Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * POWERNV cpufreq driver for the IBM POWER processors
4 *
5 * (C) Copyright IBM 2014
6 *
7 * Author: Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>
8 */
9
10#define pr_fmt(fmt) "powernv-cpufreq: " fmt
11
12#include <linux/kernel.h>
13#include <linux/sysfs.h>
14#include <linux/cpumask.h>
15#include <linux/module.h>
16#include <linux/cpufreq.h>
17#include <linux/smp.h>
18#include <linux/of.h>
19#include <linux/reboot.h>
20#include <linux/slab.h>
21#include <linux/cpu.h>
22#include <linux/hashtable.h>
23#include <trace/events/power.h>
24
25#include <asm/cputhreads.h>
26#include <asm/firmware.h>
27#include <asm/reg.h>
28#include <asm/smp.h> /* Required for cpu_sibling_mask() in UP configs */
29#include <asm/opal.h>
30#include <linux/timer.h>
31
32#define POWERNV_MAX_PSTATES_ORDER 8
33#define POWERNV_MAX_PSTATES (1UL << (POWERNV_MAX_PSTATES_ORDER))
34#define PMSR_PSAFE_ENABLE (1UL << 30)
35#define PMSR_SPR_EM_DISABLE (1UL << 31)
36#define MAX_PSTATE_SHIFT 32
37#define LPSTATE_SHIFT 48
38#define GPSTATE_SHIFT 56
39#define MAX_NR_CHIPS 32
40
41#define MAX_RAMP_DOWN_TIME 5120
42/*
43 * On an idle system we want the global pstate to ramp-down from max value to
44 * min over a span of ~5 secs. Also we want it to initially ramp-down slowly and
45 * then ramp-down rapidly later on.
46 *
47 * This gives a percentage rampdown for time elapsed in milliseconds.
48 * ramp_down_percentage = ((ms * ms) >> 18)
49 * ~= 3.8 * (sec * sec)
50 *
51 * At 0 ms ramp_down_percent = 0
52 * At 5120 ms ramp_down_percent = 100
53 */
54#define ramp_down_percent(time) ((time * time) >> 18)
55
56/* Interval after which the timer is queued to bring down global pstate */
57#define GPSTATE_TIMER_INTERVAL 2000
58
59/**
60 * struct global_pstate_info - Per policy data structure to maintain history of
61 * global pstates
62 * @highest_lpstate_idx: The local pstate index from which we are
63 * ramping down
64 * @elapsed_time: Time in ms spent in ramping down from
65 * highest_lpstate_idx
66 * @last_sampled_time: Time from boot in ms when global pstates were
67 * last set
68 * @last_lpstate_idx: Last set value of local pstate and global
69 * @last_gpstate_idx: pstate in terms of cpufreq table index
70 * @timer: Is used for ramping down if cpu goes idle for
71 * a long time with global pstate held high
72 * @gpstate_lock: A spinlock to maintain synchronization between
73 * routines called by the timer handler and
74 * governer's target_index calls
75 * @policy: Associated CPUFreq policy
76 */
77struct global_pstate_info {
78 int highest_lpstate_idx;
79 unsigned int elapsed_time;
80 unsigned int last_sampled_time;
81 int last_lpstate_idx;
82 int last_gpstate_idx;
83 spinlock_t gpstate_lock;
84 struct timer_list timer;
85 struct cpufreq_policy *policy;
86};
87
88static struct cpufreq_frequency_table powernv_freqs[POWERNV_MAX_PSTATES+1];
89
90static DEFINE_HASHTABLE(pstate_revmap, POWERNV_MAX_PSTATES_ORDER);
91/**
92 * struct pstate_idx_revmap_data: Entry in the hashmap pstate_revmap
93 * indexed by a function of pstate id.
94 *
95 * @pstate_id: pstate id for this entry.
96 *
97 * @cpufreq_table_idx: Index into the powernv_freqs
98 * cpufreq_frequency_table for frequency
99 * corresponding to pstate_id.
100 *
101 * @hentry: hlist_node that hooks this entry into the pstate_revmap
102 * hashtable
103 */
104struct pstate_idx_revmap_data {
105 u8 pstate_id;
106 unsigned int cpufreq_table_idx;
107 struct hlist_node hentry;
108};
109
110static bool rebooting, throttled, occ_reset;
111
112static const char * const throttle_reason[] = {
113 "No throttling",
114 "Power Cap",
115 "Processor Over Temperature",
116 "Power Supply Failure",
117 "Over Current",
118 "OCC Reset"
119};
120
121enum throttle_reason_type {
122 NO_THROTTLE = 0,
123 POWERCAP,
124 CPU_OVERTEMP,
125 POWER_SUPPLY_FAILURE,
126 OVERCURRENT,
127 OCC_RESET_THROTTLE,
128 OCC_MAX_REASON
129};
130
131static struct chip {
132 unsigned int id;
133 bool throttled;
134 bool restore;
135 u8 throttle_reason;
136 cpumask_t mask;
137 struct work_struct throttle;
138 int throttle_turbo;
139 int throttle_sub_turbo;
140 int reason[OCC_MAX_REASON];
141} *chips;
142
143static int nr_chips;
144static DEFINE_PER_CPU(struct chip *, chip_info);
145
146/*
147 * Note:
148 * The set of pstates consists of contiguous integers.
149 * powernv_pstate_info stores the index of the frequency table for
150 * max, min and nominal frequencies. It also stores number of
151 * available frequencies.
152 *
153 * powernv_pstate_info.nominal indicates the index to the highest
154 * non-turbo frequency.
155 */
156static struct powernv_pstate_info {
157 unsigned int min;
158 unsigned int max;
159 unsigned int nominal;
160 unsigned int nr_pstates;
161 bool wof_enabled;
162} powernv_pstate_info;
163
164static inline u8 extract_pstate(u64 pmsr_val, unsigned int shift)
165{
166 return ((pmsr_val >> shift) & 0xFF);
167}
168
169#define extract_local_pstate(x) extract_pstate(x, LPSTATE_SHIFT)
170#define extract_global_pstate(x) extract_pstate(x, GPSTATE_SHIFT)
171#define extract_max_pstate(x) extract_pstate(x, MAX_PSTATE_SHIFT)
172
173/* Use following functions for conversions between pstate_id and index */
174
175/*
176 * idx_to_pstate : Returns the pstate id corresponding to the
177 * frequency in the cpufreq frequency table
178 * powernv_freqs indexed by @i.
179 *
180 * If @i is out of bound, this will return the pstate
181 * corresponding to the nominal frequency.
182 */
183static inline u8 idx_to_pstate(unsigned int i)
184{
185 if (unlikely(i >= powernv_pstate_info.nr_pstates)) {
186 pr_warn_once("idx_to_pstate: index %u is out of bound\n", i);
187 return powernv_freqs[powernv_pstate_info.nominal].driver_data;
188 }
189
190 return powernv_freqs[i].driver_data;
191}
192
193/*
194 * pstate_to_idx : Returns the index in the cpufreq frequencytable
195 * powernv_freqs for the frequency whose corresponding
196 * pstate id is @pstate.
197 *
198 * If no frequency corresponding to @pstate is found,
199 * this will return the index of the nominal
200 * frequency.
201 */
202static unsigned int pstate_to_idx(u8 pstate)
203{
204 unsigned int key = pstate % POWERNV_MAX_PSTATES;
205 struct pstate_idx_revmap_data *revmap_data;
206
207 hash_for_each_possible(pstate_revmap, revmap_data, hentry, key) {
208 if (revmap_data->pstate_id == pstate)
209 return revmap_data->cpufreq_table_idx;
210 }
211
212 pr_warn_once("pstate_to_idx: pstate 0x%x not found\n", pstate);
213 return powernv_pstate_info.nominal;
214}
215
216static inline void reset_gpstates(struct cpufreq_policy *policy)
217{
218 struct global_pstate_info *gpstates = policy->driver_data;
219
220 gpstates->highest_lpstate_idx = 0;
221 gpstates->elapsed_time = 0;
222 gpstates->last_sampled_time = 0;
223 gpstates->last_lpstate_idx = 0;
224 gpstates->last_gpstate_idx = 0;
225}
226
227/*
228 * Initialize the freq table based on data obtained
229 * from the firmware passed via device-tree
230 */
231static int init_powernv_pstates(void)
232{
233 struct device_node *power_mgt;
234 int i, nr_pstates = 0;
235 const __be32 *pstate_ids, *pstate_freqs;
236 u32 len_ids, len_freqs;
237 u32 pstate_min, pstate_max, pstate_nominal;
238 u32 pstate_turbo, pstate_ultra_turbo;
239 int rc = -ENODEV;
240
241 power_mgt = of_find_node_by_path("/ibm,opal/power-mgt");
242 if (!power_mgt) {
243 pr_warn("power-mgt node not found\n");
244 return -ENODEV;
245 }
246
247 if (of_property_read_u32(power_mgt, "ibm,pstate-min", &pstate_min)) {
248 pr_warn("ibm,pstate-min node not found\n");
249 goto out;
250 }
251
252 if (of_property_read_u32(power_mgt, "ibm,pstate-max", &pstate_max)) {
253 pr_warn("ibm,pstate-max node not found\n");
254 goto out;
255 }
256
257 if (of_property_read_u32(power_mgt, "ibm,pstate-nominal",
258 &pstate_nominal)) {
259 pr_warn("ibm,pstate-nominal not found\n");
260 goto out;
261 }
262
263 if (of_property_read_u32(power_mgt, "ibm,pstate-ultra-turbo",
264 &pstate_ultra_turbo)) {
265 powernv_pstate_info.wof_enabled = false;
266 goto next;
267 }
268
269 if (of_property_read_u32(power_mgt, "ibm,pstate-turbo",
270 &pstate_turbo)) {
271 powernv_pstate_info.wof_enabled = false;
272 goto next;
273 }
274
275 if (pstate_turbo == pstate_ultra_turbo)
276 powernv_pstate_info.wof_enabled = false;
277 else
278 powernv_pstate_info.wof_enabled = true;
279
280next:
281 pr_info("cpufreq pstate min 0x%x nominal 0x%x max 0x%x\n", pstate_min,
282 pstate_nominal, pstate_max);
283 pr_info("Workload Optimized Frequency is %s in the platform\n",
284 (powernv_pstate_info.wof_enabled) ? "enabled" : "disabled");
285
286 pstate_ids = of_get_property(power_mgt, "ibm,pstate-ids", &len_ids);
287 if (!pstate_ids) {
288 pr_warn("ibm,pstate-ids not found\n");
289 goto out;
290 }
291
292 pstate_freqs = of_get_property(power_mgt, "ibm,pstate-frequencies-mhz",
293 &len_freqs);
294 if (!pstate_freqs) {
295 pr_warn("ibm,pstate-frequencies-mhz not found\n");
296 goto out;
297 }
298
299 if (len_ids != len_freqs) {
300 pr_warn("Entries in ibm,pstate-ids and "
301 "ibm,pstate-frequencies-mhz does not match\n");
302 }
303
304 nr_pstates = min(len_ids, len_freqs) / sizeof(u32);
305 if (!nr_pstates) {
306 pr_warn("No PStates found\n");
307 goto out;
308 }
309
310 powernv_pstate_info.nr_pstates = nr_pstates;
311 pr_debug("NR PStates %d\n", nr_pstates);
312
313 for (i = 0; i < nr_pstates; i++) {
314 u32 id = be32_to_cpu(pstate_ids[i]);
315 u32 freq = be32_to_cpu(pstate_freqs[i]);
316 struct pstate_idx_revmap_data *revmap_data;
317 unsigned int key;
318
319 pr_debug("PState id %d freq %d MHz\n", id, freq);
320 powernv_freqs[i].frequency = freq * 1000; /* kHz */
321 powernv_freqs[i].driver_data = id & 0xFF;
322
323 revmap_data = kmalloc(sizeof(*revmap_data), GFP_KERNEL);
324 if (!revmap_data) {
325 rc = -ENOMEM;
326 goto out;
327 }
328
329 revmap_data->pstate_id = id & 0xFF;
330 revmap_data->cpufreq_table_idx = i;
331 key = (revmap_data->pstate_id) % POWERNV_MAX_PSTATES;
332 hash_add(pstate_revmap, &revmap_data->hentry, key);
333
334 if (id == pstate_max)
335 powernv_pstate_info.max = i;
336 if (id == pstate_nominal)
337 powernv_pstate_info.nominal = i;
338 if (id == pstate_min)
339 powernv_pstate_info.min = i;
340
341 if (powernv_pstate_info.wof_enabled && id == pstate_turbo) {
342 int j;
343
344 for (j = i - 1; j >= (int)powernv_pstate_info.max; j--)
345 powernv_freqs[j].flags = CPUFREQ_BOOST_FREQ;
346 }
347 }
348
349 /* End of list marker entry */
350 powernv_freqs[i].frequency = CPUFREQ_TABLE_END;
351
352 of_node_put(power_mgt);
353 return 0;
354out:
355 of_node_put(power_mgt);
356 return rc;
357}
358
359/* Returns the CPU frequency corresponding to the pstate_id. */
360static unsigned int pstate_id_to_freq(u8 pstate_id)
361{
362 int i;
363
364 i = pstate_to_idx(pstate_id);
365 if (i >= powernv_pstate_info.nr_pstates || i < 0) {
366 pr_warn("PState id 0x%x outside of PState table, reporting nominal id 0x%x instead\n",
367 pstate_id, idx_to_pstate(powernv_pstate_info.nominal));
368 i = powernv_pstate_info.nominal;
369 }
370
371 return powernv_freqs[i].frequency;
372}
373
374/*
375 * cpuinfo_nominal_freq_show - Show the nominal CPU frequency as indicated by
376 * the firmware
377 */
378static ssize_t cpuinfo_nominal_freq_show(struct cpufreq_policy *policy,
379 char *buf)
380{
381 return sprintf(buf, "%u\n",
382 powernv_freqs[powernv_pstate_info.nominal].frequency);
383}
384
385static struct freq_attr cpufreq_freq_attr_cpuinfo_nominal_freq =
386 __ATTR_RO(cpuinfo_nominal_freq);
387
388#define SCALING_BOOST_FREQS_ATTR_INDEX 2
389
390static struct freq_attr *powernv_cpu_freq_attr[] = {
391 &cpufreq_freq_attr_scaling_available_freqs,
392 &cpufreq_freq_attr_cpuinfo_nominal_freq,
393 &cpufreq_freq_attr_scaling_boost_freqs,
394 NULL,
395};
396
397#define throttle_attr(name, member) \
398static ssize_t name##_show(struct cpufreq_policy *policy, char *buf) \
399{ \
400 struct chip *chip = per_cpu(chip_info, policy->cpu); \
401 \
402 return sprintf(buf, "%u\n", chip->member); \
403} \
404 \
405static struct freq_attr throttle_attr_##name = __ATTR_RO(name) \
406
407throttle_attr(unthrottle, reason[NO_THROTTLE]);
408throttle_attr(powercap, reason[POWERCAP]);
409throttle_attr(overtemp, reason[CPU_OVERTEMP]);
410throttle_attr(supply_fault, reason[POWER_SUPPLY_FAILURE]);
411throttle_attr(overcurrent, reason[OVERCURRENT]);
412throttle_attr(occ_reset, reason[OCC_RESET_THROTTLE]);
413throttle_attr(turbo_stat, throttle_turbo);
414throttle_attr(sub_turbo_stat, throttle_sub_turbo);
415
416static struct attribute *throttle_attrs[] = {
417 &throttle_attr_unthrottle.attr,
418 &throttle_attr_powercap.attr,
419 &throttle_attr_overtemp.attr,
420 &throttle_attr_supply_fault.attr,
421 &throttle_attr_overcurrent.attr,
422 &throttle_attr_occ_reset.attr,
423 &throttle_attr_turbo_stat.attr,
424 &throttle_attr_sub_turbo_stat.attr,
425 NULL,
426};
427
428static const struct attribute_group throttle_attr_grp = {
429 .name = "throttle_stats",
430 .attrs = throttle_attrs,
431};
432
433/* Helper routines */
434
435/* Access helpers to power mgt SPR */
436
437static inline unsigned long get_pmspr(unsigned long sprn)
438{
439 switch (sprn) {
440 case SPRN_PMCR:
441 return mfspr(SPRN_PMCR);
442
443 case SPRN_PMICR:
444 return mfspr(SPRN_PMICR);
445
446 case SPRN_PMSR:
447 return mfspr(SPRN_PMSR);
448 }
449 BUG();
450}
451
452static inline void set_pmspr(unsigned long sprn, unsigned long val)
453{
454 switch (sprn) {
455 case SPRN_PMCR:
456 mtspr(SPRN_PMCR, val);
457 return;
458
459 case SPRN_PMICR:
460 mtspr(SPRN_PMICR, val);
461 return;
462 }
463 BUG();
464}
465
466/*
467 * Use objects of this type to query/update
468 * pstates on a remote CPU via smp_call_function.
469 */
470struct powernv_smp_call_data {
471 unsigned int freq;
472 u8 pstate_id;
473 u8 gpstate_id;
474};
475
476/*
477 * powernv_read_cpu_freq: Reads the current frequency on this CPU.
478 *
479 * Called via smp_call_function.
480 *
481 * Note: The caller of the smp_call_function should pass an argument of
482 * the type 'struct powernv_smp_call_data *' along with this function.
483 *
484 * The current frequency on this CPU will be returned via
485 * ((struct powernv_smp_call_data *)arg)->freq;
486 */
487static void powernv_read_cpu_freq(void *arg)
488{
489 unsigned long pmspr_val;
490 struct powernv_smp_call_data *freq_data = arg;
491
492 pmspr_val = get_pmspr(SPRN_PMSR);
493 freq_data->pstate_id = extract_local_pstate(pmspr_val);
494 freq_data->freq = pstate_id_to_freq(freq_data->pstate_id);
495
496 pr_debug("cpu %d pmsr %016lX pstate_id 0x%x frequency %d kHz\n",
497 raw_smp_processor_id(), pmspr_val, freq_data->pstate_id,
498 freq_data->freq);
499}
500
501/*
502 * powernv_cpufreq_get: Returns the CPU frequency as reported by the
503 * firmware for CPU 'cpu'. This value is reported through the sysfs
504 * file cpuinfo_cur_freq.
505 */
506static unsigned int powernv_cpufreq_get(unsigned int cpu)
507{
508 struct powernv_smp_call_data freq_data;
509
510 smp_call_function_any(cpu_sibling_mask(cpu), powernv_read_cpu_freq,
511 &freq_data, 1);
512
513 return freq_data.freq;
514}
515
516/*
517 * set_pstate: Sets the pstate on this CPU.
518 *
519 * This is called via an smp_call_function.
520 *
521 * The caller must ensure that freq_data is of the type
522 * (struct powernv_smp_call_data *) and the pstate_id which needs to be set
523 * on this CPU should be present in freq_data->pstate_id.
524 */
525static void set_pstate(void *data)
526{
527 unsigned long val;
528 struct powernv_smp_call_data *freq_data = data;
529 unsigned long pstate_ul = freq_data->pstate_id;
530 unsigned long gpstate_ul = freq_data->gpstate_id;
531
532 val = get_pmspr(SPRN_PMCR);
533 val = val & 0x0000FFFFFFFFFFFFULL;
534
535 pstate_ul = pstate_ul & 0xFF;
536 gpstate_ul = gpstate_ul & 0xFF;
537
538 /* Set both global(bits 56..63) and local(bits 48..55) PStates */
539 val = val | (gpstate_ul << 56) | (pstate_ul << 48);
540
541 pr_debug("Setting cpu %d pmcr to %016lX\n",
542 raw_smp_processor_id(), val);
543 set_pmspr(SPRN_PMCR, val);
544}
545
546/*
547 * get_nominal_index: Returns the index corresponding to the nominal
548 * pstate in the cpufreq table
549 */
550static inline unsigned int get_nominal_index(void)
551{
552 return powernv_pstate_info.nominal;
553}
554
555static void powernv_cpufreq_throttle_check(void *data)
556{
557 struct chip *chip;
558 unsigned int cpu = smp_processor_id();
559 unsigned long pmsr;
560 u8 pmsr_pmax;
561 unsigned int pmsr_pmax_idx;
562
563 pmsr = get_pmspr(SPRN_PMSR);
564 chip = this_cpu_read(chip_info);
565
566 /* Check for Pmax Capping */
567 pmsr_pmax = extract_max_pstate(pmsr);
568 pmsr_pmax_idx = pstate_to_idx(pmsr_pmax);
569 if (pmsr_pmax_idx != powernv_pstate_info.max) {
570 if (chip->throttled)
571 goto next;
572 chip->throttled = true;
573 if (pmsr_pmax_idx > powernv_pstate_info.nominal) {
574 pr_warn_once("CPU %d on Chip %u has Pmax(0x%x) reduced below that of nominal frequency(0x%x)\n",
575 cpu, chip->id, pmsr_pmax,
576 idx_to_pstate(powernv_pstate_info.nominal));
577 chip->throttle_sub_turbo++;
578 } else {
579 chip->throttle_turbo++;
580 }
581 trace_powernv_throttle(chip->id,
582 throttle_reason[chip->throttle_reason],
583 pmsr_pmax);
584 } else if (chip->throttled) {
585 chip->throttled = false;
586 trace_powernv_throttle(chip->id,
587 throttle_reason[chip->throttle_reason],
588 pmsr_pmax);
589 }
590
591 /* Check if Psafe_mode_active is set in PMSR. */
592next:
593 if (pmsr & PMSR_PSAFE_ENABLE) {
594 throttled = true;
595 pr_info("Pstate set to safe frequency\n");
596 }
597
598 /* Check if SPR_EM_DISABLE is set in PMSR */
599 if (pmsr & PMSR_SPR_EM_DISABLE) {
600 throttled = true;
601 pr_info("Frequency Control disabled from OS\n");
602 }
603
604 if (throttled) {
605 pr_info("PMSR = %16lx\n", pmsr);
606 pr_warn("CPU Frequency could be throttled\n");
607 }
608}
609
610/**
611 * calc_global_pstate - Calculate global pstate
612 * @elapsed_time: Elapsed time in milliseconds
613 * @local_pstate_idx: New local pstate
614 * @highest_lpstate_idx: pstate from which its ramping down
615 *
616 * Finds the appropriate global pstate based on the pstate from which its
617 * ramping down and the time elapsed in ramping down. It follows a quadratic
618 * equation which ensures that it reaches ramping down to pmin in 5sec.
619 */
620static inline int calc_global_pstate(unsigned int elapsed_time,
621 int highest_lpstate_idx,
622 int local_pstate_idx)
623{
624 int index_diff;
625
626 /*
627 * Using ramp_down_percent we get the percentage of rampdown
628 * that we are expecting to be dropping. Difference between
629 * highest_lpstate_idx and powernv_pstate_info.min will give a absolute
630 * number of how many pstates we will drop eventually by the end of
631 * 5 seconds, then just scale it get the number pstates to be dropped.
632 */
633 index_diff = ((int)ramp_down_percent(elapsed_time) *
634 (powernv_pstate_info.min - highest_lpstate_idx)) / 100;
635
636 /* Ensure that global pstate is >= to local pstate */
637 if (highest_lpstate_idx + index_diff >= local_pstate_idx)
638 return local_pstate_idx;
639 else
640 return highest_lpstate_idx + index_diff;
641}
642
643static inline void queue_gpstate_timer(struct global_pstate_info *gpstates)
644{
645 unsigned int timer_interval;
646
647 /*
648 * Setting up timer to fire after GPSTATE_TIMER_INTERVAL ms, But
649 * if it exceeds MAX_RAMP_DOWN_TIME ms for ramp down time.
650 * Set timer such that it fires exactly at MAX_RAMP_DOWN_TIME
651 * seconds of ramp down time.
652 */
653 if ((gpstates->elapsed_time + GPSTATE_TIMER_INTERVAL)
654 > MAX_RAMP_DOWN_TIME)
655 timer_interval = MAX_RAMP_DOWN_TIME - gpstates->elapsed_time;
656 else
657 timer_interval = GPSTATE_TIMER_INTERVAL;
658
659 mod_timer(&gpstates->timer, jiffies + msecs_to_jiffies(timer_interval));
660}
661
662/**
663 * gpstate_timer_handler
664 *
665 * @t: Timer context used to fetch global pstate info struct
666 *
667 * This handler brings down the global pstate closer to the local pstate
668 * according quadratic equation. Queues a new timer if it is still not equal
669 * to local pstate
670 */
671static void gpstate_timer_handler(struct timer_list *t)
672{
673 struct global_pstate_info *gpstates = from_timer(gpstates, t, timer);
674 struct cpufreq_policy *policy = gpstates->policy;
675 int gpstate_idx, lpstate_idx;
676 unsigned long val;
677 unsigned int time_diff = jiffies_to_msecs(jiffies)
678 - gpstates->last_sampled_time;
679 struct powernv_smp_call_data freq_data;
680
681 if (!spin_trylock(&gpstates->gpstate_lock))
682 return;
683 /*
684 * If the timer has migrated to the different cpu then bring
685 * it back to one of the policy->cpus
686 */
687 if (!cpumask_test_cpu(raw_smp_processor_id(), policy->cpus)) {
688 gpstates->timer.expires = jiffies + msecs_to_jiffies(1);
689 add_timer_on(&gpstates->timer, cpumask_first(policy->cpus));
690 spin_unlock(&gpstates->gpstate_lock);
691 return;
692 }
693
694 /*
695 * If PMCR was last updated was using fast_switch then
696 * We may have wrong in gpstate->last_lpstate_idx
697 * value. Hence, read from PMCR to get correct data.
698 */
699 val = get_pmspr(SPRN_PMCR);
700 freq_data.gpstate_id = extract_global_pstate(val);
701 freq_data.pstate_id = extract_local_pstate(val);
702 if (freq_data.gpstate_id == freq_data.pstate_id) {
703 reset_gpstates(policy);
704 spin_unlock(&gpstates->gpstate_lock);
705 return;
706 }
707
708 gpstates->last_sampled_time += time_diff;
709 gpstates->elapsed_time += time_diff;
710
711 if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
712 gpstate_idx = pstate_to_idx(freq_data.pstate_id);
713 lpstate_idx = gpstate_idx;
714 reset_gpstates(policy);
715 gpstates->highest_lpstate_idx = gpstate_idx;
716 } else {
717 lpstate_idx = pstate_to_idx(freq_data.pstate_id);
718 gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
719 gpstates->highest_lpstate_idx,
720 lpstate_idx);
721 }
722 freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
723 gpstates->last_gpstate_idx = gpstate_idx;
724 gpstates->last_lpstate_idx = lpstate_idx;
725 /*
726 * If local pstate is equal to global pstate, rampdown is over
727 * So timer is not required to be queued.
728 */
729 if (gpstate_idx != gpstates->last_lpstate_idx)
730 queue_gpstate_timer(gpstates);
731
732 set_pstate(&freq_data);
733 spin_unlock(&gpstates->gpstate_lock);
734}
735
736/*
737 * powernv_cpufreq_target_index: Sets the frequency corresponding to
738 * the cpufreq table entry indexed by new_index on the cpus in the
739 * mask policy->cpus
740 */
741static int powernv_cpufreq_target_index(struct cpufreq_policy *policy,
742 unsigned int new_index)
743{
744 struct powernv_smp_call_data freq_data;
745 unsigned int cur_msec, gpstate_idx;
746 struct global_pstate_info *gpstates = policy->driver_data;
747
748 if (unlikely(rebooting) && new_index != get_nominal_index())
749 return 0;
750
751 if (!throttled) {
752 /* we don't want to be preempted while
753 * checking if the CPU frequency has been throttled
754 */
755 preempt_disable();
756 powernv_cpufreq_throttle_check(NULL);
757 preempt_enable();
758 }
759
760 cur_msec = jiffies_to_msecs(get_jiffies_64());
761
762 freq_data.pstate_id = idx_to_pstate(new_index);
763 if (!gpstates) {
764 freq_data.gpstate_id = freq_data.pstate_id;
765 goto no_gpstate;
766 }
767
768 spin_lock(&gpstates->gpstate_lock);
769
770 if (!gpstates->last_sampled_time) {
771 gpstate_idx = new_index;
772 gpstates->highest_lpstate_idx = new_index;
773 goto gpstates_done;
774 }
775
776 if (gpstates->last_gpstate_idx < new_index) {
777 gpstates->elapsed_time += cur_msec -
778 gpstates->last_sampled_time;
779
780 /*
781 * If its has been ramping down for more than MAX_RAMP_DOWN_TIME
782 * we should be resetting all global pstate related data. Set it
783 * equal to local pstate to start fresh.
784 */
785 if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
786 reset_gpstates(policy);
787 gpstates->highest_lpstate_idx = new_index;
788 gpstate_idx = new_index;
789 } else {
790 /* Elaspsed_time is less than 5 seconds, continue to rampdown */
791 gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
792 gpstates->highest_lpstate_idx,
793 new_index);
794 }
795 } else {
796 reset_gpstates(policy);
797 gpstates->highest_lpstate_idx = new_index;
798 gpstate_idx = new_index;
799 }
800
801 /*
802 * If local pstate is equal to global pstate, rampdown is over
803 * So timer is not required to be queued.
804 */
805 if (gpstate_idx != new_index)
806 queue_gpstate_timer(gpstates);
807 else
808 del_timer_sync(&gpstates->timer);
809
810gpstates_done:
811 freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
812 gpstates->last_sampled_time = cur_msec;
813 gpstates->last_gpstate_idx = gpstate_idx;
814 gpstates->last_lpstate_idx = new_index;
815
816 spin_unlock(&gpstates->gpstate_lock);
817
818no_gpstate:
819 /*
820 * Use smp_call_function to send IPI and execute the
821 * mtspr on target CPU. We could do that without IPI
822 * if current CPU is within policy->cpus (core)
823 */
824 smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
825 return 0;
826}
827
828static int powernv_cpufreq_cpu_init(struct cpufreq_policy *policy)
829{
830 int base, i;
831 struct kernfs_node *kn;
832 struct global_pstate_info *gpstates;
833
834 base = cpu_first_thread_sibling(policy->cpu);
835
836 for (i = 0; i < threads_per_core; i++)
837 cpumask_set_cpu(base + i, policy->cpus);
838
839 kn = kernfs_find_and_get(policy->kobj.sd, throttle_attr_grp.name);
840 if (!kn) {
841 int ret;
842
843 ret = sysfs_create_group(&policy->kobj, &throttle_attr_grp);
844 if (ret) {
845 pr_info("Failed to create throttle stats directory for cpu %d\n",
846 policy->cpu);
847 return ret;
848 }
849 } else {
850 kernfs_put(kn);
851 }
852
853 policy->freq_table = powernv_freqs;
854 policy->fast_switch_possible = true;
855
856 if (pvr_version_is(PVR_POWER9))
857 return 0;
858
859 /* Initialise Gpstate ramp-down timer only on POWER8 */
860 gpstates = kzalloc(sizeof(*gpstates), GFP_KERNEL);
861 if (!gpstates)
862 return -ENOMEM;
863
864 policy->driver_data = gpstates;
865
866 /* initialize timer */
867 gpstates->policy = policy;
868 timer_setup(&gpstates->timer, gpstate_timer_handler,
869 TIMER_PINNED | TIMER_DEFERRABLE);
870 gpstates->timer.expires = jiffies +
871 msecs_to_jiffies(GPSTATE_TIMER_INTERVAL);
872 spin_lock_init(&gpstates->gpstate_lock);
873
874 return 0;
875}
876
877static void powernv_cpufreq_cpu_exit(struct cpufreq_policy *policy)
878{
879 struct powernv_smp_call_data freq_data;
880 struct global_pstate_info *gpstates = policy->driver_data;
881
882 freq_data.pstate_id = idx_to_pstate(powernv_pstate_info.min);
883 freq_data.gpstate_id = idx_to_pstate(powernv_pstate_info.min);
884 smp_call_function_single(policy->cpu, set_pstate, &freq_data, 1);
885 if (gpstates)
886 del_timer_sync(&gpstates->timer);
887
888 kfree(policy->driver_data);
889}
890
891static int powernv_cpufreq_reboot_notifier(struct notifier_block *nb,
892 unsigned long action, void *unused)
893{
894 int cpu;
895 struct cpufreq_policy *cpu_policy;
896
897 rebooting = true;
898 for_each_online_cpu(cpu) {
899 cpu_policy = cpufreq_cpu_get(cpu);
900 if (!cpu_policy)
901 continue;
902 powernv_cpufreq_target_index(cpu_policy, get_nominal_index());
903 cpufreq_cpu_put(cpu_policy);
904 }
905
906 return NOTIFY_DONE;
907}
908
909static struct notifier_block powernv_cpufreq_reboot_nb = {
910 .notifier_call = powernv_cpufreq_reboot_notifier,
911};
912
913static void powernv_cpufreq_work_fn(struct work_struct *work)
914{
915 struct chip *chip = container_of(work, struct chip, throttle);
916 struct cpufreq_policy *policy;
917 unsigned int cpu;
918 cpumask_t mask;
919
920 cpus_read_lock();
921 cpumask_and(&mask, &chip->mask, cpu_online_mask);
922 smp_call_function_any(&mask,
923 powernv_cpufreq_throttle_check, NULL, 0);
924
925 if (!chip->restore)
926 goto out;
927
928 chip->restore = false;
929 for_each_cpu(cpu, &mask) {
930 int index;
931
932 policy = cpufreq_cpu_get(cpu);
933 if (!policy)
934 continue;
935 index = cpufreq_table_find_index_c(policy, policy->cur, false);
936 powernv_cpufreq_target_index(policy, index);
937 cpumask_andnot(&mask, &mask, policy->cpus);
938 cpufreq_cpu_put(policy);
939 }
940out:
941 cpus_read_unlock();
942}
943
944static int powernv_cpufreq_occ_msg(struct notifier_block *nb,
945 unsigned long msg_type, void *_msg)
946{
947 struct opal_msg *msg = _msg;
948 struct opal_occ_msg omsg;
949 int i;
950
951 if (msg_type != OPAL_MSG_OCC)
952 return 0;
953
954 omsg.type = be64_to_cpu(msg->params[0]);
955
956 switch (omsg.type) {
957 case OCC_RESET:
958 occ_reset = true;
959 pr_info("OCC (On Chip Controller - enforces hard thermal/power limits) Resetting\n");
960 /*
961 * powernv_cpufreq_throttle_check() is called in
962 * target() callback which can detect the throttle state
963 * for governors like ondemand.
964 * But static governors will not call target() often thus
965 * report throttling here.
966 */
967 if (!throttled) {
968 throttled = true;
969 pr_warn("CPU frequency is throttled for duration\n");
970 }
971
972 break;
973 case OCC_LOAD:
974 pr_info("OCC Loading, CPU frequency is throttled until OCC is started\n");
975 break;
976 case OCC_THROTTLE:
977 omsg.chip = be64_to_cpu(msg->params[1]);
978 omsg.throttle_status = be64_to_cpu(msg->params[2]);
979
980 if (occ_reset) {
981 occ_reset = false;
982 throttled = false;
983 pr_info("OCC Active, CPU frequency is no longer throttled\n");
984
985 for (i = 0; i < nr_chips; i++) {
986 chips[i].restore = true;
987 schedule_work(&chips[i].throttle);
988 }
989
990 return 0;
991 }
992
993 for (i = 0; i < nr_chips; i++)
994 if (chips[i].id == omsg.chip)
995 break;
996
997 if (omsg.throttle_status >= 0 &&
998 omsg.throttle_status <= OCC_MAX_THROTTLE_STATUS) {
999 chips[i].throttle_reason = omsg.throttle_status;
1000 chips[i].reason[omsg.throttle_status]++;
1001 }
1002
1003 if (!omsg.throttle_status)
1004 chips[i].restore = true;
1005
1006 schedule_work(&chips[i].throttle);
1007 }
1008 return 0;
1009}
1010
1011static struct notifier_block powernv_cpufreq_opal_nb = {
1012 .notifier_call = powernv_cpufreq_occ_msg,
1013 .next = NULL,
1014 .priority = 0,
1015};
1016
1017static unsigned int powernv_fast_switch(struct cpufreq_policy *policy,
1018 unsigned int target_freq)
1019{
1020 int index;
1021 struct powernv_smp_call_data freq_data;
1022
1023 index = cpufreq_table_find_index_dl(policy, target_freq, false);
1024 freq_data.pstate_id = powernv_freqs[index].driver_data;
1025 freq_data.gpstate_id = powernv_freqs[index].driver_data;
1026 set_pstate(&freq_data);
1027
1028 return powernv_freqs[index].frequency;
1029}
1030
1031static struct cpufreq_driver powernv_cpufreq_driver = {
1032 .name = "powernv-cpufreq",
1033 .flags = CPUFREQ_CONST_LOOPS,
1034 .init = powernv_cpufreq_cpu_init,
1035 .exit = powernv_cpufreq_cpu_exit,
1036 .verify = cpufreq_generic_frequency_table_verify,
1037 .target_index = powernv_cpufreq_target_index,
1038 .fast_switch = powernv_fast_switch,
1039 .get = powernv_cpufreq_get,
1040 .attr = powernv_cpu_freq_attr,
1041};
1042
1043static int init_chip_info(void)
1044{
1045 unsigned int *chip;
1046 unsigned int cpu, i;
1047 unsigned int prev_chip_id = UINT_MAX;
1048 cpumask_t *chip_cpu_mask;
1049 int ret = 0;
1050
1051 chip = kcalloc(num_possible_cpus(), sizeof(*chip), GFP_KERNEL);
1052 if (!chip)
1053 return -ENOMEM;
1054
1055 /* Allocate a chip cpu mask large enough to fit mask for all chips */
1056 chip_cpu_mask = kcalloc(MAX_NR_CHIPS, sizeof(cpumask_t), GFP_KERNEL);
1057 if (!chip_cpu_mask) {
1058 ret = -ENOMEM;
1059 goto free_and_return;
1060 }
1061
1062 for_each_possible_cpu(cpu) {
1063 unsigned int id = cpu_to_chip_id(cpu);
1064
1065 if (prev_chip_id != id) {
1066 prev_chip_id = id;
1067 chip[nr_chips++] = id;
1068 }
1069 cpumask_set_cpu(cpu, &chip_cpu_mask[nr_chips-1]);
1070 }
1071
1072 chips = kcalloc(nr_chips, sizeof(struct chip), GFP_KERNEL);
1073 if (!chips) {
1074 ret = -ENOMEM;
1075 goto out_free_chip_cpu_mask;
1076 }
1077
1078 for (i = 0; i < nr_chips; i++) {
1079 chips[i].id = chip[i];
1080 cpumask_copy(&chips[i].mask, &chip_cpu_mask[i]);
1081 INIT_WORK(&chips[i].throttle, powernv_cpufreq_work_fn);
1082 for_each_cpu(cpu, &chips[i].mask)
1083 per_cpu(chip_info, cpu) = &chips[i];
1084 }
1085
1086out_free_chip_cpu_mask:
1087 kfree(chip_cpu_mask);
1088free_and_return:
1089 kfree(chip);
1090 return ret;
1091}
1092
1093static inline void clean_chip_info(void)
1094{
1095 int i;
1096
1097 /* flush any pending work items */
1098 if (chips)
1099 for (i = 0; i < nr_chips; i++)
1100 cancel_work_sync(&chips[i].throttle);
1101 kfree(chips);
1102}
1103
1104static inline void unregister_all_notifiers(void)
1105{
1106 opal_message_notifier_unregister(OPAL_MSG_OCC,
1107 &powernv_cpufreq_opal_nb);
1108 unregister_reboot_notifier(&powernv_cpufreq_reboot_nb);
1109}
1110
1111static int __init powernv_cpufreq_init(void)
1112{
1113 int rc = 0;
1114
1115 /* Don't probe on pseries (guest) platforms */
1116 if (!firmware_has_feature(FW_FEATURE_OPAL))
1117 return -ENODEV;
1118
1119 /* Discover pstates from device tree and init */
1120 rc = init_powernv_pstates();
1121 if (rc)
1122 goto out;
1123
1124 /* Populate chip info */
1125 rc = init_chip_info();
1126 if (rc)
1127 goto out;
1128
1129 if (powernv_pstate_info.wof_enabled)
1130 powernv_cpufreq_driver.boost_enabled = true;
1131 else
1132 powernv_cpu_freq_attr[SCALING_BOOST_FREQS_ATTR_INDEX] = NULL;
1133
1134 rc = cpufreq_register_driver(&powernv_cpufreq_driver);
1135 if (rc) {
1136 pr_info("Failed to register the cpufreq driver (%d)\n", rc);
1137 goto cleanup;
1138 }
1139
1140 if (powernv_pstate_info.wof_enabled)
1141 cpufreq_enable_boost_support();
1142
1143 register_reboot_notifier(&powernv_cpufreq_reboot_nb);
1144 opal_message_notifier_register(OPAL_MSG_OCC, &powernv_cpufreq_opal_nb);
1145
1146 return 0;
1147cleanup:
1148 clean_chip_info();
1149out:
1150 pr_info("Platform driver disabled. System does not support PState control\n");
1151 return rc;
1152}
1153module_init(powernv_cpufreq_init);
1154
1155static void __exit powernv_cpufreq_exit(void)
1156{
1157 cpufreq_unregister_driver(&powernv_cpufreq_driver);
1158 unregister_all_notifiers();
1159 clean_chip_info();
1160}
1161module_exit(powernv_cpufreq_exit);
1162
1163MODULE_DESCRIPTION("cpufreq driver for IBM/OpenPOWER powernv systems");
1164MODULE_LICENSE("GPL");
1165MODULE_AUTHOR("Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>");
1/*
2 * POWERNV cpufreq driver for the IBM POWER processors
3 *
4 * (C) Copyright IBM 2014
5 *
6 * Author: Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 */
19
20#define pr_fmt(fmt) "powernv-cpufreq: " fmt
21
22#include <linux/kernel.h>
23#include <linux/sysfs.h>
24#include <linux/cpumask.h>
25#include <linux/module.h>
26#include <linux/cpufreq.h>
27#include <linux/smp.h>
28#include <linux/of.h>
29#include <linux/reboot.h>
30#include <linux/slab.h>
31#include <linux/cpu.h>
32#include <linux/hashtable.h>
33#include <trace/events/power.h>
34
35#include <asm/cputhreads.h>
36#include <asm/firmware.h>
37#include <asm/reg.h>
38#include <asm/smp.h> /* Required for cpu_sibling_mask() in UP configs */
39#include <asm/opal.h>
40#include <linux/timer.h>
41
42#define POWERNV_MAX_PSTATES_ORDER 8
43#define POWERNV_MAX_PSTATES (1UL << (POWERNV_MAX_PSTATES_ORDER))
44#define PMSR_PSAFE_ENABLE (1UL << 30)
45#define PMSR_SPR_EM_DISABLE (1UL << 31)
46#define MAX_PSTATE_SHIFT 32
47#define LPSTATE_SHIFT 48
48#define GPSTATE_SHIFT 56
49
50#define MAX_RAMP_DOWN_TIME 5120
51/*
52 * On an idle system we want the global pstate to ramp-down from max value to
53 * min over a span of ~5 secs. Also we want it to initially ramp-down slowly and
54 * then ramp-down rapidly later on.
55 *
56 * This gives a percentage rampdown for time elapsed in milliseconds.
57 * ramp_down_percentage = ((ms * ms) >> 18)
58 * ~= 3.8 * (sec * sec)
59 *
60 * At 0 ms ramp_down_percent = 0
61 * At 5120 ms ramp_down_percent = 100
62 */
63#define ramp_down_percent(time) ((time * time) >> 18)
64
65/* Interval after which the timer is queued to bring down global pstate */
66#define GPSTATE_TIMER_INTERVAL 2000
67
68/**
69 * struct global_pstate_info - Per policy data structure to maintain history of
70 * global pstates
71 * @highest_lpstate_idx: The local pstate index from which we are
72 * ramping down
73 * @elapsed_time: Time in ms spent in ramping down from
74 * highest_lpstate_idx
75 * @last_sampled_time: Time from boot in ms when global pstates were
76 * last set
77 * @last_lpstate_idx, Last set value of local pstate and global
78 * last_gpstate_idx pstate in terms of cpufreq table index
79 * @timer: Is used for ramping down if cpu goes idle for
80 * a long time with global pstate held high
81 * @gpstate_lock: A spinlock to maintain synchronization between
82 * routines called by the timer handler and
83 * governer's target_index calls
84 */
85struct global_pstate_info {
86 int highest_lpstate_idx;
87 unsigned int elapsed_time;
88 unsigned int last_sampled_time;
89 int last_lpstate_idx;
90 int last_gpstate_idx;
91 spinlock_t gpstate_lock;
92 struct timer_list timer;
93 struct cpufreq_policy *policy;
94};
95
96static struct cpufreq_frequency_table powernv_freqs[POWERNV_MAX_PSTATES+1];
97
98DEFINE_HASHTABLE(pstate_revmap, POWERNV_MAX_PSTATES_ORDER);
99/**
100 * struct pstate_idx_revmap_data: Entry in the hashmap pstate_revmap
101 * indexed by a function of pstate id.
102 *
103 * @pstate_id: pstate id for this entry.
104 *
105 * @cpufreq_table_idx: Index into the powernv_freqs
106 * cpufreq_frequency_table for frequency
107 * corresponding to pstate_id.
108 *
109 * @hentry: hlist_node that hooks this entry into the pstate_revmap
110 * hashtable
111 */
112struct pstate_idx_revmap_data {
113 u8 pstate_id;
114 unsigned int cpufreq_table_idx;
115 struct hlist_node hentry;
116};
117
118static bool rebooting, throttled, occ_reset;
119
120static const char * const throttle_reason[] = {
121 "No throttling",
122 "Power Cap",
123 "Processor Over Temperature",
124 "Power Supply Failure",
125 "Over Current",
126 "OCC Reset"
127};
128
129enum throttle_reason_type {
130 NO_THROTTLE = 0,
131 POWERCAP,
132 CPU_OVERTEMP,
133 POWER_SUPPLY_FAILURE,
134 OVERCURRENT,
135 OCC_RESET_THROTTLE,
136 OCC_MAX_REASON
137};
138
139static struct chip {
140 unsigned int id;
141 bool throttled;
142 bool restore;
143 u8 throttle_reason;
144 cpumask_t mask;
145 struct work_struct throttle;
146 int throttle_turbo;
147 int throttle_sub_turbo;
148 int reason[OCC_MAX_REASON];
149} *chips;
150
151static int nr_chips;
152static DEFINE_PER_CPU(struct chip *, chip_info);
153
154/*
155 * Note:
156 * The set of pstates consists of contiguous integers.
157 * powernv_pstate_info stores the index of the frequency table for
158 * max, min and nominal frequencies. It also stores number of
159 * available frequencies.
160 *
161 * powernv_pstate_info.nominal indicates the index to the highest
162 * non-turbo frequency.
163 */
164static struct powernv_pstate_info {
165 unsigned int min;
166 unsigned int max;
167 unsigned int nominal;
168 unsigned int nr_pstates;
169 bool wof_enabled;
170} powernv_pstate_info;
171
172static inline u8 extract_pstate(u64 pmsr_val, unsigned int shift)
173{
174 return ((pmsr_val >> shift) & 0xFF);
175}
176
177#define extract_local_pstate(x) extract_pstate(x, LPSTATE_SHIFT)
178#define extract_global_pstate(x) extract_pstate(x, GPSTATE_SHIFT)
179#define extract_max_pstate(x) extract_pstate(x, MAX_PSTATE_SHIFT)
180
181/* Use following functions for conversions between pstate_id and index */
182
183/**
184 * idx_to_pstate : Returns the pstate id corresponding to the
185 * frequency in the cpufreq frequency table
186 * powernv_freqs indexed by @i.
187 *
188 * If @i is out of bound, this will return the pstate
189 * corresponding to the nominal frequency.
190 */
191static inline u8 idx_to_pstate(unsigned int i)
192{
193 if (unlikely(i >= powernv_pstate_info.nr_pstates)) {
194 pr_warn_once("idx_to_pstate: index %u is out of bound\n", i);
195 return powernv_freqs[powernv_pstate_info.nominal].driver_data;
196 }
197
198 return powernv_freqs[i].driver_data;
199}
200
201/**
202 * pstate_to_idx : Returns the index in the cpufreq frequencytable
203 * powernv_freqs for the frequency whose corresponding
204 * pstate id is @pstate.
205 *
206 * If no frequency corresponding to @pstate is found,
207 * this will return the index of the nominal
208 * frequency.
209 */
210static unsigned int pstate_to_idx(u8 pstate)
211{
212 unsigned int key = pstate % POWERNV_MAX_PSTATES;
213 struct pstate_idx_revmap_data *revmap_data;
214
215 hash_for_each_possible(pstate_revmap, revmap_data, hentry, key) {
216 if (revmap_data->pstate_id == pstate)
217 return revmap_data->cpufreq_table_idx;
218 }
219
220 pr_warn_once("pstate_to_idx: pstate 0x%x not found\n", pstate);
221 return powernv_pstate_info.nominal;
222}
223
224static inline void reset_gpstates(struct cpufreq_policy *policy)
225{
226 struct global_pstate_info *gpstates = policy->driver_data;
227
228 gpstates->highest_lpstate_idx = 0;
229 gpstates->elapsed_time = 0;
230 gpstates->last_sampled_time = 0;
231 gpstates->last_lpstate_idx = 0;
232 gpstates->last_gpstate_idx = 0;
233}
234
235/*
236 * Initialize the freq table based on data obtained
237 * from the firmware passed via device-tree
238 */
239static int init_powernv_pstates(void)
240{
241 struct device_node *power_mgt;
242 int i, nr_pstates = 0;
243 const __be32 *pstate_ids, *pstate_freqs;
244 u32 len_ids, len_freqs;
245 u32 pstate_min, pstate_max, pstate_nominal;
246 u32 pstate_turbo, pstate_ultra_turbo;
247
248 power_mgt = of_find_node_by_path("/ibm,opal/power-mgt");
249 if (!power_mgt) {
250 pr_warn("power-mgt node not found\n");
251 return -ENODEV;
252 }
253
254 if (of_property_read_u32(power_mgt, "ibm,pstate-min", &pstate_min)) {
255 pr_warn("ibm,pstate-min node not found\n");
256 return -ENODEV;
257 }
258
259 if (of_property_read_u32(power_mgt, "ibm,pstate-max", &pstate_max)) {
260 pr_warn("ibm,pstate-max node not found\n");
261 return -ENODEV;
262 }
263
264 if (of_property_read_u32(power_mgt, "ibm,pstate-nominal",
265 &pstate_nominal)) {
266 pr_warn("ibm,pstate-nominal not found\n");
267 return -ENODEV;
268 }
269
270 if (of_property_read_u32(power_mgt, "ibm,pstate-ultra-turbo",
271 &pstate_ultra_turbo)) {
272 powernv_pstate_info.wof_enabled = false;
273 goto next;
274 }
275
276 if (of_property_read_u32(power_mgt, "ibm,pstate-turbo",
277 &pstate_turbo)) {
278 powernv_pstate_info.wof_enabled = false;
279 goto next;
280 }
281
282 if (pstate_turbo == pstate_ultra_turbo)
283 powernv_pstate_info.wof_enabled = false;
284 else
285 powernv_pstate_info.wof_enabled = true;
286
287next:
288 pr_info("cpufreq pstate min 0x%x nominal 0x%x max 0x%x\n", pstate_min,
289 pstate_nominal, pstate_max);
290 pr_info("Workload Optimized Frequency is %s in the platform\n",
291 (powernv_pstate_info.wof_enabled) ? "enabled" : "disabled");
292
293 pstate_ids = of_get_property(power_mgt, "ibm,pstate-ids", &len_ids);
294 if (!pstate_ids) {
295 pr_warn("ibm,pstate-ids not found\n");
296 return -ENODEV;
297 }
298
299 pstate_freqs = of_get_property(power_mgt, "ibm,pstate-frequencies-mhz",
300 &len_freqs);
301 if (!pstate_freqs) {
302 pr_warn("ibm,pstate-frequencies-mhz not found\n");
303 return -ENODEV;
304 }
305
306 if (len_ids != len_freqs) {
307 pr_warn("Entries in ibm,pstate-ids and "
308 "ibm,pstate-frequencies-mhz does not match\n");
309 }
310
311 nr_pstates = min(len_ids, len_freqs) / sizeof(u32);
312 if (!nr_pstates) {
313 pr_warn("No PStates found\n");
314 return -ENODEV;
315 }
316
317 powernv_pstate_info.nr_pstates = nr_pstates;
318 pr_debug("NR PStates %d\n", nr_pstates);
319
320 for (i = 0; i < nr_pstates; i++) {
321 u32 id = be32_to_cpu(pstate_ids[i]);
322 u32 freq = be32_to_cpu(pstate_freqs[i]);
323 struct pstate_idx_revmap_data *revmap_data;
324 unsigned int key;
325
326 pr_debug("PState id %d freq %d MHz\n", id, freq);
327 powernv_freqs[i].frequency = freq * 1000; /* kHz */
328 powernv_freqs[i].driver_data = id & 0xFF;
329
330 revmap_data = (struct pstate_idx_revmap_data *)
331 kmalloc(sizeof(*revmap_data), GFP_KERNEL);
332
333 revmap_data->pstate_id = id & 0xFF;
334 revmap_data->cpufreq_table_idx = i;
335 key = (revmap_data->pstate_id) % POWERNV_MAX_PSTATES;
336 hash_add(pstate_revmap, &revmap_data->hentry, key);
337
338 if (id == pstate_max)
339 powernv_pstate_info.max = i;
340 if (id == pstate_nominal)
341 powernv_pstate_info.nominal = i;
342 if (id == pstate_min)
343 powernv_pstate_info.min = i;
344
345 if (powernv_pstate_info.wof_enabled && id == pstate_turbo) {
346 int j;
347
348 for (j = i - 1; j >= (int)powernv_pstate_info.max; j--)
349 powernv_freqs[j].flags = CPUFREQ_BOOST_FREQ;
350 }
351 }
352
353 /* End of list marker entry */
354 powernv_freqs[i].frequency = CPUFREQ_TABLE_END;
355 return 0;
356}
357
358/* Returns the CPU frequency corresponding to the pstate_id. */
359static unsigned int pstate_id_to_freq(u8 pstate_id)
360{
361 int i;
362
363 i = pstate_to_idx(pstate_id);
364 if (i >= powernv_pstate_info.nr_pstates || i < 0) {
365 pr_warn("PState id 0x%x outside of PState table, reporting nominal id 0x%x instead\n",
366 pstate_id, idx_to_pstate(powernv_pstate_info.nominal));
367 i = powernv_pstate_info.nominal;
368 }
369
370 return powernv_freqs[i].frequency;
371}
372
373/*
374 * cpuinfo_nominal_freq_show - Show the nominal CPU frequency as indicated by
375 * the firmware
376 */
377static ssize_t cpuinfo_nominal_freq_show(struct cpufreq_policy *policy,
378 char *buf)
379{
380 return sprintf(buf, "%u\n",
381 powernv_freqs[powernv_pstate_info.nominal].frequency);
382}
383
384struct freq_attr cpufreq_freq_attr_cpuinfo_nominal_freq =
385 __ATTR_RO(cpuinfo_nominal_freq);
386
387#define SCALING_BOOST_FREQS_ATTR_INDEX 2
388
389static struct freq_attr *powernv_cpu_freq_attr[] = {
390 &cpufreq_freq_attr_scaling_available_freqs,
391 &cpufreq_freq_attr_cpuinfo_nominal_freq,
392 &cpufreq_freq_attr_scaling_boost_freqs,
393 NULL,
394};
395
396#define throttle_attr(name, member) \
397static ssize_t name##_show(struct cpufreq_policy *policy, char *buf) \
398{ \
399 struct chip *chip = per_cpu(chip_info, policy->cpu); \
400 \
401 return sprintf(buf, "%u\n", chip->member); \
402} \
403 \
404static struct freq_attr throttle_attr_##name = __ATTR_RO(name) \
405
406throttle_attr(unthrottle, reason[NO_THROTTLE]);
407throttle_attr(powercap, reason[POWERCAP]);
408throttle_attr(overtemp, reason[CPU_OVERTEMP]);
409throttle_attr(supply_fault, reason[POWER_SUPPLY_FAILURE]);
410throttle_attr(overcurrent, reason[OVERCURRENT]);
411throttle_attr(occ_reset, reason[OCC_RESET_THROTTLE]);
412throttle_attr(turbo_stat, throttle_turbo);
413throttle_attr(sub_turbo_stat, throttle_sub_turbo);
414
415static struct attribute *throttle_attrs[] = {
416 &throttle_attr_unthrottle.attr,
417 &throttle_attr_powercap.attr,
418 &throttle_attr_overtemp.attr,
419 &throttle_attr_supply_fault.attr,
420 &throttle_attr_overcurrent.attr,
421 &throttle_attr_occ_reset.attr,
422 &throttle_attr_turbo_stat.attr,
423 &throttle_attr_sub_turbo_stat.attr,
424 NULL,
425};
426
427static const struct attribute_group throttle_attr_grp = {
428 .name = "throttle_stats",
429 .attrs = throttle_attrs,
430};
431
432/* Helper routines */
433
434/* Access helpers to power mgt SPR */
435
436static inline unsigned long get_pmspr(unsigned long sprn)
437{
438 switch (sprn) {
439 case SPRN_PMCR:
440 return mfspr(SPRN_PMCR);
441
442 case SPRN_PMICR:
443 return mfspr(SPRN_PMICR);
444
445 case SPRN_PMSR:
446 return mfspr(SPRN_PMSR);
447 }
448 BUG();
449}
450
451static inline void set_pmspr(unsigned long sprn, unsigned long val)
452{
453 switch (sprn) {
454 case SPRN_PMCR:
455 mtspr(SPRN_PMCR, val);
456 return;
457
458 case SPRN_PMICR:
459 mtspr(SPRN_PMICR, val);
460 return;
461 }
462 BUG();
463}
464
465/*
466 * Use objects of this type to query/update
467 * pstates on a remote CPU via smp_call_function.
468 */
469struct powernv_smp_call_data {
470 unsigned int freq;
471 u8 pstate_id;
472 u8 gpstate_id;
473};
474
475/*
476 * powernv_read_cpu_freq: Reads the current frequency on this CPU.
477 *
478 * Called via smp_call_function.
479 *
480 * Note: The caller of the smp_call_function should pass an argument of
481 * the type 'struct powernv_smp_call_data *' along with this function.
482 *
483 * The current frequency on this CPU will be returned via
484 * ((struct powernv_smp_call_data *)arg)->freq;
485 */
486static void powernv_read_cpu_freq(void *arg)
487{
488 unsigned long pmspr_val;
489 struct powernv_smp_call_data *freq_data = arg;
490
491 pmspr_val = get_pmspr(SPRN_PMSR);
492 freq_data->pstate_id = extract_local_pstate(pmspr_val);
493 freq_data->freq = pstate_id_to_freq(freq_data->pstate_id);
494
495 pr_debug("cpu %d pmsr %016lX pstate_id 0x%x frequency %d kHz\n",
496 raw_smp_processor_id(), pmspr_val, freq_data->pstate_id,
497 freq_data->freq);
498}
499
500/*
501 * powernv_cpufreq_get: Returns the CPU frequency as reported by the
502 * firmware for CPU 'cpu'. This value is reported through the sysfs
503 * file cpuinfo_cur_freq.
504 */
505static unsigned int powernv_cpufreq_get(unsigned int cpu)
506{
507 struct powernv_smp_call_data freq_data;
508
509 smp_call_function_any(cpu_sibling_mask(cpu), powernv_read_cpu_freq,
510 &freq_data, 1);
511
512 return freq_data.freq;
513}
514
515/*
516 * set_pstate: Sets the pstate on this CPU.
517 *
518 * This is called via an smp_call_function.
519 *
520 * The caller must ensure that freq_data is of the type
521 * (struct powernv_smp_call_data *) and the pstate_id which needs to be set
522 * on this CPU should be present in freq_data->pstate_id.
523 */
524static void set_pstate(void *data)
525{
526 unsigned long val;
527 struct powernv_smp_call_data *freq_data = data;
528 unsigned long pstate_ul = freq_data->pstate_id;
529 unsigned long gpstate_ul = freq_data->gpstate_id;
530
531 val = get_pmspr(SPRN_PMCR);
532 val = val & 0x0000FFFFFFFFFFFFULL;
533
534 pstate_ul = pstate_ul & 0xFF;
535 gpstate_ul = gpstate_ul & 0xFF;
536
537 /* Set both global(bits 56..63) and local(bits 48..55) PStates */
538 val = val | (gpstate_ul << 56) | (pstate_ul << 48);
539
540 pr_debug("Setting cpu %d pmcr to %016lX\n",
541 raw_smp_processor_id(), val);
542 set_pmspr(SPRN_PMCR, val);
543}
544
545/*
546 * get_nominal_index: Returns the index corresponding to the nominal
547 * pstate in the cpufreq table
548 */
549static inline unsigned int get_nominal_index(void)
550{
551 return powernv_pstate_info.nominal;
552}
553
554static void powernv_cpufreq_throttle_check(void *data)
555{
556 struct chip *chip;
557 unsigned int cpu = smp_processor_id();
558 unsigned long pmsr;
559 u8 pmsr_pmax;
560 unsigned int pmsr_pmax_idx;
561
562 pmsr = get_pmspr(SPRN_PMSR);
563 chip = this_cpu_read(chip_info);
564
565 /* Check for Pmax Capping */
566 pmsr_pmax = extract_max_pstate(pmsr);
567 pmsr_pmax_idx = pstate_to_idx(pmsr_pmax);
568 if (pmsr_pmax_idx != powernv_pstate_info.max) {
569 if (chip->throttled)
570 goto next;
571 chip->throttled = true;
572 if (pmsr_pmax_idx > powernv_pstate_info.nominal) {
573 pr_warn_once("CPU %d on Chip %u has Pmax(0x%x) reduced below that of nominal frequency(0x%x)\n",
574 cpu, chip->id, pmsr_pmax,
575 idx_to_pstate(powernv_pstate_info.nominal));
576 chip->throttle_sub_turbo++;
577 } else {
578 chip->throttle_turbo++;
579 }
580 trace_powernv_throttle(chip->id,
581 throttle_reason[chip->throttle_reason],
582 pmsr_pmax);
583 } else if (chip->throttled) {
584 chip->throttled = false;
585 trace_powernv_throttle(chip->id,
586 throttle_reason[chip->throttle_reason],
587 pmsr_pmax);
588 }
589
590 /* Check if Psafe_mode_active is set in PMSR. */
591next:
592 if (pmsr & PMSR_PSAFE_ENABLE) {
593 throttled = true;
594 pr_info("Pstate set to safe frequency\n");
595 }
596
597 /* Check if SPR_EM_DISABLE is set in PMSR */
598 if (pmsr & PMSR_SPR_EM_DISABLE) {
599 throttled = true;
600 pr_info("Frequency Control disabled from OS\n");
601 }
602
603 if (throttled) {
604 pr_info("PMSR = %16lx\n", pmsr);
605 pr_warn("CPU Frequency could be throttled\n");
606 }
607}
608
609/**
610 * calc_global_pstate - Calculate global pstate
611 * @elapsed_time: Elapsed time in milliseconds
612 * @local_pstate_idx: New local pstate
613 * @highest_lpstate_idx: pstate from which its ramping down
614 *
615 * Finds the appropriate global pstate based on the pstate from which its
616 * ramping down and the time elapsed in ramping down. It follows a quadratic
617 * equation which ensures that it reaches ramping down to pmin in 5sec.
618 */
619static inline int calc_global_pstate(unsigned int elapsed_time,
620 int highest_lpstate_idx,
621 int local_pstate_idx)
622{
623 int index_diff;
624
625 /*
626 * Using ramp_down_percent we get the percentage of rampdown
627 * that we are expecting to be dropping. Difference between
628 * highest_lpstate_idx and powernv_pstate_info.min will give a absolute
629 * number of how many pstates we will drop eventually by the end of
630 * 5 seconds, then just scale it get the number pstates to be dropped.
631 */
632 index_diff = ((int)ramp_down_percent(elapsed_time) *
633 (powernv_pstate_info.min - highest_lpstate_idx)) / 100;
634
635 /* Ensure that global pstate is >= to local pstate */
636 if (highest_lpstate_idx + index_diff >= local_pstate_idx)
637 return local_pstate_idx;
638 else
639 return highest_lpstate_idx + index_diff;
640}
641
642static inline void queue_gpstate_timer(struct global_pstate_info *gpstates)
643{
644 unsigned int timer_interval;
645
646 /*
647 * Setting up timer to fire after GPSTATE_TIMER_INTERVAL ms, But
648 * if it exceeds MAX_RAMP_DOWN_TIME ms for ramp down time.
649 * Set timer such that it fires exactly at MAX_RAMP_DOWN_TIME
650 * seconds of ramp down time.
651 */
652 if ((gpstates->elapsed_time + GPSTATE_TIMER_INTERVAL)
653 > MAX_RAMP_DOWN_TIME)
654 timer_interval = MAX_RAMP_DOWN_TIME - gpstates->elapsed_time;
655 else
656 timer_interval = GPSTATE_TIMER_INTERVAL;
657
658 mod_timer(&gpstates->timer, jiffies + msecs_to_jiffies(timer_interval));
659}
660
661/**
662 * gpstate_timer_handler
663 *
664 * @data: pointer to cpufreq_policy on which timer was queued
665 *
666 * This handler brings down the global pstate closer to the local pstate
667 * according quadratic equation. Queues a new timer if it is still not equal
668 * to local pstate
669 */
670void gpstate_timer_handler(struct timer_list *t)
671{
672 struct global_pstate_info *gpstates = from_timer(gpstates, t, timer);
673 struct cpufreq_policy *policy = gpstates->policy;
674 int gpstate_idx, lpstate_idx;
675 unsigned long val;
676 unsigned int time_diff = jiffies_to_msecs(jiffies)
677 - gpstates->last_sampled_time;
678 struct powernv_smp_call_data freq_data;
679
680 if (!spin_trylock(&gpstates->gpstate_lock))
681 return;
682 /*
683 * If the timer has migrated to the different cpu then bring
684 * it back to one of the policy->cpus
685 */
686 if (!cpumask_test_cpu(raw_smp_processor_id(), policy->cpus)) {
687 gpstates->timer.expires = jiffies + msecs_to_jiffies(1);
688 add_timer_on(&gpstates->timer, cpumask_first(policy->cpus));
689 spin_unlock(&gpstates->gpstate_lock);
690 return;
691 }
692
693 /*
694 * If PMCR was last updated was using fast_swtich then
695 * We may have wrong in gpstate->last_lpstate_idx
696 * value. Hence, read from PMCR to get correct data.
697 */
698 val = get_pmspr(SPRN_PMCR);
699 freq_data.gpstate_id = extract_global_pstate(val);
700 freq_data.pstate_id = extract_local_pstate(val);
701 if (freq_data.gpstate_id == freq_data.pstate_id) {
702 reset_gpstates(policy);
703 spin_unlock(&gpstates->gpstate_lock);
704 return;
705 }
706
707 gpstates->last_sampled_time += time_diff;
708 gpstates->elapsed_time += time_diff;
709
710 if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
711 gpstate_idx = pstate_to_idx(freq_data.pstate_id);
712 lpstate_idx = gpstate_idx;
713 reset_gpstates(policy);
714 gpstates->highest_lpstate_idx = gpstate_idx;
715 } else {
716 lpstate_idx = pstate_to_idx(freq_data.pstate_id);
717 gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
718 gpstates->highest_lpstate_idx,
719 lpstate_idx);
720 }
721 freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
722 gpstates->last_gpstate_idx = gpstate_idx;
723 gpstates->last_lpstate_idx = lpstate_idx;
724 /*
725 * If local pstate is equal to global pstate, rampdown is over
726 * So timer is not required to be queued.
727 */
728 if (gpstate_idx != gpstates->last_lpstate_idx)
729 queue_gpstate_timer(gpstates);
730
731 set_pstate(&freq_data);
732 spin_unlock(&gpstates->gpstate_lock);
733}
734
735/*
736 * powernv_cpufreq_target_index: Sets the frequency corresponding to
737 * the cpufreq table entry indexed by new_index on the cpus in the
738 * mask policy->cpus
739 */
740static int powernv_cpufreq_target_index(struct cpufreq_policy *policy,
741 unsigned int new_index)
742{
743 struct powernv_smp_call_data freq_data;
744 unsigned int cur_msec, gpstate_idx;
745 struct global_pstate_info *gpstates = policy->driver_data;
746
747 if (unlikely(rebooting) && new_index != get_nominal_index())
748 return 0;
749
750 if (!throttled) {
751 /* we don't want to be preempted while
752 * checking if the CPU frequency has been throttled
753 */
754 preempt_disable();
755 powernv_cpufreq_throttle_check(NULL);
756 preempt_enable();
757 }
758
759 cur_msec = jiffies_to_msecs(get_jiffies_64());
760
761 spin_lock(&gpstates->gpstate_lock);
762 freq_data.pstate_id = idx_to_pstate(new_index);
763
764 if (!gpstates->last_sampled_time) {
765 gpstate_idx = new_index;
766 gpstates->highest_lpstate_idx = new_index;
767 goto gpstates_done;
768 }
769
770 if (gpstates->last_gpstate_idx < new_index) {
771 gpstates->elapsed_time += cur_msec -
772 gpstates->last_sampled_time;
773
774 /*
775 * If its has been ramping down for more than MAX_RAMP_DOWN_TIME
776 * we should be resetting all global pstate related data. Set it
777 * equal to local pstate to start fresh.
778 */
779 if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
780 reset_gpstates(policy);
781 gpstates->highest_lpstate_idx = new_index;
782 gpstate_idx = new_index;
783 } else {
784 /* Elaspsed_time is less than 5 seconds, continue to rampdown */
785 gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
786 gpstates->highest_lpstate_idx,
787 new_index);
788 }
789 } else {
790 reset_gpstates(policy);
791 gpstates->highest_lpstate_idx = new_index;
792 gpstate_idx = new_index;
793 }
794
795 /*
796 * If local pstate is equal to global pstate, rampdown is over
797 * So timer is not required to be queued.
798 */
799 if (gpstate_idx != new_index)
800 queue_gpstate_timer(gpstates);
801 else
802 del_timer_sync(&gpstates->timer);
803
804gpstates_done:
805 freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
806 gpstates->last_sampled_time = cur_msec;
807 gpstates->last_gpstate_idx = gpstate_idx;
808 gpstates->last_lpstate_idx = new_index;
809
810 spin_unlock(&gpstates->gpstate_lock);
811
812 /*
813 * Use smp_call_function to send IPI and execute the
814 * mtspr on target CPU. We could do that without IPI
815 * if current CPU is within policy->cpus (core)
816 */
817 smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
818 return 0;
819}
820
821static int powernv_cpufreq_cpu_init(struct cpufreq_policy *policy)
822{
823 int base, i;
824 struct kernfs_node *kn;
825 struct global_pstate_info *gpstates;
826
827 base = cpu_first_thread_sibling(policy->cpu);
828
829 for (i = 0; i < threads_per_core; i++)
830 cpumask_set_cpu(base + i, policy->cpus);
831
832 kn = kernfs_find_and_get(policy->kobj.sd, throttle_attr_grp.name);
833 if (!kn) {
834 int ret;
835
836 ret = sysfs_create_group(&policy->kobj, &throttle_attr_grp);
837 if (ret) {
838 pr_info("Failed to create throttle stats directory for cpu %d\n",
839 policy->cpu);
840 return ret;
841 }
842 } else {
843 kernfs_put(kn);
844 }
845
846 gpstates = kzalloc(sizeof(*gpstates), GFP_KERNEL);
847 if (!gpstates)
848 return -ENOMEM;
849
850 policy->driver_data = gpstates;
851
852 /* initialize timer */
853 gpstates->policy = policy;
854 timer_setup(&gpstates->timer, gpstate_timer_handler,
855 TIMER_PINNED | TIMER_DEFERRABLE);
856 gpstates->timer.expires = jiffies +
857 msecs_to_jiffies(GPSTATE_TIMER_INTERVAL);
858 spin_lock_init(&gpstates->gpstate_lock);
859
860 policy->freq_table = powernv_freqs;
861 policy->fast_switch_possible = true;
862 return 0;
863}
864
865static int powernv_cpufreq_cpu_exit(struct cpufreq_policy *policy)
866{
867 /* timer is deleted in cpufreq_cpu_stop() */
868 kfree(policy->driver_data);
869
870 return 0;
871}
872
873static int powernv_cpufreq_reboot_notifier(struct notifier_block *nb,
874 unsigned long action, void *unused)
875{
876 int cpu;
877 struct cpufreq_policy cpu_policy;
878
879 rebooting = true;
880 for_each_online_cpu(cpu) {
881 cpufreq_get_policy(&cpu_policy, cpu);
882 powernv_cpufreq_target_index(&cpu_policy, get_nominal_index());
883 }
884
885 return NOTIFY_DONE;
886}
887
888static struct notifier_block powernv_cpufreq_reboot_nb = {
889 .notifier_call = powernv_cpufreq_reboot_notifier,
890};
891
892void powernv_cpufreq_work_fn(struct work_struct *work)
893{
894 struct chip *chip = container_of(work, struct chip, throttle);
895 unsigned int cpu;
896 cpumask_t mask;
897
898 get_online_cpus();
899 cpumask_and(&mask, &chip->mask, cpu_online_mask);
900 smp_call_function_any(&mask,
901 powernv_cpufreq_throttle_check, NULL, 0);
902
903 if (!chip->restore)
904 goto out;
905
906 chip->restore = false;
907 for_each_cpu(cpu, &mask) {
908 int index;
909 struct cpufreq_policy policy;
910
911 cpufreq_get_policy(&policy, cpu);
912 index = cpufreq_table_find_index_c(&policy, policy.cur);
913 powernv_cpufreq_target_index(&policy, index);
914 cpumask_andnot(&mask, &mask, policy.cpus);
915 }
916out:
917 put_online_cpus();
918}
919
920static int powernv_cpufreq_occ_msg(struct notifier_block *nb,
921 unsigned long msg_type, void *_msg)
922{
923 struct opal_msg *msg = _msg;
924 struct opal_occ_msg omsg;
925 int i;
926
927 if (msg_type != OPAL_MSG_OCC)
928 return 0;
929
930 omsg.type = be64_to_cpu(msg->params[0]);
931
932 switch (omsg.type) {
933 case OCC_RESET:
934 occ_reset = true;
935 pr_info("OCC (On Chip Controller - enforces hard thermal/power limits) Resetting\n");
936 /*
937 * powernv_cpufreq_throttle_check() is called in
938 * target() callback which can detect the throttle state
939 * for governors like ondemand.
940 * But static governors will not call target() often thus
941 * report throttling here.
942 */
943 if (!throttled) {
944 throttled = true;
945 pr_warn("CPU frequency is throttled for duration\n");
946 }
947
948 break;
949 case OCC_LOAD:
950 pr_info("OCC Loading, CPU frequency is throttled until OCC is started\n");
951 break;
952 case OCC_THROTTLE:
953 omsg.chip = be64_to_cpu(msg->params[1]);
954 omsg.throttle_status = be64_to_cpu(msg->params[2]);
955
956 if (occ_reset) {
957 occ_reset = false;
958 throttled = false;
959 pr_info("OCC Active, CPU frequency is no longer throttled\n");
960
961 for (i = 0; i < nr_chips; i++) {
962 chips[i].restore = true;
963 schedule_work(&chips[i].throttle);
964 }
965
966 return 0;
967 }
968
969 for (i = 0; i < nr_chips; i++)
970 if (chips[i].id == omsg.chip)
971 break;
972
973 if (omsg.throttle_status >= 0 &&
974 omsg.throttle_status <= OCC_MAX_THROTTLE_STATUS) {
975 chips[i].throttle_reason = omsg.throttle_status;
976 chips[i].reason[omsg.throttle_status]++;
977 }
978
979 if (!omsg.throttle_status)
980 chips[i].restore = true;
981
982 schedule_work(&chips[i].throttle);
983 }
984 return 0;
985}
986
987static struct notifier_block powernv_cpufreq_opal_nb = {
988 .notifier_call = powernv_cpufreq_occ_msg,
989 .next = NULL,
990 .priority = 0,
991};
992
993static void powernv_cpufreq_stop_cpu(struct cpufreq_policy *policy)
994{
995 struct powernv_smp_call_data freq_data;
996 struct global_pstate_info *gpstates = policy->driver_data;
997
998 freq_data.pstate_id = idx_to_pstate(powernv_pstate_info.min);
999 freq_data.gpstate_id = idx_to_pstate(powernv_pstate_info.min);
1000 smp_call_function_single(policy->cpu, set_pstate, &freq_data, 1);
1001 del_timer_sync(&gpstates->timer);
1002}
1003
1004static unsigned int powernv_fast_switch(struct cpufreq_policy *policy,
1005 unsigned int target_freq)
1006{
1007 int index;
1008 struct powernv_smp_call_data freq_data;
1009
1010 index = cpufreq_table_find_index_dl(policy, target_freq);
1011 freq_data.pstate_id = powernv_freqs[index].driver_data;
1012 freq_data.gpstate_id = powernv_freqs[index].driver_data;
1013 set_pstate(&freq_data);
1014
1015 return powernv_freqs[index].frequency;
1016}
1017
1018static struct cpufreq_driver powernv_cpufreq_driver = {
1019 .name = "powernv-cpufreq",
1020 .flags = CPUFREQ_CONST_LOOPS,
1021 .init = powernv_cpufreq_cpu_init,
1022 .exit = powernv_cpufreq_cpu_exit,
1023 .verify = cpufreq_generic_frequency_table_verify,
1024 .target_index = powernv_cpufreq_target_index,
1025 .fast_switch = powernv_fast_switch,
1026 .get = powernv_cpufreq_get,
1027 .stop_cpu = powernv_cpufreq_stop_cpu,
1028 .attr = powernv_cpu_freq_attr,
1029};
1030
1031static int init_chip_info(void)
1032{
1033 unsigned int chip[256];
1034 unsigned int cpu, i;
1035 unsigned int prev_chip_id = UINT_MAX;
1036
1037 for_each_possible_cpu(cpu) {
1038 unsigned int id = cpu_to_chip_id(cpu);
1039
1040 if (prev_chip_id != id) {
1041 prev_chip_id = id;
1042 chip[nr_chips++] = id;
1043 }
1044 }
1045
1046 chips = kcalloc(nr_chips, sizeof(struct chip), GFP_KERNEL);
1047 if (!chips)
1048 return -ENOMEM;
1049
1050 for (i = 0; i < nr_chips; i++) {
1051 chips[i].id = chip[i];
1052 cpumask_copy(&chips[i].mask, cpumask_of_node(chip[i]));
1053 INIT_WORK(&chips[i].throttle, powernv_cpufreq_work_fn);
1054 for_each_cpu(cpu, &chips[i].mask)
1055 per_cpu(chip_info, cpu) = &chips[i];
1056 }
1057
1058 return 0;
1059}
1060
1061static inline void clean_chip_info(void)
1062{
1063 kfree(chips);
1064}
1065
1066static inline void unregister_all_notifiers(void)
1067{
1068 opal_message_notifier_unregister(OPAL_MSG_OCC,
1069 &powernv_cpufreq_opal_nb);
1070 unregister_reboot_notifier(&powernv_cpufreq_reboot_nb);
1071}
1072
1073static int __init powernv_cpufreq_init(void)
1074{
1075 int rc = 0;
1076
1077 /* Don't probe on pseries (guest) platforms */
1078 if (!firmware_has_feature(FW_FEATURE_OPAL))
1079 return -ENODEV;
1080
1081 /* Discover pstates from device tree and init */
1082 rc = init_powernv_pstates();
1083 if (rc)
1084 goto out;
1085
1086 /* Populate chip info */
1087 rc = init_chip_info();
1088 if (rc)
1089 goto out;
1090
1091 register_reboot_notifier(&powernv_cpufreq_reboot_nb);
1092 opal_message_notifier_register(OPAL_MSG_OCC, &powernv_cpufreq_opal_nb);
1093
1094 if (powernv_pstate_info.wof_enabled)
1095 powernv_cpufreq_driver.boost_enabled = true;
1096 else
1097 powernv_cpu_freq_attr[SCALING_BOOST_FREQS_ATTR_INDEX] = NULL;
1098
1099 rc = cpufreq_register_driver(&powernv_cpufreq_driver);
1100 if (rc) {
1101 pr_info("Failed to register the cpufreq driver (%d)\n", rc);
1102 goto cleanup_notifiers;
1103 }
1104
1105 if (powernv_pstate_info.wof_enabled)
1106 cpufreq_enable_boost_support();
1107
1108 return 0;
1109cleanup_notifiers:
1110 unregister_all_notifiers();
1111 clean_chip_info();
1112out:
1113 pr_info("Platform driver disabled. System does not support PState control\n");
1114 return rc;
1115}
1116module_init(powernv_cpufreq_init);
1117
1118static void __exit powernv_cpufreq_exit(void)
1119{
1120 cpufreq_unregister_driver(&powernv_cpufreq_driver);
1121 unregister_all_notifiers();
1122 clean_chip_info();
1123}
1124module_exit(powernv_cpufreq_exit);
1125
1126MODULE_LICENSE("GPL");
1127MODULE_AUTHOR("Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>");