Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
   2/*
   3 * Copyright (C) 2017-2024 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
 
 
 
 
   4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
   5 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
   6 *
   7 * This driver produces cryptographically secure pseudorandom data. It is divided
   8 * into roughly six sections, each with a section header:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   9 *
  10 *   - Initialization and readiness waiting.
  11 *   - Fast key erasure RNG, the "crng".
  12 *   - Entropy accumulation and extraction routines.
  13 *   - Entropy collection routines.
  14 *   - Userspace reader/writer interfaces.
  15 *   - Sysctl interface.
  16 *
  17 * The high level overview is that there is one input pool, into which
  18 * various pieces of data are hashed. Prior to initialization, some of that
  19 * data is then "credited" as having a certain number of bits of entropy.
  20 * When enough bits of entropy are available, the hash is finalized and
  21 * handed as a key to a stream cipher that expands it indefinitely for
  22 * various consumers. This key is periodically refreshed as the various
  23 * entropy collectors, described below, add data to the input pool.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  24 */
  25
  26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  27
  28#include <linux/utsname.h>
  29#include <linux/module.h>
  30#include <linux/kernel.h>
  31#include <linux/major.h>
  32#include <linux/string.h>
  33#include <linux/fcntl.h>
  34#include <linux/slab.h>
  35#include <linux/random.h>
  36#include <linux/poll.h>
  37#include <linux/init.h>
  38#include <linux/fs.h>
  39#include <linux/blkdev.h>
  40#include <linux/interrupt.h>
  41#include <linux/mm.h>
  42#include <linux/nodemask.h>
  43#include <linux/spinlock.h>
  44#include <linux/kthread.h>
  45#include <linux/percpu.h>
 
 
  46#include <linux/ptrace.h>
  47#include <linux/workqueue.h>
  48#include <linux/irq.h>
  49#include <linux/ratelimit.h>
  50#include <linux/syscalls.h>
  51#include <linux/completion.h>
  52#include <linux/uuid.h>
  53#include <linux/uaccess.h>
  54#include <linux/suspend.h>
  55#include <linux/siphash.h>
  56#include <linux/sched/isolation.h>
  57#include <crypto/chacha.h>
  58#include <crypto/blake2s.h>
  59#ifdef CONFIG_VDSO_GETRANDOM
  60#include <vdso/getrandom.h>
  61#include <vdso/datapage.h>
  62#include <vdso/vsyscall.h>
  63#endif
  64#include <asm/archrandom.h>
  65#include <asm/processor.h>
 
  66#include <asm/irq.h>
  67#include <asm/irq_regs.h>
  68#include <asm/io.h>
  69
  70/*********************************************************************
  71 *
  72 * Initialization and readiness waiting.
  73 *
  74 * Much of the RNG infrastructure is devoted to various dependencies
  75 * being able to wait until the RNG has collected enough entropy and
  76 * is ready for safe consumption.
  77 *
  78 *********************************************************************/
  79
  80/*
  81 * crng_init is protected by base_crng->lock, and only increases
  82 * its value (from empty->early->ready).
  83 */
  84static enum {
  85	CRNG_EMPTY = 0, /* Little to no entropy collected */
  86	CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */
  87	CRNG_READY = 2  /* Fully initialized with POOL_READY_BITS collected */
  88} crng_init __read_mostly = CRNG_EMPTY;
  89static DEFINE_STATIC_KEY_FALSE(crng_is_ready);
  90#define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY)
  91/* Various types of waiters for crng_init->CRNG_READY transition. */
  92static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
  93static struct fasync_struct *fasync;
  94static ATOMIC_NOTIFIER_HEAD(random_ready_notifier);
  95
  96/* Control how we warn userspace. */
  97static struct ratelimit_state urandom_warning =
  98	RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE);
  99static int ratelimit_disable __read_mostly =
 100	IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM);
 101module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
 102MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
 103
 104/*
 105 * Returns whether or not the input pool has been seeded and thus guaranteed
 106 * to supply cryptographically secure random numbers. This applies to: the
 107 * /dev/urandom device, the get_random_bytes function, and the get_random_{u8,
 108 * u16,u32,u64,long} family of functions.
 109 *
 110 * Returns: true if the input pool has been seeded.
 111 *          false if the input pool has not been seeded.
 112 */
 113bool rng_is_initialized(void)
 114{
 115	return crng_ready();
 116}
 117EXPORT_SYMBOL(rng_is_initialized);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 118
 119static void __cold crng_set_ready(struct work_struct *work)
 120{
 121	static_branch_enable(&crng_is_ready);
 122}
 123
 124/* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
 125static void try_to_generate_entropy(void);
 
 
 
 
 
 126
 127/*
 128 * Wait for the input pool to be seeded and thus guaranteed to supply
 129 * cryptographically secure random numbers. This applies to: the /dev/urandom
 130 * device, the get_random_bytes function, and the get_random_{u8,u16,u32,u64,
 131 * long} family of functions. Using any of these functions without first
 132 * calling this function forfeits the guarantee of security.
 133 *
 134 * Returns: 0 if the input pool has been seeded.
 135 *          -ERESTARTSYS if the function was interrupted by a signal.
 136 */
 137int wait_for_random_bytes(void)
 138{
 139	while (!crng_ready()) {
 140		int ret;
 141
 142		try_to_generate_entropy();
 143		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
 144		if (ret)
 145			return ret > 0 ? 0 : ret;
 146	}
 147	return 0;
 148}
 149EXPORT_SYMBOL(wait_for_random_bytes);
 
 
 
 
 150
 151/*
 152 * Add a callback function that will be invoked when the crng is initialised,
 153 * or immediately if it already has been. Only use this is you are absolutely
 154 * sure it is required. Most users should instead be able to test
 155 * `rng_is_initialized()` on demand, or make use of `get_random_bytes_wait()`.
 156 */
 157int __cold execute_with_initialized_rng(struct notifier_block *nb)
 158{
 159	unsigned long flags;
 160	int ret = 0;
 
 
 
 
 
 
 
 
 
 161
 162	spin_lock_irqsave(&random_ready_notifier.lock, flags);
 163	if (crng_ready())
 164		nb->notifier_call(nb, 0, NULL);
 165	else
 166		ret = raw_notifier_chain_register((struct raw_notifier_head *)&random_ready_notifier.head, nb);
 167	spin_unlock_irqrestore(&random_ready_notifier.lock, flags);
 168	return ret;
 169}
 170
 171#define warn_unseeded_randomness() \
 172	if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \
 173		printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \
 174				__func__, (void *)_RET_IP_, crng_init)
 175
 
 
 176
 177/*********************************************************************
 178 *
 179 * Fast key erasure RNG, the "crng".
 180 *
 181 * These functions expand entropy from the entropy extractor into
 182 * long streams for external consumption using the "fast key erasure"
 183 * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
 184 *
 185 * There are a few exported interfaces for use by other drivers:
 186 *
 187 *	void get_random_bytes(void *buf, size_t len)
 188 *	u8 get_random_u8()
 189 *	u16 get_random_u16()
 190 *	u32 get_random_u32()
 191 *	u32 get_random_u32_below(u32 ceil)
 192 *	u32 get_random_u32_above(u32 floor)
 193 *	u32 get_random_u32_inclusive(u32 floor, u32 ceil)
 194 *	u64 get_random_u64()
 195 *	unsigned long get_random_long()
 196 *
 197 * These interfaces will return the requested number of random bytes
 198 * into the given buffer or as a return value. This is equivalent to
 199 * a read from /dev/urandom. The u8, u16, u32, u64, long family of
 200 * functions may be higher performance for one-off random integers,
 201 * because they do a bit of buffering and do not invoke reseeding
 202 * until the buffer is emptied.
 203 *
 204 *********************************************************************/
 205
 206enum {
 207	CRNG_RESEED_START_INTERVAL = HZ,
 208	CRNG_RESEED_INTERVAL = 60 * HZ
 209};
 
 
 
 
 210
 211static struct {
 212	u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
 213	unsigned long generation;
 214	spinlock_t lock;
 215} base_crng = {
 216	.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
 
 
 
 
 
 217};
 218
 219struct crng {
 220	u8 key[CHACHA_KEY_SIZE];
 221	unsigned long generation;
 222	local_lock_t lock;
 
 
 
 
 
 
 
 
 
 
 
 223};
 224
 225static DEFINE_PER_CPU(struct crng, crngs) = {
 226	.generation = ULONG_MAX,
 227	.lock = INIT_LOCAL_LOCK(crngs.lock),
 
 
 
 
 
 228};
 229
 230/*
 231 * Return the interval until the next reseeding, which is normally
 232 * CRNG_RESEED_INTERVAL, but during early boot, it is at an interval
 233 * proportional to the uptime.
 234 */
 235static unsigned int crng_reseed_interval(void)
 236{
 237	static bool early_boot = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 238
 239	if (unlikely(READ_ONCE(early_boot))) {
 240		time64_t uptime = ktime_get_seconds();
 241		if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
 242			WRITE_ONCE(early_boot, false);
 243		else
 244			return max_t(unsigned int, CRNG_RESEED_START_INTERVAL,
 245				     (unsigned int)uptime / 2 * HZ);
 
 
 
 246	}
 247	return CRNG_RESEED_INTERVAL;
 
 
 248}
 249
 250/* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */
 251static void extract_entropy(void *buf, size_t len);
 
 
 
 
 252
 253/* This extracts a new crng key from the input pool. */
 254static void crng_reseed(struct work_struct *work)
 255{
 256	static DECLARE_DELAYED_WORK(next_reseed, crng_reseed);
 257	unsigned long flags;
 258	unsigned long next_gen;
 259	u8 key[CHACHA_KEY_SIZE];
 260
 261	/* Immediately schedule the next reseeding, so that it fires sooner rather than later. */
 262	if (likely(system_unbound_wq))
 263		queue_delayed_work(system_unbound_wq, &next_reseed, crng_reseed_interval());
 264
 265	extract_entropy(key, sizeof(key));
 266
 267	/*
 268	 * We copy the new key into the base_crng, overwriting the old one,
 269	 * and update the generation counter. We avoid hitting ULONG_MAX,
 270	 * because the per-cpu crngs are initialized to ULONG_MAX, so this
 271	 * forces new CPUs that come online to always initialize.
 272	 */
 273	spin_lock_irqsave(&base_crng.lock, flags);
 274	memcpy(base_crng.key, key, sizeof(base_crng.key));
 275	next_gen = base_crng.generation + 1;
 276	if (next_gen == ULONG_MAX)
 277		++next_gen;
 278	WRITE_ONCE(base_crng.generation, next_gen);
 279#ifdef CONFIG_VDSO_GETRANDOM
 280	/* base_crng.generation's invalid value is ULONG_MAX, while
 281	 * _vdso_rng_data.generation's invalid value is 0, so add one to the
 282	 * former to arrive at the latter. Use smp_store_release so that this
 283	 * is ordered with the write above to base_crng.generation. Pairs with
 284	 * the smp_rmb() before the syscall in the vDSO code.
 285	 *
 286	 * Cast to unsigned long for 32-bit architectures, since atomic 64-bit
 287	 * operations are not supported on those architectures. This is safe
 288	 * because base_crng.generation is a 32-bit value. On big-endian
 289	 * architectures it will be stored in the upper 32 bits, but that's okay
 290	 * because the vDSO side only checks whether the value changed, without
 291	 * actually using or interpreting the value.
 292	 */
 293	smp_store_release((unsigned long *)&__arch_get_k_vdso_rng_data()->generation, next_gen + 1);
 294#endif
 295	if (!static_branch_likely(&crng_is_ready))
 296		crng_init = CRNG_READY;
 297	spin_unlock_irqrestore(&base_crng.lock, flags);
 298	memzero_explicit(key, sizeof(key));
 299}
 300
 
 
 
 
 
 
 
 301/*
 302 * This generates a ChaCha block using the provided key, and then
 303 * immediately overwrites that key with half the block. It returns
 304 * the resultant ChaCha state to the user, along with the second
 305 * half of the block containing 32 bytes of random data that may
 306 * be used; random_data_len may not be greater than 32.
 307 *
 308 * The returned ChaCha state contains within it a copy of the old
 309 * key value, at index 4, so the state should always be zeroed out
 310 * immediately after using in order to maintain forward secrecy.
 311 * If the state cannot be erased in a timely manner, then it is
 312 * safer to set the random_data parameter to &chacha_state[4] so
 313 * that this function overwrites it before returning.
 314 */
 315static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
 316				  u32 chacha_state[CHACHA_STATE_WORDS],
 317				  u8 *random_data, size_t random_data_len)
 318{
 319	u8 first_block[CHACHA_BLOCK_SIZE];
 
 
 
 
 
 320
 321	BUG_ON(random_data_len > 32);
 
 
 322
 323	chacha_init_consts(chacha_state);
 324	memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
 325	memset(&chacha_state[12], 0, sizeof(u32) * 4);
 326	chacha20_block(chacha_state, first_block);
 327
 328	memcpy(key, first_block, CHACHA_KEY_SIZE);
 329	memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
 330	memzero_explicit(first_block, sizeof(first_block));
 
 
 
 
 331}
 332
 333/*
 334 * This function returns a ChaCha state that you may use for generating
 335 * random data. It also returns up to 32 bytes on its own of random data
 336 * that may be used; random_data_len may not be greater than 32.
 337 */
 338static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
 339			    u8 *random_data, size_t random_data_len)
 340{
 341	unsigned long flags;
 342	struct crng *crng;
 343
 344	BUG_ON(random_data_len > 32);
 345
 346	/*
 347	 * For the fast path, we check whether we're ready, unlocked first, and
 348	 * then re-check once locked later. In the case where we're really not
 349	 * ready, we do fast key erasure with the base_crng directly, extracting
 350	 * when crng_init is CRNG_EMPTY.
 351	 */
 352	if (!crng_ready()) {
 353		bool ready;
 354
 355		spin_lock_irqsave(&base_crng.lock, flags);
 356		ready = crng_ready();
 357		if (!ready) {
 358			if (crng_init == CRNG_EMPTY)
 359				extract_entropy(base_crng.key, sizeof(base_crng.key));
 360			crng_fast_key_erasure(base_crng.key, chacha_state,
 361					      random_data, random_data_len);
 362		}
 363		spin_unlock_irqrestore(&base_crng.lock, flags);
 364		if (!ready)
 365			return;
 366	}
 367
 368	local_lock_irqsave(&crngs.lock, flags);
 369	crng = raw_cpu_ptr(&crngs);
 370
 371	/*
 372	 * If our per-cpu crng is older than the base_crng, then it means
 373	 * somebody reseeded the base_crng. In that case, we do fast key
 374	 * erasure on the base_crng, and use its output as the new key
 375	 * for our per-cpu crng. This brings us up to date with base_crng.
 376	 */
 377	if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
 378		spin_lock(&base_crng.lock);
 379		crng_fast_key_erasure(base_crng.key, chacha_state,
 380				      crng->key, sizeof(crng->key));
 381		crng->generation = base_crng.generation;
 382		spin_unlock(&base_crng.lock);
 383	}
 384
 385	/*
 386	 * Finally, when we've made it this far, our per-cpu crng has an up
 387	 * to date key, and we can do fast key erasure with it to produce
 388	 * some random data and a ChaCha state for the caller. All other
 389	 * branches of this function are "unlikely", so most of the time we
 390	 * should wind up here immediately.
 391	 */
 392	crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
 393	local_unlock_irqrestore(&crngs.lock, flags);
 394}
 395
 396static void _get_random_bytes(void *buf, size_t len)
 
 
 
 
 
 397{
 398	u32 chacha_state[CHACHA_STATE_WORDS];
 399	u8 tmp[CHACHA_BLOCK_SIZE];
 400	size_t first_block_len;
 401
 402	if (!len)
 403		return;
 404
 405	first_block_len = min_t(size_t, 32, len);
 406	crng_make_state(chacha_state, buf, first_block_len);
 407	len -= first_block_len;
 408	buf += first_block_len;
 409
 410	while (len) {
 411		if (len < CHACHA_BLOCK_SIZE) {
 412			chacha20_block(chacha_state, tmp);
 413			memcpy(buf, tmp, len);
 414			memzero_explicit(tmp, sizeof(tmp));
 415			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 416		}
 417
 418		chacha20_block(chacha_state, buf);
 419		if (unlikely(chacha_state[12] == 0))
 420			++chacha_state[13];
 421		len -= CHACHA_BLOCK_SIZE;
 422		buf += CHACHA_BLOCK_SIZE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 423	}
 424
 425	memzero_explicit(chacha_state, sizeof(chacha_state));
 426}
 427
 428/*
 429 * This returns random bytes in arbitrary quantities. The quality of the
 430 * random bytes is good as /dev/urandom. In order to ensure that the
 431 * randomness provided by this function is okay, the function
 432 * wait_for_random_bytes() should be called and return 0 at least once
 433 * at any point prior.
 434 */
 435void get_random_bytes(void *buf, size_t len)
 436{
 437	warn_unseeded_randomness();
 438	_get_random_bytes(buf, len);
 439}
 440EXPORT_SYMBOL(get_random_bytes);
 441
 442static ssize_t get_random_bytes_user(struct iov_iter *iter)
 443{
 444	u32 chacha_state[CHACHA_STATE_WORDS];
 445	u8 block[CHACHA_BLOCK_SIZE];
 446	size_t ret = 0, copied;
 447
 448	if (unlikely(!iov_iter_count(iter)))
 449		return 0;
 450
 451	/*
 452	 * Immediately overwrite the ChaCha key at index 4 with random
 453	 * bytes, in case userspace causes copy_to_iter() below to sleep
 454	 * forever, so that we still retain forward secrecy in that case.
 455	 */
 456	crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE);
 457	/*
 458	 * However, if we're doing a read of len <= 32, we don't need to
 459	 * use chacha_state after, so we can simply return those bytes to
 460	 * the user directly.
 461	 */
 462	if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) {
 463		ret = copy_to_iter(&chacha_state[4], CHACHA_KEY_SIZE, iter);
 464		goto out_zero_chacha;
 465	}
 466
 467	for (;;) {
 468		chacha20_block(chacha_state, block);
 469		if (unlikely(chacha_state[12] == 0))
 470			++chacha_state[13];
 471
 472		copied = copy_to_iter(block, sizeof(block), iter);
 473		ret += copied;
 474		if (!iov_iter_count(iter) || copied != sizeof(block))
 475			break;
 476
 477		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
 478		if (ret % PAGE_SIZE == 0) {
 479			if (signal_pending(current))
 480				break;
 481			cond_resched();
 482		}
 483	}
 484
 485	memzero_explicit(block, sizeof(block));
 486out_zero_chacha:
 487	memzero_explicit(chacha_state, sizeof(chacha_state));
 488	return ret ? ret : -EFAULT;
 489}
 490
 491/*
 492 * Batched entropy returns random integers. The quality of the random
 493 * number is good as /dev/urandom. In order to ensure that the randomness
 494 * provided by this function is okay, the function wait_for_random_bytes()
 495 * should be called and return 0 at least once at any point prior.
 496 */
 497
 498#define DEFINE_BATCHED_ENTROPY(type)						\
 499struct batch_ ##type {								\
 500	/*									\
 501	 * We make this 1.5x a ChaCha block, so that we get the			\
 502	 * remaining 32 bytes from fast key erasure, plus one full		\
 503	 * block from the detached ChaCha state. We can increase		\
 504	 * the size of this later if needed so long as we keep the		\
 505	 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.		\
 506	 */									\
 507	type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))];		\
 508	local_lock_t lock;							\
 509	unsigned long generation;						\
 510	unsigned int position;							\
 511};										\
 512										\
 513static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = {	\
 514	.lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock),			\
 515	.position = UINT_MAX							\
 516};										\
 517										\
 518type get_random_ ##type(void)							\
 519{										\
 520	type ret;								\
 521	unsigned long flags;							\
 522	struct batch_ ##type *batch;						\
 523	unsigned long next_gen;							\
 524										\
 525	warn_unseeded_randomness();						\
 526										\
 527	if  (!crng_ready()) {							\
 528		_get_random_bytes(&ret, sizeof(ret));				\
 529		return ret;							\
 530	}									\
 531										\
 532	local_lock_irqsave(&batched_entropy_ ##type.lock, flags);		\
 533	batch = raw_cpu_ptr(&batched_entropy_##type);				\
 534										\
 535	next_gen = READ_ONCE(base_crng.generation);				\
 536	if (batch->position >= ARRAY_SIZE(batch->entropy) ||			\
 537	    next_gen != batch->generation) {					\
 538		_get_random_bytes(batch->entropy, sizeof(batch->entropy));	\
 539		batch->position = 0;						\
 540		batch->generation = next_gen;					\
 541	}									\
 542										\
 543	ret = batch->entropy[batch->position];					\
 544	batch->entropy[batch->position] = 0;					\
 545	++batch->position;							\
 546	local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags);		\
 547	return ret;								\
 548}										\
 549EXPORT_SYMBOL(get_random_ ##type);
 550
 551DEFINE_BATCHED_ENTROPY(u8)
 552DEFINE_BATCHED_ENTROPY(u16)
 553DEFINE_BATCHED_ENTROPY(u32)
 554DEFINE_BATCHED_ENTROPY(u64)
 555
 556u32 __get_random_u32_below(u32 ceil)
 557{
 558	/*
 559	 * This is the slow path for variable ceil. It is still fast, most of
 560	 * the time, by doing traditional reciprocal multiplication and
 561	 * opportunistically comparing the lower half to ceil itself, before
 562	 * falling back to computing a larger bound, and then rejecting samples
 563	 * whose lower half would indicate a range indivisible by ceil. The use
 564	 * of `-ceil % ceil` is analogous to `2^32 % ceil`, but is computable
 565	 * in 32-bits.
 566	 */
 567	u32 rand = get_random_u32();
 568	u64 mult;
 569
 570	/*
 571	 * This function is technically undefined for ceil == 0, and in fact
 572	 * for the non-underscored constant version in the header, we build bug
 573	 * on that. But for the non-constant case, it's convenient to have that
 574	 * evaluate to being a straight call to get_random_u32(), so that
 575	 * get_random_u32_inclusive() can work over its whole range without
 576	 * undefined behavior.
 577	 */
 578	if (unlikely(!ceil))
 579		return rand;
 580
 581	mult = (u64)ceil * rand;
 582	if (unlikely((u32)mult < ceil)) {
 583		u32 bound = -ceil % ceil;
 584		while (unlikely((u32)mult < bound))
 585			mult = (u64)ceil * get_random_u32();
 
 
 
 
 
 
 586	}
 587	return mult >> 32;
 588}
 589EXPORT_SYMBOL(__get_random_u32_below);
 590
 591#ifdef CONFIG_SMP
 592/*
 593 * This function is called when the CPU is coming up, with entry
 594 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
 595 */
 596int __cold random_prepare_cpu(unsigned int cpu)
 597{
 598	/*
 599	 * When the cpu comes back online, immediately invalidate both
 600	 * the per-cpu crng and all batches, so that we serve fresh
 601	 * randomness.
 602	 */
 603	per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
 604	per_cpu_ptr(&batched_entropy_u8, cpu)->position = UINT_MAX;
 605	per_cpu_ptr(&batched_entropy_u16, cpu)->position = UINT_MAX;
 606	per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
 607	per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
 608	return 0;
 609}
 610#endif
 611
 612
 613/**********************************************************************
 614 *
 615 * Entropy accumulation and extraction routines.
 616 *
 617 * Callers may add entropy via:
 618 *
 619 *     static void mix_pool_bytes(const void *buf, size_t len)
 620 *
 621 * After which, if added entropy should be credited:
 622 *
 623 *     static void credit_init_bits(size_t bits)
 624 *
 625 * Finally, extract entropy via:
 626 *
 627 *     static void extract_entropy(void *buf, size_t len)
 628 *
 629 **********************************************************************/
 630
 631enum {
 632	POOL_BITS = BLAKE2S_HASH_SIZE * 8,
 633	POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */
 634	POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */
 635};
 
 
 
 
 
 
 
 
 
 
 636
 637static struct {
 638	struct blake2s_state hash;
 639	spinlock_t lock;
 640	unsigned int init_bits;
 641} input_pool = {
 642	.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
 643		    BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
 644		    BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
 645	.hash.outlen = BLAKE2S_HASH_SIZE,
 646	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
 647};
 648
 649static void _mix_pool_bytes(const void *buf, size_t len)
 650{
 651	blake2s_update(&input_pool.hash, buf, len);
 652}
 
 
 
 653
 654/*
 655 * This function adds bytes into the input pool. It does not
 656 * update the initialization bit counter; the caller should call
 657 * credit_init_bits if this is appropriate.
 658 */
 659static void mix_pool_bytes(const void *buf, size_t len)
 660{
 661	unsigned long flags;
 
 662
 663	spin_lock_irqsave(&input_pool.lock, flags);
 664	_mix_pool_bytes(buf, len);
 665	spin_unlock_irqrestore(&input_pool.lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 666}
 667
 668/*
 669 * This is an HKDF-like construction for using the hashed collected entropy
 670 * as a PRF key, that's then expanded block-by-block.
 
 
 
 
 
 
 
 
 
 
 671 */
 672static void extract_entropy(void *buf, size_t len)
 673{
 674	unsigned long flags;
 675	u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
 676	struct {
 677		unsigned long rdseed[32 / sizeof(long)];
 678		size_t counter;
 679	} block;
 680	size_t i, longs;
 681
 682	for (i = 0; i < ARRAY_SIZE(block.rdseed);) {
 683		longs = arch_get_random_seed_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
 684		if (longs) {
 685			i += longs;
 686			continue;
 687		}
 688		longs = arch_get_random_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
 689		if (longs) {
 690			i += longs;
 691			continue;
 692		}
 693		block.rdseed[i++] = random_get_entropy();
 694	}
 695
 696	spin_lock_irqsave(&input_pool.lock, flags);
 697
 698	/* seed = HASHPRF(last_key, entropy_input) */
 699	blake2s_final(&input_pool.hash, seed);
 700
 701	/* next_key = HASHPRF(seed, RDSEED || 0) */
 702	block.counter = 0;
 703	blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
 704	blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));
 705
 706	spin_unlock_irqrestore(&input_pool.lock, flags);
 707	memzero_explicit(next_key, sizeof(next_key));
 708
 709	while (len) {
 710		i = min_t(size_t, len, BLAKE2S_HASH_SIZE);
 711		/* output = HASHPRF(seed, RDSEED || ++counter) */
 712		++block.counter;
 713		blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
 714		len -= i;
 715		buf += i;
 716	}
 
 
 717
 718	memzero_explicit(seed, sizeof(seed));
 719	memzero_explicit(&block, sizeof(block));
 720}
 721
 722#define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits)
 723
 724static void __cold _credit_init_bits(size_t bits)
 725{
 726	static DECLARE_WORK(set_ready, crng_set_ready);
 727	unsigned int new, orig, add;
 728	unsigned long flags;
 729
 730	if (!bits)
 731		return;
 732
 733	add = min_t(size_t, bits, POOL_BITS);
 734
 735	orig = READ_ONCE(input_pool.init_bits);
 736	do {
 737		new = min_t(unsigned int, POOL_BITS, orig + add);
 738	} while (!try_cmpxchg(&input_pool.init_bits, &orig, new));
 739
 740	if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) {
 741		crng_reseed(NULL); /* Sets crng_init to CRNG_READY under base_crng.lock. */
 742		if (static_key_initialized && system_unbound_wq)
 743			queue_work(system_unbound_wq, &set_ready);
 744		atomic_notifier_call_chain(&random_ready_notifier, 0, NULL);
 745#ifdef CONFIG_VDSO_GETRANDOM
 746		WRITE_ONCE(__arch_get_k_vdso_rng_data()->is_ready, true);
 747#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 748		wake_up_interruptible(&crng_init_wait);
 749		kill_fasync(&fasync, SIGIO, POLL_IN);
 750		pr_notice("crng init done\n");
 751		if (urandom_warning.missed)
 752			pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
 
 
 
 
 
 
 753				  urandom_warning.missed);
 754	} else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) {
 755		spin_lock_irqsave(&base_crng.lock, flags);
 756		/* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */
 757		if (crng_init == CRNG_EMPTY) {
 758			extract_entropy(base_crng.key, sizeof(base_crng.key));
 759			crng_init = CRNG_EARLY;
 760		}
 761		spin_unlock_irqrestore(&base_crng.lock, flags);
 762	}
 763}
 764
 765
 766/**********************************************************************
 767 *
 768 * Entropy collection routines.
 769 *
 770 * The following exported functions are used for pushing entropy into
 771 * the above entropy accumulation routines:
 772 *
 773 *	void add_device_randomness(const void *buf, size_t len);
 774 *	void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after);
 775 *	void add_bootloader_randomness(const void *buf, size_t len);
 776 *	void add_vmfork_randomness(const void *unique_vm_id, size_t len);
 777 *	void add_interrupt_randomness(int irq);
 778 *	void add_input_randomness(unsigned int type, unsigned int code, unsigned int value);
 779 *	void add_disk_randomness(struct gendisk *disk);
 780 *
 781 * add_device_randomness() adds data to the input pool that
 782 * is likely to differ between two devices (or possibly even per boot).
 783 * This would be things like MAC addresses or serial numbers, or the
 784 * read-out of the RTC. This does *not* credit any actual entropy to
 785 * the pool, but it initializes the pool to different values for devices
 786 * that might otherwise be identical and have very little entropy
 787 * available to them (particularly common in the embedded world).
 788 *
 789 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
 790 * entropy as specified by the caller. If the entropy pool is full it will
 791 * block until more entropy is needed.
 792 *
 793 * add_bootloader_randomness() is called by bootloader drivers, such as EFI
 794 * and device tree, and credits its input depending on whether or not the
 795 * command line option 'random.trust_bootloader'.
 796 *
 797 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID
 798 * representing the current instance of a VM to the pool, without crediting,
 799 * and then force-reseeds the crng so that it takes effect immediately.
 800 *
 801 * add_interrupt_randomness() uses the interrupt timing as random
 802 * inputs to the entropy pool. Using the cycle counters and the irq source
 803 * as inputs, it feeds the input pool roughly once a second or after 64
 804 * interrupts, crediting 1 bit of entropy for whichever comes first.
 805 *
 806 * add_input_randomness() uses the input layer interrupt timing, as well
 807 * as the event type information from the hardware.
 808 *
 809 * add_disk_randomness() uses what amounts to the seek time of block
 810 * layer request events, on a per-disk_devt basis, as input to the
 811 * entropy pool. Note that high-speed solid state drives with very low
 812 * seek times do not make for good sources of entropy, as their seek
 813 * times are usually fairly consistent.
 814 *
 815 * The last two routines try to estimate how many bits of entropy
 816 * to credit. They do this by keeping track of the first and second
 817 * order deltas of the event timings.
 818 *
 819 **********************************************************************/
 820
 821static bool trust_cpu __initdata = true;
 822static bool trust_bootloader __initdata = true;
 823static int __init parse_trust_cpu(char *arg)
 824{
 825	return kstrtobool(arg, &trust_cpu);
 826}
 827static int __init parse_trust_bootloader(char *arg)
 828{
 829	return kstrtobool(arg, &trust_bootloader);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 830}
 831early_param("random.trust_cpu", parse_trust_cpu);
 832early_param("random.trust_bootloader", parse_trust_bootloader);
 833
 834static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data)
 
 
 
 
 
 835{
 836	unsigned long flags, entropy = random_get_entropy();
 837
 838	/*
 839	 * Encode a representation of how long the system has been suspended,
 840	 * in a way that is distinct from prior system suspends.
 841	 */
 842	ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() };
 843
 844	spin_lock_irqsave(&input_pool.lock, flags);
 845	_mix_pool_bytes(&action, sizeof(action));
 846	_mix_pool_bytes(stamps, sizeof(stamps));
 847	_mix_pool_bytes(&entropy, sizeof(entropy));
 848	spin_unlock_irqrestore(&input_pool.lock, flags);
 849
 850	if (crng_ready() && (action == PM_RESTORE_PREPARE ||
 851	    (action == PM_POST_SUSPEND && !IS_ENABLED(CONFIG_PM_AUTOSLEEP) &&
 852	     !IS_ENABLED(CONFIG_PM_USERSPACE_AUTOSLEEP)))) {
 853		crng_reseed(NULL);
 854		pr_notice("crng reseeded on system resumption\n");
 855	}
 856	return 0;
 
 
 
 
 
 857}
 858
 859static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification };
 860
 861/*
 862 * This is called extremely early, before time keeping functionality is
 863 * available, but arch randomness is. Interrupts are not yet enabled.
 864 */
 865void __init random_init_early(const char *command_line)
 866{
 867	unsigned long entropy[BLAKE2S_BLOCK_SIZE / sizeof(long)];
 868	size_t i, longs, arch_bits;
 869
 870#if defined(LATENT_ENTROPY_PLUGIN)
 871	static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
 872	_mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
 
 873#endif
 
 
 
 
 
 
 
 
 
 874
 875	for (i = 0, arch_bits = sizeof(entropy) * 8; i < ARRAY_SIZE(entropy);) {
 876		longs = arch_get_random_seed_longs(entropy, ARRAY_SIZE(entropy) - i);
 877		if (longs) {
 878			_mix_pool_bytes(entropy, sizeof(*entropy) * longs);
 879			i += longs;
 880			continue;
 
 
 881		}
 882		longs = arch_get_random_longs(entropy, ARRAY_SIZE(entropy) - i);
 883		if (longs) {
 884			_mix_pool_bytes(entropy, sizeof(*entropy) * longs);
 885			i += longs;
 886			continue;
 
 887		}
 888		arch_bits -= sizeof(*entropy) * 8;
 889		++i;
 
 
 890	}
 
 891
 892	_mix_pool_bytes(init_utsname(), sizeof(*(init_utsname())));
 893	_mix_pool_bytes(command_line, strlen(command_line));
 894
 895	/* Reseed if already seeded by earlier phases. */
 896	if (crng_ready())
 897		crng_reseed(NULL);
 898	else if (trust_cpu)
 899		_credit_init_bits(arch_bits);
 900}
 901
 902/*
 903 * This is called a little bit after the prior function, and now there is
 904 * access to timestamps counters. Interrupts are not yet enabled.
 905 */
 906void __init random_init(void)
 907{
 908	unsigned long entropy = random_get_entropy();
 909	ktime_t now = ktime_get_real();
 910
 911	_mix_pool_bytes(&now, sizeof(now));
 912	_mix_pool_bytes(&entropy, sizeof(entropy));
 913	add_latent_entropy();
 914
 915	/*
 916	 * If we were initialized by the cpu or bootloader before jump labels
 917	 * or workqueues are initialized, then we should enable the static
 918	 * branch here, where it's guaranteed that these have been initialized.
 919	 */
 920	if (!static_branch_likely(&crng_is_ready) && crng_init >= CRNG_READY)
 921		crng_set_ready(NULL);
 922
 923	/* Reseed if already seeded by earlier phases. */
 924	if (crng_ready())
 925		crng_reseed(NULL);
 
 
 926
 927	WARN_ON(register_pm_notifier(&pm_notifier));
 
 
 
 
 928
 929	WARN(!entropy, "Missing cycle counter and fallback timer; RNG "
 930		       "entropy collection will consequently suffer.");
 931}
 932
 933/*
 934 * Add device- or boot-specific data to the input pool to help
 935 * initialize it.
 936 *
 937 * None of this adds any entropy; it is meant to avoid the problem of
 938 * the entropy pool having similar initial state across largely
 939 * identical devices.
 940 */
 941void add_device_randomness(const void *buf, size_t len)
 942{
 943	unsigned long entropy = random_get_entropy();
 944	unsigned long flags;
 945
 
 
 
 
 946	spin_lock_irqsave(&input_pool.lock, flags);
 947	_mix_pool_bytes(&entropy, sizeof(entropy));
 948	_mix_pool_bytes(buf, len);
 949	spin_unlock_irqrestore(&input_pool.lock, flags);
 950}
 951EXPORT_SYMBOL(add_device_randomness);
 952
 
 
 953/*
 954 * Interface for in-kernel drivers of true hardware RNGs. Those devices
 955 * may produce endless random bits, so this function will sleep for
 956 * some amount of time after, if the sleep_after parameter is true.
 
 
 
 
 
 957 */
 958void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after)
 959{
 960	mix_pool_bytes(buf, len);
 961	credit_init_bits(entropy);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 962
 963	/*
 964	 * Throttle writing to once every reseed interval, unless we're not yet
 965	 * initialized or no entropy is credited.
 
 966	 */
 967	if (sleep_after && !kthread_should_stop() && (crng_ready() || !entropy))
 968		schedule_timeout_interruptible(crng_reseed_interval());
 
 969}
 970EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
 971
 972/*
 973 * Handle random seed passed by bootloader, and credit it depending
 974 * on the command line option 'random.trust_bootloader'.
 975 */
 976void __init add_bootloader_randomness(const void *buf, size_t len)
 977{
 978	mix_pool_bytes(buf, len);
 979	if (trust_bootloader)
 980		credit_init_bits(len * 8);
 
 
 
 
 
 
 
 981}
 
 982
 983#if IS_ENABLED(CONFIG_VMGENID)
 984static BLOCKING_NOTIFIER_HEAD(vmfork_chain);
 985
 986/*
 987 * Handle a new unique VM ID, which is unique, not secret, so we
 988 * don't credit it, but we do immediately force a reseed after so
 989 * that it's used by the crng posthaste.
 990 */
 991void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len)
 
 992{
 993	add_device_randomness(unique_vm_id, len);
 994	if (crng_ready()) {
 995		crng_reseed(NULL);
 996		pr_notice("crng reseeded due to virtual machine fork\n");
 997	}
 998	blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
 
 
 999}
1000#if IS_MODULE(CONFIG_VMGENID)
1001EXPORT_SYMBOL_GPL(add_vmfork_randomness);
1002#endif
1003
1004int __cold register_random_vmfork_notifier(struct notifier_block *nb)
1005{
1006	return blocking_notifier_chain_register(&vmfork_chain, nb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1007}
1008EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);
1009
1010int __cold unregister_random_vmfork_notifier(struct notifier_block *nb)
 
1011{
1012	return blocking_notifier_chain_unregister(&vmfork_chain, nb);
 
 
 
 
1013}
1014EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
1015#endif
1016
1017struct fast_pool {
1018	unsigned long pool[4];
1019	unsigned long last;
1020	unsigned int count;
1021	struct timer_list mix;
1022};
1023
1024static void mix_interrupt_randomness(struct timer_list *work);
 
 
 
 
 
 
 
 
 
 
 
1025
1026static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
1027#ifdef CONFIG_64BIT
1028#define FASTMIX_PERM SIPHASH_PERMUTATION
1029	.pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 },
1030#else
1031#define FASTMIX_PERM HSIPHASH_PERMUTATION
1032	.pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 },
1033#endif
1034	.mix = __TIMER_INITIALIZER(mix_interrupt_randomness, 0)
1035};
 
 
 
 
 
 
 
 
 
 
 
1036
1037/*
1038 * This is [Half]SipHash-1-x, starting from an empty key. Because
1039 * the key is fixed, it assumes that its inputs are non-malicious,
1040 * and therefore this has no security on its own. s represents the
1041 * four-word SipHash state, while v represents a two-word input.
1042 */
1043static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2)
1044{
1045	s[3] ^= v1;
1046	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1047	s[0] ^= v1;
1048	s[3] ^= v2;
1049	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1050	s[0] ^= v2;
1051}
1052
1053#ifdef CONFIG_SMP
1054/*
1055 * This function is called when the CPU has just come online, with
1056 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
1057 */
1058int __cold random_online_cpu(unsigned int cpu)
 
1059{
1060	/*
1061	 * During CPU shutdown and before CPU onlining, add_interrupt_
1062	 * randomness() may schedule mix_interrupt_randomness(), and
1063	 * set the MIX_INFLIGHT flag. However, because the worker can
1064	 * be scheduled on a different CPU during this period, that
1065	 * flag will never be cleared. For that reason, we zero out
1066	 * the flag here, which runs just after workqueues are onlined
1067	 * for the CPU again. This also has the effect of setting the
1068	 * irq randomness count to zero so that new accumulated irqs
1069	 * are fresh.
1070	 */
1071	per_cpu_ptr(&irq_randomness, cpu)->count = 0;
1072	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1073}
1074#endif
1075
1076static void mix_interrupt_randomness(struct timer_list *work)
 
 
 
 
 
 
1077{
1078	struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
 
 
 
 
 
 
 
1079	/*
1080	 * The size of the copied stack pool is explicitly 2 longs so that we
1081	 * only ever ingest half of the siphash output each time, retaining
1082	 * the other half as the next "key" that carries over. The entropy is
1083	 * supposed to be sufficiently dispersed between bits so on average
1084	 * we don't wind up "losing" some.
1085	 */
1086	unsigned long pool[2];
1087	unsigned int count;
1088
1089	/* Check to see if we're running on the wrong CPU due to hotplug. */
1090	local_irq_disable();
1091	if (fast_pool != this_cpu_ptr(&irq_randomness)) {
1092		local_irq_enable();
1093		return;
1094	}
1095
 
 
 
 
 
1096	/*
1097	 * Copy the pool to the stack so that the mixer always has a
1098	 * consistent view, before we reenable irqs again.
 
 
 
 
 
1099	 */
1100	memcpy(pool, fast_pool->pool, sizeof(pool));
1101	count = fast_pool->count;
1102	fast_pool->count = 0;
1103	fast_pool->last = jiffies;
1104	local_irq_enable();
1105
1106	mix_pool_bytes(pool, sizeof(pool));
1107	credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8));
1108
1109	memzero_explicit(pool, sizeof(pool));
 
 
 
 
 
 
 
 
 
 
1110}
1111
1112void add_interrupt_randomness(int irq)
 
1113{
1114	enum { MIX_INFLIGHT = 1U << 31 };
1115	unsigned long entropy = random_get_entropy();
1116	struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
1117	struct pt_regs *regs = get_irq_regs();
1118	unsigned int new_count;
1119
1120	fast_mix(fast_pool->pool, entropy,
1121		 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq));
1122	new_count = ++fast_pool->count;
1123
1124	if (new_count & MIX_INFLIGHT)
1125		return;
 
 
 
 
 
 
 
 
 
 
 
1126
1127	if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ))
1128		return;
1129
1130	fast_pool->count |= MIX_INFLIGHT;
1131	if (!timer_pending(&fast_pool->mix)) {
1132		fast_pool->mix.expires = jiffies;
1133		add_timer_on(&fast_pool->mix, raw_smp_processor_id());
1134	}
1135}
1136EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1137
1138/* There is one of these per entropy source */
1139struct timer_rand_state {
1140	unsigned long last_time;
1141	long last_delta, last_delta2;
1142};
1143
1144/*
1145 * This function adds entropy to the entropy "pool" by using timing
1146 * delays. It uses the timer_rand_state structure to make an estimate
1147 * of how many bits of entropy this call has added to the pool. The
1148 * value "num" is also added to the pool; it should somehow describe
1149 * the type of event that just happened.
 
 
1150 */
1151static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
 
1152{
1153	unsigned long entropy = random_get_entropy(), now = jiffies, flags;
1154	long delta, delta2, delta3;
1155	unsigned int bits;
1156
1157	/*
1158	 * If we're in a hard IRQ, add_interrupt_randomness() will be called
1159	 * sometime after, so mix into the fast pool.
1160	 */
1161	if (in_hardirq()) {
1162		fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num);
1163	} else {
1164		spin_lock_irqsave(&input_pool.lock, flags);
1165		_mix_pool_bytes(&entropy, sizeof(entropy));
1166		_mix_pool_bytes(&num, sizeof(num));
1167		spin_unlock_irqrestore(&input_pool.lock, flags);
 
 
 
1168	}
1169
1170	if (crng_ready())
1171		return;
 
1172
1173	/*
1174	 * Calculate number of bits of randomness we probably added.
1175	 * We take into account the first, second and third-order deltas
1176	 * in order to make our estimate.
1177	 */
1178	delta = now - READ_ONCE(state->last_time);
1179	WRITE_ONCE(state->last_time, now);
1180
1181	delta2 = delta - READ_ONCE(state->last_delta);
1182	WRITE_ONCE(state->last_delta, delta);
 
 
 
 
 
 
 
 
1183
1184	delta3 = delta2 - READ_ONCE(state->last_delta2);
1185	WRITE_ONCE(state->last_delta2, delta2);
 
1186
1187	if (delta < 0)
1188		delta = -delta;
1189	if (delta2 < 0)
1190		delta2 = -delta2;
1191	if (delta3 < 0)
1192		delta3 = -delta3;
1193	if (delta > delta2)
1194		delta = delta2;
1195	if (delta > delta3)
1196		delta = delta3;
1197
1198	/*
1199	 * delta is now minimum absolute delta. Round down by 1 bit
1200	 * on general principles, and limit entropy estimate to 11 bits.
1201	 */
1202	bits = min(fls(delta >> 1), 11);
1203
1204	/*
1205	 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()
1206	 * will run after this, which uses a different crediting scheme of 1 bit
1207	 * per every 64 interrupts. In order to let that function do accounting
1208	 * close to the one in this function, we credit a full 64/64 bit per bit,
1209	 * and then subtract one to account for the extra one added.
1210	 */
1211	if (in_hardirq())
1212		this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1;
1213	else
1214		_credit_init_bits(bits);
1215}
1216
1217void add_input_randomness(unsigned int type, unsigned int code, unsigned int value)
1218{
1219	static unsigned char last_value;
1220	static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };
1221
1222	/* Ignore autorepeat and the like. */
1223	if (value == last_value)
1224		return;
1225
1226	last_value = value;
1227	add_timer_randomness(&input_timer_state,
1228			     (type << 4) ^ code ^ (code >> 4) ^ value);
1229}
1230EXPORT_SYMBOL_GPL(add_input_randomness);
1231
1232#ifdef CONFIG_BLOCK
1233void add_disk_randomness(struct gendisk *disk)
 
 
 
1234{
1235	if (!disk || !disk->random)
 
 
 
 
 
 
 
 
1236		return;
1237	/* First major is 1, so we get >= 0x200 here. */
1238	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
 
 
 
 
 
1239}
1240EXPORT_SYMBOL_GPL(add_disk_randomness);
1241
1242void __cold rand_initialize_disk(struct gendisk *disk)
 
 
 
 
 
 
 
 
 
 
1243{
1244	struct timer_rand_state *state;
1245
1246	/*
1247	 * If kzalloc returns null, we just won't use that entropy
1248	 * source.
1249	 */
1250	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1251	if (state) {
1252		state->last_time = INITIAL_JIFFIES;
1253		disk->random = state;
1254	}
 
 
 
 
 
 
 
 
1255}
1256#endif
1257
1258struct entropy_timer_state {
1259	unsigned long entropy;
1260	struct timer_list timer;
1261	atomic_t samples;
1262	unsigned int samples_per_bit;
1263};
 
 
1264
1265/*
1266 * Each time the timer fires, we expect that we got an unpredictable jump in
1267 * the cycle counter. Even if the timer is running on another CPU, the timer
1268 * activity will be touching the stack of the CPU that is generating entropy.
 
 
1269 *
1270 * Note that we don't re-arm the timer in the timer itself - we are happy to be
1271 * scheduled away, since that just makes the load more complex, but we do not
1272 * want the timer to keep ticking unless the entropy loop is running.
 
 
 
 
 
 
 
 
 
 
 
1273 *
1274 * So the re-arming always happens in the entropy loop itself.
 
 
1275 */
1276static void __cold entropy_timer(struct timer_list *timer)
1277{
1278	struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer);
1279	unsigned long entropy = random_get_entropy();
 
 
 
 
 
 
 
 
1280
1281	mix_pool_bytes(&entropy, sizeof(entropy));
1282	if (atomic_inc_return(&state->samples) % state->samples_per_bit == 0)
1283		credit_init_bits(1);
 
 
 
 
 
 
 
 
 
 
 
 
1284}
 
1285
1286/*
1287 * If we have an actual cycle counter, see if we can generate enough entropy
1288 * with timing noise.
1289 */
1290static void __cold try_to_generate_entropy(void)
1291{
1292	enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = HZ / 15 };
1293	u8 stack_bytes[sizeof(struct entropy_timer_state) + SMP_CACHE_BYTES - 1];
1294	struct entropy_timer_state *stack = PTR_ALIGN((void *)stack_bytes, SMP_CACHE_BYTES);
1295	unsigned int i, num_different = 0;
1296	unsigned long last = random_get_entropy();
1297	int cpu = -1;
1298
1299	for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) {
1300		stack->entropy = random_get_entropy();
1301		if (stack->entropy != last)
1302			++num_different;
1303		last = stack->entropy;
1304	}
1305	stack->samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1);
1306	if (stack->samples_per_bit > MAX_SAMPLES_PER_BIT)
1307		return;
1308
1309	atomic_set(&stack->samples, 0);
1310	timer_setup_on_stack(&stack->timer, entropy_timer, 0);
1311	while (!crng_ready() && !signal_pending(current)) {
1312		/*
1313		 * Check !timer_pending() and then ensure that any previous callback has finished
1314		 * executing by checking try_to_del_timer_sync(), before queueing the next one.
1315		 */
1316		if (!timer_pending(&stack->timer) && try_to_del_timer_sync(&stack->timer) >= 0) {
1317			struct cpumask timer_cpus;
1318			unsigned int num_cpus;
1319
1320			/*
1321			 * Preemption must be disabled here, both to read the current CPU number
1322			 * and to avoid scheduling a timer on a dead CPU.
1323			 */
1324			preempt_disable();
1325
1326			/* Only schedule callbacks on timer CPUs that are online. */
1327			cpumask_and(&timer_cpus, housekeeping_cpumask(HK_TYPE_TIMER), cpu_online_mask);
1328			num_cpus = cpumask_weight(&timer_cpus);
1329			/* In very bizarre case of misconfiguration, fallback to all online. */
1330			if (unlikely(num_cpus == 0)) {
1331				timer_cpus = *cpu_online_mask;
1332				num_cpus = cpumask_weight(&timer_cpus);
1333			}
1334
1335			/* Basic CPU round-robin, which avoids the current CPU. */
1336			do {
1337				cpu = cpumask_next(cpu, &timer_cpus);
1338				if (cpu >= nr_cpu_ids)
1339					cpu = cpumask_first(&timer_cpus);
1340			} while (cpu == smp_processor_id() && num_cpus > 1);
1341
1342			/* Expiring the timer at `jiffies` means it's the next tick. */
1343			stack->timer.expires = jiffies;
 
 
 
 
 
 
 
 
 
 
 
1344
1345			add_timer_on(&stack->timer, cpu);
 
 
 
1346
1347			preempt_enable();
1348		}
1349		mix_pool_bytes(&stack->entropy, sizeof(stack->entropy));
1350		schedule();
1351		stack->entropy = random_get_entropy();
 
1352	}
1353	mix_pool_bytes(&stack->entropy, sizeof(stack->entropy));
1354
1355	del_timer_sync(&stack->timer);
1356	destroy_timer_on_stack(&stack->timer);
1357}
 
1358
1359
1360/**********************************************************************
1361 *
1362 * Userspace reader/writer interfaces.
1363 *
1364 * getrandom(2) is the primary modern interface into the RNG and should
1365 * be used in preference to anything else.
1366 *
1367 * Reading from /dev/random has the same functionality as calling
1368 * getrandom(2) with flags=0. In earlier versions, however, it had
1369 * vastly different semantics and should therefore be avoided, to
1370 * prevent backwards compatibility issues.
1371 *
1372 * Reading from /dev/urandom has the same functionality as calling
1373 * getrandom(2) with flags=GRND_INSECURE. Because it does not block
1374 * waiting for the RNG to be ready, it should not be used.
1375 *
1376 * Writing to either /dev/random or /dev/urandom adds entropy to
1377 * the input pool but does not credit it.
1378 *
1379 * Polling on /dev/random indicates when the RNG is initialized, on
1380 * the read side, and when it wants new entropy, on the write side.
1381 *
1382 * Both /dev/random and /dev/urandom have the same set of ioctls for
1383 * adding entropy, getting the entropy count, zeroing the count, and
1384 * reseeding the crng.
1385 *
1386 **********************************************************************/
1387
1388SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags)
 
 
1389{
1390	struct iov_iter iter;
1391	int ret;
1392
1393	if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
1394		return -EINVAL;
1395
1396	/*
1397	 * Requesting insecure and blocking randomness at the same time makes
1398	 * no sense.
1399	 */
1400	if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
1401		return -EINVAL;
 
 
 
 
1402
1403	if (!crng_ready() && !(flags & GRND_INSECURE)) {
1404		if (flags & GRND_NONBLOCK)
1405			return -EAGAIN;
1406		ret = wait_for_random_bytes();
1407		if (unlikely(ret))
1408			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
1409	}
1410
1411	ret = import_ubuf(ITER_DEST, ubuf, len, &iter);
1412	if (unlikely(ret))
1413		return ret;
1414	return get_random_bytes_user(&iter);
1415}
 
1416
1417static __poll_t random_poll(struct file *file, poll_table *wait)
 
1418{
1419	poll_wait(file, &crng_init_wait, wait);
1420	return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM;
 
 
 
 
 
 
 
 
 
1421}
 
1422
1423static ssize_t write_pool_user(struct iov_iter *iter)
 
1424{
1425	u8 block[BLAKE2S_BLOCK_SIZE];
1426	ssize_t ret = 0;
1427	size_t copied;
1428
1429	if (unlikely(!iov_iter_count(iter)))
1430		return 0;
1431
1432	for (;;) {
1433		copied = copy_from_iter(block, sizeof(block), iter);
1434		ret += copied;
1435		mix_pool_bytes(block, copied);
1436		if (!iov_iter_count(iter) || copied != sizeof(block))
1437			break;
 
 
 
 
1438
1439		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
1440		if (ret % PAGE_SIZE == 0) {
1441			if (signal_pending(current))
1442				break;
1443			cond_resched();
1444		}
1445	}
1446
1447	memzero_explicit(block, sizeof(block));
1448	return ret ? ret : -EFAULT;
 
 
 
 
1449}
1450
1451static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter)
 
1452{
1453	return write_pool_user(iter);
1454}
1455
1456static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
 
1457{
 
1458	static int maxwarn = 10;
 
1459
1460	/*
1461	 * Opportunistically attempt to initialize the RNG on platforms that
1462	 * have fast cycle counters, but don't (for now) require it to succeed.
1463	 */
1464	if (!crng_ready())
1465		try_to_generate_entropy();
 
 
 
 
 
 
 
 
 
1466
1467	if (!crng_ready()) {
1468		if (!ratelimit_disable && maxwarn <= 0)
1469			++urandom_warning.missed;
1470		else if (ratelimit_disable || __ratelimit(&urandom_warning)) {
1471			--maxwarn;
1472			pr_notice("%s: uninitialized urandom read (%zu bytes read)\n",
1473				  current->comm, iov_iter_count(iter));
1474		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1475	}
1476
1477	return get_random_bytes_user(iter);
1478}
1479
1480static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
 
1481{
1482	int ret;
1483
1484	if (!crng_ready() &&
1485	    ((kiocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) ||
1486	     (kiocb->ki_filp->f_flags & O_NONBLOCK)))
1487		return -EAGAIN;
1488
1489	ret = wait_for_random_bytes();
1490	if (ret != 0)
1491		return ret;
1492	return get_random_bytes_user(iter);
 
1493}
1494
1495static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1496{
 
1497	int __user *p = (int __user *)arg;
1498	int ent_count;
1499
1500	switch (cmd) {
1501	case RNDGETENTCNT:
1502		/* Inherently racy, no point locking. */
1503		if (put_user(input_pool.init_bits, p))
 
1504			return -EFAULT;
1505		return 0;
1506	case RNDADDTOENTCNT:
1507		if (!capable(CAP_SYS_ADMIN))
1508			return -EPERM;
1509		if (get_user(ent_count, p))
1510			return -EFAULT;
1511		if (ent_count < 0)
1512			return -EINVAL;
1513		credit_init_bits(ent_count);
1514		return 0;
1515	case RNDADDENTROPY: {
1516		struct iov_iter iter;
1517		ssize_t ret;
1518		int len;
1519
1520		if (!capable(CAP_SYS_ADMIN))
1521			return -EPERM;
1522		if (get_user(ent_count, p++))
1523			return -EFAULT;
1524		if (ent_count < 0)
1525			return -EINVAL;
1526		if (get_user(len, p++))
1527			return -EFAULT;
1528		ret = import_ubuf(ITER_SOURCE, p, len, &iter);
1529		if (unlikely(ret))
1530			return ret;
1531		ret = write_pool_user(&iter);
1532		if (unlikely(ret < 0))
1533			return ret;
1534		/* Since we're crediting, enforce that it was all written into the pool. */
1535		if (unlikely(ret != len))
1536			return -EFAULT;
1537		credit_init_bits(ent_count);
1538		return 0;
1539	}
 
 
1540	case RNDZAPENTCNT:
1541	case RNDCLEARPOOL:
1542		/* No longer has any effect. */
 
 
 
1543		if (!capable(CAP_SYS_ADMIN))
1544			return -EPERM;
 
 
1545		return 0;
1546	case RNDRESEEDCRNG:
1547		if (!capable(CAP_SYS_ADMIN))
1548			return -EPERM;
1549		if (!crng_ready())
1550			return -ENODATA;
1551		crng_reseed(NULL);
 
1552		return 0;
1553	default:
1554		return -EINVAL;
1555	}
1556}
1557
1558static int random_fasync(int fd, struct file *filp, int on)
1559{
1560	return fasync_helper(fd, filp, on, &fasync);
1561}
1562
1563const struct file_operations random_fops = {
1564	.read_iter = random_read_iter,
1565	.write_iter = random_write_iter,
1566	.poll = random_poll,
1567	.unlocked_ioctl = random_ioctl,
1568	.compat_ioctl = compat_ptr_ioctl,
1569	.fasync = random_fasync,
1570	.llseek = noop_llseek,
1571	.splice_read = copy_splice_read,
1572	.splice_write = iter_file_splice_write,
1573};
1574
1575const struct file_operations urandom_fops = {
1576	.read_iter = urandom_read_iter,
1577	.write_iter = random_write_iter,
1578	.unlocked_ioctl = random_ioctl,
1579	.compat_ioctl = compat_ptr_ioctl,
1580	.fasync = random_fasync,
1581	.llseek = noop_llseek,
1582	.splice_read = copy_splice_read,
1583	.splice_write = iter_file_splice_write,
1584};
1585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1586
1587/********************************************************************
1588 *
1589 * Sysctl interface.
1590 *
1591 * These are partly unused legacy knobs with dummy values to not break
1592 * userspace and partly still useful things. They are usually accessible
1593 * in /proc/sys/kernel/random/ and are as follows:
1594 *
1595 * - boot_id - a UUID representing the current boot.
1596 *
1597 * - uuid - a random UUID, different each time the file is read.
1598 *
1599 * - poolsize - the number of bits of entropy that the input pool can
1600 *   hold, tied to the POOL_BITS constant.
1601 *
1602 * - entropy_avail - the number of bits of entropy currently in the
1603 *   input pool. Always <= poolsize.
1604 *
1605 * - write_wakeup_threshold - the amount of entropy in the input pool
1606 *   below which write polls to /dev/random will unblock, requesting
1607 *   more entropy, tied to the POOL_READY_BITS constant. It is writable
1608 *   to avoid breaking old userspaces, but writing to it does not
1609 *   change any behavior of the RNG.
1610 *
1611 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1612 *   It is writable to avoid breaking old userspaces, but writing
1613 *   to it does not change any behavior of the RNG.
1614 *
1615 ********************************************************************/
1616
1617#ifdef CONFIG_SYSCTL
1618
1619#include <linux/sysctl.h>
1620
1621static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
1622static int sysctl_random_write_wakeup_bits = POOL_READY_BITS;
1623static int sysctl_poolsize = POOL_BITS;
1624static u8 sysctl_bootid[UUID_SIZE];
 
1625
1626/*
1627 * This function is used to return both the bootid UUID, and random
1628 * UUID. The difference is in whether table->data is NULL; if it is,
1629 * then a new UUID is generated and returned to the user.
 
 
 
 
1630 */
1631static int proc_do_uuid(const struct ctl_table *table, int write, void *buf,
1632			size_t *lenp, loff_t *ppos)
1633{
1634	u8 tmp_uuid[UUID_SIZE], *uuid;
1635	char uuid_string[UUID_STRING_LEN + 1];
1636	struct ctl_table fake_table = {
1637		.data = uuid_string,
1638		.maxlen = UUID_STRING_LEN
1639	};
1640
1641	if (write)
1642		return -EPERM;
1643
1644	uuid = table->data;
1645	if (!uuid) {
1646		uuid = tmp_uuid;
1647		generate_random_uuid(uuid);
1648	} else {
1649		static DEFINE_SPINLOCK(bootid_spinlock);
1650
1651		spin_lock(&bootid_spinlock);
1652		if (!uuid[8])
1653			generate_random_uuid(uuid);
1654		spin_unlock(&bootid_spinlock);
1655	}
1656
1657	snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
1658	return proc_dostring(&fake_table, 0, buf, lenp, ppos);
 
 
 
 
1659}
1660
1661/* The same as proc_dointvec, but writes don't change anything. */
1662static int proc_do_rointvec(const struct ctl_table *table, int write, void *buf,
1663			    size_t *lenp, loff_t *ppos)
 
 
1664{
1665	return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos);
 
 
 
 
 
 
 
 
1666}
1667
1668static struct ctl_table random_table[] = {
 
 
1669	{
1670		.procname	= "poolsize",
1671		.data		= &sysctl_poolsize,
1672		.maxlen		= sizeof(int),
1673		.mode		= 0444,
1674		.proc_handler	= proc_dointvec,
1675	},
1676	{
1677		.procname	= "entropy_avail",
1678		.data		= &input_pool.init_bits,
1679		.maxlen		= sizeof(int),
1680		.mode		= 0444,
1681		.proc_handler	= proc_dointvec,
 
 
 
 
 
 
 
 
 
 
1682	},
1683	{
1684		.procname	= "write_wakeup_threshold",
1685		.data		= &sysctl_random_write_wakeup_bits,
1686		.maxlen		= sizeof(int),
1687		.mode		= 0644,
1688		.proc_handler	= proc_do_rointvec,
 
 
1689	},
1690	{
1691		.procname	= "urandom_min_reseed_secs",
1692		.data		= &sysctl_random_min_urandom_seed,
1693		.maxlen		= sizeof(int),
1694		.mode		= 0644,
1695		.proc_handler	= proc_do_rointvec,
1696	},
1697	{
1698		.procname	= "boot_id",
1699		.data		= &sysctl_bootid,
 
1700		.mode		= 0444,
1701		.proc_handler	= proc_do_uuid,
1702	},
1703	{
1704		.procname	= "uuid",
 
1705		.mode		= 0444,
1706		.proc_handler	= proc_do_uuid,
1707	},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1708};
 
 
 
 
 
 
 
 
 
 
1709
1710/*
1711 * random_init() is called before sysctl_init(),
1712 * so we cannot call register_sysctl_init() in random_init()
 
 
 
 
1713 */
1714static int __init random_sysctls_init(void)
 
1715{
1716	register_sysctl_init("kernel/random", random_table);
1717	return 0;
1718}
1719device_initcall(random_sysctls_init);
 
 
 
 
 
 
 
 
 
1720#endif
v4.17
 
   1/*
   2 * random.c -- A strong random number generator
   3 *
   4 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
   5 * Rights Reserved.
   6 *
   7 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
 
   8 *
   9 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
  10 * rights reserved.
  11 *
  12 * Redistribution and use in source and binary forms, with or without
  13 * modification, are permitted provided that the following conditions
  14 * are met:
  15 * 1. Redistributions of source code must retain the above copyright
  16 *    notice, and the entire permission notice in its entirety,
  17 *    including the disclaimer of warranties.
  18 * 2. Redistributions in binary form must reproduce the above copyright
  19 *    notice, this list of conditions and the following disclaimer in the
  20 *    documentation and/or other materials provided with the distribution.
  21 * 3. The name of the author may not be used to endorse or promote
  22 *    products derived from this software without specific prior
  23 *    written permission.
  24 *
  25 * ALTERNATIVELY, this product may be distributed under the terms of
  26 * the GNU General Public License, in which case the provisions of the GPL are
  27 * required INSTEAD OF the above restrictions.  (This clause is
  28 * necessary due to a potential bad interaction between the GPL and
  29 * the restrictions contained in a BSD-style copyright.)
  30 *
  31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  34 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
  35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  42 * DAMAGE.
  43 */
  44
  45/*
  46 * (now, with legal B.S. out of the way.....)
  47 *
  48 * This routine gathers environmental noise from device drivers, etc.,
  49 * and returns good random numbers, suitable for cryptographic use.
  50 * Besides the obvious cryptographic uses, these numbers are also good
  51 * for seeding TCP sequence numbers, and other places where it is
  52 * desirable to have numbers which are not only random, but hard to
  53 * predict by an attacker.
  54 *
  55 * Theory of operation
  56 * ===================
  57 *
  58 * Computers are very predictable devices.  Hence it is extremely hard
  59 * to produce truly random numbers on a computer --- as opposed to
  60 * pseudo-random numbers, which can easily generated by using a
  61 * algorithm.  Unfortunately, it is very easy for attackers to guess
  62 * the sequence of pseudo-random number generators, and for some
  63 * applications this is not acceptable.  So instead, we must try to
  64 * gather "environmental noise" from the computer's environment, which
  65 * must be hard for outside attackers to observe, and use that to
  66 * generate random numbers.  In a Unix environment, this is best done
  67 * from inside the kernel.
  68 *
  69 * Sources of randomness from the environment include inter-keyboard
  70 * timings, inter-interrupt timings from some interrupts, and other
  71 * events which are both (a) non-deterministic and (b) hard for an
  72 * outside observer to measure.  Randomness from these sources are
  73 * added to an "entropy pool", which is mixed using a CRC-like function.
  74 * This is not cryptographically strong, but it is adequate assuming
  75 * the randomness is not chosen maliciously, and it is fast enough that
  76 * the overhead of doing it on every interrupt is very reasonable.
  77 * As random bytes are mixed into the entropy pool, the routines keep
  78 * an *estimate* of how many bits of randomness have been stored into
  79 * the random number generator's internal state.
  80 *
  81 * When random bytes are desired, they are obtained by taking the SHA
  82 * hash of the contents of the "entropy pool".  The SHA hash avoids
  83 * exposing the internal state of the entropy pool.  It is believed to
  84 * be computationally infeasible to derive any useful information
  85 * about the input of SHA from its output.  Even if it is possible to
  86 * analyze SHA in some clever way, as long as the amount of data
  87 * returned from the generator is less than the inherent entropy in
  88 * the pool, the output data is totally unpredictable.  For this
  89 * reason, the routine decreases its internal estimate of how many
  90 * bits of "true randomness" are contained in the entropy pool as it
  91 * outputs random numbers.
  92 *
  93 * If this estimate goes to zero, the routine can still generate
  94 * random numbers; however, an attacker may (at least in theory) be
  95 * able to infer the future output of the generator from prior
  96 * outputs.  This requires successful cryptanalysis of SHA, which is
  97 * not believed to be feasible, but there is a remote possibility.
  98 * Nonetheless, these numbers should be useful for the vast majority
  99 * of purposes.
 100 *
 101 * Exported interfaces ---- output
 102 * ===============================
 103 *
 104 * There are three exported interfaces; the first is one designed to
 105 * be used from within the kernel:
 106 *
 107 * 	void get_random_bytes(void *buf, int nbytes);
 108 *
 109 * This interface will return the requested number of random bytes,
 110 * and place it in the requested buffer.
 111 *
 112 * The two other interfaces are two character devices /dev/random and
 113 * /dev/urandom.  /dev/random is suitable for use when very high
 114 * quality randomness is desired (for example, for key generation or
 115 * one-time pads), as it will only return a maximum of the number of
 116 * bits of randomness (as estimated by the random number generator)
 117 * contained in the entropy pool.
 118 *
 119 * The /dev/urandom device does not have this limit, and will return
 120 * as many bytes as are requested.  As more and more random bytes are
 121 * requested without giving time for the entropy pool to recharge,
 122 * this will result in random numbers that are merely cryptographically
 123 * strong.  For many applications, however, this is acceptable.
 124 *
 125 * Exported interfaces ---- input
 126 * ==============================
 127 *
 128 * The current exported interfaces for gathering environmental noise
 129 * from the devices are:
 130 *
 131 *	void add_device_randomness(const void *buf, unsigned int size);
 132 * 	void add_input_randomness(unsigned int type, unsigned int code,
 133 *                                unsigned int value);
 134 *	void add_interrupt_randomness(int irq, int irq_flags);
 135 * 	void add_disk_randomness(struct gendisk *disk);
 136 *
 137 * add_device_randomness() is for adding data to the random pool that
 138 * is likely to differ between two devices (or possibly even per boot).
 139 * This would be things like MAC addresses or serial numbers, or the
 140 * read-out of the RTC. This does *not* add any actual entropy to the
 141 * pool, but it initializes the pool to different values for devices
 142 * that might otherwise be identical and have very little entropy
 143 * available to them (particularly common in the embedded world).
 144 *
 145 * add_input_randomness() uses the input layer interrupt timing, as well as
 146 * the event type information from the hardware.
 147 *
 148 * add_interrupt_randomness() uses the interrupt timing as random
 149 * inputs to the entropy pool. Using the cycle counters and the irq source
 150 * as inputs, it feeds the randomness roughly once a second.
 151 *
 152 * add_disk_randomness() uses what amounts to the seek time of block
 153 * layer request events, on a per-disk_devt basis, as input to the
 154 * entropy pool. Note that high-speed solid state drives with very low
 155 * seek times do not make for good sources of entropy, as their seek
 156 * times are usually fairly consistent.
 157 *
 158 * All of these routines try to estimate how many bits of randomness a
 159 * particular randomness source.  They do this by keeping track of the
 160 * first and second order deltas of the event timings.
 161 *
 162 * Ensuring unpredictability at system startup
 163 * ============================================
 164 *
 165 * When any operating system starts up, it will go through a sequence
 166 * of actions that are fairly predictable by an adversary, especially
 167 * if the start-up does not involve interaction with a human operator.
 168 * This reduces the actual number of bits of unpredictability in the
 169 * entropy pool below the value in entropy_count.  In order to
 170 * counteract this effect, it helps to carry information in the
 171 * entropy pool across shut-downs and start-ups.  To do this, put the
 172 * following lines an appropriate script which is run during the boot
 173 * sequence:
 174 *
 175 *	echo "Initializing random number generator..."
 176 *	random_seed=/var/run/random-seed
 177 *	# Carry a random seed from start-up to start-up
 178 *	# Load and then save the whole entropy pool
 179 *	if [ -f $random_seed ]; then
 180 *		cat $random_seed >/dev/urandom
 181 *	else
 182 *		touch $random_seed
 183 *	fi
 184 *	chmod 600 $random_seed
 185 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 186 *
 187 * and the following lines in an appropriate script which is run as
 188 * the system is shutdown:
 189 *
 190 *	# Carry a random seed from shut-down to start-up
 191 *	# Save the whole entropy pool
 192 *	echo "Saving random seed..."
 193 *	random_seed=/var/run/random-seed
 194 *	touch $random_seed
 195 *	chmod 600 $random_seed
 196 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 197 *
 198 * For example, on most modern systems using the System V init
 199 * scripts, such code fragments would be found in
 200 * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
 201 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
 202 *
 203 * Effectively, these commands cause the contents of the entropy pool
 204 * to be saved at shut-down time and reloaded into the entropy pool at
 205 * start-up.  (The 'dd' in the addition to the bootup script is to
 206 * make sure that /etc/random-seed is different for every start-up,
 207 * even if the system crashes without executing rc.0.)  Even with
 208 * complete knowledge of the start-up activities, predicting the state
 209 * of the entropy pool requires knowledge of the previous history of
 210 * the system.
 211 *
 212 * Configuring the /dev/random driver under Linux
 213 * ==============================================
 214 *
 215 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
 216 * the /dev/mem major number (#1).  So if your system does not have
 217 * /dev/random and /dev/urandom created already, they can be created
 218 * by using the commands:
 219 *
 220 * 	mknod /dev/random c 1 8
 221 * 	mknod /dev/urandom c 1 9
 222 *
 223 * Acknowledgements:
 224 * =================
 225 *
 226 * Ideas for constructing this random number generator were derived
 227 * from Pretty Good Privacy's random number generator, and from private
 228 * discussions with Phil Karn.  Colin Plumb provided a faster random
 229 * number generator, which speed up the mixing function of the entropy
 230 * pool, taken from PGPfone.  Dale Worley has also contributed many
 231 * useful ideas and suggestions to improve this driver.
 232 *
 233 * Any flaws in the design are solely my responsibility, and should
 234 * not be attributed to the Phil, Colin, or any of authors of PGP.
 235 *
 236 * Further background information on this topic may be obtained from
 237 * RFC 1750, "Randomness Recommendations for Security", by Donald
 238 * Eastlake, Steve Crocker, and Jeff Schiller.
 239 */
 240
 
 
 241#include <linux/utsname.h>
 242#include <linux/module.h>
 243#include <linux/kernel.h>
 244#include <linux/major.h>
 245#include <linux/string.h>
 246#include <linux/fcntl.h>
 247#include <linux/slab.h>
 248#include <linux/random.h>
 249#include <linux/poll.h>
 250#include <linux/init.h>
 251#include <linux/fs.h>
 252#include <linux/genhd.h>
 253#include <linux/interrupt.h>
 254#include <linux/mm.h>
 255#include <linux/nodemask.h>
 256#include <linux/spinlock.h>
 257#include <linux/kthread.h>
 258#include <linux/percpu.h>
 259#include <linux/cryptohash.h>
 260#include <linux/fips.h>
 261#include <linux/ptrace.h>
 262#include <linux/workqueue.h>
 263#include <linux/irq.h>
 264#include <linux/ratelimit.h>
 265#include <linux/syscalls.h>
 266#include <linux/completion.h>
 267#include <linux/uuid.h>
 268#include <crypto/chacha20.h>
 269
 
 
 
 
 
 
 
 
 
 
 270#include <asm/processor.h>
 271#include <linux/uaccess.h>
 272#include <asm/irq.h>
 273#include <asm/irq_regs.h>
 274#include <asm/io.h>
 275
 276#define CREATE_TRACE_POINTS
 277#include <trace/events/random.h>
 
 
 
 
 
 
 
 278
 279/* #define ADD_INTERRUPT_BENCH */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 280
 281/*
 282 * Configuration information
 
 
 
 
 
 
 283 */
 284#define INPUT_POOL_SHIFT	12
 285#define INPUT_POOL_WORDS	(1 << (INPUT_POOL_SHIFT-5))
 286#define OUTPUT_POOL_SHIFT	10
 287#define OUTPUT_POOL_WORDS	(1 << (OUTPUT_POOL_SHIFT-5))
 288#define SEC_XFER_SIZE		512
 289#define EXTRACT_SIZE		10
 290
 291
 292#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
 293
 294/*
 295 * To allow fractional bits to be tracked, the entropy_count field is
 296 * denominated in units of 1/8th bits.
 297 *
 298 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
 299 * credit_entropy_bits() needs to be 64 bits wide.
 300 */
 301#define ENTROPY_SHIFT 3
 302#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
 303
 304/*
 305 * The minimum number of bits of entropy before we wake up a read on
 306 * /dev/random.  Should be enough to do a significant reseed.
 307 */
 308static int random_read_wakeup_bits = 64;
 309
 310/*
 311 * If the entropy count falls under this number of bits, then we
 312 * should wake up processes which are selecting or polling on write
 313 * access to /dev/random.
 314 */
 315static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
 316
 317/*
 318 * Originally, we used a primitive polynomial of degree .poolwords
 319 * over GF(2).  The taps for various sizes are defined below.  They
 320 * were chosen to be evenly spaced except for the last tap, which is 1
 321 * to get the twisting happening as fast as possible.
 322 *
 323 * For the purposes of better mixing, we use the CRC-32 polynomial as
 324 * well to make a (modified) twisted Generalized Feedback Shift
 325 * Register.  (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR
 326 * generators.  ACM Transactions on Modeling and Computer Simulation
 327 * 2(3):179-194.  Also see M. Matsumoto & Y. Kurita, 1994.  Twisted
 328 * GFSR generators II.  ACM Transactions on Modeling and Computer
 329 * Simulation 4:254-266)
 330 *
 331 * Thanks to Colin Plumb for suggesting this.
 332 *
 333 * The mixing operation is much less sensitive than the output hash,
 334 * where we use SHA-1.  All that we want of mixing operation is that
 335 * it be a good non-cryptographic hash; i.e. it not produce collisions
 336 * when fed "random" data of the sort we expect to see.  As long as
 337 * the pool state differs for different inputs, we have preserved the
 338 * input entropy and done a good job.  The fact that an intelligent
 339 * attacker can construct inputs that will produce controlled
 340 * alterations to the pool's state is not important because we don't
 341 * consider such inputs to contribute any randomness.  The only
 342 * property we need with respect to them is that the attacker can't
 343 * increase his/her knowledge of the pool's state.  Since all
 344 * additions are reversible (knowing the final state and the input,
 345 * you can reconstruct the initial state), if an attacker has any
 346 * uncertainty about the initial state, he/she can only shuffle that
 347 * uncertainty about, but never cause any collisions (which would
 348 * decrease the uncertainty).
 349 *
 350 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
 351 * Videau in their paper, "The Linux Pseudorandom Number Generator
 352 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf).  In their
 353 * paper, they point out that we are not using a true Twisted GFSR,
 354 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
 355 * is, with only three taps, instead of the six that we are using).
 356 * As a result, the resulting polynomial is neither primitive nor
 357 * irreducible, and hence does not have a maximal period over
 358 * GF(2**32).  They suggest a slight change to the generator
 359 * polynomial which improves the resulting TGFSR polynomial to be
 360 * irreducible, which we have made here.
 361 */
 362static struct poolinfo {
 363	int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
 364#define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
 365	int tap1, tap2, tap3, tap4, tap5;
 366} poolinfo_table[] = {
 367	/* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
 368	/* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
 369	{ S(128),	104,	76,	51,	25,	1 },
 370	/* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
 371	/* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
 372	{ S(32),	26,	19,	14,	7,	1 },
 373#if 0
 374	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
 375	{ S(2048),	1638,	1231,	819,	411,	1 },
 376
 377	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
 378	{ S(1024),	817,	615,	412,	204,	1 },
 379
 380	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
 381	{ S(1024),	819,	616,	410,	207,	2 },
 382
 383	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
 384	{ S(512),	411,	308,	208,	104,	1 },
 385
 386	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
 387	{ S(512),	409,	307,	206,	102,	2 },
 388	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
 389	{ S(512),	409,	309,	205,	103,	2 },
 390
 391	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
 392	{ S(256),	205,	155,	101,	52,	1 },
 
 
 393
 394	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
 395	{ S(128),	103,	78,	51,	27,	2 },
 396
 397	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
 398	{ S(64),	52,	39,	26,	14,	1 },
 399#endif
 400};
 401
 402/*
 403 * Static global variables
 
 
 
 
 
 
 
 404 */
 405static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
 406static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
 407static struct fasync_struct *fasync;
 
 408
 409static DEFINE_SPINLOCK(random_ready_list_lock);
 410static LIST_HEAD(random_ready_list);
 411
 412struct crng_state {
 413	__u32		state[16];
 414	unsigned long	init_time;
 415	spinlock_t	lock;
 416};
 417
 418struct crng_state primary_crng = {
 419	.lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
 420};
 421
 422/*
 423 * crng_init =  0 --> Uninitialized
 424 *		1 --> Initialized
 425 *		2 --> Initialized from input_pool
 426 *
 427 * crng_init is protected by primary_crng->lock, and only increases
 428 * its value (from 0->1->2).
 429 */
 430static int crng_init = 0;
 431#define crng_ready() (likely(crng_init > 1))
 432static int crng_init_cnt = 0;
 433static unsigned long crng_global_init_time = 0;
 434#define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
 435static void _extract_crng(struct crng_state *crng,
 436			  __u32 out[CHACHA20_BLOCK_WORDS]);
 437static void _crng_backtrack_protect(struct crng_state *crng,
 438				    __u32 tmp[CHACHA20_BLOCK_WORDS], int used);
 439static void process_random_ready_list(void);
 440static void _get_random_bytes(void *buf, int nbytes);
 441
 442static struct ratelimit_state unseeded_warning =
 443	RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
 444static struct ratelimit_state urandom_warning =
 445	RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
 
 
 
 
 446
 447static int ratelimit_disable __read_mostly;
 
 
 
 448
 449module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
 450MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
 451
 452/**********************************************************************
 
 
 453 *
 454 * OS independent entropy store.   Here are the functions which handle
 455 * storing entropy in an entropy pool.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 456 *
 457 **********************************************************************/
 458
 459struct entropy_store;
 460struct entropy_store {
 461	/* read-only data: */
 462	const struct poolinfo *poolinfo;
 463	__u32 *pool;
 464	const char *name;
 465	struct entropy_store *pull;
 466	struct work_struct push_work;
 467
 468	/* read-write data: */
 469	unsigned long last_pulled;
 
 470	spinlock_t lock;
 471	unsigned short add_ptr;
 472	unsigned short input_rotate;
 473	int entropy_count;
 474	int entropy_total;
 475	unsigned int initialized:1;
 476	unsigned int last_data_init:1;
 477	__u8 last_data[EXTRACT_SIZE];
 478};
 479
 480static ssize_t extract_entropy(struct entropy_store *r, void *buf,
 481			       size_t nbytes, int min, int rsvd);
 482static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
 483				size_t nbytes, int fips);
 484
 485static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
 486static void push_to_pool(struct work_struct *work);
 487static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
 488static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
 489
 490static struct entropy_store input_pool = {
 491	.poolinfo = &poolinfo_table[0],
 492	.name = "input",
 493	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
 494	.pool = input_pool_data
 495};
 496
 497static struct entropy_store blocking_pool = {
 498	.poolinfo = &poolinfo_table[1],
 499	.name = "blocking",
 500	.pull = &input_pool,
 501	.lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
 502	.pool = blocking_pool_data,
 503	.push_work = __WORK_INITIALIZER(blocking_pool.push_work,
 504					push_to_pool),
 505};
 506
 507static __u32 const twist_table[8] = {
 508	0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
 509	0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
 510
 511/*
 512 * This function adds bytes into the entropy "pool".  It does not
 513 * update the entropy estimate.  The caller should call
 514 * credit_entropy_bits if this is appropriate.
 515 *
 516 * The pool is stirred with a primitive polynomial of the appropriate
 517 * degree, and then twisted.  We twist by three bits at a time because
 518 * it's cheap to do so and helps slightly in the expected case where
 519 * the entropy is concentrated in the low-order bits.
 520 */
 521static void _mix_pool_bytes(struct entropy_store *r, const void *in,
 522			    int nbytes)
 523{
 524	unsigned long i, tap1, tap2, tap3, tap4, tap5;
 525	int input_rotate;
 526	int wordmask = r->poolinfo->poolwords - 1;
 527	const char *bytes = in;
 528	__u32 w;
 529
 530	tap1 = r->poolinfo->tap1;
 531	tap2 = r->poolinfo->tap2;
 532	tap3 = r->poolinfo->tap3;
 533	tap4 = r->poolinfo->tap4;
 534	tap5 = r->poolinfo->tap5;
 535
 536	input_rotate = r->input_rotate;
 537	i = r->add_ptr;
 538
 539	/* mix one byte at a time to simplify size handling and churn faster */
 540	while (nbytes--) {
 541		w = rol32(*bytes++, input_rotate);
 542		i = (i - 1) & wordmask;
 543
 544		/* XOR in the various taps */
 545		w ^= r->pool[i];
 546		w ^= r->pool[(i + tap1) & wordmask];
 547		w ^= r->pool[(i + tap2) & wordmask];
 548		w ^= r->pool[(i + tap3) & wordmask];
 549		w ^= r->pool[(i + tap4) & wordmask];
 550		w ^= r->pool[(i + tap5) & wordmask];
 551
 552		/* Mix the result back in with a twist */
 553		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
 554
 555		/*
 556		 * Normally, we add 7 bits of rotation to the pool.
 557		 * At the beginning of the pool, add an extra 7 bits
 558		 * rotation, so that successive passes spread the
 559		 * input bits across the pool evenly.
 560		 */
 561		input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
 562	}
 563
 564	r->input_rotate = input_rotate;
 565	r->add_ptr = i;
 566}
 567
 568static void __mix_pool_bytes(struct entropy_store *r, const void *in,
 569			     int nbytes)
 570{
 571	trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
 572	_mix_pool_bytes(r, in, nbytes);
 573}
 574
 575static void mix_pool_bytes(struct entropy_store *r, const void *in,
 576			   int nbytes)
 577{
 
 578	unsigned long flags;
 
 
 579
 580	trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
 581	spin_lock_irqsave(&r->lock, flags);
 582	_mix_pool_bytes(r, in, nbytes);
 583	spin_unlock_irqrestore(&r->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 584}
 585
 586struct fast_pool {
 587	__u32		pool[4];
 588	unsigned long	last;
 589	unsigned short	reg_idx;
 590	unsigned char	count;
 591};
 592
 593/*
 594 * This is a fast mixing routine used by the interrupt randomness
 595 * collector.  It's hardcoded for an 128 bit pool and assumes that any
 596 * locks that might be needed are taken by the caller.
 
 
 
 
 
 
 
 
 
 597 */
 598static void fast_mix(struct fast_pool *f)
 
 
 599{
 600	__u32 a = f->pool[0],	b = f->pool[1];
 601	__u32 c = f->pool[2],	d = f->pool[3];
 602
 603	a += b;			c += d;
 604	b = rol32(b, 6);	d = rol32(d, 27);
 605	d ^= a;			b ^= c;
 606
 607	a += b;			c += d;
 608	b = rol32(b, 16);	d = rol32(d, 14);
 609	d ^= a;			b ^= c;
 610
 611	a += b;			c += d;
 612	b = rol32(b, 6);	d = rol32(d, 27);
 613	d ^= a;			b ^= c;
 
 614
 615	a += b;			c += d;
 616	b = rol32(b, 16);	d = rol32(d, 14);
 617	d ^= a;			b ^= c;
 618
 619	f->pool[0] = a;  f->pool[1] = b;
 620	f->pool[2] = c;  f->pool[3] = d;
 621	f->count++;
 622}
 623
 624static void process_random_ready_list(void)
 
 
 
 
 
 
 625{
 626	unsigned long flags;
 627	struct random_ready_callback *rdy, *tmp;
 
 
 
 
 
 
 
 
 
 
 
 628
 629	spin_lock_irqsave(&random_ready_list_lock, flags);
 630	list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
 631		struct module *owner = rdy->owner;
 
 
 
 
 
 
 
 
 
 632
 633		list_del_init(&rdy->list);
 634		rdy->func(rdy);
 635		module_put(owner);
 
 
 
 
 
 
 
 
 
 
 
 
 636	}
 637	spin_unlock_irqrestore(&random_ready_list_lock, flags);
 
 
 
 
 
 
 
 
 
 638}
 639
 640/*
 641 * Credit (or debit) the entropy store with n bits of entropy.
 642 * Use credit_entropy_bits_safe() if the value comes from userspace
 643 * or otherwise should be checked for extreme values.
 644 */
 645static void credit_entropy_bits(struct entropy_store *r, int nbits)
 646{
 647	int entropy_count, orig;
 648	const int pool_size = r->poolinfo->poolfracbits;
 649	int nfrac = nbits << ENTROPY_SHIFT;
 650
 651	if (!nbits)
 652		return;
 653
 654retry:
 655	entropy_count = orig = READ_ONCE(r->entropy_count);
 656	if (nfrac < 0) {
 657		/* Debit */
 658		entropy_count += nfrac;
 659	} else {
 660		/*
 661		 * Credit: we have to account for the possibility of
 662		 * overwriting already present entropy.	 Even in the
 663		 * ideal case of pure Shannon entropy, new contributions
 664		 * approach the full value asymptotically:
 665		 *
 666		 * entropy <- entropy + (pool_size - entropy) *
 667		 *	(1 - exp(-add_entropy/pool_size))
 668		 *
 669		 * For add_entropy <= pool_size/2 then
 670		 * (1 - exp(-add_entropy/pool_size)) >=
 671		 *    (add_entropy/pool_size)*0.7869...
 672		 * so we can approximate the exponential with
 673		 * 3/4*add_entropy/pool_size and still be on the
 674		 * safe side by adding at most pool_size/2 at a time.
 675		 *
 676		 * The use of pool_size-2 in the while statement is to
 677		 * prevent rounding artifacts from making the loop
 678		 * arbitrarily long; this limits the loop to log2(pool_size)*2
 679		 * turns no matter how large nbits is.
 680		 */
 681		int pnfrac = nfrac;
 682		const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
 683		/* The +2 corresponds to the /4 in the denominator */
 684
 685		do {
 686			unsigned int anfrac = min(pnfrac, pool_size/2);
 687			unsigned int add =
 688				((pool_size - entropy_count)*anfrac*3) >> s;
 689
 690			entropy_count += add;
 691			pnfrac -= anfrac;
 692		} while (unlikely(entropy_count < pool_size-2 && pnfrac));
 693	}
 694
 695	if (unlikely(entropy_count < 0)) {
 696		pr_warn("random: negative entropy/overflow: pool %s count %d\n",
 697			r->name, entropy_count);
 698		WARN_ON(1);
 699		entropy_count = 0;
 700	} else if (entropy_count > pool_size)
 701		entropy_count = pool_size;
 702	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
 703		goto retry;
 704
 705	r->entropy_total += nbits;
 706	if (!r->initialized && r->entropy_total > 128) {
 707		r->initialized = 1;
 708		r->entropy_total = 0;
 709	}
 710
 711	trace_credit_entropy_bits(r->name, nbits,
 712				  entropy_count >> ENTROPY_SHIFT,
 713				  r->entropy_total, _RET_IP_);
 714
 715	if (r == &input_pool) {
 716		int entropy_bits = entropy_count >> ENTROPY_SHIFT;
 717
 718		if (crng_init < 2 && entropy_bits >= 128) {
 719			crng_reseed(&primary_crng, r);
 720			entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
 721		}
 722
 723		/* should we wake readers? */
 724		if (entropy_bits >= random_read_wakeup_bits &&
 725		    wq_has_sleeper(&random_read_wait)) {
 726			wake_up_interruptible(&random_read_wait);
 727			kill_fasync(&fasync, SIGIO, POLL_IN);
 728		}
 729		/* If the input pool is getting full, send some
 730		 * entropy to the blocking pool until it is 75% full.
 731		 */
 732		if (entropy_bits > random_write_wakeup_bits &&
 733		    r->initialized &&
 734		    r->entropy_total >= 2*random_read_wakeup_bits) {
 735			struct entropy_store *other = &blocking_pool;
 736
 737			if (other->entropy_count <=
 738			    3 * other->poolinfo->poolfracbits / 4) {
 739				schedule_work(&other->push_work);
 740				r->entropy_total = 0;
 741			}
 742		}
 743	}
 
 
 744}
 745
 746static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
 
 
 
 
 
 
 
 747{
 748	const int nbits_max = r->poolinfo->poolwords * 32;
 
 
 
 749
 750	if (nbits < 0)
 751		return -EINVAL;
 
 
 
 752
 753	/* Cap the value to avoid overflows */
 754	nbits = min(nbits,  nbits_max);
 755
 756	credit_entropy_bits(r, nbits);
 757	return 0;
 758}
 
 
 
 
 
 
 
 
 
 
 
 
 759
 760/*********************************************************************
 761 *
 762 * CRNG using CHACHA20
 763 *
 764 *********************************************************************/
 
 
 
 
 765
 766#define CRNG_RESEED_INTERVAL (300*HZ)
 
 
 
 
 
 
 767
 768static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 769
 770#ifdef CONFIG_NUMA
 771/*
 772 * Hack to deal with crazy userspace progams when they are all trying
 773 * to access /dev/urandom in parallel.  The programs are almost
 774 * certainly doing something terribly wrong, but we'll work around
 775 * their brain damage.
 776 */
 777static struct crng_state **crng_node_pool __read_mostly;
 778#endif
 
 
 
 
 779
 780static void invalidate_batched_entropy(void);
 781
 782static void crng_initialize(struct crng_state *crng)
 783{
 784	int		i;
 785	unsigned long	rv;
 
 
 
 
 786
 787	memcpy(&crng->state[0], "expand 32-byte k", 16);
 788	if (crng == &primary_crng)
 789		_extract_entropy(&input_pool, &crng->state[4],
 790				 sizeof(__u32) * 12, 0);
 791	else
 792		_get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
 793	for (i = 4; i < 16; i++) {
 794		if (!arch_get_random_seed_long(&rv) &&
 795		    !arch_get_random_long(&rv))
 796			rv = random_get_entropy();
 797		crng->state[i] ^= rv;
 798	}
 799	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
 800}
 
 801
 802#ifdef CONFIG_NUMA
 803static void do_numa_crng_init(struct work_struct *work)
 
 
 
 
 804{
 805	int i;
 806	struct crng_state *crng;
 807	struct crng_state **pool;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 808
 809	pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
 810	for_each_online_node(i) {
 811		crng = kmalloc_node(sizeof(struct crng_state),
 812				    GFP_KERNEL | __GFP_NOFAIL, i);
 813		spin_lock_init(&crng->lock);
 814		crng_initialize(crng);
 815		pool[i] = crng;
 816	}
 817	mb();
 818	if (cmpxchg(&crng_node_pool, NULL, pool)) {
 819		for_each_node(i)
 820			kfree(pool[i]);
 821		kfree(pool);
 822	}
 823}
 824
 825static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
 
 
 
 
 
 
 
 
 
 
 826
 827static void numa_crng_init(void)
 828{
 829	schedule_work(&numa_crng_init_work);
 830}
 831#else
 832static void numa_crng_init(void) {}
 833#endif
 834
 835/*
 836 * crng_fast_load() can be called by code in the interrupt service
 837 * path.  So we can't afford to dilly-dally.
 
 838 */
 839static int crng_fast_load(const char *cp, size_t len)
 840{
 841	unsigned long flags;
 842	char *p;
 843
 844	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
 845		return 0;
 846	if (crng_init != 0) {
 847		spin_unlock_irqrestore(&primary_crng.lock, flags);
 848		return 0;
 849	}
 850	p = (unsigned char *) &primary_crng.state[4];
 851	while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
 852		p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp;
 853		cp++; crng_init_cnt++; len--;
 854	}
 855	spin_unlock_irqrestore(&primary_crng.lock, flags);
 856	if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
 857		invalidate_batched_entropy();
 858		crng_init = 1;
 859		wake_up_interruptible(&crng_init_wait);
 860		pr_notice("random: fast init done\n");
 861	}
 862	return 1;
 863}
 864
 865/*
 866 * crng_slow_load() is called by add_device_randomness, which has two
 867 * attributes.  (1) We can't trust the buffer passed to it is
 868 * guaranteed to be unpredictable (so it might not have any entropy at
 869 * all), and (2) it doesn't have the performance constraints of
 870 * crng_fast_load().
 871 *
 872 * So we do something more comprehensive which is guaranteed to touch
 873 * all of the primary_crng's state, and which uses a LFSR with a
 874 * period of 255 as part of the mixing algorithm.  Finally, we do
 875 * *not* advance crng_init_cnt since buffer we may get may be something
 876 * like a fixed DMI table (for example), which might very well be
 877 * unique to the machine, but is otherwise unvarying.
 878 */
 879static int crng_slow_load(const char *cp, size_t len)
 880{
 881	unsigned long		flags;
 882	static unsigned char	lfsr = 1;
 883	unsigned char		tmp;
 884	unsigned		i, max = CHACHA20_KEY_SIZE;
 885	const char *		src_buf = cp;
 886	char *			dest_buf = (char *) &primary_crng.state[4];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 887
 888	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
 889		return 0;
 890	if (crng_init != 0) {
 891		spin_unlock_irqrestore(&primary_crng.lock, flags);
 892		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 893	}
 894	if (len > max)
 895		max = len;
 896
 897	for (i = 0; i < max ; i++) {
 898		tmp = lfsr;
 899		lfsr >>= 1;
 900		if (tmp & 1)
 901			lfsr ^= 0xE1;
 902		tmp = dest_buf[i % CHACHA20_KEY_SIZE];
 903		dest_buf[i % CHACHA20_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
 904		lfsr += (tmp << 3) | (tmp >> 5);
 905	}
 906	spin_unlock_irqrestore(&primary_crng.lock, flags);
 907	return 1;
 908}
 909
 910static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
 911{
 912	unsigned long	flags;
 913	int		i, num;
 914	union {
 915		__u32	block[CHACHA20_BLOCK_WORDS];
 916		__u32	key[8];
 917	} buf;
 918
 919	if (r) {
 920		num = extract_entropy(r, &buf, 32, 16, 0);
 921		if (num == 0)
 922			return;
 923	} else {
 924		_extract_crng(&primary_crng, buf.block);
 925		_crng_backtrack_protect(&primary_crng, buf.block,
 926					CHACHA20_KEY_SIZE);
 927	}
 928	spin_lock_irqsave(&crng->lock, flags);
 929	for (i = 0; i < 8; i++) {
 930		unsigned long	rv;
 931		if (!arch_get_random_seed_long(&rv) &&
 932		    !arch_get_random_long(&rv))
 933			rv = random_get_entropy();
 934		crng->state[i+4] ^= buf.key[i] ^ rv;
 935	}
 936	memzero_explicit(&buf, sizeof(buf));
 937	crng->init_time = jiffies;
 938	spin_unlock_irqrestore(&crng->lock, flags);
 939	if (crng == &primary_crng && crng_init < 2) {
 940		invalidate_batched_entropy();
 941		numa_crng_init();
 942		crng_init = 2;
 943		process_random_ready_list();
 944		wake_up_interruptible(&crng_init_wait);
 945		pr_notice("random: crng init done\n");
 946		if (unseeded_warning.missed) {
 947			pr_notice("random: %d get_random_xx warning(s) missed "
 948				  "due to ratelimiting\n",
 949				  unseeded_warning.missed);
 950			unseeded_warning.missed = 0;
 951		}
 952		if (urandom_warning.missed) {
 953			pr_notice("random: %d urandom warning(s) missed "
 954				  "due to ratelimiting\n",
 955				  urandom_warning.missed);
 956			urandom_warning.missed = 0;
 
 
 
 
 
 957		}
 
 958	}
 959}
 960
 961static void _extract_crng(struct crng_state *crng,
 962			  __u32 out[CHACHA20_BLOCK_WORDS])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 963{
 964	unsigned long v, flags;
 965
 966	if (crng_ready() &&
 967	    (time_after(crng_global_init_time, crng->init_time) ||
 968	     time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
 969		crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
 970	spin_lock_irqsave(&crng->lock, flags);
 971	if (arch_get_random_long(&v))
 972		crng->state[14] ^= v;
 973	chacha20_block(&crng->state[0], out);
 974	if (crng->state[12] == 0)
 975		crng->state[13]++;
 976	spin_unlock_irqrestore(&crng->lock, flags);
 977}
 978
 979static void extract_crng(__u32 out[CHACHA20_BLOCK_WORDS])
 980{
 981	struct crng_state *crng = NULL;
 982
 983#ifdef CONFIG_NUMA
 984	if (crng_node_pool)
 985		crng = crng_node_pool[numa_node_id()];
 986	if (crng == NULL)
 987#endif
 988		crng = &primary_crng;
 989	_extract_crng(crng, out);
 990}
 
 
 991
 992/*
 993 * Use the leftover bytes from the CRNG block output (if there is
 994 * enough) to mutate the CRNG key to provide backtracking protection.
 995 */
 996static void _crng_backtrack_protect(struct crng_state *crng,
 997				    __u32 tmp[CHACHA20_BLOCK_WORDS], int used)
 998{
 999	unsigned long	flags;
1000	__u32		*s, *d;
1001	int		i;
 
 
 
 
 
 
 
 
 
 
1002
1003	used = round_up(used, sizeof(__u32));
1004	if (used + CHACHA20_KEY_SIZE > CHACHA20_BLOCK_SIZE) {
1005		extract_crng(tmp);
1006		used = 0;
 
1007	}
1008	spin_lock_irqsave(&crng->lock, flags);
1009	s = &tmp[used / sizeof(__u32)];
1010	d = &crng->state[4];
1011	for (i=0; i < 8; i++)
1012		*d++ ^= *s++;
1013	spin_unlock_irqrestore(&crng->lock, flags);
1014}
1015
1016static void crng_backtrack_protect(__u32 tmp[CHACHA20_BLOCK_WORDS], int used)
 
 
 
 
 
 
1017{
1018	struct crng_state *crng = NULL;
 
1019
1020#ifdef CONFIG_NUMA
1021	if (crng_node_pool)
1022		crng = crng_node_pool[numa_node_id()];
1023	if (crng == NULL)
1024#endif
1025		crng = &primary_crng;
1026	_crng_backtrack_protect(crng, tmp, used);
1027}
1028
1029static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
1030{
1031	ssize_t ret = 0, i = CHACHA20_BLOCK_SIZE;
1032	__u32 tmp[CHACHA20_BLOCK_WORDS];
1033	int large_request = (nbytes > 256);
1034
1035	while (nbytes) {
1036		if (large_request && need_resched()) {
1037			if (signal_pending(current)) {
1038				if (ret == 0)
1039					ret = -ERESTARTSYS;
1040				break;
1041			}
1042			schedule();
1043		}
1044
1045		extract_crng(tmp);
1046		i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE);
1047		if (copy_to_user(buf, tmp, i)) {
1048			ret = -EFAULT;
1049			break;
1050		}
1051
1052		nbytes -= i;
1053		buf += i;
1054		ret += i;
1055	}
1056	crng_backtrack_protect(tmp, i);
1057
1058	/* Wipe data just written to memory */
1059	memzero_explicit(tmp, sizeof(tmp));
1060
1061	return ret;
 
 
 
 
1062}
1063
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1064
1065/*********************************************************************
1066 *
1067 * Entropy input management
1068 *
1069 *********************************************************************/
1070
1071/* There is one of these per entropy source */
1072struct timer_rand_state {
1073	cycles_t last_time;
1074	long last_delta, last_delta2;
1075};
1076
1077#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
 
 
1078
1079/*
1080 * Add device- or boot-specific data to the input pool to help
1081 * initialize it.
1082 *
1083 * None of this adds any entropy; it is meant to avoid the problem of
1084 * the entropy pool having similar initial state across largely
1085 * identical devices.
1086 */
1087void add_device_randomness(const void *buf, unsigned int size)
1088{
1089	unsigned long time = random_get_entropy() ^ jiffies;
1090	unsigned long flags;
1091
1092	if (!crng_ready() && size)
1093		crng_slow_load(buf, size);
1094
1095	trace_add_device_randomness(size, _RET_IP_);
1096	spin_lock_irqsave(&input_pool.lock, flags);
1097	_mix_pool_bytes(&input_pool, buf, size);
1098	_mix_pool_bytes(&input_pool, &time, sizeof(time));
1099	spin_unlock_irqrestore(&input_pool.lock, flags);
1100}
1101EXPORT_SYMBOL(add_device_randomness);
1102
1103static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1104
1105/*
1106 * This function adds entropy to the entropy "pool" by using timing
1107 * delays.  It uses the timer_rand_state structure to make an estimate
1108 * of how many bits of entropy this call has added to the pool.
1109 *
1110 * The number "num" is also added to the pool - it should somehow describe
1111 * the type of event which just happened.  This is currently 0-255 for
1112 * keyboard scan codes, and 256 upwards for interrupts.
1113 *
1114 */
1115static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1116{
1117	struct entropy_store	*r;
1118	struct {
1119		long jiffies;
1120		unsigned cycles;
1121		unsigned num;
1122	} sample;
1123	long delta, delta2, delta3;
1124
1125	preempt_disable();
1126
1127	sample.jiffies = jiffies;
1128	sample.cycles = random_get_entropy();
1129	sample.num = num;
1130	r = &input_pool;
1131	mix_pool_bytes(r, &sample, sizeof(sample));
1132
1133	/*
1134	 * Calculate number of bits of randomness we probably added.
1135	 * We take into account the first, second and third-order deltas
1136	 * in order to make our estimate.
1137	 */
1138	delta = sample.jiffies - state->last_time;
1139	state->last_time = sample.jiffies;
1140
1141	delta2 = delta - state->last_delta;
1142	state->last_delta = delta;
1143
1144	delta3 = delta2 - state->last_delta2;
1145	state->last_delta2 = delta2;
1146
1147	if (delta < 0)
1148		delta = -delta;
1149	if (delta2 < 0)
1150		delta2 = -delta2;
1151	if (delta3 < 0)
1152		delta3 = -delta3;
1153	if (delta > delta2)
1154		delta = delta2;
1155	if (delta > delta3)
1156		delta = delta3;
1157
1158	/*
1159	 * delta is now minimum absolute delta.
1160	 * Round down by 1 bit on general principles,
1161	 * and limit entropy entimate to 12 bits.
1162	 */
1163	credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1164
1165	preempt_enable();
1166}
 
1167
1168void add_input_randomness(unsigned int type, unsigned int code,
1169				 unsigned int value)
 
 
 
1170{
1171	static unsigned char last_value;
1172
1173	/* ignore autorepeat and the like */
1174	if (value == last_value)
1175		return;
1176
1177	last_value = value;
1178	add_timer_randomness(&input_timer_state,
1179			     (type << 4) ^ code ^ (code >> 4) ^ value);
1180	trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1181}
1182EXPORT_SYMBOL_GPL(add_input_randomness);
1183
1184static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
 
1185
1186#ifdef ADD_INTERRUPT_BENCH
1187static unsigned long avg_cycles, avg_deviation;
1188
1189#define AVG_SHIFT 8     /* Exponential average factor k=1/256 */
1190#define FIXED_1_2 (1 << (AVG_SHIFT-1))
1191
1192static void add_interrupt_bench(cycles_t start)
1193{
1194        long delta = random_get_entropy() - start;
1195
1196        /* Use a weighted moving average */
1197        delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1198        avg_cycles += delta;
1199        /* And average deviation */
1200        delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1201        avg_deviation += delta;
1202}
1203#else
1204#define add_interrupt_bench(x)
1205#endif
1206
1207static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1208{
1209	__u32 *ptr = (__u32 *) regs;
1210	unsigned int idx;
1211
1212	if (regs == NULL)
1213		return 0;
1214	idx = READ_ONCE(f->reg_idx);
1215	if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
1216		idx = 0;
1217	ptr += idx++;
1218	WRITE_ONCE(f->reg_idx, idx);
1219	return *ptr;
1220}
1221
1222void add_interrupt_randomness(int irq, int irq_flags)
1223{
1224	struct entropy_store	*r;
1225	struct fast_pool	*fast_pool = this_cpu_ptr(&irq_randomness);
1226	struct pt_regs		*regs = get_irq_regs();
1227	unsigned long		now = jiffies;
1228	cycles_t		cycles = random_get_entropy();
1229	__u32			c_high, j_high;
1230	__u64			ip;
1231	unsigned long		seed;
1232	int			credit = 0;
1233
1234	if (cycles == 0)
1235		cycles = get_reg(fast_pool, regs);
1236	c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1237	j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1238	fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1239	fast_pool->pool[1] ^= now ^ c_high;
1240	ip = regs ? instruction_pointer(regs) : _RET_IP_;
1241	fast_pool->pool[2] ^= ip;
1242	fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1243		get_reg(fast_pool, regs);
1244
1245	fast_mix(fast_pool);
1246	add_interrupt_bench(cycles);
1247
1248	if (unlikely(crng_init == 0)) {
1249		if ((fast_pool->count >= 64) &&
1250		    crng_fast_load((char *) fast_pool->pool,
1251				   sizeof(fast_pool->pool))) {
1252			fast_pool->count = 0;
1253			fast_pool->last = now;
1254		}
1255		return;
1256	}
1257
1258	if ((fast_pool->count < 64) &&
1259	    !time_after(now, fast_pool->last + HZ))
1260		return;
1261
1262	r = &input_pool;
1263	if (!spin_trylock(&r->lock))
1264		return;
1265
1266	fast_pool->last = now;
1267	__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1268
1269	/*
1270	 * If we have architectural seed generator, produce a seed and
1271	 * add it to the pool.  For the sake of paranoia don't let the
1272	 * architectural seed generator dominate the input from the
1273	 * interrupt noise.
1274	 */
1275	if (arch_get_random_seed_long(&seed)) {
1276		__mix_pool_bytes(r, &seed, sizeof(seed));
1277		credit = 1;
1278	}
1279	spin_unlock(&r->lock);
1280
1281	fast_pool->count = 0;
1282
1283	/* award one bit for the contents of the fast pool */
1284	credit_entropy_bits(r, credit + 1);
1285}
1286EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1287
1288#ifdef CONFIG_BLOCK
1289void add_disk_randomness(struct gendisk *disk)
1290{
1291	if (!disk || !disk->random)
1292		return;
1293	/* first major is 1, so we get >= 0x200 here */
1294	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1295	trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1296}
1297EXPORT_SYMBOL_GPL(add_disk_randomness);
1298#endif
1299
1300/*********************************************************************
1301 *
1302 * Entropy extraction routines
1303 *
1304 *********************************************************************/
 
1305
1306/*
1307 * This utility inline function is responsible for transferring entropy
1308 * from the primary pool to the secondary extraction pool. We make
1309 * sure we pull enough for a 'catastrophic reseed'.
1310 */
1311static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
1312static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1313{
1314	if (!r->pull ||
1315	    r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
1316	    r->entropy_count > r->poolinfo->poolfracbits)
1317		return;
1318
1319	_xfer_secondary_pool(r, nbytes);
1320}
1321
1322static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1323{
1324	__u32	tmp[OUTPUT_POOL_WORDS];
1325
1326	int bytes = nbytes;
1327
1328	/* pull at least as much as a wakeup */
1329	bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
1330	/* but never more than the buffer size */
1331	bytes = min_t(int, bytes, sizeof(tmp));
1332
1333	trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1334				  ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
1335	bytes = extract_entropy(r->pull, tmp, bytes,
1336				random_read_wakeup_bits / 8, 0);
1337	mix_pool_bytes(r, tmp, bytes);
1338	credit_entropy_bits(r, bytes*8);
1339}
1340
1341/*
1342 * Used as a workqueue function so that when the input pool is getting
1343 * full, we can "spill over" some entropy to the output pools.  That
1344 * way the output pools can store some of the excess entropy instead
1345 * of letting it go to waste.
1346 */
1347static void push_to_pool(struct work_struct *work)
1348{
1349	struct entropy_store *r = container_of(work, struct entropy_store,
1350					      push_work);
1351	BUG_ON(!r);
1352	_xfer_secondary_pool(r, random_read_wakeup_bits/8);
1353	trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1354			   r->pull->entropy_count >> ENTROPY_SHIFT);
1355}
1356
 
1357/*
1358 * This function decides how many bytes to actually take from the
1359 * given pool, and also debits the entropy count accordingly.
1360 */
1361static size_t account(struct entropy_store *r, size_t nbytes, int min,
1362		      int reserved)
1363{
1364	int entropy_count, orig, have_bytes;
1365	size_t ibytes, nfrac;
1366
1367	BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1368
1369	/* Can we pull enough? */
1370retry:
1371	entropy_count = orig = READ_ONCE(r->entropy_count);
1372	ibytes = nbytes;
1373	/* never pull more than available */
1374	have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1375
1376	if ((have_bytes -= reserved) < 0)
1377		have_bytes = 0;
1378	ibytes = min_t(size_t, ibytes, have_bytes);
1379	if (ibytes < min)
1380		ibytes = 0;
1381
1382	if (unlikely(entropy_count < 0)) {
1383		pr_warn("random: negative entropy count: pool %s count %d\n",
1384			r->name, entropy_count);
1385		WARN_ON(1);
1386		entropy_count = 0;
1387	}
1388	nfrac = ibytes << (ENTROPY_SHIFT + 3);
1389	if ((size_t) entropy_count > nfrac)
1390		entropy_count -= nfrac;
1391	else
1392		entropy_count = 0;
1393
1394	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1395		goto retry;
1396
1397	trace_debit_entropy(r->name, 8 * ibytes);
1398	if (ibytes &&
1399	    (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
1400		wake_up_interruptible(&random_write_wait);
1401		kill_fasync(&fasync, SIGIO, POLL_OUT);
1402	}
1403
1404	return ibytes;
1405}
 
1406
1407/*
1408 * This function does the actual extraction for extract_entropy and
1409 * extract_entropy_user.
1410 *
1411 * Note: we assume that .poolwords is a multiple of 16 words.
1412 */
1413static void extract_buf(struct entropy_store *r, __u8 *out)
1414{
1415	int i;
1416	union {
1417		__u32 w[5];
1418		unsigned long l[LONGS(20)];
1419	} hash;
1420	__u32 workspace[SHA_WORKSPACE_WORDS];
1421	unsigned long flags;
1422
1423	/*
1424	 * If we have an architectural hardware random number
1425	 * generator, use it for SHA's initial vector
 
 
 
1426	 */
1427	sha_init(hash.w);
1428	for (i = 0; i < LONGS(20); i++) {
1429		unsigned long v;
1430		if (!arch_get_random_long(&v))
1431			break;
1432		hash.l[i] = v;
 
 
1433	}
1434
1435	/* Generate a hash across the pool, 16 words (512 bits) at a time */
1436	spin_lock_irqsave(&r->lock, flags);
1437	for (i = 0; i < r->poolinfo->poolwords; i += 16)
1438		sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1439
1440	/*
1441	 * We mix the hash back into the pool to prevent backtracking
1442	 * attacks (where the attacker knows the state of the pool
1443	 * plus the current outputs, and attempts to find previous
1444	 * ouputs), unless the hash function can be inverted. By
1445	 * mixing at least a SHA1 worth of hash data back, we make
1446	 * brute-forcing the feedback as hard as brute-forcing the
1447	 * hash.
1448	 */
1449	__mix_pool_bytes(r, hash.w, sizeof(hash.w));
1450	spin_unlock_irqrestore(&r->lock, flags);
 
 
 
1451
1452	memzero_explicit(workspace, sizeof(workspace));
 
1453
1454	/*
1455	 * In case the hash function has some recognizable output
1456	 * pattern, we fold it in half. Thus, we always feed back
1457	 * twice as much data as we output.
1458	 */
1459	hash.w[0] ^= hash.w[3];
1460	hash.w[1] ^= hash.w[4];
1461	hash.w[2] ^= rol32(hash.w[2], 16);
1462
1463	memcpy(out, &hash, EXTRACT_SIZE);
1464	memzero_explicit(&hash, sizeof(hash));
1465}
1466
1467static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1468				size_t nbytes, int fips)
1469{
1470	ssize_t ret = 0, i;
1471	__u8 tmp[EXTRACT_SIZE];
1472	unsigned long flags;
 
 
1473
1474	while (nbytes) {
1475		extract_buf(r, tmp);
 
1476
1477		if (fips) {
1478			spin_lock_irqsave(&r->lock, flags);
1479			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1480				panic("Hardware RNG duplicated output!\n");
1481			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1482			spin_unlock_irqrestore(&r->lock, flags);
1483		}
1484		i = min_t(int, nbytes, EXTRACT_SIZE);
1485		memcpy(buf, tmp, i);
1486		nbytes -= i;
1487		buf += i;
1488		ret += i;
1489	}
1490
1491	/* Wipe data just returned from memory */
1492	memzero_explicit(tmp, sizeof(tmp));
1493
1494	return ret;
 
 
 
 
1495}
 
 
 
 
 
 
 
1496
1497/*
1498 * This function extracts randomness from the "entropy pool", and
1499 * returns it in a buffer.
1500 *
1501 * The min parameter specifies the minimum amount we can pull before
1502 * failing to avoid races that defeat catastrophic reseeding while the
1503 * reserved parameter indicates how much entropy we must leave in the
1504 * pool after each pull to avoid starving other readers.
1505 */
1506static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1507				 size_t nbytes, int min, int reserved)
1508{
1509	__u8 tmp[EXTRACT_SIZE];
1510	unsigned long flags;
 
1511
1512	/* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1513	if (fips_enabled) {
1514		spin_lock_irqsave(&r->lock, flags);
1515		if (!r->last_data_init) {
1516			r->last_data_init = 1;
1517			spin_unlock_irqrestore(&r->lock, flags);
1518			trace_extract_entropy(r->name, EXTRACT_SIZE,
1519					      ENTROPY_BITS(r), _RET_IP_);
1520			xfer_secondary_pool(r, EXTRACT_SIZE);
1521			extract_buf(r, tmp);
1522			spin_lock_irqsave(&r->lock, flags);
1523			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1524		}
1525		spin_unlock_irqrestore(&r->lock, flags);
1526	}
1527
1528	trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1529	xfer_secondary_pool(r, nbytes);
1530	nbytes = account(r, nbytes, min, reserved);
1531
1532	return _extract_entropy(r, buf, nbytes, fips_enabled);
1533}
 
 
 
 
 
1534
1535/*
1536 * This function extracts randomness from the "entropy pool", and
1537 * returns it in a userspace buffer.
1538 */
1539static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1540				    size_t nbytes)
1541{
1542	ssize_t ret = 0, i;
1543	__u8 tmp[EXTRACT_SIZE];
1544	int large_request = (nbytes > 256);
1545
1546	trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1547	xfer_secondary_pool(r, nbytes);
1548	nbytes = account(r, nbytes, 0, 0);
1549
1550	while (nbytes) {
1551		if (large_request && need_resched()) {
1552			if (signal_pending(current)) {
1553				if (ret == 0)
1554					ret = -ERESTARTSYS;
1555				break;
1556			}
1557			schedule();
1558		}
 
 
 
 
 
 
 
1559
1560		extract_buf(r, tmp);
1561		i = min_t(int, nbytes, EXTRACT_SIZE);
1562		if (copy_to_user(buf, tmp, i)) {
1563			ret = -EFAULT;
1564			break;
1565		}
 
 
 
 
 
 
1566
1567		nbytes -= i;
1568		buf += i;
1569		ret += i;
1570	}
1571
1572	/* Wipe data just returned from memory */
1573	memzero_explicit(tmp, sizeof(tmp));
 
1574
1575	return ret;
 
 
1576}
 
1577
1578#define warn_unseeded_randomness(previous) \
1579	_warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
1580
1581static void _warn_unseeded_randomness(const char *func_name, void *caller,
1582				      void **previous)
1583{
1584#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1585	const bool print_once = false;
1586#else
1587	static bool print_once __read_mostly;
1588#endif
1589
1590	if (print_once ||
1591	    crng_ready() ||
1592	    (previous && (caller == READ_ONCE(*previous))))
1593		return;
1594	WRITE_ONCE(*previous, caller);
1595#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1596	print_once = true;
1597#endif
1598	if (__ratelimit(&unseeded_warning))
1599		pr_notice("random: %s called from %pS with crng_init=%d\n",
1600			  func_name, caller, crng_init);
1601}
 
1602
1603/*
1604 * This function is the exported kernel interface.  It returns some
1605 * number of good random numbers, suitable for key generation, seeding
1606 * TCP sequence numbers, etc.  It does not rely on the hardware random
1607 * number generator.  For random bytes direct from the hardware RNG
1608 * (when available), use get_random_bytes_arch(). In order to ensure
1609 * that the randomness provided by this function is okay, the function
1610 * wait_for_random_bytes() should be called and return 0 at least once
1611 * at any point prior.
1612 */
1613static void _get_random_bytes(void *buf, int nbytes)
1614{
1615	__u32 tmp[CHACHA20_BLOCK_WORDS];
1616
1617	trace_get_random_bytes(nbytes, _RET_IP_);
1618
1619	while (nbytes >= CHACHA20_BLOCK_SIZE) {
1620		extract_crng(buf);
1621		buf += CHACHA20_BLOCK_SIZE;
1622		nbytes -= CHACHA20_BLOCK_SIZE;
 
 
1623	}
1624
1625	if (nbytes > 0) {
1626		extract_crng(tmp);
1627		memcpy(buf, tmp, nbytes);
1628		crng_backtrack_protect(tmp, nbytes);
1629	} else
1630		crng_backtrack_protect(tmp, CHACHA20_BLOCK_SIZE);
1631	memzero_explicit(tmp, sizeof(tmp));
1632}
 
1633
1634void get_random_bytes(void *buf, int nbytes)
1635{
1636	static void *previous;
1637
1638	warn_unseeded_randomness(&previous);
1639	_get_random_bytes(buf, nbytes);
1640}
1641EXPORT_SYMBOL(get_random_bytes);
1642
1643/*
1644 * Wait for the urandom pool to be seeded and thus guaranteed to supply
1645 * cryptographically secure random numbers. This applies to: the /dev/urandom
1646 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1647 * family of functions. Using any of these functions without first calling
1648 * this function forfeits the guarantee of security.
1649 *
1650 * Returns: 0 if the urandom pool has been seeded.
1651 *          -ERESTARTSYS if the function was interrupted by a signal.
1652 */
1653int wait_for_random_bytes(void)
1654{
1655	if (likely(crng_ready()))
1656		return 0;
1657	return wait_event_interruptible(crng_init_wait, crng_ready());
1658}
1659EXPORT_SYMBOL(wait_for_random_bytes);
1660
1661/*
1662 * Add a callback function that will be invoked when the nonblocking
1663 * pool is initialised.
1664 *
1665 * returns: 0 if callback is successfully added
1666 *	    -EALREADY if pool is already initialised (callback not called)
1667 *	    -ENOENT if module for callback is not alive
1668 */
1669int add_random_ready_callback(struct random_ready_callback *rdy)
1670{
1671	struct module *owner;
1672	unsigned long flags;
1673	int err = -EALREADY;
1674
1675	if (crng_ready())
1676		return err;
1677
1678	owner = rdy->owner;
1679	if (!try_module_get(owner))
1680		return -ENOENT;
1681
1682	spin_lock_irqsave(&random_ready_list_lock, flags);
1683	if (crng_ready())
1684		goto out;
1685
1686	owner = NULL;
1687
1688	list_add(&rdy->list, &random_ready_list);
1689	err = 0;
1690
1691out:
1692	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1693
1694	module_put(owner);
1695
1696	return err;
1697}
1698EXPORT_SYMBOL(add_random_ready_callback);
1699
1700/*
1701 * Delete a previously registered readiness callback function.
 
1702 */
1703void del_random_ready_callback(struct random_ready_callback *rdy)
1704{
1705	unsigned long flags;
1706	struct module *owner = NULL;
 
 
 
 
1707
1708	spin_lock_irqsave(&random_ready_list_lock, flags);
1709	if (!list_empty(&rdy->list)) {
1710		list_del_init(&rdy->list);
1711		owner = rdy->owner;
 
1712	}
1713	spin_unlock_irqrestore(&random_ready_list_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1714
1715	module_put(owner);
1716}
1717EXPORT_SYMBOL(del_random_ready_callback);
 
 
 
1718
1719/*
1720 * This function will use the architecture-specific hardware random
1721 * number generator if it is available.  The arch-specific hw RNG will
1722 * almost certainly be faster than what we can do in software, but it
1723 * is impossible to verify that it is implemented securely (as
1724 * opposed, to, say, the AES encryption of a sequence number using a
1725 * key known by the NSA).  So it's useful if we need the speed, but
1726 * only if we're willing to trust the hardware manufacturer not to
1727 * have put in a back door.
1728 */
1729void get_random_bytes_arch(void *buf, int nbytes)
1730{
1731	char *p = buf;
1732
1733	trace_get_random_bytes_arch(nbytes, _RET_IP_);
1734	while (nbytes) {
1735		unsigned long v;
1736		int chunk = min(nbytes, (int)sizeof(unsigned long));
1737
1738		if (!arch_get_random_long(&v))
1739			break;
1740		
1741		memcpy(p, &v, chunk);
1742		p += chunk;
1743		nbytes -= chunk;
1744	}
 
1745
1746	if (nbytes)
1747		get_random_bytes(p, nbytes);
1748}
1749EXPORT_SYMBOL(get_random_bytes_arch);
1750
1751
1752/*
1753 * init_std_data - initialize pool with system data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1754 *
1755 * @r: pool to initialize
 
 
1756 *
1757 * This function clears the pool's entropy count and mixes some system
1758 * data into the pool to prepare it for use. The pool is not cleared
1759 * as that can only decrease the entropy in the pool.
1760 */
1761static void init_std_data(struct entropy_store *r)
1762{
1763	int i;
1764	ktime_t now = ktime_get_real();
1765	unsigned long rv;
 
 
1766
1767	r->last_pulled = jiffies;
1768	mix_pool_bytes(r, &now, sizeof(now));
1769	for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1770		if (!arch_get_random_seed_long(&rv) &&
1771		    !arch_get_random_long(&rv))
1772			rv = random_get_entropy();
1773		mix_pool_bytes(r, &rv, sizeof(rv));
1774	}
1775	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1776}
1777
1778/*
1779 * Note that setup_arch() may call add_device_randomness()
1780 * long before we get here. This allows seeding of the pools
1781 * with some platform dependent data very early in the boot
1782 * process. But it limits our options here. We must use
1783 * statically allocated structures that already have all
1784 * initializations complete at compile time. We should also
1785 * take care not to overwrite the precious per platform data
1786 * we were given.
1787 */
1788static int rand_initialize(void)
1789{
1790	init_std_data(&input_pool);
1791	init_std_data(&blocking_pool);
1792	crng_initialize(&primary_crng);
1793	crng_global_init_time = jiffies;
1794	if (ratelimit_disable) {
1795		urandom_warning.interval = 0;
1796		unseeded_warning.interval = 0;
1797	}
1798	return 0;
 
 
 
 
1799}
1800early_initcall(rand_initialize);
1801
1802#ifdef CONFIG_BLOCK
1803void rand_initialize_disk(struct gendisk *disk)
1804{
1805	struct timer_rand_state *state;
1806
1807	/*
1808	 * If kzalloc returns null, we just won't use that entropy
1809	 * source.
1810	 */
1811	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1812	if (state) {
1813		state->last_time = INITIAL_JIFFIES;
1814		disk->random = state;
1815	}
1816}
1817#endif
1818
1819static ssize_t
1820_random_read(int nonblock, char __user *buf, size_t nbytes)
1821{
1822	ssize_t n;
 
 
1823
1824	if (nbytes == 0)
1825		return 0;
1826
1827	nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1828	while (1) {
1829		n = extract_entropy_user(&blocking_pool, buf, nbytes);
1830		if (n < 0)
1831			return n;
1832		trace_random_read(n*8, (nbytes-n)*8,
1833				  ENTROPY_BITS(&blocking_pool),
1834				  ENTROPY_BITS(&input_pool));
1835		if (n > 0)
1836			return n;
1837
1838		/* Pool is (near) empty.  Maybe wait and retry. */
1839		if (nonblock)
1840			return -EAGAIN;
 
 
 
 
1841
1842		wait_event_interruptible(random_read_wait,
1843			ENTROPY_BITS(&input_pool) >=
1844			random_read_wakeup_bits);
1845		if (signal_pending(current))
1846			return -ERESTARTSYS;
1847	}
1848}
1849
1850static ssize_t
1851random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1852{
1853	return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1854}
1855
1856static ssize_t
1857urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1858{
1859	unsigned long flags;
1860	static int maxwarn = 10;
1861	int ret;
1862
1863	if (!crng_ready() && maxwarn > 0) {
1864		maxwarn--;
1865		if (__ratelimit(&urandom_warning))
1866			printk(KERN_NOTICE "random: %s: uninitialized "
1867			       "urandom read (%zd bytes read)\n",
1868			       current->comm, nbytes);
1869		spin_lock_irqsave(&primary_crng.lock, flags);
1870		crng_init_cnt = 0;
1871		spin_unlock_irqrestore(&primary_crng.lock, flags);
1872	}
1873	nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1874	ret = extract_crng_user(buf, nbytes);
1875	trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
1876	return ret;
1877}
1878
1879static __poll_t
1880random_poll(struct file *file, poll_table * wait)
1881{
1882	__poll_t mask;
1883
1884	poll_wait(file, &random_read_wait, wait);
1885	poll_wait(file, &random_write_wait, wait);
1886	mask = 0;
1887	if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1888		mask |= EPOLLIN | EPOLLRDNORM;
1889	if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1890		mask |= EPOLLOUT | EPOLLWRNORM;
1891	return mask;
1892}
1893
1894static int
1895write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1896{
1897	size_t bytes;
1898	__u32 buf[16];
1899	const char __user *p = buffer;
1900
1901	while (count > 0) {
1902		bytes = min(count, sizeof(buf));
1903		if (copy_from_user(&buf, p, bytes))
1904			return -EFAULT;
1905
1906		count -= bytes;
1907		p += bytes;
1908
1909		mix_pool_bytes(r, buf, bytes);
1910		cond_resched();
1911	}
1912
1913	return 0;
1914}
1915
1916static ssize_t random_write(struct file *file, const char __user *buffer,
1917			    size_t count, loff_t *ppos)
1918{
1919	size_t ret;
 
 
 
 
 
1920
1921	ret = write_pool(&input_pool, buffer, count);
1922	if (ret)
1923		return ret;
1924
1925	return (ssize_t)count;
1926}
1927
1928static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1929{
1930	int size, ent_count;
1931	int __user *p = (int __user *)arg;
1932	int retval;
1933
1934	switch (cmd) {
1935	case RNDGETENTCNT:
1936		/* inherently racy, no point locking */
1937		ent_count = ENTROPY_BITS(&input_pool);
1938		if (put_user(ent_count, p))
1939			return -EFAULT;
1940		return 0;
1941	case RNDADDTOENTCNT:
1942		if (!capable(CAP_SYS_ADMIN))
1943			return -EPERM;
1944		if (get_user(ent_count, p))
1945			return -EFAULT;
1946		return credit_entropy_bits_safe(&input_pool, ent_count);
1947	case RNDADDENTROPY:
 
 
 
 
 
 
 
1948		if (!capable(CAP_SYS_ADMIN))
1949			return -EPERM;
1950		if (get_user(ent_count, p++))
1951			return -EFAULT;
1952		if (ent_count < 0)
1953			return -EINVAL;
1954		if (get_user(size, p++))
 
 
 
 
 
 
 
 
 
1955			return -EFAULT;
1956		retval = write_pool(&input_pool, (const char __user *)p,
1957				    size);
1958		if (retval < 0)
1959			return retval;
1960		return credit_entropy_bits_safe(&input_pool, ent_count);
1961	case RNDZAPENTCNT:
1962	case RNDCLEARPOOL:
1963		/*
1964		 * Clear the entropy pool counters. We no longer clear
1965		 * the entropy pool, as that's silly.
1966		 */
1967		if (!capable(CAP_SYS_ADMIN))
1968			return -EPERM;
1969		input_pool.entropy_count = 0;
1970		blocking_pool.entropy_count = 0;
1971		return 0;
1972	case RNDRESEEDCRNG:
1973		if (!capable(CAP_SYS_ADMIN))
1974			return -EPERM;
1975		if (crng_init < 2)
1976			return -ENODATA;
1977		crng_reseed(&primary_crng, NULL);
1978		crng_global_init_time = jiffies - 1;
1979		return 0;
1980	default:
1981		return -EINVAL;
1982	}
1983}
1984
1985static int random_fasync(int fd, struct file *filp, int on)
1986{
1987	return fasync_helper(fd, filp, on, &fasync);
1988}
1989
1990const struct file_operations random_fops = {
1991	.read  = random_read,
1992	.write = random_write,
1993	.poll  = random_poll,
1994	.unlocked_ioctl = random_ioctl,
 
1995	.fasync = random_fasync,
1996	.llseek = noop_llseek,
 
 
1997};
1998
1999const struct file_operations urandom_fops = {
2000	.read  = urandom_read,
2001	.write = random_write,
2002	.unlocked_ioctl = random_ioctl,
 
2003	.fasync = random_fasync,
2004	.llseek = noop_llseek,
 
 
2005};
2006
2007SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
2008		unsigned int, flags)
2009{
2010	int ret;
2011
2012	if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
2013		return -EINVAL;
2014
2015	if (count > INT_MAX)
2016		count = INT_MAX;
2017
2018	if (flags & GRND_RANDOM)
2019		return _random_read(flags & GRND_NONBLOCK, buf, count);
2020
2021	if (!crng_ready()) {
2022		if (flags & GRND_NONBLOCK)
2023			return -EAGAIN;
2024		ret = wait_for_random_bytes();
2025		if (unlikely(ret))
2026			return ret;
2027	}
2028	return urandom_read(NULL, buf, count, NULL);
2029}
2030
2031/********************************************************************
2032 *
2033 * Sysctl interface
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2034 *
2035 ********************************************************************/
2036
2037#ifdef CONFIG_SYSCTL
2038
2039#include <linux/sysctl.h>
2040
2041static int min_read_thresh = 8, min_write_thresh;
2042static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
2043static int max_write_thresh = INPUT_POOL_WORDS * 32;
2044static int random_min_urandom_seed = 60;
2045static char sysctl_bootid[16];
2046
2047/*
2048 * This function is used to return both the bootid UUID, and random
2049 * UUID.  The difference is in whether table->data is NULL; if it is,
2050 * then a new UUID is generated and returned to the user.
2051 *
2052 * If the user accesses this via the proc interface, the UUID will be
2053 * returned as an ASCII string in the standard UUID format; if via the
2054 * sysctl system call, as 16 bytes of binary data.
2055 */
2056static int proc_do_uuid(struct ctl_table *table, int write,
2057			void __user *buffer, size_t *lenp, loff_t *ppos)
2058{
2059	struct ctl_table fake_table;
2060	unsigned char buf[64], tmp_uuid[16], *uuid;
 
 
 
 
 
 
 
2061
2062	uuid = table->data;
2063	if (!uuid) {
2064		uuid = tmp_uuid;
2065		generate_random_uuid(uuid);
2066	} else {
2067		static DEFINE_SPINLOCK(bootid_spinlock);
2068
2069		spin_lock(&bootid_spinlock);
2070		if (!uuid[8])
2071			generate_random_uuid(uuid);
2072		spin_unlock(&bootid_spinlock);
2073	}
2074
2075	sprintf(buf, "%pU", uuid);
2076
2077	fake_table.data = buf;
2078	fake_table.maxlen = sizeof(buf);
2079
2080	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
2081}
2082
2083/*
2084 * Return entropy available scaled to integral bits
2085 */
2086static int proc_do_entropy(struct ctl_table *table, int write,
2087			   void __user *buffer, size_t *lenp, loff_t *ppos)
2088{
2089	struct ctl_table fake_table;
2090	int entropy_count;
2091
2092	entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
2093
2094	fake_table.data = &entropy_count;
2095	fake_table.maxlen = sizeof(entropy_count);
2096
2097	return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
2098}
2099
2100static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
2101extern struct ctl_table random_table[];
2102struct ctl_table random_table[] = {
2103	{
2104		.procname	= "poolsize",
2105		.data		= &sysctl_poolsize,
2106		.maxlen		= sizeof(int),
2107		.mode		= 0444,
2108		.proc_handler	= proc_dointvec,
2109	},
2110	{
2111		.procname	= "entropy_avail",
 
2112		.maxlen		= sizeof(int),
2113		.mode		= 0444,
2114		.proc_handler	= proc_do_entropy,
2115		.data		= &input_pool.entropy_count,
2116	},
2117	{
2118		.procname	= "read_wakeup_threshold",
2119		.data		= &random_read_wakeup_bits,
2120		.maxlen		= sizeof(int),
2121		.mode		= 0644,
2122		.proc_handler	= proc_dointvec_minmax,
2123		.extra1		= &min_read_thresh,
2124		.extra2		= &max_read_thresh,
2125	},
2126	{
2127		.procname	= "write_wakeup_threshold",
2128		.data		= &random_write_wakeup_bits,
2129		.maxlen		= sizeof(int),
2130		.mode		= 0644,
2131		.proc_handler	= proc_dointvec_minmax,
2132		.extra1		= &min_write_thresh,
2133		.extra2		= &max_write_thresh,
2134	},
2135	{
2136		.procname	= "urandom_min_reseed_secs",
2137		.data		= &random_min_urandom_seed,
2138		.maxlen		= sizeof(int),
2139		.mode		= 0644,
2140		.proc_handler	= proc_dointvec,
2141	},
2142	{
2143		.procname	= "boot_id",
2144		.data		= &sysctl_bootid,
2145		.maxlen		= 16,
2146		.mode		= 0444,
2147		.proc_handler	= proc_do_uuid,
2148	},
2149	{
2150		.procname	= "uuid",
2151		.maxlen		= 16,
2152		.mode		= 0444,
2153		.proc_handler	= proc_do_uuid,
2154	},
2155#ifdef ADD_INTERRUPT_BENCH
2156	{
2157		.procname	= "add_interrupt_avg_cycles",
2158		.data		= &avg_cycles,
2159		.maxlen		= sizeof(avg_cycles),
2160		.mode		= 0444,
2161		.proc_handler	= proc_doulongvec_minmax,
2162	},
2163	{
2164		.procname	= "add_interrupt_avg_deviation",
2165		.data		= &avg_deviation,
2166		.maxlen		= sizeof(avg_deviation),
2167		.mode		= 0444,
2168		.proc_handler	= proc_doulongvec_minmax,
2169	},
2170#endif
2171	{ }
2172};
2173#endif 	/* CONFIG_SYSCTL */
2174
2175struct batched_entropy {
2176	union {
2177		u64 entropy_u64[CHACHA20_BLOCK_SIZE / sizeof(u64)];
2178		u32 entropy_u32[CHACHA20_BLOCK_SIZE / sizeof(u32)];
2179	};
2180	unsigned int position;
2181};
2182static rwlock_t batched_entropy_reset_lock = __RW_LOCK_UNLOCKED(batched_entropy_reset_lock);
2183
2184/*
2185 * Get a random word for internal kernel use only. The quality of the random
2186 * number is either as good as RDRAND or as good as /dev/urandom, with the
2187 * goal of being quite fast and not depleting entropy. In order to ensure
2188 * that the randomness provided by this function is okay, the function
2189 * wait_for_random_bytes() should be called and return 0 at least once
2190 * at any point prior.
2191 */
2192static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64);
2193u64 get_random_u64(void)
2194{
2195	u64 ret;
2196	bool use_lock;
2197	unsigned long flags = 0;
2198	struct batched_entropy *batch;
2199	static void *previous;
2200
2201#if BITS_PER_LONG == 64
2202	if (arch_get_random_long((unsigned long *)&ret))
2203		return ret;
2204#else
2205	if (arch_get_random_long((unsigned long *)&ret) &&
2206	    arch_get_random_long((unsigned long *)&ret + 1))
2207	    return ret;
2208#endif
2209
2210	warn_unseeded_randomness(&previous);
2211
2212	use_lock = READ_ONCE(crng_init) < 2;
2213	batch = &get_cpu_var(batched_entropy_u64);
2214	if (use_lock)
2215		read_lock_irqsave(&batched_entropy_reset_lock, flags);
2216	if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2217		extract_crng((__u32 *)batch->entropy_u64);
2218		batch->position = 0;
2219	}
2220	ret = batch->entropy_u64[batch->position++];
2221	if (use_lock)
2222		read_unlock_irqrestore(&batched_entropy_reset_lock, flags);
2223	put_cpu_var(batched_entropy_u64);
2224	return ret;
2225}
2226EXPORT_SYMBOL(get_random_u64);
2227
2228static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32);
2229u32 get_random_u32(void)
2230{
2231	u32 ret;
2232	bool use_lock;
2233	unsigned long flags = 0;
2234	struct batched_entropy *batch;
2235	static void *previous;
2236
2237	if (arch_get_random_int(&ret))
2238		return ret;
2239
2240	warn_unseeded_randomness(&previous);
2241
2242	use_lock = READ_ONCE(crng_init) < 2;
2243	batch = &get_cpu_var(batched_entropy_u32);
2244	if (use_lock)
2245		read_lock_irqsave(&batched_entropy_reset_lock, flags);
2246	if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2247		extract_crng(batch->entropy_u32);
2248		batch->position = 0;
2249	}
2250	ret = batch->entropy_u32[batch->position++];
2251	if (use_lock)
2252		read_unlock_irqrestore(&batched_entropy_reset_lock, flags);
2253	put_cpu_var(batched_entropy_u32);
2254	return ret;
2255}
2256EXPORT_SYMBOL(get_random_u32);
2257
2258/* It's important to invalidate all potential batched entropy that might
2259 * be stored before the crng is initialized, which we can do lazily by
2260 * simply resetting the counter to zero so that it's re-extracted on the
2261 * next usage. */
2262static void invalidate_batched_entropy(void)
2263{
2264	int cpu;
2265	unsigned long flags;
2266
2267	write_lock_irqsave(&batched_entropy_reset_lock, flags);
2268	for_each_possible_cpu (cpu) {
2269		per_cpu_ptr(&batched_entropy_u32, cpu)->position = 0;
2270		per_cpu_ptr(&batched_entropy_u64, cpu)->position = 0;
2271	}
2272	write_unlock_irqrestore(&batched_entropy_reset_lock, flags);
2273}
2274
2275/**
2276 * randomize_page - Generate a random, page aligned address
2277 * @start:	The smallest acceptable address the caller will take.
2278 * @range:	The size of the area, starting at @start, within which the
2279 *		random address must fall.
2280 *
2281 * If @start + @range would overflow, @range is capped.
2282 *
2283 * NOTE: Historical use of randomize_range, which this replaces, presumed that
2284 * @start was already page aligned.  We now align it regardless.
2285 *
2286 * Return: A page aligned address within [start, start + range).  On error,
2287 * @start is returned.
2288 */
2289unsigned long
2290randomize_page(unsigned long start, unsigned long range)
2291{
2292	if (!PAGE_ALIGNED(start)) {
2293		range -= PAGE_ALIGN(start) - start;
2294		start = PAGE_ALIGN(start);
2295	}
2296
2297	if (start > ULONG_MAX - range)
2298		range = ULONG_MAX - start;
2299
2300	range >>= PAGE_SHIFT;
2301
2302	if (range == 0)
2303		return start;
2304
2305	return start + (get_random_long() % range << PAGE_SHIFT);
2306}
2307
2308/* Interface for in-kernel drivers of true hardware RNGs.
2309 * Those devices may produce endless random bits and will be throttled
2310 * when our pool is full.
2311 */
2312void add_hwgenerator_randomness(const char *buffer, size_t count,
2313				size_t entropy)
2314{
2315	struct entropy_store *poolp = &input_pool;
2316
2317	if (unlikely(crng_init == 0)) {
2318		crng_fast_load(buffer, count);
2319		return;
2320	}
2321
2322	/* Suspend writing if we're above the trickle threshold.
2323	 * We'll be woken up again once below random_write_wakeup_thresh,
2324	 * or when the calling thread is about to terminate.
2325	 */
2326	wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2327			ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2328	mix_pool_bytes(poolp, buffer, count);
2329	credit_entropy_bits(poolp, entropy);
2330}
2331EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);