Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * This file is part of STM32 Crypto driver for Linux.
4 *
5 * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6 * Author(s): Lionel DEBIEVE <lionel.debieve@st.com> for STMicroelectronics.
7 */
8
9#include <crypto/engine.h>
10#include <crypto/internal/hash.h>
11#include <crypto/md5.h>
12#include <crypto/scatterwalk.h>
13#include <crypto/sha1.h>
14#include <crypto/sha2.h>
15#include <crypto/sha3.h>
16#include <linux/clk.h>
17#include <linux/delay.h>
18#include <linux/dma-mapping.h>
19#include <linux/dmaengine.h>
20#include <linux/interrupt.h>
21#include <linux/iopoll.h>
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/of.h>
25#include <linux/platform_device.h>
26#include <linux/pm_runtime.h>
27#include <linux/reset.h>
28#include <linux/string.h>
29
30#define HASH_CR 0x00
31#define HASH_DIN 0x04
32#define HASH_STR 0x08
33#define HASH_UX500_HREG(x) (0x0c + ((x) * 0x04))
34#define HASH_IMR 0x20
35#define HASH_SR 0x24
36#define HASH_CSR(x) (0x0F8 + ((x) * 0x04))
37#define HASH_HREG(x) (0x310 + ((x) * 0x04))
38#define HASH_HWCFGR 0x3F0
39#define HASH_VER 0x3F4
40#define HASH_ID 0x3F8
41
42/* Control Register */
43#define HASH_CR_INIT BIT(2)
44#define HASH_CR_DMAE BIT(3)
45#define HASH_CR_DATATYPE_POS 4
46#define HASH_CR_MODE BIT(6)
47#define HASH_CR_ALGO_POS 7
48#define HASH_CR_MDMAT BIT(13)
49#define HASH_CR_DMAA BIT(14)
50#define HASH_CR_LKEY BIT(16)
51
52/* Interrupt */
53#define HASH_DINIE BIT(0)
54#define HASH_DCIE BIT(1)
55
56/* Interrupt Mask */
57#define HASH_MASK_CALC_COMPLETION BIT(0)
58#define HASH_MASK_DATA_INPUT BIT(1)
59
60/* Status Flags */
61#define HASH_SR_DATA_INPUT_READY BIT(0)
62#define HASH_SR_OUTPUT_READY BIT(1)
63#define HASH_SR_DMA_ACTIVE BIT(2)
64#define HASH_SR_BUSY BIT(3)
65
66/* STR Register */
67#define HASH_STR_NBLW_MASK GENMASK(4, 0)
68#define HASH_STR_DCAL BIT(8)
69
70/* HWCFGR Register */
71#define HASH_HWCFG_DMA_MASK GENMASK(3, 0)
72
73/* Context swap register */
74#define HASH_CSR_NB_SHA256_HMAC 54
75#define HASH_CSR_NB_SHA256 38
76#define HASH_CSR_NB_SHA512_HMAC 103
77#define HASH_CSR_NB_SHA512 91
78#define HASH_CSR_NB_SHA3_HMAC 88
79#define HASH_CSR_NB_SHA3 72
80#define HASH_CSR_NB_MAX HASH_CSR_NB_SHA512_HMAC
81
82#define HASH_FLAGS_INIT BIT(0)
83#define HASH_FLAGS_OUTPUT_READY BIT(1)
84#define HASH_FLAGS_CPU BIT(2)
85#define HASH_FLAGS_DMA_ACTIVE BIT(3)
86#define HASH_FLAGS_HMAC_INIT BIT(4)
87#define HASH_FLAGS_HMAC_FINAL BIT(5)
88#define HASH_FLAGS_HMAC_KEY BIT(6)
89#define HASH_FLAGS_SHA3_MODE BIT(7)
90#define HASH_FLAGS_FINAL BIT(15)
91#define HASH_FLAGS_FINUP BIT(16)
92#define HASH_FLAGS_ALGO_MASK GENMASK(20, 17)
93#define HASH_FLAGS_ALGO_SHIFT 17
94#define HASH_FLAGS_ERRORS BIT(21)
95#define HASH_FLAGS_EMPTY BIT(22)
96#define HASH_FLAGS_HMAC BIT(23)
97#define HASH_FLAGS_SGS_COPIED BIT(24)
98
99#define HASH_OP_UPDATE 1
100#define HASH_OP_FINAL 2
101
102#define HASH_BURST_LEVEL 4
103
104enum stm32_hash_data_format {
105 HASH_DATA_32_BITS = 0x0,
106 HASH_DATA_16_BITS = 0x1,
107 HASH_DATA_8_BITS = 0x2,
108 HASH_DATA_1_BIT = 0x3
109};
110
111#define HASH_BUFLEN (SHA3_224_BLOCK_SIZE + 4)
112#define HASH_MAX_KEY_SIZE (SHA512_BLOCK_SIZE * 8)
113
114enum stm32_hash_algo {
115 HASH_SHA1 = 0,
116 HASH_MD5 = 1,
117 HASH_SHA224 = 2,
118 HASH_SHA256 = 3,
119 HASH_SHA3_224 = 4,
120 HASH_SHA3_256 = 5,
121 HASH_SHA3_384 = 6,
122 HASH_SHA3_512 = 7,
123 HASH_SHA384 = 12,
124 HASH_SHA512 = 15,
125};
126
127enum ux500_hash_algo {
128 HASH_SHA256_UX500 = 0,
129 HASH_SHA1_UX500 = 1,
130};
131
132#define HASH_AUTOSUSPEND_DELAY 50
133
134struct stm32_hash_ctx {
135 struct stm32_hash_dev *hdev;
136 struct crypto_shash *xtfm;
137 unsigned long flags;
138
139 u8 key[HASH_MAX_KEY_SIZE];
140 int keylen;
141};
142
143struct stm32_hash_state {
144 u32 flags;
145
146 u16 bufcnt;
147 u16 blocklen;
148
149 u8 buffer[HASH_BUFLEN] __aligned(sizeof(u32));
150
151 /* hash state */
152 u32 hw_context[3 + HASH_CSR_NB_MAX];
153};
154
155struct stm32_hash_request_ctx {
156 struct stm32_hash_dev *hdev;
157 unsigned long op;
158
159 u8 digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
160 size_t digcnt;
161
162 struct scatterlist *sg;
163 struct scatterlist sgl[2]; /* scatterlist used to realize alignment */
164 unsigned int offset;
165 unsigned int total;
166 struct scatterlist sg_key;
167
168 dma_addr_t dma_addr;
169 size_t dma_ct;
170 int nents;
171
172 u8 data_type;
173
174 struct stm32_hash_state state;
175};
176
177struct stm32_hash_algs_info {
178 struct ahash_engine_alg *algs_list;
179 size_t size;
180};
181
182struct stm32_hash_pdata {
183 const int alg_shift;
184 const struct stm32_hash_algs_info *algs_info;
185 size_t algs_info_size;
186 bool has_sr;
187 bool has_mdmat;
188 bool context_secured;
189 bool broken_emptymsg;
190 bool ux500;
191};
192
193struct stm32_hash_dev {
194 struct list_head list;
195 struct device *dev;
196 struct clk *clk;
197 struct reset_control *rst;
198 void __iomem *io_base;
199 phys_addr_t phys_base;
200 u8 xmit_buf[HASH_BUFLEN] __aligned(sizeof(u32));
201 u32 dma_mode;
202 bool polled;
203
204 struct ahash_request *req;
205 struct crypto_engine *engine;
206
207 unsigned long flags;
208
209 struct dma_chan *dma_lch;
210 struct completion dma_completion;
211
212 const struct stm32_hash_pdata *pdata;
213};
214
215struct stm32_hash_drv {
216 struct list_head dev_list;
217 spinlock_t lock; /* List protection access */
218};
219
220static struct stm32_hash_drv stm32_hash = {
221 .dev_list = LIST_HEAD_INIT(stm32_hash.dev_list),
222 .lock = __SPIN_LOCK_UNLOCKED(stm32_hash.lock),
223};
224
225static void stm32_hash_dma_callback(void *param);
226static int stm32_hash_prepare_request(struct ahash_request *req);
227static void stm32_hash_unprepare_request(struct ahash_request *req);
228
229static inline u32 stm32_hash_read(struct stm32_hash_dev *hdev, u32 offset)
230{
231 return readl_relaxed(hdev->io_base + offset);
232}
233
234static inline void stm32_hash_write(struct stm32_hash_dev *hdev,
235 u32 offset, u32 value)
236{
237 writel_relaxed(value, hdev->io_base + offset);
238}
239
240/**
241 * stm32_hash_wait_busy - wait until hash processor is available. It return an
242 * error if the hash core is processing a block of data for more than 10 ms.
243 * @hdev: the stm32_hash_dev device.
244 */
245static inline int stm32_hash_wait_busy(struct stm32_hash_dev *hdev)
246{
247 u32 status;
248
249 /* The Ux500 lacks the special status register, we poll the DCAL bit instead */
250 if (!hdev->pdata->has_sr)
251 return readl_relaxed_poll_timeout(hdev->io_base + HASH_STR, status,
252 !(status & HASH_STR_DCAL), 10, 10000);
253
254 return readl_relaxed_poll_timeout(hdev->io_base + HASH_SR, status,
255 !(status & HASH_SR_BUSY), 10, 10000);
256}
257
258/**
259 * stm32_hash_set_nblw - set the number of valid bytes in the last word.
260 * @hdev: the stm32_hash_dev device.
261 * @length: the length of the final word.
262 */
263static void stm32_hash_set_nblw(struct stm32_hash_dev *hdev, int length)
264{
265 u32 reg;
266
267 reg = stm32_hash_read(hdev, HASH_STR);
268 reg &= ~(HASH_STR_NBLW_MASK);
269 reg |= (8U * ((length) % 4U));
270 stm32_hash_write(hdev, HASH_STR, reg);
271}
272
273static int stm32_hash_write_key(struct stm32_hash_dev *hdev)
274{
275 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
276 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
277 u32 reg;
278 int keylen = ctx->keylen;
279 void *key = ctx->key;
280
281 if (keylen) {
282 stm32_hash_set_nblw(hdev, keylen);
283
284 while (keylen > 0) {
285 stm32_hash_write(hdev, HASH_DIN, *(u32 *)key);
286 keylen -= 4;
287 key += 4;
288 }
289
290 reg = stm32_hash_read(hdev, HASH_STR);
291 reg |= HASH_STR_DCAL;
292 stm32_hash_write(hdev, HASH_STR, reg);
293
294 return -EINPROGRESS;
295 }
296
297 return 0;
298}
299
300/**
301 * stm32_hash_write_ctrl - Initialize the hash processor, only if
302 * HASH_FLAGS_INIT is set.
303 * @hdev: the stm32_hash_dev device
304 */
305static void stm32_hash_write_ctrl(struct stm32_hash_dev *hdev)
306{
307 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
308 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
309 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
310 struct stm32_hash_state *state = &rctx->state;
311 u32 alg = (state->flags & HASH_FLAGS_ALGO_MASK) >> HASH_FLAGS_ALGO_SHIFT;
312
313 u32 reg = HASH_CR_INIT;
314
315 if (!(hdev->flags & HASH_FLAGS_INIT)) {
316 if (hdev->pdata->ux500) {
317 reg |= ((alg & BIT(0)) << HASH_CR_ALGO_POS);
318 } else {
319 if (hdev->pdata->alg_shift == HASH_CR_ALGO_POS)
320 reg |= ((alg & BIT(1)) << 17) |
321 ((alg & BIT(0)) << HASH_CR_ALGO_POS);
322 else
323 reg |= alg << hdev->pdata->alg_shift;
324 }
325
326 reg |= (rctx->data_type << HASH_CR_DATATYPE_POS);
327
328 if (state->flags & HASH_FLAGS_HMAC) {
329 hdev->flags |= HASH_FLAGS_HMAC;
330 reg |= HASH_CR_MODE;
331 if (ctx->keylen > crypto_ahash_blocksize(tfm))
332 reg |= HASH_CR_LKEY;
333 }
334
335 if (!hdev->polled)
336 stm32_hash_write(hdev, HASH_IMR, HASH_DCIE);
337
338 stm32_hash_write(hdev, HASH_CR, reg);
339
340 hdev->flags |= HASH_FLAGS_INIT;
341
342 /*
343 * After first block + 1 words are fill up,
344 * we only need to fill 1 block to start partial computation
345 */
346 rctx->state.blocklen -= sizeof(u32);
347
348 dev_dbg(hdev->dev, "Write Control %x\n", reg);
349 }
350}
351
352static void stm32_hash_append_sg(struct stm32_hash_request_ctx *rctx)
353{
354 struct stm32_hash_state *state = &rctx->state;
355 size_t count;
356
357 while ((state->bufcnt < state->blocklen) && rctx->total) {
358 count = min(rctx->sg->length - rctx->offset, rctx->total);
359 count = min_t(size_t, count, state->blocklen - state->bufcnt);
360
361 if (count <= 0) {
362 if ((rctx->sg->length == 0) && !sg_is_last(rctx->sg)) {
363 rctx->sg = sg_next(rctx->sg);
364 continue;
365 } else {
366 break;
367 }
368 }
369
370 scatterwalk_map_and_copy(state->buffer + state->bufcnt,
371 rctx->sg, rctx->offset, count, 0);
372
373 state->bufcnt += count;
374 rctx->offset += count;
375 rctx->total -= count;
376
377 if (rctx->offset == rctx->sg->length) {
378 rctx->sg = sg_next(rctx->sg);
379 if (rctx->sg)
380 rctx->offset = 0;
381 else
382 rctx->total = 0;
383 }
384 }
385}
386
387static int stm32_hash_xmit_cpu(struct stm32_hash_dev *hdev,
388 const u8 *buf, size_t length, int final)
389{
390 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
391 struct stm32_hash_state *state = &rctx->state;
392 unsigned int count, len32;
393 const u32 *buffer = (const u32 *)buf;
394 u32 reg;
395
396 if (final) {
397 hdev->flags |= HASH_FLAGS_FINAL;
398
399 /* Do not process empty messages if hw is buggy. */
400 if (!(hdev->flags & HASH_FLAGS_INIT) && !length &&
401 hdev->pdata->broken_emptymsg) {
402 state->flags |= HASH_FLAGS_EMPTY;
403 return 0;
404 }
405 }
406
407 len32 = DIV_ROUND_UP(length, sizeof(u32));
408
409 dev_dbg(hdev->dev, "%s: length: %zd, final: %x len32 %i\n",
410 __func__, length, final, len32);
411
412 hdev->flags |= HASH_FLAGS_CPU;
413
414 stm32_hash_write_ctrl(hdev);
415
416 if (stm32_hash_wait_busy(hdev))
417 return -ETIMEDOUT;
418
419 if ((hdev->flags & HASH_FLAGS_HMAC) &&
420 (!(hdev->flags & HASH_FLAGS_HMAC_KEY))) {
421 hdev->flags |= HASH_FLAGS_HMAC_KEY;
422 stm32_hash_write_key(hdev);
423 if (stm32_hash_wait_busy(hdev))
424 return -ETIMEDOUT;
425 }
426
427 for (count = 0; count < len32; count++)
428 stm32_hash_write(hdev, HASH_DIN, buffer[count]);
429
430 if (final) {
431 if (stm32_hash_wait_busy(hdev))
432 return -ETIMEDOUT;
433
434 stm32_hash_set_nblw(hdev, length);
435 reg = stm32_hash_read(hdev, HASH_STR);
436 reg |= HASH_STR_DCAL;
437 stm32_hash_write(hdev, HASH_STR, reg);
438 if (hdev->flags & HASH_FLAGS_HMAC) {
439 if (stm32_hash_wait_busy(hdev))
440 return -ETIMEDOUT;
441 stm32_hash_write_key(hdev);
442 }
443 return -EINPROGRESS;
444 }
445
446 return 0;
447}
448
449static int hash_swap_reg(struct stm32_hash_request_ctx *rctx)
450{
451 struct stm32_hash_state *state = &rctx->state;
452
453 switch ((state->flags & HASH_FLAGS_ALGO_MASK) >>
454 HASH_FLAGS_ALGO_SHIFT) {
455 case HASH_MD5:
456 case HASH_SHA1:
457 case HASH_SHA224:
458 case HASH_SHA256:
459 if (state->flags & HASH_FLAGS_HMAC)
460 return HASH_CSR_NB_SHA256_HMAC;
461 else
462 return HASH_CSR_NB_SHA256;
463 break;
464
465 case HASH_SHA384:
466 case HASH_SHA512:
467 if (state->flags & HASH_FLAGS_HMAC)
468 return HASH_CSR_NB_SHA512_HMAC;
469 else
470 return HASH_CSR_NB_SHA512;
471 break;
472
473 case HASH_SHA3_224:
474 case HASH_SHA3_256:
475 case HASH_SHA3_384:
476 case HASH_SHA3_512:
477 if (state->flags & HASH_FLAGS_HMAC)
478 return HASH_CSR_NB_SHA3_HMAC;
479 else
480 return HASH_CSR_NB_SHA3;
481 break;
482
483 default:
484 return -EINVAL;
485 }
486}
487
488static int stm32_hash_update_cpu(struct stm32_hash_dev *hdev)
489{
490 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
491 struct stm32_hash_state *state = &rctx->state;
492 int bufcnt, err = 0, final;
493
494 dev_dbg(hdev->dev, "%s flags %x\n", __func__, state->flags);
495
496 final = state->flags & HASH_FLAGS_FINAL;
497
498 while ((rctx->total >= state->blocklen) ||
499 (state->bufcnt + rctx->total >= state->blocklen)) {
500 stm32_hash_append_sg(rctx);
501 bufcnt = state->bufcnt;
502 state->bufcnt = 0;
503 err = stm32_hash_xmit_cpu(hdev, state->buffer, bufcnt, 0);
504 if (err)
505 return err;
506 }
507
508 stm32_hash_append_sg(rctx);
509
510 if (final) {
511 bufcnt = state->bufcnt;
512 state->bufcnt = 0;
513 return stm32_hash_xmit_cpu(hdev, state->buffer, bufcnt, 1);
514 }
515
516 return err;
517}
518
519static int stm32_hash_xmit_dma(struct stm32_hash_dev *hdev,
520 struct scatterlist *sg, int length, int mdmat)
521{
522 struct dma_async_tx_descriptor *in_desc;
523 dma_cookie_t cookie;
524 u32 reg;
525 int err;
526
527 dev_dbg(hdev->dev, "%s mdmat: %x length: %d\n", __func__, mdmat, length);
528
529 /* do not use dma if there is no data to send */
530 if (length <= 0)
531 return 0;
532
533 in_desc = dmaengine_prep_slave_sg(hdev->dma_lch, sg, 1,
534 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT |
535 DMA_CTRL_ACK);
536 if (!in_desc) {
537 dev_err(hdev->dev, "dmaengine_prep_slave error\n");
538 return -ENOMEM;
539 }
540
541 reinit_completion(&hdev->dma_completion);
542 in_desc->callback = stm32_hash_dma_callback;
543 in_desc->callback_param = hdev;
544
545 hdev->flags |= HASH_FLAGS_DMA_ACTIVE;
546
547 reg = stm32_hash_read(hdev, HASH_CR);
548
549 if (hdev->pdata->has_mdmat) {
550 if (mdmat)
551 reg |= HASH_CR_MDMAT;
552 else
553 reg &= ~HASH_CR_MDMAT;
554 }
555 reg |= HASH_CR_DMAE;
556
557 stm32_hash_write(hdev, HASH_CR, reg);
558
559
560 cookie = dmaengine_submit(in_desc);
561 err = dma_submit_error(cookie);
562 if (err)
563 return -ENOMEM;
564
565 dma_async_issue_pending(hdev->dma_lch);
566
567 if (!wait_for_completion_timeout(&hdev->dma_completion,
568 msecs_to_jiffies(100)))
569 err = -ETIMEDOUT;
570
571 if (dma_async_is_tx_complete(hdev->dma_lch, cookie,
572 NULL, NULL) != DMA_COMPLETE)
573 err = -ETIMEDOUT;
574
575 if (err) {
576 dev_err(hdev->dev, "DMA Error %i\n", err);
577 dmaengine_terminate_all(hdev->dma_lch);
578 return err;
579 }
580
581 return -EINPROGRESS;
582}
583
584static void stm32_hash_dma_callback(void *param)
585{
586 struct stm32_hash_dev *hdev = param;
587
588 complete(&hdev->dma_completion);
589}
590
591static int stm32_hash_hmac_dma_send(struct stm32_hash_dev *hdev)
592{
593 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
594 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
595 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
596 int err;
597
598 if (ctx->keylen < rctx->state.blocklen || hdev->dma_mode > 0) {
599 err = stm32_hash_write_key(hdev);
600 if (stm32_hash_wait_busy(hdev))
601 return -ETIMEDOUT;
602 } else {
603 if (!(hdev->flags & HASH_FLAGS_HMAC_KEY))
604 sg_init_one(&rctx->sg_key, ctx->key,
605 ALIGN(ctx->keylen, sizeof(u32)));
606
607 rctx->dma_ct = dma_map_sg(hdev->dev, &rctx->sg_key, 1,
608 DMA_TO_DEVICE);
609 if (rctx->dma_ct == 0) {
610 dev_err(hdev->dev, "dma_map_sg error\n");
611 return -ENOMEM;
612 }
613
614 err = stm32_hash_xmit_dma(hdev, &rctx->sg_key, ctx->keylen, 0);
615
616 dma_unmap_sg(hdev->dev, &rctx->sg_key, 1, DMA_TO_DEVICE);
617 }
618
619 return err;
620}
621
622static int stm32_hash_dma_init(struct stm32_hash_dev *hdev)
623{
624 struct dma_slave_config dma_conf;
625 struct dma_chan *chan;
626 int err;
627
628 memset(&dma_conf, 0, sizeof(dma_conf));
629
630 dma_conf.direction = DMA_MEM_TO_DEV;
631 dma_conf.dst_addr = hdev->phys_base + HASH_DIN;
632 dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
633 dma_conf.src_maxburst = HASH_BURST_LEVEL;
634 dma_conf.dst_maxburst = HASH_BURST_LEVEL;
635 dma_conf.device_fc = false;
636
637 chan = dma_request_chan(hdev->dev, "in");
638 if (IS_ERR(chan))
639 return PTR_ERR(chan);
640
641 hdev->dma_lch = chan;
642
643 err = dmaengine_slave_config(hdev->dma_lch, &dma_conf);
644 if (err) {
645 dma_release_channel(hdev->dma_lch);
646 hdev->dma_lch = NULL;
647 dev_err(hdev->dev, "Couldn't configure DMA slave.\n");
648 return err;
649 }
650
651 init_completion(&hdev->dma_completion);
652
653 return 0;
654}
655
656static int stm32_hash_dma_send(struct stm32_hash_dev *hdev)
657{
658 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
659 u32 *buffer = (void *)rctx->state.buffer;
660 struct scatterlist sg[1], *tsg;
661 int err = 0, reg, ncp = 0;
662 unsigned int i, len = 0, bufcnt = 0;
663 bool final = hdev->flags & HASH_FLAGS_FINAL;
664 bool is_last = false;
665 u32 last_word;
666
667 dev_dbg(hdev->dev, "%s total: %d bufcnt: %d final: %d\n",
668 __func__, rctx->total, rctx->state.bufcnt, final);
669
670 if (rctx->nents < 0)
671 return -EINVAL;
672
673 stm32_hash_write_ctrl(hdev);
674
675 if (hdev->flags & HASH_FLAGS_HMAC && (!(hdev->flags & HASH_FLAGS_HMAC_KEY))) {
676 hdev->flags |= HASH_FLAGS_HMAC_KEY;
677 err = stm32_hash_hmac_dma_send(hdev);
678 if (err != -EINPROGRESS)
679 return err;
680 }
681
682 for_each_sg(rctx->sg, tsg, rctx->nents, i) {
683 sg[0] = *tsg;
684 len = sg->length;
685
686 if (sg_is_last(sg) || (bufcnt + sg[0].length) >= rctx->total) {
687 if (!final) {
688 /* Always manually put the last word of a non-final transfer. */
689 len -= sizeof(u32);
690 sg_pcopy_to_buffer(rctx->sg, rctx->nents, &last_word, 4, len);
691 sg->length -= sizeof(u32);
692 } else {
693 /*
694 * In Multiple DMA mode, DMA must be aborted before the final
695 * transfer.
696 */
697 sg->length = rctx->total - bufcnt;
698 if (hdev->dma_mode > 0) {
699 len = (ALIGN(sg->length, 16) - 16);
700
701 ncp = sg_pcopy_to_buffer(rctx->sg, rctx->nents,
702 rctx->state.buffer,
703 sg->length - len,
704 rctx->total - sg->length + len);
705
706 if (!len)
707 break;
708
709 sg->length = len;
710 } else {
711 is_last = true;
712 if (!(IS_ALIGNED(sg->length, sizeof(u32)))) {
713 len = sg->length;
714 sg->length = ALIGN(sg->length,
715 sizeof(u32));
716 }
717 }
718 }
719 }
720
721 rctx->dma_ct = dma_map_sg(hdev->dev, sg, 1,
722 DMA_TO_DEVICE);
723 if (rctx->dma_ct == 0) {
724 dev_err(hdev->dev, "dma_map_sg error\n");
725 return -ENOMEM;
726 }
727
728 err = stm32_hash_xmit_dma(hdev, sg, len, !is_last);
729
730 /* The last word of a non final transfer is sent manually. */
731 if (!final) {
732 stm32_hash_write(hdev, HASH_DIN, last_word);
733 len += sizeof(u32);
734 }
735
736 rctx->total -= len;
737
738 bufcnt += sg[0].length;
739 dma_unmap_sg(hdev->dev, sg, 1, DMA_TO_DEVICE);
740
741 if (err == -ENOMEM || err == -ETIMEDOUT)
742 return err;
743 if (is_last)
744 break;
745 }
746
747 /*
748 * When the second last block transfer of 4 words is performed by the DMA,
749 * the software must set the DMA Abort bit (DMAA) to 1 before completing the
750 * last transfer of 4 words or less.
751 */
752 if (final) {
753 if (hdev->dma_mode > 0) {
754 if (stm32_hash_wait_busy(hdev))
755 return -ETIMEDOUT;
756 reg = stm32_hash_read(hdev, HASH_CR);
757 reg &= ~HASH_CR_DMAE;
758 reg |= HASH_CR_DMAA;
759 stm32_hash_write(hdev, HASH_CR, reg);
760
761 if (ncp) {
762 memset(buffer + ncp, 0, 4 - DIV_ROUND_UP(ncp, sizeof(u32)));
763 writesl(hdev->io_base + HASH_DIN, buffer,
764 DIV_ROUND_UP(ncp, sizeof(u32)));
765 }
766
767 stm32_hash_set_nblw(hdev, ncp);
768 reg = stm32_hash_read(hdev, HASH_STR);
769 reg |= HASH_STR_DCAL;
770 stm32_hash_write(hdev, HASH_STR, reg);
771 err = -EINPROGRESS;
772 }
773
774 /*
775 * The hash processor needs the key to be loaded a second time in order
776 * to process the HMAC.
777 */
778 if (hdev->flags & HASH_FLAGS_HMAC) {
779 if (stm32_hash_wait_busy(hdev))
780 return -ETIMEDOUT;
781 err = stm32_hash_hmac_dma_send(hdev);
782 }
783
784 return err;
785 }
786
787 if (err != -EINPROGRESS)
788 return err;
789
790 return 0;
791}
792
793static struct stm32_hash_dev *stm32_hash_find_dev(struct stm32_hash_ctx *ctx)
794{
795 struct stm32_hash_dev *hdev = NULL, *tmp;
796
797 spin_lock_bh(&stm32_hash.lock);
798 if (!ctx->hdev) {
799 list_for_each_entry(tmp, &stm32_hash.dev_list, list) {
800 hdev = tmp;
801 break;
802 }
803 ctx->hdev = hdev;
804 } else {
805 hdev = ctx->hdev;
806 }
807
808 spin_unlock_bh(&stm32_hash.lock);
809
810 return hdev;
811}
812
813static int stm32_hash_init(struct ahash_request *req)
814{
815 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
816 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
817 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
818 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
819 struct stm32_hash_state *state = &rctx->state;
820 bool sha3_mode = ctx->flags & HASH_FLAGS_SHA3_MODE;
821
822 rctx->hdev = hdev;
823 state->flags = 0;
824
825 if (!(hdev->dma_lch && hdev->pdata->has_mdmat))
826 state->flags |= HASH_FLAGS_CPU;
827
828 if (sha3_mode)
829 state->flags |= HASH_FLAGS_SHA3_MODE;
830
831 rctx->digcnt = crypto_ahash_digestsize(tfm);
832 switch (rctx->digcnt) {
833 case MD5_DIGEST_SIZE:
834 state->flags |= HASH_MD5 << HASH_FLAGS_ALGO_SHIFT;
835 break;
836 case SHA1_DIGEST_SIZE:
837 if (hdev->pdata->ux500)
838 state->flags |= HASH_SHA1_UX500 << HASH_FLAGS_ALGO_SHIFT;
839 else
840 state->flags |= HASH_SHA1 << HASH_FLAGS_ALGO_SHIFT;
841 break;
842 case SHA224_DIGEST_SIZE:
843 if (sha3_mode)
844 state->flags |= HASH_SHA3_224 << HASH_FLAGS_ALGO_SHIFT;
845 else
846 state->flags |= HASH_SHA224 << HASH_FLAGS_ALGO_SHIFT;
847 break;
848 case SHA256_DIGEST_SIZE:
849 if (sha3_mode) {
850 state->flags |= HASH_SHA3_256 << HASH_FLAGS_ALGO_SHIFT;
851 } else {
852 if (hdev->pdata->ux500)
853 state->flags |= HASH_SHA256_UX500 << HASH_FLAGS_ALGO_SHIFT;
854 else
855 state->flags |= HASH_SHA256 << HASH_FLAGS_ALGO_SHIFT;
856 }
857 break;
858 case SHA384_DIGEST_SIZE:
859 if (sha3_mode)
860 state->flags |= HASH_SHA3_384 << HASH_FLAGS_ALGO_SHIFT;
861 else
862 state->flags |= HASH_SHA384 << HASH_FLAGS_ALGO_SHIFT;
863 break;
864 case SHA512_DIGEST_SIZE:
865 if (sha3_mode)
866 state->flags |= HASH_SHA3_512 << HASH_FLAGS_ALGO_SHIFT;
867 else
868 state->flags |= HASH_SHA512 << HASH_FLAGS_ALGO_SHIFT;
869 break;
870 default:
871 return -EINVAL;
872 }
873
874 rctx->state.bufcnt = 0;
875 rctx->state.blocklen = crypto_ahash_blocksize(tfm) + sizeof(u32);
876 if (rctx->state.blocklen > HASH_BUFLEN) {
877 dev_err(hdev->dev, "Error, block too large");
878 return -EINVAL;
879 }
880 rctx->nents = 0;
881 rctx->total = 0;
882 rctx->offset = 0;
883 rctx->data_type = HASH_DATA_8_BITS;
884
885 if (ctx->flags & HASH_FLAGS_HMAC)
886 state->flags |= HASH_FLAGS_HMAC;
887
888 dev_dbg(hdev->dev, "%s Flags %x\n", __func__, state->flags);
889
890 return 0;
891}
892
893static int stm32_hash_update_req(struct stm32_hash_dev *hdev)
894{
895 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
896 struct stm32_hash_state *state = &rctx->state;
897
898 dev_dbg(hdev->dev, "update_req: total: %u, digcnt: %zd, final: 0",
899 rctx->total, rctx->digcnt);
900
901 if (!(state->flags & HASH_FLAGS_CPU))
902 return stm32_hash_dma_send(hdev);
903
904 return stm32_hash_update_cpu(hdev);
905}
906
907static int stm32_hash_final_req(struct stm32_hash_dev *hdev)
908{
909 struct ahash_request *req = hdev->req;
910 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
911 struct stm32_hash_state *state = &rctx->state;
912 int buflen = state->bufcnt;
913
914 if (!(state->flags & HASH_FLAGS_CPU)) {
915 hdev->flags |= HASH_FLAGS_FINAL;
916 return stm32_hash_dma_send(hdev);
917 }
918
919 if (state->flags & HASH_FLAGS_FINUP)
920 return stm32_hash_update_req(hdev);
921
922 state->bufcnt = 0;
923
924 return stm32_hash_xmit_cpu(hdev, state->buffer, buflen, 1);
925}
926
927static void stm32_hash_emptymsg_fallback(struct ahash_request *req)
928{
929 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
930 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(ahash);
931 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
932 struct stm32_hash_dev *hdev = rctx->hdev;
933 int ret;
934
935 dev_dbg(hdev->dev, "use fallback message size 0 key size %d\n",
936 ctx->keylen);
937
938 if (!ctx->xtfm) {
939 dev_err(hdev->dev, "no fallback engine\n");
940 return;
941 }
942
943 if (ctx->keylen) {
944 ret = crypto_shash_setkey(ctx->xtfm, ctx->key, ctx->keylen);
945 if (ret) {
946 dev_err(hdev->dev, "failed to set key ret=%d\n", ret);
947 return;
948 }
949 }
950
951 ret = crypto_shash_tfm_digest(ctx->xtfm, NULL, 0, rctx->digest);
952 if (ret)
953 dev_err(hdev->dev, "shash digest error\n");
954}
955
956static void stm32_hash_copy_hash(struct ahash_request *req)
957{
958 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
959 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
960 struct stm32_hash_state *state = &rctx->state;
961 struct stm32_hash_dev *hdev = rctx->hdev;
962 __be32 *hash = (void *)rctx->digest;
963 unsigned int i, hashsize;
964
965 if (hdev->pdata->broken_emptymsg && (state->flags & HASH_FLAGS_EMPTY))
966 return stm32_hash_emptymsg_fallback(req);
967
968 hashsize = crypto_ahash_digestsize(tfm);
969
970 for (i = 0; i < hashsize / sizeof(u32); i++) {
971 if (hdev->pdata->ux500)
972 hash[i] = cpu_to_be32(stm32_hash_read(hdev,
973 HASH_UX500_HREG(i)));
974 else
975 hash[i] = cpu_to_be32(stm32_hash_read(hdev,
976 HASH_HREG(i)));
977 }
978}
979
980static int stm32_hash_finish(struct ahash_request *req)
981{
982 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
983 u32 reg;
984
985 reg = stm32_hash_read(rctx->hdev, HASH_SR);
986 reg &= ~HASH_SR_OUTPUT_READY;
987 stm32_hash_write(rctx->hdev, HASH_SR, reg);
988
989 if (!req->result)
990 return -EINVAL;
991
992 memcpy(req->result, rctx->digest, rctx->digcnt);
993
994 return 0;
995}
996
997static void stm32_hash_finish_req(struct ahash_request *req, int err)
998{
999 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1000 struct stm32_hash_state *state = &rctx->state;
1001 struct stm32_hash_dev *hdev = rctx->hdev;
1002
1003 if (hdev->flags & HASH_FLAGS_DMA_ACTIVE)
1004 state->flags |= HASH_FLAGS_DMA_ACTIVE;
1005 else
1006 state->flags &= ~HASH_FLAGS_DMA_ACTIVE;
1007
1008 if (!err && (HASH_FLAGS_FINAL & hdev->flags)) {
1009 stm32_hash_copy_hash(req);
1010 err = stm32_hash_finish(req);
1011 }
1012
1013 /* Finalized request mist be unprepared here */
1014 stm32_hash_unprepare_request(req);
1015
1016 crypto_finalize_hash_request(hdev->engine, req, err);
1017}
1018
1019static int stm32_hash_handle_queue(struct stm32_hash_dev *hdev,
1020 struct ahash_request *req)
1021{
1022 return crypto_transfer_hash_request_to_engine(hdev->engine, req);
1023}
1024
1025static int stm32_hash_one_request(struct crypto_engine *engine, void *areq)
1026{
1027 struct ahash_request *req = container_of(areq, struct ahash_request,
1028 base);
1029 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
1030 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1031 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
1032 struct stm32_hash_state *state = &rctx->state;
1033 int swap_reg;
1034 int err = 0;
1035
1036 if (!hdev)
1037 return -ENODEV;
1038
1039 dev_dbg(hdev->dev, "processing new req, op: %lu, nbytes %d\n",
1040 rctx->op, req->nbytes);
1041
1042 pm_runtime_get_sync(hdev->dev);
1043
1044 err = stm32_hash_prepare_request(req);
1045 if (err)
1046 return err;
1047
1048 hdev->req = req;
1049 hdev->flags = 0;
1050 swap_reg = hash_swap_reg(rctx);
1051
1052 if (state->flags & HASH_FLAGS_INIT) {
1053 u32 *preg = rctx->state.hw_context;
1054 u32 reg;
1055 int i;
1056
1057 if (!hdev->pdata->ux500)
1058 stm32_hash_write(hdev, HASH_IMR, *preg++);
1059 stm32_hash_write(hdev, HASH_STR, *preg++);
1060 stm32_hash_write(hdev, HASH_CR, *preg);
1061 reg = *preg++ | HASH_CR_INIT;
1062 stm32_hash_write(hdev, HASH_CR, reg);
1063
1064 for (i = 0; i < swap_reg; i++)
1065 stm32_hash_write(hdev, HASH_CSR(i), *preg++);
1066
1067 hdev->flags |= HASH_FLAGS_INIT;
1068
1069 if (state->flags & HASH_FLAGS_HMAC)
1070 hdev->flags |= HASH_FLAGS_HMAC |
1071 HASH_FLAGS_HMAC_KEY;
1072
1073 if (state->flags & HASH_FLAGS_CPU)
1074 hdev->flags |= HASH_FLAGS_CPU;
1075
1076 if (state->flags & HASH_FLAGS_DMA_ACTIVE)
1077 hdev->flags |= HASH_FLAGS_DMA_ACTIVE;
1078 }
1079
1080 if (rctx->op == HASH_OP_UPDATE)
1081 err = stm32_hash_update_req(hdev);
1082 else if (rctx->op == HASH_OP_FINAL)
1083 err = stm32_hash_final_req(hdev);
1084
1085 /* If we have an IRQ, wait for that, else poll for completion */
1086 if (err == -EINPROGRESS && hdev->polled) {
1087 if (stm32_hash_wait_busy(hdev))
1088 err = -ETIMEDOUT;
1089 else {
1090 hdev->flags |= HASH_FLAGS_OUTPUT_READY;
1091 err = 0;
1092 }
1093 }
1094
1095 if (err != -EINPROGRESS)
1096 /* done task will not finish it, so do it here */
1097 stm32_hash_finish_req(req, err);
1098
1099 return 0;
1100}
1101
1102static int stm32_hash_copy_sgs(struct stm32_hash_request_ctx *rctx,
1103 struct scatterlist *sg, int bs,
1104 unsigned int new_len)
1105{
1106 struct stm32_hash_state *state = &rctx->state;
1107 int pages;
1108 void *buf;
1109
1110 pages = get_order(new_len);
1111
1112 buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
1113 if (!buf) {
1114 pr_err("Couldn't allocate pages for unaligned cases.\n");
1115 return -ENOMEM;
1116 }
1117
1118 if (state->bufcnt)
1119 memcpy(buf, rctx->hdev->xmit_buf, state->bufcnt);
1120
1121 scatterwalk_map_and_copy(buf + state->bufcnt, sg, rctx->offset,
1122 min(new_len, rctx->total) - state->bufcnt, 0);
1123 sg_init_table(rctx->sgl, 1);
1124 sg_set_buf(rctx->sgl, buf, new_len);
1125 rctx->sg = rctx->sgl;
1126 state->flags |= HASH_FLAGS_SGS_COPIED;
1127 rctx->nents = 1;
1128 rctx->offset += new_len - state->bufcnt;
1129 state->bufcnt = 0;
1130 rctx->total = new_len;
1131
1132 return 0;
1133}
1134
1135static int stm32_hash_align_sgs(struct scatterlist *sg,
1136 int nbytes, int bs, bool init, bool final,
1137 struct stm32_hash_request_ctx *rctx)
1138{
1139 struct stm32_hash_state *state = &rctx->state;
1140 struct stm32_hash_dev *hdev = rctx->hdev;
1141 struct scatterlist *sg_tmp = sg;
1142 int offset = rctx->offset;
1143 int new_len;
1144 int n = 0;
1145 int bufcnt = state->bufcnt;
1146 bool secure_ctx = hdev->pdata->context_secured;
1147 bool aligned = true;
1148
1149 if (!sg || !sg->length || !nbytes) {
1150 if (bufcnt) {
1151 bufcnt = DIV_ROUND_UP(bufcnt, bs) * bs;
1152 sg_init_table(rctx->sgl, 1);
1153 sg_set_buf(rctx->sgl, rctx->hdev->xmit_buf, bufcnt);
1154 rctx->sg = rctx->sgl;
1155 rctx->nents = 1;
1156 }
1157
1158 return 0;
1159 }
1160
1161 new_len = nbytes;
1162
1163 if (offset)
1164 aligned = false;
1165
1166 if (final) {
1167 new_len = DIV_ROUND_UP(new_len, bs) * bs;
1168 } else {
1169 new_len = (new_len - 1) / bs * bs; // return n block - 1 block
1170
1171 /*
1172 * Context save in some version of HASH IP can only be done when the
1173 * FIFO is ready to get a new block. This implies to send n block plus a
1174 * 32 bit word in the first DMA send.
1175 */
1176 if (init && secure_ctx) {
1177 new_len += sizeof(u32);
1178 if (unlikely(new_len > nbytes))
1179 new_len -= bs;
1180 }
1181 }
1182
1183 if (!new_len)
1184 return 0;
1185
1186 if (nbytes != new_len)
1187 aligned = false;
1188
1189 while (nbytes > 0 && sg_tmp) {
1190 n++;
1191
1192 if (bufcnt) {
1193 if (!IS_ALIGNED(bufcnt, bs)) {
1194 aligned = false;
1195 break;
1196 }
1197 nbytes -= bufcnt;
1198 bufcnt = 0;
1199 if (!nbytes)
1200 aligned = false;
1201
1202 continue;
1203 }
1204
1205 if (offset < sg_tmp->length) {
1206 if (!IS_ALIGNED(offset + sg_tmp->offset, 4)) {
1207 aligned = false;
1208 break;
1209 }
1210
1211 if (!IS_ALIGNED(sg_tmp->length - offset, bs)) {
1212 aligned = false;
1213 break;
1214 }
1215 }
1216
1217 if (offset) {
1218 offset -= sg_tmp->length;
1219 if (offset < 0) {
1220 nbytes += offset;
1221 offset = 0;
1222 }
1223 } else {
1224 nbytes -= sg_tmp->length;
1225 }
1226
1227 sg_tmp = sg_next(sg_tmp);
1228
1229 if (nbytes < 0) {
1230 aligned = false;
1231 break;
1232 }
1233 }
1234
1235 if (!aligned)
1236 return stm32_hash_copy_sgs(rctx, sg, bs, new_len);
1237
1238 rctx->total = new_len;
1239 rctx->offset += new_len;
1240 rctx->nents = n;
1241 if (state->bufcnt) {
1242 sg_init_table(rctx->sgl, 2);
1243 sg_set_buf(rctx->sgl, rctx->hdev->xmit_buf, state->bufcnt);
1244 sg_chain(rctx->sgl, 2, sg);
1245 rctx->sg = rctx->sgl;
1246 } else {
1247 rctx->sg = sg;
1248 }
1249
1250 return 0;
1251}
1252
1253static int stm32_hash_prepare_request(struct ahash_request *req)
1254{
1255 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1256 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
1257 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1258 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
1259 struct stm32_hash_state *state = &rctx->state;
1260 unsigned int nbytes;
1261 int ret, hash_later, bs;
1262 bool update = rctx->op & HASH_OP_UPDATE;
1263 bool init = !(state->flags & HASH_FLAGS_INIT);
1264 bool finup = state->flags & HASH_FLAGS_FINUP;
1265 bool final = state->flags & HASH_FLAGS_FINAL;
1266
1267 if (!hdev->dma_lch || state->flags & HASH_FLAGS_CPU)
1268 return 0;
1269
1270 bs = crypto_ahash_blocksize(tfm);
1271
1272 nbytes = state->bufcnt;
1273
1274 /*
1275 * In case of update request nbytes must correspond to the content of the
1276 * buffer + the offset minus the content of the request already in the
1277 * buffer.
1278 */
1279 if (update || finup)
1280 nbytes += req->nbytes - rctx->offset;
1281
1282 dev_dbg(hdev->dev,
1283 "%s: nbytes=%d, bs=%d, total=%d, offset=%d, bufcnt=%d\n",
1284 __func__, nbytes, bs, rctx->total, rctx->offset, state->bufcnt);
1285
1286 if (!nbytes)
1287 return 0;
1288
1289 rctx->total = nbytes;
1290
1291 if (update && req->nbytes && (!IS_ALIGNED(state->bufcnt, bs))) {
1292 int len = bs - state->bufcnt % bs;
1293
1294 if (len > req->nbytes)
1295 len = req->nbytes;
1296 scatterwalk_map_and_copy(state->buffer + state->bufcnt, req->src,
1297 0, len, 0);
1298 state->bufcnt += len;
1299 rctx->offset = len;
1300 }
1301
1302 /* copy buffer in a temporary one that is used for sg alignment */
1303 if (state->bufcnt)
1304 memcpy(hdev->xmit_buf, state->buffer, state->bufcnt);
1305
1306 ret = stm32_hash_align_sgs(req->src, nbytes, bs, init, final, rctx);
1307 if (ret)
1308 return ret;
1309
1310 hash_later = nbytes - rctx->total;
1311 if (hash_later < 0)
1312 hash_later = 0;
1313
1314 if (hash_later && hash_later <= state->blocklen) {
1315 scatterwalk_map_and_copy(state->buffer,
1316 req->src,
1317 req->nbytes - hash_later,
1318 hash_later, 0);
1319
1320 state->bufcnt = hash_later;
1321 } else {
1322 state->bufcnt = 0;
1323 }
1324
1325 if (hash_later > state->blocklen) {
1326 /* FIXME: add support of this case */
1327 pr_err("Buffer contains more than one block.\n");
1328 return -ENOMEM;
1329 }
1330
1331 rctx->total = min(nbytes, rctx->total);
1332
1333 return 0;
1334}
1335
1336static void stm32_hash_unprepare_request(struct ahash_request *req)
1337{
1338 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1339 struct stm32_hash_state *state = &rctx->state;
1340 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
1341 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
1342 u32 *preg = state->hw_context;
1343 int swap_reg, i;
1344
1345 if (hdev->dma_lch)
1346 dmaengine_terminate_sync(hdev->dma_lch);
1347
1348 if (state->flags & HASH_FLAGS_SGS_COPIED)
1349 free_pages((unsigned long)sg_virt(rctx->sg), get_order(rctx->sg->length));
1350
1351 rctx->sg = NULL;
1352 rctx->offset = 0;
1353
1354 state->flags &= ~(HASH_FLAGS_SGS_COPIED);
1355
1356 if (!(hdev->flags & HASH_FLAGS_INIT))
1357 goto pm_runtime;
1358
1359 state->flags |= HASH_FLAGS_INIT;
1360
1361 if (stm32_hash_wait_busy(hdev)) {
1362 dev_warn(hdev->dev, "Wait busy failed.");
1363 return;
1364 }
1365
1366 swap_reg = hash_swap_reg(rctx);
1367
1368 if (!hdev->pdata->ux500)
1369 *preg++ = stm32_hash_read(hdev, HASH_IMR);
1370 *preg++ = stm32_hash_read(hdev, HASH_STR);
1371 *preg++ = stm32_hash_read(hdev, HASH_CR);
1372 for (i = 0; i < swap_reg; i++)
1373 *preg++ = stm32_hash_read(hdev, HASH_CSR(i));
1374
1375pm_runtime:
1376 pm_runtime_mark_last_busy(hdev->dev);
1377 pm_runtime_put_autosuspend(hdev->dev);
1378}
1379
1380static int stm32_hash_enqueue(struct ahash_request *req, unsigned int op)
1381{
1382 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1383 struct stm32_hash_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
1384 struct stm32_hash_dev *hdev = ctx->hdev;
1385
1386 rctx->op = op;
1387
1388 return stm32_hash_handle_queue(hdev, req);
1389}
1390
1391static int stm32_hash_update(struct ahash_request *req)
1392{
1393 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1394 struct stm32_hash_state *state = &rctx->state;
1395
1396 if (!req->nbytes)
1397 return 0;
1398
1399
1400 if (state->flags & HASH_FLAGS_CPU) {
1401 rctx->total = req->nbytes;
1402 rctx->sg = req->src;
1403 rctx->offset = 0;
1404
1405 if ((state->bufcnt + rctx->total < state->blocklen)) {
1406 stm32_hash_append_sg(rctx);
1407 return 0;
1408 }
1409 } else { /* DMA mode */
1410 if (state->bufcnt + req->nbytes <= state->blocklen) {
1411 scatterwalk_map_and_copy(state->buffer + state->bufcnt, req->src,
1412 0, req->nbytes, 0);
1413 state->bufcnt += req->nbytes;
1414 return 0;
1415 }
1416 }
1417
1418 return stm32_hash_enqueue(req, HASH_OP_UPDATE);
1419}
1420
1421static int stm32_hash_final(struct ahash_request *req)
1422{
1423 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1424 struct stm32_hash_state *state = &rctx->state;
1425
1426 state->flags |= HASH_FLAGS_FINAL;
1427
1428 return stm32_hash_enqueue(req, HASH_OP_FINAL);
1429}
1430
1431static int stm32_hash_finup(struct ahash_request *req)
1432{
1433 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1434 struct stm32_hash_state *state = &rctx->state;
1435
1436 if (!req->nbytes)
1437 goto out;
1438
1439 state->flags |= HASH_FLAGS_FINUP;
1440
1441 if ((state->flags & HASH_FLAGS_CPU)) {
1442 rctx->total = req->nbytes;
1443 rctx->sg = req->src;
1444 rctx->offset = 0;
1445 }
1446
1447out:
1448 return stm32_hash_final(req);
1449}
1450
1451static int stm32_hash_digest(struct ahash_request *req)
1452{
1453 return stm32_hash_init(req) ?: stm32_hash_finup(req);
1454}
1455
1456static int stm32_hash_export(struct ahash_request *req, void *out)
1457{
1458 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1459
1460 memcpy(out, &rctx->state, sizeof(rctx->state));
1461
1462 return 0;
1463}
1464
1465static int stm32_hash_import(struct ahash_request *req, const void *in)
1466{
1467 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1468
1469 stm32_hash_init(req);
1470 memcpy(&rctx->state, in, sizeof(rctx->state));
1471
1472 return 0;
1473}
1474
1475static int stm32_hash_setkey(struct crypto_ahash *tfm,
1476 const u8 *key, unsigned int keylen)
1477{
1478 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
1479
1480 if (keylen <= HASH_MAX_KEY_SIZE) {
1481 memcpy(ctx->key, key, keylen);
1482 ctx->keylen = keylen;
1483 } else {
1484 return -ENOMEM;
1485 }
1486
1487 return 0;
1488}
1489
1490static int stm32_hash_init_fallback(struct crypto_tfm *tfm)
1491{
1492 struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm);
1493 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
1494 const char *name = crypto_tfm_alg_name(tfm);
1495 struct crypto_shash *xtfm;
1496
1497 /* The fallback is only needed on Ux500 */
1498 if (!hdev->pdata->ux500)
1499 return 0;
1500
1501 xtfm = crypto_alloc_shash(name, 0, CRYPTO_ALG_NEED_FALLBACK);
1502 if (IS_ERR(xtfm)) {
1503 dev_err(hdev->dev, "failed to allocate %s fallback\n",
1504 name);
1505 return PTR_ERR(xtfm);
1506 }
1507 dev_info(hdev->dev, "allocated %s fallback\n", name);
1508 ctx->xtfm = xtfm;
1509
1510 return 0;
1511}
1512
1513static int stm32_hash_cra_init_algs(struct crypto_tfm *tfm, u32 algs_flags)
1514{
1515 struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm);
1516
1517 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1518 sizeof(struct stm32_hash_request_ctx));
1519
1520 ctx->keylen = 0;
1521
1522 if (algs_flags)
1523 ctx->flags |= algs_flags;
1524
1525 return stm32_hash_init_fallback(tfm);
1526}
1527
1528static int stm32_hash_cra_init(struct crypto_tfm *tfm)
1529{
1530 return stm32_hash_cra_init_algs(tfm, 0);
1531}
1532
1533static int stm32_hash_cra_hmac_init(struct crypto_tfm *tfm)
1534{
1535 return stm32_hash_cra_init_algs(tfm, HASH_FLAGS_HMAC);
1536}
1537
1538static int stm32_hash_cra_sha3_init(struct crypto_tfm *tfm)
1539{
1540 return stm32_hash_cra_init_algs(tfm, HASH_FLAGS_SHA3_MODE);
1541}
1542
1543static int stm32_hash_cra_sha3_hmac_init(struct crypto_tfm *tfm)
1544{
1545 return stm32_hash_cra_init_algs(tfm, HASH_FLAGS_SHA3_MODE |
1546 HASH_FLAGS_HMAC);
1547}
1548
1549static void stm32_hash_cra_exit(struct crypto_tfm *tfm)
1550{
1551 struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm);
1552
1553 if (ctx->xtfm)
1554 crypto_free_shash(ctx->xtfm);
1555}
1556
1557static irqreturn_t stm32_hash_irq_thread(int irq, void *dev_id)
1558{
1559 struct stm32_hash_dev *hdev = dev_id;
1560
1561 if (HASH_FLAGS_OUTPUT_READY & hdev->flags) {
1562 hdev->flags &= ~HASH_FLAGS_OUTPUT_READY;
1563 goto finish;
1564 }
1565
1566 return IRQ_HANDLED;
1567
1568finish:
1569 /* Finish current request */
1570 stm32_hash_finish_req(hdev->req, 0);
1571
1572 return IRQ_HANDLED;
1573}
1574
1575static irqreturn_t stm32_hash_irq_handler(int irq, void *dev_id)
1576{
1577 struct stm32_hash_dev *hdev = dev_id;
1578 u32 reg;
1579
1580 reg = stm32_hash_read(hdev, HASH_SR);
1581 if (reg & HASH_SR_OUTPUT_READY) {
1582 hdev->flags |= HASH_FLAGS_OUTPUT_READY;
1583 /* Disable IT*/
1584 stm32_hash_write(hdev, HASH_IMR, 0);
1585 return IRQ_WAKE_THREAD;
1586 }
1587
1588 return IRQ_NONE;
1589}
1590
1591static struct ahash_engine_alg algs_md5[] = {
1592 {
1593 .base.init = stm32_hash_init,
1594 .base.update = stm32_hash_update,
1595 .base.final = stm32_hash_final,
1596 .base.finup = stm32_hash_finup,
1597 .base.digest = stm32_hash_digest,
1598 .base.export = stm32_hash_export,
1599 .base.import = stm32_hash_import,
1600 .base.halg = {
1601 .digestsize = MD5_DIGEST_SIZE,
1602 .statesize = sizeof(struct stm32_hash_state),
1603 .base = {
1604 .cra_name = "md5",
1605 .cra_driver_name = "stm32-md5",
1606 .cra_priority = 200,
1607 .cra_flags = CRYPTO_ALG_ASYNC |
1608 CRYPTO_ALG_KERN_DRIVER_ONLY,
1609 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1610 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1611 .cra_init = stm32_hash_cra_init,
1612 .cra_exit = stm32_hash_cra_exit,
1613 .cra_module = THIS_MODULE,
1614 }
1615 },
1616 .op = {
1617 .do_one_request = stm32_hash_one_request,
1618 },
1619 },
1620 {
1621 .base.init = stm32_hash_init,
1622 .base.update = stm32_hash_update,
1623 .base.final = stm32_hash_final,
1624 .base.finup = stm32_hash_finup,
1625 .base.digest = stm32_hash_digest,
1626 .base.export = stm32_hash_export,
1627 .base.import = stm32_hash_import,
1628 .base.setkey = stm32_hash_setkey,
1629 .base.halg = {
1630 .digestsize = MD5_DIGEST_SIZE,
1631 .statesize = sizeof(struct stm32_hash_state),
1632 .base = {
1633 .cra_name = "hmac(md5)",
1634 .cra_driver_name = "stm32-hmac-md5",
1635 .cra_priority = 200,
1636 .cra_flags = CRYPTO_ALG_ASYNC |
1637 CRYPTO_ALG_KERN_DRIVER_ONLY,
1638 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1639 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1640 .cra_init = stm32_hash_cra_hmac_init,
1641 .cra_exit = stm32_hash_cra_exit,
1642 .cra_module = THIS_MODULE,
1643 }
1644 },
1645 .op = {
1646 .do_one_request = stm32_hash_one_request,
1647 },
1648 }
1649};
1650
1651static struct ahash_engine_alg algs_sha1[] = {
1652 {
1653 .base.init = stm32_hash_init,
1654 .base.update = stm32_hash_update,
1655 .base.final = stm32_hash_final,
1656 .base.finup = stm32_hash_finup,
1657 .base.digest = stm32_hash_digest,
1658 .base.export = stm32_hash_export,
1659 .base.import = stm32_hash_import,
1660 .base.halg = {
1661 .digestsize = SHA1_DIGEST_SIZE,
1662 .statesize = sizeof(struct stm32_hash_state),
1663 .base = {
1664 .cra_name = "sha1",
1665 .cra_driver_name = "stm32-sha1",
1666 .cra_priority = 200,
1667 .cra_flags = CRYPTO_ALG_ASYNC |
1668 CRYPTO_ALG_KERN_DRIVER_ONLY,
1669 .cra_blocksize = SHA1_BLOCK_SIZE,
1670 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1671 .cra_init = stm32_hash_cra_init,
1672 .cra_exit = stm32_hash_cra_exit,
1673 .cra_module = THIS_MODULE,
1674 }
1675 },
1676 .op = {
1677 .do_one_request = stm32_hash_one_request,
1678 },
1679 },
1680 {
1681 .base.init = stm32_hash_init,
1682 .base.update = stm32_hash_update,
1683 .base.final = stm32_hash_final,
1684 .base.finup = stm32_hash_finup,
1685 .base.digest = stm32_hash_digest,
1686 .base.export = stm32_hash_export,
1687 .base.import = stm32_hash_import,
1688 .base.setkey = stm32_hash_setkey,
1689 .base.halg = {
1690 .digestsize = SHA1_DIGEST_SIZE,
1691 .statesize = sizeof(struct stm32_hash_state),
1692 .base = {
1693 .cra_name = "hmac(sha1)",
1694 .cra_driver_name = "stm32-hmac-sha1",
1695 .cra_priority = 200,
1696 .cra_flags = CRYPTO_ALG_ASYNC |
1697 CRYPTO_ALG_KERN_DRIVER_ONLY,
1698 .cra_blocksize = SHA1_BLOCK_SIZE,
1699 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1700 .cra_init = stm32_hash_cra_hmac_init,
1701 .cra_exit = stm32_hash_cra_exit,
1702 .cra_module = THIS_MODULE,
1703 }
1704 },
1705 .op = {
1706 .do_one_request = stm32_hash_one_request,
1707 },
1708 },
1709};
1710
1711static struct ahash_engine_alg algs_sha224[] = {
1712 {
1713 .base.init = stm32_hash_init,
1714 .base.update = stm32_hash_update,
1715 .base.final = stm32_hash_final,
1716 .base.finup = stm32_hash_finup,
1717 .base.digest = stm32_hash_digest,
1718 .base.export = stm32_hash_export,
1719 .base.import = stm32_hash_import,
1720 .base.halg = {
1721 .digestsize = SHA224_DIGEST_SIZE,
1722 .statesize = sizeof(struct stm32_hash_state),
1723 .base = {
1724 .cra_name = "sha224",
1725 .cra_driver_name = "stm32-sha224",
1726 .cra_priority = 200,
1727 .cra_flags = CRYPTO_ALG_ASYNC |
1728 CRYPTO_ALG_KERN_DRIVER_ONLY,
1729 .cra_blocksize = SHA224_BLOCK_SIZE,
1730 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1731 .cra_init = stm32_hash_cra_init,
1732 .cra_exit = stm32_hash_cra_exit,
1733 .cra_module = THIS_MODULE,
1734 }
1735 },
1736 .op = {
1737 .do_one_request = stm32_hash_one_request,
1738 },
1739 },
1740 {
1741 .base.init = stm32_hash_init,
1742 .base.update = stm32_hash_update,
1743 .base.final = stm32_hash_final,
1744 .base.finup = stm32_hash_finup,
1745 .base.digest = stm32_hash_digest,
1746 .base.setkey = stm32_hash_setkey,
1747 .base.export = stm32_hash_export,
1748 .base.import = stm32_hash_import,
1749 .base.halg = {
1750 .digestsize = SHA224_DIGEST_SIZE,
1751 .statesize = sizeof(struct stm32_hash_state),
1752 .base = {
1753 .cra_name = "hmac(sha224)",
1754 .cra_driver_name = "stm32-hmac-sha224",
1755 .cra_priority = 200,
1756 .cra_flags = CRYPTO_ALG_ASYNC |
1757 CRYPTO_ALG_KERN_DRIVER_ONLY,
1758 .cra_blocksize = SHA224_BLOCK_SIZE,
1759 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1760 .cra_init = stm32_hash_cra_hmac_init,
1761 .cra_exit = stm32_hash_cra_exit,
1762 .cra_module = THIS_MODULE,
1763 }
1764 },
1765 .op = {
1766 .do_one_request = stm32_hash_one_request,
1767 },
1768 },
1769};
1770
1771static struct ahash_engine_alg algs_sha256[] = {
1772 {
1773 .base.init = stm32_hash_init,
1774 .base.update = stm32_hash_update,
1775 .base.final = stm32_hash_final,
1776 .base.finup = stm32_hash_finup,
1777 .base.digest = stm32_hash_digest,
1778 .base.export = stm32_hash_export,
1779 .base.import = stm32_hash_import,
1780 .base.halg = {
1781 .digestsize = SHA256_DIGEST_SIZE,
1782 .statesize = sizeof(struct stm32_hash_state),
1783 .base = {
1784 .cra_name = "sha256",
1785 .cra_driver_name = "stm32-sha256",
1786 .cra_priority = 200,
1787 .cra_flags = CRYPTO_ALG_ASYNC |
1788 CRYPTO_ALG_KERN_DRIVER_ONLY,
1789 .cra_blocksize = SHA256_BLOCK_SIZE,
1790 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1791 .cra_init = stm32_hash_cra_init,
1792 .cra_exit = stm32_hash_cra_exit,
1793 .cra_module = THIS_MODULE,
1794 }
1795 },
1796 .op = {
1797 .do_one_request = stm32_hash_one_request,
1798 },
1799 },
1800 {
1801 .base.init = stm32_hash_init,
1802 .base.update = stm32_hash_update,
1803 .base.final = stm32_hash_final,
1804 .base.finup = stm32_hash_finup,
1805 .base.digest = stm32_hash_digest,
1806 .base.export = stm32_hash_export,
1807 .base.import = stm32_hash_import,
1808 .base.setkey = stm32_hash_setkey,
1809 .base.halg = {
1810 .digestsize = SHA256_DIGEST_SIZE,
1811 .statesize = sizeof(struct stm32_hash_state),
1812 .base = {
1813 .cra_name = "hmac(sha256)",
1814 .cra_driver_name = "stm32-hmac-sha256",
1815 .cra_priority = 200,
1816 .cra_flags = CRYPTO_ALG_ASYNC |
1817 CRYPTO_ALG_KERN_DRIVER_ONLY,
1818 .cra_blocksize = SHA256_BLOCK_SIZE,
1819 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1820 .cra_init = stm32_hash_cra_hmac_init,
1821 .cra_exit = stm32_hash_cra_exit,
1822 .cra_module = THIS_MODULE,
1823 }
1824 },
1825 .op = {
1826 .do_one_request = stm32_hash_one_request,
1827 },
1828 },
1829};
1830
1831static struct ahash_engine_alg algs_sha384_sha512[] = {
1832 {
1833 .base.init = stm32_hash_init,
1834 .base.update = stm32_hash_update,
1835 .base.final = stm32_hash_final,
1836 .base.finup = stm32_hash_finup,
1837 .base.digest = stm32_hash_digest,
1838 .base.export = stm32_hash_export,
1839 .base.import = stm32_hash_import,
1840 .base.halg = {
1841 .digestsize = SHA384_DIGEST_SIZE,
1842 .statesize = sizeof(struct stm32_hash_state),
1843 .base = {
1844 .cra_name = "sha384",
1845 .cra_driver_name = "stm32-sha384",
1846 .cra_priority = 200,
1847 .cra_flags = CRYPTO_ALG_ASYNC |
1848 CRYPTO_ALG_KERN_DRIVER_ONLY,
1849 .cra_blocksize = SHA384_BLOCK_SIZE,
1850 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1851 .cra_init = stm32_hash_cra_init,
1852 .cra_exit = stm32_hash_cra_exit,
1853 .cra_module = THIS_MODULE,
1854 }
1855 },
1856 .op = {
1857 .do_one_request = stm32_hash_one_request,
1858 },
1859 },
1860 {
1861 .base.init = stm32_hash_init,
1862 .base.update = stm32_hash_update,
1863 .base.final = stm32_hash_final,
1864 .base.finup = stm32_hash_finup,
1865 .base.digest = stm32_hash_digest,
1866 .base.setkey = stm32_hash_setkey,
1867 .base.export = stm32_hash_export,
1868 .base.import = stm32_hash_import,
1869 .base.halg = {
1870 .digestsize = SHA384_DIGEST_SIZE,
1871 .statesize = sizeof(struct stm32_hash_state),
1872 .base = {
1873 .cra_name = "hmac(sha384)",
1874 .cra_driver_name = "stm32-hmac-sha384",
1875 .cra_priority = 200,
1876 .cra_flags = CRYPTO_ALG_ASYNC |
1877 CRYPTO_ALG_KERN_DRIVER_ONLY,
1878 .cra_blocksize = SHA384_BLOCK_SIZE,
1879 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1880 .cra_init = stm32_hash_cra_hmac_init,
1881 .cra_exit = stm32_hash_cra_exit,
1882 .cra_module = THIS_MODULE,
1883 }
1884 },
1885 .op = {
1886 .do_one_request = stm32_hash_one_request,
1887 },
1888 },
1889 {
1890 .base.init = stm32_hash_init,
1891 .base.update = stm32_hash_update,
1892 .base.final = stm32_hash_final,
1893 .base.finup = stm32_hash_finup,
1894 .base.digest = stm32_hash_digest,
1895 .base.export = stm32_hash_export,
1896 .base.import = stm32_hash_import,
1897 .base.halg = {
1898 .digestsize = SHA512_DIGEST_SIZE,
1899 .statesize = sizeof(struct stm32_hash_state),
1900 .base = {
1901 .cra_name = "sha512",
1902 .cra_driver_name = "stm32-sha512",
1903 .cra_priority = 200,
1904 .cra_flags = CRYPTO_ALG_ASYNC |
1905 CRYPTO_ALG_KERN_DRIVER_ONLY,
1906 .cra_blocksize = SHA512_BLOCK_SIZE,
1907 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1908 .cra_init = stm32_hash_cra_init,
1909 .cra_exit = stm32_hash_cra_exit,
1910 .cra_module = THIS_MODULE,
1911 }
1912 },
1913 .op = {
1914 .do_one_request = stm32_hash_one_request,
1915 },
1916 },
1917 {
1918 .base.init = stm32_hash_init,
1919 .base.update = stm32_hash_update,
1920 .base.final = stm32_hash_final,
1921 .base.finup = stm32_hash_finup,
1922 .base.digest = stm32_hash_digest,
1923 .base.export = stm32_hash_export,
1924 .base.import = stm32_hash_import,
1925 .base.setkey = stm32_hash_setkey,
1926 .base.halg = {
1927 .digestsize = SHA512_DIGEST_SIZE,
1928 .statesize = sizeof(struct stm32_hash_state),
1929 .base = {
1930 .cra_name = "hmac(sha512)",
1931 .cra_driver_name = "stm32-hmac-sha512",
1932 .cra_priority = 200,
1933 .cra_flags = CRYPTO_ALG_ASYNC |
1934 CRYPTO_ALG_KERN_DRIVER_ONLY,
1935 .cra_blocksize = SHA512_BLOCK_SIZE,
1936 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1937 .cra_init = stm32_hash_cra_hmac_init,
1938 .cra_exit = stm32_hash_cra_exit,
1939 .cra_module = THIS_MODULE,
1940 }
1941 },
1942 .op = {
1943 .do_one_request = stm32_hash_one_request,
1944 },
1945 },
1946};
1947
1948static struct ahash_engine_alg algs_sha3[] = {
1949 {
1950 .base.init = stm32_hash_init,
1951 .base.update = stm32_hash_update,
1952 .base.final = stm32_hash_final,
1953 .base.finup = stm32_hash_finup,
1954 .base.digest = stm32_hash_digest,
1955 .base.export = stm32_hash_export,
1956 .base.import = stm32_hash_import,
1957 .base.halg = {
1958 .digestsize = SHA3_224_DIGEST_SIZE,
1959 .statesize = sizeof(struct stm32_hash_state),
1960 .base = {
1961 .cra_name = "sha3-224",
1962 .cra_driver_name = "stm32-sha3-224",
1963 .cra_priority = 200,
1964 .cra_flags = CRYPTO_ALG_ASYNC |
1965 CRYPTO_ALG_KERN_DRIVER_ONLY,
1966 .cra_blocksize = SHA3_224_BLOCK_SIZE,
1967 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1968 .cra_init = stm32_hash_cra_sha3_init,
1969 .cra_exit = stm32_hash_cra_exit,
1970 .cra_module = THIS_MODULE,
1971 }
1972 },
1973 .op = {
1974 .do_one_request = stm32_hash_one_request,
1975 },
1976 },
1977 {
1978 .base.init = stm32_hash_init,
1979 .base.update = stm32_hash_update,
1980 .base.final = stm32_hash_final,
1981 .base.finup = stm32_hash_finup,
1982 .base.digest = stm32_hash_digest,
1983 .base.export = stm32_hash_export,
1984 .base.import = stm32_hash_import,
1985 .base.setkey = stm32_hash_setkey,
1986 .base.halg = {
1987 .digestsize = SHA3_224_DIGEST_SIZE,
1988 .statesize = sizeof(struct stm32_hash_state),
1989 .base = {
1990 .cra_name = "hmac(sha3-224)",
1991 .cra_driver_name = "stm32-hmac-sha3-224",
1992 .cra_priority = 200,
1993 .cra_flags = CRYPTO_ALG_ASYNC |
1994 CRYPTO_ALG_KERN_DRIVER_ONLY,
1995 .cra_blocksize = SHA3_224_BLOCK_SIZE,
1996 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1997 .cra_init = stm32_hash_cra_sha3_hmac_init,
1998 .cra_exit = stm32_hash_cra_exit,
1999 .cra_module = THIS_MODULE,
2000 }
2001 },
2002 .op = {
2003 .do_one_request = stm32_hash_one_request,
2004 },
2005 },
2006 {
2007 .base.init = stm32_hash_init,
2008 .base.update = stm32_hash_update,
2009 .base.final = stm32_hash_final,
2010 .base.finup = stm32_hash_finup,
2011 .base.digest = stm32_hash_digest,
2012 .base.export = stm32_hash_export,
2013 .base.import = stm32_hash_import,
2014 .base.halg = {
2015 .digestsize = SHA3_256_DIGEST_SIZE,
2016 .statesize = sizeof(struct stm32_hash_state),
2017 .base = {
2018 .cra_name = "sha3-256",
2019 .cra_driver_name = "stm32-sha3-256",
2020 .cra_priority = 200,
2021 .cra_flags = CRYPTO_ALG_ASYNC |
2022 CRYPTO_ALG_KERN_DRIVER_ONLY,
2023 .cra_blocksize = SHA3_256_BLOCK_SIZE,
2024 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
2025 .cra_init = stm32_hash_cra_sha3_init,
2026 .cra_exit = stm32_hash_cra_exit,
2027 .cra_module = THIS_MODULE,
2028 }
2029 },
2030 .op = {
2031 .do_one_request = stm32_hash_one_request,
2032 },
2033 },
2034 {
2035 .base.init = stm32_hash_init,
2036 .base.update = stm32_hash_update,
2037 .base.final = stm32_hash_final,
2038 .base.finup = stm32_hash_finup,
2039 .base.digest = stm32_hash_digest,
2040 .base.export = stm32_hash_export,
2041 .base.import = stm32_hash_import,
2042 .base.setkey = stm32_hash_setkey,
2043 .base.halg = {
2044 .digestsize = SHA3_256_DIGEST_SIZE,
2045 .statesize = sizeof(struct stm32_hash_state),
2046 .base = {
2047 .cra_name = "hmac(sha3-256)",
2048 .cra_driver_name = "stm32-hmac-sha3-256",
2049 .cra_priority = 200,
2050 .cra_flags = CRYPTO_ALG_ASYNC |
2051 CRYPTO_ALG_KERN_DRIVER_ONLY,
2052 .cra_blocksize = SHA3_256_BLOCK_SIZE,
2053 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
2054 .cra_init = stm32_hash_cra_sha3_hmac_init,
2055 .cra_exit = stm32_hash_cra_exit,
2056 .cra_module = THIS_MODULE,
2057 }
2058 },
2059 .op = {
2060 .do_one_request = stm32_hash_one_request,
2061 },
2062 },
2063 {
2064 .base.init = stm32_hash_init,
2065 .base.update = stm32_hash_update,
2066 .base.final = stm32_hash_final,
2067 .base.finup = stm32_hash_finup,
2068 .base.digest = stm32_hash_digest,
2069 .base.export = stm32_hash_export,
2070 .base.import = stm32_hash_import,
2071 .base.halg = {
2072 .digestsize = SHA3_384_DIGEST_SIZE,
2073 .statesize = sizeof(struct stm32_hash_state),
2074 .base = {
2075 .cra_name = "sha3-384",
2076 .cra_driver_name = "stm32-sha3-384",
2077 .cra_priority = 200,
2078 .cra_flags = CRYPTO_ALG_ASYNC |
2079 CRYPTO_ALG_KERN_DRIVER_ONLY,
2080 .cra_blocksize = SHA3_384_BLOCK_SIZE,
2081 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
2082 .cra_init = stm32_hash_cra_sha3_init,
2083 .cra_exit = stm32_hash_cra_exit,
2084 .cra_module = THIS_MODULE,
2085 }
2086 },
2087 .op = {
2088 .do_one_request = stm32_hash_one_request,
2089 },
2090 },
2091 {
2092 .base.init = stm32_hash_init,
2093 .base.update = stm32_hash_update,
2094 .base.final = stm32_hash_final,
2095 .base.finup = stm32_hash_finup,
2096 .base.digest = stm32_hash_digest,
2097 .base.export = stm32_hash_export,
2098 .base.import = stm32_hash_import,
2099 .base.setkey = stm32_hash_setkey,
2100 .base.halg = {
2101 .digestsize = SHA3_384_DIGEST_SIZE,
2102 .statesize = sizeof(struct stm32_hash_state),
2103 .base = {
2104 .cra_name = "hmac(sha3-384)",
2105 .cra_driver_name = "stm32-hmac-sha3-384",
2106 .cra_priority = 200,
2107 .cra_flags = CRYPTO_ALG_ASYNC |
2108 CRYPTO_ALG_KERN_DRIVER_ONLY,
2109 .cra_blocksize = SHA3_384_BLOCK_SIZE,
2110 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
2111 .cra_init = stm32_hash_cra_sha3_hmac_init,
2112 .cra_exit = stm32_hash_cra_exit,
2113 .cra_module = THIS_MODULE,
2114 }
2115 },
2116 .op = {
2117 .do_one_request = stm32_hash_one_request,
2118 },
2119 },
2120 {
2121 .base.init = stm32_hash_init,
2122 .base.update = stm32_hash_update,
2123 .base.final = stm32_hash_final,
2124 .base.finup = stm32_hash_finup,
2125 .base.digest = stm32_hash_digest,
2126 .base.export = stm32_hash_export,
2127 .base.import = stm32_hash_import,
2128 .base.halg = {
2129 .digestsize = SHA3_512_DIGEST_SIZE,
2130 .statesize = sizeof(struct stm32_hash_state),
2131 .base = {
2132 .cra_name = "sha3-512",
2133 .cra_driver_name = "stm32-sha3-512",
2134 .cra_priority = 200,
2135 .cra_flags = CRYPTO_ALG_ASYNC |
2136 CRYPTO_ALG_KERN_DRIVER_ONLY,
2137 .cra_blocksize = SHA3_512_BLOCK_SIZE,
2138 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
2139 .cra_init = stm32_hash_cra_sha3_init,
2140 .cra_exit = stm32_hash_cra_exit,
2141 .cra_module = THIS_MODULE,
2142 }
2143 },
2144 .op = {
2145 .do_one_request = stm32_hash_one_request,
2146 },
2147 },
2148 {
2149 .base.init = stm32_hash_init,
2150 .base.update = stm32_hash_update,
2151 .base.final = stm32_hash_final,
2152 .base.finup = stm32_hash_finup,
2153 .base.digest = stm32_hash_digest,
2154 .base.export = stm32_hash_export,
2155 .base.import = stm32_hash_import,
2156 .base.setkey = stm32_hash_setkey,
2157 .base.halg = {
2158 .digestsize = SHA3_512_DIGEST_SIZE,
2159 .statesize = sizeof(struct stm32_hash_state),
2160 .base = {
2161 .cra_name = "hmac(sha3-512)",
2162 .cra_driver_name = "stm32-hmac-sha3-512",
2163 .cra_priority = 200,
2164 .cra_flags = CRYPTO_ALG_ASYNC |
2165 CRYPTO_ALG_KERN_DRIVER_ONLY,
2166 .cra_blocksize = SHA3_512_BLOCK_SIZE,
2167 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
2168 .cra_init = stm32_hash_cra_sha3_hmac_init,
2169 .cra_exit = stm32_hash_cra_exit,
2170 .cra_module = THIS_MODULE,
2171 }
2172 },
2173 .op = {
2174 .do_one_request = stm32_hash_one_request,
2175 },
2176 }
2177};
2178
2179static int stm32_hash_register_algs(struct stm32_hash_dev *hdev)
2180{
2181 unsigned int i, j;
2182 int err;
2183
2184 for (i = 0; i < hdev->pdata->algs_info_size; i++) {
2185 for (j = 0; j < hdev->pdata->algs_info[i].size; j++) {
2186 err = crypto_engine_register_ahash(
2187 &hdev->pdata->algs_info[i].algs_list[j]);
2188 if (err)
2189 goto err_algs;
2190 }
2191 }
2192
2193 return 0;
2194err_algs:
2195 dev_err(hdev->dev, "Algo %d : %d failed\n", i, j);
2196 for (; i--; ) {
2197 for (; j--;)
2198 crypto_engine_unregister_ahash(
2199 &hdev->pdata->algs_info[i].algs_list[j]);
2200 }
2201
2202 return err;
2203}
2204
2205static int stm32_hash_unregister_algs(struct stm32_hash_dev *hdev)
2206{
2207 unsigned int i, j;
2208
2209 for (i = 0; i < hdev->pdata->algs_info_size; i++) {
2210 for (j = 0; j < hdev->pdata->algs_info[i].size; j++)
2211 crypto_engine_unregister_ahash(
2212 &hdev->pdata->algs_info[i].algs_list[j]);
2213 }
2214
2215 return 0;
2216}
2217
2218static struct stm32_hash_algs_info stm32_hash_algs_info_ux500[] = {
2219 {
2220 .algs_list = algs_sha1,
2221 .size = ARRAY_SIZE(algs_sha1),
2222 },
2223 {
2224 .algs_list = algs_sha256,
2225 .size = ARRAY_SIZE(algs_sha256),
2226 },
2227};
2228
2229static const struct stm32_hash_pdata stm32_hash_pdata_ux500 = {
2230 .alg_shift = 7,
2231 .algs_info = stm32_hash_algs_info_ux500,
2232 .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_ux500),
2233 .broken_emptymsg = true,
2234 .ux500 = true,
2235};
2236
2237static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f4[] = {
2238 {
2239 .algs_list = algs_md5,
2240 .size = ARRAY_SIZE(algs_md5),
2241 },
2242 {
2243 .algs_list = algs_sha1,
2244 .size = ARRAY_SIZE(algs_sha1),
2245 },
2246};
2247
2248static const struct stm32_hash_pdata stm32_hash_pdata_stm32f4 = {
2249 .alg_shift = 7,
2250 .algs_info = stm32_hash_algs_info_stm32f4,
2251 .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32f4),
2252 .has_sr = true,
2253 .has_mdmat = true,
2254};
2255
2256static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f7[] = {
2257 {
2258 .algs_list = algs_md5,
2259 .size = ARRAY_SIZE(algs_md5),
2260 },
2261 {
2262 .algs_list = algs_sha1,
2263 .size = ARRAY_SIZE(algs_sha1),
2264 },
2265 {
2266 .algs_list = algs_sha224,
2267 .size = ARRAY_SIZE(algs_sha224),
2268 },
2269 {
2270 .algs_list = algs_sha256,
2271 .size = ARRAY_SIZE(algs_sha256),
2272 },
2273};
2274
2275static const struct stm32_hash_pdata stm32_hash_pdata_stm32f7 = {
2276 .alg_shift = 7,
2277 .algs_info = stm32_hash_algs_info_stm32f7,
2278 .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32f7),
2279 .has_sr = true,
2280 .has_mdmat = true,
2281};
2282
2283static struct stm32_hash_algs_info stm32_hash_algs_info_stm32mp13[] = {
2284 {
2285 .algs_list = algs_sha1,
2286 .size = ARRAY_SIZE(algs_sha1),
2287 },
2288 {
2289 .algs_list = algs_sha224,
2290 .size = ARRAY_SIZE(algs_sha224),
2291 },
2292 {
2293 .algs_list = algs_sha256,
2294 .size = ARRAY_SIZE(algs_sha256),
2295 },
2296 {
2297 .algs_list = algs_sha384_sha512,
2298 .size = ARRAY_SIZE(algs_sha384_sha512),
2299 },
2300 {
2301 .algs_list = algs_sha3,
2302 .size = ARRAY_SIZE(algs_sha3),
2303 },
2304};
2305
2306static const struct stm32_hash_pdata stm32_hash_pdata_stm32mp13 = {
2307 .alg_shift = 17,
2308 .algs_info = stm32_hash_algs_info_stm32mp13,
2309 .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32mp13),
2310 .has_sr = true,
2311 .has_mdmat = true,
2312 .context_secured = true,
2313};
2314
2315static const struct of_device_id stm32_hash_of_match[] = {
2316 { .compatible = "stericsson,ux500-hash", .data = &stm32_hash_pdata_ux500 },
2317 { .compatible = "st,stm32f456-hash", .data = &stm32_hash_pdata_stm32f4 },
2318 { .compatible = "st,stm32f756-hash", .data = &stm32_hash_pdata_stm32f7 },
2319 { .compatible = "st,stm32mp13-hash", .data = &stm32_hash_pdata_stm32mp13 },
2320 {},
2321};
2322
2323MODULE_DEVICE_TABLE(of, stm32_hash_of_match);
2324
2325static int stm32_hash_get_of_match(struct stm32_hash_dev *hdev,
2326 struct device *dev)
2327{
2328 hdev->pdata = of_device_get_match_data(dev);
2329 if (!hdev->pdata) {
2330 dev_err(dev, "no compatible OF match\n");
2331 return -EINVAL;
2332 }
2333
2334 return 0;
2335}
2336
2337static int stm32_hash_probe(struct platform_device *pdev)
2338{
2339 struct stm32_hash_dev *hdev;
2340 struct device *dev = &pdev->dev;
2341 struct resource *res;
2342 int ret, irq;
2343
2344 hdev = devm_kzalloc(dev, sizeof(*hdev), GFP_KERNEL);
2345 if (!hdev)
2346 return -ENOMEM;
2347
2348 hdev->io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2349 if (IS_ERR(hdev->io_base))
2350 return PTR_ERR(hdev->io_base);
2351
2352 hdev->phys_base = res->start;
2353
2354 ret = stm32_hash_get_of_match(hdev, dev);
2355 if (ret)
2356 return ret;
2357
2358 irq = platform_get_irq_optional(pdev, 0);
2359 if (irq < 0 && irq != -ENXIO)
2360 return irq;
2361
2362 if (irq > 0) {
2363 ret = devm_request_threaded_irq(dev, irq,
2364 stm32_hash_irq_handler,
2365 stm32_hash_irq_thread,
2366 IRQF_ONESHOT,
2367 dev_name(dev), hdev);
2368 if (ret) {
2369 dev_err(dev, "Cannot grab IRQ\n");
2370 return ret;
2371 }
2372 } else {
2373 dev_info(dev, "No IRQ, use polling mode\n");
2374 hdev->polled = true;
2375 }
2376
2377 hdev->clk = devm_clk_get(&pdev->dev, NULL);
2378 if (IS_ERR(hdev->clk))
2379 return dev_err_probe(dev, PTR_ERR(hdev->clk),
2380 "failed to get clock for hash\n");
2381
2382 ret = clk_prepare_enable(hdev->clk);
2383 if (ret) {
2384 dev_err(dev, "failed to enable hash clock (%d)\n", ret);
2385 return ret;
2386 }
2387
2388 pm_runtime_set_autosuspend_delay(dev, HASH_AUTOSUSPEND_DELAY);
2389 pm_runtime_use_autosuspend(dev);
2390
2391 pm_runtime_get_noresume(dev);
2392 pm_runtime_set_active(dev);
2393 pm_runtime_enable(dev);
2394
2395 hdev->rst = devm_reset_control_get(&pdev->dev, NULL);
2396 if (IS_ERR(hdev->rst)) {
2397 if (PTR_ERR(hdev->rst) == -EPROBE_DEFER) {
2398 ret = -EPROBE_DEFER;
2399 goto err_reset;
2400 }
2401 } else {
2402 reset_control_assert(hdev->rst);
2403 udelay(2);
2404 reset_control_deassert(hdev->rst);
2405 }
2406
2407 hdev->dev = dev;
2408
2409 platform_set_drvdata(pdev, hdev);
2410
2411 ret = stm32_hash_dma_init(hdev);
2412 switch (ret) {
2413 case 0:
2414 break;
2415 case -ENOENT:
2416 case -ENODEV:
2417 dev_info(dev, "DMA mode not available\n");
2418 break;
2419 default:
2420 dev_err(dev, "DMA init error %d\n", ret);
2421 goto err_dma;
2422 }
2423
2424 spin_lock(&stm32_hash.lock);
2425 list_add_tail(&hdev->list, &stm32_hash.dev_list);
2426 spin_unlock(&stm32_hash.lock);
2427
2428 /* Initialize crypto engine */
2429 hdev->engine = crypto_engine_alloc_init(dev, 1);
2430 if (!hdev->engine) {
2431 ret = -ENOMEM;
2432 goto err_engine;
2433 }
2434
2435 ret = crypto_engine_start(hdev->engine);
2436 if (ret)
2437 goto err_engine_start;
2438
2439 if (hdev->pdata->ux500)
2440 /* FIXME: implement DMA mode for Ux500 */
2441 hdev->dma_mode = 0;
2442 else
2443 hdev->dma_mode = stm32_hash_read(hdev, HASH_HWCFGR) & HASH_HWCFG_DMA_MASK;
2444
2445 /* Register algos */
2446 ret = stm32_hash_register_algs(hdev);
2447 if (ret)
2448 goto err_algs;
2449
2450 dev_info(dev, "Init HASH done HW ver %x DMA mode %u\n",
2451 stm32_hash_read(hdev, HASH_VER), hdev->dma_mode);
2452
2453 pm_runtime_put_sync(dev);
2454
2455 return 0;
2456
2457err_algs:
2458err_engine_start:
2459 crypto_engine_exit(hdev->engine);
2460err_engine:
2461 spin_lock(&stm32_hash.lock);
2462 list_del(&hdev->list);
2463 spin_unlock(&stm32_hash.lock);
2464err_dma:
2465 if (hdev->dma_lch)
2466 dma_release_channel(hdev->dma_lch);
2467err_reset:
2468 pm_runtime_disable(dev);
2469 pm_runtime_put_noidle(dev);
2470
2471 clk_disable_unprepare(hdev->clk);
2472
2473 return ret;
2474}
2475
2476static void stm32_hash_remove(struct platform_device *pdev)
2477{
2478 struct stm32_hash_dev *hdev = platform_get_drvdata(pdev);
2479 int ret;
2480
2481 ret = pm_runtime_get_sync(hdev->dev);
2482
2483 stm32_hash_unregister_algs(hdev);
2484
2485 crypto_engine_exit(hdev->engine);
2486
2487 spin_lock(&stm32_hash.lock);
2488 list_del(&hdev->list);
2489 spin_unlock(&stm32_hash.lock);
2490
2491 if (hdev->dma_lch)
2492 dma_release_channel(hdev->dma_lch);
2493
2494 pm_runtime_disable(hdev->dev);
2495 pm_runtime_put_noidle(hdev->dev);
2496
2497 if (ret >= 0)
2498 clk_disable_unprepare(hdev->clk);
2499}
2500
2501#ifdef CONFIG_PM
2502static int stm32_hash_runtime_suspend(struct device *dev)
2503{
2504 struct stm32_hash_dev *hdev = dev_get_drvdata(dev);
2505
2506 clk_disable_unprepare(hdev->clk);
2507
2508 return 0;
2509}
2510
2511static int stm32_hash_runtime_resume(struct device *dev)
2512{
2513 struct stm32_hash_dev *hdev = dev_get_drvdata(dev);
2514 int ret;
2515
2516 ret = clk_prepare_enable(hdev->clk);
2517 if (ret) {
2518 dev_err(hdev->dev, "Failed to prepare_enable clock\n");
2519 return ret;
2520 }
2521
2522 return 0;
2523}
2524#endif
2525
2526static const struct dev_pm_ops stm32_hash_pm_ops = {
2527 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2528 pm_runtime_force_resume)
2529 SET_RUNTIME_PM_OPS(stm32_hash_runtime_suspend,
2530 stm32_hash_runtime_resume, NULL)
2531};
2532
2533static struct platform_driver stm32_hash_driver = {
2534 .probe = stm32_hash_probe,
2535 .remove = stm32_hash_remove,
2536 .driver = {
2537 .name = "stm32-hash",
2538 .pm = &stm32_hash_pm_ops,
2539 .of_match_table = stm32_hash_of_match,
2540 }
2541};
2542
2543module_platform_driver(stm32_hash_driver);
2544
2545MODULE_DESCRIPTION("STM32 SHA1/SHA2/SHA3 & MD5 (HMAC) hw accelerator driver");
2546MODULE_AUTHOR("Lionel Debieve <lionel.debieve@st.com>");
2547MODULE_LICENSE("GPL v2");
1/*
2 * This file is part of STM32 Crypto driver for Linux.
3 *
4 * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
5 * Author(s): Lionel DEBIEVE <lionel.debieve@st.com> for STMicroelectronics.
6 *
7 * License terms: GPL V2.0.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License version 2 as published by
11 * the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
16 * details.
17 *
18 * You should have received a copy of the GNU General Public License along with
19 * this program. If not, see <http://www.gnu.org/licenses/>.
20 *
21 */
22
23#include <linux/clk.h>
24#include <linux/crypto.h>
25#include <linux/delay.h>
26#include <linux/dmaengine.h>
27#include <linux/interrupt.h>
28#include <linux/io.h>
29#include <linux/iopoll.h>
30#include <linux/kernel.h>
31#include <linux/module.h>
32#include <linux/of_device.h>
33#include <linux/platform_device.h>
34#include <linux/reset.h>
35
36#include <crypto/engine.h>
37#include <crypto/hash.h>
38#include <crypto/md5.h>
39#include <crypto/scatterwalk.h>
40#include <crypto/sha.h>
41#include <crypto/internal/hash.h>
42
43#define HASH_CR 0x00
44#define HASH_DIN 0x04
45#define HASH_STR 0x08
46#define HASH_IMR 0x20
47#define HASH_SR 0x24
48#define HASH_CSR(x) (0x0F8 + ((x) * 0x04))
49#define HASH_HREG(x) (0x310 + ((x) * 0x04))
50#define HASH_HWCFGR 0x3F0
51#define HASH_VER 0x3F4
52#define HASH_ID 0x3F8
53
54/* Control Register */
55#define HASH_CR_INIT BIT(2)
56#define HASH_CR_DMAE BIT(3)
57#define HASH_CR_DATATYPE_POS 4
58#define HASH_CR_MODE BIT(6)
59#define HASH_CR_MDMAT BIT(13)
60#define HASH_CR_DMAA BIT(14)
61#define HASH_CR_LKEY BIT(16)
62
63#define HASH_CR_ALGO_SHA1 0x0
64#define HASH_CR_ALGO_MD5 0x80
65#define HASH_CR_ALGO_SHA224 0x40000
66#define HASH_CR_ALGO_SHA256 0x40080
67
68/* Interrupt */
69#define HASH_DINIE BIT(0)
70#define HASH_DCIE BIT(1)
71
72/* Interrupt Mask */
73#define HASH_MASK_CALC_COMPLETION BIT(0)
74#define HASH_MASK_DATA_INPUT BIT(1)
75
76/* Context swap register */
77#define HASH_CSR_REGISTER_NUMBER 53
78
79/* Status Flags */
80#define HASH_SR_DATA_INPUT_READY BIT(0)
81#define HASH_SR_OUTPUT_READY BIT(1)
82#define HASH_SR_DMA_ACTIVE BIT(2)
83#define HASH_SR_BUSY BIT(3)
84
85/* STR Register */
86#define HASH_STR_NBLW_MASK GENMASK(4, 0)
87#define HASH_STR_DCAL BIT(8)
88
89#define HASH_FLAGS_INIT BIT(0)
90#define HASH_FLAGS_OUTPUT_READY BIT(1)
91#define HASH_FLAGS_CPU BIT(2)
92#define HASH_FLAGS_DMA_READY BIT(3)
93#define HASH_FLAGS_DMA_ACTIVE BIT(4)
94#define HASH_FLAGS_HMAC_INIT BIT(5)
95#define HASH_FLAGS_HMAC_FINAL BIT(6)
96#define HASH_FLAGS_HMAC_KEY BIT(7)
97
98#define HASH_FLAGS_FINAL BIT(15)
99#define HASH_FLAGS_FINUP BIT(16)
100#define HASH_FLAGS_ALGO_MASK GENMASK(21, 18)
101#define HASH_FLAGS_MD5 BIT(18)
102#define HASH_FLAGS_SHA1 BIT(19)
103#define HASH_FLAGS_SHA224 BIT(20)
104#define HASH_FLAGS_SHA256 BIT(21)
105#define HASH_FLAGS_ERRORS BIT(22)
106#define HASH_FLAGS_HMAC BIT(23)
107
108#define HASH_OP_UPDATE 1
109#define HASH_OP_FINAL 2
110
111enum stm32_hash_data_format {
112 HASH_DATA_32_BITS = 0x0,
113 HASH_DATA_16_BITS = 0x1,
114 HASH_DATA_8_BITS = 0x2,
115 HASH_DATA_1_BIT = 0x3
116};
117
118#define HASH_BUFLEN 256
119#define HASH_LONG_KEY 64
120#define HASH_MAX_KEY_SIZE (SHA256_BLOCK_SIZE * 8)
121#define HASH_QUEUE_LENGTH 16
122#define HASH_DMA_THRESHOLD 50
123
124struct stm32_hash_ctx {
125 struct crypto_engine_ctx enginectx;
126 struct stm32_hash_dev *hdev;
127 unsigned long flags;
128
129 u8 key[HASH_MAX_KEY_SIZE];
130 int keylen;
131};
132
133struct stm32_hash_request_ctx {
134 struct stm32_hash_dev *hdev;
135 unsigned long flags;
136 unsigned long op;
137
138 u8 digest[SHA256_DIGEST_SIZE] __aligned(sizeof(u32));
139 size_t digcnt;
140 size_t bufcnt;
141 size_t buflen;
142
143 /* DMA */
144 struct scatterlist *sg;
145 unsigned int offset;
146 unsigned int total;
147 struct scatterlist sg_key;
148
149 dma_addr_t dma_addr;
150 size_t dma_ct;
151 int nents;
152
153 u8 data_type;
154
155 u8 buffer[HASH_BUFLEN] __aligned(sizeof(u32));
156
157 /* Export Context */
158 u32 *hw_context;
159};
160
161struct stm32_hash_algs_info {
162 struct ahash_alg *algs_list;
163 size_t size;
164};
165
166struct stm32_hash_pdata {
167 struct stm32_hash_algs_info *algs_info;
168 size_t algs_info_size;
169};
170
171struct stm32_hash_dev {
172 struct list_head list;
173 struct device *dev;
174 struct clk *clk;
175 struct reset_control *rst;
176 void __iomem *io_base;
177 phys_addr_t phys_base;
178 u32 dma_mode;
179 u32 dma_maxburst;
180
181 spinlock_t lock; /* lock to protect queue */
182
183 struct ahash_request *req;
184 struct crypto_engine *engine;
185
186 int err;
187 unsigned long flags;
188
189 struct dma_chan *dma_lch;
190 struct completion dma_completion;
191
192 const struct stm32_hash_pdata *pdata;
193};
194
195struct stm32_hash_drv {
196 struct list_head dev_list;
197 spinlock_t lock; /* List protection access */
198};
199
200static struct stm32_hash_drv stm32_hash = {
201 .dev_list = LIST_HEAD_INIT(stm32_hash.dev_list),
202 .lock = __SPIN_LOCK_UNLOCKED(stm32_hash.lock),
203};
204
205static void stm32_hash_dma_callback(void *param);
206
207static inline u32 stm32_hash_read(struct stm32_hash_dev *hdev, u32 offset)
208{
209 return readl_relaxed(hdev->io_base + offset);
210}
211
212static inline void stm32_hash_write(struct stm32_hash_dev *hdev,
213 u32 offset, u32 value)
214{
215 writel_relaxed(value, hdev->io_base + offset);
216}
217
218static inline int stm32_hash_wait_busy(struct stm32_hash_dev *hdev)
219{
220 u32 status;
221
222 return readl_relaxed_poll_timeout(hdev->io_base + HASH_SR, status,
223 !(status & HASH_SR_BUSY), 10, 10000);
224}
225
226static void stm32_hash_set_nblw(struct stm32_hash_dev *hdev, int length)
227{
228 u32 reg;
229
230 reg = stm32_hash_read(hdev, HASH_STR);
231 reg &= ~(HASH_STR_NBLW_MASK);
232 reg |= (8U * ((length) % 4U));
233 stm32_hash_write(hdev, HASH_STR, reg);
234}
235
236static int stm32_hash_write_key(struct stm32_hash_dev *hdev)
237{
238 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
239 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
240 u32 reg;
241 int keylen = ctx->keylen;
242 void *key = ctx->key;
243
244 if (keylen) {
245 stm32_hash_set_nblw(hdev, keylen);
246
247 while (keylen > 0) {
248 stm32_hash_write(hdev, HASH_DIN, *(u32 *)key);
249 keylen -= 4;
250 key += 4;
251 }
252
253 reg = stm32_hash_read(hdev, HASH_STR);
254 reg |= HASH_STR_DCAL;
255 stm32_hash_write(hdev, HASH_STR, reg);
256
257 return -EINPROGRESS;
258 }
259
260 return 0;
261}
262
263static void stm32_hash_write_ctrl(struct stm32_hash_dev *hdev)
264{
265 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
266 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
267 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
268
269 u32 reg = HASH_CR_INIT;
270
271 if (!(hdev->flags & HASH_FLAGS_INIT)) {
272 switch (rctx->flags & HASH_FLAGS_ALGO_MASK) {
273 case HASH_FLAGS_MD5:
274 reg |= HASH_CR_ALGO_MD5;
275 break;
276 case HASH_FLAGS_SHA1:
277 reg |= HASH_CR_ALGO_SHA1;
278 break;
279 case HASH_FLAGS_SHA224:
280 reg |= HASH_CR_ALGO_SHA224;
281 break;
282 case HASH_FLAGS_SHA256:
283 reg |= HASH_CR_ALGO_SHA256;
284 break;
285 default:
286 reg |= HASH_CR_ALGO_MD5;
287 }
288
289 reg |= (rctx->data_type << HASH_CR_DATATYPE_POS);
290
291 if (rctx->flags & HASH_FLAGS_HMAC) {
292 hdev->flags |= HASH_FLAGS_HMAC;
293 reg |= HASH_CR_MODE;
294 if (ctx->keylen > HASH_LONG_KEY)
295 reg |= HASH_CR_LKEY;
296 }
297
298 stm32_hash_write(hdev, HASH_IMR, HASH_DCIE);
299
300 stm32_hash_write(hdev, HASH_CR, reg);
301
302 hdev->flags |= HASH_FLAGS_INIT;
303
304 dev_dbg(hdev->dev, "Write Control %x\n", reg);
305 }
306}
307
308static void stm32_hash_append_sg(struct stm32_hash_request_ctx *rctx)
309{
310 size_t count;
311
312 while ((rctx->bufcnt < rctx->buflen) && rctx->total) {
313 count = min(rctx->sg->length - rctx->offset, rctx->total);
314 count = min(count, rctx->buflen - rctx->bufcnt);
315
316 if (count <= 0) {
317 if ((rctx->sg->length == 0) && !sg_is_last(rctx->sg)) {
318 rctx->sg = sg_next(rctx->sg);
319 continue;
320 } else {
321 break;
322 }
323 }
324
325 scatterwalk_map_and_copy(rctx->buffer + rctx->bufcnt, rctx->sg,
326 rctx->offset, count, 0);
327
328 rctx->bufcnt += count;
329 rctx->offset += count;
330 rctx->total -= count;
331
332 if (rctx->offset == rctx->sg->length) {
333 rctx->sg = sg_next(rctx->sg);
334 if (rctx->sg)
335 rctx->offset = 0;
336 else
337 rctx->total = 0;
338 }
339 }
340}
341
342static int stm32_hash_xmit_cpu(struct stm32_hash_dev *hdev,
343 const u8 *buf, size_t length, int final)
344{
345 unsigned int count, len32;
346 const u32 *buffer = (const u32 *)buf;
347 u32 reg;
348
349 if (final)
350 hdev->flags |= HASH_FLAGS_FINAL;
351
352 len32 = DIV_ROUND_UP(length, sizeof(u32));
353
354 dev_dbg(hdev->dev, "%s: length: %d, final: %x len32 %i\n",
355 __func__, length, final, len32);
356
357 hdev->flags |= HASH_FLAGS_CPU;
358
359 stm32_hash_write_ctrl(hdev);
360
361 if (stm32_hash_wait_busy(hdev))
362 return -ETIMEDOUT;
363
364 if ((hdev->flags & HASH_FLAGS_HMAC) &&
365 (hdev->flags & ~HASH_FLAGS_HMAC_KEY)) {
366 hdev->flags |= HASH_FLAGS_HMAC_KEY;
367 stm32_hash_write_key(hdev);
368 if (stm32_hash_wait_busy(hdev))
369 return -ETIMEDOUT;
370 }
371
372 for (count = 0; count < len32; count++)
373 stm32_hash_write(hdev, HASH_DIN, buffer[count]);
374
375 if (final) {
376 stm32_hash_set_nblw(hdev, length);
377 reg = stm32_hash_read(hdev, HASH_STR);
378 reg |= HASH_STR_DCAL;
379 stm32_hash_write(hdev, HASH_STR, reg);
380 if (hdev->flags & HASH_FLAGS_HMAC) {
381 if (stm32_hash_wait_busy(hdev))
382 return -ETIMEDOUT;
383 stm32_hash_write_key(hdev);
384 }
385 return -EINPROGRESS;
386 }
387
388 return 0;
389}
390
391static int stm32_hash_update_cpu(struct stm32_hash_dev *hdev)
392{
393 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
394 int bufcnt, err = 0, final;
395
396 dev_dbg(hdev->dev, "%s flags %lx\n", __func__, rctx->flags);
397
398 final = (rctx->flags & HASH_FLAGS_FINUP);
399
400 while ((rctx->total >= rctx->buflen) ||
401 (rctx->bufcnt + rctx->total >= rctx->buflen)) {
402 stm32_hash_append_sg(rctx);
403 bufcnt = rctx->bufcnt;
404 rctx->bufcnt = 0;
405 err = stm32_hash_xmit_cpu(hdev, rctx->buffer, bufcnt, 0);
406 }
407
408 stm32_hash_append_sg(rctx);
409
410 if (final) {
411 bufcnt = rctx->bufcnt;
412 rctx->bufcnt = 0;
413 err = stm32_hash_xmit_cpu(hdev, rctx->buffer, bufcnt,
414 (rctx->flags & HASH_FLAGS_FINUP));
415 }
416
417 return err;
418}
419
420static int stm32_hash_xmit_dma(struct stm32_hash_dev *hdev,
421 struct scatterlist *sg, int length, int mdma)
422{
423 struct dma_async_tx_descriptor *in_desc;
424 dma_cookie_t cookie;
425 u32 reg;
426 int err;
427
428 in_desc = dmaengine_prep_slave_sg(hdev->dma_lch, sg, 1,
429 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT |
430 DMA_CTRL_ACK);
431 if (!in_desc) {
432 dev_err(hdev->dev, "dmaengine_prep_slave error\n");
433 return -ENOMEM;
434 }
435
436 reinit_completion(&hdev->dma_completion);
437 in_desc->callback = stm32_hash_dma_callback;
438 in_desc->callback_param = hdev;
439
440 hdev->flags |= HASH_FLAGS_FINAL;
441 hdev->flags |= HASH_FLAGS_DMA_ACTIVE;
442
443 reg = stm32_hash_read(hdev, HASH_CR);
444
445 if (mdma)
446 reg |= HASH_CR_MDMAT;
447 else
448 reg &= ~HASH_CR_MDMAT;
449
450 reg |= HASH_CR_DMAE;
451
452 stm32_hash_write(hdev, HASH_CR, reg);
453
454 stm32_hash_set_nblw(hdev, length);
455
456 cookie = dmaengine_submit(in_desc);
457 err = dma_submit_error(cookie);
458 if (err)
459 return -ENOMEM;
460
461 dma_async_issue_pending(hdev->dma_lch);
462
463 if (!wait_for_completion_interruptible_timeout(&hdev->dma_completion,
464 msecs_to_jiffies(100)))
465 err = -ETIMEDOUT;
466
467 if (dma_async_is_tx_complete(hdev->dma_lch, cookie,
468 NULL, NULL) != DMA_COMPLETE)
469 err = -ETIMEDOUT;
470
471 if (err) {
472 dev_err(hdev->dev, "DMA Error %i\n", err);
473 dmaengine_terminate_all(hdev->dma_lch);
474 return err;
475 }
476
477 return -EINPROGRESS;
478}
479
480static void stm32_hash_dma_callback(void *param)
481{
482 struct stm32_hash_dev *hdev = param;
483
484 complete(&hdev->dma_completion);
485
486 hdev->flags |= HASH_FLAGS_DMA_READY;
487}
488
489static int stm32_hash_hmac_dma_send(struct stm32_hash_dev *hdev)
490{
491 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
492 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
493 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
494 int err;
495
496 if (ctx->keylen < HASH_DMA_THRESHOLD || (hdev->dma_mode == 1)) {
497 err = stm32_hash_write_key(hdev);
498 if (stm32_hash_wait_busy(hdev))
499 return -ETIMEDOUT;
500 } else {
501 if (!(hdev->flags & HASH_FLAGS_HMAC_KEY))
502 sg_init_one(&rctx->sg_key, ctx->key,
503 ALIGN(ctx->keylen, sizeof(u32)));
504
505 rctx->dma_ct = dma_map_sg(hdev->dev, &rctx->sg_key, 1,
506 DMA_TO_DEVICE);
507 if (rctx->dma_ct == 0) {
508 dev_err(hdev->dev, "dma_map_sg error\n");
509 return -ENOMEM;
510 }
511
512 err = stm32_hash_xmit_dma(hdev, &rctx->sg_key, ctx->keylen, 0);
513
514 dma_unmap_sg(hdev->dev, &rctx->sg_key, 1, DMA_TO_DEVICE);
515 }
516
517 return err;
518}
519
520static int stm32_hash_dma_init(struct stm32_hash_dev *hdev)
521{
522 struct dma_slave_config dma_conf;
523 int err;
524
525 memset(&dma_conf, 0, sizeof(dma_conf));
526
527 dma_conf.direction = DMA_MEM_TO_DEV;
528 dma_conf.dst_addr = hdev->phys_base + HASH_DIN;
529 dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
530 dma_conf.src_maxburst = hdev->dma_maxburst;
531 dma_conf.dst_maxburst = hdev->dma_maxburst;
532 dma_conf.device_fc = false;
533
534 hdev->dma_lch = dma_request_slave_channel(hdev->dev, "in");
535 if (!hdev->dma_lch) {
536 dev_err(hdev->dev, "Couldn't acquire a slave DMA channel.\n");
537 return -EBUSY;
538 }
539
540 err = dmaengine_slave_config(hdev->dma_lch, &dma_conf);
541 if (err) {
542 dma_release_channel(hdev->dma_lch);
543 hdev->dma_lch = NULL;
544 dev_err(hdev->dev, "Couldn't configure DMA slave.\n");
545 return err;
546 }
547
548 init_completion(&hdev->dma_completion);
549
550 return 0;
551}
552
553static int stm32_hash_dma_send(struct stm32_hash_dev *hdev)
554{
555 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
556 struct scatterlist sg[1], *tsg;
557 int err = 0, len = 0, reg, ncp = 0;
558 unsigned int i;
559 u32 *buffer = (void *)rctx->buffer;
560
561 rctx->sg = hdev->req->src;
562 rctx->total = hdev->req->nbytes;
563
564 rctx->nents = sg_nents(rctx->sg);
565
566 if (rctx->nents < 0)
567 return -EINVAL;
568
569 stm32_hash_write_ctrl(hdev);
570
571 if (hdev->flags & HASH_FLAGS_HMAC) {
572 err = stm32_hash_hmac_dma_send(hdev);
573 if (err != -EINPROGRESS)
574 return err;
575 }
576
577 for_each_sg(rctx->sg, tsg, rctx->nents, i) {
578 len = sg->length;
579
580 sg[0] = *tsg;
581 if (sg_is_last(sg)) {
582 if (hdev->dma_mode == 1) {
583 len = (ALIGN(sg->length, 16) - 16);
584
585 ncp = sg_pcopy_to_buffer(
586 rctx->sg, rctx->nents,
587 rctx->buffer, sg->length - len,
588 rctx->total - sg->length + len);
589
590 sg->length = len;
591 } else {
592 if (!(IS_ALIGNED(sg->length, sizeof(u32)))) {
593 len = sg->length;
594 sg->length = ALIGN(sg->length,
595 sizeof(u32));
596 }
597 }
598 }
599
600 rctx->dma_ct = dma_map_sg(hdev->dev, sg, 1,
601 DMA_TO_DEVICE);
602 if (rctx->dma_ct == 0) {
603 dev_err(hdev->dev, "dma_map_sg error\n");
604 return -ENOMEM;
605 }
606
607 err = stm32_hash_xmit_dma(hdev, sg, len,
608 !sg_is_last(sg));
609
610 dma_unmap_sg(hdev->dev, sg, 1, DMA_TO_DEVICE);
611
612 if (err == -ENOMEM)
613 return err;
614 }
615
616 if (hdev->dma_mode == 1) {
617 if (stm32_hash_wait_busy(hdev))
618 return -ETIMEDOUT;
619 reg = stm32_hash_read(hdev, HASH_CR);
620 reg &= ~HASH_CR_DMAE;
621 reg |= HASH_CR_DMAA;
622 stm32_hash_write(hdev, HASH_CR, reg);
623
624 if (ncp) {
625 memset(buffer + ncp, 0,
626 DIV_ROUND_UP(ncp, sizeof(u32)) - ncp);
627 writesl(hdev->io_base + HASH_DIN, buffer,
628 DIV_ROUND_UP(ncp, sizeof(u32)));
629 }
630 stm32_hash_set_nblw(hdev, ncp);
631 reg = stm32_hash_read(hdev, HASH_STR);
632 reg |= HASH_STR_DCAL;
633 stm32_hash_write(hdev, HASH_STR, reg);
634 err = -EINPROGRESS;
635 }
636
637 if (hdev->flags & HASH_FLAGS_HMAC) {
638 if (stm32_hash_wait_busy(hdev))
639 return -ETIMEDOUT;
640 err = stm32_hash_hmac_dma_send(hdev);
641 }
642
643 return err;
644}
645
646static struct stm32_hash_dev *stm32_hash_find_dev(struct stm32_hash_ctx *ctx)
647{
648 struct stm32_hash_dev *hdev = NULL, *tmp;
649
650 spin_lock_bh(&stm32_hash.lock);
651 if (!ctx->hdev) {
652 list_for_each_entry(tmp, &stm32_hash.dev_list, list) {
653 hdev = tmp;
654 break;
655 }
656 ctx->hdev = hdev;
657 } else {
658 hdev = ctx->hdev;
659 }
660
661 spin_unlock_bh(&stm32_hash.lock);
662
663 return hdev;
664}
665
666static bool stm32_hash_dma_aligned_data(struct ahash_request *req)
667{
668 struct scatterlist *sg;
669 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
670 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
671 int i;
672
673 if (req->nbytes <= HASH_DMA_THRESHOLD)
674 return false;
675
676 if (sg_nents(req->src) > 1) {
677 if (hdev->dma_mode == 1)
678 return false;
679 for_each_sg(req->src, sg, sg_nents(req->src), i) {
680 if ((!IS_ALIGNED(sg->length, sizeof(u32))) &&
681 (!sg_is_last(sg)))
682 return false;
683 }
684 }
685
686 if (req->src->offset % 4)
687 return false;
688
689 return true;
690}
691
692static int stm32_hash_init(struct ahash_request *req)
693{
694 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
695 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
696 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
697 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
698
699 rctx->hdev = hdev;
700
701 rctx->flags = HASH_FLAGS_CPU;
702
703 rctx->digcnt = crypto_ahash_digestsize(tfm);
704 switch (rctx->digcnt) {
705 case MD5_DIGEST_SIZE:
706 rctx->flags |= HASH_FLAGS_MD5;
707 break;
708 case SHA1_DIGEST_SIZE:
709 rctx->flags |= HASH_FLAGS_SHA1;
710 break;
711 case SHA224_DIGEST_SIZE:
712 rctx->flags |= HASH_FLAGS_SHA224;
713 break;
714 case SHA256_DIGEST_SIZE:
715 rctx->flags |= HASH_FLAGS_SHA256;
716 break;
717 default:
718 return -EINVAL;
719 }
720
721 rctx->bufcnt = 0;
722 rctx->buflen = HASH_BUFLEN;
723 rctx->total = 0;
724 rctx->offset = 0;
725 rctx->data_type = HASH_DATA_8_BITS;
726
727 memset(rctx->buffer, 0, HASH_BUFLEN);
728
729 if (ctx->flags & HASH_FLAGS_HMAC)
730 rctx->flags |= HASH_FLAGS_HMAC;
731
732 dev_dbg(hdev->dev, "%s Flags %lx\n", __func__, rctx->flags);
733
734 return 0;
735}
736
737static int stm32_hash_update_req(struct stm32_hash_dev *hdev)
738{
739 return stm32_hash_update_cpu(hdev);
740}
741
742static int stm32_hash_final_req(struct stm32_hash_dev *hdev)
743{
744 struct ahash_request *req = hdev->req;
745 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
746 int err;
747 int buflen = rctx->bufcnt;
748
749 rctx->bufcnt = 0;
750
751 if (!(rctx->flags & HASH_FLAGS_CPU))
752 err = stm32_hash_dma_send(hdev);
753 else
754 err = stm32_hash_xmit_cpu(hdev, rctx->buffer, buflen, 1);
755
756
757 return err;
758}
759
760static void stm32_hash_copy_hash(struct ahash_request *req)
761{
762 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
763 u32 *hash = (u32 *)rctx->digest;
764 unsigned int i, hashsize;
765
766 switch (rctx->flags & HASH_FLAGS_ALGO_MASK) {
767 case HASH_FLAGS_MD5:
768 hashsize = MD5_DIGEST_SIZE;
769 break;
770 case HASH_FLAGS_SHA1:
771 hashsize = SHA1_DIGEST_SIZE;
772 break;
773 case HASH_FLAGS_SHA224:
774 hashsize = SHA224_DIGEST_SIZE;
775 break;
776 case HASH_FLAGS_SHA256:
777 hashsize = SHA256_DIGEST_SIZE;
778 break;
779 default:
780 return;
781 }
782
783 for (i = 0; i < hashsize / sizeof(u32); i++)
784 hash[i] = be32_to_cpu(stm32_hash_read(rctx->hdev,
785 HASH_HREG(i)));
786}
787
788static int stm32_hash_finish(struct ahash_request *req)
789{
790 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
791
792 if (!req->result)
793 return -EINVAL;
794
795 memcpy(req->result, rctx->digest, rctx->digcnt);
796
797 return 0;
798}
799
800static void stm32_hash_finish_req(struct ahash_request *req, int err)
801{
802 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
803 struct stm32_hash_dev *hdev = rctx->hdev;
804
805 if (!err && (HASH_FLAGS_FINAL & hdev->flags)) {
806 stm32_hash_copy_hash(req);
807 err = stm32_hash_finish(req);
808 hdev->flags &= ~(HASH_FLAGS_FINAL | HASH_FLAGS_CPU |
809 HASH_FLAGS_INIT | HASH_FLAGS_DMA_READY |
810 HASH_FLAGS_OUTPUT_READY | HASH_FLAGS_HMAC |
811 HASH_FLAGS_HMAC_INIT | HASH_FLAGS_HMAC_FINAL |
812 HASH_FLAGS_HMAC_KEY);
813 } else {
814 rctx->flags |= HASH_FLAGS_ERRORS;
815 }
816
817 crypto_finalize_hash_request(hdev->engine, req, err);
818}
819
820static int stm32_hash_hw_init(struct stm32_hash_dev *hdev,
821 struct stm32_hash_request_ctx *rctx)
822{
823 if (!(HASH_FLAGS_INIT & hdev->flags)) {
824 stm32_hash_write(hdev, HASH_CR, HASH_CR_INIT);
825 stm32_hash_write(hdev, HASH_STR, 0);
826 stm32_hash_write(hdev, HASH_DIN, 0);
827 stm32_hash_write(hdev, HASH_IMR, 0);
828 hdev->err = 0;
829 }
830
831 return 0;
832}
833
834static int stm32_hash_one_request(struct crypto_engine *engine, void *areq);
835static int stm32_hash_prepare_req(struct crypto_engine *engine, void *areq);
836
837static int stm32_hash_handle_queue(struct stm32_hash_dev *hdev,
838 struct ahash_request *req)
839{
840 return crypto_transfer_hash_request_to_engine(hdev->engine, req);
841}
842
843static int stm32_hash_prepare_req(struct crypto_engine *engine, void *areq)
844{
845 struct ahash_request *req = container_of(areq, struct ahash_request,
846 base);
847 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
848 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
849 struct stm32_hash_request_ctx *rctx;
850
851 if (!hdev)
852 return -ENODEV;
853
854 hdev->req = req;
855
856 rctx = ahash_request_ctx(req);
857
858 dev_dbg(hdev->dev, "processing new req, op: %lu, nbytes %d\n",
859 rctx->op, req->nbytes);
860
861 return stm32_hash_hw_init(hdev, rctx);
862}
863
864static int stm32_hash_one_request(struct crypto_engine *engine, void *areq)
865{
866 struct ahash_request *req = container_of(areq, struct ahash_request,
867 base);
868 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
869 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
870 struct stm32_hash_request_ctx *rctx;
871 int err = 0;
872
873 if (!hdev)
874 return -ENODEV;
875
876 hdev->req = req;
877
878 rctx = ahash_request_ctx(req);
879
880 if (rctx->op == HASH_OP_UPDATE)
881 err = stm32_hash_update_req(hdev);
882 else if (rctx->op == HASH_OP_FINAL)
883 err = stm32_hash_final_req(hdev);
884
885 if (err != -EINPROGRESS)
886 /* done task will not finish it, so do it here */
887 stm32_hash_finish_req(req, err);
888
889 return 0;
890}
891
892static int stm32_hash_enqueue(struct ahash_request *req, unsigned int op)
893{
894 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
895 struct stm32_hash_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
896 struct stm32_hash_dev *hdev = ctx->hdev;
897
898 rctx->op = op;
899
900 return stm32_hash_handle_queue(hdev, req);
901}
902
903static int stm32_hash_update(struct ahash_request *req)
904{
905 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
906
907 if (!req->nbytes || !(rctx->flags & HASH_FLAGS_CPU))
908 return 0;
909
910 rctx->total = req->nbytes;
911 rctx->sg = req->src;
912 rctx->offset = 0;
913
914 if ((rctx->bufcnt + rctx->total < rctx->buflen)) {
915 stm32_hash_append_sg(rctx);
916 return 0;
917 }
918
919 return stm32_hash_enqueue(req, HASH_OP_UPDATE);
920}
921
922static int stm32_hash_final(struct ahash_request *req)
923{
924 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
925
926 rctx->flags |= HASH_FLAGS_FINUP;
927
928 return stm32_hash_enqueue(req, HASH_OP_FINAL);
929}
930
931static int stm32_hash_finup(struct ahash_request *req)
932{
933 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
934 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
935 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
936 int err1, err2;
937
938 rctx->flags |= HASH_FLAGS_FINUP;
939
940 if (hdev->dma_lch && stm32_hash_dma_aligned_data(req))
941 rctx->flags &= ~HASH_FLAGS_CPU;
942
943 err1 = stm32_hash_update(req);
944
945 if (err1 == -EINPROGRESS || err1 == -EBUSY)
946 return err1;
947
948 /*
949 * final() has to be always called to cleanup resources
950 * even if update() failed, except EINPROGRESS
951 */
952 err2 = stm32_hash_final(req);
953
954 return err1 ?: err2;
955}
956
957static int stm32_hash_digest(struct ahash_request *req)
958{
959 return stm32_hash_init(req) ?: stm32_hash_finup(req);
960}
961
962static int stm32_hash_export(struct ahash_request *req, void *out)
963{
964 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
965 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
966 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
967 u32 *preg;
968 unsigned int i;
969
970 while (!(stm32_hash_read(hdev, HASH_SR) & HASH_SR_DATA_INPUT_READY))
971 cpu_relax();
972
973 rctx->hw_context = kmalloc(sizeof(u32) * (3 + HASH_CSR_REGISTER_NUMBER),
974 GFP_KERNEL);
975
976 preg = rctx->hw_context;
977
978 *preg++ = stm32_hash_read(hdev, HASH_IMR);
979 *preg++ = stm32_hash_read(hdev, HASH_STR);
980 *preg++ = stm32_hash_read(hdev, HASH_CR);
981 for (i = 0; i < HASH_CSR_REGISTER_NUMBER; i++)
982 *preg++ = stm32_hash_read(hdev, HASH_CSR(i));
983
984 memcpy(out, rctx, sizeof(*rctx));
985
986 return 0;
987}
988
989static int stm32_hash_import(struct ahash_request *req, const void *in)
990{
991 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
992 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
993 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
994 const u32 *preg = in;
995 u32 reg;
996 unsigned int i;
997
998 memcpy(rctx, in, sizeof(*rctx));
999
1000 preg = rctx->hw_context;
1001
1002 stm32_hash_write(hdev, HASH_IMR, *preg++);
1003 stm32_hash_write(hdev, HASH_STR, *preg++);
1004 stm32_hash_write(hdev, HASH_CR, *preg);
1005 reg = *preg++ | HASH_CR_INIT;
1006 stm32_hash_write(hdev, HASH_CR, reg);
1007
1008 for (i = 0; i < HASH_CSR_REGISTER_NUMBER; i++)
1009 stm32_hash_write(hdev, HASH_CSR(i), *preg++);
1010
1011 kfree(rctx->hw_context);
1012
1013 return 0;
1014}
1015
1016static int stm32_hash_setkey(struct crypto_ahash *tfm,
1017 const u8 *key, unsigned int keylen)
1018{
1019 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
1020
1021 if (keylen <= HASH_MAX_KEY_SIZE) {
1022 memcpy(ctx->key, key, keylen);
1023 ctx->keylen = keylen;
1024 } else {
1025 return -ENOMEM;
1026 }
1027
1028 return 0;
1029}
1030
1031static int stm32_hash_cra_init_algs(struct crypto_tfm *tfm,
1032 const char *algs_hmac_name)
1033{
1034 struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm);
1035
1036 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1037 sizeof(struct stm32_hash_request_ctx));
1038
1039 ctx->keylen = 0;
1040
1041 if (algs_hmac_name)
1042 ctx->flags |= HASH_FLAGS_HMAC;
1043
1044 ctx->enginectx.op.do_one_request = stm32_hash_one_request;
1045 ctx->enginectx.op.prepare_request = stm32_hash_prepare_req;
1046 ctx->enginectx.op.unprepare_request = NULL;
1047 return 0;
1048}
1049
1050static int stm32_hash_cra_init(struct crypto_tfm *tfm)
1051{
1052 return stm32_hash_cra_init_algs(tfm, NULL);
1053}
1054
1055static int stm32_hash_cra_md5_init(struct crypto_tfm *tfm)
1056{
1057 return stm32_hash_cra_init_algs(tfm, "md5");
1058}
1059
1060static int stm32_hash_cra_sha1_init(struct crypto_tfm *tfm)
1061{
1062 return stm32_hash_cra_init_algs(tfm, "sha1");
1063}
1064
1065static int stm32_hash_cra_sha224_init(struct crypto_tfm *tfm)
1066{
1067 return stm32_hash_cra_init_algs(tfm, "sha224");
1068}
1069
1070static int stm32_hash_cra_sha256_init(struct crypto_tfm *tfm)
1071{
1072 return stm32_hash_cra_init_algs(tfm, "sha256");
1073}
1074
1075static irqreturn_t stm32_hash_irq_thread(int irq, void *dev_id)
1076{
1077 struct stm32_hash_dev *hdev = dev_id;
1078
1079 if (HASH_FLAGS_CPU & hdev->flags) {
1080 if (HASH_FLAGS_OUTPUT_READY & hdev->flags) {
1081 hdev->flags &= ~HASH_FLAGS_OUTPUT_READY;
1082 goto finish;
1083 }
1084 } else if (HASH_FLAGS_DMA_READY & hdev->flags) {
1085 if (HASH_FLAGS_DMA_ACTIVE & hdev->flags) {
1086 hdev->flags &= ~HASH_FLAGS_DMA_ACTIVE;
1087 goto finish;
1088 }
1089 }
1090
1091 return IRQ_HANDLED;
1092
1093finish:
1094 /* Finish current request */
1095 stm32_hash_finish_req(hdev->req, 0);
1096
1097 return IRQ_HANDLED;
1098}
1099
1100static irqreturn_t stm32_hash_irq_handler(int irq, void *dev_id)
1101{
1102 struct stm32_hash_dev *hdev = dev_id;
1103 u32 reg;
1104
1105 reg = stm32_hash_read(hdev, HASH_SR);
1106 if (reg & HASH_SR_OUTPUT_READY) {
1107 reg &= ~HASH_SR_OUTPUT_READY;
1108 stm32_hash_write(hdev, HASH_SR, reg);
1109 hdev->flags |= HASH_FLAGS_OUTPUT_READY;
1110 /* Disable IT*/
1111 stm32_hash_write(hdev, HASH_IMR, 0);
1112 return IRQ_WAKE_THREAD;
1113 }
1114
1115 return IRQ_NONE;
1116}
1117
1118static struct ahash_alg algs_md5_sha1[] = {
1119 {
1120 .init = stm32_hash_init,
1121 .update = stm32_hash_update,
1122 .final = stm32_hash_final,
1123 .finup = stm32_hash_finup,
1124 .digest = stm32_hash_digest,
1125 .export = stm32_hash_export,
1126 .import = stm32_hash_import,
1127 .halg = {
1128 .digestsize = MD5_DIGEST_SIZE,
1129 .statesize = sizeof(struct stm32_hash_request_ctx),
1130 .base = {
1131 .cra_name = "md5",
1132 .cra_driver_name = "stm32-md5",
1133 .cra_priority = 200,
1134 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1135 CRYPTO_ALG_ASYNC |
1136 CRYPTO_ALG_KERN_DRIVER_ONLY,
1137 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1138 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1139 .cra_alignmask = 3,
1140 .cra_init = stm32_hash_cra_init,
1141 .cra_module = THIS_MODULE,
1142 }
1143 }
1144 },
1145 {
1146 .init = stm32_hash_init,
1147 .update = stm32_hash_update,
1148 .final = stm32_hash_final,
1149 .finup = stm32_hash_finup,
1150 .digest = stm32_hash_digest,
1151 .export = stm32_hash_export,
1152 .import = stm32_hash_import,
1153 .setkey = stm32_hash_setkey,
1154 .halg = {
1155 .digestsize = MD5_DIGEST_SIZE,
1156 .statesize = sizeof(struct stm32_hash_request_ctx),
1157 .base = {
1158 .cra_name = "hmac(md5)",
1159 .cra_driver_name = "stm32-hmac-md5",
1160 .cra_priority = 200,
1161 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1162 CRYPTO_ALG_ASYNC |
1163 CRYPTO_ALG_KERN_DRIVER_ONLY,
1164 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1165 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1166 .cra_alignmask = 3,
1167 .cra_init = stm32_hash_cra_md5_init,
1168 .cra_module = THIS_MODULE,
1169 }
1170 }
1171 },
1172 {
1173 .init = stm32_hash_init,
1174 .update = stm32_hash_update,
1175 .final = stm32_hash_final,
1176 .finup = stm32_hash_finup,
1177 .digest = stm32_hash_digest,
1178 .export = stm32_hash_export,
1179 .import = stm32_hash_import,
1180 .halg = {
1181 .digestsize = SHA1_DIGEST_SIZE,
1182 .statesize = sizeof(struct stm32_hash_request_ctx),
1183 .base = {
1184 .cra_name = "sha1",
1185 .cra_driver_name = "stm32-sha1",
1186 .cra_priority = 200,
1187 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1188 CRYPTO_ALG_ASYNC |
1189 CRYPTO_ALG_KERN_DRIVER_ONLY,
1190 .cra_blocksize = SHA1_BLOCK_SIZE,
1191 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1192 .cra_alignmask = 3,
1193 .cra_init = stm32_hash_cra_init,
1194 .cra_module = THIS_MODULE,
1195 }
1196 }
1197 },
1198 {
1199 .init = stm32_hash_init,
1200 .update = stm32_hash_update,
1201 .final = stm32_hash_final,
1202 .finup = stm32_hash_finup,
1203 .digest = stm32_hash_digest,
1204 .export = stm32_hash_export,
1205 .import = stm32_hash_import,
1206 .setkey = stm32_hash_setkey,
1207 .halg = {
1208 .digestsize = SHA1_DIGEST_SIZE,
1209 .statesize = sizeof(struct stm32_hash_request_ctx),
1210 .base = {
1211 .cra_name = "hmac(sha1)",
1212 .cra_driver_name = "stm32-hmac-sha1",
1213 .cra_priority = 200,
1214 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1215 CRYPTO_ALG_ASYNC |
1216 CRYPTO_ALG_KERN_DRIVER_ONLY,
1217 .cra_blocksize = SHA1_BLOCK_SIZE,
1218 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1219 .cra_alignmask = 3,
1220 .cra_init = stm32_hash_cra_sha1_init,
1221 .cra_module = THIS_MODULE,
1222 }
1223 }
1224 },
1225};
1226
1227static struct ahash_alg algs_sha224_sha256[] = {
1228 {
1229 .init = stm32_hash_init,
1230 .update = stm32_hash_update,
1231 .final = stm32_hash_final,
1232 .finup = stm32_hash_finup,
1233 .digest = stm32_hash_digest,
1234 .export = stm32_hash_export,
1235 .import = stm32_hash_import,
1236 .halg = {
1237 .digestsize = SHA224_DIGEST_SIZE,
1238 .statesize = sizeof(struct stm32_hash_request_ctx),
1239 .base = {
1240 .cra_name = "sha224",
1241 .cra_driver_name = "stm32-sha224",
1242 .cra_priority = 200,
1243 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1244 CRYPTO_ALG_ASYNC |
1245 CRYPTO_ALG_KERN_DRIVER_ONLY,
1246 .cra_blocksize = SHA224_BLOCK_SIZE,
1247 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1248 .cra_alignmask = 3,
1249 .cra_init = stm32_hash_cra_init,
1250 .cra_module = THIS_MODULE,
1251 }
1252 }
1253 },
1254 {
1255 .init = stm32_hash_init,
1256 .update = stm32_hash_update,
1257 .final = stm32_hash_final,
1258 .finup = stm32_hash_finup,
1259 .digest = stm32_hash_digest,
1260 .setkey = stm32_hash_setkey,
1261 .export = stm32_hash_export,
1262 .import = stm32_hash_import,
1263 .halg = {
1264 .digestsize = SHA224_DIGEST_SIZE,
1265 .statesize = sizeof(struct stm32_hash_request_ctx),
1266 .base = {
1267 .cra_name = "hmac(sha224)",
1268 .cra_driver_name = "stm32-hmac-sha224",
1269 .cra_priority = 200,
1270 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1271 CRYPTO_ALG_ASYNC |
1272 CRYPTO_ALG_KERN_DRIVER_ONLY,
1273 .cra_blocksize = SHA224_BLOCK_SIZE,
1274 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1275 .cra_alignmask = 3,
1276 .cra_init = stm32_hash_cra_sha224_init,
1277 .cra_module = THIS_MODULE,
1278 }
1279 }
1280 },
1281 {
1282 .init = stm32_hash_init,
1283 .update = stm32_hash_update,
1284 .final = stm32_hash_final,
1285 .finup = stm32_hash_finup,
1286 .digest = stm32_hash_digest,
1287 .export = stm32_hash_export,
1288 .import = stm32_hash_import,
1289 .halg = {
1290 .digestsize = SHA256_DIGEST_SIZE,
1291 .statesize = sizeof(struct stm32_hash_request_ctx),
1292 .base = {
1293 .cra_name = "sha256",
1294 .cra_driver_name = "stm32-sha256",
1295 .cra_priority = 200,
1296 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1297 CRYPTO_ALG_ASYNC |
1298 CRYPTO_ALG_KERN_DRIVER_ONLY,
1299 .cra_blocksize = SHA256_BLOCK_SIZE,
1300 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1301 .cra_alignmask = 3,
1302 .cra_init = stm32_hash_cra_init,
1303 .cra_module = THIS_MODULE,
1304 }
1305 }
1306 },
1307 {
1308 .init = stm32_hash_init,
1309 .update = stm32_hash_update,
1310 .final = stm32_hash_final,
1311 .finup = stm32_hash_finup,
1312 .digest = stm32_hash_digest,
1313 .export = stm32_hash_export,
1314 .import = stm32_hash_import,
1315 .setkey = stm32_hash_setkey,
1316 .halg = {
1317 .digestsize = SHA256_DIGEST_SIZE,
1318 .statesize = sizeof(struct stm32_hash_request_ctx),
1319 .base = {
1320 .cra_name = "hmac(sha256)",
1321 .cra_driver_name = "stm32-hmac-sha256",
1322 .cra_priority = 200,
1323 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1324 CRYPTO_ALG_ASYNC |
1325 CRYPTO_ALG_KERN_DRIVER_ONLY,
1326 .cra_blocksize = SHA256_BLOCK_SIZE,
1327 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1328 .cra_alignmask = 3,
1329 .cra_init = stm32_hash_cra_sha256_init,
1330 .cra_module = THIS_MODULE,
1331 }
1332 }
1333 },
1334};
1335
1336static int stm32_hash_register_algs(struct stm32_hash_dev *hdev)
1337{
1338 unsigned int i, j;
1339 int err;
1340
1341 for (i = 0; i < hdev->pdata->algs_info_size; i++) {
1342 for (j = 0; j < hdev->pdata->algs_info[i].size; j++) {
1343 err = crypto_register_ahash(
1344 &hdev->pdata->algs_info[i].algs_list[j]);
1345 if (err)
1346 goto err_algs;
1347 }
1348 }
1349
1350 return 0;
1351err_algs:
1352 dev_err(hdev->dev, "Algo %d : %d failed\n", i, j);
1353 for (; i--; ) {
1354 for (; j--;)
1355 crypto_unregister_ahash(
1356 &hdev->pdata->algs_info[i].algs_list[j]);
1357 }
1358
1359 return err;
1360}
1361
1362static int stm32_hash_unregister_algs(struct stm32_hash_dev *hdev)
1363{
1364 unsigned int i, j;
1365
1366 for (i = 0; i < hdev->pdata->algs_info_size; i++) {
1367 for (j = 0; j < hdev->pdata->algs_info[i].size; j++)
1368 crypto_unregister_ahash(
1369 &hdev->pdata->algs_info[i].algs_list[j]);
1370 }
1371
1372 return 0;
1373}
1374
1375static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f4[] = {
1376 {
1377 .algs_list = algs_md5_sha1,
1378 .size = ARRAY_SIZE(algs_md5_sha1),
1379 },
1380};
1381
1382static const struct stm32_hash_pdata stm32_hash_pdata_stm32f4 = {
1383 .algs_info = stm32_hash_algs_info_stm32f4,
1384 .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32f4),
1385};
1386
1387static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f7[] = {
1388 {
1389 .algs_list = algs_md5_sha1,
1390 .size = ARRAY_SIZE(algs_md5_sha1),
1391 },
1392 {
1393 .algs_list = algs_sha224_sha256,
1394 .size = ARRAY_SIZE(algs_sha224_sha256),
1395 },
1396};
1397
1398static const struct stm32_hash_pdata stm32_hash_pdata_stm32f7 = {
1399 .algs_info = stm32_hash_algs_info_stm32f7,
1400 .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32f7),
1401};
1402
1403static const struct of_device_id stm32_hash_of_match[] = {
1404 {
1405 .compatible = "st,stm32f456-hash",
1406 .data = &stm32_hash_pdata_stm32f4,
1407 },
1408 {
1409 .compatible = "st,stm32f756-hash",
1410 .data = &stm32_hash_pdata_stm32f7,
1411 },
1412 {},
1413};
1414
1415MODULE_DEVICE_TABLE(of, stm32_hash_of_match);
1416
1417static int stm32_hash_get_of_match(struct stm32_hash_dev *hdev,
1418 struct device *dev)
1419{
1420 hdev->pdata = of_device_get_match_data(dev);
1421 if (!hdev->pdata) {
1422 dev_err(dev, "no compatible OF match\n");
1423 return -EINVAL;
1424 }
1425
1426 if (of_property_read_u32(dev->of_node, "dma-maxburst",
1427 &hdev->dma_maxburst)) {
1428 dev_info(dev, "dma-maxburst not specified, using 0\n");
1429 hdev->dma_maxburst = 0;
1430 }
1431
1432 return 0;
1433}
1434
1435static int stm32_hash_probe(struct platform_device *pdev)
1436{
1437 struct stm32_hash_dev *hdev;
1438 struct device *dev = &pdev->dev;
1439 struct resource *res;
1440 int ret, irq;
1441
1442 hdev = devm_kzalloc(dev, sizeof(*hdev), GFP_KERNEL);
1443 if (!hdev)
1444 return -ENOMEM;
1445
1446 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1447 hdev->io_base = devm_ioremap_resource(dev, res);
1448 if (IS_ERR(hdev->io_base))
1449 return PTR_ERR(hdev->io_base);
1450
1451 hdev->phys_base = res->start;
1452
1453 ret = stm32_hash_get_of_match(hdev, dev);
1454 if (ret)
1455 return ret;
1456
1457 irq = platform_get_irq(pdev, 0);
1458 if (irq < 0) {
1459 dev_err(dev, "Cannot get IRQ resource\n");
1460 return irq;
1461 }
1462
1463 ret = devm_request_threaded_irq(dev, irq, stm32_hash_irq_handler,
1464 stm32_hash_irq_thread, IRQF_ONESHOT,
1465 dev_name(dev), hdev);
1466 if (ret) {
1467 dev_err(dev, "Cannot grab IRQ\n");
1468 return ret;
1469 }
1470
1471 hdev->clk = devm_clk_get(&pdev->dev, NULL);
1472 if (IS_ERR(hdev->clk)) {
1473 dev_err(dev, "failed to get clock for hash (%lu)\n",
1474 PTR_ERR(hdev->clk));
1475 return PTR_ERR(hdev->clk);
1476 }
1477
1478 ret = clk_prepare_enable(hdev->clk);
1479 if (ret) {
1480 dev_err(dev, "failed to enable hash clock (%d)\n", ret);
1481 return ret;
1482 }
1483
1484 hdev->rst = devm_reset_control_get(&pdev->dev, NULL);
1485 if (!IS_ERR(hdev->rst)) {
1486 reset_control_assert(hdev->rst);
1487 udelay(2);
1488 reset_control_deassert(hdev->rst);
1489 }
1490
1491 hdev->dev = dev;
1492
1493 platform_set_drvdata(pdev, hdev);
1494
1495 ret = stm32_hash_dma_init(hdev);
1496 if (ret)
1497 dev_dbg(dev, "DMA mode not available\n");
1498
1499 spin_lock(&stm32_hash.lock);
1500 list_add_tail(&hdev->list, &stm32_hash.dev_list);
1501 spin_unlock(&stm32_hash.lock);
1502
1503 /* Initialize crypto engine */
1504 hdev->engine = crypto_engine_alloc_init(dev, 1);
1505 if (!hdev->engine) {
1506 ret = -ENOMEM;
1507 goto err_engine;
1508 }
1509
1510 ret = crypto_engine_start(hdev->engine);
1511 if (ret)
1512 goto err_engine_start;
1513
1514 hdev->dma_mode = stm32_hash_read(hdev, HASH_HWCFGR);
1515
1516 /* Register algos */
1517 ret = stm32_hash_register_algs(hdev);
1518 if (ret)
1519 goto err_algs;
1520
1521 dev_info(dev, "Init HASH done HW ver %x DMA mode %u\n",
1522 stm32_hash_read(hdev, HASH_VER), hdev->dma_mode);
1523
1524 return 0;
1525
1526err_algs:
1527err_engine_start:
1528 crypto_engine_exit(hdev->engine);
1529err_engine:
1530 spin_lock(&stm32_hash.lock);
1531 list_del(&hdev->list);
1532 spin_unlock(&stm32_hash.lock);
1533
1534 if (hdev->dma_lch)
1535 dma_release_channel(hdev->dma_lch);
1536
1537 clk_disable_unprepare(hdev->clk);
1538
1539 return ret;
1540}
1541
1542static int stm32_hash_remove(struct platform_device *pdev)
1543{
1544 static struct stm32_hash_dev *hdev;
1545
1546 hdev = platform_get_drvdata(pdev);
1547 if (!hdev)
1548 return -ENODEV;
1549
1550 stm32_hash_unregister_algs(hdev);
1551
1552 crypto_engine_exit(hdev->engine);
1553
1554 spin_lock(&stm32_hash.lock);
1555 list_del(&hdev->list);
1556 spin_unlock(&stm32_hash.lock);
1557
1558 if (hdev->dma_lch)
1559 dma_release_channel(hdev->dma_lch);
1560
1561 clk_disable_unprepare(hdev->clk);
1562
1563 return 0;
1564}
1565
1566static struct platform_driver stm32_hash_driver = {
1567 .probe = stm32_hash_probe,
1568 .remove = stm32_hash_remove,
1569 .driver = {
1570 .name = "stm32-hash",
1571 .of_match_table = stm32_hash_of_match,
1572 }
1573};
1574
1575module_platform_driver(stm32_hash_driver);
1576
1577MODULE_DESCRIPTION("STM32 SHA1/224/256 & MD5 (HMAC) hw accelerator driver");
1578MODULE_AUTHOR("Lionel Debieve <lionel.debieve@st.com>");
1579MODULE_LICENSE("GPL v2");