Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (C) 2013 Freescale Semiconductor, Inc.
 
 
 
 
  4 */
  5
  6#include <linux/clk.h>
  7#include <linux/cpu.h>
  8#include <linux/cpufreq.h>
  9#include <linux/err.h>
 10#include <linux/module.h>
 11#include <linux/nvmem-consumer.h>
 12#include <linux/of.h>
 13#include <linux/of_address.h>
 14#include <linux/pm_opp.h>
 15#include <linux/platform_device.h>
 16#include <linux/regulator/consumer.h>
 17#include <linux/mfd/syscon.h>
 18#include <linux/regmap.h>
 19
 20#define PU_SOC_VOLTAGE_NORMAL	1250000
 21#define PU_SOC_VOLTAGE_HIGH	1275000
 22#define FREQ_1P2_GHZ		1200000000
 23
 24static struct regulator *arm_reg;
 25static struct regulator *pu_reg;
 26static struct regulator *soc_reg;
 27
 28enum IMX6_CPUFREQ_CLKS {
 29	ARM,
 30	PLL1_SYS,
 31	STEP,
 32	PLL1_SW,
 33	PLL2_PFD2_396M,
 34	/* MX6UL requires two more clks */
 35	PLL2_BUS,
 36	SECONDARY_SEL,
 37};
 38#define IMX6Q_CPUFREQ_CLK_NUM		5
 39#define IMX6UL_CPUFREQ_CLK_NUM		7
 40
 41static int num_clks;
 42static struct clk_bulk_data clks[] = {
 43	{ .id = "arm" },
 44	{ .id = "pll1_sys" },
 45	{ .id = "step" },
 46	{ .id = "pll1_sw" },
 47	{ .id = "pll2_pfd2_396m" },
 48	{ .id = "pll2_bus" },
 49	{ .id = "secondary_sel" },
 50};
 51
 52static struct device *cpu_dev;
 
 53static struct cpufreq_frequency_table *freq_table;
 54static unsigned int max_freq;
 55static unsigned int transition_latency;
 56
 57static u32 *imx6_soc_volt;
 58static u32 soc_opp_count;
 59
 60static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
 61{
 62	struct dev_pm_opp *opp;
 63	unsigned long freq_hz, volt, volt_old;
 64	unsigned int old_freq, new_freq;
 65	bool pll1_sys_temp_enabled = false;
 66	int ret;
 67
 68	new_freq = freq_table[index].frequency;
 69	freq_hz = new_freq * 1000;
 70	old_freq = clk_get_rate(clks[ARM].clk) / 1000;
 71
 72	opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
 73	if (IS_ERR(opp)) {
 74		dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
 75		return PTR_ERR(opp);
 76	}
 77
 78	volt = dev_pm_opp_get_voltage(opp);
 79	dev_pm_opp_put(opp);
 80
 81	volt_old = regulator_get_voltage(arm_reg);
 82
 83	dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
 84		old_freq / 1000, volt_old / 1000,
 85		new_freq / 1000, volt / 1000);
 86
 87	/* scaling up?  scale voltage before frequency */
 88	if (new_freq > old_freq) {
 89		if (!IS_ERR(pu_reg)) {
 90			ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
 91			if (ret) {
 92				dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
 93				return ret;
 94			}
 95		}
 96		ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
 97		if (ret) {
 98			dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
 99			return ret;
100		}
101		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
102		if (ret) {
103			dev_err(cpu_dev,
104				"failed to scale vddarm up: %d\n", ret);
105			return ret;
106		}
107	}
108
109	/*
110	 * The setpoints are selected per PLL/PDF frequencies, so we need to
111	 * reprogram PLL for frequency scaling.  The procedure of reprogramming
112	 * PLL1 is as below.
113	 * For i.MX6UL, it has a secondary clk mux, the cpu frequency change
114	 * flow is slightly different from other i.MX6 OSC.
115	 * The cpu frequeny change flow for i.MX6(except i.MX6UL) is as below:
116	 *  - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
117	 *  - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
118	 *  - Disable pll2_pfd2_396m_clk
119	 */
120	if (of_machine_is_compatible("fsl,imx6ul") ||
121	    of_machine_is_compatible("fsl,imx6ull")) {
122		/*
123		 * When changing pll1_sw_clk's parent to pll1_sys_clk,
124		 * CPU may run at higher than 528MHz, this will lead to
125		 * the system unstable if the voltage is lower than the
126		 * voltage of 528MHz, so lower the CPU frequency to one
127		 * half before changing CPU frequency.
128		 */
129		clk_set_rate(clks[ARM].clk, (old_freq >> 1) * 1000);
130		clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
131		if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk))
132			clk_set_parent(clks[SECONDARY_SEL].clk,
133				       clks[PLL2_BUS].clk);
134		else
135			clk_set_parent(clks[SECONDARY_SEL].clk,
136				       clks[PLL2_PFD2_396M].clk);
137		clk_set_parent(clks[STEP].clk, clks[SECONDARY_SEL].clk);
138		clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
139		if (freq_hz > clk_get_rate(clks[PLL2_BUS].clk)) {
140			clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
141			clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
142		}
143	} else {
144		clk_set_parent(clks[STEP].clk, clks[PLL2_PFD2_396M].clk);
145		clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
146		if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk)) {
147			clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
148			clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
149		} else {
150			/* pll1_sys needs to be enabled for divider rate change to work. */
151			pll1_sys_temp_enabled = true;
152			clk_prepare_enable(clks[PLL1_SYS].clk);
153		}
154	}
155
156	/* Ensure the arm clock divider is what we expect */
157	ret = clk_set_rate(clks[ARM].clk, new_freq * 1000);
158	if (ret) {
159		int ret1;
160
161		dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
162		ret1 = regulator_set_voltage_tol(arm_reg, volt_old, 0);
163		if (ret1)
164			dev_warn(cpu_dev,
165				 "failed to restore vddarm voltage: %d\n", ret1);
166		return ret;
167	}
168
169	/* PLL1 is only needed until after ARM-PODF is set. */
170	if (pll1_sys_temp_enabled)
171		clk_disable_unprepare(clks[PLL1_SYS].clk);
172
173	/* scaling down?  scale voltage after frequency */
174	if (new_freq < old_freq) {
175		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
176		if (ret)
177			dev_warn(cpu_dev,
178				 "failed to scale vddarm down: %d\n", ret);
 
 
179		ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
180		if (ret)
181			dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
 
 
182		if (!IS_ERR(pu_reg)) {
183			ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
184			if (ret)
185				dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
 
 
186		}
187	}
188
189	return 0;
190}
191
192static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
193{
 
 
194	policy->clk = clks[ARM].clk;
195	cpufreq_generic_init(policy, freq_table, transition_latency);
196	policy->suspend_freq = max_freq;
197
198	return 0;
199}
200
201static struct cpufreq_driver imx6q_cpufreq_driver = {
202	.flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK |
203		 CPUFREQ_IS_COOLING_DEV,
204	.verify = cpufreq_generic_frequency_table_verify,
205	.target_index = imx6q_set_target,
206	.get = cpufreq_generic_get,
207	.init = imx6q_cpufreq_init,
208	.register_em = cpufreq_register_em_with_opp,
209	.name = "imx6q-cpufreq",
210	.attr = cpufreq_generic_attr,
211	.suspend = cpufreq_generic_suspend,
212};
213
214static void imx6x_disable_freq_in_opp(struct device *dev, unsigned long freq)
215{
216	int ret = dev_pm_opp_disable(dev, freq);
217
218	if (ret < 0 && ret != -ENODEV)
219		dev_warn(dev, "failed to disable %ldMHz OPP\n", freq / 1000000);
220}
221
222#define OCOTP_CFG3			0x440
223#define OCOTP_CFG3_SPEED_SHIFT		16
224#define OCOTP_CFG3_SPEED_1P2GHZ		0x3
225#define OCOTP_CFG3_SPEED_996MHZ		0x2
226#define OCOTP_CFG3_SPEED_852MHZ		0x1
227
228static int imx6q_opp_check_speed_grading(struct device *dev)
229{
 
 
230	u32 val;
231	int ret;
232
233	if (of_property_present(dev->of_node, "nvmem-cells")) {
234		ret = nvmem_cell_read_u32(dev, "speed_grade", &val);
235		if (ret)
236			return ret;
237	} else {
238		struct regmap *ocotp;
239
240		ocotp = syscon_regmap_lookup_by_compatible("fsl,imx6q-ocotp");
241		if (IS_ERR(ocotp))
242			return -ENOENT;
243
244		/*
245		 * SPEED_GRADING[1:0] defines the max speed of ARM:
246		 * 2b'11: 1200000000Hz;
247		 * 2b'10: 996000000Hz;
248		 * 2b'01: 852000000Hz; -- i.MX6Q Only, exclusive with 996MHz.
249		 * 2b'00: 792000000Hz;
250		 * We need to set the max speed of ARM according to fuse map.
251		 */
252		regmap_read(ocotp, OCOTP_CFG3, &val);
253	}
254
 
 
 
 
 
 
 
 
 
255	val >>= OCOTP_CFG3_SPEED_SHIFT;
256	val &= 0x3;
257
258	if (val < OCOTP_CFG3_SPEED_996MHZ)
259		imx6x_disable_freq_in_opp(dev, 996000000);
 
260
261	if (of_machine_is_compatible("fsl,imx6q") ||
262	    of_machine_is_compatible("fsl,imx6qp")) {
263		if (val != OCOTP_CFG3_SPEED_852MHZ)
264			imx6x_disable_freq_in_opp(dev, 852000000);
265
266		if (val != OCOTP_CFG3_SPEED_1P2GHZ)
267			imx6x_disable_freq_in_opp(dev, 1200000000);
 
268	}
269
270	return 0;
 
271}
272
273#define OCOTP_CFG3_6UL_SPEED_696MHZ	0x2
274#define OCOTP_CFG3_6ULL_SPEED_792MHZ	0x2
275#define OCOTP_CFG3_6ULL_SPEED_900MHZ	0x3
276
277static int imx6ul_opp_check_speed_grading(struct device *dev)
278{
 
 
279	u32 val;
280	int ret = 0;
281
282	if (of_property_present(dev->of_node, "nvmem-cells")) {
283		ret = nvmem_cell_read_u32(dev, "speed_grade", &val);
284		if (ret)
285			return ret;
286	} else {
287		struct regmap *ocotp;
288
289		ocotp = syscon_regmap_lookup_by_compatible("fsl,imx6ul-ocotp");
290		if (IS_ERR(ocotp))
291			ocotp = syscon_regmap_lookup_by_compatible("fsl,imx6ull-ocotp");
292
293		if (IS_ERR(ocotp))
294			return -ENOENT;
295
296		regmap_read(ocotp, OCOTP_CFG3, &val);
 
 
 
 
297	}
298
299	/*
300	 * Speed GRADING[1:0] defines the max speed of ARM:
301	 * 2b'00: Reserved;
302	 * 2b'01: 528000000Hz;
303	 * 2b'10: 696000000Hz on i.MX6UL, 792000000Hz on i.MX6ULL;
304	 * 2b'11: 900000000Hz on i.MX6ULL only;
305	 * We need to set the max speed of ARM according to fuse map.
306	 */
 
307	val >>= OCOTP_CFG3_SPEED_SHIFT;
308	val &= 0x3;
309
310	if (of_machine_is_compatible("fsl,imx6ul"))
311		if (val != OCOTP_CFG3_6UL_SPEED_696MHZ)
312			imx6x_disable_freq_in_opp(dev, 696000000);
313
314	if (of_machine_is_compatible("fsl,imx6ull")) {
315		if (val < OCOTP_CFG3_6ULL_SPEED_792MHZ)
316			imx6x_disable_freq_in_opp(dev, 792000000);
317
318		if (val != OCOTP_CFG3_6ULL_SPEED_900MHZ)
319			imx6x_disable_freq_in_opp(dev, 900000000);
320	}
321
322	return ret;
323}
324
325static int imx6q_cpufreq_probe(struct platform_device *pdev)
326{
327	struct device_node *np;
328	struct dev_pm_opp *opp;
329	unsigned long min_volt, max_volt;
330	int num, ret;
331	const struct property *prop;
332	const __be32 *val;
333	u32 nr, i, j;
334
335	cpu_dev = get_cpu_device(0);
336	if (!cpu_dev) {
337		pr_err("failed to get cpu0 device\n");
338		return -ENODEV;
339	}
340
341	np = of_node_get(cpu_dev->of_node);
342	if (!np) {
343		dev_err(cpu_dev, "failed to find cpu0 node\n");
344		return -ENOENT;
345	}
346
347	if (of_machine_is_compatible("fsl,imx6ul") ||
348	    of_machine_is_compatible("fsl,imx6ull"))
349		num_clks = IMX6UL_CPUFREQ_CLK_NUM;
350	else
351		num_clks = IMX6Q_CPUFREQ_CLK_NUM;
352
353	ret = clk_bulk_get(cpu_dev, num_clks, clks);
354	if (ret)
355		goto put_node;
356
357	arm_reg = regulator_get(cpu_dev, "arm");
358	pu_reg = regulator_get_optional(cpu_dev, "pu");
359	soc_reg = regulator_get(cpu_dev, "soc");
360	if (PTR_ERR(arm_reg) == -EPROBE_DEFER ||
361			PTR_ERR(soc_reg) == -EPROBE_DEFER ||
362			PTR_ERR(pu_reg) == -EPROBE_DEFER) {
363		ret = -EPROBE_DEFER;
364		dev_dbg(cpu_dev, "regulators not ready, defer\n");
365		goto put_reg;
366	}
367	if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) {
368		dev_err(cpu_dev, "failed to get regulators\n");
369		ret = -ENOENT;
370		goto put_reg;
371	}
372
373	ret = dev_pm_opp_of_add_table(cpu_dev);
374	if (ret < 0) {
375		dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
376		goto put_reg;
377	}
378
379	if (of_machine_is_compatible("fsl,imx6ul") ||
380	    of_machine_is_compatible("fsl,imx6ull")) {
381		ret = imx6ul_opp_check_speed_grading(cpu_dev);
382	} else {
383		ret = imx6q_opp_check_speed_grading(cpu_dev);
384	}
385	if (ret) {
386		dev_err_probe(cpu_dev, ret, "failed to read ocotp\n");
387		goto out_free_opp;
388	}
389
 
 
390	num = dev_pm_opp_get_opp_count(cpu_dev);
391	if (num < 0) {
392		ret = num;
393		dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
394		goto out_free_opp;
395	}
396
397	ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
398	if (ret) {
399		dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
400		goto out_free_opp;
401	}
402
403	/* Make imx6_soc_volt array's size same as arm opp number */
404	imx6_soc_volt = devm_kcalloc(cpu_dev, num, sizeof(*imx6_soc_volt),
405				     GFP_KERNEL);
406	if (imx6_soc_volt == NULL) {
407		ret = -ENOMEM;
408		goto free_freq_table;
409	}
410
411	prop = of_find_property(np, "fsl,soc-operating-points", NULL);
412	if (!prop || !prop->value)
413		goto soc_opp_out;
414
415	/*
416	 * Each OPP is a set of tuples consisting of frequency and
417	 * voltage like <freq-kHz vol-uV>.
418	 */
419	nr = prop->length / sizeof(u32);
420	if (nr % 2 || (nr / 2) < num)
421		goto soc_opp_out;
422
423	for (j = 0; j < num; j++) {
424		val = prop->value;
425		for (i = 0; i < nr / 2; i++) {
426			unsigned long freq = be32_to_cpup(val++);
427			unsigned long volt = be32_to_cpup(val++);
428			if (freq_table[j].frequency == freq) {
429				imx6_soc_volt[soc_opp_count++] = volt;
430				break;
431			}
432		}
433	}
434
435soc_opp_out:
436	/* use fixed soc opp volt if no valid soc opp info found in dtb */
437	if (soc_opp_count != num) {
438		dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
439		for (j = 0; j < num; j++)
440			imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
441		if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
442			imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
443	}
444
445	if (of_property_read_u32(np, "clock-latency", &transition_latency))
446		transition_latency = CPUFREQ_ETERNAL;
447
448	/*
449	 * Calculate the ramp time for max voltage change in the
450	 * VDDSOC and VDDPU regulators.
451	 */
452	ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
453	if (ret > 0)
454		transition_latency += ret * 1000;
455	if (!IS_ERR(pu_reg)) {
456		ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
457		if (ret > 0)
458			transition_latency += ret * 1000;
459	}
460
461	/*
462	 * OPP is maintained in order of increasing frequency, and
463	 * freq_table initialised from OPP is therefore sorted in the
464	 * same order.
465	 */
466	max_freq = freq_table[--num].frequency;
467	opp = dev_pm_opp_find_freq_exact(cpu_dev,
468				  freq_table[0].frequency * 1000, true);
469	min_volt = dev_pm_opp_get_voltage(opp);
470	dev_pm_opp_put(opp);
471	opp = dev_pm_opp_find_freq_exact(cpu_dev, max_freq * 1000, true);
472	max_volt = dev_pm_opp_get_voltage(opp);
473	dev_pm_opp_put(opp);
474
475	ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
476	if (ret > 0)
477		transition_latency += ret * 1000;
478
479	ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
480	if (ret) {
481		dev_err(cpu_dev, "failed register driver: %d\n", ret);
482		goto free_freq_table;
483	}
484
485	of_node_put(np);
486	return 0;
487
488free_freq_table:
489	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
490out_free_opp:
491	dev_pm_opp_of_remove_table(cpu_dev);
 
492put_reg:
493	if (!IS_ERR(arm_reg))
494		regulator_put(arm_reg);
495	if (!IS_ERR(pu_reg))
496		regulator_put(pu_reg);
497	if (!IS_ERR(soc_reg))
498		regulator_put(soc_reg);
499
500	clk_bulk_put(num_clks, clks);
501put_node:
502	of_node_put(np);
503
504	return ret;
505}
506
507static void imx6q_cpufreq_remove(struct platform_device *pdev)
508{
509	cpufreq_unregister_driver(&imx6q_cpufreq_driver);
510	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
511	dev_pm_opp_of_remove_table(cpu_dev);
 
512	regulator_put(arm_reg);
513	if (!IS_ERR(pu_reg))
514		regulator_put(pu_reg);
515	regulator_put(soc_reg);
516
517	clk_bulk_put(num_clks, clks);
 
 
518}
519
520static struct platform_driver imx6q_cpufreq_platdrv = {
521	.driver = {
522		.name	= "imx6q-cpufreq",
523	},
524	.probe		= imx6q_cpufreq_probe,
525	.remove		= imx6q_cpufreq_remove,
526};
527module_platform_driver(imx6q_cpufreq_platdrv);
528
529MODULE_ALIAS("platform:imx6q-cpufreq");
530MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
531MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
532MODULE_LICENSE("GPL");
v4.17
 
  1/*
  2 * Copyright (C) 2013 Freescale Semiconductor, Inc.
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License version 2 as
  6 * published by the Free Software Foundation.
  7 */
  8
  9#include <linux/clk.h>
 10#include <linux/cpu.h>
 11#include <linux/cpufreq.h>
 12#include <linux/err.h>
 13#include <linux/module.h>
 
 14#include <linux/of.h>
 15#include <linux/of_address.h>
 16#include <linux/pm_opp.h>
 17#include <linux/platform_device.h>
 18#include <linux/regulator/consumer.h>
 
 
 19
 20#define PU_SOC_VOLTAGE_NORMAL	1250000
 21#define PU_SOC_VOLTAGE_HIGH	1275000
 22#define FREQ_1P2_GHZ		1200000000
 23
 24static struct regulator *arm_reg;
 25static struct regulator *pu_reg;
 26static struct regulator *soc_reg;
 27
 28enum IMX6_CPUFREQ_CLKS {
 29	ARM,
 30	PLL1_SYS,
 31	STEP,
 32	PLL1_SW,
 33	PLL2_PFD2_396M,
 34	/* MX6UL requires two more clks */
 35	PLL2_BUS,
 36	SECONDARY_SEL,
 37};
 38#define IMX6Q_CPUFREQ_CLK_NUM		5
 39#define IMX6UL_CPUFREQ_CLK_NUM		7
 40
 41static int num_clks;
 42static struct clk_bulk_data clks[] = {
 43	{ .id = "arm" },
 44	{ .id = "pll1_sys" },
 45	{ .id = "step" },
 46	{ .id = "pll1_sw" },
 47	{ .id = "pll2_pfd2_396m" },
 48	{ .id = "pll2_bus" },
 49	{ .id = "secondary_sel" },
 50};
 51
 52static struct device *cpu_dev;
 53static bool free_opp;
 54static struct cpufreq_frequency_table *freq_table;
 55static unsigned int max_freq;
 56static unsigned int transition_latency;
 57
 58static u32 *imx6_soc_volt;
 59static u32 soc_opp_count;
 60
 61static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
 62{
 63	struct dev_pm_opp *opp;
 64	unsigned long freq_hz, volt, volt_old;
 65	unsigned int old_freq, new_freq;
 66	bool pll1_sys_temp_enabled = false;
 67	int ret;
 68
 69	new_freq = freq_table[index].frequency;
 70	freq_hz = new_freq * 1000;
 71	old_freq = clk_get_rate(clks[ARM].clk) / 1000;
 72
 73	opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
 74	if (IS_ERR(opp)) {
 75		dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
 76		return PTR_ERR(opp);
 77	}
 78
 79	volt = dev_pm_opp_get_voltage(opp);
 80	dev_pm_opp_put(opp);
 81
 82	volt_old = regulator_get_voltage(arm_reg);
 83
 84	dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
 85		old_freq / 1000, volt_old / 1000,
 86		new_freq / 1000, volt / 1000);
 87
 88	/* scaling up?  scale voltage before frequency */
 89	if (new_freq > old_freq) {
 90		if (!IS_ERR(pu_reg)) {
 91			ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
 92			if (ret) {
 93				dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
 94				return ret;
 95			}
 96		}
 97		ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
 98		if (ret) {
 99			dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
100			return ret;
101		}
102		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
103		if (ret) {
104			dev_err(cpu_dev,
105				"failed to scale vddarm up: %d\n", ret);
106			return ret;
107		}
108	}
109
110	/*
111	 * The setpoints are selected per PLL/PDF frequencies, so we need to
112	 * reprogram PLL for frequency scaling.  The procedure of reprogramming
113	 * PLL1 is as below.
114	 * For i.MX6UL, it has a secondary clk mux, the cpu frequency change
115	 * flow is slightly different from other i.MX6 OSC.
116	 * The cpu frequeny change flow for i.MX6(except i.MX6UL) is as below:
117	 *  - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
118	 *  - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
119	 *  - Disable pll2_pfd2_396m_clk
120	 */
121	if (of_machine_is_compatible("fsl,imx6ul") ||
122	    of_machine_is_compatible("fsl,imx6ull")) {
123		/*
124		 * When changing pll1_sw_clk's parent to pll1_sys_clk,
125		 * CPU may run at higher than 528MHz, this will lead to
126		 * the system unstable if the voltage is lower than the
127		 * voltage of 528MHz, so lower the CPU frequency to one
128		 * half before changing CPU frequency.
129		 */
130		clk_set_rate(clks[ARM].clk, (old_freq >> 1) * 1000);
131		clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
132		if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk))
133			clk_set_parent(clks[SECONDARY_SEL].clk,
134				       clks[PLL2_BUS].clk);
135		else
136			clk_set_parent(clks[SECONDARY_SEL].clk,
137				       clks[PLL2_PFD2_396M].clk);
138		clk_set_parent(clks[STEP].clk, clks[SECONDARY_SEL].clk);
139		clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
140		if (freq_hz > clk_get_rate(clks[PLL2_BUS].clk)) {
141			clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
142			clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
143		}
144	} else {
145		clk_set_parent(clks[STEP].clk, clks[PLL2_PFD2_396M].clk);
146		clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
147		if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk)) {
148			clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
149			clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
150		} else {
151			/* pll1_sys needs to be enabled for divider rate change to work. */
152			pll1_sys_temp_enabled = true;
153			clk_prepare_enable(clks[PLL1_SYS].clk);
154		}
155	}
156
157	/* Ensure the arm clock divider is what we expect */
158	ret = clk_set_rate(clks[ARM].clk, new_freq * 1000);
159	if (ret) {
 
 
160		dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
161		regulator_set_voltage_tol(arm_reg, volt_old, 0);
 
 
 
162		return ret;
163	}
164
165	/* PLL1 is only needed until after ARM-PODF is set. */
166	if (pll1_sys_temp_enabled)
167		clk_disable_unprepare(clks[PLL1_SYS].clk);
168
169	/* scaling down?  scale voltage after frequency */
170	if (new_freq < old_freq) {
171		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
172		if (ret) {
173			dev_warn(cpu_dev,
174				 "failed to scale vddarm down: %d\n", ret);
175			ret = 0;
176		}
177		ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
178		if (ret) {
179			dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
180			ret = 0;
181		}
182		if (!IS_ERR(pu_reg)) {
183			ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
184			if (ret) {
185				dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
186				ret = 0;
187			}
188		}
189	}
190
191	return 0;
192}
193
194static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
195{
196	int ret;
197
198	policy->clk = clks[ARM].clk;
199	ret = cpufreq_generic_init(policy, freq_table, transition_latency);
200	policy->suspend_freq = max_freq;
201
202	return ret;
203}
204
205static struct cpufreq_driver imx6q_cpufreq_driver = {
206	.flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
 
207	.verify = cpufreq_generic_frequency_table_verify,
208	.target_index = imx6q_set_target,
209	.get = cpufreq_generic_get,
210	.init = imx6q_cpufreq_init,
 
211	.name = "imx6q-cpufreq",
212	.attr = cpufreq_generic_attr,
213	.suspend = cpufreq_generic_suspend,
214};
215
 
 
 
 
 
 
 
 
216#define OCOTP_CFG3			0x440
217#define OCOTP_CFG3_SPEED_SHIFT		16
218#define OCOTP_CFG3_SPEED_1P2GHZ		0x3
219#define OCOTP_CFG3_SPEED_996MHZ		0x2
220#define OCOTP_CFG3_SPEED_852MHZ		0x1
221
222static void imx6q_opp_check_speed_grading(struct device *dev)
223{
224	struct device_node *np;
225	void __iomem *base;
226	u32 val;
 
 
 
 
 
 
 
 
227
228	np = of_find_compatible_node(NULL, NULL, "fsl,imx6q-ocotp");
229	if (!np)
230		return;
231
232	base = of_iomap(np, 0);
233	if (!base) {
234		dev_err(dev, "failed to map ocotp\n");
235		goto put_node;
 
 
 
 
 
236	}
237
238	/*
239	 * SPEED_GRADING[1:0] defines the max speed of ARM:
240	 * 2b'11: 1200000000Hz;
241	 * 2b'10: 996000000Hz;
242	 * 2b'01: 852000000Hz; -- i.MX6Q Only, exclusive with 996MHz.
243	 * 2b'00: 792000000Hz;
244	 * We need to set the max speed of ARM according to fuse map.
245	 */
246	val = readl_relaxed(base + OCOTP_CFG3);
247	val >>= OCOTP_CFG3_SPEED_SHIFT;
248	val &= 0x3;
249
250	if (val < OCOTP_CFG3_SPEED_996MHZ)
251		if (dev_pm_opp_disable(dev, 996000000))
252			dev_warn(dev, "failed to disable 996MHz OPP\n");
253
254	if (of_machine_is_compatible("fsl,imx6q") ||
255	    of_machine_is_compatible("fsl,imx6qp")) {
256		if (val != OCOTP_CFG3_SPEED_852MHZ)
257			if (dev_pm_opp_disable(dev, 852000000))
258				dev_warn(dev, "failed to disable 852MHz OPP\n");
259		if (val != OCOTP_CFG3_SPEED_1P2GHZ)
260			if (dev_pm_opp_disable(dev, 1200000000))
261				dev_warn(dev, "failed to disable 1.2GHz OPP\n");
262	}
263	iounmap(base);
264put_node:
265	of_node_put(np);
266}
267
268#define OCOTP_CFG3_6UL_SPEED_696MHZ	0x2
 
 
269
270static void imx6ul_opp_check_speed_grading(struct device *dev)
271{
272	struct device_node *np;
273	void __iomem *base;
274	u32 val;
 
 
 
 
 
 
 
 
 
 
 
 
275
276	np = of_find_compatible_node(NULL, NULL, "fsl,imx6ul-ocotp");
277	if (!np)
278		return;
279
280	base = of_iomap(np, 0);
281	if (!base) {
282		dev_err(dev, "failed to map ocotp\n");
283		goto put_node;
284	}
285
286	/*
287	 * Speed GRADING[1:0] defines the max speed of ARM:
288	 * 2b'00: Reserved;
289	 * 2b'01: 528000000Hz;
290	 * 2b'10: 696000000Hz;
291	 * 2b'11: Reserved;
292	 * We need to set the max speed of ARM according to fuse map.
293	 */
294	val = readl_relaxed(base + OCOTP_CFG3);
295	val >>= OCOTP_CFG3_SPEED_SHIFT;
296	val &= 0x3;
297	if (val != OCOTP_CFG3_6UL_SPEED_696MHZ)
298		if (dev_pm_opp_disable(dev, 696000000))
299			dev_warn(dev, "failed to disable 696MHz OPP\n");
300	iounmap(base);
301put_node:
302	of_node_put(np);
 
 
 
 
 
 
 
 
303}
304
305static int imx6q_cpufreq_probe(struct platform_device *pdev)
306{
307	struct device_node *np;
308	struct dev_pm_opp *opp;
309	unsigned long min_volt, max_volt;
310	int num, ret;
311	const struct property *prop;
312	const __be32 *val;
313	u32 nr, i, j;
314
315	cpu_dev = get_cpu_device(0);
316	if (!cpu_dev) {
317		pr_err("failed to get cpu0 device\n");
318		return -ENODEV;
319	}
320
321	np = of_node_get(cpu_dev->of_node);
322	if (!np) {
323		dev_err(cpu_dev, "failed to find cpu0 node\n");
324		return -ENOENT;
325	}
326
327	if (of_machine_is_compatible("fsl,imx6ul") ||
328	    of_machine_is_compatible("fsl,imx6ull"))
329		num_clks = IMX6UL_CPUFREQ_CLK_NUM;
330	else
331		num_clks = IMX6Q_CPUFREQ_CLK_NUM;
332
333	ret = clk_bulk_get(cpu_dev, num_clks, clks);
334	if (ret)
335		goto put_node;
336
337	arm_reg = regulator_get(cpu_dev, "arm");
338	pu_reg = regulator_get_optional(cpu_dev, "pu");
339	soc_reg = regulator_get(cpu_dev, "soc");
340	if (PTR_ERR(arm_reg) == -EPROBE_DEFER ||
341			PTR_ERR(soc_reg) == -EPROBE_DEFER ||
342			PTR_ERR(pu_reg) == -EPROBE_DEFER) {
343		ret = -EPROBE_DEFER;
344		dev_dbg(cpu_dev, "regulators not ready, defer\n");
345		goto put_reg;
346	}
347	if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) {
348		dev_err(cpu_dev, "failed to get regulators\n");
349		ret = -ENOENT;
350		goto put_reg;
351	}
352
353	ret = dev_pm_opp_of_add_table(cpu_dev);
354	if (ret < 0) {
355		dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
356		goto put_reg;
357	}
358
359	if (of_machine_is_compatible("fsl,imx6ul"))
360		imx6ul_opp_check_speed_grading(cpu_dev);
361	else
362		imx6q_opp_check_speed_grading(cpu_dev);
 
 
 
 
 
 
363
364	/* Because we have added the OPPs here, we must free them */
365	free_opp = true;
366	num = dev_pm_opp_get_opp_count(cpu_dev);
367	if (num < 0) {
368		ret = num;
369		dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
370		goto out_free_opp;
371	}
372
373	ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
374	if (ret) {
375		dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
376		goto out_free_opp;
377	}
378
379	/* Make imx6_soc_volt array's size same as arm opp number */
380	imx6_soc_volt = devm_kzalloc(cpu_dev, sizeof(*imx6_soc_volt) * num, GFP_KERNEL);
 
381	if (imx6_soc_volt == NULL) {
382		ret = -ENOMEM;
383		goto free_freq_table;
384	}
385
386	prop = of_find_property(np, "fsl,soc-operating-points", NULL);
387	if (!prop || !prop->value)
388		goto soc_opp_out;
389
390	/*
391	 * Each OPP is a set of tuples consisting of frequency and
392	 * voltage like <freq-kHz vol-uV>.
393	 */
394	nr = prop->length / sizeof(u32);
395	if (nr % 2 || (nr / 2) < num)
396		goto soc_opp_out;
397
398	for (j = 0; j < num; j++) {
399		val = prop->value;
400		for (i = 0; i < nr / 2; i++) {
401			unsigned long freq = be32_to_cpup(val++);
402			unsigned long volt = be32_to_cpup(val++);
403			if (freq_table[j].frequency == freq) {
404				imx6_soc_volt[soc_opp_count++] = volt;
405				break;
406			}
407		}
408	}
409
410soc_opp_out:
411	/* use fixed soc opp volt if no valid soc opp info found in dtb */
412	if (soc_opp_count != num) {
413		dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
414		for (j = 0; j < num; j++)
415			imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
416		if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
417			imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
418	}
419
420	if (of_property_read_u32(np, "clock-latency", &transition_latency))
421		transition_latency = CPUFREQ_ETERNAL;
422
423	/*
424	 * Calculate the ramp time for max voltage change in the
425	 * VDDSOC and VDDPU regulators.
426	 */
427	ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
428	if (ret > 0)
429		transition_latency += ret * 1000;
430	if (!IS_ERR(pu_reg)) {
431		ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
432		if (ret > 0)
433			transition_latency += ret * 1000;
434	}
435
436	/*
437	 * OPP is maintained in order of increasing frequency, and
438	 * freq_table initialised from OPP is therefore sorted in the
439	 * same order.
440	 */
441	max_freq = freq_table[--num].frequency;
442	opp = dev_pm_opp_find_freq_exact(cpu_dev,
443				  freq_table[0].frequency * 1000, true);
444	min_volt = dev_pm_opp_get_voltage(opp);
445	dev_pm_opp_put(opp);
446	opp = dev_pm_opp_find_freq_exact(cpu_dev, max_freq * 1000, true);
447	max_volt = dev_pm_opp_get_voltage(opp);
448	dev_pm_opp_put(opp);
449
450	ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
451	if (ret > 0)
452		transition_latency += ret * 1000;
453
454	ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
455	if (ret) {
456		dev_err(cpu_dev, "failed register driver: %d\n", ret);
457		goto free_freq_table;
458	}
459
460	of_node_put(np);
461	return 0;
462
463free_freq_table:
464	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
465out_free_opp:
466	if (free_opp)
467		dev_pm_opp_of_remove_table(cpu_dev);
468put_reg:
469	if (!IS_ERR(arm_reg))
470		regulator_put(arm_reg);
471	if (!IS_ERR(pu_reg))
472		regulator_put(pu_reg);
473	if (!IS_ERR(soc_reg))
474		regulator_put(soc_reg);
475
476	clk_bulk_put(num_clks, clks);
477put_node:
478	of_node_put(np);
479
480	return ret;
481}
482
483static int imx6q_cpufreq_remove(struct platform_device *pdev)
484{
485	cpufreq_unregister_driver(&imx6q_cpufreq_driver);
486	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
487	if (free_opp)
488		dev_pm_opp_of_remove_table(cpu_dev);
489	regulator_put(arm_reg);
490	if (!IS_ERR(pu_reg))
491		regulator_put(pu_reg);
492	regulator_put(soc_reg);
493
494	clk_bulk_put(num_clks, clks);
495
496	return 0;
497}
498
499static struct platform_driver imx6q_cpufreq_platdrv = {
500	.driver = {
501		.name	= "imx6q-cpufreq",
502	},
503	.probe		= imx6q_cpufreq_probe,
504	.remove		= imx6q_cpufreq_remove,
505};
506module_platform_driver(imx6q_cpufreq_platdrv);
507
508MODULE_ALIAS("platform:imx6q-cpufreq");
509MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
510MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
511MODULE_LICENSE("GPL");