Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
3 *
4 * This driver supports the memory controllers found on the Intel
5 * processor family Sandy Bridge.
6 *
7 * Copyright (c) 2011 by:
8 * Mauro Carvalho Chehab
9 */
10
11#include <linux/module.h>
12#include <linux/init.h>
13#include <linux/pci.h>
14#include <linux/pci_ids.h>
15#include <linux/slab.h>
16#include <linux/delay.h>
17#include <linux/edac.h>
18#include <linux/mmzone.h>
19#include <linux/smp.h>
20#include <linux/bitmap.h>
21#include <linux/math64.h>
22#include <linux/mod_devicetable.h>
23#include <asm/cpu_device_id.h>
24#include <asm/intel-family.h>
25#include <asm/processor.h>
26#include <asm/mce.h>
27
28#include "edac_module.h"
29
30/* Static vars */
31static LIST_HEAD(sbridge_edac_list);
32static char sb_msg[256];
33static char sb_msg_full[512];
34
35/*
36 * Alter this version for the module when modifications are made
37 */
38#define SBRIDGE_REVISION " Ver: 1.1.2 "
39#define EDAC_MOD_STR "sb_edac"
40
41/*
42 * Debug macros
43 */
44#define sbridge_printk(level, fmt, arg...) \
45 edac_printk(level, "sbridge", fmt, ##arg)
46
47#define sbridge_mc_printk(mci, level, fmt, arg...) \
48 edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
49
50/*
51 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
52 */
53#define GET_BITFIELD(v, lo, hi) \
54 (((v) & GENMASK_ULL(hi, lo)) >> (lo))
55
56/* Devices 12 Function 6, Offsets 0x80 to 0xcc */
57static const u32 sbridge_dram_rule[] = {
58 0x80, 0x88, 0x90, 0x98, 0xa0,
59 0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
60};
61
62static const u32 ibridge_dram_rule[] = {
63 0x60, 0x68, 0x70, 0x78, 0x80,
64 0x88, 0x90, 0x98, 0xa0, 0xa8,
65 0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
66 0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
67};
68
69static const u32 knl_dram_rule[] = {
70 0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
71 0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
72 0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
73 0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
74 0x100, 0x108, 0x110, 0x118, /* 20-23 */
75};
76
77#define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
78#define A7MODE(reg) GET_BITFIELD(reg, 26, 26)
79
80static char *show_dram_attr(u32 attr)
81{
82 switch (attr) {
83 case 0:
84 return "DRAM";
85 case 1:
86 return "MMCFG";
87 case 2:
88 return "NXM";
89 default:
90 return "unknown";
91 }
92}
93
94static const u32 sbridge_interleave_list[] = {
95 0x84, 0x8c, 0x94, 0x9c, 0xa4,
96 0xac, 0xb4, 0xbc, 0xc4, 0xcc,
97};
98
99static const u32 ibridge_interleave_list[] = {
100 0x64, 0x6c, 0x74, 0x7c, 0x84,
101 0x8c, 0x94, 0x9c, 0xa4, 0xac,
102 0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
103 0xdc, 0xe4, 0xec, 0xf4, 0xfc,
104};
105
106static const u32 knl_interleave_list[] = {
107 0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
108 0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
109 0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
110 0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
111 0x104, 0x10c, 0x114, 0x11c, /* 20-23 */
112};
113#define MAX_INTERLEAVE \
114 (MAX_T(unsigned int, ARRAY_SIZE(sbridge_interleave_list), \
115 MAX_T(unsigned int, ARRAY_SIZE(ibridge_interleave_list), \
116 ARRAY_SIZE(knl_interleave_list))))
117
118struct interleave_pkg {
119 unsigned char start;
120 unsigned char end;
121};
122
123static const struct interleave_pkg sbridge_interleave_pkg[] = {
124 { 0, 2 },
125 { 3, 5 },
126 { 8, 10 },
127 { 11, 13 },
128 { 16, 18 },
129 { 19, 21 },
130 { 24, 26 },
131 { 27, 29 },
132};
133
134static const struct interleave_pkg ibridge_interleave_pkg[] = {
135 { 0, 3 },
136 { 4, 7 },
137 { 8, 11 },
138 { 12, 15 },
139 { 16, 19 },
140 { 20, 23 },
141 { 24, 27 },
142 { 28, 31 },
143};
144
145static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
146 int interleave)
147{
148 return GET_BITFIELD(reg, table[interleave].start,
149 table[interleave].end);
150}
151
152/* Devices 12 Function 7 */
153
154#define TOLM 0x80
155#define TOHM 0x84
156#define HASWELL_TOLM 0xd0
157#define HASWELL_TOHM_0 0xd4
158#define HASWELL_TOHM_1 0xd8
159#define KNL_TOLM 0xd0
160#define KNL_TOHM_0 0xd4
161#define KNL_TOHM_1 0xd8
162
163#define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff)
164#define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
165
166/* Device 13 Function 6 */
167
168#define SAD_TARGET 0xf0
169
170#define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11)
171
172#define SOURCE_ID_KNL(reg) GET_BITFIELD(reg, 12, 14)
173
174#define SAD_CONTROL 0xf4
175
176/* Device 14 function 0 */
177
178static const u32 tad_dram_rule[] = {
179 0x40, 0x44, 0x48, 0x4c,
180 0x50, 0x54, 0x58, 0x5c,
181 0x60, 0x64, 0x68, 0x6c,
182};
183#define MAX_TAD ARRAY_SIZE(tad_dram_rule)
184
185#define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
186#define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11)
187#define TAD_CH(reg) GET_BITFIELD(reg, 8, 9)
188#define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7)
189#define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5)
190#define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3)
191#define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1)
192
193/* Device 15, function 0 */
194
195#define MCMTR 0x7c
196#define KNL_MCMTR 0x624
197
198#define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2)
199#define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1)
200#define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0)
201
202/* Device 15, function 1 */
203
204#define RASENABLES 0xac
205#define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0)
206
207/* Device 15, functions 2-5 */
208
209static const int mtr_regs[] = {
210 0x80, 0x84, 0x88,
211};
212
213static const int knl_mtr_reg = 0xb60;
214
215#define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19)
216#define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14)
217#define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13)
218#define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4)
219#define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1)
220
221static const u32 tad_ch_nilv_offset[] = {
222 0x90, 0x94, 0x98, 0x9c,
223 0xa0, 0xa4, 0xa8, 0xac,
224 0xb0, 0xb4, 0xb8, 0xbc,
225};
226#define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29)
227#define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26)
228
229static const u32 rir_way_limit[] = {
230 0x108, 0x10c, 0x110, 0x114, 0x118,
231};
232#define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
233
234#define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31)
235#define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29)
236
237#define MAX_RIR_WAY 8
238
239static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
240 { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
241 { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
242 { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
243 { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
244 { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
245};
246
247#define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
248 GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
249
250#define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
251 GET_BITFIELD(reg, 2, 15) : GET_BITFIELD(reg, 2, 14))
252
253/* Device 16, functions 2-7 */
254
255/*
256 * FIXME: Implement the error count reads directly
257 */
258
259#define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31)
260#define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30)
261#define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15)
262#define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14)
263
264#if 0 /* Currently unused*/
265static const u32 correrrcnt[] = {
266 0x104, 0x108, 0x10c, 0x110,
267};
268
269static const u32 correrrthrsld[] = {
270 0x11c, 0x120, 0x124, 0x128,
271};
272#endif
273
274#define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30)
275#define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14)
276
277
278/* Device 17, function 0 */
279
280#define SB_RANK_CFG_A 0x0328
281
282#define IB_RANK_CFG_A 0x0320
283
284/*
285 * sbridge structs
286 */
287
288#define NUM_CHANNELS 6 /* Max channels per MC */
289#define MAX_DIMMS 3 /* Max DIMMS per channel */
290#define KNL_MAX_CHAS 38 /* KNL max num. of Cache Home Agents */
291#define KNL_MAX_CHANNELS 6 /* KNL max num. of PCI channels */
292#define KNL_MAX_EDCS 8 /* Embedded DRAM controllers */
293#define CHANNEL_UNSPECIFIED 0xf /* Intel IA32 SDM 15-14 */
294
295enum type {
296 SANDY_BRIDGE,
297 IVY_BRIDGE,
298 HASWELL,
299 BROADWELL,
300 KNIGHTS_LANDING,
301};
302
303enum domain {
304 IMC0 = 0,
305 IMC1,
306 SOCK,
307};
308
309enum mirroring_mode {
310 NON_MIRRORING,
311 ADDR_RANGE_MIRRORING,
312 FULL_MIRRORING,
313};
314
315struct sbridge_pvt;
316struct sbridge_info {
317 enum type type;
318 u32 mcmtr;
319 u32 rankcfgr;
320 u64 (*get_tolm)(struct sbridge_pvt *pvt);
321 u64 (*get_tohm)(struct sbridge_pvt *pvt);
322 u64 (*rir_limit)(u32 reg);
323 u64 (*sad_limit)(u32 reg);
324 u32 (*interleave_mode)(u32 reg);
325 u32 (*dram_attr)(u32 reg);
326 const u32 *dram_rule;
327 const u32 *interleave_list;
328 const struct interleave_pkg *interleave_pkg;
329 u8 max_sad;
330 u8 (*get_node_id)(struct sbridge_pvt *pvt);
331 u8 (*get_ha)(u8 bank);
332 enum mem_type (*get_memory_type)(struct sbridge_pvt *pvt);
333 enum dev_type (*get_width)(struct sbridge_pvt *pvt, u32 mtr);
334 struct pci_dev *pci_vtd;
335};
336
337struct sbridge_channel {
338 u32 ranks;
339 u32 dimms;
340 struct dimm {
341 u32 rowbits;
342 u32 colbits;
343 u32 bank_xor_enable;
344 u32 amap_fine;
345 } dimm[MAX_DIMMS];
346};
347
348struct pci_id_descr {
349 int dev_id;
350 int optional;
351 enum domain dom;
352};
353
354struct pci_id_table {
355 const struct pci_id_descr *descr;
356 int n_devs_per_imc;
357 int n_devs_per_sock;
358 int n_imcs_per_sock;
359 enum type type;
360};
361
362struct sbridge_dev {
363 struct list_head list;
364 int seg;
365 u8 bus, mc;
366 u8 node_id, source_id;
367 struct pci_dev **pdev;
368 enum domain dom;
369 int n_devs;
370 int i_devs;
371 struct mem_ctl_info *mci;
372};
373
374struct knl_pvt {
375 struct pci_dev *pci_cha[KNL_MAX_CHAS];
376 struct pci_dev *pci_channel[KNL_MAX_CHANNELS];
377 struct pci_dev *pci_mc0;
378 struct pci_dev *pci_mc1;
379 struct pci_dev *pci_mc0_misc;
380 struct pci_dev *pci_mc1_misc;
381 struct pci_dev *pci_mc_info; /* tolm, tohm */
382};
383
384struct sbridge_pvt {
385 /* Devices per socket */
386 struct pci_dev *pci_ddrio;
387 struct pci_dev *pci_sad0, *pci_sad1;
388 struct pci_dev *pci_br0, *pci_br1;
389 /* Devices per memory controller */
390 struct pci_dev *pci_ha, *pci_ta, *pci_ras;
391 struct pci_dev *pci_tad[NUM_CHANNELS];
392
393 struct sbridge_dev *sbridge_dev;
394
395 struct sbridge_info info;
396 struct sbridge_channel channel[NUM_CHANNELS];
397
398 /* Memory type detection */
399 bool is_cur_addr_mirrored, is_lockstep, is_close_pg;
400 bool is_chan_hash;
401 enum mirroring_mode mirror_mode;
402
403 /* Memory description */
404 u64 tolm, tohm;
405 struct knl_pvt knl;
406};
407
408#define PCI_DESCR(device_id, opt, domain) \
409 .dev_id = (device_id), \
410 .optional = opt, \
411 .dom = domain
412
413static const struct pci_id_descr pci_dev_descr_sbridge[] = {
414 /* Processor Home Agent */
415 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0, IMC0) },
416
417 /* Memory controller */
418 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0, IMC0) },
419 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0, IMC0) },
420 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0, IMC0) },
421 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0, IMC0) },
422 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0, IMC0) },
423 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0, IMC0) },
424 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1, SOCK) },
425
426 /* System Address Decoder */
427 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0, SOCK) },
428 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0, SOCK) },
429
430 /* Broadcast Registers */
431 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0, SOCK) },
432};
433
434#define PCI_ID_TABLE_ENTRY(A, N, M, T) { \
435 .descr = A, \
436 .n_devs_per_imc = N, \
437 .n_devs_per_sock = ARRAY_SIZE(A), \
438 .n_imcs_per_sock = M, \
439 .type = T \
440}
441
442static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
443 PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge, ARRAY_SIZE(pci_dev_descr_sbridge), 1, SANDY_BRIDGE),
444 { NULL, }
445};
446
447/* This changes depending if 1HA or 2HA:
448 * 1HA:
449 * 0x0eb8 (17.0) is DDRIO0
450 * 2HA:
451 * 0x0ebc (17.4) is DDRIO0
452 */
453#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0 0x0eb8
454#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0 0x0ebc
455
456/* pci ids */
457#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0 0x0ea0
458#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA 0x0ea8
459#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS 0x0e71
460#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0 0x0eaa
461#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1 0x0eab
462#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2 0x0eac
463#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3 0x0ead
464#define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD 0x0ec8
465#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0 0x0ec9
466#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1 0x0eca
467#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1 0x0e60
468#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA 0x0e68
469#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS 0x0e79
470#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 0x0e6a
471#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1 0x0e6b
472#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2 0x0e6c
473#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3 0x0e6d
474
475static const struct pci_id_descr pci_dev_descr_ibridge[] = {
476 /* Processor Home Agent */
477 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0, IMC0) },
478 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1, IMC1) },
479
480 /* Memory controller */
481 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0, IMC0) },
482 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0, IMC0) },
483 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0, IMC0) },
484 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0, IMC0) },
485 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0, IMC0) },
486 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0, IMC0) },
487
488 /* Optional, mode 2HA */
489 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1, IMC1) },
490 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1, IMC1) },
491 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1, IMC1) },
492 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1, IMC1) },
493 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2, 1, IMC1) },
494 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3, 1, IMC1) },
495
496 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1, SOCK) },
497 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1, SOCK) },
498
499 /* System Address Decoder */
500 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0, SOCK) },
501
502 /* Broadcast Registers */
503 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1, SOCK) },
504 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0, SOCK) },
505
506};
507
508static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
509 PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge, 12, 2, IVY_BRIDGE),
510 { NULL, }
511};
512
513/* Haswell support */
514/* EN processor:
515 * - 1 IMC
516 * - 3 DDR3 channels, 2 DPC per channel
517 * EP processor:
518 * - 1 or 2 IMC
519 * - 4 DDR4 channels, 3 DPC per channel
520 * EP 4S processor:
521 * - 2 IMC
522 * - 4 DDR4 channels, 3 DPC per channel
523 * EX processor:
524 * - 2 IMC
525 * - each IMC interfaces with a SMI 2 channel
526 * - each SMI channel interfaces with a scalable memory buffer
527 * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
528 */
529#define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
530#define HASWELL_HASYSDEFEATURE2 0x84
531#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
532#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0 0x2fa0
533#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1 0x2f60
534#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA 0x2fa8
535#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM 0x2f71
536#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA 0x2f68
537#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM 0x2f79
538#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
539#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
540#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
541#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
542#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
543#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
544#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
545#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
546#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
547#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
548#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
549#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
550#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
551#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
552static const struct pci_id_descr pci_dev_descr_haswell[] = {
553 /* first item must be the HA */
554 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0, 0, IMC0) },
555 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, 1, IMC1) },
556
557 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA, 0, IMC0) },
558 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM, 0, IMC0) },
559 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0, IMC0) },
560 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0, IMC0) },
561 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1, IMC0) },
562 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1, IMC0) },
563
564 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA, 1, IMC1) },
565 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM, 1, IMC1) },
566 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1, IMC1) },
567 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1, IMC1) },
568 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1, IMC1) },
569 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1, IMC1) },
570
571 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0, SOCK) },
572 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0, SOCK) },
573 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0, 1, SOCK) },
574 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1, 1, SOCK) },
575 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2, 1, SOCK) },
576 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3, 1, SOCK) },
577};
578
579static const struct pci_id_table pci_dev_descr_haswell_table[] = {
580 PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell, 13, 2, HASWELL),
581 { NULL, }
582};
583
584/* Knight's Landing Support */
585/*
586 * KNL's memory channels are swizzled between memory controllers.
587 * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
588 */
589#define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
590
591/* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
592#define PCI_DEVICE_ID_INTEL_KNL_IMC_MC 0x7840
593/* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
594#define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN 0x7843
595/* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
596#define PCI_DEVICE_ID_INTEL_KNL_IMC_TA 0x7844
597/* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
598#define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0 0x782a
599/* SAD target - 1-29-1 (1 of these) */
600#define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1 0x782b
601/* Caching / Home Agent */
602#define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA 0x782c
603/* Device with TOLM and TOHM, 0-5-0 (1 of these) */
604#define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM 0x7810
605
606/*
607 * KNL differs from SB, IB, and Haswell in that it has multiple
608 * instances of the same device with the same device ID, so we handle that
609 * by creating as many copies in the table as we expect to find.
610 * (Like device ID must be grouped together.)
611 */
612
613static const struct pci_id_descr pci_dev_descr_knl[] = {
614 [0 ... 1] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC, 0, IMC0)},
615 [2 ... 7] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN, 0, IMC0) },
616 [8] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA, 0, IMC0) },
617 [9] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0, IMC0) },
618 [10] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0, 0, SOCK) },
619 [11] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1, 0, SOCK) },
620 [12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA, 0, SOCK) },
621};
622
623static const struct pci_id_table pci_dev_descr_knl_table[] = {
624 PCI_ID_TABLE_ENTRY(pci_dev_descr_knl, ARRAY_SIZE(pci_dev_descr_knl), 1, KNIGHTS_LANDING),
625 { NULL, }
626};
627
628/*
629 * Broadwell support
630 *
631 * DE processor:
632 * - 1 IMC
633 * - 2 DDR3 channels, 2 DPC per channel
634 * EP processor:
635 * - 1 or 2 IMC
636 * - 4 DDR4 channels, 3 DPC per channel
637 * EP 4S processor:
638 * - 2 IMC
639 * - 4 DDR4 channels, 3 DPC per channel
640 * EX processor:
641 * - 2 IMC
642 * - each IMC interfaces with a SMI 2 channel
643 * - each SMI channel interfaces with a scalable memory buffer
644 * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
645 */
646#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
647#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0 0x6fa0
648#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1 0x6f60
649#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA 0x6fa8
650#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM 0x6f71
651#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA 0x6f68
652#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM 0x6f79
653#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
654#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
655#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
656#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
657#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
658#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
659#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
660#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
661#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
662#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
663#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
664
665static const struct pci_id_descr pci_dev_descr_broadwell[] = {
666 /* first item must be the HA */
667 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0, 0, IMC0) },
668 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1, 1, IMC1) },
669
670 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA, 0, IMC0) },
671 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM, 0, IMC0) },
672 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0, IMC0) },
673 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0, IMC0) },
674 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1, IMC0) },
675 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1, IMC0) },
676
677 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA, 1, IMC1) },
678 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM, 1, IMC1) },
679 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1, IMC1) },
680 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1, IMC1) },
681 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1, IMC1) },
682 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1, IMC1) },
683
684 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0, SOCK) },
685 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0, SOCK) },
686 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0, 1, SOCK) },
687};
688
689static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
690 PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell, 10, 2, BROADWELL),
691 { NULL, }
692};
693
694
695/****************************************************************************
696 Ancillary status routines
697 ****************************************************************************/
698
699static inline int numrank(enum type type, u32 mtr)
700{
701 int ranks = (1 << RANK_CNT_BITS(mtr));
702 int max = 4;
703
704 if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
705 max = 8;
706
707 if (ranks > max) {
708 edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
709 ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
710 return -EINVAL;
711 }
712
713 return ranks;
714}
715
716static inline int numrow(u32 mtr)
717{
718 int rows = (RANK_WIDTH_BITS(mtr) + 12);
719
720 if (rows < 13 || rows > 18) {
721 edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
722 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
723 return -EINVAL;
724 }
725
726 return 1 << rows;
727}
728
729static inline int numcol(u32 mtr)
730{
731 int cols = (COL_WIDTH_BITS(mtr) + 10);
732
733 if (cols > 12) {
734 edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
735 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
736 return -EINVAL;
737 }
738
739 return 1 << cols;
740}
741
742static struct sbridge_dev *get_sbridge_dev(int seg, u8 bus, enum domain dom,
743 int multi_bus,
744 struct sbridge_dev *prev)
745{
746 struct sbridge_dev *sbridge_dev;
747
748 /*
749 * If we have devices scattered across several busses that pertain
750 * to the same memory controller, we'll lump them all together.
751 */
752 if (multi_bus) {
753 return list_first_entry_or_null(&sbridge_edac_list,
754 struct sbridge_dev, list);
755 }
756
757 sbridge_dev = list_entry(prev ? prev->list.next
758 : sbridge_edac_list.next, struct sbridge_dev, list);
759
760 list_for_each_entry_from(sbridge_dev, &sbridge_edac_list, list) {
761 if ((sbridge_dev->seg == seg) && (sbridge_dev->bus == bus) &&
762 (dom == SOCK || dom == sbridge_dev->dom))
763 return sbridge_dev;
764 }
765
766 return NULL;
767}
768
769static struct sbridge_dev *alloc_sbridge_dev(int seg, u8 bus, enum domain dom,
770 const struct pci_id_table *table)
771{
772 struct sbridge_dev *sbridge_dev;
773
774 sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
775 if (!sbridge_dev)
776 return NULL;
777
778 sbridge_dev->pdev = kcalloc(table->n_devs_per_imc,
779 sizeof(*sbridge_dev->pdev),
780 GFP_KERNEL);
781 if (!sbridge_dev->pdev) {
782 kfree(sbridge_dev);
783 return NULL;
784 }
785
786 sbridge_dev->seg = seg;
787 sbridge_dev->bus = bus;
788 sbridge_dev->dom = dom;
789 sbridge_dev->n_devs = table->n_devs_per_imc;
790 list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
791
792 return sbridge_dev;
793}
794
795static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
796{
797 list_del(&sbridge_dev->list);
798 kfree(sbridge_dev->pdev);
799 kfree(sbridge_dev);
800}
801
802static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
803{
804 u32 reg;
805
806 /* Address range is 32:28 */
807 pci_read_config_dword(pvt->pci_sad1, TOLM, ®);
808 return GET_TOLM(reg);
809}
810
811static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
812{
813 u32 reg;
814
815 pci_read_config_dword(pvt->pci_sad1, TOHM, ®);
816 return GET_TOHM(reg);
817}
818
819static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
820{
821 u32 reg;
822
823 pci_read_config_dword(pvt->pci_br1, TOLM, ®);
824
825 return GET_TOLM(reg);
826}
827
828static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
829{
830 u32 reg;
831
832 pci_read_config_dword(pvt->pci_br1, TOHM, ®);
833
834 return GET_TOHM(reg);
835}
836
837static u64 rir_limit(u32 reg)
838{
839 return ((u64)GET_BITFIELD(reg, 1, 10) << 29) | 0x1fffffff;
840}
841
842static u64 sad_limit(u32 reg)
843{
844 return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
845}
846
847static u32 interleave_mode(u32 reg)
848{
849 return GET_BITFIELD(reg, 1, 1);
850}
851
852static u32 dram_attr(u32 reg)
853{
854 return GET_BITFIELD(reg, 2, 3);
855}
856
857static u64 knl_sad_limit(u32 reg)
858{
859 return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
860}
861
862static u32 knl_interleave_mode(u32 reg)
863{
864 return GET_BITFIELD(reg, 1, 2);
865}
866
867static const char * const knl_intlv_mode[] = {
868 "[8:6]", "[10:8]", "[14:12]", "[32:30]"
869};
870
871static const char *get_intlv_mode_str(u32 reg, enum type t)
872{
873 if (t == KNIGHTS_LANDING)
874 return knl_intlv_mode[knl_interleave_mode(reg)];
875 else
876 return interleave_mode(reg) ? "[8:6]" : "[8:6]XOR[18:16]";
877}
878
879static u32 dram_attr_knl(u32 reg)
880{
881 return GET_BITFIELD(reg, 3, 4);
882}
883
884
885static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
886{
887 u32 reg;
888 enum mem_type mtype;
889
890 if (pvt->pci_ddrio) {
891 pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
892 ®);
893 if (GET_BITFIELD(reg, 11, 11))
894 /* FIXME: Can also be LRDIMM */
895 mtype = MEM_RDDR3;
896 else
897 mtype = MEM_DDR3;
898 } else
899 mtype = MEM_UNKNOWN;
900
901 return mtype;
902}
903
904static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
905{
906 u32 reg;
907 bool registered = false;
908 enum mem_type mtype = MEM_UNKNOWN;
909
910 if (!pvt->pci_ddrio)
911 goto out;
912
913 pci_read_config_dword(pvt->pci_ddrio,
914 HASWELL_DDRCRCLKCONTROLS, ®);
915 /* Is_Rdimm */
916 if (GET_BITFIELD(reg, 16, 16))
917 registered = true;
918
919 pci_read_config_dword(pvt->pci_ta, MCMTR, ®);
920 if (GET_BITFIELD(reg, 14, 14)) {
921 if (registered)
922 mtype = MEM_RDDR4;
923 else
924 mtype = MEM_DDR4;
925 } else {
926 if (registered)
927 mtype = MEM_RDDR3;
928 else
929 mtype = MEM_DDR3;
930 }
931
932out:
933 return mtype;
934}
935
936static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
937{
938 /* for KNL value is fixed */
939 return DEV_X16;
940}
941
942static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
943{
944 /* there's no way to figure out */
945 return DEV_UNKNOWN;
946}
947
948static enum dev_type __ibridge_get_width(u32 mtr)
949{
950 enum dev_type type = DEV_UNKNOWN;
951
952 switch (mtr) {
953 case 2:
954 type = DEV_X16;
955 break;
956 case 1:
957 type = DEV_X8;
958 break;
959 case 0:
960 type = DEV_X4;
961 break;
962 }
963
964 return type;
965}
966
967static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
968{
969 /*
970 * ddr3_width on the documentation but also valid for DDR4 on
971 * Haswell
972 */
973 return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
974}
975
976static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
977{
978 /* ddr3_width on the documentation but also valid for DDR4 */
979 return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
980}
981
982static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
983{
984 /* DDR4 RDIMMS and LRDIMMS are supported */
985 return MEM_RDDR4;
986}
987
988static u8 get_node_id(struct sbridge_pvt *pvt)
989{
990 u32 reg;
991 pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, ®);
992 return GET_BITFIELD(reg, 0, 2);
993}
994
995static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
996{
997 u32 reg;
998
999 pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, ®);
1000 return GET_BITFIELD(reg, 0, 3);
1001}
1002
1003static u8 knl_get_node_id(struct sbridge_pvt *pvt)
1004{
1005 u32 reg;
1006
1007 pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, ®);
1008 return GET_BITFIELD(reg, 0, 2);
1009}
1010
1011/*
1012 * Use the reporting bank number to determine which memory
1013 * controller (also known as "ha" for "home agent"). Sandy
1014 * Bridge only has one memory controller per socket, so the
1015 * answer is always zero.
1016 */
1017static u8 sbridge_get_ha(u8 bank)
1018{
1019 return 0;
1020}
1021
1022/*
1023 * On Ivy Bridge, Haswell and Broadwell the error may be in a
1024 * home agent bank (7, 8), or one of the per-channel memory
1025 * controller banks (9 .. 16).
1026 */
1027static u8 ibridge_get_ha(u8 bank)
1028{
1029 switch (bank) {
1030 case 7 ... 8:
1031 return bank - 7;
1032 case 9 ... 16:
1033 return (bank - 9) / 4;
1034 default:
1035 return 0xff;
1036 }
1037}
1038
1039/* Not used, but included for safety/symmetry */
1040static u8 knl_get_ha(u8 bank)
1041{
1042 return 0xff;
1043}
1044
1045static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
1046{
1047 u32 reg;
1048
1049 pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, ®);
1050 return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1051}
1052
1053static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
1054{
1055 u64 rc;
1056 u32 reg;
1057
1058 pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, ®);
1059 rc = GET_BITFIELD(reg, 26, 31);
1060 pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, ®);
1061 rc = ((reg << 6) | rc) << 26;
1062
1063 return rc | 0x3ffffff;
1064}
1065
1066static u64 knl_get_tolm(struct sbridge_pvt *pvt)
1067{
1068 u32 reg;
1069
1070 pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, ®);
1071 return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1072}
1073
1074static u64 knl_get_tohm(struct sbridge_pvt *pvt)
1075{
1076 u64 rc;
1077 u32 reg_lo, reg_hi;
1078
1079 pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, ®_lo);
1080 pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, ®_hi);
1081 rc = ((u64)reg_hi << 32) | reg_lo;
1082 return rc | 0x3ffffff;
1083}
1084
1085
1086static u64 haswell_rir_limit(u32 reg)
1087{
1088 return (((u64)GET_BITFIELD(reg, 1, 11) + 1) << 29) - 1;
1089}
1090
1091static inline u8 sad_pkg_socket(u8 pkg)
1092{
1093 /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1094 return ((pkg >> 3) << 2) | (pkg & 0x3);
1095}
1096
1097static inline u8 sad_pkg_ha(u8 pkg)
1098{
1099 return (pkg >> 2) & 0x1;
1100}
1101
1102static int haswell_chan_hash(int idx, u64 addr)
1103{
1104 int i;
1105
1106 /*
1107 * XOR even bits from 12:26 to bit0 of idx,
1108 * odd bits from 13:27 to bit1
1109 */
1110 for (i = 12; i < 28; i += 2)
1111 idx ^= (addr >> i) & 3;
1112
1113 return idx;
1114}
1115
1116/* Low bits of TAD limit, and some metadata. */
1117static const u32 knl_tad_dram_limit_lo[] = {
1118 0x400, 0x500, 0x600, 0x700,
1119 0x800, 0x900, 0xa00, 0xb00,
1120};
1121
1122/* Low bits of TAD offset. */
1123static const u32 knl_tad_dram_offset_lo[] = {
1124 0x404, 0x504, 0x604, 0x704,
1125 0x804, 0x904, 0xa04, 0xb04,
1126};
1127
1128/* High 16 bits of TAD limit and offset. */
1129static const u32 knl_tad_dram_hi[] = {
1130 0x408, 0x508, 0x608, 0x708,
1131 0x808, 0x908, 0xa08, 0xb08,
1132};
1133
1134/* Number of ways a tad entry is interleaved. */
1135static const u32 knl_tad_ways[] = {
1136 8, 6, 4, 3, 2, 1,
1137};
1138
1139/*
1140 * Retrieve the n'th Target Address Decode table entry
1141 * from the memory controller's TAD table.
1142 *
1143 * @pvt: driver private data
1144 * @entry: which entry you want to retrieve
1145 * @mc: which memory controller (0 or 1)
1146 * @offset: output tad range offset
1147 * @limit: output address of first byte above tad range
1148 * @ways: output number of interleave ways
1149 *
1150 * The offset value has curious semantics. It's a sort of running total
1151 * of the sizes of all the memory regions that aren't mapped in this
1152 * tad table.
1153 */
1154static int knl_get_tad(const struct sbridge_pvt *pvt,
1155 const int entry,
1156 const int mc,
1157 u64 *offset,
1158 u64 *limit,
1159 int *ways)
1160{
1161 u32 reg_limit_lo, reg_offset_lo, reg_hi;
1162 struct pci_dev *pci_mc;
1163 int way_id;
1164
1165 switch (mc) {
1166 case 0:
1167 pci_mc = pvt->knl.pci_mc0;
1168 break;
1169 case 1:
1170 pci_mc = pvt->knl.pci_mc1;
1171 break;
1172 default:
1173 WARN_ON(1);
1174 return -EINVAL;
1175 }
1176
1177 pci_read_config_dword(pci_mc,
1178 knl_tad_dram_limit_lo[entry], ®_limit_lo);
1179 pci_read_config_dword(pci_mc,
1180 knl_tad_dram_offset_lo[entry], ®_offset_lo);
1181 pci_read_config_dword(pci_mc,
1182 knl_tad_dram_hi[entry], ®_hi);
1183
1184 /* Is this TAD entry enabled? */
1185 if (!GET_BITFIELD(reg_limit_lo, 0, 0))
1186 return -ENODEV;
1187
1188 way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
1189
1190 if (way_id < ARRAY_SIZE(knl_tad_ways)) {
1191 *ways = knl_tad_ways[way_id];
1192 } else {
1193 *ways = 0;
1194 sbridge_printk(KERN_ERR,
1195 "Unexpected value %d in mc_tad_limit_lo wayness field\n",
1196 way_id);
1197 return -ENODEV;
1198 }
1199
1200 /*
1201 * The least significant 6 bits of base and limit are truncated.
1202 * For limit, we fill the missing bits with 1s.
1203 */
1204 *offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
1205 ((u64) GET_BITFIELD(reg_hi, 0, 15) << 32);
1206 *limit = ((u64) GET_BITFIELD(reg_limit_lo, 6, 31) << 6) | 63 |
1207 ((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
1208
1209 return 0;
1210}
1211
1212/* Determine which memory controller is responsible for a given channel. */
1213static int knl_channel_mc(int channel)
1214{
1215 WARN_ON(channel < 0 || channel >= 6);
1216
1217 return channel < 3 ? 1 : 0;
1218}
1219
1220/*
1221 * Get the Nth entry from EDC_ROUTE_TABLE register.
1222 * (This is the per-tile mapping of logical interleave targets to
1223 * physical EDC modules.)
1224 *
1225 * entry 0: 0:2
1226 * 1: 3:5
1227 * 2: 6:8
1228 * 3: 9:11
1229 * 4: 12:14
1230 * 5: 15:17
1231 * 6: 18:20
1232 * 7: 21:23
1233 * reserved: 24:31
1234 */
1235static u32 knl_get_edc_route(int entry, u32 reg)
1236{
1237 WARN_ON(entry >= KNL_MAX_EDCS);
1238 return GET_BITFIELD(reg, entry*3, (entry*3)+2);
1239}
1240
1241/*
1242 * Get the Nth entry from MC_ROUTE_TABLE register.
1243 * (This is the per-tile mapping of logical interleave targets to
1244 * physical DRAM channels modules.)
1245 *
1246 * entry 0: mc 0:2 channel 18:19
1247 * 1: mc 3:5 channel 20:21
1248 * 2: mc 6:8 channel 22:23
1249 * 3: mc 9:11 channel 24:25
1250 * 4: mc 12:14 channel 26:27
1251 * 5: mc 15:17 channel 28:29
1252 * reserved: 30:31
1253 *
1254 * Though we have 3 bits to identify the MC, we should only see
1255 * the values 0 or 1.
1256 */
1257
1258static u32 knl_get_mc_route(int entry, u32 reg)
1259{
1260 int mc, chan;
1261
1262 WARN_ON(entry >= KNL_MAX_CHANNELS);
1263
1264 mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
1265 chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
1266
1267 return knl_channel_remap(mc, chan);
1268}
1269
1270/*
1271 * Render the EDC_ROUTE register in human-readable form.
1272 * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1273 */
1274static void knl_show_edc_route(u32 reg, char *s)
1275{
1276 int i;
1277
1278 for (i = 0; i < KNL_MAX_EDCS; i++) {
1279 s[i*2] = knl_get_edc_route(i, reg) + '0';
1280 s[i*2+1] = '-';
1281 }
1282
1283 s[KNL_MAX_EDCS*2 - 1] = '\0';
1284}
1285
1286/*
1287 * Render the MC_ROUTE register in human-readable form.
1288 * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1289 */
1290static void knl_show_mc_route(u32 reg, char *s)
1291{
1292 int i;
1293
1294 for (i = 0; i < KNL_MAX_CHANNELS; i++) {
1295 s[i*2] = knl_get_mc_route(i, reg) + '0';
1296 s[i*2+1] = '-';
1297 }
1298
1299 s[KNL_MAX_CHANNELS*2 - 1] = '\0';
1300}
1301
1302#define KNL_EDC_ROUTE 0xb8
1303#define KNL_MC_ROUTE 0xb4
1304
1305/* Is this dram rule backed by regular DRAM in flat mode? */
1306#define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1307
1308/* Is this dram rule cached? */
1309#define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1310
1311/* Is this rule backed by edc ? */
1312#define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1313
1314/* Is this rule backed by DRAM, cacheable in EDRAM? */
1315#define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1316
1317/* Is this rule mod3? */
1318#define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1319
1320/*
1321 * Figure out how big our RAM modules are.
1322 *
1323 * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1324 * have to figure this out from the SAD rules, interleave lists, route tables,
1325 * and TAD rules.
1326 *
1327 * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1328 * inspect the TAD rules to figure out how large the SAD regions really are.
1329 *
1330 * When we know the real size of a SAD region and how many ways it's
1331 * interleaved, we know the individual contribution of each channel to
1332 * TAD is size/ways.
1333 *
1334 * Finally, we have to check whether each channel participates in each SAD
1335 * region.
1336 *
1337 * Fortunately, KNL only supports one DIMM per channel, so once we know how
1338 * much memory the channel uses, we know the DIMM is at least that large.
1339 * (The BIOS might possibly choose not to map all available memory, in which
1340 * case we will underreport the size of the DIMM.)
1341 *
1342 * In theory, we could try to determine the EDC sizes as well, but that would
1343 * only work in flat mode, not in cache mode.
1344 *
1345 * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1346 * elements)
1347 */
1348static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
1349{
1350 u64 sad_base, sad_limit = 0;
1351 u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
1352 int sad_rule = 0;
1353 int tad_rule = 0;
1354 int intrlv_ways, tad_ways;
1355 u32 first_pkg, pkg;
1356 int i;
1357 u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
1358 u32 dram_rule, interleave_reg;
1359 u32 mc_route_reg[KNL_MAX_CHAS];
1360 u32 edc_route_reg[KNL_MAX_CHAS];
1361 int edram_only;
1362 char edc_route_string[KNL_MAX_EDCS*2];
1363 char mc_route_string[KNL_MAX_CHANNELS*2];
1364 int cur_reg_start;
1365 int mc;
1366 int channel;
1367 int participants[KNL_MAX_CHANNELS];
1368
1369 for (i = 0; i < KNL_MAX_CHANNELS; i++)
1370 mc_sizes[i] = 0;
1371
1372 /* Read the EDC route table in each CHA. */
1373 cur_reg_start = 0;
1374 for (i = 0; i < KNL_MAX_CHAS; i++) {
1375 pci_read_config_dword(pvt->knl.pci_cha[i],
1376 KNL_EDC_ROUTE, &edc_route_reg[i]);
1377
1378 if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
1379 knl_show_edc_route(edc_route_reg[i-1],
1380 edc_route_string);
1381 if (cur_reg_start == i-1)
1382 edac_dbg(0, "edc route table for CHA %d: %s\n",
1383 cur_reg_start, edc_route_string);
1384 else
1385 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1386 cur_reg_start, i-1, edc_route_string);
1387 cur_reg_start = i;
1388 }
1389 }
1390 knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
1391 if (cur_reg_start == i-1)
1392 edac_dbg(0, "edc route table for CHA %d: %s\n",
1393 cur_reg_start, edc_route_string);
1394 else
1395 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1396 cur_reg_start, i-1, edc_route_string);
1397
1398 /* Read the MC route table in each CHA. */
1399 cur_reg_start = 0;
1400 for (i = 0; i < KNL_MAX_CHAS; i++) {
1401 pci_read_config_dword(pvt->knl.pci_cha[i],
1402 KNL_MC_ROUTE, &mc_route_reg[i]);
1403
1404 if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
1405 knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1406 if (cur_reg_start == i-1)
1407 edac_dbg(0, "mc route table for CHA %d: %s\n",
1408 cur_reg_start, mc_route_string);
1409 else
1410 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1411 cur_reg_start, i-1, mc_route_string);
1412 cur_reg_start = i;
1413 }
1414 }
1415 knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1416 if (cur_reg_start == i-1)
1417 edac_dbg(0, "mc route table for CHA %d: %s\n",
1418 cur_reg_start, mc_route_string);
1419 else
1420 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1421 cur_reg_start, i-1, mc_route_string);
1422
1423 /* Process DRAM rules */
1424 for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
1425 /* previous limit becomes the new base */
1426 sad_base = sad_limit;
1427
1428 pci_read_config_dword(pvt->pci_sad0,
1429 pvt->info.dram_rule[sad_rule], &dram_rule);
1430
1431 if (!DRAM_RULE_ENABLE(dram_rule))
1432 break;
1433
1434 edram_only = KNL_EDRAM_ONLY(dram_rule);
1435
1436 sad_limit = pvt->info.sad_limit(dram_rule)+1;
1437
1438 pci_read_config_dword(pvt->pci_sad0,
1439 pvt->info.interleave_list[sad_rule], &interleave_reg);
1440
1441 /*
1442 * Find out how many ways this dram rule is interleaved.
1443 * We stop when we see the first channel again.
1444 */
1445 first_pkg = sad_pkg(pvt->info.interleave_pkg,
1446 interleave_reg, 0);
1447 for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
1448 pkg = sad_pkg(pvt->info.interleave_pkg,
1449 interleave_reg, intrlv_ways);
1450
1451 if ((pkg & 0x8) == 0) {
1452 /*
1453 * 0 bit means memory is non-local,
1454 * which KNL doesn't support
1455 */
1456 edac_dbg(0, "Unexpected interleave target %d\n",
1457 pkg);
1458 return -1;
1459 }
1460
1461 if (pkg == first_pkg)
1462 break;
1463 }
1464 if (KNL_MOD3(dram_rule))
1465 intrlv_ways *= 3;
1466
1467 edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1468 sad_rule,
1469 sad_base,
1470 sad_limit,
1471 intrlv_ways,
1472 edram_only ? ", EDRAM" : "");
1473
1474 /*
1475 * Find out how big the SAD region really is by iterating
1476 * over TAD tables (SAD regions may contain holes).
1477 * Each memory controller might have a different TAD table, so
1478 * we have to look at both.
1479 *
1480 * Livespace is the memory that's mapped in this TAD table,
1481 * deadspace is the holes (this could be the MMIO hole, or it
1482 * could be memory that's mapped by the other TAD table but
1483 * not this one).
1484 */
1485 for (mc = 0; mc < 2; mc++) {
1486 sad_actual_size[mc] = 0;
1487 tad_livespace = 0;
1488 for (tad_rule = 0;
1489 tad_rule < ARRAY_SIZE(
1490 knl_tad_dram_limit_lo);
1491 tad_rule++) {
1492 if (knl_get_tad(pvt,
1493 tad_rule,
1494 mc,
1495 &tad_deadspace,
1496 &tad_limit,
1497 &tad_ways))
1498 break;
1499
1500 tad_size = (tad_limit+1) -
1501 (tad_livespace + tad_deadspace);
1502 tad_livespace += tad_size;
1503 tad_base = (tad_limit+1) - tad_size;
1504
1505 if (tad_base < sad_base) {
1506 if (tad_limit > sad_base)
1507 edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1508 } else if (tad_base < sad_limit) {
1509 if (tad_limit+1 > sad_limit) {
1510 edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1511 } else {
1512 /* TAD region is completely inside SAD region */
1513 edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1514 tad_rule, tad_base,
1515 tad_limit, tad_size,
1516 mc);
1517 sad_actual_size[mc] += tad_size;
1518 }
1519 }
1520 }
1521 }
1522
1523 for (mc = 0; mc < 2; mc++) {
1524 edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1525 mc, sad_actual_size[mc], sad_actual_size[mc]);
1526 }
1527
1528 /* Ignore EDRAM rule */
1529 if (edram_only)
1530 continue;
1531
1532 /* Figure out which channels participate in interleave. */
1533 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
1534 participants[channel] = 0;
1535
1536 /* For each channel, does at least one CHA have
1537 * this channel mapped to the given target?
1538 */
1539 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1540 int target;
1541 int cha;
1542
1543 for (target = 0; target < KNL_MAX_CHANNELS; target++) {
1544 for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
1545 if (knl_get_mc_route(target,
1546 mc_route_reg[cha]) == channel
1547 && !participants[channel]) {
1548 participants[channel] = 1;
1549 break;
1550 }
1551 }
1552 }
1553 }
1554
1555 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1556 mc = knl_channel_mc(channel);
1557 if (participants[channel]) {
1558 edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1559 channel,
1560 sad_actual_size[mc]/intrlv_ways,
1561 sad_rule);
1562 mc_sizes[channel] +=
1563 sad_actual_size[mc]/intrlv_ways;
1564 }
1565 }
1566 }
1567
1568 return 0;
1569}
1570
1571static void get_source_id(struct mem_ctl_info *mci)
1572{
1573 struct sbridge_pvt *pvt = mci->pvt_info;
1574 u32 reg;
1575
1576 if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
1577 pvt->info.type == KNIGHTS_LANDING)
1578 pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, ®);
1579 else
1580 pci_read_config_dword(pvt->pci_br0, SAD_TARGET, ®);
1581
1582 if (pvt->info.type == KNIGHTS_LANDING)
1583 pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
1584 else
1585 pvt->sbridge_dev->source_id = SOURCE_ID(reg);
1586}
1587
1588static int __populate_dimms(struct mem_ctl_info *mci,
1589 u64 knl_mc_sizes[KNL_MAX_CHANNELS],
1590 enum edac_type mode)
1591{
1592 struct sbridge_pvt *pvt = mci->pvt_info;
1593 int channels = pvt->info.type == KNIGHTS_LANDING ? KNL_MAX_CHANNELS
1594 : NUM_CHANNELS;
1595 unsigned int i, j, banks, ranks, rows, cols, npages;
1596 struct dimm_info *dimm;
1597 enum mem_type mtype;
1598 u64 size;
1599
1600 mtype = pvt->info.get_memory_type(pvt);
1601 if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
1602 edac_dbg(0, "Memory is registered\n");
1603 else if (mtype == MEM_UNKNOWN)
1604 edac_dbg(0, "Cannot determine memory type\n");
1605 else
1606 edac_dbg(0, "Memory is unregistered\n");
1607
1608 if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
1609 banks = 16;
1610 else
1611 banks = 8;
1612
1613 for (i = 0; i < channels; i++) {
1614 u32 mtr, amap = 0;
1615
1616 int max_dimms_per_channel;
1617
1618 if (pvt->info.type == KNIGHTS_LANDING) {
1619 max_dimms_per_channel = 1;
1620 if (!pvt->knl.pci_channel[i])
1621 continue;
1622 } else {
1623 max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
1624 if (!pvt->pci_tad[i])
1625 continue;
1626 pci_read_config_dword(pvt->pci_tad[i], 0x8c, &amap);
1627 }
1628
1629 for (j = 0; j < max_dimms_per_channel; j++) {
1630 dimm = edac_get_dimm(mci, i, j, 0);
1631 if (pvt->info.type == KNIGHTS_LANDING) {
1632 pci_read_config_dword(pvt->knl.pci_channel[i],
1633 knl_mtr_reg, &mtr);
1634 } else {
1635 pci_read_config_dword(pvt->pci_tad[i],
1636 mtr_regs[j], &mtr);
1637 }
1638 edac_dbg(4, "Channel #%d MTR%d = %x\n", i, j, mtr);
1639
1640 if (IS_DIMM_PRESENT(mtr)) {
1641 if (!IS_ECC_ENABLED(pvt->info.mcmtr)) {
1642 sbridge_printk(KERN_ERR, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n",
1643 pvt->sbridge_dev->source_id,
1644 pvt->sbridge_dev->dom, i);
1645 return -ENODEV;
1646 }
1647 pvt->channel[i].dimms++;
1648
1649 ranks = numrank(pvt->info.type, mtr);
1650
1651 if (pvt->info.type == KNIGHTS_LANDING) {
1652 /* For DDR4, this is fixed. */
1653 cols = 1 << 10;
1654 rows = knl_mc_sizes[i] /
1655 ((u64) cols * ranks * banks * 8);
1656 } else {
1657 rows = numrow(mtr);
1658 cols = numcol(mtr);
1659 }
1660
1661 size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
1662 npages = MiB_TO_PAGES(size);
1663
1664 edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1665 pvt->sbridge_dev->mc, pvt->sbridge_dev->dom, i, j,
1666 size, npages,
1667 banks, ranks, rows, cols);
1668
1669 dimm->nr_pages = npages;
1670 dimm->grain = 32;
1671 dimm->dtype = pvt->info.get_width(pvt, mtr);
1672 dimm->mtype = mtype;
1673 dimm->edac_mode = mode;
1674 pvt->channel[i].dimm[j].rowbits = order_base_2(rows);
1675 pvt->channel[i].dimm[j].colbits = order_base_2(cols);
1676 pvt->channel[i].dimm[j].bank_xor_enable =
1677 GET_BITFIELD(pvt->info.mcmtr, 9, 9);
1678 pvt->channel[i].dimm[j].amap_fine = GET_BITFIELD(amap, 0, 0);
1679 snprintf(dimm->label, sizeof(dimm->label),
1680 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1681 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom, i, j);
1682 }
1683 }
1684 }
1685
1686 return 0;
1687}
1688
1689static int get_dimm_config(struct mem_ctl_info *mci)
1690{
1691 struct sbridge_pvt *pvt = mci->pvt_info;
1692 u64 knl_mc_sizes[KNL_MAX_CHANNELS];
1693 enum edac_type mode;
1694 u32 reg;
1695
1696 pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
1697 edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1698 pvt->sbridge_dev->mc,
1699 pvt->sbridge_dev->node_id,
1700 pvt->sbridge_dev->source_id);
1701
1702 /* KNL doesn't support mirroring or lockstep,
1703 * and is always closed page
1704 */
1705 if (pvt->info.type == KNIGHTS_LANDING) {
1706 mode = EDAC_S4ECD4ED;
1707 pvt->mirror_mode = NON_MIRRORING;
1708 pvt->is_cur_addr_mirrored = false;
1709
1710 if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
1711 return -1;
1712 if (pci_read_config_dword(pvt->pci_ta, KNL_MCMTR, &pvt->info.mcmtr)) {
1713 edac_dbg(0, "Failed to read KNL_MCMTR register\n");
1714 return -ENODEV;
1715 }
1716 } else {
1717 if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1718 if (pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, ®)) {
1719 edac_dbg(0, "Failed to read HASWELL_HASYSDEFEATURE2 register\n");
1720 return -ENODEV;
1721 }
1722 pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
1723 if (GET_BITFIELD(reg, 28, 28)) {
1724 pvt->mirror_mode = ADDR_RANGE_MIRRORING;
1725 edac_dbg(0, "Address range partial memory mirroring is enabled\n");
1726 goto next;
1727 }
1728 }
1729 if (pci_read_config_dword(pvt->pci_ras, RASENABLES, ®)) {
1730 edac_dbg(0, "Failed to read RASENABLES register\n");
1731 return -ENODEV;
1732 }
1733 if (IS_MIRROR_ENABLED(reg)) {
1734 pvt->mirror_mode = FULL_MIRRORING;
1735 edac_dbg(0, "Full memory mirroring is enabled\n");
1736 } else {
1737 pvt->mirror_mode = NON_MIRRORING;
1738 edac_dbg(0, "Memory mirroring is disabled\n");
1739 }
1740
1741next:
1742 if (pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr)) {
1743 edac_dbg(0, "Failed to read MCMTR register\n");
1744 return -ENODEV;
1745 }
1746 if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
1747 edac_dbg(0, "Lockstep is enabled\n");
1748 mode = EDAC_S8ECD8ED;
1749 pvt->is_lockstep = true;
1750 } else {
1751 edac_dbg(0, "Lockstep is disabled\n");
1752 mode = EDAC_S4ECD4ED;
1753 pvt->is_lockstep = false;
1754 }
1755 if (IS_CLOSE_PG(pvt->info.mcmtr)) {
1756 edac_dbg(0, "address map is on closed page mode\n");
1757 pvt->is_close_pg = true;
1758 } else {
1759 edac_dbg(0, "address map is on open page mode\n");
1760 pvt->is_close_pg = false;
1761 }
1762 }
1763
1764 return __populate_dimms(mci, knl_mc_sizes, mode);
1765}
1766
1767static void get_memory_layout(const struct mem_ctl_info *mci)
1768{
1769 struct sbridge_pvt *pvt = mci->pvt_info;
1770 int i, j, k, n_sads, n_tads, sad_interl;
1771 u32 reg;
1772 u64 limit, prv = 0;
1773 u64 tmp_mb;
1774 u32 gb, mb;
1775 u32 rir_way;
1776
1777 /*
1778 * Step 1) Get TOLM/TOHM ranges
1779 */
1780
1781 pvt->tolm = pvt->info.get_tolm(pvt);
1782 tmp_mb = (1 + pvt->tolm) >> 20;
1783
1784 gb = div_u64_rem(tmp_mb, 1024, &mb);
1785 edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1786 gb, (mb*1000)/1024, (u64)pvt->tolm);
1787
1788 /* Address range is already 45:25 */
1789 pvt->tohm = pvt->info.get_tohm(pvt);
1790 tmp_mb = (1 + pvt->tohm) >> 20;
1791
1792 gb = div_u64_rem(tmp_mb, 1024, &mb);
1793 edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1794 gb, (mb*1000)/1024, (u64)pvt->tohm);
1795
1796 /*
1797 * Step 2) Get SAD range and SAD Interleave list
1798 * TAD registers contain the interleave wayness. However, it
1799 * seems simpler to just discover it indirectly, with the
1800 * algorithm bellow.
1801 */
1802 prv = 0;
1803 for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1804 /* SAD_LIMIT Address range is 45:26 */
1805 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1806 ®);
1807 limit = pvt->info.sad_limit(reg);
1808
1809 if (!DRAM_RULE_ENABLE(reg))
1810 continue;
1811
1812 if (limit <= prv)
1813 break;
1814
1815 tmp_mb = (limit + 1) >> 20;
1816 gb = div_u64_rem(tmp_mb, 1024, &mb);
1817 edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1818 n_sads,
1819 show_dram_attr(pvt->info.dram_attr(reg)),
1820 gb, (mb*1000)/1024,
1821 ((u64)tmp_mb) << 20L,
1822 get_intlv_mode_str(reg, pvt->info.type),
1823 reg);
1824 prv = limit;
1825
1826 pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1827 ®);
1828 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1829 for (j = 0; j < 8; j++) {
1830 u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
1831 if (j > 0 && sad_interl == pkg)
1832 break;
1833
1834 edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1835 n_sads, j, pkg);
1836 }
1837 }
1838
1839 if (pvt->info.type == KNIGHTS_LANDING)
1840 return;
1841
1842 /*
1843 * Step 3) Get TAD range
1844 */
1845 prv = 0;
1846 for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1847 pci_read_config_dword(pvt->pci_ha, tad_dram_rule[n_tads], ®);
1848 limit = TAD_LIMIT(reg);
1849 if (limit <= prv)
1850 break;
1851 tmp_mb = (limit + 1) >> 20;
1852
1853 gb = div_u64_rem(tmp_mb, 1024, &mb);
1854 edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1855 n_tads, gb, (mb*1000)/1024,
1856 ((u64)tmp_mb) << 20L,
1857 (u32)(1 << TAD_SOCK(reg)),
1858 (u32)TAD_CH(reg) + 1,
1859 (u32)TAD_TGT0(reg),
1860 (u32)TAD_TGT1(reg),
1861 (u32)TAD_TGT2(reg),
1862 (u32)TAD_TGT3(reg),
1863 reg);
1864 prv = limit;
1865 }
1866
1867 /*
1868 * Step 4) Get TAD offsets, per each channel
1869 */
1870 for (i = 0; i < NUM_CHANNELS; i++) {
1871 if (!pvt->channel[i].dimms)
1872 continue;
1873 for (j = 0; j < n_tads; j++) {
1874 pci_read_config_dword(pvt->pci_tad[i],
1875 tad_ch_nilv_offset[j],
1876 ®);
1877 tmp_mb = TAD_OFFSET(reg) >> 20;
1878 gb = div_u64_rem(tmp_mb, 1024, &mb);
1879 edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1880 i, j,
1881 gb, (mb*1000)/1024,
1882 ((u64)tmp_mb) << 20L,
1883 reg);
1884 }
1885 }
1886
1887 /*
1888 * Step 6) Get RIR Wayness/Limit, per each channel
1889 */
1890 for (i = 0; i < NUM_CHANNELS; i++) {
1891 if (!pvt->channel[i].dimms)
1892 continue;
1893 for (j = 0; j < MAX_RIR_RANGES; j++) {
1894 pci_read_config_dword(pvt->pci_tad[i],
1895 rir_way_limit[j],
1896 ®);
1897
1898 if (!IS_RIR_VALID(reg))
1899 continue;
1900
1901 tmp_mb = pvt->info.rir_limit(reg) >> 20;
1902 rir_way = 1 << RIR_WAY(reg);
1903 gb = div_u64_rem(tmp_mb, 1024, &mb);
1904 edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1905 i, j,
1906 gb, (mb*1000)/1024,
1907 ((u64)tmp_mb) << 20L,
1908 rir_way,
1909 reg);
1910
1911 for (k = 0; k < rir_way; k++) {
1912 pci_read_config_dword(pvt->pci_tad[i],
1913 rir_offset[j][k],
1914 ®);
1915 tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6;
1916
1917 gb = div_u64_rem(tmp_mb, 1024, &mb);
1918 edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1919 i, j, k,
1920 gb, (mb*1000)/1024,
1921 ((u64)tmp_mb) << 20L,
1922 (u32)RIR_RNK_TGT(pvt->info.type, reg),
1923 reg);
1924 }
1925 }
1926 }
1927}
1928
1929static struct mem_ctl_info *get_mci_for_node_id(u8 node_id, u8 ha)
1930{
1931 struct sbridge_dev *sbridge_dev;
1932
1933 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1934 if (sbridge_dev->node_id == node_id && sbridge_dev->dom == ha)
1935 return sbridge_dev->mci;
1936 }
1937 return NULL;
1938}
1939
1940static u8 sb_close_row[] = {
1941 15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33
1942};
1943
1944static u8 sb_close_column[] = {
1945 3, 4, 5, 14, 19, 23, 24, 25, 26, 27
1946};
1947
1948static u8 sb_open_row[] = {
1949 14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33
1950};
1951
1952static u8 sb_open_column[] = {
1953 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
1954};
1955
1956static u8 sb_open_fine_column[] = {
1957 3, 4, 5, 7, 8, 9, 10, 11, 12, 13
1958};
1959
1960static int sb_bits(u64 addr, int nbits, u8 *bits)
1961{
1962 int i, res = 0;
1963
1964 for (i = 0; i < nbits; i++)
1965 res |= ((addr >> bits[i]) & 1) << i;
1966 return res;
1967}
1968
1969static int sb_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1)
1970{
1971 int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1);
1972
1973 if (do_xor)
1974 ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1);
1975
1976 return ret;
1977}
1978
1979static bool sb_decode_ddr4(struct mem_ctl_info *mci, int ch, u8 rank,
1980 u64 rank_addr, char *msg)
1981{
1982 int dimmno = 0;
1983 int row, col, bank_address, bank_group;
1984 struct sbridge_pvt *pvt;
1985 u32 bg0 = 0, rowbits = 0, colbits = 0;
1986 u32 amap_fine = 0, bank_xor_enable = 0;
1987
1988 dimmno = (rank < 12) ? rank / 4 : 2;
1989 pvt = mci->pvt_info;
1990 amap_fine = pvt->channel[ch].dimm[dimmno].amap_fine;
1991 bg0 = amap_fine ? 6 : 13;
1992 rowbits = pvt->channel[ch].dimm[dimmno].rowbits;
1993 colbits = pvt->channel[ch].dimm[dimmno].colbits;
1994 bank_xor_enable = pvt->channel[ch].dimm[dimmno].bank_xor_enable;
1995
1996 if (pvt->is_lockstep) {
1997 pr_warn_once("LockStep row/column decode is not supported yet!\n");
1998 msg[0] = '\0';
1999 return false;
2000 }
2001
2002 if (pvt->is_close_pg) {
2003 row = sb_bits(rank_addr, rowbits, sb_close_row);
2004 col = sb_bits(rank_addr, colbits, sb_close_column);
2005 col |= 0x400; /* C10 is autoprecharge, always set */
2006 bank_address = sb_bank_bits(rank_addr, 8, 9, bank_xor_enable, 22, 28);
2007 bank_group = sb_bank_bits(rank_addr, 6, 7, bank_xor_enable, 20, 21);
2008 } else {
2009 row = sb_bits(rank_addr, rowbits, sb_open_row);
2010 if (amap_fine)
2011 col = sb_bits(rank_addr, colbits, sb_open_fine_column);
2012 else
2013 col = sb_bits(rank_addr, colbits, sb_open_column);
2014 bank_address = sb_bank_bits(rank_addr, 18, 19, bank_xor_enable, 22, 23);
2015 bank_group = sb_bank_bits(rank_addr, bg0, 17, bank_xor_enable, 20, 21);
2016 }
2017
2018 row &= (1u << rowbits) - 1;
2019
2020 sprintf(msg, "row:0x%x col:0x%x bank_addr:%d bank_group:%d",
2021 row, col, bank_address, bank_group);
2022 return true;
2023}
2024
2025static bool sb_decode_ddr3(struct mem_ctl_info *mci, int ch, u8 rank,
2026 u64 rank_addr, char *msg)
2027{
2028 pr_warn_once("DDR3 row/column decode not support yet!\n");
2029 msg[0] = '\0';
2030 return false;
2031}
2032
2033static int get_memory_error_data(struct mem_ctl_info *mci,
2034 u64 addr,
2035 u8 *socket, u8 *ha,
2036 long *channel_mask,
2037 u8 *rank,
2038 char **area_type, char *msg)
2039{
2040 struct mem_ctl_info *new_mci;
2041 struct sbridge_pvt *pvt = mci->pvt_info;
2042 struct pci_dev *pci_ha;
2043 int n_rir, n_sads, n_tads, sad_way, sck_xch;
2044 int sad_interl, idx, base_ch;
2045 int interleave_mode, shiftup = 0;
2046 unsigned int sad_interleave[MAX_INTERLEAVE];
2047 u32 reg, dram_rule;
2048 u8 ch_way, sck_way, pkg, sad_ha = 0, rankid = 0;
2049 u32 tad_offset;
2050 u32 rir_way;
2051 u32 mb, gb;
2052 u64 ch_addr, offset, limit = 0, prv = 0;
2053 u64 rank_addr;
2054 enum mem_type mtype;
2055
2056 /*
2057 * Step 0) Check if the address is at special memory ranges
2058 * The check bellow is probably enough to fill all cases where
2059 * the error is not inside a memory, except for the legacy
2060 * range (e. g. VGA addresses). It is unlikely, however, that the
2061 * memory controller would generate an error on that range.
2062 */
2063 if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
2064 sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
2065 return -EINVAL;
2066 }
2067 if (addr >= (u64)pvt->tohm) {
2068 sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
2069 return -EINVAL;
2070 }
2071
2072 /*
2073 * Step 1) Get socket
2074 */
2075 for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
2076 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
2077 ®);
2078
2079 if (!DRAM_RULE_ENABLE(reg))
2080 continue;
2081
2082 limit = pvt->info.sad_limit(reg);
2083 if (limit <= prv) {
2084 sprintf(msg, "Can't discover the memory socket");
2085 return -EINVAL;
2086 }
2087 if (addr <= limit)
2088 break;
2089 prv = limit;
2090 }
2091 if (n_sads == pvt->info.max_sad) {
2092 sprintf(msg, "Can't discover the memory socket");
2093 return -EINVAL;
2094 }
2095 dram_rule = reg;
2096 *area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
2097 interleave_mode = pvt->info.interleave_mode(dram_rule);
2098
2099 pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
2100 ®);
2101
2102 if (pvt->info.type == SANDY_BRIDGE) {
2103 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
2104 for (sad_way = 0; sad_way < 8; sad_way++) {
2105 u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
2106 if (sad_way > 0 && sad_interl == pkg)
2107 break;
2108 sad_interleave[sad_way] = pkg;
2109 edac_dbg(0, "SAD interleave #%d: %d\n",
2110 sad_way, sad_interleave[sad_way]);
2111 }
2112 edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
2113 pvt->sbridge_dev->mc,
2114 n_sads,
2115 addr,
2116 limit,
2117 sad_way + 7,
2118 !interleave_mode ? "" : "XOR[18:16]");
2119 if (interleave_mode)
2120 idx = ((addr >> 6) ^ (addr >> 16)) & 7;
2121 else
2122 idx = (addr >> 6) & 7;
2123 switch (sad_way) {
2124 case 1:
2125 idx = 0;
2126 break;
2127 case 2:
2128 idx = idx & 1;
2129 break;
2130 case 4:
2131 idx = idx & 3;
2132 break;
2133 case 8:
2134 break;
2135 default:
2136 sprintf(msg, "Can't discover socket interleave");
2137 return -EINVAL;
2138 }
2139 *socket = sad_interleave[idx];
2140 edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
2141 idx, sad_way, *socket);
2142 } else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
2143 int bits, a7mode = A7MODE(dram_rule);
2144
2145 if (a7mode) {
2146 /* A7 mode swaps P9 with P6 */
2147 bits = GET_BITFIELD(addr, 7, 8) << 1;
2148 bits |= GET_BITFIELD(addr, 9, 9);
2149 } else
2150 bits = GET_BITFIELD(addr, 6, 8);
2151
2152 if (interleave_mode == 0) {
2153 /* interleave mode will XOR {8,7,6} with {18,17,16} */
2154 idx = GET_BITFIELD(addr, 16, 18);
2155 idx ^= bits;
2156 } else
2157 idx = bits;
2158
2159 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2160 *socket = sad_pkg_socket(pkg);
2161 sad_ha = sad_pkg_ha(pkg);
2162
2163 if (a7mode) {
2164 /* MCChanShiftUpEnable */
2165 pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, ®);
2166 shiftup = GET_BITFIELD(reg, 22, 22);
2167 }
2168
2169 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2170 idx, *socket, sad_ha, shiftup);
2171 } else {
2172 /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2173 idx = (addr >> 6) & 7;
2174 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2175 *socket = sad_pkg_socket(pkg);
2176 sad_ha = sad_pkg_ha(pkg);
2177 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2178 idx, *socket, sad_ha);
2179 }
2180
2181 *ha = sad_ha;
2182
2183 /*
2184 * Move to the proper node structure, in order to access the
2185 * right PCI registers
2186 */
2187 new_mci = get_mci_for_node_id(*socket, sad_ha);
2188 if (!new_mci) {
2189 sprintf(msg, "Struct for socket #%u wasn't initialized",
2190 *socket);
2191 return -EINVAL;
2192 }
2193 mci = new_mci;
2194 pvt = mci->pvt_info;
2195
2196 /*
2197 * Step 2) Get memory channel
2198 */
2199 prv = 0;
2200 pci_ha = pvt->pci_ha;
2201 for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
2202 pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], ®);
2203 limit = TAD_LIMIT(reg);
2204 if (limit <= prv) {
2205 sprintf(msg, "Can't discover the memory channel");
2206 return -EINVAL;
2207 }
2208 if (addr <= limit)
2209 break;
2210 prv = limit;
2211 }
2212 if (n_tads == MAX_TAD) {
2213 sprintf(msg, "Can't discover the memory channel");
2214 return -EINVAL;
2215 }
2216
2217 ch_way = TAD_CH(reg) + 1;
2218 sck_way = TAD_SOCK(reg);
2219
2220 if (ch_way == 3)
2221 idx = addr >> 6;
2222 else {
2223 idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
2224 if (pvt->is_chan_hash)
2225 idx = haswell_chan_hash(idx, addr);
2226 }
2227 idx = idx % ch_way;
2228
2229 /*
2230 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2231 */
2232 switch (idx) {
2233 case 0:
2234 base_ch = TAD_TGT0(reg);
2235 break;
2236 case 1:
2237 base_ch = TAD_TGT1(reg);
2238 break;
2239 case 2:
2240 base_ch = TAD_TGT2(reg);
2241 break;
2242 case 3:
2243 base_ch = TAD_TGT3(reg);
2244 break;
2245 default:
2246 sprintf(msg, "Can't discover the TAD target");
2247 return -EINVAL;
2248 }
2249 *channel_mask = 1 << base_ch;
2250
2251 pci_read_config_dword(pvt->pci_tad[base_ch], tad_ch_nilv_offset[n_tads], &tad_offset);
2252
2253 if (pvt->mirror_mode == FULL_MIRRORING ||
2254 (pvt->mirror_mode == ADDR_RANGE_MIRRORING && n_tads == 0)) {
2255 *channel_mask |= 1 << ((base_ch + 2) % 4);
2256 switch(ch_way) {
2257 case 2:
2258 case 4:
2259 sck_xch = (1 << sck_way) * (ch_way >> 1);
2260 break;
2261 default:
2262 sprintf(msg, "Invalid mirror set. Can't decode addr");
2263 return -EINVAL;
2264 }
2265
2266 pvt->is_cur_addr_mirrored = true;
2267 } else {
2268 sck_xch = (1 << sck_way) * ch_way;
2269 pvt->is_cur_addr_mirrored = false;
2270 }
2271
2272 if (pvt->is_lockstep)
2273 *channel_mask |= 1 << ((base_ch + 1) % 4);
2274
2275 offset = TAD_OFFSET(tad_offset);
2276
2277 edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2278 n_tads,
2279 addr,
2280 limit,
2281 sck_way,
2282 ch_way,
2283 offset,
2284 idx,
2285 base_ch,
2286 *channel_mask);
2287
2288 /* Calculate channel address */
2289 /* Remove the TAD offset */
2290
2291 if (offset > addr) {
2292 sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2293 offset, addr);
2294 return -EINVAL;
2295 }
2296
2297 ch_addr = addr - offset;
2298 ch_addr >>= (6 + shiftup);
2299 ch_addr /= sck_xch;
2300 ch_addr <<= (6 + shiftup);
2301 ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
2302
2303 /*
2304 * Step 3) Decode rank
2305 */
2306 for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
2307 pci_read_config_dword(pvt->pci_tad[base_ch], rir_way_limit[n_rir], ®);
2308
2309 if (!IS_RIR_VALID(reg))
2310 continue;
2311
2312 limit = pvt->info.rir_limit(reg);
2313 gb = div_u64_rem(limit >> 20, 1024, &mb);
2314 edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2315 n_rir,
2316 gb, (mb*1000)/1024,
2317 limit,
2318 1 << RIR_WAY(reg));
2319 if (ch_addr <= limit)
2320 break;
2321 }
2322 if (n_rir == MAX_RIR_RANGES) {
2323 sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
2324 ch_addr);
2325 return -EINVAL;
2326 }
2327 rir_way = RIR_WAY(reg);
2328
2329 if (pvt->is_close_pg)
2330 idx = (ch_addr >> 6);
2331 else
2332 idx = (ch_addr >> 13); /* FIXME: Datasheet says to shift by 15 */
2333 idx %= 1 << rir_way;
2334
2335 pci_read_config_dword(pvt->pci_tad[base_ch], rir_offset[n_rir][idx], ®);
2336 *rank = RIR_RNK_TGT(pvt->info.type, reg);
2337
2338 if (pvt->info.type == BROADWELL) {
2339 if (pvt->is_close_pg)
2340 shiftup = 6;
2341 else
2342 shiftup = 13;
2343
2344 rank_addr = ch_addr >> shiftup;
2345 rank_addr /= (1 << rir_way);
2346 rank_addr <<= shiftup;
2347 rank_addr |= ch_addr & GENMASK_ULL(shiftup - 1, 0);
2348 rank_addr -= RIR_OFFSET(pvt->info.type, reg);
2349
2350 mtype = pvt->info.get_memory_type(pvt);
2351 rankid = *rank;
2352 if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
2353 sb_decode_ddr4(mci, base_ch, rankid, rank_addr, msg);
2354 else
2355 sb_decode_ddr3(mci, base_ch, rankid, rank_addr, msg);
2356 } else {
2357 msg[0] = '\0';
2358 }
2359
2360 edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2361 n_rir,
2362 ch_addr,
2363 limit,
2364 rir_way,
2365 idx);
2366
2367 return 0;
2368}
2369
2370static int get_memory_error_data_from_mce(struct mem_ctl_info *mci,
2371 const struct mce *m, u8 *socket,
2372 u8 *ha, long *channel_mask,
2373 char *msg)
2374{
2375 u32 reg, channel = GET_BITFIELD(m->status, 0, 3);
2376 struct mem_ctl_info *new_mci;
2377 struct sbridge_pvt *pvt;
2378 struct pci_dev *pci_ha;
2379 bool tad0;
2380
2381 if (channel >= NUM_CHANNELS) {
2382 sprintf(msg, "Invalid channel 0x%x", channel);
2383 return -EINVAL;
2384 }
2385
2386 pvt = mci->pvt_info;
2387 if (!pvt->info.get_ha) {
2388 sprintf(msg, "No get_ha()");
2389 return -EINVAL;
2390 }
2391 *ha = pvt->info.get_ha(m->bank);
2392 if (*ha != 0 && *ha != 1) {
2393 sprintf(msg, "Impossible bank %d", m->bank);
2394 return -EINVAL;
2395 }
2396
2397 *socket = m->socketid;
2398 new_mci = get_mci_for_node_id(*socket, *ha);
2399 if (!new_mci) {
2400 strcpy(msg, "mci socket got corrupted!");
2401 return -EINVAL;
2402 }
2403
2404 pvt = new_mci->pvt_info;
2405 pci_ha = pvt->pci_ha;
2406 pci_read_config_dword(pci_ha, tad_dram_rule[0], ®);
2407 tad0 = m->addr <= TAD_LIMIT(reg);
2408
2409 *channel_mask = 1 << channel;
2410 if (pvt->mirror_mode == FULL_MIRRORING ||
2411 (pvt->mirror_mode == ADDR_RANGE_MIRRORING && tad0)) {
2412 *channel_mask |= 1 << ((channel + 2) % 4);
2413 pvt->is_cur_addr_mirrored = true;
2414 } else {
2415 pvt->is_cur_addr_mirrored = false;
2416 }
2417
2418 if (pvt->is_lockstep)
2419 *channel_mask |= 1 << ((channel + 1) % 4);
2420
2421 return 0;
2422}
2423
2424/****************************************************************************
2425 Device initialization routines: put/get, init/exit
2426 ****************************************************************************/
2427
2428/*
2429 * sbridge_put_all_devices 'put' all the devices that we have
2430 * reserved via 'get'
2431 */
2432static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
2433{
2434 int i;
2435
2436 edac_dbg(0, "\n");
2437 for (i = 0; i < sbridge_dev->n_devs; i++) {
2438 struct pci_dev *pdev = sbridge_dev->pdev[i];
2439 if (!pdev)
2440 continue;
2441 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2442 pdev->bus->number,
2443 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2444 pci_dev_put(pdev);
2445 }
2446}
2447
2448static void sbridge_put_all_devices(void)
2449{
2450 struct sbridge_dev *sbridge_dev, *tmp;
2451
2452 list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
2453 sbridge_put_devices(sbridge_dev);
2454 free_sbridge_dev(sbridge_dev);
2455 }
2456}
2457
2458static int sbridge_get_onedevice(struct pci_dev **prev,
2459 u8 *num_mc,
2460 const struct pci_id_table *table,
2461 const unsigned devno,
2462 const int multi_bus)
2463{
2464 struct sbridge_dev *sbridge_dev = NULL;
2465 const struct pci_id_descr *dev_descr = &table->descr[devno];
2466 struct pci_dev *pdev = NULL;
2467 int seg = 0;
2468 u8 bus = 0;
2469 int i = 0;
2470
2471 sbridge_printk(KERN_DEBUG,
2472 "Seeking for: PCI ID %04x:%04x\n",
2473 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2474
2475 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
2476 dev_descr->dev_id, *prev);
2477
2478 if (!pdev) {
2479 if (*prev) {
2480 *prev = pdev;
2481 return 0;
2482 }
2483
2484 if (dev_descr->optional)
2485 return 0;
2486
2487 /* if the HA wasn't found */
2488 if (devno == 0)
2489 return -ENODEV;
2490
2491 sbridge_printk(KERN_INFO,
2492 "Device not found: %04x:%04x\n",
2493 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2494
2495 /* End of list, leave */
2496 return -ENODEV;
2497 }
2498 seg = pci_domain_nr(pdev->bus);
2499 bus = pdev->bus->number;
2500
2501next_imc:
2502 sbridge_dev = get_sbridge_dev(seg, bus, dev_descr->dom,
2503 multi_bus, sbridge_dev);
2504 if (!sbridge_dev) {
2505 /* If the HA1 wasn't found, don't create EDAC second memory controller */
2506 if (dev_descr->dom == IMC1 && devno != 1) {
2507 edac_dbg(0, "Skip IMC1: %04x:%04x (since HA1 was absent)\n",
2508 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2509 pci_dev_put(pdev);
2510 return 0;
2511 }
2512
2513 if (dev_descr->dom == SOCK)
2514 goto out_imc;
2515
2516 sbridge_dev = alloc_sbridge_dev(seg, bus, dev_descr->dom, table);
2517 if (!sbridge_dev) {
2518 pci_dev_put(pdev);
2519 return -ENOMEM;
2520 }
2521 (*num_mc)++;
2522 }
2523
2524 if (sbridge_dev->pdev[sbridge_dev->i_devs]) {
2525 sbridge_printk(KERN_ERR,
2526 "Duplicated device for %04x:%04x\n",
2527 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2528 pci_dev_put(pdev);
2529 return -ENODEV;
2530 }
2531
2532 sbridge_dev->pdev[sbridge_dev->i_devs++] = pdev;
2533
2534 /* pdev belongs to more than one IMC, do extra gets */
2535 if (++i > 1)
2536 pci_dev_get(pdev);
2537
2538 if (dev_descr->dom == SOCK && i < table->n_imcs_per_sock)
2539 goto next_imc;
2540
2541out_imc:
2542 /* Be sure that the device is enabled */
2543 if (unlikely(pci_enable_device(pdev) < 0)) {
2544 sbridge_printk(KERN_ERR,
2545 "Couldn't enable %04x:%04x\n",
2546 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2547 return -ENODEV;
2548 }
2549
2550 edac_dbg(0, "Detected %04x:%04x\n",
2551 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2552
2553 /*
2554 * As stated on drivers/pci/search.c, the reference count for
2555 * @from is always decremented if it is not %NULL. So, as we need
2556 * to get all devices up to null, we need to do a get for the device
2557 */
2558 pci_dev_get(pdev);
2559
2560 *prev = pdev;
2561
2562 return 0;
2563}
2564
2565/*
2566 * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2567 * devices we want to reference for this driver.
2568 * @num_mc: pointer to the memory controllers count, to be incremented in case
2569 * of success.
2570 * @table: model specific table
2571 *
2572 * returns 0 in case of success or error code
2573 */
2574static int sbridge_get_all_devices(u8 *num_mc,
2575 const struct pci_id_table *table)
2576{
2577 int i, rc;
2578 struct pci_dev *pdev = NULL;
2579 int allow_dups = 0;
2580 int multi_bus = 0;
2581
2582 if (table->type == KNIGHTS_LANDING)
2583 allow_dups = multi_bus = 1;
2584 while (table && table->descr) {
2585 for (i = 0; i < table->n_devs_per_sock; i++) {
2586 if (!allow_dups || i == 0 ||
2587 table->descr[i].dev_id !=
2588 table->descr[i-1].dev_id) {
2589 pdev = NULL;
2590 }
2591 do {
2592 rc = sbridge_get_onedevice(&pdev, num_mc,
2593 table, i, multi_bus);
2594 if (rc < 0) {
2595 if (i == 0) {
2596 i = table->n_devs_per_sock;
2597 break;
2598 }
2599 sbridge_put_all_devices();
2600 return -ENODEV;
2601 }
2602 } while (pdev && !allow_dups);
2603 }
2604 table++;
2605 }
2606
2607 return 0;
2608}
2609
2610/*
2611 * Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in
2612 * the format: XXXa. So we can convert from a device to the corresponding
2613 * channel like this
2614 */
2615#define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa)
2616
2617static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
2618 struct sbridge_dev *sbridge_dev)
2619{
2620 struct sbridge_pvt *pvt = mci->pvt_info;
2621 struct pci_dev *pdev;
2622 u8 saw_chan_mask = 0;
2623 int i;
2624
2625 for (i = 0; i < sbridge_dev->n_devs; i++) {
2626 pdev = sbridge_dev->pdev[i];
2627 if (!pdev)
2628 continue;
2629
2630 switch (pdev->device) {
2631 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
2632 pvt->pci_sad0 = pdev;
2633 break;
2634 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
2635 pvt->pci_sad1 = pdev;
2636 break;
2637 case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
2638 pvt->pci_br0 = pdev;
2639 break;
2640 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2641 pvt->pci_ha = pdev;
2642 break;
2643 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
2644 pvt->pci_ta = pdev;
2645 break;
2646 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
2647 pvt->pci_ras = pdev;
2648 break;
2649 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
2650 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
2651 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
2652 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
2653 {
2654 int id = TAD_DEV_TO_CHAN(pdev->device);
2655 pvt->pci_tad[id] = pdev;
2656 saw_chan_mask |= 1 << id;
2657 }
2658 break;
2659 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
2660 pvt->pci_ddrio = pdev;
2661 break;
2662 default:
2663 goto error;
2664 }
2665
2666 edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2667 pdev->vendor, pdev->device,
2668 sbridge_dev->bus,
2669 pdev);
2670 }
2671
2672 /* Check if everything were registered */
2673 if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha ||
2674 !pvt->pci_ras || !pvt->pci_ta)
2675 goto enodev;
2676
2677 if (saw_chan_mask != 0x0f)
2678 goto enodev;
2679 return 0;
2680
2681enodev:
2682 sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2683 return -ENODEV;
2684
2685error:
2686 sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
2687 PCI_VENDOR_ID_INTEL, pdev->device);
2688 return -EINVAL;
2689}
2690
2691static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
2692 struct sbridge_dev *sbridge_dev)
2693{
2694 struct sbridge_pvt *pvt = mci->pvt_info;
2695 struct pci_dev *pdev;
2696 u8 saw_chan_mask = 0;
2697 int i;
2698
2699 for (i = 0; i < sbridge_dev->n_devs; i++) {
2700 pdev = sbridge_dev->pdev[i];
2701 if (!pdev)
2702 continue;
2703
2704 switch (pdev->device) {
2705 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
2706 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
2707 pvt->pci_ha = pdev;
2708 break;
2709 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2710 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA:
2711 pvt->pci_ta = pdev;
2712 break;
2713 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
2714 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS:
2715 pvt->pci_ras = pdev;
2716 break;
2717 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
2718 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
2719 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
2720 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
2721 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
2722 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
2723 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
2724 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
2725 {
2726 int id = TAD_DEV_TO_CHAN(pdev->device);
2727 pvt->pci_tad[id] = pdev;
2728 saw_chan_mask |= 1 << id;
2729 }
2730 break;
2731 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
2732 pvt->pci_ddrio = pdev;
2733 break;
2734 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
2735 pvt->pci_ddrio = pdev;
2736 break;
2737 case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
2738 pvt->pci_sad0 = pdev;
2739 break;
2740 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
2741 pvt->pci_br0 = pdev;
2742 break;
2743 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
2744 pvt->pci_br1 = pdev;
2745 break;
2746 default:
2747 goto error;
2748 }
2749
2750 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2751 sbridge_dev->bus,
2752 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2753 pdev);
2754 }
2755
2756 /* Check if everything were registered */
2757 if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_br0 ||
2758 !pvt->pci_br1 || !pvt->pci_ras || !pvt->pci_ta)
2759 goto enodev;
2760
2761 if (saw_chan_mask != 0x0f && /* -EN/-EX */
2762 saw_chan_mask != 0x03) /* -EP */
2763 goto enodev;
2764 return 0;
2765
2766enodev:
2767 sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2768 return -ENODEV;
2769
2770error:
2771 sbridge_printk(KERN_ERR,
2772 "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
2773 pdev->device);
2774 return -EINVAL;
2775}
2776
2777static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
2778 struct sbridge_dev *sbridge_dev)
2779{
2780 struct sbridge_pvt *pvt = mci->pvt_info;
2781 struct pci_dev *pdev;
2782 u8 saw_chan_mask = 0;
2783 int i;
2784
2785 /* there's only one device per system; not tied to any bus */
2786 if (pvt->info.pci_vtd == NULL)
2787 /* result will be checked later */
2788 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2789 PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
2790 NULL);
2791
2792 for (i = 0; i < sbridge_dev->n_devs; i++) {
2793 pdev = sbridge_dev->pdev[i];
2794 if (!pdev)
2795 continue;
2796
2797 switch (pdev->device) {
2798 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
2799 pvt->pci_sad0 = pdev;
2800 break;
2801 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
2802 pvt->pci_sad1 = pdev;
2803 break;
2804 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2805 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
2806 pvt->pci_ha = pdev;
2807 break;
2808 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
2809 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
2810 pvt->pci_ta = pdev;
2811 break;
2812 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM:
2813 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM:
2814 pvt->pci_ras = pdev;
2815 break;
2816 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
2817 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
2818 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
2819 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
2820 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
2821 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
2822 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
2823 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
2824 {
2825 int id = TAD_DEV_TO_CHAN(pdev->device);
2826 pvt->pci_tad[id] = pdev;
2827 saw_chan_mask |= 1 << id;
2828 }
2829 break;
2830 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
2831 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
2832 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
2833 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
2834 if (!pvt->pci_ddrio)
2835 pvt->pci_ddrio = pdev;
2836 break;
2837 default:
2838 break;
2839 }
2840
2841 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2842 sbridge_dev->bus,
2843 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2844 pdev);
2845 }
2846
2847 /* Check if everything were registered */
2848 if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2849 !pvt->pci_ras || !pvt->pci_ta || !pvt->info.pci_vtd)
2850 goto enodev;
2851
2852 if (saw_chan_mask != 0x0f && /* -EN/-EX */
2853 saw_chan_mask != 0x03) /* -EP */
2854 goto enodev;
2855 return 0;
2856
2857enodev:
2858 sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2859 return -ENODEV;
2860}
2861
2862static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
2863 struct sbridge_dev *sbridge_dev)
2864{
2865 struct sbridge_pvt *pvt = mci->pvt_info;
2866 struct pci_dev *pdev;
2867 u8 saw_chan_mask = 0;
2868 int i;
2869
2870 /* there's only one device per system; not tied to any bus */
2871 if (pvt->info.pci_vtd == NULL)
2872 /* result will be checked later */
2873 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2874 PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
2875 NULL);
2876
2877 for (i = 0; i < sbridge_dev->n_devs; i++) {
2878 pdev = sbridge_dev->pdev[i];
2879 if (!pdev)
2880 continue;
2881
2882 switch (pdev->device) {
2883 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
2884 pvt->pci_sad0 = pdev;
2885 break;
2886 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
2887 pvt->pci_sad1 = pdev;
2888 break;
2889 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2890 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
2891 pvt->pci_ha = pdev;
2892 break;
2893 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
2894 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
2895 pvt->pci_ta = pdev;
2896 break;
2897 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM:
2898 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM:
2899 pvt->pci_ras = pdev;
2900 break;
2901 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
2902 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
2903 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
2904 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
2905 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
2906 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
2907 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
2908 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
2909 {
2910 int id = TAD_DEV_TO_CHAN(pdev->device);
2911 pvt->pci_tad[id] = pdev;
2912 saw_chan_mask |= 1 << id;
2913 }
2914 break;
2915 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
2916 pvt->pci_ddrio = pdev;
2917 break;
2918 default:
2919 break;
2920 }
2921
2922 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2923 sbridge_dev->bus,
2924 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2925 pdev);
2926 }
2927
2928 /* Check if everything were registered */
2929 if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2930 !pvt->pci_ras || !pvt->pci_ta || !pvt->info.pci_vtd)
2931 goto enodev;
2932
2933 if (saw_chan_mask != 0x0f && /* -EN/-EX */
2934 saw_chan_mask != 0x03) /* -EP */
2935 goto enodev;
2936 return 0;
2937
2938enodev:
2939 sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2940 return -ENODEV;
2941}
2942
2943static int knl_mci_bind_devs(struct mem_ctl_info *mci,
2944 struct sbridge_dev *sbridge_dev)
2945{
2946 struct sbridge_pvt *pvt = mci->pvt_info;
2947 struct pci_dev *pdev;
2948 int dev, func;
2949
2950 int i;
2951 int devidx;
2952
2953 for (i = 0; i < sbridge_dev->n_devs; i++) {
2954 pdev = sbridge_dev->pdev[i];
2955 if (!pdev)
2956 continue;
2957
2958 /* Extract PCI device and function. */
2959 dev = (pdev->devfn >> 3) & 0x1f;
2960 func = pdev->devfn & 0x7;
2961
2962 switch (pdev->device) {
2963 case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
2964 if (dev == 8)
2965 pvt->knl.pci_mc0 = pdev;
2966 else if (dev == 9)
2967 pvt->knl.pci_mc1 = pdev;
2968 else {
2969 sbridge_printk(KERN_ERR,
2970 "Memory controller in unexpected place! (dev %d, fn %d)\n",
2971 dev, func);
2972 continue;
2973 }
2974 break;
2975
2976 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
2977 pvt->pci_sad0 = pdev;
2978 break;
2979
2980 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
2981 pvt->pci_sad1 = pdev;
2982 break;
2983
2984 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
2985 /* There are one of these per tile, and range from
2986 * 1.14.0 to 1.18.5.
2987 */
2988 devidx = ((dev-14)*8)+func;
2989
2990 if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
2991 sbridge_printk(KERN_ERR,
2992 "Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2993 dev, func);
2994 continue;
2995 }
2996
2997 WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
2998
2999 pvt->knl.pci_cha[devidx] = pdev;
3000 break;
3001
3002 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN:
3003 devidx = -1;
3004
3005 /*
3006 * MC0 channels 0-2 are device 9 function 2-4,
3007 * MC1 channels 3-5 are device 8 function 2-4.
3008 */
3009
3010 if (dev == 9)
3011 devidx = func-2;
3012 else if (dev == 8)
3013 devidx = 3 + (func-2);
3014
3015 if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
3016 sbridge_printk(KERN_ERR,
3017 "DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
3018 dev, func);
3019 continue;
3020 }
3021
3022 WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
3023 pvt->knl.pci_channel[devidx] = pdev;
3024 break;
3025
3026 case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
3027 pvt->knl.pci_mc_info = pdev;
3028 break;
3029
3030 case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
3031 pvt->pci_ta = pdev;
3032 break;
3033
3034 default:
3035 sbridge_printk(KERN_ERR, "Unexpected device %d\n",
3036 pdev->device);
3037 break;
3038 }
3039 }
3040
3041 if (!pvt->knl.pci_mc0 || !pvt->knl.pci_mc1 ||
3042 !pvt->pci_sad0 || !pvt->pci_sad1 ||
3043 !pvt->pci_ta) {
3044 goto enodev;
3045 }
3046
3047 for (i = 0; i < KNL_MAX_CHANNELS; i++) {
3048 if (!pvt->knl.pci_channel[i]) {
3049 sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
3050 goto enodev;
3051 }
3052 }
3053
3054 for (i = 0; i < KNL_MAX_CHAS; i++) {
3055 if (!pvt->knl.pci_cha[i]) {
3056 sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
3057 goto enodev;
3058 }
3059 }
3060
3061 return 0;
3062
3063enodev:
3064 sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
3065 return -ENODEV;
3066}
3067
3068/****************************************************************************
3069 Error check routines
3070 ****************************************************************************/
3071
3072/*
3073 * While Sandy Bridge has error count registers, SMI BIOS read values from
3074 * and resets the counters. So, they are not reliable for the OS to read
3075 * from them. So, we have no option but to just trust on whatever MCE is
3076 * telling us about the errors.
3077 */
3078static void sbridge_mce_output_error(struct mem_ctl_info *mci,
3079 const struct mce *m)
3080{
3081 struct mem_ctl_info *new_mci;
3082 struct sbridge_pvt *pvt = mci->pvt_info;
3083 enum hw_event_mc_err_type tp_event;
3084 bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
3085 bool overflow = GET_BITFIELD(m->status, 62, 62);
3086 bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
3087 bool recoverable;
3088 u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
3089 u32 mscod = GET_BITFIELD(m->status, 16, 31);
3090 u32 errcode = GET_BITFIELD(m->status, 0, 15);
3091 u32 channel = GET_BITFIELD(m->status, 0, 3);
3092 u32 optypenum = GET_BITFIELD(m->status, 4, 6);
3093 /*
3094 * Bits 5-0 of MCi_MISC give the least significant bit that is valid.
3095 * A value 6 is for cache line aligned address, a value 12 is for page
3096 * aligned address reported by patrol scrubber.
3097 */
3098 u32 lsb = GET_BITFIELD(m->misc, 0, 5);
3099 char *optype, *area_type = "DRAM";
3100 long channel_mask, first_channel;
3101 u8 rank = 0xff, socket, ha;
3102 int rc, dimm;
3103
3104 if (pvt->info.type != SANDY_BRIDGE)
3105 recoverable = true;
3106 else
3107 recoverable = GET_BITFIELD(m->status, 56, 56);
3108
3109 if (uncorrected_error) {
3110 core_err_cnt = 1;
3111 if (ripv) {
3112 tp_event = HW_EVENT_ERR_UNCORRECTED;
3113 } else {
3114 tp_event = HW_EVENT_ERR_FATAL;
3115 }
3116 } else {
3117 tp_event = HW_EVENT_ERR_CORRECTED;
3118 }
3119
3120 /*
3121 * According with Table 15-9 of the Intel Architecture spec vol 3A,
3122 * memory errors should fit in this mask:
3123 * 000f 0000 1mmm cccc (binary)
3124 * where:
3125 * f = Correction Report Filtering Bit. If 1, subsequent errors
3126 * won't be shown
3127 * mmm = error type
3128 * cccc = channel
3129 * If the mask doesn't match, report an error to the parsing logic
3130 */
3131 switch (optypenum) {
3132 case 0:
3133 optype = "generic undef request error";
3134 break;
3135 case 1:
3136 optype = "memory read error";
3137 break;
3138 case 2:
3139 optype = "memory write error";
3140 break;
3141 case 3:
3142 optype = "addr/cmd error";
3143 break;
3144 case 4:
3145 optype = "memory scrubbing error";
3146 break;
3147 default:
3148 optype = "reserved";
3149 break;
3150 }
3151
3152 if (pvt->info.type == KNIGHTS_LANDING) {
3153 if (channel == 14) {
3154 edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
3155 overflow ? " OVERFLOW" : "",
3156 (uncorrected_error && recoverable)
3157 ? " recoverable" : "",
3158 mscod, errcode,
3159 m->bank);
3160 } else {
3161 char A = *("A");
3162
3163 /*
3164 * Reported channel is in range 0-2, so we can't map it
3165 * back to mc. To figure out mc we check machine check
3166 * bank register that reported this error.
3167 * bank15 means mc0 and bank16 means mc1.
3168 */
3169 channel = knl_channel_remap(m->bank == 16, channel);
3170 channel_mask = 1 << channel;
3171
3172 snprintf(sb_msg, sizeof(sb_msg),
3173 "%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
3174 overflow ? " OVERFLOW" : "",
3175 (uncorrected_error && recoverable)
3176 ? " recoverable" : " ",
3177 mscod, errcode, channel, A + channel);
3178 edac_mc_handle_error(tp_event, mci, core_err_cnt,
3179 m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3180 channel, 0, -1,
3181 optype, sb_msg);
3182 }
3183 return;
3184 } else if (lsb < 12) {
3185 rc = get_memory_error_data(mci, m->addr, &socket, &ha,
3186 &channel_mask, &rank,
3187 &area_type, sb_msg);
3188 } else {
3189 rc = get_memory_error_data_from_mce(mci, m, &socket, &ha,
3190 &channel_mask, sb_msg);
3191 }
3192
3193 if (rc < 0)
3194 goto err_parsing;
3195 new_mci = get_mci_for_node_id(socket, ha);
3196 if (!new_mci) {
3197 strscpy(sb_msg, "Error: socket got corrupted!");
3198 goto err_parsing;
3199 }
3200 mci = new_mci;
3201 pvt = mci->pvt_info;
3202
3203 first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
3204
3205 if (rank == 0xff)
3206 dimm = -1;
3207 else if (rank < 4)
3208 dimm = 0;
3209 else if (rank < 8)
3210 dimm = 1;
3211 else
3212 dimm = 2;
3213
3214 /*
3215 * FIXME: On some memory configurations (mirror, lockstep), the
3216 * Memory Controller can't point the error to a single DIMM. The
3217 * EDAC core should be handling the channel mask, in order to point
3218 * to the group of dimm's where the error may be happening.
3219 */
3220 if (!pvt->is_lockstep && !pvt->is_cur_addr_mirrored && !pvt->is_close_pg)
3221 channel = first_channel;
3222 snprintf(sb_msg_full, sizeof(sb_msg_full),
3223 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d %s",
3224 overflow ? " OVERFLOW" : "",
3225 (uncorrected_error && recoverable) ? " recoverable" : "",
3226 area_type,
3227 mscod, errcode,
3228 socket, ha,
3229 channel_mask,
3230 rank, sb_msg);
3231
3232 edac_dbg(0, "%s\n", sb_msg_full);
3233
3234 /* FIXME: need support for channel mask */
3235
3236 if (channel == CHANNEL_UNSPECIFIED)
3237 channel = -1;
3238
3239 /* Call the helper to output message */
3240 edac_mc_handle_error(tp_event, mci, core_err_cnt,
3241 m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3242 channel, dimm, -1,
3243 optype, sb_msg_full);
3244 return;
3245err_parsing:
3246 edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
3247 -1, -1, -1,
3248 sb_msg, "");
3249
3250}
3251
3252/*
3253 * Check that logging is enabled and that this is the right type
3254 * of error for us to handle.
3255 */
3256static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
3257 void *data)
3258{
3259 struct mce *mce = (struct mce *)data;
3260 struct mem_ctl_info *mci;
3261 char *type;
3262
3263 if (mce->kflags & MCE_HANDLED_CEC)
3264 return NOTIFY_DONE;
3265
3266 /*
3267 * Just let mcelog handle it if the error is
3268 * outside the memory controller. A memory error
3269 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3270 * bit 12 has an special meaning.
3271 */
3272 if ((mce->status & 0xefff) >> 7 != 1)
3273 return NOTIFY_DONE;
3274
3275 /* Check ADDRV bit in STATUS */
3276 if (!GET_BITFIELD(mce->status, 58, 58))
3277 return NOTIFY_DONE;
3278
3279 /* Check MISCV bit in STATUS */
3280 if (!GET_BITFIELD(mce->status, 59, 59))
3281 return NOTIFY_DONE;
3282
3283 /* Check address type in MISC (physical address only) */
3284 if (GET_BITFIELD(mce->misc, 6, 8) != 2)
3285 return NOTIFY_DONE;
3286
3287 mci = get_mci_for_node_id(mce->socketid, IMC0);
3288 if (!mci)
3289 return NOTIFY_DONE;
3290
3291 if (mce->mcgstatus & MCG_STATUS_MCIP)
3292 type = "Exception";
3293 else
3294 type = "Event";
3295
3296 sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
3297
3298 sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
3299 "Bank %d: %016Lx\n", mce->extcpu, type,
3300 mce->mcgstatus, mce->bank, mce->status);
3301 sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
3302 sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
3303 sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
3304
3305 sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
3306 "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
3307 mce->time, mce->socketid, mce->apicid);
3308
3309 sbridge_mce_output_error(mci, mce);
3310
3311 /* Advice mcelog that the error were handled */
3312 mce->kflags |= MCE_HANDLED_EDAC;
3313 return NOTIFY_OK;
3314}
3315
3316static struct notifier_block sbridge_mce_dec = {
3317 .notifier_call = sbridge_mce_check_error,
3318 .priority = MCE_PRIO_EDAC,
3319};
3320
3321/****************************************************************************
3322 EDAC register/unregister logic
3323 ****************************************************************************/
3324
3325static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
3326{
3327 struct mem_ctl_info *mci = sbridge_dev->mci;
3328
3329 if (unlikely(!mci || !mci->pvt_info)) {
3330 edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
3331
3332 sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
3333 return;
3334 }
3335
3336 edac_dbg(0, "MC: mci = %p, dev = %p\n",
3337 mci, &sbridge_dev->pdev[0]->dev);
3338
3339 /* Remove MC sysfs nodes */
3340 edac_mc_del_mc(mci->pdev);
3341
3342 edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
3343 kfree(mci->ctl_name);
3344 edac_mc_free(mci);
3345 sbridge_dev->mci = NULL;
3346}
3347
3348static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
3349{
3350 struct mem_ctl_info *mci;
3351 struct edac_mc_layer layers[2];
3352 struct sbridge_pvt *pvt;
3353 struct pci_dev *pdev = sbridge_dev->pdev[0];
3354 int rc;
3355
3356 /* allocate a new MC control structure */
3357 layers[0].type = EDAC_MC_LAYER_CHANNEL;
3358 layers[0].size = type == KNIGHTS_LANDING ?
3359 KNL_MAX_CHANNELS : NUM_CHANNELS;
3360 layers[0].is_virt_csrow = false;
3361 layers[1].type = EDAC_MC_LAYER_SLOT;
3362 layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
3363 layers[1].is_virt_csrow = true;
3364 mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
3365 sizeof(*pvt));
3366
3367 if (unlikely(!mci))
3368 return -ENOMEM;
3369
3370 edac_dbg(0, "MC: mci = %p, dev = %p\n",
3371 mci, &pdev->dev);
3372
3373 pvt = mci->pvt_info;
3374 memset(pvt, 0, sizeof(*pvt));
3375
3376 /* Associate sbridge_dev and mci for future usage */
3377 pvt->sbridge_dev = sbridge_dev;
3378 sbridge_dev->mci = mci;
3379
3380 mci->mtype_cap = type == KNIGHTS_LANDING ?
3381 MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
3382 mci->edac_ctl_cap = EDAC_FLAG_NONE;
3383 mci->edac_cap = EDAC_FLAG_NONE;
3384 mci->mod_name = EDAC_MOD_STR;
3385 mci->dev_name = pci_name(pdev);
3386 mci->ctl_page_to_phys = NULL;
3387
3388 pvt->info.type = type;
3389 switch (type) {
3390 case IVY_BRIDGE:
3391 pvt->info.rankcfgr = IB_RANK_CFG_A;
3392 pvt->info.get_tolm = ibridge_get_tolm;
3393 pvt->info.get_tohm = ibridge_get_tohm;
3394 pvt->info.dram_rule = ibridge_dram_rule;
3395 pvt->info.get_memory_type = get_memory_type;
3396 pvt->info.get_node_id = get_node_id;
3397 pvt->info.get_ha = ibridge_get_ha;
3398 pvt->info.rir_limit = rir_limit;
3399 pvt->info.sad_limit = sad_limit;
3400 pvt->info.interleave_mode = interleave_mode;
3401 pvt->info.dram_attr = dram_attr;
3402 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3403 pvt->info.interleave_list = ibridge_interleave_list;
3404 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3405 pvt->info.get_width = ibridge_get_width;
3406
3407 /* Store pci devices at mci for faster access */
3408 rc = ibridge_mci_bind_devs(mci, sbridge_dev);
3409 if (unlikely(rc < 0))
3410 goto fail0;
3411 get_source_id(mci);
3412 mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge SrcID#%d_Ha#%d",
3413 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3414 break;
3415 case SANDY_BRIDGE:
3416 pvt->info.rankcfgr = SB_RANK_CFG_A;
3417 pvt->info.get_tolm = sbridge_get_tolm;
3418 pvt->info.get_tohm = sbridge_get_tohm;
3419 pvt->info.dram_rule = sbridge_dram_rule;
3420 pvt->info.get_memory_type = get_memory_type;
3421 pvt->info.get_node_id = get_node_id;
3422 pvt->info.get_ha = sbridge_get_ha;
3423 pvt->info.rir_limit = rir_limit;
3424 pvt->info.sad_limit = sad_limit;
3425 pvt->info.interleave_mode = interleave_mode;
3426 pvt->info.dram_attr = dram_attr;
3427 pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
3428 pvt->info.interleave_list = sbridge_interleave_list;
3429 pvt->info.interleave_pkg = sbridge_interleave_pkg;
3430 pvt->info.get_width = sbridge_get_width;
3431
3432 /* Store pci devices at mci for faster access */
3433 rc = sbridge_mci_bind_devs(mci, sbridge_dev);
3434 if (unlikely(rc < 0))
3435 goto fail0;
3436 get_source_id(mci);
3437 mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge SrcID#%d_Ha#%d",
3438 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3439 break;
3440 case HASWELL:
3441 /* rankcfgr isn't used */
3442 pvt->info.get_tolm = haswell_get_tolm;
3443 pvt->info.get_tohm = haswell_get_tohm;
3444 pvt->info.dram_rule = ibridge_dram_rule;
3445 pvt->info.get_memory_type = haswell_get_memory_type;
3446 pvt->info.get_node_id = haswell_get_node_id;
3447 pvt->info.get_ha = ibridge_get_ha;
3448 pvt->info.rir_limit = haswell_rir_limit;
3449 pvt->info.sad_limit = sad_limit;
3450 pvt->info.interleave_mode = interleave_mode;
3451 pvt->info.dram_attr = dram_attr;
3452 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3453 pvt->info.interleave_list = ibridge_interleave_list;
3454 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3455 pvt->info.get_width = ibridge_get_width;
3456
3457 /* Store pci devices at mci for faster access */
3458 rc = haswell_mci_bind_devs(mci, sbridge_dev);
3459 if (unlikely(rc < 0))
3460 goto fail0;
3461 get_source_id(mci);
3462 mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell SrcID#%d_Ha#%d",
3463 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3464 break;
3465 case BROADWELL:
3466 /* rankcfgr isn't used */
3467 pvt->info.get_tolm = haswell_get_tolm;
3468 pvt->info.get_tohm = haswell_get_tohm;
3469 pvt->info.dram_rule = ibridge_dram_rule;
3470 pvt->info.get_memory_type = haswell_get_memory_type;
3471 pvt->info.get_node_id = haswell_get_node_id;
3472 pvt->info.get_ha = ibridge_get_ha;
3473 pvt->info.rir_limit = haswell_rir_limit;
3474 pvt->info.sad_limit = sad_limit;
3475 pvt->info.interleave_mode = interleave_mode;
3476 pvt->info.dram_attr = dram_attr;
3477 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3478 pvt->info.interleave_list = ibridge_interleave_list;
3479 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3480 pvt->info.get_width = broadwell_get_width;
3481
3482 /* Store pci devices at mci for faster access */
3483 rc = broadwell_mci_bind_devs(mci, sbridge_dev);
3484 if (unlikely(rc < 0))
3485 goto fail0;
3486 get_source_id(mci);
3487 mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell SrcID#%d_Ha#%d",
3488 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3489 break;
3490 case KNIGHTS_LANDING:
3491 /* pvt->info.rankcfgr == ??? */
3492 pvt->info.get_tolm = knl_get_tolm;
3493 pvt->info.get_tohm = knl_get_tohm;
3494 pvt->info.dram_rule = knl_dram_rule;
3495 pvt->info.get_memory_type = knl_get_memory_type;
3496 pvt->info.get_node_id = knl_get_node_id;
3497 pvt->info.get_ha = knl_get_ha;
3498 pvt->info.rir_limit = NULL;
3499 pvt->info.sad_limit = knl_sad_limit;
3500 pvt->info.interleave_mode = knl_interleave_mode;
3501 pvt->info.dram_attr = dram_attr_knl;
3502 pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
3503 pvt->info.interleave_list = knl_interleave_list;
3504 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3505 pvt->info.get_width = knl_get_width;
3506
3507 rc = knl_mci_bind_devs(mci, sbridge_dev);
3508 if (unlikely(rc < 0))
3509 goto fail0;
3510 get_source_id(mci);
3511 mci->ctl_name = kasprintf(GFP_KERNEL, "Knights Landing SrcID#%d_Ha#%d",
3512 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3513 break;
3514 }
3515
3516 if (!mci->ctl_name) {
3517 rc = -ENOMEM;
3518 goto fail0;
3519 }
3520
3521 /* Get dimm basic config and the memory layout */
3522 rc = get_dimm_config(mci);
3523 if (rc < 0) {
3524 edac_dbg(0, "MC: failed to get_dimm_config()\n");
3525 goto fail;
3526 }
3527 get_memory_layout(mci);
3528
3529 /* record ptr to the generic device */
3530 mci->pdev = &pdev->dev;
3531
3532 /* add this new MC control structure to EDAC's list of MCs */
3533 if (unlikely(edac_mc_add_mc(mci))) {
3534 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3535 rc = -EINVAL;
3536 goto fail;
3537 }
3538
3539 return 0;
3540
3541fail:
3542 kfree(mci->ctl_name);
3543fail0:
3544 edac_mc_free(mci);
3545 sbridge_dev->mci = NULL;
3546 return rc;
3547}
3548
3549static const struct x86_cpu_id sbridge_cpuids[] = {
3550 X86_MATCH_VFM(INTEL_SANDYBRIDGE_X, &pci_dev_descr_sbridge_table),
3551 X86_MATCH_VFM(INTEL_IVYBRIDGE_X, &pci_dev_descr_ibridge_table),
3552 X86_MATCH_VFM(INTEL_HASWELL_X, &pci_dev_descr_haswell_table),
3553 X86_MATCH_VFM(INTEL_BROADWELL_X, &pci_dev_descr_broadwell_table),
3554 X86_MATCH_VFM(INTEL_BROADWELL_D, &pci_dev_descr_broadwell_table),
3555 X86_MATCH_VFM(INTEL_XEON_PHI_KNL, &pci_dev_descr_knl_table),
3556 X86_MATCH_VFM(INTEL_XEON_PHI_KNM, &pci_dev_descr_knl_table),
3557 { }
3558};
3559MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids);
3560
3561/*
3562 * sbridge_probe Get all devices and register memory controllers
3563 * present.
3564 * return:
3565 * 0 for FOUND a device
3566 * < 0 for error code
3567 */
3568
3569static int sbridge_probe(const struct x86_cpu_id *id)
3570{
3571 int rc;
3572 u8 mc, num_mc = 0;
3573 struct sbridge_dev *sbridge_dev;
3574 struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data;
3575
3576 /* get the pci devices we want to reserve for our use */
3577 rc = sbridge_get_all_devices(&num_mc, ptable);
3578
3579 if (unlikely(rc < 0)) {
3580 edac_dbg(0, "couldn't get all devices\n");
3581 goto fail0;
3582 }
3583
3584 mc = 0;
3585
3586 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
3587 edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3588 mc, mc + 1, num_mc);
3589
3590 sbridge_dev->mc = mc++;
3591 rc = sbridge_register_mci(sbridge_dev, ptable->type);
3592 if (unlikely(rc < 0))
3593 goto fail1;
3594 }
3595
3596 sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
3597
3598 return 0;
3599
3600fail1:
3601 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3602 sbridge_unregister_mci(sbridge_dev);
3603
3604 sbridge_put_all_devices();
3605fail0:
3606 return rc;
3607}
3608
3609/*
3610 * sbridge_remove cleanup
3611 *
3612 */
3613static void sbridge_remove(void)
3614{
3615 struct sbridge_dev *sbridge_dev;
3616
3617 edac_dbg(0, "\n");
3618
3619 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3620 sbridge_unregister_mci(sbridge_dev);
3621
3622 /* Release PCI resources */
3623 sbridge_put_all_devices();
3624}
3625
3626/*
3627 * sbridge_init Module entry function
3628 * Try to initialize this module for its devices
3629 */
3630static int __init sbridge_init(void)
3631{
3632 const struct x86_cpu_id *id;
3633 const char *owner;
3634 int rc;
3635
3636 edac_dbg(2, "\n");
3637
3638 if (ghes_get_devices())
3639 return -EBUSY;
3640
3641 owner = edac_get_owner();
3642 if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
3643 return -EBUSY;
3644
3645 if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR))
3646 return -ENODEV;
3647
3648 id = x86_match_cpu(sbridge_cpuids);
3649 if (!id)
3650 return -ENODEV;
3651
3652 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
3653 opstate_init();
3654
3655 rc = sbridge_probe(id);
3656
3657 if (rc >= 0) {
3658 mce_register_decode_chain(&sbridge_mce_dec);
3659 return 0;
3660 }
3661
3662 sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
3663 rc);
3664
3665 return rc;
3666}
3667
3668/*
3669 * sbridge_exit() Module exit function
3670 * Unregister the driver
3671 */
3672static void __exit sbridge_exit(void)
3673{
3674 edac_dbg(2, "\n");
3675 sbridge_remove();
3676 mce_unregister_decode_chain(&sbridge_mce_dec);
3677}
3678
3679module_init(sbridge_init);
3680module_exit(sbridge_exit);
3681
3682module_param(edac_op_state, int, 0444);
3683MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
3684
3685MODULE_LICENSE("GPL");
3686MODULE_AUTHOR("Mauro Carvalho Chehab");
3687MODULE_AUTHOR("Red Hat Inc. (https://www.redhat.com)");
3688MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
3689 SBRIDGE_REVISION);
1/* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
2 *
3 * This driver supports the memory controllers found on the Intel
4 * processor family Sandy Bridge.
5 *
6 * This file may be distributed under the terms of the
7 * GNU General Public License version 2 only.
8 *
9 * Copyright (c) 2011 by:
10 * Mauro Carvalho Chehab
11 */
12
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/pci.h>
16#include <linux/pci_ids.h>
17#include <linux/slab.h>
18#include <linux/delay.h>
19#include <linux/edac.h>
20#include <linux/mmzone.h>
21#include <linux/smp.h>
22#include <linux/bitmap.h>
23#include <linux/math64.h>
24#include <linux/mod_devicetable.h>
25#include <asm/cpu_device_id.h>
26#include <asm/intel-family.h>
27#include <asm/processor.h>
28#include <asm/mce.h>
29
30#include "edac_module.h"
31
32/* Static vars */
33static LIST_HEAD(sbridge_edac_list);
34
35/*
36 * Alter this version for the module when modifications are made
37 */
38#define SBRIDGE_REVISION " Ver: 1.1.2 "
39#define EDAC_MOD_STR "sb_edac"
40
41/*
42 * Debug macros
43 */
44#define sbridge_printk(level, fmt, arg...) \
45 edac_printk(level, "sbridge", fmt, ##arg)
46
47#define sbridge_mc_printk(mci, level, fmt, arg...) \
48 edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
49
50/*
51 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
52 */
53#define GET_BITFIELD(v, lo, hi) \
54 (((v) & GENMASK_ULL(hi, lo)) >> (lo))
55
56/* Devices 12 Function 6, Offsets 0x80 to 0xcc */
57static const u32 sbridge_dram_rule[] = {
58 0x80, 0x88, 0x90, 0x98, 0xa0,
59 0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
60};
61
62static const u32 ibridge_dram_rule[] = {
63 0x60, 0x68, 0x70, 0x78, 0x80,
64 0x88, 0x90, 0x98, 0xa0, 0xa8,
65 0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
66 0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
67};
68
69static const u32 knl_dram_rule[] = {
70 0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
71 0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
72 0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
73 0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
74 0x100, 0x108, 0x110, 0x118, /* 20-23 */
75};
76
77#define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
78#define A7MODE(reg) GET_BITFIELD(reg, 26, 26)
79
80static char *show_dram_attr(u32 attr)
81{
82 switch (attr) {
83 case 0:
84 return "DRAM";
85 case 1:
86 return "MMCFG";
87 case 2:
88 return "NXM";
89 default:
90 return "unknown";
91 }
92}
93
94static const u32 sbridge_interleave_list[] = {
95 0x84, 0x8c, 0x94, 0x9c, 0xa4,
96 0xac, 0xb4, 0xbc, 0xc4, 0xcc,
97};
98
99static const u32 ibridge_interleave_list[] = {
100 0x64, 0x6c, 0x74, 0x7c, 0x84,
101 0x8c, 0x94, 0x9c, 0xa4, 0xac,
102 0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
103 0xdc, 0xe4, 0xec, 0xf4, 0xfc,
104};
105
106static const u32 knl_interleave_list[] = {
107 0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
108 0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
109 0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
110 0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
111 0x104, 0x10c, 0x114, 0x11c, /* 20-23 */
112};
113#define MAX_INTERLEAVE \
114 (max_t(unsigned int, ARRAY_SIZE(sbridge_interleave_list), \
115 max_t(unsigned int, ARRAY_SIZE(ibridge_interleave_list), \
116 ARRAY_SIZE(knl_interleave_list))))
117
118struct interleave_pkg {
119 unsigned char start;
120 unsigned char end;
121};
122
123static const struct interleave_pkg sbridge_interleave_pkg[] = {
124 { 0, 2 },
125 { 3, 5 },
126 { 8, 10 },
127 { 11, 13 },
128 { 16, 18 },
129 { 19, 21 },
130 { 24, 26 },
131 { 27, 29 },
132};
133
134static const struct interleave_pkg ibridge_interleave_pkg[] = {
135 { 0, 3 },
136 { 4, 7 },
137 { 8, 11 },
138 { 12, 15 },
139 { 16, 19 },
140 { 20, 23 },
141 { 24, 27 },
142 { 28, 31 },
143};
144
145static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
146 int interleave)
147{
148 return GET_BITFIELD(reg, table[interleave].start,
149 table[interleave].end);
150}
151
152/* Devices 12 Function 7 */
153
154#define TOLM 0x80
155#define TOHM 0x84
156#define HASWELL_TOLM 0xd0
157#define HASWELL_TOHM_0 0xd4
158#define HASWELL_TOHM_1 0xd8
159#define KNL_TOLM 0xd0
160#define KNL_TOHM_0 0xd4
161#define KNL_TOHM_1 0xd8
162
163#define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff)
164#define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
165
166/* Device 13 Function 6 */
167
168#define SAD_TARGET 0xf0
169
170#define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11)
171
172#define SOURCE_ID_KNL(reg) GET_BITFIELD(reg, 12, 14)
173
174#define SAD_CONTROL 0xf4
175
176/* Device 14 function 0 */
177
178static const u32 tad_dram_rule[] = {
179 0x40, 0x44, 0x48, 0x4c,
180 0x50, 0x54, 0x58, 0x5c,
181 0x60, 0x64, 0x68, 0x6c,
182};
183#define MAX_TAD ARRAY_SIZE(tad_dram_rule)
184
185#define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
186#define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11)
187#define TAD_CH(reg) GET_BITFIELD(reg, 8, 9)
188#define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7)
189#define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5)
190#define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3)
191#define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1)
192
193/* Device 15, function 0 */
194
195#define MCMTR 0x7c
196#define KNL_MCMTR 0x624
197
198#define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2)
199#define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1)
200#define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0)
201
202/* Device 15, function 1 */
203
204#define RASENABLES 0xac
205#define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0)
206
207/* Device 15, functions 2-5 */
208
209static const int mtr_regs[] = {
210 0x80, 0x84, 0x88,
211};
212
213static const int knl_mtr_reg = 0xb60;
214
215#define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19)
216#define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14)
217#define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13)
218#define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4)
219#define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1)
220
221static const u32 tad_ch_nilv_offset[] = {
222 0x90, 0x94, 0x98, 0x9c,
223 0xa0, 0xa4, 0xa8, 0xac,
224 0xb0, 0xb4, 0xb8, 0xbc,
225};
226#define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29)
227#define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26)
228
229static const u32 rir_way_limit[] = {
230 0x108, 0x10c, 0x110, 0x114, 0x118,
231};
232#define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
233
234#define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31)
235#define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29)
236
237#define MAX_RIR_WAY 8
238
239static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
240 { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
241 { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
242 { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
243 { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
244 { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
245};
246
247#define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
248 GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
249
250#define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
251 GET_BITFIELD(reg, 2, 15) : GET_BITFIELD(reg, 2, 14))
252
253/* Device 16, functions 2-7 */
254
255/*
256 * FIXME: Implement the error count reads directly
257 */
258
259static const u32 correrrcnt[] = {
260 0x104, 0x108, 0x10c, 0x110,
261};
262
263#define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31)
264#define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30)
265#define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15)
266#define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14)
267
268static const u32 correrrthrsld[] = {
269 0x11c, 0x120, 0x124, 0x128,
270};
271
272#define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30)
273#define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14)
274
275
276/* Device 17, function 0 */
277
278#define SB_RANK_CFG_A 0x0328
279
280#define IB_RANK_CFG_A 0x0320
281
282/*
283 * sbridge structs
284 */
285
286#define NUM_CHANNELS 6 /* Max channels per MC */
287#define MAX_DIMMS 3 /* Max DIMMS per channel */
288#define KNL_MAX_CHAS 38 /* KNL max num. of Cache Home Agents */
289#define KNL_MAX_CHANNELS 6 /* KNL max num. of PCI channels */
290#define KNL_MAX_EDCS 8 /* Embedded DRAM controllers */
291#define CHANNEL_UNSPECIFIED 0xf /* Intel IA32 SDM 15-14 */
292
293enum type {
294 SANDY_BRIDGE,
295 IVY_BRIDGE,
296 HASWELL,
297 BROADWELL,
298 KNIGHTS_LANDING,
299};
300
301enum domain {
302 IMC0 = 0,
303 IMC1,
304 SOCK,
305};
306
307enum mirroring_mode {
308 NON_MIRRORING,
309 ADDR_RANGE_MIRRORING,
310 FULL_MIRRORING,
311};
312
313struct sbridge_pvt;
314struct sbridge_info {
315 enum type type;
316 u32 mcmtr;
317 u32 rankcfgr;
318 u64 (*get_tolm)(struct sbridge_pvt *pvt);
319 u64 (*get_tohm)(struct sbridge_pvt *pvt);
320 u64 (*rir_limit)(u32 reg);
321 u64 (*sad_limit)(u32 reg);
322 u32 (*interleave_mode)(u32 reg);
323 u32 (*dram_attr)(u32 reg);
324 const u32 *dram_rule;
325 const u32 *interleave_list;
326 const struct interleave_pkg *interleave_pkg;
327 u8 max_sad;
328 u8 (*get_node_id)(struct sbridge_pvt *pvt);
329 enum mem_type (*get_memory_type)(struct sbridge_pvt *pvt);
330 enum dev_type (*get_width)(struct sbridge_pvt *pvt, u32 mtr);
331 struct pci_dev *pci_vtd;
332};
333
334struct sbridge_channel {
335 u32 ranks;
336 u32 dimms;
337};
338
339struct pci_id_descr {
340 int dev_id;
341 int optional;
342 enum domain dom;
343};
344
345struct pci_id_table {
346 const struct pci_id_descr *descr;
347 int n_devs_per_imc;
348 int n_devs_per_sock;
349 int n_imcs_per_sock;
350 enum type type;
351};
352
353struct sbridge_dev {
354 struct list_head list;
355 u8 bus, mc;
356 u8 node_id, source_id;
357 struct pci_dev **pdev;
358 enum domain dom;
359 int n_devs;
360 int i_devs;
361 struct mem_ctl_info *mci;
362};
363
364struct knl_pvt {
365 struct pci_dev *pci_cha[KNL_MAX_CHAS];
366 struct pci_dev *pci_channel[KNL_MAX_CHANNELS];
367 struct pci_dev *pci_mc0;
368 struct pci_dev *pci_mc1;
369 struct pci_dev *pci_mc0_misc;
370 struct pci_dev *pci_mc1_misc;
371 struct pci_dev *pci_mc_info; /* tolm, tohm */
372};
373
374struct sbridge_pvt {
375 /* Devices per socket */
376 struct pci_dev *pci_ddrio;
377 struct pci_dev *pci_sad0, *pci_sad1;
378 struct pci_dev *pci_br0, *pci_br1;
379 /* Devices per memory controller */
380 struct pci_dev *pci_ha, *pci_ta, *pci_ras;
381 struct pci_dev *pci_tad[NUM_CHANNELS];
382
383 struct sbridge_dev *sbridge_dev;
384
385 struct sbridge_info info;
386 struct sbridge_channel channel[NUM_CHANNELS];
387
388 /* Memory type detection */
389 bool is_cur_addr_mirrored, is_lockstep, is_close_pg;
390 bool is_chan_hash;
391 enum mirroring_mode mirror_mode;
392
393 /* Memory description */
394 u64 tolm, tohm;
395 struct knl_pvt knl;
396};
397
398#define PCI_DESCR(device_id, opt, domain) \
399 .dev_id = (device_id), \
400 .optional = opt, \
401 .dom = domain
402
403static const struct pci_id_descr pci_dev_descr_sbridge[] = {
404 /* Processor Home Agent */
405 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0, IMC0) },
406
407 /* Memory controller */
408 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0, IMC0) },
409 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0, IMC0) },
410 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0, IMC0) },
411 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0, IMC0) },
412 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0, IMC0) },
413 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0, IMC0) },
414 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1, SOCK) },
415
416 /* System Address Decoder */
417 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0, SOCK) },
418 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0, SOCK) },
419
420 /* Broadcast Registers */
421 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0, SOCK) },
422};
423
424#define PCI_ID_TABLE_ENTRY(A, N, M, T) { \
425 .descr = A, \
426 .n_devs_per_imc = N, \
427 .n_devs_per_sock = ARRAY_SIZE(A), \
428 .n_imcs_per_sock = M, \
429 .type = T \
430}
431
432static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
433 PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge, ARRAY_SIZE(pci_dev_descr_sbridge), 1, SANDY_BRIDGE),
434 {0,} /* 0 terminated list. */
435};
436
437/* This changes depending if 1HA or 2HA:
438 * 1HA:
439 * 0x0eb8 (17.0) is DDRIO0
440 * 2HA:
441 * 0x0ebc (17.4) is DDRIO0
442 */
443#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0 0x0eb8
444#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0 0x0ebc
445
446/* pci ids */
447#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0 0x0ea0
448#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA 0x0ea8
449#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS 0x0e71
450#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0 0x0eaa
451#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1 0x0eab
452#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2 0x0eac
453#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3 0x0ead
454#define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD 0x0ec8
455#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0 0x0ec9
456#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1 0x0eca
457#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1 0x0e60
458#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA 0x0e68
459#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS 0x0e79
460#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 0x0e6a
461#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1 0x0e6b
462#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2 0x0e6c
463#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3 0x0e6d
464
465static const struct pci_id_descr pci_dev_descr_ibridge[] = {
466 /* Processor Home Agent */
467 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0, IMC0) },
468 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1, IMC1) },
469
470 /* Memory controller */
471 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0, IMC0) },
472 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0, IMC0) },
473 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0, IMC0) },
474 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0, IMC0) },
475 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0, IMC0) },
476 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0, IMC0) },
477
478 /* Optional, mode 2HA */
479 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1, IMC1) },
480 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1, IMC1) },
481 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1, IMC1) },
482 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1, IMC1) },
483 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2, 1, IMC1) },
484 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3, 1, IMC1) },
485
486 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1, SOCK) },
487 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1, SOCK) },
488
489 /* System Address Decoder */
490 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0, SOCK) },
491
492 /* Broadcast Registers */
493 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1, SOCK) },
494 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0, SOCK) },
495
496};
497
498static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
499 PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge, 12, 2, IVY_BRIDGE),
500 {0,} /* 0 terminated list. */
501};
502
503/* Haswell support */
504/* EN processor:
505 * - 1 IMC
506 * - 3 DDR3 channels, 2 DPC per channel
507 * EP processor:
508 * - 1 or 2 IMC
509 * - 4 DDR4 channels, 3 DPC per channel
510 * EP 4S processor:
511 * - 2 IMC
512 * - 4 DDR4 channels, 3 DPC per channel
513 * EX processor:
514 * - 2 IMC
515 * - each IMC interfaces with a SMI 2 channel
516 * - each SMI channel interfaces with a scalable memory buffer
517 * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
518 */
519#define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
520#define HASWELL_HASYSDEFEATURE2 0x84
521#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
522#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0 0x2fa0
523#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1 0x2f60
524#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA 0x2fa8
525#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM 0x2f71
526#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA 0x2f68
527#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM 0x2f79
528#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
529#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
530#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
531#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
532#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
533#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
534#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
535#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
536#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
537#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
538#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
539#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
540#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
541#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
542static const struct pci_id_descr pci_dev_descr_haswell[] = {
543 /* first item must be the HA */
544 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0, 0, IMC0) },
545 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, 1, IMC1) },
546
547 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA, 0, IMC0) },
548 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM, 0, IMC0) },
549 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0, IMC0) },
550 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0, IMC0) },
551 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1, IMC0) },
552 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1, IMC0) },
553
554 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA, 1, IMC1) },
555 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM, 1, IMC1) },
556 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1, IMC1) },
557 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1, IMC1) },
558 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1, IMC1) },
559 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1, IMC1) },
560
561 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0, SOCK) },
562 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0, SOCK) },
563 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0, 1, SOCK) },
564 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1, 1, SOCK) },
565 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2, 1, SOCK) },
566 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3, 1, SOCK) },
567};
568
569static const struct pci_id_table pci_dev_descr_haswell_table[] = {
570 PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell, 13, 2, HASWELL),
571 {0,} /* 0 terminated list. */
572};
573
574/* Knight's Landing Support */
575/*
576 * KNL's memory channels are swizzled between memory controllers.
577 * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
578 */
579#define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
580
581/* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
582#define PCI_DEVICE_ID_INTEL_KNL_IMC_MC 0x7840
583/* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
584#define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN 0x7843
585/* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
586#define PCI_DEVICE_ID_INTEL_KNL_IMC_TA 0x7844
587/* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
588#define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0 0x782a
589/* SAD target - 1-29-1 (1 of these) */
590#define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1 0x782b
591/* Caching / Home Agent */
592#define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA 0x782c
593/* Device with TOLM and TOHM, 0-5-0 (1 of these) */
594#define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM 0x7810
595
596/*
597 * KNL differs from SB, IB, and Haswell in that it has multiple
598 * instances of the same device with the same device ID, so we handle that
599 * by creating as many copies in the table as we expect to find.
600 * (Like device ID must be grouped together.)
601 */
602
603static const struct pci_id_descr pci_dev_descr_knl[] = {
604 [0 ... 1] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC, 0, IMC0)},
605 [2 ... 7] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN, 0, IMC0) },
606 [8] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA, 0, IMC0) },
607 [9] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0, IMC0) },
608 [10] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0, 0, SOCK) },
609 [11] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1, 0, SOCK) },
610 [12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA, 0, SOCK) },
611};
612
613static const struct pci_id_table pci_dev_descr_knl_table[] = {
614 PCI_ID_TABLE_ENTRY(pci_dev_descr_knl, ARRAY_SIZE(pci_dev_descr_knl), 1, KNIGHTS_LANDING),
615 {0,}
616};
617
618/*
619 * Broadwell support
620 *
621 * DE processor:
622 * - 1 IMC
623 * - 2 DDR3 channels, 2 DPC per channel
624 * EP processor:
625 * - 1 or 2 IMC
626 * - 4 DDR4 channels, 3 DPC per channel
627 * EP 4S processor:
628 * - 2 IMC
629 * - 4 DDR4 channels, 3 DPC per channel
630 * EX processor:
631 * - 2 IMC
632 * - each IMC interfaces with a SMI 2 channel
633 * - each SMI channel interfaces with a scalable memory buffer
634 * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
635 */
636#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
637#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0 0x6fa0
638#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1 0x6f60
639#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA 0x6fa8
640#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM 0x6f71
641#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA 0x6f68
642#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM 0x6f79
643#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
644#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
645#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
646#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
647#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
648#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
649#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
650#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
651#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
652#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
653#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
654
655static const struct pci_id_descr pci_dev_descr_broadwell[] = {
656 /* first item must be the HA */
657 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0, 0, IMC0) },
658 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1, 1, IMC1) },
659
660 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA, 0, IMC0) },
661 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM, 0, IMC0) },
662 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0, IMC0) },
663 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0, IMC0) },
664 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1, IMC0) },
665 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1, IMC0) },
666
667 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA, 1, IMC1) },
668 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM, 1, IMC1) },
669 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1, IMC1) },
670 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1, IMC1) },
671 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1, IMC1) },
672 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1, IMC1) },
673
674 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0, SOCK) },
675 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0, SOCK) },
676 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0, 1, SOCK) },
677};
678
679static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
680 PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell, 10, 2, BROADWELL),
681 {0,} /* 0 terminated list. */
682};
683
684
685/****************************************************************************
686 Ancillary status routines
687 ****************************************************************************/
688
689static inline int numrank(enum type type, u32 mtr)
690{
691 int ranks = (1 << RANK_CNT_BITS(mtr));
692 int max = 4;
693
694 if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
695 max = 8;
696
697 if (ranks > max) {
698 edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
699 ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
700 return -EINVAL;
701 }
702
703 return ranks;
704}
705
706static inline int numrow(u32 mtr)
707{
708 int rows = (RANK_WIDTH_BITS(mtr) + 12);
709
710 if (rows < 13 || rows > 18) {
711 edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
712 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
713 return -EINVAL;
714 }
715
716 return 1 << rows;
717}
718
719static inline int numcol(u32 mtr)
720{
721 int cols = (COL_WIDTH_BITS(mtr) + 10);
722
723 if (cols > 12) {
724 edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
725 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
726 return -EINVAL;
727 }
728
729 return 1 << cols;
730}
731
732static struct sbridge_dev *get_sbridge_dev(u8 bus, enum domain dom, int multi_bus,
733 struct sbridge_dev *prev)
734{
735 struct sbridge_dev *sbridge_dev;
736
737 /*
738 * If we have devices scattered across several busses that pertain
739 * to the same memory controller, we'll lump them all together.
740 */
741 if (multi_bus) {
742 return list_first_entry_or_null(&sbridge_edac_list,
743 struct sbridge_dev, list);
744 }
745
746 sbridge_dev = list_entry(prev ? prev->list.next
747 : sbridge_edac_list.next, struct sbridge_dev, list);
748
749 list_for_each_entry_from(sbridge_dev, &sbridge_edac_list, list) {
750 if (sbridge_dev->bus == bus && (dom == SOCK || dom == sbridge_dev->dom))
751 return sbridge_dev;
752 }
753
754 return NULL;
755}
756
757static struct sbridge_dev *alloc_sbridge_dev(u8 bus, enum domain dom,
758 const struct pci_id_table *table)
759{
760 struct sbridge_dev *sbridge_dev;
761
762 sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
763 if (!sbridge_dev)
764 return NULL;
765
766 sbridge_dev->pdev = kcalloc(table->n_devs_per_imc,
767 sizeof(*sbridge_dev->pdev),
768 GFP_KERNEL);
769 if (!sbridge_dev->pdev) {
770 kfree(sbridge_dev);
771 return NULL;
772 }
773
774 sbridge_dev->bus = bus;
775 sbridge_dev->dom = dom;
776 sbridge_dev->n_devs = table->n_devs_per_imc;
777 list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
778
779 return sbridge_dev;
780}
781
782static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
783{
784 list_del(&sbridge_dev->list);
785 kfree(sbridge_dev->pdev);
786 kfree(sbridge_dev);
787}
788
789static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
790{
791 u32 reg;
792
793 /* Address range is 32:28 */
794 pci_read_config_dword(pvt->pci_sad1, TOLM, ®);
795 return GET_TOLM(reg);
796}
797
798static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
799{
800 u32 reg;
801
802 pci_read_config_dword(pvt->pci_sad1, TOHM, ®);
803 return GET_TOHM(reg);
804}
805
806static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
807{
808 u32 reg;
809
810 pci_read_config_dword(pvt->pci_br1, TOLM, ®);
811
812 return GET_TOLM(reg);
813}
814
815static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
816{
817 u32 reg;
818
819 pci_read_config_dword(pvt->pci_br1, TOHM, ®);
820
821 return GET_TOHM(reg);
822}
823
824static u64 rir_limit(u32 reg)
825{
826 return ((u64)GET_BITFIELD(reg, 1, 10) << 29) | 0x1fffffff;
827}
828
829static u64 sad_limit(u32 reg)
830{
831 return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
832}
833
834static u32 interleave_mode(u32 reg)
835{
836 return GET_BITFIELD(reg, 1, 1);
837}
838
839static u32 dram_attr(u32 reg)
840{
841 return GET_BITFIELD(reg, 2, 3);
842}
843
844static u64 knl_sad_limit(u32 reg)
845{
846 return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
847}
848
849static u32 knl_interleave_mode(u32 reg)
850{
851 return GET_BITFIELD(reg, 1, 2);
852}
853
854static const char * const knl_intlv_mode[] = {
855 "[8:6]", "[10:8]", "[14:12]", "[32:30]"
856};
857
858static const char *get_intlv_mode_str(u32 reg, enum type t)
859{
860 if (t == KNIGHTS_LANDING)
861 return knl_intlv_mode[knl_interleave_mode(reg)];
862 else
863 return interleave_mode(reg) ? "[8:6]" : "[8:6]XOR[18:16]";
864}
865
866static u32 dram_attr_knl(u32 reg)
867{
868 return GET_BITFIELD(reg, 3, 4);
869}
870
871
872static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
873{
874 u32 reg;
875 enum mem_type mtype;
876
877 if (pvt->pci_ddrio) {
878 pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
879 ®);
880 if (GET_BITFIELD(reg, 11, 11))
881 /* FIXME: Can also be LRDIMM */
882 mtype = MEM_RDDR3;
883 else
884 mtype = MEM_DDR3;
885 } else
886 mtype = MEM_UNKNOWN;
887
888 return mtype;
889}
890
891static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
892{
893 u32 reg;
894 bool registered = false;
895 enum mem_type mtype = MEM_UNKNOWN;
896
897 if (!pvt->pci_ddrio)
898 goto out;
899
900 pci_read_config_dword(pvt->pci_ddrio,
901 HASWELL_DDRCRCLKCONTROLS, ®);
902 /* Is_Rdimm */
903 if (GET_BITFIELD(reg, 16, 16))
904 registered = true;
905
906 pci_read_config_dword(pvt->pci_ta, MCMTR, ®);
907 if (GET_BITFIELD(reg, 14, 14)) {
908 if (registered)
909 mtype = MEM_RDDR4;
910 else
911 mtype = MEM_DDR4;
912 } else {
913 if (registered)
914 mtype = MEM_RDDR3;
915 else
916 mtype = MEM_DDR3;
917 }
918
919out:
920 return mtype;
921}
922
923static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
924{
925 /* for KNL value is fixed */
926 return DEV_X16;
927}
928
929static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
930{
931 /* there's no way to figure out */
932 return DEV_UNKNOWN;
933}
934
935static enum dev_type __ibridge_get_width(u32 mtr)
936{
937 enum dev_type type;
938
939 switch (mtr) {
940 case 3:
941 type = DEV_UNKNOWN;
942 break;
943 case 2:
944 type = DEV_X16;
945 break;
946 case 1:
947 type = DEV_X8;
948 break;
949 case 0:
950 type = DEV_X4;
951 break;
952 }
953
954 return type;
955}
956
957static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
958{
959 /*
960 * ddr3_width on the documentation but also valid for DDR4 on
961 * Haswell
962 */
963 return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
964}
965
966static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
967{
968 /* ddr3_width on the documentation but also valid for DDR4 */
969 return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
970}
971
972static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
973{
974 /* DDR4 RDIMMS and LRDIMMS are supported */
975 return MEM_RDDR4;
976}
977
978static u8 get_node_id(struct sbridge_pvt *pvt)
979{
980 u32 reg;
981 pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, ®);
982 return GET_BITFIELD(reg, 0, 2);
983}
984
985static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
986{
987 u32 reg;
988
989 pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, ®);
990 return GET_BITFIELD(reg, 0, 3);
991}
992
993static u8 knl_get_node_id(struct sbridge_pvt *pvt)
994{
995 u32 reg;
996
997 pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, ®);
998 return GET_BITFIELD(reg, 0, 2);
999}
1000
1001
1002static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
1003{
1004 u32 reg;
1005
1006 pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, ®);
1007 return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1008}
1009
1010static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
1011{
1012 u64 rc;
1013 u32 reg;
1014
1015 pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, ®);
1016 rc = GET_BITFIELD(reg, 26, 31);
1017 pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, ®);
1018 rc = ((reg << 6) | rc) << 26;
1019
1020 return rc | 0x1ffffff;
1021}
1022
1023static u64 knl_get_tolm(struct sbridge_pvt *pvt)
1024{
1025 u32 reg;
1026
1027 pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, ®);
1028 return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1029}
1030
1031static u64 knl_get_tohm(struct sbridge_pvt *pvt)
1032{
1033 u64 rc;
1034 u32 reg_lo, reg_hi;
1035
1036 pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, ®_lo);
1037 pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, ®_hi);
1038 rc = ((u64)reg_hi << 32) | reg_lo;
1039 return rc | 0x3ffffff;
1040}
1041
1042
1043static u64 haswell_rir_limit(u32 reg)
1044{
1045 return (((u64)GET_BITFIELD(reg, 1, 11) + 1) << 29) - 1;
1046}
1047
1048static inline u8 sad_pkg_socket(u8 pkg)
1049{
1050 /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1051 return ((pkg >> 3) << 2) | (pkg & 0x3);
1052}
1053
1054static inline u8 sad_pkg_ha(u8 pkg)
1055{
1056 return (pkg >> 2) & 0x1;
1057}
1058
1059static int haswell_chan_hash(int idx, u64 addr)
1060{
1061 int i;
1062
1063 /*
1064 * XOR even bits from 12:26 to bit0 of idx,
1065 * odd bits from 13:27 to bit1
1066 */
1067 for (i = 12; i < 28; i += 2)
1068 idx ^= (addr >> i) & 3;
1069
1070 return idx;
1071}
1072
1073/* Low bits of TAD limit, and some metadata. */
1074static const u32 knl_tad_dram_limit_lo[] = {
1075 0x400, 0x500, 0x600, 0x700,
1076 0x800, 0x900, 0xa00, 0xb00,
1077};
1078
1079/* Low bits of TAD offset. */
1080static const u32 knl_tad_dram_offset_lo[] = {
1081 0x404, 0x504, 0x604, 0x704,
1082 0x804, 0x904, 0xa04, 0xb04,
1083};
1084
1085/* High 16 bits of TAD limit and offset. */
1086static const u32 knl_tad_dram_hi[] = {
1087 0x408, 0x508, 0x608, 0x708,
1088 0x808, 0x908, 0xa08, 0xb08,
1089};
1090
1091/* Number of ways a tad entry is interleaved. */
1092static const u32 knl_tad_ways[] = {
1093 8, 6, 4, 3, 2, 1,
1094};
1095
1096/*
1097 * Retrieve the n'th Target Address Decode table entry
1098 * from the memory controller's TAD table.
1099 *
1100 * @pvt: driver private data
1101 * @entry: which entry you want to retrieve
1102 * @mc: which memory controller (0 or 1)
1103 * @offset: output tad range offset
1104 * @limit: output address of first byte above tad range
1105 * @ways: output number of interleave ways
1106 *
1107 * The offset value has curious semantics. It's a sort of running total
1108 * of the sizes of all the memory regions that aren't mapped in this
1109 * tad table.
1110 */
1111static int knl_get_tad(const struct sbridge_pvt *pvt,
1112 const int entry,
1113 const int mc,
1114 u64 *offset,
1115 u64 *limit,
1116 int *ways)
1117{
1118 u32 reg_limit_lo, reg_offset_lo, reg_hi;
1119 struct pci_dev *pci_mc;
1120 int way_id;
1121
1122 switch (mc) {
1123 case 0:
1124 pci_mc = pvt->knl.pci_mc0;
1125 break;
1126 case 1:
1127 pci_mc = pvt->knl.pci_mc1;
1128 break;
1129 default:
1130 WARN_ON(1);
1131 return -EINVAL;
1132 }
1133
1134 pci_read_config_dword(pci_mc,
1135 knl_tad_dram_limit_lo[entry], ®_limit_lo);
1136 pci_read_config_dword(pci_mc,
1137 knl_tad_dram_offset_lo[entry], ®_offset_lo);
1138 pci_read_config_dword(pci_mc,
1139 knl_tad_dram_hi[entry], ®_hi);
1140
1141 /* Is this TAD entry enabled? */
1142 if (!GET_BITFIELD(reg_limit_lo, 0, 0))
1143 return -ENODEV;
1144
1145 way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
1146
1147 if (way_id < ARRAY_SIZE(knl_tad_ways)) {
1148 *ways = knl_tad_ways[way_id];
1149 } else {
1150 *ways = 0;
1151 sbridge_printk(KERN_ERR,
1152 "Unexpected value %d in mc_tad_limit_lo wayness field\n",
1153 way_id);
1154 return -ENODEV;
1155 }
1156
1157 /*
1158 * The least significant 6 bits of base and limit are truncated.
1159 * For limit, we fill the missing bits with 1s.
1160 */
1161 *offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
1162 ((u64) GET_BITFIELD(reg_hi, 0, 15) << 32);
1163 *limit = ((u64) GET_BITFIELD(reg_limit_lo, 6, 31) << 6) | 63 |
1164 ((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
1165
1166 return 0;
1167}
1168
1169/* Determine which memory controller is responsible for a given channel. */
1170static int knl_channel_mc(int channel)
1171{
1172 WARN_ON(channel < 0 || channel >= 6);
1173
1174 return channel < 3 ? 1 : 0;
1175}
1176
1177/*
1178 * Get the Nth entry from EDC_ROUTE_TABLE register.
1179 * (This is the per-tile mapping of logical interleave targets to
1180 * physical EDC modules.)
1181 *
1182 * entry 0: 0:2
1183 * 1: 3:5
1184 * 2: 6:8
1185 * 3: 9:11
1186 * 4: 12:14
1187 * 5: 15:17
1188 * 6: 18:20
1189 * 7: 21:23
1190 * reserved: 24:31
1191 */
1192static u32 knl_get_edc_route(int entry, u32 reg)
1193{
1194 WARN_ON(entry >= KNL_MAX_EDCS);
1195 return GET_BITFIELD(reg, entry*3, (entry*3)+2);
1196}
1197
1198/*
1199 * Get the Nth entry from MC_ROUTE_TABLE register.
1200 * (This is the per-tile mapping of logical interleave targets to
1201 * physical DRAM channels modules.)
1202 *
1203 * entry 0: mc 0:2 channel 18:19
1204 * 1: mc 3:5 channel 20:21
1205 * 2: mc 6:8 channel 22:23
1206 * 3: mc 9:11 channel 24:25
1207 * 4: mc 12:14 channel 26:27
1208 * 5: mc 15:17 channel 28:29
1209 * reserved: 30:31
1210 *
1211 * Though we have 3 bits to identify the MC, we should only see
1212 * the values 0 or 1.
1213 */
1214
1215static u32 knl_get_mc_route(int entry, u32 reg)
1216{
1217 int mc, chan;
1218
1219 WARN_ON(entry >= KNL_MAX_CHANNELS);
1220
1221 mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
1222 chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
1223
1224 return knl_channel_remap(mc, chan);
1225}
1226
1227/*
1228 * Render the EDC_ROUTE register in human-readable form.
1229 * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1230 */
1231static void knl_show_edc_route(u32 reg, char *s)
1232{
1233 int i;
1234
1235 for (i = 0; i < KNL_MAX_EDCS; i++) {
1236 s[i*2] = knl_get_edc_route(i, reg) + '0';
1237 s[i*2+1] = '-';
1238 }
1239
1240 s[KNL_MAX_EDCS*2 - 1] = '\0';
1241}
1242
1243/*
1244 * Render the MC_ROUTE register in human-readable form.
1245 * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1246 */
1247static void knl_show_mc_route(u32 reg, char *s)
1248{
1249 int i;
1250
1251 for (i = 0; i < KNL_MAX_CHANNELS; i++) {
1252 s[i*2] = knl_get_mc_route(i, reg) + '0';
1253 s[i*2+1] = '-';
1254 }
1255
1256 s[KNL_MAX_CHANNELS*2 - 1] = '\0';
1257}
1258
1259#define KNL_EDC_ROUTE 0xb8
1260#define KNL_MC_ROUTE 0xb4
1261
1262/* Is this dram rule backed by regular DRAM in flat mode? */
1263#define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1264
1265/* Is this dram rule cached? */
1266#define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1267
1268/* Is this rule backed by edc ? */
1269#define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1270
1271/* Is this rule backed by DRAM, cacheable in EDRAM? */
1272#define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1273
1274/* Is this rule mod3? */
1275#define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1276
1277/*
1278 * Figure out how big our RAM modules are.
1279 *
1280 * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1281 * have to figure this out from the SAD rules, interleave lists, route tables,
1282 * and TAD rules.
1283 *
1284 * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1285 * inspect the TAD rules to figure out how large the SAD regions really are.
1286 *
1287 * When we know the real size of a SAD region and how many ways it's
1288 * interleaved, we know the individual contribution of each channel to
1289 * TAD is size/ways.
1290 *
1291 * Finally, we have to check whether each channel participates in each SAD
1292 * region.
1293 *
1294 * Fortunately, KNL only supports one DIMM per channel, so once we know how
1295 * much memory the channel uses, we know the DIMM is at least that large.
1296 * (The BIOS might possibly choose not to map all available memory, in which
1297 * case we will underreport the size of the DIMM.)
1298 *
1299 * In theory, we could try to determine the EDC sizes as well, but that would
1300 * only work in flat mode, not in cache mode.
1301 *
1302 * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1303 * elements)
1304 */
1305static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
1306{
1307 u64 sad_base, sad_size, sad_limit = 0;
1308 u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
1309 int sad_rule = 0;
1310 int tad_rule = 0;
1311 int intrlv_ways, tad_ways;
1312 u32 first_pkg, pkg;
1313 int i;
1314 u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
1315 u32 dram_rule, interleave_reg;
1316 u32 mc_route_reg[KNL_MAX_CHAS];
1317 u32 edc_route_reg[KNL_MAX_CHAS];
1318 int edram_only;
1319 char edc_route_string[KNL_MAX_EDCS*2];
1320 char mc_route_string[KNL_MAX_CHANNELS*2];
1321 int cur_reg_start;
1322 int mc;
1323 int channel;
1324 int participants[KNL_MAX_CHANNELS];
1325
1326 for (i = 0; i < KNL_MAX_CHANNELS; i++)
1327 mc_sizes[i] = 0;
1328
1329 /* Read the EDC route table in each CHA. */
1330 cur_reg_start = 0;
1331 for (i = 0; i < KNL_MAX_CHAS; i++) {
1332 pci_read_config_dword(pvt->knl.pci_cha[i],
1333 KNL_EDC_ROUTE, &edc_route_reg[i]);
1334
1335 if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
1336 knl_show_edc_route(edc_route_reg[i-1],
1337 edc_route_string);
1338 if (cur_reg_start == i-1)
1339 edac_dbg(0, "edc route table for CHA %d: %s\n",
1340 cur_reg_start, edc_route_string);
1341 else
1342 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1343 cur_reg_start, i-1, edc_route_string);
1344 cur_reg_start = i;
1345 }
1346 }
1347 knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
1348 if (cur_reg_start == i-1)
1349 edac_dbg(0, "edc route table for CHA %d: %s\n",
1350 cur_reg_start, edc_route_string);
1351 else
1352 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1353 cur_reg_start, i-1, edc_route_string);
1354
1355 /* Read the MC route table in each CHA. */
1356 cur_reg_start = 0;
1357 for (i = 0; i < KNL_MAX_CHAS; i++) {
1358 pci_read_config_dword(pvt->knl.pci_cha[i],
1359 KNL_MC_ROUTE, &mc_route_reg[i]);
1360
1361 if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
1362 knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1363 if (cur_reg_start == i-1)
1364 edac_dbg(0, "mc route table for CHA %d: %s\n",
1365 cur_reg_start, mc_route_string);
1366 else
1367 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1368 cur_reg_start, i-1, mc_route_string);
1369 cur_reg_start = i;
1370 }
1371 }
1372 knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1373 if (cur_reg_start == i-1)
1374 edac_dbg(0, "mc route table for CHA %d: %s\n",
1375 cur_reg_start, mc_route_string);
1376 else
1377 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1378 cur_reg_start, i-1, mc_route_string);
1379
1380 /* Process DRAM rules */
1381 for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
1382 /* previous limit becomes the new base */
1383 sad_base = sad_limit;
1384
1385 pci_read_config_dword(pvt->pci_sad0,
1386 pvt->info.dram_rule[sad_rule], &dram_rule);
1387
1388 if (!DRAM_RULE_ENABLE(dram_rule))
1389 break;
1390
1391 edram_only = KNL_EDRAM_ONLY(dram_rule);
1392
1393 sad_limit = pvt->info.sad_limit(dram_rule)+1;
1394 sad_size = sad_limit - sad_base;
1395
1396 pci_read_config_dword(pvt->pci_sad0,
1397 pvt->info.interleave_list[sad_rule], &interleave_reg);
1398
1399 /*
1400 * Find out how many ways this dram rule is interleaved.
1401 * We stop when we see the first channel again.
1402 */
1403 first_pkg = sad_pkg(pvt->info.interleave_pkg,
1404 interleave_reg, 0);
1405 for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
1406 pkg = sad_pkg(pvt->info.interleave_pkg,
1407 interleave_reg, intrlv_ways);
1408
1409 if ((pkg & 0x8) == 0) {
1410 /*
1411 * 0 bit means memory is non-local,
1412 * which KNL doesn't support
1413 */
1414 edac_dbg(0, "Unexpected interleave target %d\n",
1415 pkg);
1416 return -1;
1417 }
1418
1419 if (pkg == first_pkg)
1420 break;
1421 }
1422 if (KNL_MOD3(dram_rule))
1423 intrlv_ways *= 3;
1424
1425 edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1426 sad_rule,
1427 sad_base,
1428 sad_limit,
1429 intrlv_ways,
1430 edram_only ? ", EDRAM" : "");
1431
1432 /*
1433 * Find out how big the SAD region really is by iterating
1434 * over TAD tables (SAD regions may contain holes).
1435 * Each memory controller might have a different TAD table, so
1436 * we have to look at both.
1437 *
1438 * Livespace is the memory that's mapped in this TAD table,
1439 * deadspace is the holes (this could be the MMIO hole, or it
1440 * could be memory that's mapped by the other TAD table but
1441 * not this one).
1442 */
1443 for (mc = 0; mc < 2; mc++) {
1444 sad_actual_size[mc] = 0;
1445 tad_livespace = 0;
1446 for (tad_rule = 0;
1447 tad_rule < ARRAY_SIZE(
1448 knl_tad_dram_limit_lo);
1449 tad_rule++) {
1450 if (knl_get_tad(pvt,
1451 tad_rule,
1452 mc,
1453 &tad_deadspace,
1454 &tad_limit,
1455 &tad_ways))
1456 break;
1457
1458 tad_size = (tad_limit+1) -
1459 (tad_livespace + tad_deadspace);
1460 tad_livespace += tad_size;
1461 tad_base = (tad_limit+1) - tad_size;
1462
1463 if (tad_base < sad_base) {
1464 if (tad_limit > sad_base)
1465 edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1466 } else if (tad_base < sad_limit) {
1467 if (tad_limit+1 > sad_limit) {
1468 edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1469 } else {
1470 /* TAD region is completely inside SAD region */
1471 edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1472 tad_rule, tad_base,
1473 tad_limit, tad_size,
1474 mc);
1475 sad_actual_size[mc] += tad_size;
1476 }
1477 }
1478 tad_base = tad_limit+1;
1479 }
1480 }
1481
1482 for (mc = 0; mc < 2; mc++) {
1483 edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1484 mc, sad_actual_size[mc], sad_actual_size[mc]);
1485 }
1486
1487 /* Ignore EDRAM rule */
1488 if (edram_only)
1489 continue;
1490
1491 /* Figure out which channels participate in interleave. */
1492 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
1493 participants[channel] = 0;
1494
1495 /* For each channel, does at least one CHA have
1496 * this channel mapped to the given target?
1497 */
1498 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1499 int target;
1500 int cha;
1501
1502 for (target = 0; target < KNL_MAX_CHANNELS; target++) {
1503 for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
1504 if (knl_get_mc_route(target,
1505 mc_route_reg[cha]) == channel
1506 && !participants[channel]) {
1507 participants[channel] = 1;
1508 break;
1509 }
1510 }
1511 }
1512 }
1513
1514 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1515 mc = knl_channel_mc(channel);
1516 if (participants[channel]) {
1517 edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1518 channel,
1519 sad_actual_size[mc]/intrlv_ways,
1520 sad_rule);
1521 mc_sizes[channel] +=
1522 sad_actual_size[mc]/intrlv_ways;
1523 }
1524 }
1525 }
1526
1527 return 0;
1528}
1529
1530static void get_source_id(struct mem_ctl_info *mci)
1531{
1532 struct sbridge_pvt *pvt = mci->pvt_info;
1533 u32 reg;
1534
1535 if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
1536 pvt->info.type == KNIGHTS_LANDING)
1537 pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, ®);
1538 else
1539 pci_read_config_dword(pvt->pci_br0, SAD_TARGET, ®);
1540
1541 if (pvt->info.type == KNIGHTS_LANDING)
1542 pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
1543 else
1544 pvt->sbridge_dev->source_id = SOURCE_ID(reg);
1545}
1546
1547static int __populate_dimms(struct mem_ctl_info *mci,
1548 u64 knl_mc_sizes[KNL_MAX_CHANNELS],
1549 enum edac_type mode)
1550{
1551 struct sbridge_pvt *pvt = mci->pvt_info;
1552 int channels = pvt->info.type == KNIGHTS_LANDING ? KNL_MAX_CHANNELS
1553 : NUM_CHANNELS;
1554 unsigned int i, j, banks, ranks, rows, cols, npages;
1555 struct dimm_info *dimm;
1556 enum mem_type mtype;
1557 u64 size;
1558
1559 mtype = pvt->info.get_memory_type(pvt);
1560 if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
1561 edac_dbg(0, "Memory is registered\n");
1562 else if (mtype == MEM_UNKNOWN)
1563 edac_dbg(0, "Cannot determine memory type\n");
1564 else
1565 edac_dbg(0, "Memory is unregistered\n");
1566
1567 if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
1568 banks = 16;
1569 else
1570 banks = 8;
1571
1572 for (i = 0; i < channels; i++) {
1573 u32 mtr;
1574
1575 int max_dimms_per_channel;
1576
1577 if (pvt->info.type == KNIGHTS_LANDING) {
1578 max_dimms_per_channel = 1;
1579 if (!pvt->knl.pci_channel[i])
1580 continue;
1581 } else {
1582 max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
1583 if (!pvt->pci_tad[i])
1584 continue;
1585 }
1586
1587 for (j = 0; j < max_dimms_per_channel; j++) {
1588 dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, j, 0);
1589 if (pvt->info.type == KNIGHTS_LANDING) {
1590 pci_read_config_dword(pvt->knl.pci_channel[i],
1591 knl_mtr_reg, &mtr);
1592 } else {
1593 pci_read_config_dword(pvt->pci_tad[i],
1594 mtr_regs[j], &mtr);
1595 }
1596 edac_dbg(4, "Channel #%d MTR%d = %x\n", i, j, mtr);
1597 if (IS_DIMM_PRESENT(mtr)) {
1598 if (!IS_ECC_ENABLED(pvt->info.mcmtr)) {
1599 sbridge_printk(KERN_ERR, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n",
1600 pvt->sbridge_dev->source_id,
1601 pvt->sbridge_dev->dom, i);
1602 return -ENODEV;
1603 }
1604 pvt->channel[i].dimms++;
1605
1606 ranks = numrank(pvt->info.type, mtr);
1607
1608 if (pvt->info.type == KNIGHTS_LANDING) {
1609 /* For DDR4, this is fixed. */
1610 cols = 1 << 10;
1611 rows = knl_mc_sizes[i] /
1612 ((u64) cols * ranks * banks * 8);
1613 } else {
1614 rows = numrow(mtr);
1615 cols = numcol(mtr);
1616 }
1617
1618 size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
1619 npages = MiB_TO_PAGES(size);
1620
1621 edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1622 pvt->sbridge_dev->mc, pvt->sbridge_dev->dom, i, j,
1623 size, npages,
1624 banks, ranks, rows, cols);
1625
1626 dimm->nr_pages = npages;
1627 dimm->grain = 32;
1628 dimm->dtype = pvt->info.get_width(pvt, mtr);
1629 dimm->mtype = mtype;
1630 dimm->edac_mode = mode;
1631 snprintf(dimm->label, sizeof(dimm->label),
1632 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1633 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom, i, j);
1634 }
1635 }
1636 }
1637
1638 return 0;
1639}
1640
1641static int get_dimm_config(struct mem_ctl_info *mci)
1642{
1643 struct sbridge_pvt *pvt = mci->pvt_info;
1644 u64 knl_mc_sizes[KNL_MAX_CHANNELS];
1645 enum edac_type mode;
1646 u32 reg;
1647
1648 pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
1649 edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1650 pvt->sbridge_dev->mc,
1651 pvt->sbridge_dev->node_id,
1652 pvt->sbridge_dev->source_id);
1653
1654 /* KNL doesn't support mirroring or lockstep,
1655 * and is always closed page
1656 */
1657 if (pvt->info.type == KNIGHTS_LANDING) {
1658 mode = EDAC_S4ECD4ED;
1659 pvt->mirror_mode = NON_MIRRORING;
1660 pvt->is_cur_addr_mirrored = false;
1661
1662 if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
1663 return -1;
1664 if (pci_read_config_dword(pvt->pci_ta, KNL_MCMTR, &pvt->info.mcmtr)) {
1665 edac_dbg(0, "Failed to read KNL_MCMTR register\n");
1666 return -ENODEV;
1667 }
1668 } else {
1669 if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1670 if (pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, ®)) {
1671 edac_dbg(0, "Failed to read HASWELL_HASYSDEFEATURE2 register\n");
1672 return -ENODEV;
1673 }
1674 pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
1675 if (GET_BITFIELD(reg, 28, 28)) {
1676 pvt->mirror_mode = ADDR_RANGE_MIRRORING;
1677 edac_dbg(0, "Address range partial memory mirroring is enabled\n");
1678 goto next;
1679 }
1680 }
1681 if (pci_read_config_dword(pvt->pci_ras, RASENABLES, ®)) {
1682 edac_dbg(0, "Failed to read RASENABLES register\n");
1683 return -ENODEV;
1684 }
1685 if (IS_MIRROR_ENABLED(reg)) {
1686 pvt->mirror_mode = FULL_MIRRORING;
1687 edac_dbg(0, "Full memory mirroring is enabled\n");
1688 } else {
1689 pvt->mirror_mode = NON_MIRRORING;
1690 edac_dbg(0, "Memory mirroring is disabled\n");
1691 }
1692
1693next:
1694 if (pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr)) {
1695 edac_dbg(0, "Failed to read MCMTR register\n");
1696 return -ENODEV;
1697 }
1698 if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
1699 edac_dbg(0, "Lockstep is enabled\n");
1700 mode = EDAC_S8ECD8ED;
1701 pvt->is_lockstep = true;
1702 } else {
1703 edac_dbg(0, "Lockstep is disabled\n");
1704 mode = EDAC_S4ECD4ED;
1705 pvt->is_lockstep = false;
1706 }
1707 if (IS_CLOSE_PG(pvt->info.mcmtr)) {
1708 edac_dbg(0, "address map is on closed page mode\n");
1709 pvt->is_close_pg = true;
1710 } else {
1711 edac_dbg(0, "address map is on open page mode\n");
1712 pvt->is_close_pg = false;
1713 }
1714 }
1715
1716 return __populate_dimms(mci, knl_mc_sizes, mode);
1717}
1718
1719static void get_memory_layout(const struct mem_ctl_info *mci)
1720{
1721 struct sbridge_pvt *pvt = mci->pvt_info;
1722 int i, j, k, n_sads, n_tads, sad_interl;
1723 u32 reg;
1724 u64 limit, prv = 0;
1725 u64 tmp_mb;
1726 u32 gb, mb;
1727 u32 rir_way;
1728
1729 /*
1730 * Step 1) Get TOLM/TOHM ranges
1731 */
1732
1733 pvt->tolm = pvt->info.get_tolm(pvt);
1734 tmp_mb = (1 + pvt->tolm) >> 20;
1735
1736 gb = div_u64_rem(tmp_mb, 1024, &mb);
1737 edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1738 gb, (mb*1000)/1024, (u64)pvt->tolm);
1739
1740 /* Address range is already 45:25 */
1741 pvt->tohm = pvt->info.get_tohm(pvt);
1742 tmp_mb = (1 + pvt->tohm) >> 20;
1743
1744 gb = div_u64_rem(tmp_mb, 1024, &mb);
1745 edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1746 gb, (mb*1000)/1024, (u64)pvt->tohm);
1747
1748 /*
1749 * Step 2) Get SAD range and SAD Interleave list
1750 * TAD registers contain the interleave wayness. However, it
1751 * seems simpler to just discover it indirectly, with the
1752 * algorithm bellow.
1753 */
1754 prv = 0;
1755 for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1756 /* SAD_LIMIT Address range is 45:26 */
1757 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1758 ®);
1759 limit = pvt->info.sad_limit(reg);
1760
1761 if (!DRAM_RULE_ENABLE(reg))
1762 continue;
1763
1764 if (limit <= prv)
1765 break;
1766
1767 tmp_mb = (limit + 1) >> 20;
1768 gb = div_u64_rem(tmp_mb, 1024, &mb);
1769 edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1770 n_sads,
1771 show_dram_attr(pvt->info.dram_attr(reg)),
1772 gb, (mb*1000)/1024,
1773 ((u64)tmp_mb) << 20L,
1774 get_intlv_mode_str(reg, pvt->info.type),
1775 reg);
1776 prv = limit;
1777
1778 pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1779 ®);
1780 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1781 for (j = 0; j < 8; j++) {
1782 u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
1783 if (j > 0 && sad_interl == pkg)
1784 break;
1785
1786 edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1787 n_sads, j, pkg);
1788 }
1789 }
1790
1791 if (pvt->info.type == KNIGHTS_LANDING)
1792 return;
1793
1794 /*
1795 * Step 3) Get TAD range
1796 */
1797 prv = 0;
1798 for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1799 pci_read_config_dword(pvt->pci_ha, tad_dram_rule[n_tads], ®);
1800 limit = TAD_LIMIT(reg);
1801 if (limit <= prv)
1802 break;
1803 tmp_mb = (limit + 1) >> 20;
1804
1805 gb = div_u64_rem(tmp_mb, 1024, &mb);
1806 edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1807 n_tads, gb, (mb*1000)/1024,
1808 ((u64)tmp_mb) << 20L,
1809 (u32)(1 << TAD_SOCK(reg)),
1810 (u32)TAD_CH(reg) + 1,
1811 (u32)TAD_TGT0(reg),
1812 (u32)TAD_TGT1(reg),
1813 (u32)TAD_TGT2(reg),
1814 (u32)TAD_TGT3(reg),
1815 reg);
1816 prv = limit;
1817 }
1818
1819 /*
1820 * Step 4) Get TAD offsets, per each channel
1821 */
1822 for (i = 0; i < NUM_CHANNELS; i++) {
1823 if (!pvt->channel[i].dimms)
1824 continue;
1825 for (j = 0; j < n_tads; j++) {
1826 pci_read_config_dword(pvt->pci_tad[i],
1827 tad_ch_nilv_offset[j],
1828 ®);
1829 tmp_mb = TAD_OFFSET(reg) >> 20;
1830 gb = div_u64_rem(tmp_mb, 1024, &mb);
1831 edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1832 i, j,
1833 gb, (mb*1000)/1024,
1834 ((u64)tmp_mb) << 20L,
1835 reg);
1836 }
1837 }
1838
1839 /*
1840 * Step 6) Get RIR Wayness/Limit, per each channel
1841 */
1842 for (i = 0; i < NUM_CHANNELS; i++) {
1843 if (!pvt->channel[i].dimms)
1844 continue;
1845 for (j = 0; j < MAX_RIR_RANGES; j++) {
1846 pci_read_config_dword(pvt->pci_tad[i],
1847 rir_way_limit[j],
1848 ®);
1849
1850 if (!IS_RIR_VALID(reg))
1851 continue;
1852
1853 tmp_mb = pvt->info.rir_limit(reg) >> 20;
1854 rir_way = 1 << RIR_WAY(reg);
1855 gb = div_u64_rem(tmp_mb, 1024, &mb);
1856 edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1857 i, j,
1858 gb, (mb*1000)/1024,
1859 ((u64)tmp_mb) << 20L,
1860 rir_way,
1861 reg);
1862
1863 for (k = 0; k < rir_way; k++) {
1864 pci_read_config_dword(pvt->pci_tad[i],
1865 rir_offset[j][k],
1866 ®);
1867 tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6;
1868
1869 gb = div_u64_rem(tmp_mb, 1024, &mb);
1870 edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1871 i, j, k,
1872 gb, (mb*1000)/1024,
1873 ((u64)tmp_mb) << 20L,
1874 (u32)RIR_RNK_TGT(pvt->info.type, reg),
1875 reg);
1876 }
1877 }
1878 }
1879}
1880
1881static struct mem_ctl_info *get_mci_for_node_id(u8 node_id, u8 ha)
1882{
1883 struct sbridge_dev *sbridge_dev;
1884
1885 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1886 if (sbridge_dev->node_id == node_id && sbridge_dev->dom == ha)
1887 return sbridge_dev->mci;
1888 }
1889 return NULL;
1890}
1891
1892static int get_memory_error_data(struct mem_ctl_info *mci,
1893 u64 addr,
1894 u8 *socket, u8 *ha,
1895 long *channel_mask,
1896 u8 *rank,
1897 char **area_type, char *msg)
1898{
1899 struct mem_ctl_info *new_mci;
1900 struct sbridge_pvt *pvt = mci->pvt_info;
1901 struct pci_dev *pci_ha;
1902 int n_rir, n_sads, n_tads, sad_way, sck_xch;
1903 int sad_interl, idx, base_ch;
1904 int interleave_mode, shiftup = 0;
1905 unsigned int sad_interleave[MAX_INTERLEAVE];
1906 u32 reg, dram_rule;
1907 u8 ch_way, sck_way, pkg, sad_ha = 0;
1908 u32 tad_offset;
1909 u32 rir_way;
1910 u32 mb, gb;
1911 u64 ch_addr, offset, limit = 0, prv = 0;
1912
1913
1914 /*
1915 * Step 0) Check if the address is at special memory ranges
1916 * The check bellow is probably enough to fill all cases where
1917 * the error is not inside a memory, except for the legacy
1918 * range (e. g. VGA addresses). It is unlikely, however, that the
1919 * memory controller would generate an error on that range.
1920 */
1921 if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1922 sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
1923 return -EINVAL;
1924 }
1925 if (addr >= (u64)pvt->tohm) {
1926 sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
1927 return -EINVAL;
1928 }
1929
1930 /*
1931 * Step 1) Get socket
1932 */
1933 for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1934 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1935 ®);
1936
1937 if (!DRAM_RULE_ENABLE(reg))
1938 continue;
1939
1940 limit = pvt->info.sad_limit(reg);
1941 if (limit <= prv) {
1942 sprintf(msg, "Can't discover the memory socket");
1943 return -EINVAL;
1944 }
1945 if (addr <= limit)
1946 break;
1947 prv = limit;
1948 }
1949 if (n_sads == pvt->info.max_sad) {
1950 sprintf(msg, "Can't discover the memory socket");
1951 return -EINVAL;
1952 }
1953 dram_rule = reg;
1954 *area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
1955 interleave_mode = pvt->info.interleave_mode(dram_rule);
1956
1957 pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1958 ®);
1959
1960 if (pvt->info.type == SANDY_BRIDGE) {
1961 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1962 for (sad_way = 0; sad_way < 8; sad_way++) {
1963 u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
1964 if (sad_way > 0 && sad_interl == pkg)
1965 break;
1966 sad_interleave[sad_way] = pkg;
1967 edac_dbg(0, "SAD interleave #%d: %d\n",
1968 sad_way, sad_interleave[sad_way]);
1969 }
1970 edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
1971 pvt->sbridge_dev->mc,
1972 n_sads,
1973 addr,
1974 limit,
1975 sad_way + 7,
1976 !interleave_mode ? "" : "XOR[18:16]");
1977 if (interleave_mode)
1978 idx = ((addr >> 6) ^ (addr >> 16)) & 7;
1979 else
1980 idx = (addr >> 6) & 7;
1981 switch (sad_way) {
1982 case 1:
1983 idx = 0;
1984 break;
1985 case 2:
1986 idx = idx & 1;
1987 break;
1988 case 4:
1989 idx = idx & 3;
1990 break;
1991 case 8:
1992 break;
1993 default:
1994 sprintf(msg, "Can't discover socket interleave");
1995 return -EINVAL;
1996 }
1997 *socket = sad_interleave[idx];
1998 edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
1999 idx, sad_way, *socket);
2000 } else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
2001 int bits, a7mode = A7MODE(dram_rule);
2002
2003 if (a7mode) {
2004 /* A7 mode swaps P9 with P6 */
2005 bits = GET_BITFIELD(addr, 7, 8) << 1;
2006 bits |= GET_BITFIELD(addr, 9, 9);
2007 } else
2008 bits = GET_BITFIELD(addr, 6, 8);
2009
2010 if (interleave_mode == 0) {
2011 /* interleave mode will XOR {8,7,6} with {18,17,16} */
2012 idx = GET_BITFIELD(addr, 16, 18);
2013 idx ^= bits;
2014 } else
2015 idx = bits;
2016
2017 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2018 *socket = sad_pkg_socket(pkg);
2019 sad_ha = sad_pkg_ha(pkg);
2020
2021 if (a7mode) {
2022 /* MCChanShiftUpEnable */
2023 pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, ®);
2024 shiftup = GET_BITFIELD(reg, 22, 22);
2025 }
2026
2027 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2028 idx, *socket, sad_ha, shiftup);
2029 } else {
2030 /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2031 idx = (addr >> 6) & 7;
2032 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2033 *socket = sad_pkg_socket(pkg);
2034 sad_ha = sad_pkg_ha(pkg);
2035 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2036 idx, *socket, sad_ha);
2037 }
2038
2039 *ha = sad_ha;
2040
2041 /*
2042 * Move to the proper node structure, in order to access the
2043 * right PCI registers
2044 */
2045 new_mci = get_mci_for_node_id(*socket, sad_ha);
2046 if (!new_mci) {
2047 sprintf(msg, "Struct for socket #%u wasn't initialized",
2048 *socket);
2049 return -EINVAL;
2050 }
2051 mci = new_mci;
2052 pvt = mci->pvt_info;
2053
2054 /*
2055 * Step 2) Get memory channel
2056 */
2057 prv = 0;
2058 pci_ha = pvt->pci_ha;
2059 for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
2060 pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], ®);
2061 limit = TAD_LIMIT(reg);
2062 if (limit <= prv) {
2063 sprintf(msg, "Can't discover the memory channel");
2064 return -EINVAL;
2065 }
2066 if (addr <= limit)
2067 break;
2068 prv = limit;
2069 }
2070 if (n_tads == MAX_TAD) {
2071 sprintf(msg, "Can't discover the memory channel");
2072 return -EINVAL;
2073 }
2074
2075 ch_way = TAD_CH(reg) + 1;
2076 sck_way = TAD_SOCK(reg);
2077
2078 if (ch_way == 3)
2079 idx = addr >> 6;
2080 else {
2081 idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
2082 if (pvt->is_chan_hash)
2083 idx = haswell_chan_hash(idx, addr);
2084 }
2085 idx = idx % ch_way;
2086
2087 /*
2088 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2089 */
2090 switch (idx) {
2091 case 0:
2092 base_ch = TAD_TGT0(reg);
2093 break;
2094 case 1:
2095 base_ch = TAD_TGT1(reg);
2096 break;
2097 case 2:
2098 base_ch = TAD_TGT2(reg);
2099 break;
2100 case 3:
2101 base_ch = TAD_TGT3(reg);
2102 break;
2103 default:
2104 sprintf(msg, "Can't discover the TAD target");
2105 return -EINVAL;
2106 }
2107 *channel_mask = 1 << base_ch;
2108
2109 pci_read_config_dword(pvt->pci_tad[base_ch], tad_ch_nilv_offset[n_tads], &tad_offset);
2110
2111 if (pvt->mirror_mode == FULL_MIRRORING ||
2112 (pvt->mirror_mode == ADDR_RANGE_MIRRORING && n_tads == 0)) {
2113 *channel_mask |= 1 << ((base_ch + 2) % 4);
2114 switch(ch_way) {
2115 case 2:
2116 case 4:
2117 sck_xch = (1 << sck_way) * (ch_way >> 1);
2118 break;
2119 default:
2120 sprintf(msg, "Invalid mirror set. Can't decode addr");
2121 return -EINVAL;
2122 }
2123
2124 pvt->is_cur_addr_mirrored = true;
2125 } else {
2126 sck_xch = (1 << sck_way) * ch_way;
2127 pvt->is_cur_addr_mirrored = false;
2128 }
2129
2130 if (pvt->is_lockstep)
2131 *channel_mask |= 1 << ((base_ch + 1) % 4);
2132
2133 offset = TAD_OFFSET(tad_offset);
2134
2135 edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2136 n_tads,
2137 addr,
2138 limit,
2139 sck_way,
2140 ch_way,
2141 offset,
2142 idx,
2143 base_ch,
2144 *channel_mask);
2145
2146 /* Calculate channel address */
2147 /* Remove the TAD offset */
2148
2149 if (offset > addr) {
2150 sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2151 offset, addr);
2152 return -EINVAL;
2153 }
2154
2155 ch_addr = addr - offset;
2156 ch_addr >>= (6 + shiftup);
2157 ch_addr /= sck_xch;
2158 ch_addr <<= (6 + shiftup);
2159 ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
2160
2161 /*
2162 * Step 3) Decode rank
2163 */
2164 for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
2165 pci_read_config_dword(pvt->pci_tad[base_ch], rir_way_limit[n_rir], ®);
2166
2167 if (!IS_RIR_VALID(reg))
2168 continue;
2169
2170 limit = pvt->info.rir_limit(reg);
2171 gb = div_u64_rem(limit >> 20, 1024, &mb);
2172 edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2173 n_rir,
2174 gb, (mb*1000)/1024,
2175 limit,
2176 1 << RIR_WAY(reg));
2177 if (ch_addr <= limit)
2178 break;
2179 }
2180 if (n_rir == MAX_RIR_RANGES) {
2181 sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
2182 ch_addr);
2183 return -EINVAL;
2184 }
2185 rir_way = RIR_WAY(reg);
2186
2187 if (pvt->is_close_pg)
2188 idx = (ch_addr >> 6);
2189 else
2190 idx = (ch_addr >> 13); /* FIXME: Datasheet says to shift by 15 */
2191 idx %= 1 << rir_way;
2192
2193 pci_read_config_dword(pvt->pci_tad[base_ch], rir_offset[n_rir][idx], ®);
2194 *rank = RIR_RNK_TGT(pvt->info.type, reg);
2195
2196 edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2197 n_rir,
2198 ch_addr,
2199 limit,
2200 rir_way,
2201 idx);
2202
2203 return 0;
2204}
2205
2206/****************************************************************************
2207 Device initialization routines: put/get, init/exit
2208 ****************************************************************************/
2209
2210/*
2211 * sbridge_put_all_devices 'put' all the devices that we have
2212 * reserved via 'get'
2213 */
2214static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
2215{
2216 int i;
2217
2218 edac_dbg(0, "\n");
2219 for (i = 0; i < sbridge_dev->n_devs; i++) {
2220 struct pci_dev *pdev = sbridge_dev->pdev[i];
2221 if (!pdev)
2222 continue;
2223 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2224 pdev->bus->number,
2225 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2226 pci_dev_put(pdev);
2227 }
2228}
2229
2230static void sbridge_put_all_devices(void)
2231{
2232 struct sbridge_dev *sbridge_dev, *tmp;
2233
2234 list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
2235 sbridge_put_devices(sbridge_dev);
2236 free_sbridge_dev(sbridge_dev);
2237 }
2238}
2239
2240static int sbridge_get_onedevice(struct pci_dev **prev,
2241 u8 *num_mc,
2242 const struct pci_id_table *table,
2243 const unsigned devno,
2244 const int multi_bus)
2245{
2246 struct sbridge_dev *sbridge_dev = NULL;
2247 const struct pci_id_descr *dev_descr = &table->descr[devno];
2248 struct pci_dev *pdev = NULL;
2249 u8 bus = 0;
2250 int i = 0;
2251
2252 sbridge_printk(KERN_DEBUG,
2253 "Seeking for: PCI ID %04x:%04x\n",
2254 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2255
2256 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
2257 dev_descr->dev_id, *prev);
2258
2259 if (!pdev) {
2260 if (*prev) {
2261 *prev = pdev;
2262 return 0;
2263 }
2264
2265 if (dev_descr->optional)
2266 return 0;
2267
2268 /* if the HA wasn't found */
2269 if (devno == 0)
2270 return -ENODEV;
2271
2272 sbridge_printk(KERN_INFO,
2273 "Device not found: %04x:%04x\n",
2274 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2275
2276 /* End of list, leave */
2277 return -ENODEV;
2278 }
2279 bus = pdev->bus->number;
2280
2281next_imc:
2282 sbridge_dev = get_sbridge_dev(bus, dev_descr->dom, multi_bus, sbridge_dev);
2283 if (!sbridge_dev) {
2284 /* If the HA1 wasn't found, don't create EDAC second memory controller */
2285 if (dev_descr->dom == IMC1 && devno != 1) {
2286 edac_dbg(0, "Skip IMC1: %04x:%04x (since HA1 was absent)\n",
2287 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2288 pci_dev_put(pdev);
2289 return 0;
2290 }
2291
2292 if (dev_descr->dom == SOCK)
2293 goto out_imc;
2294
2295 sbridge_dev = alloc_sbridge_dev(bus, dev_descr->dom, table);
2296 if (!sbridge_dev) {
2297 pci_dev_put(pdev);
2298 return -ENOMEM;
2299 }
2300 (*num_mc)++;
2301 }
2302
2303 if (sbridge_dev->pdev[sbridge_dev->i_devs]) {
2304 sbridge_printk(KERN_ERR,
2305 "Duplicated device for %04x:%04x\n",
2306 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2307 pci_dev_put(pdev);
2308 return -ENODEV;
2309 }
2310
2311 sbridge_dev->pdev[sbridge_dev->i_devs++] = pdev;
2312
2313 /* pdev belongs to more than one IMC, do extra gets */
2314 if (++i > 1)
2315 pci_dev_get(pdev);
2316
2317 if (dev_descr->dom == SOCK && i < table->n_imcs_per_sock)
2318 goto next_imc;
2319
2320out_imc:
2321 /* Be sure that the device is enabled */
2322 if (unlikely(pci_enable_device(pdev) < 0)) {
2323 sbridge_printk(KERN_ERR,
2324 "Couldn't enable %04x:%04x\n",
2325 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2326 return -ENODEV;
2327 }
2328
2329 edac_dbg(0, "Detected %04x:%04x\n",
2330 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2331
2332 /*
2333 * As stated on drivers/pci/search.c, the reference count for
2334 * @from is always decremented if it is not %NULL. So, as we need
2335 * to get all devices up to null, we need to do a get for the device
2336 */
2337 pci_dev_get(pdev);
2338
2339 *prev = pdev;
2340
2341 return 0;
2342}
2343
2344/*
2345 * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2346 * devices we want to reference for this driver.
2347 * @num_mc: pointer to the memory controllers count, to be incremented in case
2348 * of success.
2349 * @table: model specific table
2350 *
2351 * returns 0 in case of success or error code
2352 */
2353static int sbridge_get_all_devices(u8 *num_mc,
2354 const struct pci_id_table *table)
2355{
2356 int i, rc;
2357 struct pci_dev *pdev = NULL;
2358 int allow_dups = 0;
2359 int multi_bus = 0;
2360
2361 if (table->type == KNIGHTS_LANDING)
2362 allow_dups = multi_bus = 1;
2363 while (table && table->descr) {
2364 for (i = 0; i < table->n_devs_per_sock; i++) {
2365 if (!allow_dups || i == 0 ||
2366 table->descr[i].dev_id !=
2367 table->descr[i-1].dev_id) {
2368 pdev = NULL;
2369 }
2370 do {
2371 rc = sbridge_get_onedevice(&pdev, num_mc,
2372 table, i, multi_bus);
2373 if (rc < 0) {
2374 if (i == 0) {
2375 i = table->n_devs_per_sock;
2376 break;
2377 }
2378 sbridge_put_all_devices();
2379 return -ENODEV;
2380 }
2381 } while (pdev && !allow_dups);
2382 }
2383 table++;
2384 }
2385
2386 return 0;
2387}
2388
2389/*
2390 * Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in
2391 * the format: XXXa. So we can convert from a device to the corresponding
2392 * channel like this
2393 */
2394#define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa)
2395
2396static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
2397 struct sbridge_dev *sbridge_dev)
2398{
2399 struct sbridge_pvt *pvt = mci->pvt_info;
2400 struct pci_dev *pdev;
2401 u8 saw_chan_mask = 0;
2402 int i;
2403
2404 for (i = 0; i < sbridge_dev->n_devs; i++) {
2405 pdev = sbridge_dev->pdev[i];
2406 if (!pdev)
2407 continue;
2408
2409 switch (pdev->device) {
2410 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
2411 pvt->pci_sad0 = pdev;
2412 break;
2413 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
2414 pvt->pci_sad1 = pdev;
2415 break;
2416 case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
2417 pvt->pci_br0 = pdev;
2418 break;
2419 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2420 pvt->pci_ha = pdev;
2421 break;
2422 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
2423 pvt->pci_ta = pdev;
2424 break;
2425 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
2426 pvt->pci_ras = pdev;
2427 break;
2428 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
2429 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
2430 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
2431 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
2432 {
2433 int id = TAD_DEV_TO_CHAN(pdev->device);
2434 pvt->pci_tad[id] = pdev;
2435 saw_chan_mask |= 1 << id;
2436 }
2437 break;
2438 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
2439 pvt->pci_ddrio = pdev;
2440 break;
2441 default:
2442 goto error;
2443 }
2444
2445 edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2446 pdev->vendor, pdev->device,
2447 sbridge_dev->bus,
2448 pdev);
2449 }
2450
2451 /* Check if everything were registered */
2452 if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha ||
2453 !pvt->pci_ras || !pvt->pci_ta)
2454 goto enodev;
2455
2456 if (saw_chan_mask != 0x0f)
2457 goto enodev;
2458 return 0;
2459
2460enodev:
2461 sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2462 return -ENODEV;
2463
2464error:
2465 sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
2466 PCI_VENDOR_ID_INTEL, pdev->device);
2467 return -EINVAL;
2468}
2469
2470static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
2471 struct sbridge_dev *sbridge_dev)
2472{
2473 struct sbridge_pvt *pvt = mci->pvt_info;
2474 struct pci_dev *pdev;
2475 u8 saw_chan_mask = 0;
2476 int i;
2477
2478 for (i = 0; i < sbridge_dev->n_devs; i++) {
2479 pdev = sbridge_dev->pdev[i];
2480 if (!pdev)
2481 continue;
2482
2483 switch (pdev->device) {
2484 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
2485 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
2486 pvt->pci_ha = pdev;
2487 break;
2488 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2489 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA:
2490 pvt->pci_ta = pdev;
2491 break;
2492 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
2493 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS:
2494 pvt->pci_ras = pdev;
2495 break;
2496 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
2497 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
2498 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
2499 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
2500 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
2501 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
2502 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
2503 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
2504 {
2505 int id = TAD_DEV_TO_CHAN(pdev->device);
2506 pvt->pci_tad[id] = pdev;
2507 saw_chan_mask |= 1 << id;
2508 }
2509 break;
2510 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
2511 pvt->pci_ddrio = pdev;
2512 break;
2513 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
2514 pvt->pci_ddrio = pdev;
2515 break;
2516 case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
2517 pvt->pci_sad0 = pdev;
2518 break;
2519 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
2520 pvt->pci_br0 = pdev;
2521 break;
2522 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
2523 pvt->pci_br1 = pdev;
2524 break;
2525 default:
2526 goto error;
2527 }
2528
2529 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2530 sbridge_dev->bus,
2531 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2532 pdev);
2533 }
2534
2535 /* Check if everything were registered */
2536 if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_br0 ||
2537 !pvt->pci_br1 || !pvt->pci_ras || !pvt->pci_ta)
2538 goto enodev;
2539
2540 if (saw_chan_mask != 0x0f && /* -EN/-EX */
2541 saw_chan_mask != 0x03) /* -EP */
2542 goto enodev;
2543 return 0;
2544
2545enodev:
2546 sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2547 return -ENODEV;
2548
2549error:
2550 sbridge_printk(KERN_ERR,
2551 "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
2552 pdev->device);
2553 return -EINVAL;
2554}
2555
2556static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
2557 struct sbridge_dev *sbridge_dev)
2558{
2559 struct sbridge_pvt *pvt = mci->pvt_info;
2560 struct pci_dev *pdev;
2561 u8 saw_chan_mask = 0;
2562 int i;
2563
2564 /* there's only one device per system; not tied to any bus */
2565 if (pvt->info.pci_vtd == NULL)
2566 /* result will be checked later */
2567 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2568 PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
2569 NULL);
2570
2571 for (i = 0; i < sbridge_dev->n_devs; i++) {
2572 pdev = sbridge_dev->pdev[i];
2573 if (!pdev)
2574 continue;
2575
2576 switch (pdev->device) {
2577 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
2578 pvt->pci_sad0 = pdev;
2579 break;
2580 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
2581 pvt->pci_sad1 = pdev;
2582 break;
2583 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2584 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
2585 pvt->pci_ha = pdev;
2586 break;
2587 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
2588 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
2589 pvt->pci_ta = pdev;
2590 break;
2591 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM:
2592 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM:
2593 pvt->pci_ras = pdev;
2594 break;
2595 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
2596 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
2597 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
2598 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
2599 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
2600 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
2601 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
2602 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
2603 {
2604 int id = TAD_DEV_TO_CHAN(pdev->device);
2605 pvt->pci_tad[id] = pdev;
2606 saw_chan_mask |= 1 << id;
2607 }
2608 break;
2609 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
2610 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
2611 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
2612 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
2613 if (!pvt->pci_ddrio)
2614 pvt->pci_ddrio = pdev;
2615 break;
2616 default:
2617 break;
2618 }
2619
2620 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2621 sbridge_dev->bus,
2622 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2623 pdev);
2624 }
2625
2626 /* Check if everything were registered */
2627 if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2628 !pvt->pci_ras || !pvt->pci_ta || !pvt->info.pci_vtd)
2629 goto enodev;
2630
2631 if (saw_chan_mask != 0x0f && /* -EN/-EX */
2632 saw_chan_mask != 0x03) /* -EP */
2633 goto enodev;
2634 return 0;
2635
2636enodev:
2637 sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2638 return -ENODEV;
2639}
2640
2641static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
2642 struct sbridge_dev *sbridge_dev)
2643{
2644 struct sbridge_pvt *pvt = mci->pvt_info;
2645 struct pci_dev *pdev;
2646 u8 saw_chan_mask = 0;
2647 int i;
2648
2649 /* there's only one device per system; not tied to any bus */
2650 if (pvt->info.pci_vtd == NULL)
2651 /* result will be checked later */
2652 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2653 PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
2654 NULL);
2655
2656 for (i = 0; i < sbridge_dev->n_devs; i++) {
2657 pdev = sbridge_dev->pdev[i];
2658 if (!pdev)
2659 continue;
2660
2661 switch (pdev->device) {
2662 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
2663 pvt->pci_sad0 = pdev;
2664 break;
2665 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
2666 pvt->pci_sad1 = pdev;
2667 break;
2668 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2669 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
2670 pvt->pci_ha = pdev;
2671 break;
2672 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
2673 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
2674 pvt->pci_ta = pdev;
2675 break;
2676 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM:
2677 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM:
2678 pvt->pci_ras = pdev;
2679 break;
2680 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
2681 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
2682 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
2683 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
2684 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
2685 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
2686 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
2687 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
2688 {
2689 int id = TAD_DEV_TO_CHAN(pdev->device);
2690 pvt->pci_tad[id] = pdev;
2691 saw_chan_mask |= 1 << id;
2692 }
2693 break;
2694 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
2695 pvt->pci_ddrio = pdev;
2696 break;
2697 default:
2698 break;
2699 }
2700
2701 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2702 sbridge_dev->bus,
2703 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2704 pdev);
2705 }
2706
2707 /* Check if everything were registered */
2708 if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2709 !pvt->pci_ras || !pvt->pci_ta || !pvt->info.pci_vtd)
2710 goto enodev;
2711
2712 if (saw_chan_mask != 0x0f && /* -EN/-EX */
2713 saw_chan_mask != 0x03) /* -EP */
2714 goto enodev;
2715 return 0;
2716
2717enodev:
2718 sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2719 return -ENODEV;
2720}
2721
2722static int knl_mci_bind_devs(struct mem_ctl_info *mci,
2723 struct sbridge_dev *sbridge_dev)
2724{
2725 struct sbridge_pvt *pvt = mci->pvt_info;
2726 struct pci_dev *pdev;
2727 int dev, func;
2728
2729 int i;
2730 int devidx;
2731
2732 for (i = 0; i < sbridge_dev->n_devs; i++) {
2733 pdev = sbridge_dev->pdev[i];
2734 if (!pdev)
2735 continue;
2736
2737 /* Extract PCI device and function. */
2738 dev = (pdev->devfn >> 3) & 0x1f;
2739 func = pdev->devfn & 0x7;
2740
2741 switch (pdev->device) {
2742 case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
2743 if (dev == 8)
2744 pvt->knl.pci_mc0 = pdev;
2745 else if (dev == 9)
2746 pvt->knl.pci_mc1 = pdev;
2747 else {
2748 sbridge_printk(KERN_ERR,
2749 "Memory controller in unexpected place! (dev %d, fn %d)\n",
2750 dev, func);
2751 continue;
2752 }
2753 break;
2754
2755 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
2756 pvt->pci_sad0 = pdev;
2757 break;
2758
2759 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
2760 pvt->pci_sad1 = pdev;
2761 break;
2762
2763 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
2764 /* There are one of these per tile, and range from
2765 * 1.14.0 to 1.18.5.
2766 */
2767 devidx = ((dev-14)*8)+func;
2768
2769 if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
2770 sbridge_printk(KERN_ERR,
2771 "Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2772 dev, func);
2773 continue;
2774 }
2775
2776 WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
2777
2778 pvt->knl.pci_cha[devidx] = pdev;
2779 break;
2780
2781 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN:
2782 devidx = -1;
2783
2784 /*
2785 * MC0 channels 0-2 are device 9 function 2-4,
2786 * MC1 channels 3-5 are device 8 function 2-4.
2787 */
2788
2789 if (dev == 9)
2790 devidx = func-2;
2791 else if (dev == 8)
2792 devidx = 3 + (func-2);
2793
2794 if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
2795 sbridge_printk(KERN_ERR,
2796 "DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
2797 dev, func);
2798 continue;
2799 }
2800
2801 WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
2802 pvt->knl.pci_channel[devidx] = pdev;
2803 break;
2804
2805 case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
2806 pvt->knl.pci_mc_info = pdev;
2807 break;
2808
2809 case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
2810 pvt->pci_ta = pdev;
2811 break;
2812
2813 default:
2814 sbridge_printk(KERN_ERR, "Unexpected device %d\n",
2815 pdev->device);
2816 break;
2817 }
2818 }
2819
2820 if (!pvt->knl.pci_mc0 || !pvt->knl.pci_mc1 ||
2821 !pvt->pci_sad0 || !pvt->pci_sad1 ||
2822 !pvt->pci_ta) {
2823 goto enodev;
2824 }
2825
2826 for (i = 0; i < KNL_MAX_CHANNELS; i++) {
2827 if (!pvt->knl.pci_channel[i]) {
2828 sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
2829 goto enodev;
2830 }
2831 }
2832
2833 for (i = 0; i < KNL_MAX_CHAS; i++) {
2834 if (!pvt->knl.pci_cha[i]) {
2835 sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
2836 goto enodev;
2837 }
2838 }
2839
2840 return 0;
2841
2842enodev:
2843 sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2844 return -ENODEV;
2845}
2846
2847/****************************************************************************
2848 Error check routines
2849 ****************************************************************************/
2850
2851/*
2852 * While Sandy Bridge has error count registers, SMI BIOS read values from
2853 * and resets the counters. So, they are not reliable for the OS to read
2854 * from them. So, we have no option but to just trust on whatever MCE is
2855 * telling us about the errors.
2856 */
2857static void sbridge_mce_output_error(struct mem_ctl_info *mci,
2858 const struct mce *m)
2859{
2860 struct mem_ctl_info *new_mci;
2861 struct sbridge_pvt *pvt = mci->pvt_info;
2862 enum hw_event_mc_err_type tp_event;
2863 char *type, *optype, msg[256];
2864 bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
2865 bool overflow = GET_BITFIELD(m->status, 62, 62);
2866 bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
2867 bool recoverable;
2868 u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
2869 u32 mscod = GET_BITFIELD(m->status, 16, 31);
2870 u32 errcode = GET_BITFIELD(m->status, 0, 15);
2871 u32 channel = GET_BITFIELD(m->status, 0, 3);
2872 u32 optypenum = GET_BITFIELD(m->status, 4, 6);
2873 long channel_mask, first_channel;
2874 u8 rank, socket, ha;
2875 int rc, dimm;
2876 char *area_type = NULL;
2877
2878 if (pvt->info.type != SANDY_BRIDGE)
2879 recoverable = true;
2880 else
2881 recoverable = GET_BITFIELD(m->status, 56, 56);
2882
2883 if (uncorrected_error) {
2884 if (ripv) {
2885 type = "FATAL";
2886 tp_event = HW_EVENT_ERR_FATAL;
2887 } else {
2888 type = "NON_FATAL";
2889 tp_event = HW_EVENT_ERR_UNCORRECTED;
2890 }
2891 } else {
2892 type = "CORRECTED";
2893 tp_event = HW_EVENT_ERR_CORRECTED;
2894 }
2895
2896 /*
2897 * According with Table 15-9 of the Intel Architecture spec vol 3A,
2898 * memory errors should fit in this mask:
2899 * 000f 0000 1mmm cccc (binary)
2900 * where:
2901 * f = Correction Report Filtering Bit. If 1, subsequent errors
2902 * won't be shown
2903 * mmm = error type
2904 * cccc = channel
2905 * If the mask doesn't match, report an error to the parsing logic
2906 */
2907 if (! ((errcode & 0xef80) == 0x80)) {
2908 optype = "Can't parse: it is not a mem";
2909 } else {
2910 switch (optypenum) {
2911 case 0:
2912 optype = "generic undef request error";
2913 break;
2914 case 1:
2915 optype = "memory read error";
2916 break;
2917 case 2:
2918 optype = "memory write error";
2919 break;
2920 case 3:
2921 optype = "addr/cmd error";
2922 break;
2923 case 4:
2924 optype = "memory scrubbing error";
2925 break;
2926 default:
2927 optype = "reserved";
2928 break;
2929 }
2930 }
2931
2932 /* Only decode errors with an valid address (ADDRV) */
2933 if (!GET_BITFIELD(m->status, 58, 58))
2934 return;
2935
2936 if (pvt->info.type == KNIGHTS_LANDING) {
2937 if (channel == 14) {
2938 edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
2939 overflow ? " OVERFLOW" : "",
2940 (uncorrected_error && recoverable)
2941 ? " recoverable" : "",
2942 mscod, errcode,
2943 m->bank);
2944 } else {
2945 char A = *("A");
2946
2947 /*
2948 * Reported channel is in range 0-2, so we can't map it
2949 * back to mc. To figure out mc we check machine check
2950 * bank register that reported this error.
2951 * bank15 means mc0 and bank16 means mc1.
2952 */
2953 channel = knl_channel_remap(m->bank == 16, channel);
2954 channel_mask = 1 << channel;
2955
2956 snprintf(msg, sizeof(msg),
2957 "%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
2958 overflow ? " OVERFLOW" : "",
2959 (uncorrected_error && recoverable)
2960 ? " recoverable" : " ",
2961 mscod, errcode, channel, A + channel);
2962 edac_mc_handle_error(tp_event, mci, core_err_cnt,
2963 m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
2964 channel, 0, -1,
2965 optype, msg);
2966 }
2967 return;
2968 } else {
2969 rc = get_memory_error_data(mci, m->addr, &socket, &ha,
2970 &channel_mask, &rank, &area_type, msg);
2971 }
2972
2973 if (rc < 0)
2974 goto err_parsing;
2975 new_mci = get_mci_for_node_id(socket, ha);
2976 if (!new_mci) {
2977 strcpy(msg, "Error: socket got corrupted!");
2978 goto err_parsing;
2979 }
2980 mci = new_mci;
2981 pvt = mci->pvt_info;
2982
2983 first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
2984
2985 if (rank < 4)
2986 dimm = 0;
2987 else if (rank < 8)
2988 dimm = 1;
2989 else
2990 dimm = 2;
2991
2992
2993 /*
2994 * FIXME: On some memory configurations (mirror, lockstep), the
2995 * Memory Controller can't point the error to a single DIMM. The
2996 * EDAC core should be handling the channel mask, in order to point
2997 * to the group of dimm's where the error may be happening.
2998 */
2999 if (!pvt->is_lockstep && !pvt->is_cur_addr_mirrored && !pvt->is_close_pg)
3000 channel = first_channel;
3001
3002 snprintf(msg, sizeof(msg),
3003 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
3004 overflow ? " OVERFLOW" : "",
3005 (uncorrected_error && recoverable) ? " recoverable" : "",
3006 area_type,
3007 mscod, errcode,
3008 socket, ha,
3009 channel_mask,
3010 rank);
3011
3012 edac_dbg(0, "%s\n", msg);
3013
3014 /* FIXME: need support for channel mask */
3015
3016 if (channel == CHANNEL_UNSPECIFIED)
3017 channel = -1;
3018
3019 /* Call the helper to output message */
3020 edac_mc_handle_error(tp_event, mci, core_err_cnt,
3021 m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3022 channel, dimm, -1,
3023 optype, msg);
3024 return;
3025err_parsing:
3026 edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
3027 -1, -1, -1,
3028 msg, "");
3029
3030}
3031
3032/*
3033 * Check that logging is enabled and that this is the right type
3034 * of error for us to handle.
3035 */
3036static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
3037 void *data)
3038{
3039 struct mce *mce = (struct mce *)data;
3040 struct mem_ctl_info *mci;
3041 struct sbridge_pvt *pvt;
3042 char *type;
3043
3044 if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
3045 return NOTIFY_DONE;
3046
3047 mci = get_mci_for_node_id(mce->socketid, IMC0);
3048 if (!mci)
3049 return NOTIFY_DONE;
3050 pvt = mci->pvt_info;
3051
3052 /*
3053 * Just let mcelog handle it if the error is
3054 * outside the memory controller. A memory error
3055 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3056 * bit 12 has an special meaning.
3057 */
3058 if ((mce->status & 0xefff) >> 7 != 1)
3059 return NOTIFY_DONE;
3060
3061 if (mce->mcgstatus & MCG_STATUS_MCIP)
3062 type = "Exception";
3063 else
3064 type = "Event";
3065
3066 sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
3067
3068 sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
3069 "Bank %d: %016Lx\n", mce->extcpu, type,
3070 mce->mcgstatus, mce->bank, mce->status);
3071 sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
3072 sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
3073 sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
3074
3075 sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
3076 "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
3077 mce->time, mce->socketid, mce->apicid);
3078
3079 sbridge_mce_output_error(mci, mce);
3080
3081 /* Advice mcelog that the error were handled */
3082 return NOTIFY_STOP;
3083}
3084
3085static struct notifier_block sbridge_mce_dec = {
3086 .notifier_call = sbridge_mce_check_error,
3087 .priority = MCE_PRIO_EDAC,
3088};
3089
3090/****************************************************************************
3091 EDAC register/unregister logic
3092 ****************************************************************************/
3093
3094static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
3095{
3096 struct mem_ctl_info *mci = sbridge_dev->mci;
3097 struct sbridge_pvt *pvt;
3098
3099 if (unlikely(!mci || !mci->pvt_info)) {
3100 edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
3101
3102 sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
3103 return;
3104 }
3105
3106 pvt = mci->pvt_info;
3107
3108 edac_dbg(0, "MC: mci = %p, dev = %p\n",
3109 mci, &sbridge_dev->pdev[0]->dev);
3110
3111 /* Remove MC sysfs nodes */
3112 edac_mc_del_mc(mci->pdev);
3113
3114 edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
3115 kfree(mci->ctl_name);
3116 edac_mc_free(mci);
3117 sbridge_dev->mci = NULL;
3118}
3119
3120static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
3121{
3122 struct mem_ctl_info *mci;
3123 struct edac_mc_layer layers[2];
3124 struct sbridge_pvt *pvt;
3125 struct pci_dev *pdev = sbridge_dev->pdev[0];
3126 int rc;
3127
3128 /* allocate a new MC control structure */
3129 layers[0].type = EDAC_MC_LAYER_CHANNEL;
3130 layers[0].size = type == KNIGHTS_LANDING ?
3131 KNL_MAX_CHANNELS : NUM_CHANNELS;
3132 layers[0].is_virt_csrow = false;
3133 layers[1].type = EDAC_MC_LAYER_SLOT;
3134 layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
3135 layers[1].is_virt_csrow = true;
3136 mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
3137 sizeof(*pvt));
3138
3139 if (unlikely(!mci))
3140 return -ENOMEM;
3141
3142 edac_dbg(0, "MC: mci = %p, dev = %p\n",
3143 mci, &pdev->dev);
3144
3145 pvt = mci->pvt_info;
3146 memset(pvt, 0, sizeof(*pvt));
3147
3148 /* Associate sbridge_dev and mci for future usage */
3149 pvt->sbridge_dev = sbridge_dev;
3150 sbridge_dev->mci = mci;
3151
3152 mci->mtype_cap = type == KNIGHTS_LANDING ?
3153 MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
3154 mci->edac_ctl_cap = EDAC_FLAG_NONE;
3155 mci->edac_cap = EDAC_FLAG_NONE;
3156 mci->mod_name = EDAC_MOD_STR;
3157 mci->dev_name = pci_name(pdev);
3158 mci->ctl_page_to_phys = NULL;
3159
3160 pvt->info.type = type;
3161 switch (type) {
3162 case IVY_BRIDGE:
3163 pvt->info.rankcfgr = IB_RANK_CFG_A;
3164 pvt->info.get_tolm = ibridge_get_tolm;
3165 pvt->info.get_tohm = ibridge_get_tohm;
3166 pvt->info.dram_rule = ibridge_dram_rule;
3167 pvt->info.get_memory_type = get_memory_type;
3168 pvt->info.get_node_id = get_node_id;
3169 pvt->info.rir_limit = rir_limit;
3170 pvt->info.sad_limit = sad_limit;
3171 pvt->info.interleave_mode = interleave_mode;
3172 pvt->info.dram_attr = dram_attr;
3173 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3174 pvt->info.interleave_list = ibridge_interleave_list;
3175 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3176 pvt->info.get_width = ibridge_get_width;
3177
3178 /* Store pci devices at mci for faster access */
3179 rc = ibridge_mci_bind_devs(mci, sbridge_dev);
3180 if (unlikely(rc < 0))
3181 goto fail0;
3182 get_source_id(mci);
3183 mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge SrcID#%d_Ha#%d",
3184 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3185 break;
3186 case SANDY_BRIDGE:
3187 pvt->info.rankcfgr = SB_RANK_CFG_A;
3188 pvt->info.get_tolm = sbridge_get_tolm;
3189 pvt->info.get_tohm = sbridge_get_tohm;
3190 pvt->info.dram_rule = sbridge_dram_rule;
3191 pvt->info.get_memory_type = get_memory_type;
3192 pvt->info.get_node_id = get_node_id;
3193 pvt->info.rir_limit = rir_limit;
3194 pvt->info.sad_limit = sad_limit;
3195 pvt->info.interleave_mode = interleave_mode;
3196 pvt->info.dram_attr = dram_attr;
3197 pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
3198 pvt->info.interleave_list = sbridge_interleave_list;
3199 pvt->info.interleave_pkg = sbridge_interleave_pkg;
3200 pvt->info.get_width = sbridge_get_width;
3201
3202 /* Store pci devices at mci for faster access */
3203 rc = sbridge_mci_bind_devs(mci, sbridge_dev);
3204 if (unlikely(rc < 0))
3205 goto fail0;
3206 get_source_id(mci);
3207 mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge SrcID#%d_Ha#%d",
3208 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3209 break;
3210 case HASWELL:
3211 /* rankcfgr isn't used */
3212 pvt->info.get_tolm = haswell_get_tolm;
3213 pvt->info.get_tohm = haswell_get_tohm;
3214 pvt->info.dram_rule = ibridge_dram_rule;
3215 pvt->info.get_memory_type = haswell_get_memory_type;
3216 pvt->info.get_node_id = haswell_get_node_id;
3217 pvt->info.rir_limit = haswell_rir_limit;
3218 pvt->info.sad_limit = sad_limit;
3219 pvt->info.interleave_mode = interleave_mode;
3220 pvt->info.dram_attr = dram_attr;
3221 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3222 pvt->info.interleave_list = ibridge_interleave_list;
3223 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3224 pvt->info.get_width = ibridge_get_width;
3225
3226 /* Store pci devices at mci for faster access */
3227 rc = haswell_mci_bind_devs(mci, sbridge_dev);
3228 if (unlikely(rc < 0))
3229 goto fail0;
3230 get_source_id(mci);
3231 mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell SrcID#%d_Ha#%d",
3232 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3233 break;
3234 case BROADWELL:
3235 /* rankcfgr isn't used */
3236 pvt->info.get_tolm = haswell_get_tolm;
3237 pvt->info.get_tohm = haswell_get_tohm;
3238 pvt->info.dram_rule = ibridge_dram_rule;
3239 pvt->info.get_memory_type = haswell_get_memory_type;
3240 pvt->info.get_node_id = haswell_get_node_id;
3241 pvt->info.rir_limit = haswell_rir_limit;
3242 pvt->info.sad_limit = sad_limit;
3243 pvt->info.interleave_mode = interleave_mode;
3244 pvt->info.dram_attr = dram_attr;
3245 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3246 pvt->info.interleave_list = ibridge_interleave_list;
3247 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3248 pvt->info.get_width = broadwell_get_width;
3249
3250 /* Store pci devices at mci for faster access */
3251 rc = broadwell_mci_bind_devs(mci, sbridge_dev);
3252 if (unlikely(rc < 0))
3253 goto fail0;
3254 get_source_id(mci);
3255 mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell SrcID#%d_Ha#%d",
3256 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3257 break;
3258 case KNIGHTS_LANDING:
3259 /* pvt->info.rankcfgr == ??? */
3260 pvt->info.get_tolm = knl_get_tolm;
3261 pvt->info.get_tohm = knl_get_tohm;
3262 pvt->info.dram_rule = knl_dram_rule;
3263 pvt->info.get_memory_type = knl_get_memory_type;
3264 pvt->info.get_node_id = knl_get_node_id;
3265 pvt->info.rir_limit = NULL;
3266 pvt->info.sad_limit = knl_sad_limit;
3267 pvt->info.interleave_mode = knl_interleave_mode;
3268 pvt->info.dram_attr = dram_attr_knl;
3269 pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
3270 pvt->info.interleave_list = knl_interleave_list;
3271 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3272 pvt->info.get_width = knl_get_width;
3273
3274 rc = knl_mci_bind_devs(mci, sbridge_dev);
3275 if (unlikely(rc < 0))
3276 goto fail0;
3277 get_source_id(mci);
3278 mci->ctl_name = kasprintf(GFP_KERNEL, "Knights Landing SrcID#%d_Ha#%d",
3279 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3280 break;
3281 }
3282
3283 if (!mci->ctl_name) {
3284 rc = -ENOMEM;
3285 goto fail0;
3286 }
3287
3288 /* Get dimm basic config and the memory layout */
3289 rc = get_dimm_config(mci);
3290 if (rc < 0) {
3291 edac_dbg(0, "MC: failed to get_dimm_config()\n");
3292 goto fail;
3293 }
3294 get_memory_layout(mci);
3295
3296 /* record ptr to the generic device */
3297 mci->pdev = &pdev->dev;
3298
3299 /* add this new MC control structure to EDAC's list of MCs */
3300 if (unlikely(edac_mc_add_mc(mci))) {
3301 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3302 rc = -EINVAL;
3303 goto fail;
3304 }
3305
3306 return 0;
3307
3308fail:
3309 kfree(mci->ctl_name);
3310fail0:
3311 edac_mc_free(mci);
3312 sbridge_dev->mci = NULL;
3313 return rc;
3314}
3315
3316#define ICPU(model, table) \
3317 { X86_VENDOR_INTEL, 6, model, 0, (unsigned long)&table }
3318
3319static const struct x86_cpu_id sbridge_cpuids[] = {
3320 ICPU(INTEL_FAM6_SANDYBRIDGE_X, pci_dev_descr_sbridge_table),
3321 ICPU(INTEL_FAM6_IVYBRIDGE_X, pci_dev_descr_ibridge_table),
3322 ICPU(INTEL_FAM6_HASWELL_X, pci_dev_descr_haswell_table),
3323 ICPU(INTEL_FAM6_BROADWELL_X, pci_dev_descr_broadwell_table),
3324 ICPU(INTEL_FAM6_BROADWELL_XEON_D, pci_dev_descr_broadwell_table),
3325 ICPU(INTEL_FAM6_XEON_PHI_KNL, pci_dev_descr_knl_table),
3326 ICPU(INTEL_FAM6_XEON_PHI_KNM, pci_dev_descr_knl_table),
3327 { }
3328};
3329MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids);
3330
3331/*
3332 * sbridge_probe Get all devices and register memory controllers
3333 * present.
3334 * return:
3335 * 0 for FOUND a device
3336 * < 0 for error code
3337 */
3338
3339static int sbridge_probe(const struct x86_cpu_id *id)
3340{
3341 int rc = -ENODEV;
3342 u8 mc, num_mc = 0;
3343 struct sbridge_dev *sbridge_dev;
3344 struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data;
3345
3346 /* get the pci devices we want to reserve for our use */
3347 rc = sbridge_get_all_devices(&num_mc, ptable);
3348
3349 if (unlikely(rc < 0)) {
3350 edac_dbg(0, "couldn't get all devices\n");
3351 goto fail0;
3352 }
3353
3354 mc = 0;
3355
3356 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
3357 edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3358 mc, mc + 1, num_mc);
3359
3360 sbridge_dev->mc = mc++;
3361 rc = sbridge_register_mci(sbridge_dev, ptable->type);
3362 if (unlikely(rc < 0))
3363 goto fail1;
3364 }
3365
3366 sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
3367
3368 return 0;
3369
3370fail1:
3371 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3372 sbridge_unregister_mci(sbridge_dev);
3373
3374 sbridge_put_all_devices();
3375fail0:
3376 return rc;
3377}
3378
3379/*
3380 * sbridge_remove cleanup
3381 *
3382 */
3383static void sbridge_remove(void)
3384{
3385 struct sbridge_dev *sbridge_dev;
3386
3387 edac_dbg(0, "\n");
3388
3389 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3390 sbridge_unregister_mci(sbridge_dev);
3391
3392 /* Release PCI resources */
3393 sbridge_put_all_devices();
3394}
3395
3396/*
3397 * sbridge_init Module entry function
3398 * Try to initialize this module for its devices
3399 */
3400static int __init sbridge_init(void)
3401{
3402 const struct x86_cpu_id *id;
3403 const char *owner;
3404 int rc;
3405
3406 edac_dbg(2, "\n");
3407
3408 owner = edac_get_owner();
3409 if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
3410 return -EBUSY;
3411
3412 id = x86_match_cpu(sbridge_cpuids);
3413 if (!id)
3414 return -ENODEV;
3415
3416 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
3417 opstate_init();
3418
3419 rc = sbridge_probe(id);
3420
3421 if (rc >= 0) {
3422 mce_register_decode_chain(&sbridge_mce_dec);
3423 if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
3424 sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
3425 return 0;
3426 }
3427
3428 sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
3429 rc);
3430
3431 return rc;
3432}
3433
3434/*
3435 * sbridge_exit() Module exit function
3436 * Unregister the driver
3437 */
3438static void __exit sbridge_exit(void)
3439{
3440 edac_dbg(2, "\n");
3441 sbridge_remove();
3442 mce_unregister_decode_chain(&sbridge_mce_dec);
3443}
3444
3445module_init(sbridge_init);
3446module_exit(sbridge_exit);
3447
3448module_param(edac_op_state, int, 0444);
3449MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
3450
3451MODULE_LICENSE("GPL");
3452MODULE_AUTHOR("Mauro Carvalho Chehab");
3453MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
3454MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
3455 SBRIDGE_REVISION);