; try < 20; try++)
1685		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1686			lock_old = cpu_to_be32(reg_read(ohci,
1687							OHCI1394_CSRData));
1688			fw_fill_response(&response, packet->header,
1689					 RCODE_COMPLETE,
1690					 &lock_old, sizeof(lock_old));
1691			goto out;
1692		}
1693
1694	ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1695	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1696
1697 out:
1698	// Timestamping on behalf of the hardware.
1699	response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1700	fw_core_handle_response(&ohci->card, &response);
1701}
1702
1703static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1704{
1705	u64 offset, csr;
1706
1707	if (ctx == &ctx->ohci->at_request_ctx) {
1708		packet->ack = ACK_PENDING;
1709		packet->callback(packet, &ctx->ohci->card, packet->ack);
1710	}
1711
1712	offset = async_header_get_offset(packet->header);
 
 
 
1713	csr = offset - CSR_REGISTER_BASE;
1714
1715	/* Handle config rom reads. */
1716	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1717		handle_local_rom(ctx->ohci, packet, csr);
1718	else switch (csr) {
1719	case CSR_BUS_MANAGER_ID:
1720	case CSR_BANDWIDTH_AVAILABLE:
1721	case CSR_CHANNELS_AVAILABLE_HI:
1722	case CSR_CHANNELS_AVAILABLE_LO:
1723		handle_local_lock(ctx->ohci, packet, csr);
1724		break;
1725	default:
1726		if (ctx == &ctx->ohci->at_request_ctx)
1727			fw_core_handle_request(&ctx->ohci->card, packet);
1728		else
1729			fw_core_handle_response(&ctx->ohci->card, packet);
1730		break;
1731	}
1732
1733	if (ctx == &ctx->ohci->at_response_ctx) {
1734		packet->ack = ACK_COMPLETE;
1735		packet->callback(packet, &ctx->ohci->card, packet->ack);
1736	}
1737}
1738
1739static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1740{
1741	unsigned long flags;
1742	int ret;
1743
1744	spin_lock_irqsave(&ctx->ohci->lock, flags);
1745
1746	if (async_header_get_destination(packet->header) == ctx->ohci->node_id &&
1747	    ctx->ohci->generation == packet->generation) {
1748		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1749
1750		// Timestamping on behalf of the hardware.
1751		packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ctx->ohci));
1752
1753		handle_local_request(ctx, packet);
1754		return;
1755	}
1756
1757	ret = at_context_queue_packet(ctx, packet);
1758	spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1759
1760	if (ret < 0) {
1761		// Timestamping on behalf of the hardware.
1762		packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ctx->ohci));
1763
1764		packet->callback(packet, &ctx->ohci->card, packet->ack);
1765	}
1766}
1767
1768static void detect_dead_context(struct fw_ohci *ohci,
1769				const char *name, unsigned int regs)
1770{
1771	u32 ctl;
1772
1773	ctl = reg_read(ohci, CONTROL_SET(regs));
1774	if (ctl & CONTEXT_DEAD)
1775		ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1776			name, evts[ctl & 0x1f]);
1777}
1778
1779static void handle_dead_contexts(struct fw_ohci *ohci)
1780{
1781	unsigned int i;
1782	char name[8];
1783
1784	detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1785	detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1786	detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1787	detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1788	for (i = 0; i < 32; ++i) {
1789		if (!(ohci->it_context_support & (1 << i)))
1790			continue;
1791		sprintf(name, "IT%u", i);
1792		detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1793	}
1794	for (i = 0; i < 32; ++i) {
1795		if (!(ohci->ir_context_support & (1 << i)))
1796			continue;
1797		sprintf(name, "IR%u", i);
1798		detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1799	}
1800	/* TODO: maybe try to flush and restart the dead contexts */
1801}
1802
1803static u32 cycle_timer_ticks(u32 cycle_timer)
1804{
1805	u32 ticks;
1806
1807	ticks = cycle_timer & 0xfff;
1808	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1809	ticks += (3072 * 8000) * (cycle_timer >> 25);
1810
1811	return ticks;
1812}
1813
1814/*
1815 * Some controllers exhibit one or more of the following bugs when updating the
1816 * iso cycle timer register:
1817 *  - When the lowest six bits are wrapping around to zero, a read that happens
1818 *    at the same time will return garbage in the lowest ten bits.
1819 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1820 *    not incremented for about 60 ns.
1821 *  - Occasionally, the entire register reads zero.
1822 *
1823 * To catch these, we read the register three times and ensure that the
1824 * difference between each two consecutive reads is approximately the same, i.e.
1825 * less than twice the other.  Furthermore, any negative difference indicates an
1826 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1827 * execute, so we have enough precision to compute the ratio of the differences.)
1828 */
1829static u32 get_cycle_time(struct fw_ohci *ohci)
1830{
1831	u32 c0, c1, c2;
1832	u32 t0, t1, t2;
1833	s32 diff01, diff12;
1834	int i;
1835
1836	if (has_reboot_by_cycle_timer_read_quirk(ohci))
1837		return 0;
1838
1839	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1840
1841	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1842		i = 0;
1843		c1 = c2;
1844		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1845		do {
1846			c0 = c1;
1847			c1 = c2;
1848			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1849			t0 = cycle_timer_ticks(c0);
1850			t1 = cycle_timer_ticks(c1);
1851			t2 = cycle_timer_ticks(c2);
1852			diff01 = t1 - t0;
1853			diff12 = t2 - t1;
1854		} while ((diff01 <= 0 || diff12 <= 0 ||
1855			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1856			 && i++ < 20);
1857	}
1858
1859	return c2;
1860}
1861
1862/*
1863 * This function has to be called at least every 64 seconds.  The bus_time
1864 * field stores not only the upper 25 bits of the BUS_TIME register but also
1865 * the most significant bit of the cycle timer in bit 6 so that we can detect
1866 * changes in this bit.
1867 */
1868static u32 update_bus_time(struct fw_ohci *ohci)
1869{
1870	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1871
1872	if (unlikely(!ohci->bus_time_running)) {
1873		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1874		ohci->bus_time = (lower_32_bits(ktime_get_seconds()) & ~0x7f) |
1875		                 (cycle_time_seconds & 0x40);
1876		ohci->bus_time_running = true;
1877	}
1878
1879	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1880		ohci->bus_time += 0x40;
1881
1882	return ohci->bus_time | cycle_time_seconds;
1883}
1884
1885static int get_status_for_port(struct fw_ohci *ohci, int port_index,
1886			       enum phy_packet_self_id_port_status *status)
1887{
1888	int reg;
1889
1890	scoped_guard(mutex, &ohci->phy_reg_mutex) {
1891		reg = write_phy_reg(ohci, 7, port_index);
1892		if (reg < 0)
1893			return reg;
1894
1895		reg = read_phy_reg(ohci, 8);
1896		if (reg < 0)
1897			return reg;
1898	}
1899
1900	switch (reg & 0x0f) {
1901	case 0x06:
1902		// is child node (connected to parent node)
1903		*status = PHY_PACKET_SELF_ID_PORT_STATUS_PARENT;
1904		break;
1905	case 0x0e:
1906		// is parent node (connected to child node)
1907		*status = PHY_PACKET_SELF_ID_PORT_STATUS_CHILD;
1908		break;
1909	default:
1910		// not connected
1911		*status = PHY_PACKET_SELF_ID_PORT_STATUS_NCONN;
1912		break;
1913	}
1914
1915	return 0;
1916}
1917
1918static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1919	int self_id_count)
1920{
1921	unsigned int left_phy_id = phy_packet_self_id_get_phy_id(self_id);
1922	int i;
 
1923
1924	for (i = 0; i < self_id_count; i++) {
1925		u32 entry = ohci->self_id_buffer[i];
1926		unsigned int right_phy_id = phy_packet_self_id_get_phy_id(entry);
1927
1928		if (left_phy_id == right_phy_id)
1929			return -1;
1930		if (left_phy_id < right_phy_id)
1931			return i;
1932	}
1933	return i;
1934}
1935
1936static int detect_initiated_reset(struct fw_ohci *ohci, bool *is_initiated_reset)
1937{
1938	int reg;
 
1939
1940	guard(mutex)(&ohci->phy_reg_mutex);
1941
1942	// Select page 7
1943	reg = write_phy_reg(ohci, 7, 0xe0);
1944	if (reg < 0)
1945		return reg;
1946
1947	reg = read_phy_reg(ohci, 8);
1948	if (reg < 0)
1949		return reg;
1950
1951	// set PMODE bit
1952	reg |= 0x40;
1953	reg = write_phy_reg(ohci, 8, reg);
1954	if (reg < 0)
1955		return reg;
1956
1957	// read register 12
1958	reg = read_phy_reg(ohci, 12);
1959	if (reg < 0)
1960		return reg;
1961
1962	// bit 3 indicates "initiated reset"
1963	*is_initiated_reset = !!((reg & 0x08) == 0x08);
1964
1965	return 0;
1966}
1967
1968/*
1969 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1970 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1971 * Construct the selfID from phy register contents.
1972 */
1973static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1974{
1975	int reg, i, pos, err;
1976	bool is_initiated_reset;
1977	u32 self_id = 0;
1978
1979	// link active 1, speed 3, bridge 0, contender 1, more packets 0.
1980	phy_packet_set_packet_identifier(&self_id, PHY_PACKET_PACKET_IDENTIFIER_SELF_ID);
1981	phy_packet_self_id_zero_set_link_active(&self_id, true);
1982	phy_packet_self_id_zero_set_scode(&self_id, SCODE_800);
1983	phy_packet_self_id_zero_set_contender(&self_id, true);
1984
1985	reg = reg_read(ohci, OHCI1394_NodeID);
1986	if (!(reg & OHCI1394_NodeID_idValid)) {
1987		ohci_notice(ohci,
1988			    "node ID not valid, new bus reset in progress\n");
1989		return -EBUSY;
1990	}
1991	phy_packet_self_id_set_phy_id(&self_id, reg & 0x3f);
1992
1993	reg = ohci_read_phy_reg(&ohci->card, 4);
1994	if (reg < 0)
1995		return reg;
1996	phy_packet_self_id_zero_set_power_class(&self_id, reg & 0x07);
1997
1998	reg = ohci_read_phy_reg(&ohci->card, 1);
1999	if (reg < 0)
2000		return reg;
2001	phy_packet_self_id_zero_set_gap_count(&self_id, reg & 0x3f);
2002
2003	for (i = 0; i < 3; i++) {
2004		enum phy_packet_self_id_port_status status;
2005
2006		err = get_status_for_port(ohci, i, &status);
2007		if (err < 0)
2008			return err;
2009
2010		self_id_sequence_set_port_status(&self_id, 1, i, status);
2011	}
2012
2013	err = detect_initiated_reset(ohci, &is_initiated_reset);
2014	if (err < 0)
2015		return err;
2016	phy_packet_self_id_zero_set_initiated_reset(&self_id, is_initiated_reset);
2017
2018	pos = get_self_id_pos(ohci, self_id, self_id_count);
2019	if (pos >= 0) {
2020		memmove(&(ohci->self_id_buffer[pos+1]),
2021			&(ohci->self_id_buffer[pos]),
2022			(self_id_count - pos) * sizeof(*ohci->self_id_buffer));
2023		ohci->self_id_buffer[pos] = self_id;
2024		self_id_count++;
2025	}
2026	return self_id_count;
2027}
2028
2029static void bus_reset_work(struct work_struct *work)
2030{
2031	struct fw_ohci *ohci =
2032		container_of(work, struct fw_ohci, bus_reset_work);
2033	int self_id_count, generation, new_generation, i, j;
2034	u32 reg, quadlet;
2035	void *free_rom = NULL;
2036	dma_addr_t free_rom_bus = 0;
2037	bool is_new_root;
2038
2039	reg = reg_read(ohci, OHCI1394_NodeID);
2040	if (!(reg & OHCI1394_NodeID_idValid)) {
2041		ohci_notice(ohci,
2042			    "node ID not valid, new bus reset in progress\n");
2043		return;
2044	}
2045	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
2046		ohci_notice(ohci, "malconfigured bus\n");
2047		return;
2048	}
2049	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
2050			       OHCI1394_NodeID_nodeNumber);
2051
2052	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
2053	if (!(ohci->is_root && is_new_root))
2054		reg_write(ohci, OHCI1394_LinkControlSet,
2055			  OHCI1394_LinkControl_cycleMaster);
2056	ohci->is_root = is_new_root;
2057
2058	reg = reg_read(ohci, OHCI1394_SelfIDCount);
2059	if (ohci1394_self_id_count_is_error(reg)) {
2060		ohci_notice(ohci, "self ID receive error\n");
2061		return;
2062	}
2063	/*
2064	 * The count in the SelfIDCount register is the number of
2065	 * bytes in the self ID receive buffer.  Since we also receive
2066	 * the inverted quadlets and a header quadlet, we shift one
2067	 * bit extra to get the actual number of self IDs.
2068	 */
2069	self_id_count = ohci1394_self_id_count_get_size(reg) >> 1;
2070
2071	if (self_id_count > 252) {
2072		ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
2073		return;
2074	}
2075
2076	quadlet = cond_le32_to_cpu(ohci->self_id[0], has_be_header_quirk(ohci));
2077	generation = ohci1394_self_id_receive_q0_get_generation(quadlet);
2078	rmb();
2079
2080	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
2081		u32 id  = cond_le32_to_cpu(ohci->self_id[i], has_be_header_quirk(ohci));
2082		u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1], has_be_header_quirk(ohci));
2083
2084		if (id != ~id2) {
2085			/*
2086			 * If the invalid data looks like a cycle start packet,
2087			 * it's likely to be the result of the cycle master
2088			 * having a wrong gap count.  In this case, the self IDs
2089			 * so far are valid and should be processed so that the
2090			 * bus manager can then correct the gap count.
2091			 */
2092			if (id == 0xffff008f) {
2093				ohci_notice(ohci, "ignoring spurious self IDs\n");
2094				self_id_count = j;
2095				break;
2096			}
2097
2098			ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
2099				    j, self_id_count, id, id2);
2100			return;
2101		}
2102		ohci->self_id_buffer[j] = id;
2103	}
2104
2105	if (ohci->quirks & QUIRK_TI_SLLZ059) {
2106		self_id_count = find_and_insert_self_id(ohci, self_id_count);
2107		if (self_id_count < 0) {
2108			ohci_notice(ohci,
2109				    "could not construct local self ID\n");
2110			return;
2111		}
2112	}
2113
2114	if (self_id_count == 0) {
2115		ohci_notice(ohci, "no self IDs\n");
2116		return;
2117	}
2118	rmb();
2119
2120	/*
2121	 * Check the consistency of the self IDs we just read.  The
2122	 * problem we face is that a new bus reset can start while we
2123	 * read out the self IDs from the DMA buffer. If this happens,
2124	 * the DMA buffer will be overwritten with new self IDs and we
2125	 * will read out inconsistent data.  The OHCI specification
2126	 * (section 11.2) recommends a technique similar to
2127	 * linux/seqlock.h, where we remember the generation of the
2128	 * self IDs in the buffer before reading them out and compare
2129	 * it to the current generation after reading them out.  If
2130	 * the two generations match we know we have a consistent set
2131	 * of self IDs.
2132	 */
2133
2134	reg = reg_read(ohci, OHCI1394_SelfIDCount);
2135	new_generation = ohci1394_self_id_count_get_generation(reg);
2136	if (new_generation != generation) {
2137		ohci_notice(ohci, "new bus reset, discarding self ids\n");
2138		return;
2139	}
2140
2141	// FIXME: Document how the locking works.
2142	scoped_guard(spinlock_irq, &ohci->lock) {
2143		ohci->generation = -1; // prevent AT packet queueing
2144		context_stop(&ohci->at_request_ctx);
2145		context_stop(&ohci->at_response_ctx);
2146	}
 
 
2147
2148	/*
2149	 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2150	 * packets in the AT queues and software needs to drain them.
2151	 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2152	 */
2153	at_context_flush(&ohci->at_request_ctx);
2154	at_context_flush(&ohci->at_response_ctx);
2155
2156	scoped_guard(spinlock_irq, &ohci->lock) {
2157		ohci->generation = generation;
2158		reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2159		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
2160
2161		if (ohci->quirks & QUIRK_RESET_PACKET)
2162			ohci->request_generation = generation;
2163
2164		// This next bit is unrelated to the AT context stuff but we have to do it under the
2165		// spinlock also. If a new config rom was set up before this reset, the old one is
2166		// now no longer in use and we can free it. Update the config rom pointers to point
2167		// to the current config rom and clear the next_config_rom pointer so a new update
2168		// can take place.
2169		if (ohci->next_config_rom != NULL) {
2170			if (ohci->next_config_rom != ohci->config_rom) {
2171				free_rom      = ohci->config_rom;
2172				free_rom_bus  = ohci->config_rom_bus;
2173			}
2174			ohci->config_rom      = ohci->next_config_rom;
2175			ohci->config_rom_bus  = ohci->next_config_rom_bus;
2176			ohci->next_config_rom = NULL;
2177
2178			// Restore config_rom image and manually update config_rom registers.
2179			// Writing the header quadlet will indicate that the config rom is ready,
2180			// so we do that last.
2181			reg_write(ohci, OHCI1394_BusOptions, be32_to_cpu(ohci->config_rom[2]));
2182			ohci->config_rom[0] = ohci->next_header;
2183			reg_write(ohci, OHCI1394_ConfigROMhdr, be32_to_cpu(ohci->next_header));
2184		}
2185
2186		if (param_remote_dma) {
2187			reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2188			reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2189		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2190	}
2191
 
 
2192	if (free_rom)
2193		dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, free_rom, free_rom_bus);
 
2194
2195	log_selfids(ohci, generation, self_id_count);
2196
2197	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2198				 self_id_count, ohci->self_id_buffer,
2199				 ohci->csr_state_setclear_abdicate);
2200	ohci->csr_state_setclear_abdicate = false;
2201}
2202
2203static irqreturn_t irq_handler(int irq, void *data)
2204{
2205	struct fw_ohci *ohci = data;
2206	u32 event, iso_event;
2207	int i;
2208
2209	event = reg_read(ohci, OHCI1394_IntEventClear);
2210
2211	if (!event || !~event)
2212		return IRQ_NONE;
2213
2214	if (unlikely(param_debug > 0)) {
2215		dev_notice_ratelimited(ohci->card.device,
2216				       "The debug parameter is superseded by tracepoints events, and deprecated.");
2217	}
2218
2219	/*
2220	 * busReset and postedWriteErr events must not be cleared yet
2221	 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2222	 */
2223	reg_write(ohci, OHCI1394_IntEventClear,
2224		  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2225	trace_irqs(ohci->card.index, event);
2226	log_irqs(ohci, event);
2227	// The flag is masked again at bus_reset_work() scheduled by selfID event.
2228	if (event & OHCI1394_busReset)
2229		reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_busReset);
2230
2231	if (event & OHCI1394_selfIDComplete) {
2232		if (trace_self_id_complete_enabled()) {
2233			u32 reg = reg_read(ohci, OHCI1394_SelfIDCount);
2234
2235			trace_self_id_complete(ohci->card.index, reg, ohci->self_id,
2236					       has_be_header_quirk(ohci));
2237		}
2238		queue_work(selfid_workqueue, &ohci->bus_reset_work);
2239	}
2240
2241	if (event & OHCI1394_RQPkt)
2242		tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2243
2244	if (event & OHCI1394_RSPkt)
2245		tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2246
2247	if (event & OHCI1394_reqTxComplete)
2248		tasklet_schedule(&ohci->at_request_ctx.tasklet);
2249
2250	if (event & OHCI1394_respTxComplete)
2251		tasklet_schedule(&ohci->at_response_ctx.tasklet);
2252
2253	if (event & OHCI1394_isochRx) {
2254		iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2255		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2256
2257		while (iso_event) {
2258			i = ffs(iso_event) - 1;
2259			fw_iso_context_schedule_flush_completions(&ohci->ir_context_list[i].base);
 
2260			iso_event &= ~(1 << i);
2261		}
2262	}
2263
2264	if (event & OHCI1394_isochTx) {
2265		iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2266		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2267
2268		while (iso_event) {
2269			i = ffs(iso_event) - 1;
2270			fw_iso_context_schedule_flush_completions(&ohci->it_context_list[i].base);
 
2271			iso_event &= ~(1 << i);
2272		}
2273	}
2274
2275	if (unlikely(event & OHCI1394_regAccessFail))
2276		ohci_err(ohci, "register access failure\n");
2277
2278	if (unlikely(event & OHCI1394_postedWriteErr)) {
2279		reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2280		reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2281		reg_write(ohci, OHCI1394_IntEventClear,
2282			  OHCI1394_postedWriteErr);
2283		dev_err_ratelimited(ohci->card.device, "PCI posted write error\n");
 
2284	}
2285
2286	if (unlikely(event & OHCI1394_cycleTooLong)) {
2287		dev_notice_ratelimited(ohci->card.device, "isochronous cycle too long\n");
 
2288		reg_write(ohci, OHCI1394_LinkControlSet,
2289			  OHCI1394_LinkControl_cycleMaster);
2290	}
2291
2292	if (unlikely(event & OHCI1394_cycleInconsistent)) {
2293		/*
2294		 * We need to clear this event bit in order to make
2295		 * cycleMatch isochronous I/O work.  In theory we should
2296		 * stop active cycleMatch iso contexts now and restart
2297		 * them at least two cycles later.  (FIXME?)
2298		 */
2299		dev_notice_ratelimited(ohci->card.device, "isochronous cycle inconsistent\n");
 
2300	}
2301
2302	if (unlikely(event & OHCI1394_unrecoverableError))
2303		handle_dead_contexts(ohci);
2304
2305	if (event & OHCI1394_cycle64Seconds) {
2306		guard(spinlock)(&ohci->lock);
2307		update_bus_time(ohci);
 
2308	} else
2309		flush_writes(ohci);
2310
2311	return IRQ_HANDLED;
2312}
2313
2314static int software_reset(struct fw_ohci *ohci)
2315{
2316	u32 val;
2317	int i;
2318
2319	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2320	for (i = 0; i < 500; i++) {
2321		val = reg_read(ohci, OHCI1394_HCControlSet);
2322		if (!~val)
2323			return -ENODEV; /* Card was ejected. */
2324
2325		if (!(val & OHCI1394_HCControl_softReset))
2326			return 0;
2327
2328		msleep(1);
2329	}
2330
2331	return -EBUSY;
2332}
2333
2334static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2335{
2336	size_t size = length * 4;
2337
2338	memcpy(dest, src, size);
2339	if (size < CONFIG_ROM_SIZE)
2340		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2341}
2342
2343static int configure_1394a_enhancements(struct fw_ohci *ohci)
2344{
2345	bool enable_1394a;
2346	int ret, clear, set, offset;
2347
2348	/* Check if the driver should configure link and PHY. */
2349	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2350	      OHCI1394_HCControl_programPhyEnable))
2351		return 0;
2352
2353	/* Paranoia: check whether the PHY supports 1394a, too. */
2354	enable_1394a = false;
2355	ret = read_phy_reg(ohci, 2);
2356	if (ret < 0)
2357		return ret;
2358	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2359		ret = read_paged_phy_reg(ohci, 1, 8);
2360		if (ret < 0)
2361			return ret;
2362		if (ret >= 1)
2363			enable_1394a = true;
2364	}
2365
2366	if (ohci->quirks & QUIRK_NO_1394A)
2367		enable_1394a = false;
2368
2369	/* Configure PHY and link consistently. */
2370	if (enable_1394a) {
2371		clear = 0;
2372		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2373	} else {
2374		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2375		set = 0;
2376	}
2377	ret = update_phy_reg(ohci, 5, clear, set);
2378	if (ret < 0)
2379		return ret;
2380
2381	if (enable_1394a)
2382		offset = OHCI1394_HCControlSet;
2383	else
2384		offset = OHCI1394_HCControlClear;
2385	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2386
2387	/* Clean up: configuration has been taken care of. */
2388	reg_write(ohci, OHCI1394_HCControlClear,
2389		  OHCI1394_HCControl_programPhyEnable);
2390
2391	return 0;
2392}
2393
2394static int probe_tsb41ba3d(struct fw_ohci *ohci)
2395{
2396	/* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2397	static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2398	int reg, i;
2399
2400	reg = read_phy_reg(ohci, 2);
2401	if (reg < 0)
2402		return reg;
2403	if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2404		return 0;
2405
2406	for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2407		reg = read_paged_phy_reg(ohci, 1, i + 10);
2408		if (reg < 0)
2409			return reg;
2410		if (reg != id[i])
2411			return 0;
2412	}
2413	return 1;
2414}
2415
2416static int ohci_enable(struct fw_card *card,
2417		       const __be32 *config_rom, size_t length)
2418{
2419	struct fw_ohci *ohci = fw_ohci(card);
2420	u32 lps, version, irqs;
2421	int i, ret;
2422
2423	ret = software_reset(ohci);
2424	if (ret < 0) {
2425		ohci_err(ohci, "failed to reset ohci card\n");
2426		return ret;
2427	}
2428
2429	/*
2430	 * Now enable LPS, which we need in order to start accessing
2431	 * most of the registers.  In fact, on some cards (ALI M5251),
2432	 * accessing registers in the SClk domain without LPS enabled
2433	 * will lock up the machine.  Wait 50msec to make sure we have
2434	 * full link enabled.  However, with some cards (well, at least
2435	 * a JMicron PCIe card), we have to try again sometimes.
2436	 *
2437	 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2438	 * cannot actually use the phy at that time.  These need tens of
2439	 * millisecods pause between LPS write and first phy access too.
2440	 */
2441
2442	reg_write(ohci, OHCI1394_HCControlSet,
2443		  OHCI1394_HCControl_LPS |
2444		  OHCI1394_HCControl_postedWriteEnable);
2445	flush_writes(ohci);
2446
2447	for (lps = 0, i = 0; !lps && i < 3; i++) {
2448		msleep(50);
2449		lps = reg_read(ohci, OHCI1394_HCControlSet) &
2450		      OHCI1394_HCControl_LPS;
2451	}
2452
2453	if (!lps) {
2454		ohci_err(ohci, "failed to set Link Power Status\n");
2455		return -EIO;
2456	}
2457
2458	if (ohci->quirks & QUIRK_TI_SLLZ059) {
2459		ret = probe_tsb41ba3d(ohci);
2460		if (ret < 0)
2461			return ret;
2462		if (ret)
2463			ohci_notice(ohci, "local TSB41BA3D phy\n");
2464		else
2465			ohci->quirks &= ~QUIRK_TI_SLLZ059;
2466	}
2467
2468	reg_write(ohci, OHCI1394_HCControlClear,
2469		  OHCI1394_HCControl_noByteSwapData);
2470
2471	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2472	reg_write(ohci, OHCI1394_LinkControlSet,
2473		  OHCI1394_LinkControl_cycleTimerEnable |
2474		  OHCI1394_LinkControl_cycleMaster);
2475
2476	reg_write(ohci, OHCI1394_ATRetries,
2477		  OHCI1394_MAX_AT_REQ_RETRIES |
2478		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2479		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2480		  (200 << 16));
2481
2482	ohci->bus_time_running = false;
2483
2484	for (i = 0; i < 32; i++)
2485		if (ohci->ir_context_support & (1 << i))
2486			reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2487				  IR_CONTEXT_MULTI_CHANNEL_MODE);
2488
2489	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2490	if (version >= OHCI_VERSION_1_1) {
2491		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2492			  0xfffffffe);
2493		card->broadcast_channel_auto_allocated = true;
2494	}
2495
2496	/* Get implemented bits of the priority arbitration request counter. */
2497	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2498	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2499	reg_write(ohci, OHCI1394_FairnessControl, 0);
2500	card->priority_budget_implemented = ohci->pri_req_max != 0;
2501
2502	reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2503	reg_write(ohci, OHCI1394_IntEventClear, ~0);
2504	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2505
2506	ret = configure_1394a_enhancements(ohci);
2507	if (ret < 0)
2508		return ret;
2509
2510	/* Activate link_on bit and contender bit in our self ID packets.*/
2511	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2512	if (ret < 0)
2513		return ret;
2514
2515	/*
2516	 * When the link is not yet enabled, the atomic config rom
2517	 * update mechanism described below in ohci_set_config_rom()
2518	 * is not active.  We have to update ConfigRomHeader and
2519	 * BusOptions manually, and the write to ConfigROMmap takes
2520	 * effect immediately.  We tie this to the enabling of the
2521	 * link, so we have a valid config rom before enabling - the
2522	 * OHCI requires that ConfigROMhdr and BusOptions have valid
2523	 * values before enabling.
2524	 *
2525	 * However, when the ConfigROMmap is written, some controllers
2526	 * always read back quadlets 0 and 2 from the config rom to
2527	 * the ConfigRomHeader and BusOptions registers on bus reset.
2528	 * They shouldn't do that in this initial case where the link
2529	 * isn't enabled.  This means we have to use the same
2530	 * workaround here, setting the bus header to 0 and then write
2531	 * the right values in the bus reset tasklet.
2532	 */
2533
2534	if (config_rom) {
2535		ohci->next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2536							    &ohci->next_config_rom_bus, GFP_KERNEL);
 
 
2537		if (ohci->next_config_rom == NULL)
2538			return -ENOMEM;
2539
2540		copy_config_rom(ohci->next_config_rom, config_rom, length);
2541	} else {
2542		/*
2543		 * In the suspend case, config_rom is NULL, which
2544		 * means that we just reuse the old config rom.
2545		 */
2546		ohci->next_config_rom = ohci->config_rom;
2547		ohci->next_config_rom_bus = ohci->config_rom_bus;
2548	}
2549
2550	ohci->next_header = ohci->next_config_rom[0];
2551	ohci->next_config_rom[0] = 0;
2552	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2553	reg_write(ohci, OHCI1394_BusOptions,
2554		  be32_to_cpu(ohci->next_config_rom[2]));
2555	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2556
2557	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2558
2559	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2560		OHCI1394_RQPkt | OHCI1394_RSPkt |
2561		OHCI1394_isochTx | OHCI1394_isochRx |
2562		OHCI1394_postedWriteErr |
2563		OHCI1394_selfIDComplete |
2564		OHCI1394_regAccessFail |
2565		OHCI1394_cycleInconsistent |
2566		OHCI1394_unrecoverableError |
2567		OHCI1394_cycleTooLong |
2568		OHCI1394_masterIntEnable |
2569		OHCI1394_busReset;
 
2570	reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2571
2572	reg_write(ohci, OHCI1394_HCControlSet,
2573		  OHCI1394_HCControl_linkEnable |
2574		  OHCI1394_HCControl_BIBimageValid);
2575
2576	reg_write(ohci, OHCI1394_LinkControlSet,
2577		  OHCI1394_LinkControl_rcvSelfID |
2578		  OHCI1394_LinkControl_rcvPhyPkt);
2579
2580	ar_context_run(&ohci->ar_request_ctx);
2581	ar_context_run(&ohci->ar_response_ctx);
2582
2583	flush_writes(ohci);
2584
2585	/* We are ready to go, reset bus to finish initialization. */
2586	fw_schedule_bus_reset(&ohci->card, false, true);
2587
2588	return 0;
2589}
2590
2591static int ohci_set_config_rom(struct fw_card *card,
2592			       const __be32 *config_rom, size_t length)
2593{
2594	struct fw_ohci *ohci;
2595	__be32 *next_config_rom;
2596	dma_addr_t next_config_rom_bus;
2597
2598	ohci = fw_ohci(card);
2599
2600	/*
2601	 * When the OHCI controller is enabled, the config rom update
2602	 * mechanism is a bit tricky, but easy enough to use.  See
2603	 * section 5.5.6 in the OHCI specification.
2604	 *
2605	 * The OHCI controller caches the new config rom address in a
2606	 * shadow register (ConfigROMmapNext) and needs a bus reset
2607	 * for the changes to take place.  When the bus reset is
2608	 * detected, the controller loads the new values for the
2609	 * ConfigRomHeader and BusOptions registers from the specified
2610	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2611	 * shadow register. All automatically and atomically.
2612	 *
2613	 * Now, there's a twist to this story.  The automatic load of
2614	 * ConfigRomHeader and BusOptions doesn't honor the
2615	 * noByteSwapData bit, so with a be32 config rom, the
2616	 * controller will load be32 values in to these registers
2617	 * during the atomic update, even on little endian
2618	 * architectures.  The workaround we use is to put a 0 in the
2619	 * header quadlet; 0 is endian agnostic and means that the
2620	 * config rom isn't ready yet.  In the bus reset tasklet we
2621	 * then set up the real values for the two registers.
2622	 *
2623	 * We use ohci->lock to avoid racing with the code that sets
2624	 * ohci->next_config_rom to NULL (see bus_reset_work).
2625	 */
2626
2627	next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2628					      &next_config_rom_bus, GFP_KERNEL);
 
2629	if (next_config_rom == NULL)
2630		return -ENOMEM;
2631
2632	scoped_guard(spinlock_irq, &ohci->lock) {
2633		// If there is not an already pending config_rom update, push our new allocation
2634		// into the ohci->next_config_rom and then mark the local variable as null so that
2635		// we won't deallocate the new buffer.
2636		//
2637		// OTOH, if there is a pending config_rom update, just use that buffer with the new
2638		// config_rom data, and let this routine free the unused DMA allocation.
2639		if (ohci->next_config_rom == NULL) {
2640			ohci->next_config_rom = next_config_rom;
2641			ohci->next_config_rom_bus = next_config_rom_bus;
2642			next_config_rom = NULL;
2643		}
2644
2645		copy_config_rom(ohci->next_config_rom, config_rom, length);
2646
2647		ohci->next_header = config_rom[0];
2648		ohci->next_config_rom[0] = 0;
 
 
 
 
 
 
 
 
2649
2650		reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
 
 
 
2651	}
2652
 
 
 
 
 
 
 
 
 
2653	/* If we didn't use the DMA allocation, delete it. */
2654	if (next_config_rom != NULL) {
2655		dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, next_config_rom,
2656				   next_config_rom_bus);
2657	}
2658
2659	/*
2660	 * Now initiate a bus reset to have the changes take
2661	 * effect. We clean up the old config rom memory and DMA
2662	 * mappings in the bus reset tasklet, since the OHCI
2663	 * controller could need to access it before the bus reset
2664	 * takes effect.
2665	 */
2666
2667	fw_schedule_bus_reset(&ohci->card, true, true);
2668
2669	return 0;
2670}
2671
2672static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2673{
2674	struct fw_ohci *ohci = fw_ohci(card);
2675
2676	at_context_transmit(&ohci->at_request_ctx, packet);
2677}
2678
2679static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2680{
2681	struct fw_ohci *ohci = fw_ohci(card);
2682
2683	at_context_transmit(&ohci->at_response_ctx, packet);
2684}
2685
2686static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2687{
2688	struct fw_ohci *ohci = fw_ohci(card);
2689	struct context *ctx = &ohci->at_request_ctx;
2690	struct driver_data *driver_data = packet->driver_data;
2691	int ret = -ENOENT;
2692
2693	tasklet_disable_in_atomic(&ctx->tasklet);
2694
2695	if (packet->ack != 0)
2696		goto out;
2697
2698	if (packet->payload_mapped)
2699		dma_unmap_single(ohci->card.device, packet->payload_bus,
2700				 packet->payload_length, DMA_TO_DEVICE);
2701
2702	log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2703	driver_data->packet = NULL;
2704	packet->ack = RCODE_CANCELLED;
2705
2706	// Timestamping on behalf of the hardware.
2707	packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
2708
2709	packet->callback(packet, &ohci->card, packet->ack);
2710	ret = 0;
2711 out:
2712	tasklet_enable(&ctx->tasklet);
2713
2714	return ret;
2715}
2716
2717static int ohci_enable_phys_dma(struct fw_card *card,
2718				int node_id, int generation)
2719{
2720	struct fw_ohci *ohci = fw_ohci(card);
 
2721	int n, ret = 0;
2722
2723	if (param_remote_dma)
2724		return 0;
2725
2726	/*
2727	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2728	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2729	 */
2730
2731	guard(spinlock_irqsave)(&ohci->lock);
2732
2733	if (ohci->generation != generation)
2734		return -ESTALE;
 
 
2735
2736	/*
2737	 * Note, if the node ID contains a non-local bus ID, physical DMA is
2738	 * enabled for _all_ nodes on remote buses.
2739	 */
2740
2741	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2742	if (n < 32)
2743		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2744	else
2745		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2746
2747	flush_writes(ohci);
 
 
2748
2749	return ret;
2750}
2751
2752static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2753{
2754	struct fw_ohci *ohci = fw_ohci(card);
 
2755	u32 value;
2756
2757	switch (csr_offset) {
2758	case CSR_STATE_CLEAR:
2759	case CSR_STATE_SET:
2760		if (ohci->is_root &&
2761		    (reg_read(ohci, OHCI1394_LinkControlSet) &
2762		     OHCI1394_LinkControl_cycleMaster))
2763			value = CSR_STATE_BIT_CMSTR;
2764		else
2765			value = 0;
2766		if (ohci->csr_state_setclear_abdicate)
2767			value |= CSR_STATE_BIT_ABDICATE;
2768
2769		return value;
2770
2771	case CSR_NODE_IDS:
2772		return reg_read(ohci, OHCI1394_NodeID) << 16;
2773
2774	case CSR_CYCLE_TIME:
2775		return get_cycle_time(ohci);
2776
2777	case CSR_BUS_TIME:
2778	{
2779		// We might be called just after the cycle timer has wrapped around but just before
2780		// the cycle64Seconds handler, so we better check here, too, if the bus time needs
2781		// to be updated.
 
 
 
 
 
2782
2783		guard(spinlock_irqsave)(&ohci->lock);
2784		return update_bus_time(ohci);
2785	}
2786	case CSR_BUSY_TIMEOUT:
2787		value = reg_read(ohci, OHCI1394_ATRetries);
2788		return (value >> 4) & 0x0ffff00f;
2789
2790	case CSR_PRIORITY_BUDGET:
2791		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2792			(ohci->pri_req_max << 8);
2793
2794	default:
2795		WARN_ON(1);
2796		return 0;
2797	}
2798}
2799
2800static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2801{
2802	struct fw_ohci *ohci = fw_ohci(card);
 
2803
2804	switch (csr_offset) {
2805	case CSR_STATE_CLEAR:
2806		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2807			reg_write(ohci, OHCI1394_LinkControlClear,
2808				  OHCI1394_LinkControl_cycleMaster);
2809			flush_writes(ohci);
2810		}
2811		if (value & CSR_STATE_BIT_ABDICATE)
2812			ohci->csr_state_setclear_abdicate = false;
2813		break;
2814
2815	case CSR_STATE_SET:
2816		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2817			reg_write(ohci, OHCI1394_LinkControlSet,
2818				  OHCI1394_LinkControl_cycleMaster);
2819			flush_writes(ohci);
2820		}
2821		if (value & CSR_STATE_BIT_ABDICATE)
2822			ohci->csr_state_setclear_abdicate = true;
2823		break;
2824
2825	case CSR_NODE_IDS:
2826		reg_write(ohci, OHCI1394_NodeID, value >> 16);
2827		flush_writes(ohci);
2828		break;
2829
2830	case CSR_CYCLE_TIME:
2831		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2832		reg_write(ohci, OHCI1394_IntEventSet,
2833			  OHCI1394_cycleInconsistent);
2834		flush_writes(ohci);
2835		break;
2836
2837	case CSR_BUS_TIME:
2838	{
2839		guard(spinlock_irqsave)(&ohci->lock);
2840		ohci->bus_time = (update_bus_time(ohci) & 0x40) | (value & ~0x7f);
 
2841		break;
2842	}
2843	case CSR_BUSY_TIMEOUT:
2844		value = (value & 0xf) | ((value & 0xf) << 4) |
2845			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2846		reg_write(ohci, OHCI1394_ATRetries, value);
2847		flush_writes(ohci);
2848		break;
2849
2850	case CSR_PRIORITY_BUDGET:
2851		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2852		flush_writes(ohci);
2853		break;
2854
2855	default:
2856		WARN_ON(1);
2857		break;
2858	}
2859}
2860
2861static void flush_iso_completions(struct iso_context *ctx, enum fw_iso_context_completions_cause cause)
2862{
2863	trace_isoc_inbound_single_completions(&ctx->base, ctx->last_timestamp, cause, ctx->header,
2864					      ctx->header_length);
2865	trace_isoc_outbound_completions(&ctx->base, ctx->last_timestamp, cause, ctx->header,
2866					ctx->header_length);
2867
2868	ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2869			      ctx->header_length, ctx->header,
2870			      ctx->base.callback_data);
2871	ctx->header_length = 0;
2872}
2873
2874static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2875{
2876	u32 *ctx_hdr;
2877
2878	if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2879		if (ctx->base.drop_overflow_headers)
2880			return;
2881		flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_HEADER_OVERFLOW);
2882	}
2883
2884	ctx_hdr = ctx->header + ctx->header_length;
2885	ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2886
2887	/*
2888	 * The two iso header quadlets are byteswapped to little
2889	 * endian by the controller, but we want to present them
2890	 * as big endian for consistency with the bus endianness.
2891	 */
2892	if (ctx->base.header_size > 0)
2893		ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2894	if (ctx->base.header_size > 4)
2895		ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2896	if (ctx->base.header_size > 8)
2897		memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2898	ctx->header_length += ctx->base.header_size;
2899}
2900
2901static int handle_ir_packet_per_buffer(struct context *context,
2902				       struct descriptor *d,
2903				       struct descriptor *last)
2904{
2905	struct iso_context *ctx =
2906		container_of(context, struct iso_context, context);
2907	struct descriptor *pd;
2908	u32 buffer_dma;
2909
2910	for (pd = d; pd <= last; pd++)
2911		if (pd->transfer_status)
2912			break;
2913	if (pd > last)
2914		/* Descriptor(s) not done yet, stop iteration */
2915		return 0;
2916
2917	while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2918		d++;
2919		buffer_dma = le32_to_cpu(d->data_address);
2920		dma_sync_single_range_for_cpu(context->ohci->card.device,
2921					      buffer_dma & PAGE_MASK,
2922					      buffer_dma & ~PAGE_MASK,
2923					      le16_to_cpu(d->req_count),
2924					      DMA_FROM_DEVICE);
2925	}
2926
2927	copy_iso_headers(ctx, (u32 *) (last + 1));
2928
2929	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2930		flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_INTERRUPT);
2931
2932	return 1;
2933}
2934
2935/* d == last because each descriptor block is only a single descriptor. */
2936static int handle_ir_buffer_fill(struct context *context,
2937				 struct descriptor *d,
2938				 struct descriptor *last)
2939{
2940	struct iso_context *ctx =
2941		container_of(context, struct iso_context, context);
2942	unsigned int req_count, res_count, completed;
2943	u32 buffer_dma;
2944
2945	req_count = le16_to_cpu(last->req_count);
2946	res_count = le16_to_cpu(READ_ONCE(last->res_count));
2947	completed = req_count - res_count;
2948	buffer_dma = le32_to_cpu(last->data_address);
2949
2950	if (completed > 0) {
2951		ctx->mc_buffer_bus = buffer_dma;
2952		ctx->mc_completed = completed;
2953	}
2954
2955	if (res_count != 0)
2956		/* Descriptor(s) not done yet, stop iteration */
2957		return 0;
2958
2959	dma_sync_single_range_for_cpu(context->ohci->card.device,
2960				      buffer_dma & PAGE_MASK,
2961				      buffer_dma & ~PAGE_MASK,
2962				      completed, DMA_FROM_DEVICE);
2963
2964	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2965		trace_isoc_inbound_multiple_completions(&ctx->base, completed,
2966							FW_ISO_CONTEXT_COMPLETIONS_CAUSE_INTERRUPT);
2967
2968		ctx->base.callback.mc(&ctx->base,
2969				      buffer_dma + completed,
2970				      ctx->base.callback_data);
2971		ctx->mc_completed = 0;
2972	}
2973
2974	return 1;
2975}
2976
2977static void flush_ir_buffer_fill(struct iso_context *ctx)
2978{
2979	dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2980				      ctx->mc_buffer_bus & PAGE_MASK,
2981				      ctx->mc_buffer_bus & ~PAGE_MASK,
2982				      ctx->mc_completed, DMA_FROM_DEVICE);
2983
2984	trace_isoc_inbound_multiple_completions(&ctx->base, ctx->mc_completed,
2985						FW_ISO_CONTEXT_COMPLETIONS_CAUSE_FLUSH);
2986
2987	ctx->base.callback.mc(&ctx->base,
2988			      ctx->mc_buffer_bus + ctx->mc_completed,
2989			      ctx->base.callback_data);
2990	ctx->mc_completed = 0;
2991}
2992
2993static inline void sync_it_packet_for_cpu(struct context *context,
2994					  struct descriptor *pd)
2995{
2996	__le16 control;
2997	u32 buffer_dma;
2998
2999	/* only packets beginning with OUTPUT_MORE* have data buffers */
3000	if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
3001		return;
3002
3003	/* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
3004	pd += 2;
3005
3006	/*
3007	 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
3008	 * data buffer is in the context program's coherent page and must not
3009	 * be synced.
3010	 */
3011	if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
3012	    (context->current_bus          & PAGE_MASK)) {
3013		if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
3014			return;
3015		pd++;
3016	}
3017
3018	do {
3019		buffer_dma = le32_to_cpu(pd->data_address);
3020		dma_sync_single_range_for_cpu(context->ohci->card.device,
3021					      buffer_dma & PAGE_MASK,
3022					      buffer_dma & ~PAGE_MASK,
3023					      le16_to_cpu(pd->req_count),
3024					      DMA_TO_DEVICE);
3025		control = pd->control;
3026		pd++;
3027	} while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
3028}
3029
3030static int handle_it_packet(struct context *context,
3031			    struct descriptor *d,
3032			    struct descriptor *last)
3033{
3034	struct iso_context *ctx =
3035		container_of(context, struct iso_context, context);
3036	struct descriptor *pd;
3037	__be32 *ctx_hdr;
3038
3039	for (pd = d; pd <= last; pd++)
3040		if (pd->transfer_status)
3041			break;
3042	if (pd > last)
3043		/* Descriptor(s) not done yet, stop iteration */
3044		return 0;
3045
3046	sync_it_packet_for_cpu(context, d);
3047
3048	if (ctx->header_length + 4 > PAGE_SIZE) {
3049		if (ctx->base.drop_overflow_headers)
3050			return 1;
3051		flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_HEADER_OVERFLOW);
3052	}
3053
3054	ctx_hdr = ctx->header + ctx->header_length;
3055	ctx->last_timestamp = le16_to_cpu(last->res_count);
3056	/* Present this value as big-endian to match the receive code */
3057	*ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
3058			       le16_to_cpu(pd->res_count));
3059	ctx->header_length += 4;
3060
3061	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
3062		flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_INTERRUPT);
3063
3064	return 1;
3065}
3066
3067static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
3068{
3069	u32 hi = channels >> 32, lo = channels;
3070
3071	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
3072	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
3073	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
3074	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
 
3075	ohci->mc_channels = channels;
3076}
3077
3078static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
3079				int type, int channel, size_t header_size)
3080{
3081	struct fw_ohci *ohci = fw_ohci(card);
3082	struct iso_context *ctx;
3083	descriptor_callback_t callback;
3084	u64 *channels;
3085	u32 *mask, regs;
3086	int index, ret = -EBUSY;
3087
3088	scoped_guard(spinlock_irq, &ohci->lock) {
3089		switch (type) {
3090		case FW_ISO_CONTEXT_TRANSMIT:
3091			mask     = &ohci->it_context_mask;
3092			callback = handle_it_packet;
3093			index    = ffs(*mask) - 1;
3094			if (index >= 0) {
3095				*mask &= ~(1 << index);
3096				regs = OHCI1394_IsoXmitContextBase(index);
3097				ctx  = &ohci->it_context_list[index];
3098			}
3099			break;
3100
3101		case FW_ISO_CONTEXT_RECEIVE:
3102			channels = &ohci->ir_context_channels;
3103			mask     = &ohci->ir_context_mask;
3104			callback = handle_ir_packet_per_buffer;
3105			index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
3106			if (index >= 0) {
3107				*channels &= ~(1ULL << channel);
3108				*mask     &= ~(1 << index);
3109				regs = OHCI1394_IsoRcvContextBase(index);
3110				ctx  = &ohci->ir_context_list[index];
3111			}
3112			break;
3113
3114		case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3115			mask     = &ohci->ir_context_mask;
3116			callback = handle_ir_buffer_fill;
3117			index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
3118			if (index >= 0) {
3119				ohci->mc_allocated = true;
3120				*mask &= ~(1 << index);
3121				regs = OHCI1394_IsoRcvContextBase(index);
3122				ctx  = &ohci->ir_context_list[index];
3123			}
3124			break;
 
3125
3126		default:
3127			index = -1;
3128			ret = -ENOSYS;
 
 
 
 
 
 
3129		}
 
3130
3131		if (index < 0)
3132			return ERR_PTR(ret);
 
3133	}
3134
 
 
 
 
 
3135	memset(ctx, 0, sizeof(*ctx));
3136	ctx->header_length = 0;
3137	ctx->header = (void *) __get_free_page(GFP_KERNEL);
3138	if (ctx->header == NULL) {
3139		ret = -ENOMEM;
3140		goto out;
3141	}
3142	ret = context_init(&ctx->context, ohci, regs, callback);
3143	if (ret < 0)
3144		goto out_with_header;
3145	fw_iso_context_init_work(&ctx->base, ohci_isoc_context_work);
3146
3147	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3148		set_multichannel_mask(ohci, 0);
3149		ctx->mc_completed = 0;
3150	}
3151
3152	return &ctx->base;
3153
3154 out_with_header:
3155	free_page((unsigned long)ctx->header);
3156 out:
3157	scoped_guard(spinlock_irq, &ohci->lock) {
3158		switch (type) {
3159		case FW_ISO_CONTEXT_RECEIVE:
3160			*channels |= 1ULL << channel;
3161			break;
3162
3163		case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3164			ohci->mc_allocated = false;
3165			break;
3166		}
3167		*mask |= 1 << index;
 
 
 
3168	}
 
 
 
3169
3170	return ERR_PTR(ret);
3171}
3172
3173static int ohci_start_iso(struct fw_iso_context *base,
3174			  s32 cycle, u32 sync, u32 tags)
3175{
3176	struct iso_context *ctx = container_of(base, struct iso_context, base);
3177	struct fw_ohci *ohci = ctx->context.ohci;
3178	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3179	int index;
3180
3181	/* the controller cannot start without any queued packets */
3182	if (ctx->context.last->branch_address == 0)
3183		return -ENODATA;
3184
3185	switch (ctx->base.type) {
3186	case FW_ISO_CONTEXT_TRANSMIT:
3187		index = ctx - ohci->it_context_list;
3188		match = 0;
3189		if (cycle >= 0)
3190			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3191				(cycle & 0x7fff) << 16;
3192
3193		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3194		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3195		context_run(&ctx->context, match);
3196		break;
3197
3198	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3199		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3200		fallthrough;
3201	case FW_ISO_CONTEXT_RECEIVE:
3202		index = ctx - ohci->ir_context_list;
3203		match = (tags << 28) | (sync << 8) | ctx->base.channel;
3204		if (cycle >= 0) {
3205			match |= (cycle & 0x07fff) << 12;
3206			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3207		}
3208
3209		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3210		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3211		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3212		context_run(&ctx->context, control);
3213
3214		ctx->sync = sync;
3215		ctx->tags = tags;
3216
3217		break;
3218	}
3219
3220	return 0;
3221}
3222
3223static int ohci_stop_iso(struct fw_iso_context *base)
3224{
3225	struct fw_ohci *ohci = fw_ohci(base->card);
3226	struct iso_context *ctx = container_of(base, struct iso_context, base);
3227	int index;
3228
3229	switch (ctx->base.type) {
3230	case FW_ISO_CONTEXT_TRANSMIT:
3231		index = ctx - ohci->it_context_list;
3232		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3233		break;
3234
3235	case FW_ISO_CONTEXT_RECEIVE:
3236	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3237		index = ctx - ohci->ir_context_list;
3238		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3239		break;
3240	}
3241	flush_writes(ohci);
3242	context_stop(&ctx->context);
 
3243
3244	return 0;
3245}
3246
3247static void ohci_free_iso_context(struct fw_iso_context *base)
3248{
3249	struct fw_ohci *ohci = fw_ohci(base->card);
3250	struct iso_context *ctx = container_of(base, struct iso_context, base);
 
3251	int index;
3252
3253	ohci_stop_iso(base);
3254	context_release(&ctx->context);
3255	free_page((unsigned long)ctx->header);
3256
3257	guard(spinlock_irqsave)(&ohci->lock);
3258
3259	switch (base->type) {
3260	case FW_ISO_CONTEXT_TRANSMIT:
3261		index = ctx - ohci->it_context_list;
3262		ohci->it_context_mask |= 1 << index;
3263		break;
3264
3265	case FW_ISO_CONTEXT_RECEIVE:
3266		index = ctx - ohci->ir_context_list;
3267		ohci->ir_context_mask |= 1 << index;
3268		ohci->ir_context_channels |= 1ULL << base->channel;
3269		break;
3270
3271	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3272		index = ctx - ohci->ir_context_list;
3273		ohci->ir_context_mask |= 1 << index;
3274		ohci->ir_context_channels |= ohci->mc_channels;
3275		ohci->mc_channels = 0;
3276		ohci->mc_allocated = false;
3277		break;
3278	}
 
 
3279}
3280
3281static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3282{
3283	struct fw_ohci *ohci = fw_ohci(base->card);
 
 
3284
3285	switch (base->type) {
3286	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3287	{
3288		guard(spinlock_irqsave)(&ohci->lock);
3289
3290		// Don't allow multichannel to grab other contexts' channels.
 
 
3291		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3292			*channels = ohci->ir_context_channels;
3293			return -EBUSY;
3294		} else {
3295			set_multichannel_mask(ohci, *channels);
3296			return 0;
3297		}
3298	}
 
 
 
3299	default:
3300		return -EINVAL;
3301	}
 
 
3302}
3303
3304#ifdef CONFIG_PM
3305static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3306{
3307	int i;
3308	struct iso_context *ctx;
3309
3310	for (i = 0 ; i < ohci->n_ir ; i++) {
3311		ctx = &ohci->ir_context_list[i];
3312		if (ctx->context.running)
3313			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3314	}
3315
3316	for (i = 0 ; i < ohci->n_it ; i++) {
3317		ctx = &ohci->it_context_list[i];
3318		if (ctx->context.running)
3319			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3320	}
3321}
3322#endif
3323
3324static int queue_iso_transmit(struct iso_context *ctx,
3325			      struct fw_iso_packet *packet,
3326			      struct fw_iso_buffer *buffer,
3327			      unsigned long payload)
3328{
3329	struct descriptor *d, *last, *pd;
3330	struct fw_iso_packet *p;
3331	__le32 *header;
3332	dma_addr_t d_bus, page_bus;
3333	u32 z, header_z, payload_z, irq;
3334	u32 payload_index, payload_end_index, next_page_index;
3335	int page, end_page, i, length, offset;
3336
3337	p = packet;
3338	payload_index = payload;
3339
3340	if (p->skip)
3341		z = 1;
3342	else
3343		z = 2;
3344	if (p->header_length > 0)
3345		z++;
3346
3347	/* Determine the first page the payload isn't contained in. */
3348	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3349	if (p->payload_length > 0)
3350		payload_z = end_page - (payload_index >> PAGE_SHIFT);
3351	else
3352		payload_z = 0;
3353
3354	z += payload_z;
3355
3356	/* Get header size in number of descriptors. */
3357	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3358
3359	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3360	if (d == NULL)
3361		return -ENOMEM;
3362
3363	if (!p->skip) {
3364		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3365		d[0].req_count = cpu_to_le16(8);
3366		/*
3367		 * Link the skip address to this descriptor itself.  This causes
3368		 * a context to skip a cycle whenever lost cycles or FIFO
3369		 * overruns occur, without dropping the data.  The application
3370		 * should then decide whether this is an error condition or not.
3371		 * FIXME:  Make the context's cycle-lost behaviour configurable?
3372		 */
3373		d[0].branch_address = cpu_to_le32(d_bus | z);
3374
3375		header = (__le32 *) &d[1];
3376
3377		ohci1394_it_data_set_speed(header, ctx->base.speed);
3378		ohci1394_it_data_set_tag(header, p->tag);
3379		ohci1394_it_data_set_channel(header, ctx->base.channel);
3380		ohci1394_it_data_set_tcode(header, TCODE_STREAM_DATA);
3381		ohci1394_it_data_set_sync(header, p->sy);
3382
3383		ohci1394_it_data_set_data_length(header, p->header_length + p->payload_length);
3384	}
3385
3386	if (p->header_length > 0) {
3387		d[2].req_count    = cpu_to_le16(p->header_length);
3388		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3389		memcpy(&d[z], p->header, p->header_length);
3390	}
3391
3392	pd = d + z - payload_z;
3393	payload_end_index = payload_index + p->payload_length;
3394	for (i = 0; i < payload_z; i++) {
3395		page               = payload_index >> PAGE_SHIFT;
3396		offset             = payload_index & ~PAGE_MASK;
3397		next_page_index    = (page + 1) << PAGE_SHIFT;
3398		length             =
3399			min(next_page_index, payload_end_index) - payload_index;
3400		pd[i].req_count    = cpu_to_le16(length);
3401
3402		page_bus = page_private(buffer->pages[page]);
3403		pd[i].data_address = cpu_to_le32(page_bus + offset);
3404
3405		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3406						 page_bus, offset, length,
3407						 DMA_TO_DEVICE);
3408
3409		payload_index += length;
3410	}
3411
3412	if (p->interrupt)
3413		irq = DESCRIPTOR_IRQ_ALWAYS;
3414	else
3415		irq = DESCRIPTOR_NO_IRQ;
3416
3417	last = z == 2 ? d : d + z - 1;
3418	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3419				     DESCRIPTOR_STATUS |
3420				     DESCRIPTOR_BRANCH_ALWAYS |
3421				     irq);
3422
3423	context_append(&ctx->context, d, z, header_z);
3424
3425	return 0;
3426}
3427
3428static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3429				       struct fw_iso_packet *packet,
3430				       struct fw_iso_buffer *buffer,
3431				       unsigned long payload)
3432{
3433	struct device *device = ctx->context.ohci->card.device;
3434	struct descriptor *d, *pd;
3435	dma_addr_t d_bus, page_bus;
3436	u32 z, header_z, rest;
3437	int i, j, length;
3438	int page, offset, packet_count, header_size, payload_per_buffer;
3439
3440	/*
3441	 * The OHCI controller puts the isochronous header and trailer in the
3442	 * buffer, so we need at least 8 bytes.
3443	 */
3444	packet_count = packet->header_length / ctx->base.header_size;
3445	header_size  = max(ctx->base.header_size, (size_t)8);
3446
3447	/* Get header size in number of descriptors. */
3448	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3449	page     = payload >> PAGE_SHIFT;
3450	offset   = payload & ~PAGE_MASK;
3451	payload_per_buffer = packet->payload_length / packet_count;
3452
3453	for (i = 0; i < packet_count; i++) {
3454		/* d points to the header descriptor */
3455		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3456		d = context_get_descriptors(&ctx->context,
3457				z + header_z, &d_bus);
3458		if (d == NULL)
3459			return -ENOMEM;
3460
3461		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3462					      DESCRIPTOR_INPUT_MORE);
3463		if (packet->skip && i == 0)
3464			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3465		d->req_count    = cpu_to_le16(header_size);
3466		d->res_count    = d->req_count;
3467		d->transfer_status = 0;
3468		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3469
3470		rest = payload_per_buffer;
3471		pd = d;
3472		for (j = 1; j < z; j++) {
3473			pd++;
3474			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3475						  DESCRIPTOR_INPUT_MORE);
3476
3477			if (offset + rest < PAGE_SIZE)
3478				length = rest;
3479			else
3480				length = PAGE_SIZE - offset;
3481			pd->req_count = cpu_to_le16(length);
3482			pd->res_count = pd->req_count;
3483			pd->transfer_status = 0;
3484
3485			page_bus = page_private(buffer->pages[page]);
3486			pd->data_address = cpu_to_le32(page_bus + offset);
3487
3488			dma_sync_single_range_for_device(device, page_bus,
3489							 offset, length,
3490							 DMA_FROM_DEVICE);
3491
3492			offset = (offset + length) & ~PAGE_MASK;
3493			rest -= length;
3494			if (offset == 0)
3495				page++;
3496		}
3497		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3498					  DESCRIPTOR_INPUT_LAST |
3499					  DESCRIPTOR_BRANCH_ALWAYS);
3500		if (packet->interrupt && i == packet_count - 1)
3501			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3502
3503		context_append(&ctx->context, d, z, header_z);
3504	}
3505
3506	return 0;
3507}
3508
3509static int queue_iso_buffer_fill(struct iso_context *ctx,
3510				 struct fw_iso_packet *packet,
3511				 struct fw_iso_buffer *buffer,
3512				 unsigned long payload)
3513{
3514	struct descriptor *d;
3515	dma_addr_t d_bus, page_bus;
3516	int page, offset, rest, z, i, length;
3517
3518	page   = payload >> PAGE_SHIFT;
3519	offset = payload & ~PAGE_MASK;
3520	rest   = packet->payload_length;
3521
3522	/* We need one descriptor for each page in the buffer. */
3523	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3524
3525	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3526		return -EFAULT;
3527
3528	for (i = 0; i < z; i++) {
3529		d = context_get_descriptors(&ctx->context, 1, &d_bus);
3530		if (d == NULL)
3531			return -ENOMEM;
3532
3533		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3534					 DESCRIPTOR_BRANCH_ALWAYS);
3535		if (packet->skip && i == 0)
3536			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3537		if (packet->interrupt && i == z - 1)
3538			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3539
3540		if (offset + rest < PAGE_SIZE)
3541			length = rest;
3542		else
3543			length = PAGE_SIZE - offset;
3544		d->req_count = cpu_to_le16(length);
3545		d->res_count = d->req_count;
3546		d->transfer_status = 0;
3547
3548		page_bus = page_private(buffer->pages[page]);
3549		d->data_address = cpu_to_le32(page_bus + offset);
3550
3551		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3552						 page_bus, offset, length,
3553						 DMA_FROM_DEVICE);
3554
3555		rest -= length;
3556		offset = 0;
3557		page++;
3558
3559		context_append(&ctx->context, d, 1, 0);
3560	}
3561
3562	return 0;
3563}
3564
3565static int ohci_queue_iso(struct fw_iso_context *base,
3566			  struct fw_iso_packet *packet,
3567			  struct fw_iso_buffer *buffer,
3568			  unsigned long payload)
3569{
3570	struct iso_context *ctx = container_of(base, struct iso_context, base);
 
 
3571
3572	guard(spinlock_irqsave)(&ctx->context.ohci->lock);
3573
3574	switch (base->type) {
3575	case FW_ISO_CONTEXT_TRANSMIT:
3576		return queue_iso_transmit(ctx, packet, buffer, payload);
 
3577	case FW_ISO_CONTEXT_RECEIVE:
3578		return queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
 
3579	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3580		return queue_iso_buffer_fill(ctx, packet, buffer, payload);
3581	default:
3582		return -ENOSYS;
3583	}
 
 
 
3584}
3585
3586static void ohci_flush_queue_iso(struct fw_iso_context *base)
3587{
3588	struct context *ctx =
3589			&container_of(base, struct iso_context, base)->context;
3590
3591	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3592}
3593
3594static int ohci_flush_iso_completions(struct fw_iso_context *base)
3595{
3596	struct iso_context *ctx = container_of(base, struct iso_context, base);
3597	int ret = 0;
3598
 
 
3599	if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3600		ohci_isoc_context_work(&base->work);
3601
3602		switch (base->type) {
3603		case FW_ISO_CONTEXT_TRANSMIT:
3604		case FW_ISO_CONTEXT_RECEIVE:
3605			if (ctx->header_length != 0)
3606				flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_FLUSH);
3607			break;
3608		case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3609			if (ctx->mc_completed != 0)
3610				flush_ir_buffer_fill(ctx);
3611			break;
3612		default:
3613			ret = -ENOSYS;
3614		}
3615
3616		clear_bit_unlock(0, &ctx->flushing_completions);
3617		smp_mb__after_atomic();
3618	}
3619
 
 
3620	return ret;
3621}
3622
3623static const struct fw_card_driver ohci_driver = {
3624	.enable			= ohci_enable,
3625	.read_phy_reg		= ohci_read_phy_reg,
3626	.update_phy_reg		= ohci_update_phy_reg,
3627	.set_config_rom		= ohci_set_config_rom,
3628	.send_request		= ohci_send_request,
3629	.send_response		= ohci_send_response,
3630	.cancel_packet		= ohci_cancel_packet,
3631	.enable_phys_dma	= ohci_enable_phys_dma,
3632	.read_csr		= ohci_read_csr,
3633	.write_csr		= ohci_write_csr,
3634
3635	.allocate_iso_context	= ohci_allocate_iso_context,
3636	.free_iso_context	= ohci_free_iso_context,
3637	.set_iso_channels	= ohci_set_iso_channels,
3638	.queue_iso		= ohci_queue_iso,
3639	.flush_queue_iso	= ohci_flush_queue_iso,
3640	.flush_iso_completions	= ohci_flush_iso_completions,
3641	.start_iso		= ohci_start_iso,
3642	.stop_iso		= ohci_stop_iso,
3643};
3644
3645#ifdef CONFIG_PPC_PMAC
3646static void pmac_ohci_on(struct pci_dev *dev)
3647{
3648	if (machine_is(powermac)) {
3649		struct device_node *ofn = pci_device_to_OF_node(dev);
3650
3651		if (ofn) {
3652			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3653			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3654		}
3655	}
3656}
3657
3658static void pmac_ohci_off(struct pci_dev *dev)
3659{
3660	if (machine_is(powermac)) {
3661		struct device_node *ofn = pci_device_to_OF_node(dev);
3662
3663		if (ofn) {
3664			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3665			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3666		}
3667	}
3668}
3669#else
3670static inline void pmac_ohci_on(struct pci_dev *dev) {}
3671static inline void pmac_ohci_off(struct pci_dev *dev) {}
3672#endif /* CONFIG_PPC_PMAC */
3673
3674static void release_ohci(struct device *dev, void *data)
3675{
3676	struct pci_dev *pdev = to_pci_dev(dev);
3677	struct fw_ohci *ohci = pci_get_drvdata(pdev);
3678
3679	pmac_ohci_off(pdev);
3680
3681	ar_context_release(&ohci->ar_response_ctx);
3682	ar_context_release(&ohci->ar_request_ctx);
3683
3684	dev_notice(dev, "removed fw-ohci device\n");
3685}
3686
3687static int pci_probe(struct pci_dev *dev,
3688			       const struct pci_device_id *ent)
3689{
3690	struct fw_ohci *ohci;
3691	u32 bus_options, max_receive, link_speed, version;
3692	u64 guid;
3693	int i, flags, irq, err;
3694	size_t size;
3695
3696	if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3697		dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3698		return -ENOSYS;
3699	}
3700
3701	ohci = devres_alloc(release_ohci, sizeof(*ohci), GFP_KERNEL);
3702	if (ohci == NULL)
3703		return -ENOMEM;
 
 
 
3704	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3705	pci_set_drvdata(dev, ohci);
3706	pmac_ohci_on(dev);
3707	devres_add(&dev->dev, ohci);
3708
3709	err = pcim_enable_device(dev);
3710	if (err) {
3711		dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3712		return err;
3713	}
3714
3715	pci_set_master(dev);
3716	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
 
3717
3718	spin_lock_init(&ohci->lock);
3719	mutex_init(&ohci->phy_reg_mutex);
3720
3721	INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3722
3723	if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3724	    pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3725		ohci_err(ohci, "invalid MMIO resource\n");
3726		return -ENXIO;
 
3727	}
3728
3729	ohci->registers = pcim_iomap_region(dev, 0, ohci_driver_name);
3730	if (IS_ERR(ohci->registers)) {
3731		ohci_err(ohci, "request and map MMIO resource unavailable\n");
3732		return -ENXIO;
 
 
 
 
 
 
 
3733	}
3734
3735	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3736		if ((ohci_quirks[i].vendor == dev->vendor) &&
3737		    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3738		     ohci_quirks[i].device == dev->device) &&
3739		    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3740		     ohci_quirks[i].revision >= dev->revision)) {
3741			ohci->quirks = ohci_quirks[i].flags;
3742			break;
3743		}
3744	if (param_quirks)
3745		ohci->quirks = param_quirks;
3746
3747	if (detect_vt630x_with_asm1083_on_amd_ryzen_machine(dev))
3748		ohci->quirks |= QUIRK_REBOOT_BY_CYCLE_TIMER_READ;
3749
3750	/*
3751	 * Because dma_alloc_coherent() allocates at least one page,
3752	 * we save space by using a common buffer for the AR request/
3753	 * response descriptors and the self IDs buffer.
3754	 */
3755	BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3756	BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3757	ohci->misc_buffer = dmam_alloc_coherent(&dev->dev, PAGE_SIZE, &ohci->misc_buffer_bus,
3758						GFP_KERNEL);
3759	if (!ohci->misc_buffer)
3760		return -ENOMEM;
 
 
 
 
3761
3762	err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3763			      OHCI1394_AsReqRcvContextControlSet);
3764	if (err < 0)
3765		return err;
3766
3767	err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3768			      OHCI1394_AsRspRcvContextControlSet);
3769	if (err < 0)
3770		return err;
3771
3772	err = context_init(&ohci->at_request_ctx, ohci,
3773			   OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3774	if (err < 0)
3775		return err;
3776
3777	err = context_init(&ohci->at_response_ctx, ohci,
3778			   OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3779	if (err < 0)
3780		return err;
3781
3782	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3783	ohci->ir_context_channels = ~0ULL;
3784	ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3785	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3786	ohci->ir_context_mask = ohci->ir_context_support;
3787	ohci->n_ir = hweight32(ohci->ir_context_mask);
3788	size = sizeof(struct iso_context) * ohci->n_ir;
3789	ohci->ir_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL);
3790	if (!ohci->ir_context_list)
3791		return -ENOMEM;
3792
3793	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3794	ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3795	/* JMicron JMB38x often shows 0 at first read, just ignore it */
3796	if (!ohci->it_context_support) {
3797		ohci_notice(ohci, "overriding IsoXmitIntMask\n");
3798		ohci->it_context_support = 0xf;
3799	}
3800	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3801	ohci->it_context_mask = ohci->it_context_support;
3802	ohci->n_it = hweight32(ohci->it_context_mask);
3803	size = sizeof(struct iso_context) * ohci->n_it;
3804	ohci->it_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL);
3805	if (!ohci->it_context_list)
3806		return -ENOMEM;
 
 
 
3807
3808	ohci->self_id     = ohci->misc_buffer     + PAGE_SIZE/2;
3809	ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3810
3811	bus_options = reg_read(ohci, OHCI1394_BusOptions);
3812	max_receive = (bus_options >> 12) & 0xf;
3813	link_speed = bus_options & 0x7;
3814	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3815		reg_read(ohci, OHCI1394_GUIDLo);
3816
3817	flags = PCI_IRQ_INTX;
3818	if (!(ohci->quirks & QUIRK_NO_MSI))
3819		flags |= PCI_IRQ_MSI;
3820	err = pci_alloc_irq_vectors(dev, 1, 1, flags);
3821	if (err < 0)
3822		return err;
3823	irq = pci_irq_vector(dev, 0);
3824	if (irq < 0) {
3825		err = irq;
3826		goto fail_msi;
3827	}
3828
3829	err = request_threaded_irq(irq, irq_handler, NULL,
3830				   pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED, ohci_driver_name,
3831				   ohci);
3832	if (err < 0) {
3833		ohci_err(ohci, "failed to allocate interrupt %d\n", irq);
3834		goto fail_msi;
3835	}
3836
3837	err = fw_card_add(&ohci->card, max_receive, link_speed, guid, ohci->n_it + ohci->n_ir);
3838	if (err)
3839		goto fail_irq;
3840
3841	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3842	ohci_notice(ohci,
3843		    "added OHCI v%x.%x device as card %d, "
3844		    "%d IR + %d IT contexts, quirks 0x%x%s\n",
3845		    version >> 16, version & 0xff, ohci->card.index,
3846		    ohci->n_ir, ohci->n_it, ohci->quirks,
3847		    reg_read(ohci, OHCI1394_PhyUpperBound) ?
3848			", physUB" : "");
3849
3850	return 0;
3851
3852 fail_irq:
3853	free_irq(irq, ohci);
3854 fail_msi:
3855	pci_free_irq_vectors(dev);
3856
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3857	return err;
3858}
3859
3860static void pci_remove(struct pci_dev *dev)
3861{
3862	struct fw_ohci *ohci = pci_get_drvdata(dev);
3863	int irq;
3864
3865	/*
3866	 * If the removal is happening from the suspend state, LPS won't be
3867	 * enabled and host registers (eg., IntMaskClear) won't be accessible.
3868	 */
3869	if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3870		reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3871		flush_writes(ohci);
3872	}
3873	cancel_work_sync(&ohci->bus_reset_work);
3874	fw_core_remove_card(&ohci->card);
3875
3876	/*
3877	 * FIXME: Fail all pending packets here, now that the upper
3878	 * layers can't queue any more.
3879	 */
3880
3881	software_reset(ohci);
 
3882
3883	irq = pci_irq_vector(dev, 0);
3884	if (irq >= 0)
3885		free_irq(irq, ohci);
3886	pci_free_irq_vectors(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3887
3888	dev_notice(&dev->dev, "removing fw-ohci device\n");
3889}
3890
3891#ifdef CONFIG_PM
3892static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3893{
3894	struct fw_ohci *ohci = pci_get_drvdata(dev);
3895	int err;
3896
3897	software_reset(ohci);
3898	err = pci_save_state(dev);
3899	if (err) {
3900		ohci_err(ohci, "pci_save_state failed\n");
3901		return err;
3902	}
3903	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3904	if (err)
3905		ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3906	pmac_ohci_off(dev);
3907
3908	return 0;
3909}
3910
3911static int pci_resume(struct pci_dev *dev)
3912{
3913	struct fw_ohci *ohci = pci_get_drvdata(dev);
3914	int err;
3915
3916	pmac_ohci_on(dev);
3917	pci_set_power_state(dev, PCI_D0);
3918	pci_restore_state(dev);
3919	err = pci_enable_device(dev);
3920	if (err) {
3921		ohci_err(ohci, "pci_enable_device failed\n");
3922		return err;
3923	}
3924
3925	/* Some systems don't setup GUID register on resume from ram  */
3926	if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3927					!reg_read(ohci, OHCI1394_GUIDHi)) {
3928		reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3929		reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3930	}
3931
3932	err = ohci_enable(&ohci->card, NULL, 0);
3933	if (err)
3934		return err;
3935
3936	ohci_resume_iso_dma(ohci);
3937
3938	return 0;
3939}
3940#endif
3941
3942static const struct pci_device_id pci_table[] = {
3943	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3944	{ }
3945};
3946
3947MODULE_DEVICE_TABLE(pci, pci_table);
3948
3949static struct pci_driver fw_ohci_pci_driver = {
3950	.name		= ohci_driver_name,
3951	.id_table	= pci_table,
3952	.probe		= pci_probe,
3953	.remove		= pci_remove,
3954#ifdef CONFIG_PM
3955	.resume		= pci_resume,
3956	.suspend	= pci_suspend,
3957#endif
3958};
3959
3960static int __init fw_ohci_init(void)
3961{
3962	selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3963	if (!selfid_workqueue)
3964		return -ENOMEM;
3965
3966	return pci_register_driver(&fw_ohci_pci_driver);
3967}
3968
3969static void __exit fw_ohci_cleanup(void)
3970{
3971	pci_unregister_driver(&fw_ohci_pci_driver);
3972	destroy_workqueue(selfid_workqueue);
3973}
3974
3975module_init(fw_ohci_init);
3976module_exit(fw_ohci_cleanup);
3977
3978MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3979MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3980MODULE_LICENSE("GPL");
3981
3982/* Provide a module alias so root-on-sbp2 initrds don't break. */
3983MODULE_ALIAS("ohci1394");
v4.17
 
   1/*
   2 * Driver for OHCI 1394 controllers
   3 *
   4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software Foundation,
  18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21#include <linux/bitops.h>
  22#include <linux/bug.h>
  23#include <linux/compiler.h>
  24#include <linux/delay.h>
  25#include <linux/device.h>
  26#include <linux/dma-mapping.h>
  27#include <linux/firewire.h>
  28#include <linux/firewire-constants.h>
  29#include <linux/init.h>
  30#include <linux/interrupt.h>
  31#include <linux/io.h>
  32#include <linux/kernel.h>
  33#include <linux/list.h>
  34#include <linux/mm.h>
  35#include <linux/module.h>
  36#include <linux/moduleparam.h>
  37#include <linux/mutex.h>
  38#include <linux/pci.h>
  39#include <linux/pci_ids.h>
  40#include <linux/slab.h>
  41#include <linux/spinlock.h>
  42#include <linux/string.h>
  43#include <linux/time.h>
  44#include <linux/vmalloc.h>
  45#include <linux/workqueue.h>
  46
  47#include <asm/byteorder.h>
  48#include <asm/page.h>
  49
  50#ifdef CONFIG_PPC_PMAC
  51#include <asm/pmac_feature.h>
  52#endif
  53
  54#include "core.h"
  55#include "ohci.h"
 
 
 
 
 
 
 
 
 
  56
  57#define ohci_info(ohci, f, args...)	dev_info(ohci->card.device, f, ##args)
  58#define ohci_notice(ohci, f, args...)	dev_notice(ohci->card.device, f, ##args)
  59#define ohci_err(ohci, f, args...)	dev_err(ohci->card.device, f, ##args)
  60
  61#define DESCRIPTOR_OUTPUT_MORE		0
  62#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
  63#define DESCRIPTOR_INPUT_MORE		(2 << 12)
  64#define DESCRIPTOR_INPUT_LAST		(3 << 12)
  65#define DESCRIPTOR_STATUS		(1 << 11)
  66#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
  67#define DESCRIPTOR_PING			(1 << 7)
  68#define DESCRIPTOR_YY			(1 << 6)
  69#define DESCRIPTOR_NO_IRQ		(0 << 4)
  70#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
  71#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
  72#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
  73#define DESCRIPTOR_WAIT			(3 << 0)
  74
  75#define DESCRIPTOR_CMD			(0xf << 12)
  76
  77struct descriptor {
  78	__le16 req_count;
  79	__le16 control;
  80	__le32 data_address;
  81	__le32 branch_address;
  82	__le16 res_count;
  83	__le16 transfer_status;
  84} __attribute__((aligned(16)));
  85
  86#define CONTROL_SET(regs)	(regs)
  87#define CONTROL_CLEAR(regs)	((regs) + 4)
  88#define COMMAND_PTR(regs)	((regs) + 12)
  89#define CONTEXT_MATCH(regs)	((regs) + 16)
  90
  91#define AR_BUFFER_SIZE	(32*1024)
  92#define AR_BUFFERS_MIN	DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
  93/* we need at least two pages for proper list management */
  94#define AR_BUFFERS	(AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
  95
  96#define MAX_ASYNC_PAYLOAD	4096
  97#define MAX_AR_PACKET_SIZE	(16 + MAX_ASYNC_PAYLOAD + 4)
  98#define AR_WRAPAROUND_PAGES	DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
  99
 100struct ar_context {
 101	struct fw_ohci *ohci;
 102	struct page *pages[AR_BUFFERS];
 103	void *buffer;
 104	struct descriptor *descriptors;
 105	dma_addr_t descriptors_bus;
 106	void *pointer;
 107	unsigned int last_buffer_index;
 108	u32 regs;
 109	struct tasklet_struct tasklet;
 110};
 111
 112struct context;
 113
 114typedef int (*descriptor_callback_t)(struct context *ctx,
 115				     struct descriptor *d,
 116				     struct descriptor *last);
 117
 118/*
 119 * A buffer that contains a block of DMA-able coherent memory used for
 120 * storing a portion of a DMA descriptor program.
 121 */
 122struct descriptor_buffer {
 123	struct list_head list;
 124	dma_addr_t buffer_bus;
 125	size_t buffer_size;
 126	size_t used;
 127	struct descriptor buffer[0];
 128};
 129
 130struct context {
 131	struct fw_ohci *ohci;
 132	u32 regs;
 133	int total_allocation;
 134	u32 current_bus;
 135	bool running;
 136	bool flushing;
 137
 138	/*
 139	 * List of page-sized buffers for storing DMA descriptors.
 140	 * Head of list contains buffers in use and tail of list contains
 141	 * free buffers.
 142	 */
 143	struct list_head buffer_list;
 144
 145	/*
 146	 * Pointer to a buffer inside buffer_list that contains the tail
 147	 * end of the current DMA program.
 148	 */
 149	struct descriptor_buffer *buffer_tail;
 150
 151	/*
 152	 * The descriptor containing the branch address of the first
 153	 * descriptor that has not yet been filled by the device.
 154	 */
 155	struct descriptor *last;
 156
 157	/*
 158	 * The last descriptor block in the DMA program. It contains the branch
 159	 * address that must be updated upon appending a new descriptor.
 160	 */
 161	struct descriptor *prev;
 162	int prev_z;
 163
 164	descriptor_callback_t callback;
 165
 166	struct tasklet_struct tasklet;
 167};
 168
 169#define IT_HEADER_SY(v)          ((v) <<  0)
 170#define IT_HEADER_TCODE(v)       ((v) <<  4)
 171#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
 172#define IT_HEADER_TAG(v)         ((v) << 14)
 173#define IT_HEADER_SPEED(v)       ((v) << 16)
 174#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
 175
 176struct iso_context {
 177	struct fw_iso_context base;
 178	struct context context;
 179	void *header;
 180	size_t header_length;
 181	unsigned long flushing_completions;
 182	u32 mc_buffer_bus;
 183	u16 mc_completed;
 184	u16 last_timestamp;
 185	u8 sync;
 186	u8 tags;
 187};
 188
 189#define CONFIG_ROM_SIZE 1024
 190
 191struct fw_ohci {
 192	struct fw_card card;
 193
 194	__iomem char *registers;
 195	int node_id;
 196	int generation;
 197	int request_generation;	/* for timestamping incoming requests */
 198	unsigned quirks;
 199	unsigned int pri_req_max;
 200	u32 bus_time;
 201	bool bus_time_running;
 202	bool is_root;
 203	bool csr_state_setclear_abdicate;
 204	int n_ir;
 205	int n_it;
 206	/*
 207	 * Spinlock for accessing fw_ohci data.  Never call out of
 208	 * this driver with this lock held.
 209	 */
 210	spinlock_t lock;
 211
 212	struct mutex phy_reg_mutex;
 213
 214	void *misc_buffer;
 215	dma_addr_t misc_buffer_bus;
 216
 217	struct ar_context ar_request_ctx;
 218	struct ar_context ar_response_ctx;
 219	struct context at_request_ctx;
 220	struct context at_response_ctx;
 221
 222	u32 it_context_support;
 223	u32 it_context_mask;     /* unoccupied IT contexts */
 224	struct iso_context *it_context_list;
 225	u64 ir_context_channels; /* unoccupied channels */
 226	u32 ir_context_support;
 227	u32 ir_context_mask;     /* unoccupied IR contexts */
 228	struct iso_context *ir_context_list;
 229	u64 mc_channels; /* channels in use by the multichannel IR context */
 230	bool mc_allocated;
 231
 232	__be32    *config_rom;
 233	dma_addr_t config_rom_bus;
 234	__be32    *next_config_rom;
 235	dma_addr_t next_config_rom_bus;
 236	__be32     next_header;
 237
 238	__le32    *self_id;
 239	dma_addr_t self_id_bus;
 240	struct work_struct bus_reset_work;
 241
 242	u32 self_id_buffer[512];
 243};
 244
 245static struct workqueue_struct *selfid_workqueue;
 246
 247static inline struct fw_ohci *fw_ohci(struct fw_card *card)
 248{
 249	return container_of(card, struct fw_ohci, card);
 250}
 251
 252#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
 253#define IR_CONTEXT_BUFFER_FILL		0x80000000
 254#define IR_CONTEXT_ISOCH_HEADER		0x40000000
 255#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
 256#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
 257#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
 258
 259#define CONTEXT_RUN	0x8000
 260#define CONTEXT_WAKE	0x1000
 261#define CONTEXT_DEAD	0x0800
 262#define CONTEXT_ACTIVE	0x0400
 263
 264#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
 265#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
 266#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8
 267
 268#define OHCI1394_REGISTER_SIZE		0x800
 269#define OHCI1394_PCI_HCI_Control	0x40
 270#define SELF_ID_BUF_SIZE		0x800
 271#define OHCI_TCODE_PHY_PACKET		0x0e
 272#define OHCI_VERSION_1_1		0x010010
 273
 274static char ohci_driver_name[] = KBUILD_MODNAME;
 275
 276#define PCI_VENDOR_ID_PINNACLE_SYSTEMS	0x11bd
 277#define PCI_DEVICE_ID_AGERE_FW643	0x5901
 278#define PCI_DEVICE_ID_CREATIVE_SB1394	0x4001
 279#define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
 280#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009
 281#define PCI_DEVICE_ID_TI_TSB12LV26	0x8020
 282#define PCI_DEVICE_ID_TI_TSB82AA2	0x8025
 283#define PCI_DEVICE_ID_VIA_VT630X	0x3044
 284#define PCI_REV_ID_VIA_VT6306		0x46
 285#define PCI_DEVICE_ID_VIA_VT6315	0x3403
 286
 287#define QUIRK_CYCLE_TIMER		0x1
 288#define QUIRK_RESET_PACKET		0x2
 289#define QUIRK_BE_HEADERS		0x4
 290#define QUIRK_NO_1394A			0x8
 291#define QUIRK_NO_MSI			0x10
 292#define QUIRK_TI_SLLZ059		0x20
 293#define QUIRK_IR_WAKE			0x40
 294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 295/* In case of multiple matches in ohci_quirks[], only the first one is used. */
 296static const struct {
 297	unsigned short vendor, device, revision, flags;
 298} ohci_quirks[] = {
 299	{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
 300		QUIRK_CYCLE_TIMER},
 301
 302	{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
 303		QUIRK_BE_HEADERS},
 304
 305	{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
 306		QUIRK_NO_MSI},
 307
 308	{PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
 309		QUIRK_RESET_PACKET},
 310
 311	{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
 312		QUIRK_NO_MSI},
 313
 314	{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
 315		QUIRK_CYCLE_TIMER},
 316
 317	{PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
 318		QUIRK_NO_MSI},
 319
 320	{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
 321		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
 322
 323	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
 324		QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
 325
 326	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
 327		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
 328
 329	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
 330		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
 331
 332	{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
 333		QUIRK_RESET_PACKET},
 334
 335	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
 336		QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
 337
 338	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
 339		QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
 340
 341	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
 342		QUIRK_NO_MSI},
 343
 344	{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
 345		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
 346};
 347
 348/* This overrides anything that was found in ohci_quirks[]. */
 349static int param_quirks;
 350module_param_named(quirks, param_quirks, int, 0644);
 351MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
 352	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
 353	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
 354	", AR/selfID endianness = "	__stringify(QUIRK_BE_HEADERS)
 355	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
 356	", disable MSI = "		__stringify(QUIRK_NO_MSI)
 357	", TI SLLZ059 erratum = "	__stringify(QUIRK_TI_SLLZ059)
 358	", IR wake unreliable = "	__stringify(QUIRK_IR_WAKE)
 359	")");
 360
 361#define OHCI_PARAM_DEBUG_AT_AR		1
 362#define OHCI_PARAM_DEBUG_SELFIDS	2
 363#define OHCI_PARAM_DEBUG_IRQS		4
 364#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
 365
 366static int param_debug;
 367module_param_named(debug, param_debug, int, 0644);
 368MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
 369	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
 370	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
 371	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
 372	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
 373	", or a combination, or all = -1)");
 374
 375static bool param_remote_dma;
 376module_param_named(remote_dma, param_remote_dma, bool, 0444);
 377MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
 378
 379static void log_irqs(struct fw_ohci *ohci, u32 evt)
 380{
 381	if (likely(!(param_debug &
 382			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
 383		return;
 384
 385	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
 386	    !(evt & OHCI1394_busReset))
 387		return;
 388
 389	ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
 390	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
 391	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
 392	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
 393	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
 394	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
 395	    evt & OHCI1394_isochRx		? " IR"			: "",
 396	    evt & OHCI1394_isochTx		? " IT"			: "",
 397	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
 398	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
 399	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
 400	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
 401	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
 402	    evt & OHCI1394_unrecoverableError	? " unrecoverableError"	: "",
 403	    evt & OHCI1394_busReset		? " busReset"		: "",
 404	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
 405		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
 406		    OHCI1394_respTxComplete | OHCI1394_isochRx |
 407		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
 408		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
 409		    OHCI1394_cycleInconsistent |
 410		    OHCI1394_regAccessFail | OHCI1394_busReset)
 411						? " ?"			: "");
 412}
 413
 414static const char *speed[] = {
 415	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
 416};
 417static const char *power[] = {
 418	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
 419	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
 420};
 421static const char port[] = { '.', '-', 'p', 'c', };
 422
 423static char _p(u32 *s, int shift)
 424{
 425	return port[*s >> shift & 3];
 426}
 427
 428static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
 429{
 430	u32 *s;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 431
 432	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
 433		return;
 434
 435	ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
 436		    self_id_count, generation, ohci->node_id);
 437
 438	for (s = ohci->self_id_buffer; self_id_count--; ++s)
 439		if ((*s & 1 << 23) == 0)
 440			ohci_notice(ohci,
 441			    "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
 442			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
 443			    speed[*s >> 14 & 3], *s >> 16 & 63,
 444			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
 445			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
 446		else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 447			ohci_notice(ohci,
 448			    "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
 449			    *s, *s >> 24 & 63,
 450			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
 451			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
 
 
 
 
 
 
 
 
 
 
 
 
 452}
 453
 454static const char *evts[] = {
 455	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
 456	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
 457	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
 458	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
 459	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
 460	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
 461	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
 462	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
 463	[0x10] = "-reserved-",		[0x11] = "ack_complete",
 464	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
 465	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
 466	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
 467	[0x18] = "-reserved-",		[0x19] = "-reserved-",
 468	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
 469	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
 470	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
 471	[0x20] = "pending/cancelled",
 472};
 473static const char *tcodes[] = {
 474	[0x0] = "QW req",		[0x1] = "BW req",
 475	[0x2] = "W resp",		[0x3] = "-reserved-",
 476	[0x4] = "QR req",		[0x5] = "BR req",
 477	[0x6] = "QR resp",		[0x7] = "BR resp",
 478	[0x8] = "cycle start",		[0x9] = "Lk req",
 479	[0xa] = "async stream packet",	[0xb] = "Lk resp",
 480	[0xc] = "-reserved-",		[0xd] = "-reserved-",
 481	[0xe] = "link internal",	[0xf] = "-reserved-",
 482};
 483
 484static void log_ar_at_event(struct fw_ohci *ohci,
 485			    char dir, int speed, u32 *header, int evt)
 486{
 487	int tcode = header[0] >> 4 & 0xf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 488	char specific[12];
 489
 490	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
 491		return;
 492
 493	if (unlikely(evt >= ARRAY_SIZE(evts)))
 494			evt = 0x1f;
 495
 496	if (evt == OHCI1394_evt_bus_reset) {
 497		ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
 498			    dir, (header[2] >> 16) & 0xff);
 499		return;
 500	}
 501
 502	switch (tcode) {
 503	case 0x0: case 0x6: case 0x8:
 
 
 504		snprintf(specific, sizeof(specific), " = %08x",
 505			 be32_to_cpu((__force __be32)header[3]));
 506		break;
 507	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
 
 
 
 
 508		snprintf(specific, sizeof(specific), " %x,%x",
 509			 header[3] >> 16, header[3] & 0xffff);
 
 510		break;
 511	default:
 512		specific[0] = '\0';
 513	}
 514
 515	switch (tcode) {
 516	case 0xa:
 517		ohci_notice(ohci, "A%c %s, %s\n",
 518			    dir, evts[evt], tcodes[tcode]);
 519		break;
 520	case 0xe:
 521		ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
 522			    dir, evts[evt], header[1], header[2]);
 523		break;
 524	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
 
 
 
 
 525		ohci_notice(ohci,
 526			    "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
 527			    dir, speed, header[0] >> 10 & 0x3f,
 528			    header[1] >> 16, header[0] >> 16, evts[evt],
 529			    tcodes[tcode], header[1] & 0xffff, header[2], specific);
 530		break;
 531	default:
 532		ohci_notice(ohci,
 533			    "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
 534			    dir, speed, header[0] >> 10 & 0x3f,
 535			    header[1] >> 16, header[0] >> 16, evts[evt],
 536			    tcodes[tcode], specific);
 537	}
 538}
 539
 540static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
 541{
 542	writel(data, ohci->registers + offset);
 543}
 544
 545static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
 546{
 547	return readl(ohci->registers + offset);
 548}
 549
 550static inline void flush_writes(const struct fw_ohci *ohci)
 551{
 552	/* Do a dummy read to flush writes. */
 553	reg_read(ohci, OHCI1394_Version);
 554}
 555
 556/*
 557 * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
 558 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
 559 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
 560 * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
 561 */
 562static int read_phy_reg(struct fw_ohci *ohci, int addr)
 563{
 564	u32 val;
 565	int i;
 566
 567	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
 568	for (i = 0; i < 3 + 100; i++) {
 569		val = reg_read(ohci, OHCI1394_PhyControl);
 570		if (!~val)
 571			return -ENODEV; /* Card was ejected. */
 572
 573		if (val & OHCI1394_PhyControl_ReadDone)
 574			return OHCI1394_PhyControl_ReadData(val);
 575
 576		/*
 577		 * Try a few times without waiting.  Sleeping is necessary
 578		 * only when the link/PHY interface is busy.
 579		 */
 580		if (i >= 3)
 581			msleep(1);
 582	}
 583	ohci_err(ohci, "failed to read phy reg %d\n", addr);
 584	dump_stack();
 585
 586	return -EBUSY;
 587}
 588
 589static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
 590{
 591	int i;
 592
 593	reg_write(ohci, OHCI1394_PhyControl,
 594		  OHCI1394_PhyControl_Write(addr, val));
 595	for (i = 0; i < 3 + 100; i++) {
 596		val = reg_read(ohci, OHCI1394_PhyControl);
 597		if (!~val)
 598			return -ENODEV; /* Card was ejected. */
 599
 600		if (!(val & OHCI1394_PhyControl_WritePending))
 601			return 0;
 602
 603		if (i >= 3)
 604			msleep(1);
 605	}
 606	ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
 607	dump_stack();
 608
 609	return -EBUSY;
 610}
 611
 612static int update_phy_reg(struct fw_ohci *ohci, int addr,
 613			  int clear_bits, int set_bits)
 614{
 615	int ret = read_phy_reg(ohci, addr);
 616	if (ret < 0)
 617		return ret;
 618
 619	/*
 620	 * The interrupt status bits are cleared by writing a one bit.
 621	 * Avoid clearing them unless explicitly requested in set_bits.
 622	 */
 623	if (addr == 5)
 624		clear_bits |= PHY_INT_STATUS_BITS;
 625
 626	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
 627}
 628
 629static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
 630{
 631	int ret;
 632
 633	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
 634	if (ret < 0)
 635		return ret;
 636
 637	return read_phy_reg(ohci, addr);
 638}
 639
 640static int ohci_read_phy_reg(struct fw_card *card, int addr)
 641{
 642	struct fw_ohci *ohci = fw_ohci(card);
 643	int ret;
 644
 645	mutex_lock(&ohci->phy_reg_mutex);
 646	ret = read_phy_reg(ohci, addr);
 647	mutex_unlock(&ohci->phy_reg_mutex);
 648
 649	return ret;
 650}
 651
 652static int ohci_update_phy_reg(struct fw_card *card, int addr,
 653			       int clear_bits, int set_bits)
 654{
 655	struct fw_ohci *ohci = fw_ohci(card);
 656	int ret;
 657
 658	mutex_lock(&ohci->phy_reg_mutex);
 659	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
 660	mutex_unlock(&ohci->phy_reg_mutex);
 661
 662	return ret;
 663}
 664
 665static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
 666{
 667	return page_private(ctx->pages[i]);
 668}
 669
 670static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
 671{
 672	struct descriptor *d;
 673
 674	d = &ctx->descriptors[index];
 675	d->branch_address  &= cpu_to_le32(~0xf);
 676	d->res_count       =  cpu_to_le16(PAGE_SIZE);
 677	d->transfer_status =  0;
 678
 679	wmb(); /* finish init of new descriptors before branch_address update */
 680	d = &ctx->descriptors[ctx->last_buffer_index];
 681	d->branch_address  |= cpu_to_le32(1);
 682
 683	ctx->last_buffer_index = index;
 684
 685	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
 686}
 687
 688static void ar_context_release(struct ar_context *ctx)
 689{
 
 690	unsigned int i;
 691
 
 
 
 692	vunmap(ctx->buffer);
 693
 694	for (i = 0; i < AR_BUFFERS; i++)
 695		if (ctx->pages[i]) {
 696			dma_unmap_page(ctx->ohci->card.device,
 697				       ar_buffer_bus(ctx, i),
 698				       PAGE_SIZE, DMA_FROM_DEVICE);
 699			__free_page(ctx->pages[i]);
 700		}
 701}
 702
 703static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
 704{
 705	struct fw_ohci *ohci = ctx->ohci;
 706
 707	if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
 708		reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
 709		flush_writes(ohci);
 710
 711		ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
 712	}
 713	/* FIXME: restart? */
 714}
 715
 716static inline unsigned int ar_next_buffer_index(unsigned int index)
 717{
 718	return (index + 1) % AR_BUFFERS;
 719}
 720
 721static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
 722{
 723	return ar_next_buffer_index(ctx->last_buffer_index);
 724}
 725
 726/*
 727 * We search for the buffer that contains the last AR packet DMA data written
 728 * by the controller.
 729 */
 730static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
 731						 unsigned int *buffer_offset)
 732{
 733	unsigned int i, next_i, last = ctx->last_buffer_index;
 734	__le16 res_count, next_res_count;
 735
 736	i = ar_first_buffer_index(ctx);
 737	res_count = READ_ONCE(ctx->descriptors[i].res_count);
 738
 739	/* A buffer that is not yet completely filled must be the last one. */
 740	while (i != last && res_count == 0) {
 741
 742		/* Peek at the next descriptor. */
 743		next_i = ar_next_buffer_index(i);
 744		rmb(); /* read descriptors in order */
 745		next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
 746		/*
 747		 * If the next descriptor is still empty, we must stop at this
 748		 * descriptor.
 749		 */
 750		if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
 751			/*
 752			 * The exception is when the DMA data for one packet is
 753			 * split over three buffers; in this case, the middle
 754			 * buffer's descriptor might be never updated by the
 755			 * controller and look still empty, and we have to peek
 756			 * at the third one.
 757			 */
 758			if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
 759				next_i = ar_next_buffer_index(next_i);
 760				rmb();
 761				next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
 762				if (next_res_count != cpu_to_le16(PAGE_SIZE))
 763					goto next_buffer_is_active;
 764			}
 765
 766			break;
 767		}
 768
 769next_buffer_is_active:
 770		i = next_i;
 771		res_count = next_res_count;
 772	}
 773
 774	rmb(); /* read res_count before the DMA data */
 775
 776	*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
 777	if (*buffer_offset > PAGE_SIZE) {
 778		*buffer_offset = 0;
 779		ar_context_abort(ctx, "corrupted descriptor");
 780	}
 781
 782	return i;
 783}
 784
 785static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
 786				    unsigned int end_buffer_index,
 787				    unsigned int end_buffer_offset)
 788{
 789	unsigned int i;
 790
 791	i = ar_first_buffer_index(ctx);
 792	while (i != end_buffer_index) {
 793		dma_sync_single_for_cpu(ctx->ohci->card.device,
 794					ar_buffer_bus(ctx, i),
 795					PAGE_SIZE, DMA_FROM_DEVICE);
 796		i = ar_next_buffer_index(i);
 797	}
 798	if (end_buffer_offset > 0)
 799		dma_sync_single_for_cpu(ctx->ohci->card.device,
 800					ar_buffer_bus(ctx, i),
 801					end_buffer_offset, DMA_FROM_DEVICE);
 802}
 803
 804#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
 805#define cond_le32_to_cpu(v) \
 806	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
 
 
 
 
 
 
 
 807#else
 808#define cond_le32_to_cpu(v) le32_to_cpu(v)
 
 
 
 
 
 
 
 
 809#endif
 810
 811static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
 812{
 813	struct fw_ohci *ohci = ctx->ohci;
 814	struct fw_packet p;
 815	u32 status, length, tcode;
 816	int evt;
 817
 818	p.header[0] = cond_le32_to_cpu(buffer[0]);
 819	p.header[1] = cond_le32_to_cpu(buffer[1]);
 820	p.header[2] = cond_le32_to_cpu(buffer[2]);
 821
 822	tcode = (p.header[0] >> 4) & 0x0f;
 823	switch (tcode) {
 824	case TCODE_WRITE_QUADLET_REQUEST:
 825	case TCODE_READ_QUADLET_RESPONSE:
 826		p.header[3] = (__force __u32) buffer[3];
 827		p.header_length = 16;
 828		p.payload_length = 0;
 829		break;
 830
 831	case TCODE_READ_BLOCK_REQUEST :
 832		p.header[3] = cond_le32_to_cpu(buffer[3]);
 833		p.header_length = 16;
 834		p.payload_length = 0;
 835		break;
 836
 837	case TCODE_WRITE_BLOCK_REQUEST:
 838	case TCODE_READ_BLOCK_RESPONSE:
 839	case TCODE_LOCK_REQUEST:
 840	case TCODE_LOCK_RESPONSE:
 841		p.header[3] = cond_le32_to_cpu(buffer[3]);
 842		p.header_length = 16;
 843		p.payload_length = p.header[3] >> 16;
 844		if (p.payload_length > MAX_ASYNC_PAYLOAD) {
 845			ar_context_abort(ctx, "invalid packet length");
 846			return NULL;
 847		}
 848		break;
 849
 850	case TCODE_WRITE_RESPONSE:
 851	case TCODE_READ_QUADLET_REQUEST:
 852	case OHCI_TCODE_PHY_PACKET:
 853		p.header_length = 12;
 854		p.payload_length = 0;
 855		break;
 856
 857	default:
 858		ar_context_abort(ctx, "invalid tcode");
 859		return NULL;
 860	}
 861
 862	p.payload = (void *) buffer + p.header_length;
 863
 864	/* FIXME: What to do about evt_* errors? */
 865	length = (p.header_length + p.payload_length + 3) / 4;
 866	status = cond_le32_to_cpu(buffer[length]);
 867	evt    = (status >> 16) & 0x1f;
 868
 869	p.ack        = evt - 16;
 870	p.speed      = (status >> 21) & 0x7;
 871	p.timestamp  = status & 0xffff;
 872	p.generation = ohci->request_generation;
 873
 874	log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
 875
 876	/*
 877	 * Several controllers, notably from NEC and VIA, forget to
 878	 * write ack_complete status at PHY packet reception.
 879	 */
 880	if (evt == OHCI1394_evt_no_status &&
 881	    (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
 882		p.ack = ACK_COMPLETE;
 883
 884	/*
 885	 * The OHCI bus reset handler synthesizes a PHY packet with
 886	 * the new generation number when a bus reset happens (see
 887	 * section 8.4.2.3).  This helps us determine when a request
 888	 * was received and make sure we send the response in the same
 889	 * generation.  We only need this for requests; for responses
 890	 * we use the unique tlabel for finding the matching
 891	 * request.
 892	 *
 893	 * Alas some chips sometimes emit bus reset packets with a
 894	 * wrong generation.  We set the correct generation for these
 895	 * at a slightly incorrect time (in bus_reset_work).
 896	 */
 897	if (evt == OHCI1394_evt_bus_reset) {
 898		if (!(ohci->quirks & QUIRK_RESET_PACKET))
 899			ohci->request_generation = (p.header[2] >> 16) & 0xff;
 900	} else if (ctx == &ohci->ar_request_ctx) {
 901		fw_core_handle_request(&ohci->card, &p);
 902	} else {
 903		fw_core_handle_response(&ohci->card, &p);
 904	}
 905
 906	return buffer + length + 1;
 907}
 908
 909static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
 910{
 911	void *next;
 912
 913	while (p < end) {
 914		next = handle_ar_packet(ctx, p);
 915		if (!next)
 916			return p;
 917		p = next;
 918	}
 919
 920	return p;
 921}
 922
 923static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
 924{
 925	unsigned int i;
 926
 927	i = ar_first_buffer_index(ctx);
 928	while (i != end_buffer) {
 929		dma_sync_single_for_device(ctx->ohci->card.device,
 930					   ar_buffer_bus(ctx, i),
 931					   PAGE_SIZE, DMA_FROM_DEVICE);
 932		ar_context_link_page(ctx, i);
 933		i = ar_next_buffer_index(i);
 934	}
 935}
 936
 937static void ar_context_tasklet(unsigned long data)
 938{
 939	struct ar_context *ctx = (struct ar_context *)data;
 940	unsigned int end_buffer_index, end_buffer_offset;
 941	void *p, *end;
 942
 943	p = ctx->pointer;
 944	if (!p)
 945		return;
 946
 947	end_buffer_index = ar_search_last_active_buffer(ctx,
 948							&end_buffer_offset);
 949	ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
 950	end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
 951
 952	if (end_buffer_index < ar_first_buffer_index(ctx)) {
 953		/*
 954		 * The filled part of the overall buffer wraps around; handle
 955		 * all packets up to the buffer end here.  If the last packet
 956		 * wraps around, its tail will be visible after the buffer end
 957		 * because the buffer start pages are mapped there again.
 958		 */
 959		void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
 960		p = handle_ar_packets(ctx, p, buffer_end);
 961		if (p < buffer_end)
 962			goto error;
 963		/* adjust p to point back into the actual buffer */
 964		p -= AR_BUFFERS * PAGE_SIZE;
 965	}
 966
 967	p = handle_ar_packets(ctx, p, end);
 968	if (p != end) {
 969		if (p > end)
 970			ar_context_abort(ctx, "inconsistent descriptor");
 971		goto error;
 972	}
 973
 974	ctx->pointer = p;
 975	ar_recycle_buffers(ctx, end_buffer_index);
 976
 977	return;
 978
 979error:
 980	ctx->pointer = NULL;
 981}
 982
 983static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
 984			   unsigned int descriptors_offset, u32 regs)
 985{
 
 986	unsigned int i;
 987	dma_addr_t dma_addr;
 988	struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
 989	struct descriptor *d;
 990
 991	ctx->regs        = regs;
 992	ctx->ohci        = ohci;
 993	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
 994
 995	for (i = 0; i < AR_BUFFERS; i++) {
 996		ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
 
 997		if (!ctx->pages[i])
 998			goto out_of_memory;
 999		dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
1000					0, PAGE_SIZE, DMA_FROM_DEVICE);
1001		if (dma_mapping_error(ohci->card.device, dma_addr)) {
1002			__free_page(ctx->pages[i]);
1003			ctx->pages[i] = NULL;
1004			goto out_of_memory;
1005		}
1006		set_page_private(ctx->pages[i], dma_addr);
 
 
1007	}
1008
1009	for (i = 0; i < AR_BUFFERS; i++)
1010		pages[i]              = ctx->pages[i];
1011	for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1012		pages[AR_BUFFERS + i] = ctx->pages[i];
1013	ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
1014	if (!ctx->buffer)
1015		goto out_of_memory;
1016
1017	ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
1018	ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1019
1020	for (i = 0; i < AR_BUFFERS; i++) {
1021		d = &ctx->descriptors[i];
1022		d->req_count      = cpu_to_le16(PAGE_SIZE);
1023		d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1024						DESCRIPTOR_STATUS |
1025						DESCRIPTOR_BRANCH_ALWAYS);
1026		d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
1027		d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1028			ar_next_buffer_index(i) * sizeof(struct descriptor));
1029	}
1030
1031	return 0;
1032
1033out_of_memory:
1034	ar_context_release(ctx);
1035
1036	return -ENOMEM;
1037}
1038
1039static void ar_context_run(struct ar_context *ctx)
1040{
1041	unsigned int i;
1042
1043	for (i = 0; i < AR_BUFFERS; i++)
1044		ar_context_link_page(ctx, i);
1045
1046	ctx->pointer = ctx->buffer;
1047
1048	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1049	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1050}
1051
1052static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1053{
1054	__le16 branch;
1055
1056	branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1057
1058	/* figure out which descriptor the branch address goes in */
1059	if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1060		return d;
1061	else
1062		return d + z - 1;
1063}
1064
1065static void context_tasklet(unsigned long data)
1066{
1067	struct context *ctx = (struct context *) data;
1068	struct descriptor *d, *last;
1069	u32 address;
1070	int z;
1071	struct descriptor_buffer *desc;
1072
1073	desc = list_entry(ctx->buffer_list.next,
1074			struct descriptor_buffer, list);
1075	last = ctx->last;
1076	while (last->branch_address != 0) {
1077		struct descriptor_buffer *old_desc = desc;
1078		address = le32_to_cpu(last->branch_address);
1079		z = address & 0xf;
1080		address &= ~0xf;
1081		ctx->current_bus = address;
1082
1083		/* If the branch address points to a buffer outside of the
1084		 * current buffer, advance to the next buffer. */
1085		if (address < desc->buffer_bus ||
1086				address >= desc->buffer_bus + desc->used)
1087			desc = list_entry(desc->list.next,
1088					struct descriptor_buffer, list);
1089		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1090		last = find_branch_descriptor(d, z);
1091
1092		if (!ctx->callback(ctx, d, last))
1093			break;
1094
1095		if (old_desc != desc) {
1096			/* If we've advanced to the next buffer, move the
1097			 * previous buffer to the free list. */
1098			unsigned long flags;
1099			old_desc->used = 0;
1100			spin_lock_irqsave(&ctx->ohci->lock, flags);
1101			list_move_tail(&old_desc->list, &ctx->buffer_list);
1102			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1103		}
1104		ctx->last = last;
1105	}
1106}
1107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1108/*
1109 * Allocate a new buffer and add it to the list of free buffers for this
1110 * context.  Must be called with ohci->lock held.
1111 */
1112static int context_add_buffer(struct context *ctx)
1113{
1114	struct descriptor_buffer *desc;
1115	dma_addr_t uninitialized_var(bus_addr);
1116	int offset;
1117
1118	/*
1119	 * 16MB of descriptors should be far more than enough for any DMA
1120	 * program.  This will catch run-away userspace or DoS attacks.
1121	 */
1122	if (ctx->total_allocation >= 16*1024*1024)
1123		return -ENOMEM;
1124
1125	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1126			&bus_addr, GFP_ATOMIC);
1127	if (!desc)
1128		return -ENOMEM;
1129
1130	offset = (void *)&desc->buffer - (void *)desc;
1131	/*
1132	 * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
1133	 * for descriptors, even 0x10-byte ones. This can cause page faults when
1134	 * an IOMMU is in use and the oversized read crosses a page boundary.
1135	 * Work around this by always leaving at least 0x10 bytes of padding.
1136	 */
1137	desc->buffer_size = PAGE_SIZE - offset - 0x10;
1138	desc->buffer_bus = bus_addr + offset;
1139	desc->used = 0;
1140
1141	list_add_tail(&desc->list, &ctx->buffer_list);
1142	ctx->total_allocation += PAGE_SIZE;
1143
1144	return 0;
1145}
1146
1147static int context_init(struct context *ctx, struct fw_ohci *ohci,
1148			u32 regs, descriptor_callback_t callback)
1149{
1150	ctx->ohci = ohci;
1151	ctx->regs = regs;
1152	ctx->total_allocation = 0;
1153
1154	INIT_LIST_HEAD(&ctx->buffer_list);
1155	if (context_add_buffer(ctx) < 0)
1156		return -ENOMEM;
1157
1158	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1159			struct descriptor_buffer, list);
1160
1161	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1162	ctx->callback = callback;
1163
1164	/*
1165	 * We put a dummy descriptor in the buffer that has a NULL
1166	 * branch address and looks like it's been sent.  That way we
1167	 * have a descriptor to append DMA programs to.
1168	 */
1169	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1170	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1171	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1172	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1173	ctx->last = ctx->buffer_tail->buffer;
1174	ctx->prev = ctx->buffer_tail->buffer;
1175	ctx->prev_z = 1;
1176
1177	return 0;
1178}
1179
1180static void context_release(struct context *ctx)
1181{
1182	struct fw_card *card = &ctx->ohci->card;
1183	struct descriptor_buffer *desc, *tmp;
1184
1185	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1186		dma_free_coherent(card->device, PAGE_SIZE, desc,
1187			desc->buffer_bus -
1188			((void *)&desc->buffer - (void *)desc));
1189}
1190
1191/* Must be called with ohci->lock held */
1192static struct descriptor *context_get_descriptors(struct context *ctx,
1193						  int z, dma_addr_t *d_bus)
1194{
1195	struct descriptor *d = NULL;
1196	struct descriptor_buffer *desc = ctx->buffer_tail;
1197
1198	if (z * sizeof(*d) > desc->buffer_size)
1199		return NULL;
1200
1201	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1202		/* No room for the descriptor in this buffer, so advance to the
1203		 * next one. */
1204
1205		if (desc->list.next == &ctx->buffer_list) {
1206			/* If there is no free buffer next in the list,
1207			 * allocate one. */
1208			if (context_add_buffer(ctx) < 0)
1209				return NULL;
1210		}
1211		desc = list_entry(desc->list.next,
1212				struct descriptor_buffer, list);
1213		ctx->buffer_tail = desc;
1214	}
1215
1216	d = desc->buffer + desc->used / sizeof(*d);
1217	memset(d, 0, z * sizeof(*d));
1218	*d_bus = desc->buffer_bus + desc->used;
1219
1220	return d;
1221}
1222
1223static void context_run(struct context *ctx, u32 extra)
1224{
1225	struct fw_ohci *ohci = ctx->ohci;
1226
1227	reg_write(ohci, COMMAND_PTR(ctx->regs),
1228		  le32_to_cpu(ctx->last->branch_address));
1229	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1230	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1231	ctx->running = true;
1232	flush_writes(ohci);
1233}
1234
1235static void context_append(struct context *ctx,
1236			   struct descriptor *d, int z, int extra)
1237{
1238	dma_addr_t d_bus;
1239	struct descriptor_buffer *desc = ctx->buffer_tail;
1240	struct descriptor *d_branch;
1241
1242	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1243
1244	desc->used += (z + extra) * sizeof(*d);
1245
1246	wmb(); /* finish init of new descriptors before branch_address update */
1247
1248	d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1249	d_branch->branch_address = cpu_to_le32(d_bus | z);
1250
1251	/*
1252	 * VT6306 incorrectly checks only the single descriptor at the
1253	 * CommandPtr when the wake bit is written, so if it's a
1254	 * multi-descriptor block starting with an INPUT_MORE, put a copy of
1255	 * the branch address in the first descriptor.
1256	 *
1257	 * Not doing this for transmit contexts since not sure how it interacts
1258	 * with skip addresses.
1259	 */
1260	if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1261	    d_branch != ctx->prev &&
1262	    (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1263	     cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1264		ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1265	}
1266
1267	ctx->prev = d;
1268	ctx->prev_z = z;
1269}
1270
1271static void context_stop(struct context *ctx)
1272{
1273	struct fw_ohci *ohci = ctx->ohci;
1274	u32 reg;
1275	int i;
1276
1277	reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1278	ctx->running = false;
1279
1280	for (i = 0; i < 1000; i++) {
1281		reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1282		if ((reg & CONTEXT_ACTIVE) == 0)
1283			return;
1284
1285		if (i)
1286			udelay(10);
1287	}
1288	ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1289}
1290
1291struct driver_data {
1292	u8 inline_data[8];
1293	struct fw_packet *packet;
1294};
1295
1296/*
1297 * This function apppends a packet to the DMA queue for transmission.
1298 * Must always be called with the ochi->lock held to ensure proper
1299 * generation handling and locking around packet queue manipulation.
1300 */
1301static int at_context_queue_packet(struct context *ctx,
1302				   struct fw_packet *packet)
1303{
1304	struct fw_ohci *ohci = ctx->ohci;
1305	dma_addr_t d_bus, uninitialized_var(payload_bus);
1306	struct driver_data *driver_data;
1307	struct descriptor *d, *last;
1308	__le32 *header;
1309	int z, tcode;
1310
1311	d = context_get_descriptors(ctx, 4, &d_bus);
1312	if (d == NULL) {
1313		packet->ack = RCODE_SEND_ERROR;
1314		return -1;
1315	}
1316
1317	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1318	d[0].res_count = cpu_to_le16(packet->timestamp);
1319
1320	/*
1321	 * The DMA format for asynchronous link packets is different
1322	 * from the IEEE1394 layout, so shift the fields around
1323	 * accordingly.
1324	 */
1325
1326	tcode = (packet->header[0] >> 4) & 0x0f;
1327	header = (__le32 *) &d[1];
1328	switch (tcode) {
1329	case TCODE_WRITE_QUADLET_REQUEST:
1330	case TCODE_WRITE_BLOCK_REQUEST:
1331	case TCODE_WRITE_RESPONSE:
1332	case TCODE_READ_QUADLET_REQUEST:
1333	case TCODE_READ_BLOCK_REQUEST:
1334	case TCODE_READ_QUADLET_RESPONSE:
1335	case TCODE_READ_BLOCK_RESPONSE:
1336	case TCODE_LOCK_REQUEST:
1337	case TCODE_LOCK_RESPONSE:
1338		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1339					(packet->speed << 16));
1340		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1341					(packet->header[0] & 0xffff0000));
1342		header[2] = cpu_to_le32(packet->header[2]);
 
 
 
 
 
 
 
 
 
 
1343
1344		if (TCODE_IS_BLOCK_PACKET(tcode))
1345			header[3] = cpu_to_le32(packet->header[3]);
1346		else
1347			header[3] = (__force __le32) packet->header[3];
1348
1349		d[0].req_count = cpu_to_le16(packet->header_length);
1350		break;
 
 
 
1351
1352	case TCODE_LINK_INTERNAL:
1353		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1354					(packet->speed << 16));
1355		header[1] = cpu_to_le32(packet->header[1]);
1356		header[2] = cpu_to_le32(packet->header[2]);
1357		d[0].req_count = cpu_to_le16(12);
1358
1359		if (is_ping_packet(&packet->header[1]))
1360			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1361		break;
1362
1363	case TCODE_STREAM_DATA:
1364		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1365					(packet->speed << 16));
1366		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
 
 
 
 
 
1367		d[0].req_count = cpu_to_le16(8);
1368		break;
1369
1370	default:
1371		/* BUG(); */
1372		packet->ack = RCODE_SEND_ERROR;
1373		return -1;
1374	}
1375
1376	BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1377	driver_data = (struct driver_data *) &d[3];
1378	driver_data->packet = packet;
1379	packet->driver_data = driver_data;
1380
1381	if (packet->payload_length > 0) {
1382		if (packet->payload_length > sizeof(driver_data->inline_data)) {
1383			payload_bus = dma_map_single(ohci->card.device,
1384						     packet->payload,
1385						     packet->payload_length,
1386						     DMA_TO_DEVICE);
1387			if (dma_mapping_error(ohci->card.device, payload_bus)) {
1388				packet->ack = RCODE_SEND_ERROR;
1389				return -1;
1390			}
1391			packet->payload_bus	= payload_bus;
1392			packet->payload_mapped	= true;
1393		} else {
1394			memcpy(driver_data->inline_data, packet->payload,
1395			       packet->payload_length);
1396			payload_bus = d_bus + 3 * sizeof(*d);
1397		}
1398
1399		d[2].req_count    = cpu_to_le16(packet->payload_length);
1400		d[2].data_address = cpu_to_le32(payload_bus);
1401		last = &d[2];
1402		z = 3;
1403	} else {
1404		last = &d[0];
1405		z = 2;
1406	}
1407
1408	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1409				     DESCRIPTOR_IRQ_ALWAYS |
1410				     DESCRIPTOR_BRANCH_ALWAYS);
1411
1412	/* FIXME: Document how the locking works. */
1413	if (ohci->generation != packet->generation) {
1414		if (packet->payload_mapped)
1415			dma_unmap_single(ohci->card.device, payload_bus,
1416					 packet->payload_length, DMA_TO_DEVICE);
1417		packet->ack = RCODE_GENERATION;
1418		return -1;
1419	}
1420
1421	context_append(ctx, d, z, 4 - z);
1422
1423	if (ctx->running)
1424		reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1425	else
1426		context_run(ctx, 0);
1427
1428	return 0;
1429}
1430
1431static void at_context_flush(struct context *ctx)
1432{
1433	tasklet_disable(&ctx->tasklet);
1434
1435	ctx->flushing = true;
1436	context_tasklet((unsigned long)ctx);
1437	ctx->flushing = false;
1438
1439	tasklet_enable(&ctx->tasklet);
1440}
1441
1442static int handle_at_packet(struct context *context,
1443			    struct descriptor *d,
1444			    struct descriptor *last)
1445{
1446	struct driver_data *driver_data;
1447	struct fw_packet *packet;
1448	struct fw_ohci *ohci = context->ohci;
1449	int evt;
1450
1451	if (last->transfer_status == 0 && !context->flushing)
1452		/* This descriptor isn't done yet, stop iteration. */
1453		return 0;
1454
1455	driver_data = (struct driver_data *) &d[3];
1456	packet = driver_data->packet;
1457	if (packet == NULL)
1458		/* This packet was cancelled, just continue. */
1459		return 1;
1460
1461	if (packet->payload_mapped)
1462		dma_unmap_single(ohci->card.device, packet->payload_bus,
1463				 packet->payload_length, DMA_TO_DEVICE);
1464
1465	evt = le16_to_cpu(last->transfer_status) & 0x1f;
1466	packet->timestamp = le16_to_cpu(last->res_count);
1467
1468	log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1469
1470	switch (evt) {
1471	case OHCI1394_evt_timeout:
1472		/* Async response transmit timed out. */
1473		packet->ack = RCODE_CANCELLED;
1474		break;
1475
1476	case OHCI1394_evt_flushed:
1477		/*
1478		 * The packet was flushed should give same error as
1479		 * when we try to use a stale generation count.
1480		 */
1481		packet->ack = RCODE_GENERATION;
1482		break;
1483
1484	case OHCI1394_evt_missing_ack:
1485		if (context->flushing)
1486			packet->ack = RCODE_GENERATION;
1487		else {
1488			/*
1489			 * Using a valid (current) generation count, but the
1490			 * node is not on the bus or not sending acks.
1491			 */
1492			packet->ack = RCODE_NO_ACK;
1493		}
1494		break;
1495
1496	case ACK_COMPLETE + 0x10:
1497	case ACK_PENDING + 0x10:
1498	case ACK_BUSY_X + 0x10:
1499	case ACK_BUSY_A + 0x10:
1500	case ACK_BUSY_B + 0x10:
1501	case ACK_DATA_ERROR + 0x10:
1502	case ACK_TYPE_ERROR + 0x10:
1503		packet->ack = evt - 0x10;
1504		break;
1505
1506	case OHCI1394_evt_no_status:
1507		if (context->flushing) {
1508			packet->ack = RCODE_GENERATION;
1509			break;
1510		}
1511		/* fall through */
1512
1513	default:
1514		packet->ack = RCODE_SEND_ERROR;
1515		break;
1516	}
1517
1518	packet->callback(packet, &ohci->card, packet->ack);
1519
1520	return 1;
1521}
1522
1523#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
1524#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
1525#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
1526#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
1527#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1528
1529static void handle_local_rom(struct fw_ohci *ohci,
1530			     struct fw_packet *packet, u32 csr)
1531{
1532	struct fw_packet response;
1533	int tcode, length, i;
1534
1535	tcode = HEADER_GET_TCODE(packet->header[0]);
1536	if (TCODE_IS_BLOCK_PACKET(tcode))
1537		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1538	else
1539		length = 4;
1540
1541	i = csr - CSR_CONFIG_ROM;
1542	if (i + length > CONFIG_ROM_SIZE) {
1543		fw_fill_response(&response, packet->header,
1544				 RCODE_ADDRESS_ERROR, NULL, 0);
1545	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
1546		fw_fill_response(&response, packet->header,
1547				 RCODE_TYPE_ERROR, NULL, 0);
1548	} else {
1549		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1550				 (void *) ohci->config_rom + i, length);
1551	}
1552
 
 
1553	fw_core_handle_response(&ohci->card, &response);
1554}
1555
1556static void handle_local_lock(struct fw_ohci *ohci,
1557			      struct fw_packet *packet, u32 csr)
1558{
1559	struct fw_packet response;
1560	int tcode, length, ext_tcode, sel, try;
1561	__be32 *payload, lock_old;
1562	u32 lock_arg, lock_data;
1563
1564	tcode = HEADER_GET_TCODE(packet->header[0]);
1565	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1566	payload = packet->payload;
1567	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1568
1569	if (tcode == TCODE_LOCK_REQUEST &&
1570	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1571		lock_arg = be32_to_cpu(payload[0]);
1572		lock_data = be32_to_cpu(payload[1]);
1573	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1574		lock_arg = 0;
1575		lock_data = 0;
1576	} else {
1577		fw_fill_response(&response, packet->header,
1578				 RCODE_TYPE_ERROR, NULL, 0);
1579		goto out;
1580	}
1581
1582	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1583	reg_write(ohci, OHCI1394_CSRData, lock_data);
1584	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1585	reg_write(ohci, OHCI1394_CSRControl, sel);
1586
1587	for (try = 0; try < 20; try++)
1588		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1589			lock_old = cpu_to_be32(reg_read(ohci,
1590							OHCI1394_CSRData));
1591			fw_fill_response(&response, packet->header,
1592					 RCODE_COMPLETE,
1593					 &lock_old, sizeof(lock_old));
1594			goto out;
1595		}
1596
1597	ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1598	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1599
1600 out:
 
 
1601	fw_core_handle_response(&ohci->card, &response);
1602}
1603
1604static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1605{
1606	u64 offset, csr;
1607
1608	if (ctx == &ctx->ohci->at_request_ctx) {
1609		packet->ack = ACK_PENDING;
1610		packet->callback(packet, &ctx->ohci->card, packet->ack);
1611	}
1612
1613	offset =
1614		((unsigned long long)
1615		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1616		packet->header[2];
1617	csr = offset - CSR_REGISTER_BASE;
1618
1619	/* Handle config rom reads. */
1620	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1621		handle_local_rom(ctx->ohci, packet, csr);
1622	else switch (csr) {
1623	case CSR_BUS_MANAGER_ID:
1624	case CSR_BANDWIDTH_AVAILABLE:
1625	case CSR_CHANNELS_AVAILABLE_HI:
1626	case CSR_CHANNELS_AVAILABLE_LO:
1627		handle_local_lock(ctx->ohci, packet, csr);
1628		break;
1629	default:
1630		if (ctx == &ctx->ohci->at_request_ctx)
1631			fw_core_handle_request(&ctx->ohci->card, packet);
1632		else
1633			fw_core_handle_response(&ctx->ohci->card, packet);
1634		break;
1635	}
1636
1637	if (ctx == &ctx->ohci->at_response_ctx) {
1638		packet->ack = ACK_COMPLETE;
1639		packet->callback(packet, &ctx->ohci->card, packet->ack);
1640	}
1641}
1642
1643static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1644{
1645	unsigned long flags;
1646	int ret;
1647
1648	spin_lock_irqsave(&ctx->ohci->lock, flags);
1649
1650	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1651	    ctx->ohci->generation == packet->generation) {
1652		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
 
 
 
 
1653		handle_local_request(ctx, packet);
1654		return;
1655	}
1656
1657	ret = at_context_queue_packet(ctx, packet);
1658	spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1659
1660	if (ret < 0)
 
 
 
1661		packet->callback(packet, &ctx->ohci->card, packet->ack);
1662
1663}
1664
1665static void detect_dead_context(struct fw_ohci *ohci,
1666				const char *name, unsigned int regs)
1667{
1668	u32 ctl;
1669
1670	ctl = reg_read(ohci, CONTROL_SET(regs));
1671	if (ctl & CONTEXT_DEAD)
1672		ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1673			name, evts[ctl & 0x1f]);
1674}
1675
1676static void handle_dead_contexts(struct fw_ohci *ohci)
1677{
1678	unsigned int i;
1679	char name[8];
1680
1681	detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1682	detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1683	detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1684	detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1685	for (i = 0; i < 32; ++i) {
1686		if (!(ohci->it_context_support & (1 << i)))
1687			continue;
1688		sprintf(name, "IT%u", i);
1689		detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1690	}
1691	for (i = 0; i < 32; ++i) {
1692		if (!(ohci->ir_context_support & (1 << i)))
1693			continue;
1694		sprintf(name, "IR%u", i);
1695		detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1696	}
1697	/* TODO: maybe try to flush and restart the dead contexts */
1698}
1699
1700static u32 cycle_timer_ticks(u32 cycle_timer)
1701{
1702	u32 ticks;
1703
1704	ticks = cycle_timer & 0xfff;
1705	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1706	ticks += (3072 * 8000) * (cycle_timer >> 25);
1707
1708	return ticks;
1709}
1710
1711/*
1712 * Some controllers exhibit one or more of the following bugs when updating the
1713 * iso cycle timer register:
1714 *  - When the lowest six bits are wrapping around to zero, a read that happens
1715 *    at the same time will return garbage in the lowest ten bits.
1716 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1717 *    not incremented for about 60 ns.
1718 *  - Occasionally, the entire register reads zero.
1719 *
1720 * To catch these, we read the register three times and ensure that the
1721 * difference between each two consecutive reads is approximately the same, i.e.
1722 * less than twice the other.  Furthermore, any negative difference indicates an
1723 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1724 * execute, so we have enough precision to compute the ratio of the differences.)
1725 */
1726static u32 get_cycle_time(struct fw_ohci *ohci)
1727{
1728	u32 c0, c1, c2;
1729	u32 t0, t1, t2;
1730	s32 diff01, diff12;
1731	int i;
1732
 
 
 
1733	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1734
1735	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1736		i = 0;
1737		c1 = c2;
1738		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1739		do {
1740			c0 = c1;
1741			c1 = c2;
1742			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1743			t0 = cycle_timer_ticks(c0);
1744			t1 = cycle_timer_ticks(c1);
1745			t2 = cycle_timer_ticks(c2);
1746			diff01 = t1 - t0;
1747			diff12 = t2 - t1;
1748		} while ((diff01 <= 0 || diff12 <= 0 ||
1749			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1750			 && i++ < 20);
1751	}
1752
1753	return c2;
1754}
1755
1756/*
1757 * This function has to be called at least every 64 seconds.  The bus_time
1758 * field stores not only the upper 25 bits of the BUS_TIME register but also
1759 * the most significant bit of the cycle timer in bit 6 so that we can detect
1760 * changes in this bit.
1761 */
1762static u32 update_bus_time(struct fw_ohci *ohci)
1763{
1764	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1765
1766	if (unlikely(!ohci->bus_time_running)) {
1767		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1768		ohci->bus_time = (lower_32_bits(get_seconds()) & ~0x7f) |
1769		                 (cycle_time_seconds & 0x40);
1770		ohci->bus_time_running = true;
1771	}
1772
1773	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1774		ohci->bus_time += 0x40;
1775
1776	return ohci->bus_time | cycle_time_seconds;
1777}
1778
1779static int get_status_for_port(struct fw_ohci *ohci, int port_index)
 
1780{
1781	int reg;
1782
1783	mutex_lock(&ohci->phy_reg_mutex);
1784	reg = write_phy_reg(ohci, 7, port_index);
1785	if (reg >= 0)
 
 
1786		reg = read_phy_reg(ohci, 8);
1787	mutex_unlock(&ohci->phy_reg_mutex);
1788	if (reg < 0)
1789		return reg;
1790
1791	switch (reg & 0x0f) {
1792	case 0x06:
1793		return 2;	/* is child node (connected to parent node) */
 
 
1794	case 0x0e:
1795		return 3;	/* is parent node (connected to child node) */
 
 
 
 
 
 
1796	}
1797	return 1;		/* not connected */
 
1798}
1799
1800static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1801	int self_id_count)
1802{
 
1803	int i;
1804	u32 entry;
1805
1806	for (i = 0; i < self_id_count; i++) {
1807		entry = ohci->self_id_buffer[i];
1808		if ((self_id & 0xff000000) == (entry & 0xff000000))
 
 
1809			return -1;
1810		if ((self_id & 0xff000000) < (entry & 0xff000000))
1811			return i;
1812	}
1813	return i;
1814}
1815
1816static int initiated_reset(struct fw_ohci *ohci)
1817{
1818	int reg;
1819	int ret = 0;
1820
1821	mutex_lock(&ohci->phy_reg_mutex);
1822	reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
1823	if (reg >= 0) {
1824		reg = read_phy_reg(ohci, 8);
1825		reg |= 0x40;
1826		reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
1827		if (reg >= 0) {
1828			reg = read_phy_reg(ohci, 12); /* read register 12 */
1829			if (reg >= 0) {
1830				if ((reg & 0x08) == 0x08) {
1831					/* bit 3 indicates "initiated reset" */
1832					ret = 0x2;
1833				}
1834			}
1835		}
1836	}
1837	mutex_unlock(&ohci->phy_reg_mutex);
1838	return ret;
 
 
 
 
 
 
 
 
1839}
1840
1841/*
1842 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1843 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1844 * Construct the selfID from phy register contents.
1845 */
1846static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1847{
1848	int reg, i, pos, status;
1849	/* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1850	u32 self_id = 0x8040c800;
 
 
 
 
 
 
1851
1852	reg = reg_read(ohci, OHCI1394_NodeID);
1853	if (!(reg & OHCI1394_NodeID_idValid)) {
1854		ohci_notice(ohci,
1855			    "node ID not valid, new bus reset in progress\n");
1856		return -EBUSY;
1857	}
1858	self_id |= ((reg & 0x3f) << 24); /* phy ID */
1859
1860	reg = ohci_read_phy_reg(&ohci->card, 4);
1861	if (reg < 0)
1862		return reg;
1863	self_id |= ((reg & 0x07) << 8); /* power class */
1864
1865	reg = ohci_read_phy_reg(&ohci->card, 1);
1866	if (reg < 0)
1867		return reg;
1868	self_id |= ((reg & 0x3f) << 16); /* gap count */
1869
1870	for (i = 0; i < 3; i++) {
1871		status = get_status_for_port(ohci, i);
1872		if (status < 0)
1873			return status;
1874		self_id |= ((status & 0x3) << (6 - (i * 2)));
 
 
 
1875	}
1876
1877	self_id |= initiated_reset(ohci);
 
 
 
1878
1879	pos = get_self_id_pos(ohci, self_id, self_id_count);
1880	if (pos >= 0) {
1881		memmove(&(ohci->self_id_buffer[pos+1]),
1882			&(ohci->self_id_buffer[pos]),
1883			(self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1884		ohci->self_id_buffer[pos] = self_id;
1885		self_id_count++;
1886	}
1887	return self_id_count;
1888}
1889
1890static void bus_reset_work(struct work_struct *work)
1891{
1892	struct fw_ohci *ohci =
1893		container_of(work, struct fw_ohci, bus_reset_work);
1894	int self_id_count, generation, new_generation, i, j;
1895	u32 reg;
1896	void *free_rom = NULL;
1897	dma_addr_t free_rom_bus = 0;
1898	bool is_new_root;
1899
1900	reg = reg_read(ohci, OHCI1394_NodeID);
1901	if (!(reg & OHCI1394_NodeID_idValid)) {
1902		ohci_notice(ohci,
1903			    "node ID not valid, new bus reset in progress\n");
1904		return;
1905	}
1906	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1907		ohci_notice(ohci, "malconfigured bus\n");
1908		return;
1909	}
1910	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1911			       OHCI1394_NodeID_nodeNumber);
1912
1913	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1914	if (!(ohci->is_root && is_new_root))
1915		reg_write(ohci, OHCI1394_LinkControlSet,
1916			  OHCI1394_LinkControl_cycleMaster);
1917	ohci->is_root = is_new_root;
1918
1919	reg = reg_read(ohci, OHCI1394_SelfIDCount);
1920	if (reg & OHCI1394_SelfIDCount_selfIDError) {
1921		ohci_notice(ohci, "self ID receive error\n");
1922		return;
1923	}
1924	/*
1925	 * The count in the SelfIDCount register is the number of
1926	 * bytes in the self ID receive buffer.  Since we also receive
1927	 * the inverted quadlets and a header quadlet, we shift one
1928	 * bit extra to get the actual number of self IDs.
1929	 */
1930	self_id_count = (reg >> 3) & 0xff;
1931
1932	if (self_id_count > 252) {
1933		ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1934		return;
1935	}
1936
1937	generation = (cond_le32_to_cpu(ohci->self_id[0]) >> 16) & 0xff;
 
1938	rmb();
1939
1940	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1941		u32 id  = cond_le32_to_cpu(ohci->self_id[i]);
1942		u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1]);
1943
1944		if (id != ~id2) {
1945			/*
1946			 * If the invalid data looks like a cycle start packet,
1947			 * it's likely to be the result of the cycle master
1948			 * having a wrong gap count.  In this case, the self IDs
1949			 * so far are valid and should be processed so that the
1950			 * bus manager can then correct the gap count.
1951			 */
1952			if (id == 0xffff008f) {
1953				ohci_notice(ohci, "ignoring spurious self IDs\n");
1954				self_id_count = j;
1955				break;
1956			}
1957
1958			ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
1959				    j, self_id_count, id, id2);
1960			return;
1961		}
1962		ohci->self_id_buffer[j] = id;
1963	}
1964
1965	if (ohci->quirks & QUIRK_TI_SLLZ059) {
1966		self_id_count = find_and_insert_self_id(ohci, self_id_count);
1967		if (self_id_count < 0) {
1968			ohci_notice(ohci,
1969				    "could not construct local self ID\n");
1970			return;
1971		}
1972	}
1973
1974	if (self_id_count == 0) {
1975		ohci_notice(ohci, "no self IDs\n");
1976		return;
1977	}
1978	rmb();
1979
1980	/*
1981	 * Check the consistency of the self IDs we just read.  The
1982	 * problem we face is that a new bus reset can start while we
1983	 * read out the self IDs from the DMA buffer. If this happens,
1984	 * the DMA buffer will be overwritten with new self IDs and we
1985	 * will read out inconsistent data.  The OHCI specification
1986	 * (section 11.2) recommends a technique similar to
1987	 * linux/seqlock.h, where we remember the generation of the
1988	 * self IDs in the buffer before reading them out and compare
1989	 * it to the current generation after reading them out.  If
1990	 * the two generations match we know we have a consistent set
1991	 * of self IDs.
1992	 */
1993
1994	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
 
1995	if (new_generation != generation) {
1996		ohci_notice(ohci, "new bus reset, discarding self ids\n");
1997		return;
1998	}
1999
2000	/* FIXME: Document how the locking works. */
2001	spin_lock_irq(&ohci->lock);
2002
2003	ohci->generation = -1; /* prevent AT packet queueing */
2004	context_stop(&ohci->at_request_ctx);
2005	context_stop(&ohci->at_response_ctx);
2006
2007	spin_unlock_irq(&ohci->lock);
2008
2009	/*
2010	 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2011	 * packets in the AT queues and software needs to drain them.
2012	 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2013	 */
2014	at_context_flush(&ohci->at_request_ctx);
2015	at_context_flush(&ohci->at_response_ctx);
2016
2017	spin_lock_irq(&ohci->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2018
2019	ohci->generation = generation;
2020	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2021
2022	if (ohci->quirks & QUIRK_RESET_PACKET)
2023		ohci->request_generation = generation;
2024
2025	/*
2026	 * This next bit is unrelated to the AT context stuff but we
2027	 * have to do it under the spinlock also.  If a new config rom
2028	 * was set up before this reset, the old one is now no longer
2029	 * in use and we can free it. Update the config rom pointers
2030	 * to point to the current config rom and clear the
2031	 * next_config_rom pointer so a new update can take place.
2032	 */
2033
2034	if (ohci->next_config_rom != NULL) {
2035		if (ohci->next_config_rom != ohci->config_rom) {
2036			free_rom      = ohci->config_rom;
2037			free_rom_bus  = ohci->config_rom_bus;
2038		}
2039		ohci->config_rom      = ohci->next_config_rom;
2040		ohci->config_rom_bus  = ohci->next_config_rom_bus;
2041		ohci->next_config_rom = NULL;
2042
2043		/*
2044		 * Restore config_rom image and manually update
2045		 * config_rom registers.  Writing the header quadlet
2046		 * will indicate that the config rom is ready, so we
2047		 * do that last.
2048		 */
2049		reg_write(ohci, OHCI1394_BusOptions,
2050			  be32_to_cpu(ohci->config_rom[2]));
2051		ohci->config_rom[0] = ohci->next_header;
2052		reg_write(ohci, OHCI1394_ConfigROMhdr,
2053			  be32_to_cpu(ohci->next_header));
2054	}
2055
2056	if (param_remote_dma) {
2057		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2058		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2059	}
2060
2061	spin_unlock_irq(&ohci->lock);
2062
2063	if (free_rom)
2064		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2065				  free_rom, free_rom_bus);
2066
2067	log_selfids(ohci, generation, self_id_count);
2068
2069	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2070				 self_id_count, ohci->self_id_buffer,
2071				 ohci->csr_state_setclear_abdicate);
2072	ohci->csr_state_setclear_abdicate = false;
2073}
2074
2075static irqreturn_t irq_handler(int irq, void *data)
2076{
2077	struct fw_ohci *ohci = data;
2078	u32 event, iso_event;
2079	int i;
2080
2081	event = reg_read(ohci, OHCI1394_IntEventClear);
2082
2083	if (!event || !~event)
2084		return IRQ_NONE;
2085
 
 
 
 
 
2086	/*
2087	 * busReset and postedWriteErr must not be cleared yet
2088	 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2089	 */
2090	reg_write(ohci, OHCI1394_IntEventClear,
2091		  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
 
2092	log_irqs(ohci, event);
 
 
 
 
 
 
 
2093
2094	if (event & OHCI1394_selfIDComplete)
 
 
2095		queue_work(selfid_workqueue, &ohci->bus_reset_work);
 
2096
2097	if (event & OHCI1394_RQPkt)
2098		tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2099
2100	if (event & OHCI1394_RSPkt)
2101		tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2102
2103	if (event & OHCI1394_reqTxComplete)
2104		tasklet_schedule(&ohci->at_request_ctx.tasklet);
2105
2106	if (event & OHCI1394_respTxComplete)
2107		tasklet_schedule(&ohci->at_response_ctx.tasklet);
2108
2109	if (event & OHCI1394_isochRx) {
2110		iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2111		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2112
2113		while (iso_event) {
2114			i = ffs(iso_event) - 1;
2115			tasklet_schedule(
2116				&ohci->ir_context_list[i].context.tasklet);
2117			iso_event &= ~(1 << i);
2118		}
2119	}
2120
2121	if (event & OHCI1394_isochTx) {
2122		iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2123		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2124
2125		while (iso_event) {
2126			i = ffs(iso_event) - 1;
2127			tasklet_schedule(
2128				&ohci->it_context_list[i].context.tasklet);
2129			iso_event &= ~(1 << i);
2130		}
2131	}
2132
2133	if (unlikely(event & OHCI1394_regAccessFail))
2134		ohci_err(ohci, "register access failure\n");
2135
2136	if (unlikely(event & OHCI1394_postedWriteErr)) {
2137		reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2138		reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2139		reg_write(ohci, OHCI1394_IntEventClear,
2140			  OHCI1394_postedWriteErr);
2141		if (printk_ratelimit())
2142			ohci_err(ohci, "PCI posted write error\n");
2143	}
2144
2145	if (unlikely(event & OHCI1394_cycleTooLong)) {
2146		if (printk_ratelimit())
2147			ohci_notice(ohci, "isochronous cycle too long\n");
2148		reg_write(ohci, OHCI1394_LinkControlSet,
2149			  OHCI1394_LinkControl_cycleMaster);
2150	}
2151
2152	if (unlikely(event & OHCI1394_cycleInconsistent)) {
2153		/*
2154		 * We need to clear this event bit in order to make
2155		 * cycleMatch isochronous I/O work.  In theory we should
2156		 * stop active cycleMatch iso contexts now and restart
2157		 * them at least two cycles later.  (FIXME?)
2158		 */
2159		if (printk_ratelimit())
2160			ohci_notice(ohci, "isochronous cycle inconsistent\n");
2161	}
2162
2163	if (unlikely(event & OHCI1394_unrecoverableError))
2164		handle_dead_contexts(ohci);
2165
2166	if (event & OHCI1394_cycle64Seconds) {
2167		spin_lock(&ohci->lock);
2168		update_bus_time(ohci);
2169		spin_unlock(&ohci->lock);
2170	} else
2171		flush_writes(ohci);
2172
2173	return IRQ_HANDLED;
2174}
2175
2176static int software_reset(struct fw_ohci *ohci)
2177{
2178	u32 val;
2179	int i;
2180
2181	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2182	for (i = 0; i < 500; i++) {
2183		val = reg_read(ohci, OHCI1394_HCControlSet);
2184		if (!~val)
2185			return -ENODEV; /* Card was ejected. */
2186
2187		if (!(val & OHCI1394_HCControl_softReset))
2188			return 0;
2189
2190		msleep(1);
2191	}
2192
2193	return -EBUSY;
2194}
2195
2196static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2197{
2198	size_t size = length * 4;
2199
2200	memcpy(dest, src, size);
2201	if (size < CONFIG_ROM_SIZE)
2202		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2203}
2204
2205static int configure_1394a_enhancements(struct fw_ohci *ohci)
2206{
2207	bool enable_1394a;
2208	int ret, clear, set, offset;
2209
2210	/* Check if the driver should configure link and PHY. */
2211	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2212	      OHCI1394_HCControl_programPhyEnable))
2213		return 0;
2214
2215	/* Paranoia: check whether the PHY supports 1394a, too. */
2216	enable_1394a = false;
2217	ret = read_phy_reg(ohci, 2);
2218	if (ret < 0)
2219		return ret;
2220	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2221		ret = read_paged_phy_reg(ohci, 1, 8);
2222		if (ret < 0)
2223			return ret;
2224		if (ret >= 1)
2225			enable_1394a = true;
2226	}
2227
2228	if (ohci->quirks & QUIRK_NO_1394A)
2229		enable_1394a = false;
2230
2231	/* Configure PHY and link consistently. */
2232	if (enable_1394a) {
2233		clear = 0;
2234		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2235	} else {
2236		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2237		set = 0;
2238	}
2239	ret = update_phy_reg(ohci, 5, clear, set);
2240	if (ret < 0)
2241		return ret;
2242
2243	if (enable_1394a)
2244		offset = OHCI1394_HCControlSet;
2245	else
2246		offset = OHCI1394_HCControlClear;
2247	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2248
2249	/* Clean up: configuration has been taken care of. */
2250	reg_write(ohci, OHCI1394_HCControlClear,
2251		  OHCI1394_HCControl_programPhyEnable);
2252
2253	return 0;
2254}
2255
2256static int probe_tsb41ba3d(struct fw_ohci *ohci)
2257{
2258	/* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2259	static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2260	int reg, i;
2261
2262	reg = read_phy_reg(ohci, 2);
2263	if (reg < 0)
2264		return reg;
2265	if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2266		return 0;
2267
2268	for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2269		reg = read_paged_phy_reg(ohci, 1, i + 10);
2270		if (reg < 0)
2271			return reg;
2272		if (reg != id[i])
2273			return 0;
2274	}
2275	return 1;
2276}
2277
2278static int ohci_enable(struct fw_card *card,
2279		       const __be32 *config_rom, size_t length)
2280{
2281	struct fw_ohci *ohci = fw_ohci(card);
2282	u32 lps, version, irqs;
2283	int i, ret;
2284
2285	ret = software_reset(ohci);
2286	if (ret < 0) {
2287		ohci_err(ohci, "failed to reset ohci card\n");
2288		return ret;
2289	}
2290
2291	/*
2292	 * Now enable LPS, which we need in order to start accessing
2293	 * most of the registers.  In fact, on some cards (ALI M5251),
2294	 * accessing registers in the SClk domain without LPS enabled
2295	 * will lock up the machine.  Wait 50msec to make sure we have
2296	 * full link enabled.  However, with some cards (well, at least
2297	 * a JMicron PCIe card), we have to try again sometimes.
2298	 *
2299	 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2300	 * cannot actually use the phy at that time.  These need tens of
2301	 * millisecods pause between LPS write and first phy access too.
2302	 */
2303
2304	reg_write(ohci, OHCI1394_HCControlSet,
2305		  OHCI1394_HCControl_LPS |
2306		  OHCI1394_HCControl_postedWriteEnable);
2307	flush_writes(ohci);
2308
2309	for (lps = 0, i = 0; !lps && i < 3; i++) {
2310		msleep(50);
2311		lps = reg_read(ohci, OHCI1394_HCControlSet) &
2312		      OHCI1394_HCControl_LPS;
2313	}
2314
2315	if (!lps) {
2316		ohci_err(ohci, "failed to set Link Power Status\n");
2317		return -EIO;
2318	}
2319
2320	if (ohci->quirks & QUIRK_TI_SLLZ059) {
2321		ret = probe_tsb41ba3d(ohci);
2322		if (ret < 0)
2323			return ret;
2324		if (ret)
2325			ohci_notice(ohci, "local TSB41BA3D phy\n");
2326		else
2327			ohci->quirks &= ~QUIRK_TI_SLLZ059;
2328	}
2329
2330	reg_write(ohci, OHCI1394_HCControlClear,
2331		  OHCI1394_HCControl_noByteSwapData);
2332
2333	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2334	reg_write(ohci, OHCI1394_LinkControlSet,
2335		  OHCI1394_LinkControl_cycleTimerEnable |
2336		  OHCI1394_LinkControl_cycleMaster);
2337
2338	reg_write(ohci, OHCI1394_ATRetries,
2339		  OHCI1394_MAX_AT_REQ_RETRIES |
2340		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2341		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2342		  (200 << 16));
2343
2344	ohci->bus_time_running = false;
2345
2346	for (i = 0; i < 32; i++)
2347		if (ohci->ir_context_support & (1 << i))
2348			reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2349				  IR_CONTEXT_MULTI_CHANNEL_MODE);
2350
2351	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2352	if (version >= OHCI_VERSION_1_1) {
2353		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2354			  0xfffffffe);
2355		card->broadcast_channel_auto_allocated = true;
2356	}
2357
2358	/* Get implemented bits of the priority arbitration request counter. */
2359	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2360	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2361	reg_write(ohci, OHCI1394_FairnessControl, 0);
2362	card->priority_budget_implemented = ohci->pri_req_max != 0;
2363
2364	reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2365	reg_write(ohci, OHCI1394_IntEventClear, ~0);
2366	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2367
2368	ret = configure_1394a_enhancements(ohci);
2369	if (ret < 0)
2370		return ret;
2371
2372	/* Activate link_on bit and contender bit in our self ID packets.*/
2373	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2374	if (ret < 0)
2375		return ret;
2376
2377	/*
2378	 * When the link is not yet enabled, the atomic config rom
2379	 * update mechanism described below in ohci_set_config_rom()
2380	 * is not active.  We have to update ConfigRomHeader and
2381	 * BusOptions manually, and the write to ConfigROMmap takes
2382	 * effect immediately.  We tie this to the enabling of the
2383	 * link, so we have a valid config rom before enabling - the
2384	 * OHCI requires that ConfigROMhdr and BusOptions have valid
2385	 * values before enabling.
2386	 *
2387	 * However, when the ConfigROMmap is written, some controllers
2388	 * always read back quadlets 0 and 2 from the config rom to
2389	 * the ConfigRomHeader and BusOptions registers on bus reset.
2390	 * They shouldn't do that in this initial case where the link
2391	 * isn't enabled.  This means we have to use the same
2392	 * workaround here, setting the bus header to 0 and then write
2393	 * the right values in the bus reset tasklet.
2394	 */
2395
2396	if (config_rom) {
2397		ohci->next_config_rom =
2398			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2399					   &ohci->next_config_rom_bus,
2400					   GFP_KERNEL);
2401		if (ohci->next_config_rom == NULL)
2402			return -ENOMEM;
2403
2404		copy_config_rom(ohci->next_config_rom, config_rom, length);
2405	} else {
2406		/*
2407		 * In the suspend case, config_rom is NULL, which
2408		 * means that we just reuse the old config rom.
2409		 */
2410		ohci->next_config_rom = ohci->config_rom;
2411		ohci->next_config_rom_bus = ohci->config_rom_bus;
2412	}
2413
2414	ohci->next_header = ohci->next_config_rom[0];
2415	ohci->next_config_rom[0] = 0;
2416	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2417	reg_write(ohci, OHCI1394_BusOptions,
2418		  be32_to_cpu(ohci->next_config_rom[2]));
2419	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2420
2421	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2422
2423	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2424		OHCI1394_RQPkt | OHCI1394_RSPkt |
2425		OHCI1394_isochTx | OHCI1394_isochRx |
2426		OHCI1394_postedWriteErr |
2427		OHCI1394_selfIDComplete |
2428		OHCI1394_regAccessFail |
2429		OHCI1394_cycleInconsistent |
2430		OHCI1394_unrecoverableError |
2431		OHCI1394_cycleTooLong |
2432		OHCI1394_masterIntEnable;
2433	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2434		irqs |= OHCI1394_busReset;
2435	reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2436
2437	reg_write(ohci, OHCI1394_HCControlSet,
2438		  OHCI1394_HCControl_linkEnable |
2439		  OHCI1394_HCControl_BIBimageValid);
2440
2441	reg_write(ohci, OHCI1394_LinkControlSet,
2442		  OHCI1394_LinkControl_rcvSelfID |
2443		  OHCI1394_LinkControl_rcvPhyPkt);
2444
2445	ar_context_run(&ohci->ar_request_ctx);
2446	ar_context_run(&ohci->ar_response_ctx);
2447
2448	flush_writes(ohci);
2449
2450	/* We are ready to go, reset bus to finish initialization. */
2451	fw_schedule_bus_reset(&ohci->card, false, true);
2452
2453	return 0;
2454}
2455
2456static int ohci_set_config_rom(struct fw_card *card,
2457			       const __be32 *config_rom, size_t length)
2458{
2459	struct fw_ohci *ohci;
2460	__be32 *next_config_rom;
2461	dma_addr_t uninitialized_var(next_config_rom_bus);
2462
2463	ohci = fw_ohci(card);
2464
2465	/*
2466	 * When the OHCI controller is enabled, the config rom update
2467	 * mechanism is a bit tricky, but easy enough to use.  See
2468	 * section 5.5.6 in the OHCI specification.
2469	 *
2470	 * The OHCI controller caches the new config rom address in a
2471	 * shadow register (ConfigROMmapNext) and needs a bus reset
2472	 * for the changes to take place.  When the bus reset is
2473	 * detected, the controller loads the new values for the
2474	 * ConfigRomHeader and BusOptions registers from the specified
2475	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2476	 * shadow register. All automatically and atomically.
2477	 *
2478	 * Now, there's a twist to this story.  The automatic load of
2479	 * ConfigRomHeader and BusOptions doesn't honor the
2480	 * noByteSwapData bit, so with a be32 config rom, the
2481	 * controller will load be32 values in to these registers
2482	 * during the atomic update, even on litte endian
2483	 * architectures.  The workaround we use is to put a 0 in the
2484	 * header quadlet; 0 is endian agnostic and means that the
2485	 * config rom isn't ready yet.  In the bus reset tasklet we
2486	 * then set up the real values for the two registers.
2487	 *
2488	 * We use ohci->lock to avoid racing with the code that sets
2489	 * ohci->next_config_rom to NULL (see bus_reset_work).
2490	 */
2491
2492	next_config_rom =
2493		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2494				   &next_config_rom_bus, GFP_KERNEL);
2495	if (next_config_rom == NULL)
2496		return -ENOMEM;
2497
2498	spin_lock_irq(&ohci->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
2499
2500	/*
2501	 * If there is not an already pending config_rom update,
2502	 * push our new allocation into the ohci->next_config_rom
2503	 * and then mark the local variable as null so that we
2504	 * won't deallocate the new buffer.
2505	 *
2506	 * OTOH, if there is a pending config_rom update, just
2507	 * use that buffer with the new config_rom data, and
2508	 * let this routine free the unused DMA allocation.
2509	 */
2510
2511	if (ohci->next_config_rom == NULL) {
2512		ohci->next_config_rom = next_config_rom;
2513		ohci->next_config_rom_bus = next_config_rom_bus;
2514		next_config_rom = NULL;
2515	}
2516
2517	copy_config_rom(ohci->next_config_rom, config_rom, length);
2518
2519	ohci->next_header = config_rom[0];
2520	ohci->next_config_rom[0] = 0;
2521
2522	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2523
2524	spin_unlock_irq(&ohci->lock);
2525
2526	/* If we didn't use the DMA allocation, delete it. */
2527	if (next_config_rom != NULL)
2528		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2529				  next_config_rom, next_config_rom_bus);
 
2530
2531	/*
2532	 * Now initiate a bus reset to have the changes take
2533	 * effect. We clean up the old config rom memory and DMA
2534	 * mappings in the bus reset tasklet, since the OHCI
2535	 * controller could need to access it before the bus reset
2536	 * takes effect.
2537	 */
2538
2539	fw_schedule_bus_reset(&ohci->card, true, true);
2540
2541	return 0;
2542}
2543
2544static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2545{
2546	struct fw_ohci *ohci = fw_ohci(card);
2547
2548	at_context_transmit(&ohci->at_request_ctx, packet);
2549}
2550
2551static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2552{
2553	struct fw_ohci *ohci = fw_ohci(card);
2554
2555	at_context_transmit(&ohci->at_response_ctx, packet);
2556}
2557
2558static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2559{
2560	struct fw_ohci *ohci = fw_ohci(card);
2561	struct context *ctx = &ohci->at_request_ctx;
2562	struct driver_data *driver_data = packet->driver_data;
2563	int ret = -ENOENT;
2564
2565	tasklet_disable(&ctx->tasklet);
2566
2567	if (packet->ack != 0)
2568		goto out;
2569
2570	if (packet->payload_mapped)
2571		dma_unmap_single(ohci->card.device, packet->payload_bus,
2572				 packet->payload_length, DMA_TO_DEVICE);
2573
2574	log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2575	driver_data->packet = NULL;
2576	packet->ack = RCODE_CANCELLED;
 
 
 
 
2577	packet->callback(packet, &ohci->card, packet->ack);
2578	ret = 0;
2579 out:
2580	tasklet_enable(&ctx->tasklet);
2581
2582	return ret;
2583}
2584
2585static int ohci_enable_phys_dma(struct fw_card *card,
2586				int node_id, int generation)
2587{
2588	struct fw_ohci *ohci = fw_ohci(card);
2589	unsigned long flags;
2590	int n, ret = 0;
2591
2592	if (param_remote_dma)
2593		return 0;
2594
2595	/*
2596	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2597	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2598	 */
2599
2600	spin_lock_irqsave(&ohci->lock, flags);
2601
2602	if (ohci->generation != generation) {
2603		ret = -ESTALE;
2604		goto out;
2605	}
2606
2607	/*
2608	 * Note, if the node ID contains a non-local bus ID, physical DMA is
2609	 * enabled for _all_ nodes on remote buses.
2610	 */
2611
2612	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2613	if (n < 32)
2614		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2615	else
2616		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2617
2618	flush_writes(ohci);
2619 out:
2620	spin_unlock_irqrestore(&ohci->lock, flags);
2621
2622	return ret;
2623}
2624
2625static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2626{
2627	struct fw_ohci *ohci = fw_ohci(card);
2628	unsigned long flags;
2629	u32 value;
2630
2631	switch (csr_offset) {
2632	case CSR_STATE_CLEAR:
2633	case CSR_STATE_SET:
2634		if (ohci->is_root &&
2635		    (reg_read(ohci, OHCI1394_LinkControlSet) &
2636		     OHCI1394_LinkControl_cycleMaster))
2637			value = CSR_STATE_BIT_CMSTR;
2638		else
2639			value = 0;
2640		if (ohci->csr_state_setclear_abdicate)
2641			value |= CSR_STATE_BIT_ABDICATE;
2642
2643		return value;
2644
2645	case CSR_NODE_IDS:
2646		return reg_read(ohci, OHCI1394_NodeID) << 16;
2647
2648	case CSR_CYCLE_TIME:
2649		return get_cycle_time(ohci);
2650
2651	case CSR_BUS_TIME:
2652		/*
2653		 * We might be called just after the cycle timer has wrapped
2654		 * around but just before the cycle64Seconds handler, so we
2655		 * better check here, too, if the bus time needs to be updated.
2656		 */
2657		spin_lock_irqsave(&ohci->lock, flags);
2658		value = update_bus_time(ohci);
2659		spin_unlock_irqrestore(&ohci->lock, flags);
2660		return value;
2661
 
 
 
2662	case CSR_BUSY_TIMEOUT:
2663		value = reg_read(ohci, OHCI1394_ATRetries);
2664		return (value >> 4) & 0x0ffff00f;
2665
2666	case CSR_PRIORITY_BUDGET:
2667		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2668			(ohci->pri_req_max << 8);
2669
2670	default:
2671		WARN_ON(1);
2672		return 0;
2673	}
2674}
2675
2676static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2677{
2678	struct fw_ohci *ohci = fw_ohci(card);
2679	unsigned long flags;
2680
2681	switch (csr_offset) {
2682	case CSR_STATE_CLEAR:
2683		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2684			reg_write(ohci, OHCI1394_LinkControlClear,
2685				  OHCI1394_LinkControl_cycleMaster);
2686			flush_writes(ohci);
2687		}
2688		if (value & CSR_STATE_BIT_ABDICATE)
2689			ohci->csr_state_setclear_abdicate = false;
2690		break;
2691
2692	case CSR_STATE_SET:
2693		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2694			reg_write(ohci, OHCI1394_LinkControlSet,
2695				  OHCI1394_LinkControl_cycleMaster);
2696			flush_writes(ohci);
2697		}
2698		if (value & CSR_STATE_BIT_ABDICATE)
2699			ohci->csr_state_setclear_abdicate = true;
2700		break;
2701
2702	case CSR_NODE_IDS:
2703		reg_write(ohci, OHCI1394_NodeID, value >> 16);
2704		flush_writes(ohci);
2705		break;
2706
2707	case CSR_CYCLE_TIME:
2708		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2709		reg_write(ohci, OHCI1394_IntEventSet,
2710			  OHCI1394_cycleInconsistent);
2711		flush_writes(ohci);
2712		break;
2713
2714	case CSR_BUS_TIME:
2715		spin_lock_irqsave(&ohci->lock, flags);
2716		ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2717		                 (value & ~0x7f);
2718		spin_unlock_irqrestore(&ohci->lock, flags);
2719		break;
2720
2721	case CSR_BUSY_TIMEOUT:
2722		value = (value & 0xf) | ((value & 0xf) << 4) |
2723			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2724		reg_write(ohci, OHCI1394_ATRetries, value);
2725		flush_writes(ohci);
2726		break;
2727
2728	case CSR_PRIORITY_BUDGET:
2729		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2730		flush_writes(ohci);
2731		break;
2732
2733	default:
2734		WARN_ON(1);
2735		break;
2736	}
2737}
2738
2739static void flush_iso_completions(struct iso_context *ctx)
2740{
 
 
 
 
 
2741	ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2742			      ctx->header_length, ctx->header,
2743			      ctx->base.callback_data);
2744	ctx->header_length = 0;
2745}
2746
2747static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2748{
2749	u32 *ctx_hdr;
2750
2751	if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2752		if (ctx->base.drop_overflow_headers)
2753			return;
2754		flush_iso_completions(ctx);
2755	}
2756
2757	ctx_hdr = ctx->header + ctx->header_length;
2758	ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2759
2760	/*
2761	 * The two iso header quadlets are byteswapped to little
2762	 * endian by the controller, but we want to present them
2763	 * as big endian for consistency with the bus endianness.
2764	 */
2765	if (ctx->base.header_size > 0)
2766		ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2767	if (ctx->base.header_size > 4)
2768		ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2769	if (ctx->base.header_size > 8)
2770		memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2771	ctx->header_length += ctx->base.header_size;
2772}
2773
2774static int handle_ir_packet_per_buffer(struct context *context,
2775				       struct descriptor *d,
2776				       struct descriptor *last)
2777{
2778	struct iso_context *ctx =
2779		container_of(context, struct iso_context, context);
2780	struct descriptor *pd;
2781	u32 buffer_dma;
2782
2783	for (pd = d; pd <= last; pd++)
2784		if (pd->transfer_status)
2785			break;
2786	if (pd > last)
2787		/* Descriptor(s) not done yet, stop iteration */
2788		return 0;
2789
2790	while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2791		d++;
2792		buffer_dma = le32_to_cpu(d->data_address);
2793		dma_sync_single_range_for_cpu(context->ohci->card.device,
2794					      buffer_dma & PAGE_MASK,
2795					      buffer_dma & ~PAGE_MASK,
2796					      le16_to_cpu(d->req_count),
2797					      DMA_FROM_DEVICE);
2798	}
2799
2800	copy_iso_headers(ctx, (u32 *) (last + 1));
2801
2802	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2803		flush_iso_completions(ctx);
2804
2805	return 1;
2806}
2807
2808/* d == last because each descriptor block is only a single descriptor. */
2809static int handle_ir_buffer_fill(struct context *context,
2810				 struct descriptor *d,
2811				 struct descriptor *last)
2812{
2813	struct iso_context *ctx =
2814		container_of(context, struct iso_context, context);
2815	unsigned int req_count, res_count, completed;
2816	u32 buffer_dma;
2817
2818	req_count = le16_to_cpu(last->req_count);
2819	res_count = le16_to_cpu(READ_ONCE(last->res_count));
2820	completed = req_count - res_count;
2821	buffer_dma = le32_to_cpu(last->data_address);
2822
2823	if (completed > 0) {
2824		ctx->mc_buffer_bus = buffer_dma;
2825		ctx->mc_completed = completed;
2826	}
2827
2828	if (res_count != 0)
2829		/* Descriptor(s) not done yet, stop iteration */
2830		return 0;
2831
2832	dma_sync_single_range_for_cpu(context->ohci->card.device,
2833				      buffer_dma & PAGE_MASK,
2834				      buffer_dma & ~PAGE_MASK,
2835				      completed, DMA_FROM_DEVICE);
2836
2837	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
 
 
 
2838		ctx->base.callback.mc(&ctx->base,
2839				      buffer_dma + completed,
2840				      ctx->base.callback_data);
2841		ctx->mc_completed = 0;
2842	}
2843
2844	return 1;
2845}
2846
2847static void flush_ir_buffer_fill(struct iso_context *ctx)
2848{
2849	dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2850				      ctx->mc_buffer_bus & PAGE_MASK,
2851				      ctx->mc_buffer_bus & ~PAGE_MASK,
2852				      ctx->mc_completed, DMA_FROM_DEVICE);
2853
 
 
 
2854	ctx->base.callback.mc(&ctx->base,
2855			      ctx->mc_buffer_bus + ctx->mc_completed,
2856			      ctx->base.callback_data);
2857	ctx->mc_completed = 0;
2858}
2859
2860static inline void sync_it_packet_for_cpu(struct context *context,
2861					  struct descriptor *pd)
2862{
2863	__le16 control;
2864	u32 buffer_dma;
2865
2866	/* only packets beginning with OUTPUT_MORE* have data buffers */
2867	if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2868		return;
2869
2870	/* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2871	pd += 2;
2872
2873	/*
2874	 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2875	 * data buffer is in the context program's coherent page and must not
2876	 * be synced.
2877	 */
2878	if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2879	    (context->current_bus          & PAGE_MASK)) {
2880		if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2881			return;
2882		pd++;
2883	}
2884
2885	do {
2886		buffer_dma = le32_to_cpu(pd->data_address);
2887		dma_sync_single_range_for_cpu(context->ohci->card.device,
2888					      buffer_dma & PAGE_MASK,
2889					      buffer_dma & ~PAGE_MASK,
2890					      le16_to_cpu(pd->req_count),
2891					      DMA_TO_DEVICE);
2892		control = pd->control;
2893		pd++;
2894	} while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2895}
2896
2897static int handle_it_packet(struct context *context,
2898			    struct descriptor *d,
2899			    struct descriptor *last)
2900{
2901	struct iso_context *ctx =
2902		container_of(context, struct iso_context, context);
2903	struct descriptor *pd;
2904	__be32 *ctx_hdr;
2905
2906	for (pd = d; pd <= last; pd++)
2907		if (pd->transfer_status)
2908			break;
2909	if (pd > last)
2910		/* Descriptor(s) not done yet, stop iteration */
2911		return 0;
2912
2913	sync_it_packet_for_cpu(context, d);
2914
2915	if (ctx->header_length + 4 > PAGE_SIZE) {
2916		if (ctx->base.drop_overflow_headers)
2917			return 1;
2918		flush_iso_completions(ctx);
2919	}
2920
2921	ctx_hdr = ctx->header + ctx->header_length;
2922	ctx->last_timestamp = le16_to_cpu(last->res_count);
2923	/* Present this value as big-endian to match the receive code */
2924	*ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2925			       le16_to_cpu(pd->res_count));
2926	ctx->header_length += 4;
2927
2928	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2929		flush_iso_completions(ctx);
2930
2931	return 1;
2932}
2933
2934static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2935{
2936	u32 hi = channels >> 32, lo = channels;
2937
2938	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2939	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2940	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2941	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2942	mmiowb();
2943	ohci->mc_channels = channels;
2944}
2945
2946static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2947				int type, int channel, size_t header_size)
2948{
2949	struct fw_ohci *ohci = fw_ohci(card);
2950	struct iso_context *uninitialized_var(ctx);
2951	descriptor_callback_t uninitialized_var(callback);
2952	u64 *uninitialized_var(channels);
2953	u32 *uninitialized_var(mask), uninitialized_var(regs);
2954	int index, ret = -EBUSY;
2955
2956	spin_lock_irq(&ohci->lock);
 
 
 
 
 
 
 
 
 
 
 
2957
2958	switch (type) {
2959	case FW_ISO_CONTEXT_TRANSMIT:
2960		mask     = &ohci->it_context_mask;
2961		callback = handle_it_packet;
2962		index    = ffs(*mask) - 1;
2963		if (index >= 0) {
2964			*mask &= ~(1 << index);
2965			regs = OHCI1394_IsoXmitContextBase(index);
2966			ctx  = &ohci->it_context_list[index];
2967		}
2968		break;
 
2969
2970	case FW_ISO_CONTEXT_RECEIVE:
2971		channels = &ohci->ir_context_channels;
2972		mask     = &ohci->ir_context_mask;
2973		callback = handle_ir_packet_per_buffer;
2974		index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2975		if (index >= 0) {
2976			*channels &= ~(1ULL << channel);
2977			*mask     &= ~(1 << index);
2978			regs = OHCI1394_IsoRcvContextBase(index);
2979			ctx  = &ohci->ir_context_list[index];
2980		}
2981		break;
2982
2983	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2984		mask     = &ohci->ir_context_mask;
2985		callback = handle_ir_buffer_fill;
2986		index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2987		if (index >= 0) {
2988			ohci->mc_allocated = true;
2989			*mask &= ~(1 << index);
2990			regs = OHCI1394_IsoRcvContextBase(index);
2991			ctx  = &ohci->ir_context_list[index];
2992		}
2993		break;
2994
2995	default:
2996		index = -1;
2997		ret = -ENOSYS;
2998	}
2999
3000	spin_unlock_irq(&ohci->lock);
3001
3002	if (index < 0)
3003		return ERR_PTR(ret);
3004
3005	memset(ctx, 0, sizeof(*ctx));
3006	ctx->header_length = 0;
3007	ctx->header = (void *) __get_free_page(GFP_KERNEL);
3008	if (ctx->header == NULL) {
3009		ret = -ENOMEM;
3010		goto out;
3011	}
3012	ret = context_init(&ctx->context, ohci, regs, callback);
3013	if (ret < 0)
3014		goto out_with_header;
 
3015
3016	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3017		set_multichannel_mask(ohci, 0);
3018		ctx->mc_completed = 0;
3019	}
3020
3021	return &ctx->base;
3022
3023 out_with_header:
3024	free_page((unsigned long)ctx->header);
3025 out:
3026	spin_lock_irq(&ohci->lock);
 
 
 
 
3027
3028	switch (type) {
3029	case FW_ISO_CONTEXT_RECEIVE:
3030		*channels |= 1ULL << channel;
3031		break;
3032
3033	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3034		ohci->mc_allocated = false;
3035		break;
3036	}
3037	*mask |= 1 << index;
3038
3039	spin_unlock_irq(&ohci->lock);
3040
3041	return ERR_PTR(ret);
3042}
3043
3044static int ohci_start_iso(struct fw_iso_context *base,
3045			  s32 cycle, u32 sync, u32 tags)
3046{
3047	struct iso_context *ctx = container_of(base, struct iso_context, base);
3048	struct fw_ohci *ohci = ctx->context.ohci;
3049	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3050	int index;
3051
3052	/* the controller cannot start without any queued packets */
3053	if (ctx->context.last->branch_address == 0)
3054		return -ENODATA;
3055
3056	switch (ctx->base.type) {
3057	case FW_ISO_CONTEXT_TRANSMIT:
3058		index = ctx - ohci->it_context_list;
3059		match = 0;
3060		if (cycle >= 0)
3061			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3062				(cycle & 0x7fff) << 16;
3063
3064		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3065		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3066		context_run(&ctx->context, match);
3067		break;
3068
3069	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3070		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3071		/* fall through */
3072	case FW_ISO_CONTEXT_RECEIVE:
3073		index = ctx - ohci->ir_context_list;
3074		match = (tags << 28) | (sync << 8) | ctx->base.channel;
3075		if (cycle >= 0) {
3076			match |= (cycle & 0x07fff) << 12;
3077			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3078		}
3079
3080		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3081		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3082		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3083		context_run(&ctx->context, control);
3084
3085		ctx->sync = sync;
3086		ctx->tags = tags;
3087
3088		break;
3089	}
3090
3091	return 0;
3092}
3093
3094static int ohci_stop_iso(struct fw_iso_context *base)
3095{
3096	struct fw_ohci *ohci = fw_ohci(base->card);
3097	struct iso_context *ctx = container_of(base, struct iso_context, base);
3098	int index;
3099
3100	switch (ctx->base.type) {
3101	case FW_ISO_CONTEXT_TRANSMIT:
3102		index = ctx - ohci->it_context_list;
3103		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3104		break;
3105
3106	case FW_ISO_CONTEXT_RECEIVE:
3107	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3108		index = ctx - ohci->ir_context_list;
3109		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3110		break;
3111	}
3112	flush_writes(ohci);
3113	context_stop(&ctx->context);
3114	tasklet_kill(&ctx->context.tasklet);
3115
3116	return 0;
3117}
3118
3119static void ohci_free_iso_context(struct fw_iso_context *base)
3120{
3121	struct fw_ohci *ohci = fw_ohci(base->card);
3122	struct iso_context *ctx = container_of(base, struct iso_context, base);
3123	unsigned long flags;
3124	int index;
3125
3126	ohci_stop_iso(base);
3127	context_release(&ctx->context);
3128	free_page((unsigned long)ctx->header);
3129
3130	spin_lock_irqsave(&ohci->lock, flags);
3131
3132	switch (base->type) {
3133	case FW_ISO_CONTEXT_TRANSMIT:
3134		index = ctx - ohci->it_context_list;
3135		ohci->it_context_mask |= 1 << index;
3136		break;
3137
3138	case FW_ISO_CONTEXT_RECEIVE:
3139		index = ctx - ohci->ir_context_list;
3140		ohci->ir_context_mask |= 1 << index;
3141		ohci->ir_context_channels |= 1ULL << base->channel;
3142		break;
3143
3144	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3145		index = ctx - ohci->ir_context_list;
3146		ohci->ir_context_mask |= 1 << index;
3147		ohci->ir_context_channels |= ohci->mc_channels;
3148		ohci->mc_channels = 0;
3149		ohci->mc_allocated = false;
3150		break;
3151	}
3152
3153	spin_unlock_irqrestore(&ohci->lock, flags);
3154}
3155
3156static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3157{
3158	struct fw_ohci *ohci = fw_ohci(base->card);
3159	unsigned long flags;
3160	int ret;
3161
3162	switch (base->type) {
3163	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
 
 
3164
3165		spin_lock_irqsave(&ohci->lock, flags);
3166
3167		/* Don't allow multichannel to grab other contexts' channels. */
3168		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3169			*channels = ohci->ir_context_channels;
3170			ret = -EBUSY;
3171		} else {
3172			set_multichannel_mask(ohci, *channels);
3173			ret = 0;
3174		}
3175
3176		spin_unlock_irqrestore(&ohci->lock, flags);
3177
3178		break;
3179	default:
3180		ret = -EINVAL;
3181	}
3182
3183	return ret;
3184}
3185
3186#ifdef CONFIG_PM
3187static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3188{
3189	int i;
3190	struct iso_context *ctx;
3191
3192	for (i = 0 ; i < ohci->n_ir ; i++) {
3193		ctx = &ohci->ir_context_list[i];
3194		if (ctx->context.running)
3195			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3196	}
3197
3198	for (i = 0 ; i < ohci->n_it ; i++) {
3199		ctx = &ohci->it_context_list[i];
3200		if (ctx->context.running)
3201			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3202	}
3203}
3204#endif
3205
3206static int queue_iso_transmit(struct iso_context *ctx,
3207			      struct fw_iso_packet *packet,
3208			      struct fw_iso_buffer *buffer,
3209			      unsigned long payload)
3210{
3211	struct descriptor *d, *last, *pd;
3212	struct fw_iso_packet *p;
3213	__le32 *header;
3214	dma_addr_t d_bus, page_bus;
3215	u32 z, header_z, payload_z, irq;
3216	u32 payload_index, payload_end_index, next_page_index;
3217	int page, end_page, i, length, offset;
3218
3219	p = packet;
3220	payload_index = payload;
3221
3222	if (p->skip)
3223		z = 1;
3224	else
3225		z = 2;
3226	if (p->header_length > 0)
3227		z++;
3228
3229	/* Determine the first page the payload isn't contained in. */
3230	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3231	if (p->payload_length > 0)
3232		payload_z = end_page - (payload_index >> PAGE_SHIFT);
3233	else
3234		payload_z = 0;
3235
3236	z += payload_z;
3237
3238	/* Get header size in number of descriptors. */
3239	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3240
3241	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3242	if (d == NULL)
3243		return -ENOMEM;
3244
3245	if (!p->skip) {
3246		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3247		d[0].req_count = cpu_to_le16(8);
3248		/*
3249		 * Link the skip address to this descriptor itself.  This causes
3250		 * a context to skip a cycle whenever lost cycles or FIFO
3251		 * overruns occur, without dropping the data.  The application
3252		 * should then decide whether this is an error condition or not.
3253		 * FIXME:  Make the context's cycle-lost behaviour configurable?
3254		 */
3255		d[0].branch_address = cpu_to_le32(d_bus | z);
3256
3257		header = (__le32 *) &d[1];
3258		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3259					IT_HEADER_TAG(p->tag) |
3260					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3261					IT_HEADER_CHANNEL(ctx->base.channel) |
3262					IT_HEADER_SPEED(ctx->base.speed));
3263		header[1] =
3264			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3265							  p->payload_length));
3266	}
3267
3268	if (p->header_length > 0) {
3269		d[2].req_count    = cpu_to_le16(p->header_length);
3270		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3271		memcpy(&d[z], p->header, p->header_length);
3272	}
3273
3274	pd = d + z - payload_z;
3275	payload_end_index = payload_index + p->payload_length;
3276	for (i = 0; i < payload_z; i++) {
3277		page               = payload_index >> PAGE_SHIFT;
3278		offset             = payload_index & ~PAGE_MASK;
3279		next_page_index    = (page + 1) << PAGE_SHIFT;
3280		length             =
3281			min(next_page_index, payload_end_index) - payload_index;
3282		pd[i].req_count    = cpu_to_le16(length);
3283
3284		page_bus = page_private(buffer->pages[page]);
3285		pd[i].data_address = cpu_to_le32(page_bus + offset);
3286
3287		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3288						 page_bus, offset, length,
3289						 DMA_TO_DEVICE);
3290
3291		payload_index += length;
3292	}
3293
3294	if (p->interrupt)
3295		irq = DESCRIPTOR_IRQ_ALWAYS;
3296	else
3297		irq = DESCRIPTOR_NO_IRQ;
3298
3299	last = z == 2 ? d : d + z - 1;
3300	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3301				     DESCRIPTOR_STATUS |
3302				     DESCRIPTOR_BRANCH_ALWAYS |
3303				     irq);
3304
3305	context_append(&ctx->context, d, z, header_z);
3306
3307	return 0;
3308}
3309
3310static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3311				       struct fw_iso_packet *packet,
3312				       struct fw_iso_buffer *buffer,
3313				       unsigned long payload)
3314{
3315	struct device *device = ctx->context.ohci->card.device;
3316	struct descriptor *d, *pd;
3317	dma_addr_t d_bus, page_bus;
3318	u32 z, header_z, rest;
3319	int i, j, length;
3320	int page, offset, packet_count, header_size, payload_per_buffer;
3321
3322	/*
3323	 * The OHCI controller puts the isochronous header and trailer in the
3324	 * buffer, so we need at least 8 bytes.
3325	 */
3326	packet_count = packet->header_length / ctx->base.header_size;
3327	header_size  = max(ctx->base.header_size, (size_t)8);
3328
3329	/* Get header size in number of descriptors. */
3330	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3331	page     = payload >> PAGE_SHIFT;
3332	offset   = payload & ~PAGE_MASK;
3333	payload_per_buffer = packet->payload_length / packet_count;
3334
3335	for (i = 0; i < packet_count; i++) {
3336		/* d points to the header descriptor */
3337		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3338		d = context_get_descriptors(&ctx->context,
3339				z + header_z, &d_bus);
3340		if (d == NULL)
3341			return -ENOMEM;
3342
3343		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3344					      DESCRIPTOR_INPUT_MORE);
3345		if (packet->skip && i == 0)
3346			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3347		d->req_count    = cpu_to_le16(header_size);
3348		d->res_count    = d->req_count;
3349		d->transfer_status = 0;
3350		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3351
3352		rest = payload_per_buffer;
3353		pd = d;
3354		for (j = 1; j < z; j++) {
3355			pd++;
3356			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3357						  DESCRIPTOR_INPUT_MORE);
3358
3359			if (offset + rest < PAGE_SIZE)
3360				length = rest;
3361			else
3362				length = PAGE_SIZE - offset;
3363			pd->req_count = cpu_to_le16(length);
3364			pd->res_count = pd->req_count;
3365			pd->transfer_status = 0;
3366
3367			page_bus = page_private(buffer->pages[page]);
3368			pd->data_address = cpu_to_le32(page_bus + offset);
3369
3370			dma_sync_single_range_for_device(device, page_bus,
3371							 offset, length,
3372							 DMA_FROM_DEVICE);
3373
3374			offset = (offset + length) & ~PAGE_MASK;
3375			rest -= length;
3376			if (offset == 0)
3377				page++;
3378		}
3379		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3380					  DESCRIPTOR_INPUT_LAST |
3381					  DESCRIPTOR_BRANCH_ALWAYS);
3382		if (packet->interrupt && i == packet_count - 1)
3383			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3384
3385		context_append(&ctx->context, d, z, header_z);
3386	}
3387
3388	return 0;
3389}
3390
3391static int queue_iso_buffer_fill(struct iso_context *ctx,
3392				 struct fw_iso_packet *packet,
3393				 struct fw_iso_buffer *buffer,
3394				 unsigned long payload)
3395{
3396	struct descriptor *d;
3397	dma_addr_t d_bus, page_bus;
3398	int page, offset, rest, z, i, length;
3399
3400	page   = payload >> PAGE_SHIFT;
3401	offset = payload & ~PAGE_MASK;
3402	rest   = packet->payload_length;
3403
3404	/* We need one descriptor for each page in the buffer. */
3405	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3406
3407	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3408		return -EFAULT;
3409
3410	for (i = 0; i < z; i++) {
3411		d = context_get_descriptors(&ctx->context, 1, &d_bus);
3412		if (d == NULL)
3413			return -ENOMEM;
3414
3415		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3416					 DESCRIPTOR_BRANCH_ALWAYS);
3417		if (packet->skip && i == 0)
3418			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3419		if (packet->interrupt && i == z - 1)
3420			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3421
3422		if (offset + rest < PAGE_SIZE)
3423			length = rest;
3424		else
3425			length = PAGE_SIZE - offset;
3426		d->req_count = cpu_to_le16(length);
3427		d->res_count = d->req_count;
3428		d->transfer_status = 0;
3429
3430		page_bus = page_private(buffer->pages[page]);
3431		d->data_address = cpu_to_le32(page_bus + offset);
3432
3433		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3434						 page_bus, offset, length,
3435						 DMA_FROM_DEVICE);
3436
3437		rest -= length;
3438		offset = 0;
3439		page++;
3440
3441		context_append(&ctx->context, d, 1, 0);
3442	}
3443
3444	return 0;
3445}
3446
3447static int ohci_queue_iso(struct fw_iso_context *base,
3448			  struct fw_iso_packet *packet,
3449			  struct fw_iso_buffer *buffer,
3450			  unsigned long payload)
3451{
3452	struct iso_context *ctx = container_of(base, struct iso_context, base);
3453	unsigned long flags;
3454	int ret = -ENOSYS;
3455
3456	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
 
3457	switch (base->type) {
3458	case FW_ISO_CONTEXT_TRANSMIT:
3459		ret = queue_iso_transmit(ctx, packet, buffer, payload);
3460		break;
3461	case FW_ISO_CONTEXT_RECEIVE:
3462		ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3463		break;
3464	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3465		ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3466		break;
 
3467	}
3468	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3469
3470	return ret;
3471}
3472
3473static void ohci_flush_queue_iso(struct fw_iso_context *base)
3474{
3475	struct context *ctx =
3476			&container_of(base, struct iso_context, base)->context;
3477
3478	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3479}
3480
3481static int ohci_flush_iso_completions(struct fw_iso_context *base)
3482{
3483	struct iso_context *ctx = container_of(base, struct iso_context, base);
3484	int ret = 0;
3485
3486	tasklet_disable(&ctx->context.tasklet);
3487
3488	if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3489		context_tasklet((unsigned long)&ctx->context);
3490
3491		switch (base->type) {
3492		case FW_ISO_CONTEXT_TRANSMIT:
3493		case FW_ISO_CONTEXT_RECEIVE:
3494			if (ctx->header_length != 0)
3495				flush_iso_completions(ctx);
3496			break;
3497		case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3498			if (ctx->mc_completed != 0)
3499				flush_ir_buffer_fill(ctx);
3500			break;
3501		default:
3502			ret = -ENOSYS;
3503		}
3504
3505		clear_bit_unlock(0, &ctx->flushing_completions);
3506		smp_mb__after_atomic();
3507	}
3508
3509	tasklet_enable(&ctx->context.tasklet);
3510
3511	return ret;
3512}
3513
3514static const struct fw_card_driver ohci_driver = {
3515	.enable			= ohci_enable,
3516	.read_phy_reg		= ohci_read_phy_reg,
3517	.update_phy_reg		= ohci_update_phy_reg,
3518	.set_config_rom		= ohci_set_config_rom,
3519	.send_request		= ohci_send_request,
3520	.send_response		= ohci_send_response,
3521	.cancel_packet		= ohci_cancel_packet,
3522	.enable_phys_dma	= ohci_enable_phys_dma,
3523	.read_csr		= ohci_read_csr,
3524	.write_csr		= ohci_write_csr,
3525
3526	.allocate_iso_context	= ohci_allocate_iso_context,
3527	.free_iso_context	= ohci_free_iso_context,
3528	.set_iso_channels	= ohci_set_iso_channels,
3529	.queue_iso		= ohci_queue_iso,
3530	.flush_queue_iso	= ohci_flush_queue_iso,
3531	.flush_iso_completions	= ohci_flush_iso_completions,
3532	.start_iso		= ohci_start_iso,
3533	.stop_iso		= ohci_stop_iso,
3534};
3535
3536#ifdef CONFIG_PPC_PMAC
3537static void pmac_ohci_on(struct pci_dev *dev)
3538{
3539	if (machine_is(powermac)) {
3540		struct device_node *ofn = pci_device_to_OF_node(dev);
3541
3542		if (ofn) {
3543			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3544			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3545		}
3546	}
3547}
3548
3549static void pmac_ohci_off(struct pci_dev *dev)
3550{
3551	if (machine_is(powermac)) {
3552		struct device_node *ofn = pci_device_to_OF_node(dev);
3553
3554		if (ofn) {
3555			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3556			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3557		}
3558	}
3559}
3560#else
3561static inline void pmac_ohci_on(struct pci_dev *dev) {}
3562static inline void pmac_ohci_off(struct pci_dev *dev) {}
3563#endif /* CONFIG_PPC_PMAC */
3564
 
 
 
 
 
 
 
 
 
 
 
 
 
3565static int pci_probe(struct pci_dev *dev,
3566			       const struct pci_device_id *ent)
3567{
3568	struct fw_ohci *ohci;
3569	u32 bus_options, max_receive, link_speed, version;
3570	u64 guid;
3571	int i, err;
3572	size_t size;
3573
3574	if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3575		dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3576		return -ENOSYS;
3577	}
3578
3579	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3580	if (ohci == NULL) {
3581		err = -ENOMEM;
3582		goto fail;
3583	}
3584
3585	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3586
3587	pmac_ohci_on(dev);
 
3588
3589	err = pci_enable_device(dev);
3590	if (err) {
3591		dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3592		goto fail_free;
3593	}
3594
3595	pci_set_master(dev);
3596	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3597	pci_set_drvdata(dev, ohci);
3598
3599	spin_lock_init(&ohci->lock);
3600	mutex_init(&ohci->phy_reg_mutex);
3601
3602	INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3603
3604	if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3605	    pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3606		ohci_err(ohci, "invalid MMIO resource\n");
3607		err = -ENXIO;
3608		goto fail_disable;
3609	}
3610
3611	err = pci_request_region(dev, 0, ohci_driver_name);
3612	if (err) {
3613		ohci_err(ohci, "MMIO resource unavailable\n");
3614		goto fail_disable;
3615	}
3616
3617	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3618	if (ohci->registers == NULL) {
3619		ohci_err(ohci, "failed to remap registers\n");
3620		err = -ENXIO;
3621		goto fail_iomem;
3622	}
3623
3624	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3625		if ((ohci_quirks[i].vendor == dev->vendor) &&
3626		    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3627		     ohci_quirks[i].device == dev->device) &&
3628		    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3629		     ohci_quirks[i].revision >= dev->revision)) {
3630			ohci->quirks = ohci_quirks[i].flags;
3631			break;
3632		}
3633	if (param_quirks)
3634		ohci->quirks = param_quirks;
3635
 
 
 
3636	/*
3637	 * Because dma_alloc_coherent() allocates at least one page,
3638	 * we save space by using a common buffer for the AR request/
3639	 * response descriptors and the self IDs buffer.
3640	 */
3641	BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3642	BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3643	ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3644					       PAGE_SIZE,
3645					       &ohci->misc_buffer_bus,
3646					       GFP_KERNEL);
3647	if (!ohci->misc_buffer) {
3648		err = -ENOMEM;
3649		goto fail_iounmap;
3650	}
3651
3652	err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3653			      OHCI1394_AsReqRcvContextControlSet);
3654	if (err < 0)
3655		goto fail_misc_buf;
3656
3657	err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3658			      OHCI1394_AsRspRcvContextControlSet);
3659	if (err < 0)
3660		goto fail_arreq_ctx;
3661
3662	err = context_init(&ohci->at_request_ctx, ohci,
3663			   OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3664	if (err < 0)
3665		goto fail_arrsp_ctx;
3666
3667	err = context_init(&ohci->at_response_ctx, ohci,
3668			   OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3669	if (err < 0)
3670		goto fail_atreq_ctx;
3671
3672	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3673	ohci->ir_context_channels = ~0ULL;
3674	ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3675	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3676	ohci->ir_context_mask = ohci->ir_context_support;
3677	ohci->n_ir = hweight32(ohci->ir_context_mask);
3678	size = sizeof(struct iso_context) * ohci->n_ir;
3679	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
 
 
3680
3681	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3682	ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3683	/* JMicron JMB38x often shows 0 at first read, just ignore it */
3684	if (!ohci->it_context_support) {
3685		ohci_notice(ohci, "overriding IsoXmitIntMask\n");
3686		ohci->it_context_support = 0xf;
3687	}
3688	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3689	ohci->it_context_mask = ohci->it_context_support;
3690	ohci->n_it = hweight32(ohci->it_context_mask);
3691	size = sizeof(struct iso_context) * ohci->n_it;
3692	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3693
3694	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3695		err = -ENOMEM;
3696		goto fail_contexts;
3697	}
3698
3699	ohci->self_id     = ohci->misc_buffer     + PAGE_SIZE/2;
3700	ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3701
3702	bus_options = reg_read(ohci, OHCI1394_BusOptions);
3703	max_receive = (bus_options >> 12) & 0xf;
3704	link_speed = bus_options & 0x7;
3705	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3706		reg_read(ohci, OHCI1394_GUIDLo);
3707
 
3708	if (!(ohci->quirks & QUIRK_NO_MSI))
3709		pci_enable_msi(dev);
3710	if (request_irq(dev->irq, irq_handler,
3711			pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
3712			ohci_driver_name, ohci)) {
3713		ohci_err(ohci, "failed to allocate interrupt %d\n", dev->irq);
3714		err = -EIO;
 
3715		goto fail_msi;
3716	}
3717
3718	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
 
 
 
 
 
 
 
 
3719	if (err)
3720		goto fail_irq;
3721
3722	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3723	ohci_notice(ohci,
3724		    "added OHCI v%x.%x device as card %d, "
3725		    "%d IR + %d IT contexts, quirks 0x%x%s\n",
3726		    version >> 16, version & 0xff, ohci->card.index,
3727		    ohci->n_ir, ohci->n_it, ohci->quirks,
3728		    reg_read(ohci, OHCI1394_PhyUpperBound) ?
3729			", physUB" : "");
3730
3731	return 0;
3732
3733 fail_irq:
3734	free_irq(dev->irq, ohci);
3735 fail_msi:
3736	pci_disable_msi(dev);
3737 fail_contexts:
3738	kfree(ohci->ir_context_list);
3739	kfree(ohci->it_context_list);
3740	context_release(&ohci->at_response_ctx);
3741 fail_atreq_ctx:
3742	context_release(&ohci->at_request_ctx);
3743 fail_arrsp_ctx:
3744	ar_context_release(&ohci->ar_response_ctx);
3745 fail_arreq_ctx:
3746	ar_context_release(&ohci->ar_request_ctx);
3747 fail_misc_buf:
3748	dma_free_coherent(ohci->card.device, PAGE_SIZE,
3749			  ohci->misc_buffer, ohci->misc_buffer_bus);
3750 fail_iounmap:
3751	pci_iounmap(dev, ohci->registers);
3752 fail_iomem:
3753	pci_release_region(dev, 0);
3754 fail_disable:
3755	pci_disable_device(dev);
3756 fail_free:
3757	kfree(ohci);
3758	pmac_ohci_off(dev);
3759 fail:
3760	return err;
3761}
3762
3763static void pci_remove(struct pci_dev *dev)
3764{
3765	struct fw_ohci *ohci = pci_get_drvdata(dev);
 
3766
3767	/*
3768	 * If the removal is happening from the suspend state, LPS won't be
3769	 * enabled and host registers (eg., IntMaskClear) won't be accessible.
3770	 */
3771	if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3772		reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3773		flush_writes(ohci);
3774	}
3775	cancel_work_sync(&ohci->bus_reset_work);
3776	fw_core_remove_card(&ohci->card);
3777
3778	/*
3779	 * FIXME: Fail all pending packets here, now that the upper
3780	 * layers can't queue any more.
3781	 */
3782
3783	software_reset(ohci);
3784	free_irq(dev->irq, ohci);
3785
3786	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3787		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3788				  ohci->next_config_rom, ohci->next_config_rom_bus);
3789	if (ohci->config_rom)
3790		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3791				  ohci->config_rom, ohci->config_rom_bus);
3792	ar_context_release(&ohci->ar_request_ctx);
3793	ar_context_release(&ohci->ar_response_ctx);
3794	dma_free_coherent(ohci->card.device, PAGE_SIZE,
3795			  ohci->misc_buffer, ohci->misc_buffer_bus);
3796	context_release(&ohci->at_request_ctx);
3797	context_release(&ohci->at_response_ctx);
3798	kfree(ohci->it_context_list);
3799	kfree(ohci->ir_context_list);
3800	pci_disable_msi(dev);
3801	pci_iounmap(dev, ohci->registers);
3802	pci_release_region(dev, 0);
3803	pci_disable_device(dev);
3804	kfree(ohci);
3805	pmac_ohci_off(dev);
3806
3807	dev_notice(&dev->dev, "removed fw-ohci device\n");
3808}
3809
3810#ifdef CONFIG_PM
3811static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3812{
3813	struct fw_ohci *ohci = pci_get_drvdata(dev);
3814	int err;
3815
3816	software_reset(ohci);
3817	err = pci_save_state(dev);
3818	if (err) {
3819		ohci_err(ohci, "pci_save_state failed\n");
3820		return err;
3821	}
3822	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3823	if (err)
3824		ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3825	pmac_ohci_off(dev);
3826
3827	return 0;
3828}
3829
3830static int pci_resume(struct pci_dev *dev)
3831{
3832	struct fw_ohci *ohci = pci_get_drvdata(dev);
3833	int err;
3834
3835	pmac_ohci_on(dev);
3836	pci_set_power_state(dev, PCI_D0);
3837	pci_restore_state(dev);
3838	err = pci_enable_device(dev);
3839	if (err) {
3840		ohci_err(ohci, "pci_enable_device failed\n");
3841		return err;
3842	}
3843
3844	/* Some systems don't setup GUID register on resume from ram  */
3845	if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3846					!reg_read(ohci, OHCI1394_GUIDHi)) {
3847		reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3848		reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3849	}
3850
3851	err = ohci_enable(&ohci->card, NULL, 0);
3852	if (err)
3853		return err;
3854
3855	ohci_resume_iso_dma(ohci);
3856
3857	return 0;
3858}
3859#endif
3860
3861static const struct pci_device_id pci_table[] = {
3862	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3863	{ }
3864};
3865
3866MODULE_DEVICE_TABLE(pci, pci_table);
3867
3868static struct pci_driver fw_ohci_pci_driver = {
3869	.name		= ohci_driver_name,
3870	.id_table	= pci_table,
3871	.probe		= pci_probe,
3872	.remove		= pci_remove,
3873#ifdef CONFIG_PM
3874	.resume		= pci_resume,
3875	.suspend	= pci_suspend,
3876#endif
3877};
3878
3879static int __init fw_ohci_init(void)
3880{
3881	selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3882	if (!selfid_workqueue)
3883		return -ENOMEM;
3884
3885	return pci_register_driver(&fw_ohci_pci_driver);
3886}
3887
3888static void __exit fw_ohci_cleanup(void)
3889{
3890	pci_unregister_driver(&fw_ohci_pci_driver);
3891	destroy_workqueue(selfid_workqueue);
3892}
3893
3894module_init(fw_ohci_init);
3895module_exit(fw_ohci_cleanup);
3896
3897MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3898MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3899MODULE_LICENSE("GPL");
3900
3901/* Provide a module alias so root-on-sbp2 initrds don't break. */
3902MODULE_ALIAS("ohci1394");