Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
   1// SPDX-License-Identifier: GPL-2.0
   2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   3
   4#include "mmu.h"
   5#include "mmu_internal.h"
   6#include "mmutrace.h"
   7#include "tdp_iter.h"
   8#include "tdp_mmu.h"
   9#include "spte.h"
  10
  11#include <asm/cmpxchg.h>
  12#include <trace/events/kvm.h>
  13
  14/* Initializes the TDP MMU for the VM, if enabled. */
  15void kvm_mmu_init_tdp_mmu(struct kvm *kvm)
  16{
  17	INIT_LIST_HEAD(&kvm->arch.tdp_mmu_roots);
  18	spin_lock_init(&kvm->arch.tdp_mmu_pages_lock);
  19}
  20
  21/* Arbitrarily returns true so that this may be used in if statements. */
  22static __always_inline bool kvm_lockdep_assert_mmu_lock_held(struct kvm *kvm,
  23							     bool shared)
  24{
  25	if (shared)
  26		lockdep_assert_held_read(&kvm->mmu_lock);
  27	else
  28		lockdep_assert_held_write(&kvm->mmu_lock);
  29
  30	return true;
  31}
  32
  33void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm)
  34{
  35	/*
  36	 * Invalidate all roots, which besides the obvious, schedules all roots
  37	 * for zapping and thus puts the TDP MMU's reference to each root, i.e.
  38	 * ultimately frees all roots.
  39	 */
  40	kvm_tdp_mmu_invalidate_all_roots(kvm);
  41	kvm_tdp_mmu_zap_invalidated_roots(kvm);
  42
  43	WARN_ON(atomic64_read(&kvm->arch.tdp_mmu_pages));
  44	WARN_ON(!list_empty(&kvm->arch.tdp_mmu_roots));
  45
  46	/*
  47	 * Ensure that all the outstanding RCU callbacks to free shadow pages
  48	 * can run before the VM is torn down.  Putting the last reference to
  49	 * zapped roots will create new callbacks.
  50	 */
  51	rcu_barrier();
  52}
  53
  54static void tdp_mmu_free_sp(struct kvm_mmu_page *sp)
  55{
  56	free_page((unsigned long)sp->spt);
  57	kmem_cache_free(mmu_page_header_cache, sp);
  58}
  59
  60/*
  61 * This is called through call_rcu in order to free TDP page table memory
  62 * safely with respect to other kernel threads that may be operating on
  63 * the memory.
  64 * By only accessing TDP MMU page table memory in an RCU read critical
  65 * section, and freeing it after a grace period, lockless access to that
  66 * memory won't use it after it is freed.
  67 */
  68static void tdp_mmu_free_sp_rcu_callback(struct rcu_head *head)
  69{
  70	struct kvm_mmu_page *sp = container_of(head, struct kvm_mmu_page,
  71					       rcu_head);
  72
  73	tdp_mmu_free_sp(sp);
  74}
  75
  76void kvm_tdp_mmu_put_root(struct kvm *kvm, struct kvm_mmu_page *root)
  77{
  78	if (!refcount_dec_and_test(&root->tdp_mmu_root_count))
  79		return;
  80
  81	/*
  82	 * The TDP MMU itself holds a reference to each root until the root is
  83	 * explicitly invalidated, i.e. the final reference should be never be
  84	 * put for a valid root.
  85	 */
  86	KVM_BUG_ON(!is_tdp_mmu_page(root) || !root->role.invalid, kvm);
  87
  88	spin_lock(&kvm->arch.tdp_mmu_pages_lock);
  89	list_del_rcu(&root->link);
  90	spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
  91	call_rcu(&root->rcu_head, tdp_mmu_free_sp_rcu_callback);
  92}
  93
  94/*
  95 * Returns the next root after @prev_root (or the first root if @prev_root is
  96 * NULL).  A reference to the returned root is acquired, and the reference to
  97 * @prev_root is released (the caller obviously must hold a reference to
  98 * @prev_root if it's non-NULL).
  99 *
 100 * If @only_valid is true, invalid roots are skipped.
 101 *
 102 * Returns NULL if the end of tdp_mmu_roots was reached.
 103 */
 104static struct kvm_mmu_page *tdp_mmu_next_root(struct kvm *kvm,
 105					      struct kvm_mmu_page *prev_root,
 106					      bool only_valid)
 107{
 108	struct kvm_mmu_page *next_root;
 109
 110	/*
 111	 * While the roots themselves are RCU-protected, fields such as
 112	 * role.invalid are protected by mmu_lock.
 113	 */
 114	lockdep_assert_held(&kvm->mmu_lock);
 115
 116	rcu_read_lock();
 117
 118	if (prev_root)
 119		next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots,
 120						  &prev_root->link,
 121						  typeof(*prev_root), link);
 122	else
 123		next_root = list_first_or_null_rcu(&kvm->arch.tdp_mmu_roots,
 124						   typeof(*next_root), link);
 125
 126	while (next_root) {
 127		if ((!only_valid || !next_root->role.invalid) &&
 128		    kvm_tdp_mmu_get_root(next_root))
 129			break;
 130
 131		next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots,
 132				&next_root->link, typeof(*next_root), link);
 133	}
 134
 135	rcu_read_unlock();
 136
 137	if (prev_root)
 138		kvm_tdp_mmu_put_root(kvm, prev_root);
 139
 140	return next_root;
 141}
 142
 143/*
 144 * Note: this iterator gets and puts references to the roots it iterates over.
 145 * This makes it safe to release the MMU lock and yield within the loop, but
 146 * if exiting the loop early, the caller must drop the reference to the most
 147 * recent root. (Unless keeping a live reference is desirable.)
 148 *
 149 * If shared is set, this function is operating under the MMU lock in read
 150 * mode.
 151 */
 152#define __for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _only_valid)	\
 153	for (_root = tdp_mmu_next_root(_kvm, NULL, _only_valid);		\
 154	     ({ lockdep_assert_held(&(_kvm)->mmu_lock); }), _root;		\
 155	     _root = tdp_mmu_next_root(_kvm, _root, _only_valid))		\
 156		if (_as_id >= 0 && kvm_mmu_page_as_id(_root) != _as_id) {	\
 157		} else
 158
 159#define for_each_valid_tdp_mmu_root_yield_safe(_kvm, _root, _as_id)	\
 160	__for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, true)
 161
 162#define for_each_tdp_mmu_root_yield_safe(_kvm, _root)			\
 163	for (_root = tdp_mmu_next_root(_kvm, NULL, false);		\
 164	     ({ lockdep_assert_held(&(_kvm)->mmu_lock); }), _root;	\
 165	     _root = tdp_mmu_next_root(_kvm, _root, false))
 166
 167/*
 168 * Iterate over all TDP MMU roots.  Requires that mmu_lock be held for write,
 169 * the implication being that any flow that holds mmu_lock for read is
 170 * inherently yield-friendly and should use the yield-safe variant above.
 171 * Holding mmu_lock for write obviates the need for RCU protection as the list
 172 * is guaranteed to be stable.
 173 */
 174#define __for_each_tdp_mmu_root(_kvm, _root, _as_id, _only_valid)		\
 175	list_for_each_entry(_root, &_kvm->arch.tdp_mmu_roots, link)		\
 176		if (kvm_lockdep_assert_mmu_lock_held(_kvm, false) &&		\
 177		    ((_as_id >= 0 && kvm_mmu_page_as_id(_root) != _as_id) ||	\
 178		     ((_only_valid) && (_root)->role.invalid))) {		\
 179		} else
 180
 181#define for_each_tdp_mmu_root(_kvm, _root, _as_id)			\
 182	__for_each_tdp_mmu_root(_kvm, _root, _as_id, false)
 183
 184#define for_each_valid_tdp_mmu_root(_kvm, _root, _as_id)		\
 185	__for_each_tdp_mmu_root(_kvm, _root, _as_id, true)
 186
 187static struct kvm_mmu_page *tdp_mmu_alloc_sp(struct kvm_vcpu *vcpu)
 188{
 189	struct kvm_mmu_page *sp;
 190
 191	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
 192	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
 193
 194	return sp;
 195}
 196
 197static void tdp_mmu_init_sp(struct kvm_mmu_page *sp, tdp_ptep_t sptep,
 198			    gfn_t gfn, union kvm_mmu_page_role role)
 199{
 200	INIT_LIST_HEAD(&sp->possible_nx_huge_page_link);
 201
 202	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
 203
 204	sp->role = role;
 205	sp->gfn = gfn;
 206	sp->ptep = sptep;
 207	sp->tdp_mmu_page = true;
 208
 209	trace_kvm_mmu_get_page(sp, true);
 210}
 211
 212static void tdp_mmu_init_child_sp(struct kvm_mmu_page *child_sp,
 213				  struct tdp_iter *iter)
 214{
 215	struct kvm_mmu_page *parent_sp;
 216	union kvm_mmu_page_role role;
 217
 218	parent_sp = sptep_to_sp(rcu_dereference(iter->sptep));
 219
 220	role = parent_sp->role;
 221	role.level--;
 222
 223	tdp_mmu_init_sp(child_sp, iter->sptep, iter->gfn, role);
 224}
 225
 226int kvm_tdp_mmu_alloc_root(struct kvm_vcpu *vcpu)
 227{
 228	struct kvm_mmu *mmu = vcpu->arch.mmu;
 229	union kvm_mmu_page_role role = mmu->root_role;
 230	int as_id = kvm_mmu_role_as_id(role);
 231	struct kvm *kvm = vcpu->kvm;
 232	struct kvm_mmu_page *root;
 233
 234	/*
 235	 * Check for an existing root before acquiring the pages lock to avoid
 236	 * unnecessary serialization if multiple vCPUs are loading a new root.
 237	 * E.g. when bringing up secondary vCPUs, KVM will already have created
 238	 * a valid root on behalf of the primary vCPU.
 239	 */
 240	read_lock(&kvm->mmu_lock);
 241
 242	for_each_valid_tdp_mmu_root_yield_safe(kvm, root, as_id) {
 243		if (root->role.word == role.word)
 244			goto out_read_unlock;
 245	}
 246
 247	spin_lock(&kvm->arch.tdp_mmu_pages_lock);
 248
 249	/*
 250	 * Recheck for an existing root after acquiring the pages lock, another
 251	 * vCPU may have raced ahead and created a new usable root.  Manually
 252	 * walk the list of roots as the standard macros assume that the pages
 253	 * lock is *not* held.  WARN if grabbing a reference to a usable root
 254	 * fails, as the last reference to a root can only be put *after* the
 255	 * root has been invalidated, which requires holding mmu_lock for write.
 256	 */
 257	list_for_each_entry(root, &kvm->arch.tdp_mmu_roots, link) {
 258		if (root->role.word == role.word &&
 259		    !WARN_ON_ONCE(!kvm_tdp_mmu_get_root(root)))
 260			goto out_spin_unlock;
 261	}
 262
 263	root = tdp_mmu_alloc_sp(vcpu);
 264	tdp_mmu_init_sp(root, NULL, 0, role);
 265
 266	/*
 267	 * TDP MMU roots are kept until they are explicitly invalidated, either
 268	 * by a memslot update or by the destruction of the VM.  Initialize the
 269	 * refcount to two; one reference for the vCPU, and one reference for
 270	 * the TDP MMU itself, which is held until the root is invalidated and
 271	 * is ultimately put by kvm_tdp_mmu_zap_invalidated_roots().
 272	 */
 273	refcount_set(&root->tdp_mmu_root_count, 2);
 274	list_add_rcu(&root->link, &kvm->arch.tdp_mmu_roots);
 275
 276out_spin_unlock:
 277	spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
 278out_read_unlock:
 279	read_unlock(&kvm->mmu_lock);
 280	/*
 281	 * Note, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS will prevent entering the guest
 282	 * and actually consuming the root if it's invalidated after dropping
 283	 * mmu_lock, and the root can't be freed as this vCPU holds a reference.
 284	 */
 285	mmu->root.hpa = __pa(root->spt);
 286	mmu->root.pgd = 0;
 287	return 0;
 288}
 289
 290static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
 291				u64 old_spte, u64 new_spte, int level,
 292				bool shared);
 293
 294static void tdp_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
 295{
 296	kvm_account_pgtable_pages((void *)sp->spt, +1);
 297	atomic64_inc(&kvm->arch.tdp_mmu_pages);
 298}
 299
 300static void tdp_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
 301{
 302	kvm_account_pgtable_pages((void *)sp->spt, -1);
 303	atomic64_dec(&kvm->arch.tdp_mmu_pages);
 304}
 305
 306/**
 307 * tdp_mmu_unlink_sp() - Remove a shadow page from the list of used pages
 308 *
 309 * @kvm: kvm instance
 310 * @sp: the page to be removed
 311 */
 312static void tdp_mmu_unlink_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
 313{
 314	tdp_unaccount_mmu_page(kvm, sp);
 315
 316	if (!sp->nx_huge_page_disallowed)
 317		return;
 318
 319	spin_lock(&kvm->arch.tdp_mmu_pages_lock);
 320	sp->nx_huge_page_disallowed = false;
 321	untrack_possible_nx_huge_page(kvm, sp);
 322	spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
 323}
 324
 325/**
 326 * handle_removed_pt() - handle a page table removed from the TDP structure
 327 *
 328 * @kvm: kvm instance
 329 * @pt: the page removed from the paging structure
 330 * @shared: This operation may not be running under the exclusive use
 331 *	    of the MMU lock and the operation must synchronize with other
 332 *	    threads that might be modifying SPTEs.
 333 *
 334 * Given a page table that has been removed from the TDP paging structure,
 335 * iterates through the page table to clear SPTEs and free child page tables.
 336 *
 337 * Note that pt is passed in as a tdp_ptep_t, but it does not need RCU
 338 * protection. Since this thread removed it from the paging structure,
 339 * this thread will be responsible for ensuring the page is freed. Hence the
 340 * early rcu_dereferences in the function.
 341 */
 342static void handle_removed_pt(struct kvm *kvm, tdp_ptep_t pt, bool shared)
 343{
 344	struct kvm_mmu_page *sp = sptep_to_sp(rcu_dereference(pt));
 345	int level = sp->role.level;
 346	gfn_t base_gfn = sp->gfn;
 347	int i;
 348
 349	trace_kvm_mmu_prepare_zap_page(sp);
 350
 351	tdp_mmu_unlink_sp(kvm, sp);
 352
 353	for (i = 0; i < SPTE_ENT_PER_PAGE; i++) {
 354		tdp_ptep_t sptep = pt + i;
 355		gfn_t gfn = base_gfn + i * KVM_PAGES_PER_HPAGE(level);
 356		u64 old_spte;
 357
 358		if (shared) {
 359			/*
 360			 * Set the SPTE to a nonpresent value that other
 361			 * threads will not overwrite. If the SPTE was
 362			 * already marked as frozen then another thread
 363			 * handling a page fault could overwrite it, so
 364			 * set the SPTE until it is set from some other
 365			 * value to the frozen SPTE value.
 366			 */
 367			for (;;) {
 368				old_spte = kvm_tdp_mmu_write_spte_atomic(sptep, FROZEN_SPTE);
 369				if (!is_frozen_spte(old_spte))
 370					break;
 371				cpu_relax();
 372			}
 373		} else {
 374			/*
 375			 * If the SPTE is not MMU-present, there is no backing
 376			 * page associated with the SPTE and so no side effects
 377			 * that need to be recorded, and exclusive ownership of
 378			 * mmu_lock ensures the SPTE can't be made present.
 379			 * Note, zapping MMIO SPTEs is also unnecessary as they
 380			 * are guarded by the memslots generation, not by being
 381			 * unreachable.
 382			 */
 383			old_spte = kvm_tdp_mmu_read_spte(sptep);
 384			if (!is_shadow_present_pte(old_spte))
 385				continue;
 386
 387			/*
 388			 * Use the common helper instead of a raw WRITE_ONCE as
 389			 * the SPTE needs to be updated atomically if it can be
 390			 * modified by a different vCPU outside of mmu_lock.
 391			 * Even though the parent SPTE is !PRESENT, the TLB
 392			 * hasn't yet been flushed, and both Intel and AMD
 393			 * document that A/D assists can use upper-level PxE
 394			 * entries that are cached in the TLB, i.e. the CPU can
 395			 * still access the page and mark it dirty.
 396			 *
 397			 * No retry is needed in the atomic update path as the
 398			 * sole concern is dropping a Dirty bit, i.e. no other
 399			 * task can zap/remove the SPTE as mmu_lock is held for
 400			 * write.  Marking the SPTE as a frozen SPTE is not
 401			 * strictly necessary for the same reason, but using
 402			 * the frozen SPTE value keeps the shared/exclusive
 403			 * paths consistent and allows the handle_changed_spte()
 404			 * call below to hardcode the new value to FROZEN_SPTE.
 405			 *
 406			 * Note, even though dropping a Dirty bit is the only
 407			 * scenario where a non-atomic update could result in a
 408			 * functional bug, simply checking the Dirty bit isn't
 409			 * sufficient as a fast page fault could read the upper
 410			 * level SPTE before it is zapped, and then make this
 411			 * target SPTE writable, resume the guest, and set the
 412			 * Dirty bit between reading the SPTE above and writing
 413			 * it here.
 414			 */
 415			old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte,
 416							  FROZEN_SPTE, level);
 417		}
 418		handle_changed_spte(kvm, kvm_mmu_page_as_id(sp), gfn,
 419				    old_spte, FROZEN_SPTE, level, shared);
 420	}
 421
 422	call_rcu(&sp->rcu_head, tdp_mmu_free_sp_rcu_callback);
 423}
 424
 425/**
 426 * handle_changed_spte - handle bookkeeping associated with an SPTE change
 427 * @kvm: kvm instance
 428 * @as_id: the address space of the paging structure the SPTE was a part of
 429 * @gfn: the base GFN that was mapped by the SPTE
 430 * @old_spte: The value of the SPTE before the change
 431 * @new_spte: The value of the SPTE after the change
 432 * @level: the level of the PT the SPTE is part of in the paging structure
 433 * @shared: This operation may not be running under the exclusive use of
 434 *	    the MMU lock and the operation must synchronize with other
 435 *	    threads that might be modifying SPTEs.
 436 *
 437 * Handle bookkeeping that might result from the modification of a SPTE.  Note,
 438 * dirty logging updates are handled in common code, not here (see make_spte()
 439 * and fast_pf_fix_direct_spte()).
 440 */
 441static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
 442				u64 old_spte, u64 new_spte, int level,
 443				bool shared)
 444{
 445	bool was_present = is_shadow_present_pte(old_spte);
 446	bool is_present = is_shadow_present_pte(new_spte);
 447	bool was_leaf = was_present && is_last_spte(old_spte, level);
 448	bool is_leaf = is_present && is_last_spte(new_spte, level);
 449	bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
 450
 451	WARN_ON_ONCE(level > PT64_ROOT_MAX_LEVEL);
 452	WARN_ON_ONCE(level < PG_LEVEL_4K);
 453	WARN_ON_ONCE(gfn & (KVM_PAGES_PER_HPAGE(level) - 1));
 454
 455	/*
 456	 * If this warning were to trigger it would indicate that there was a
 457	 * missing MMU notifier or a race with some notifier handler.
 458	 * A present, leaf SPTE should never be directly replaced with another
 459	 * present leaf SPTE pointing to a different PFN. A notifier handler
 460	 * should be zapping the SPTE before the main MM's page table is
 461	 * changed, or the SPTE should be zeroed, and the TLBs flushed by the
 462	 * thread before replacement.
 463	 */
 464	if (was_leaf && is_leaf && pfn_changed) {
 465		pr_err("Invalid SPTE change: cannot replace a present leaf\n"
 466		       "SPTE with another present leaf SPTE mapping a\n"
 467		       "different PFN!\n"
 468		       "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
 469		       as_id, gfn, old_spte, new_spte, level);
 470
 471		/*
 472		 * Crash the host to prevent error propagation and guest data
 473		 * corruption.
 474		 */
 475		BUG();
 476	}
 477
 478	if (old_spte == new_spte)
 479		return;
 480
 481	trace_kvm_tdp_mmu_spte_changed(as_id, gfn, level, old_spte, new_spte);
 482
 483	if (is_leaf)
 484		check_spte_writable_invariants(new_spte);
 485
 486	/*
 487	 * The only times a SPTE should be changed from a non-present to
 488	 * non-present state is when an MMIO entry is installed/modified/
 489	 * removed. In that case, there is nothing to do here.
 490	 */
 491	if (!was_present && !is_present) {
 492		/*
 493		 * If this change does not involve a MMIO SPTE or frozen SPTE,
 494		 * it is unexpected. Log the change, though it should not
 495		 * impact the guest since both the former and current SPTEs
 496		 * are nonpresent.
 497		 */
 498		if (WARN_ON_ONCE(!is_mmio_spte(kvm, old_spte) &&
 499				 !is_mmio_spte(kvm, new_spte) &&
 500				 !is_frozen_spte(new_spte)))
 501			pr_err("Unexpected SPTE change! Nonpresent SPTEs\n"
 502			       "should not be replaced with another,\n"
 503			       "different nonpresent SPTE, unless one or both\n"
 504			       "are MMIO SPTEs, or the new SPTE is\n"
 505			       "a temporary frozen SPTE.\n"
 506			       "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
 507			       as_id, gfn, old_spte, new_spte, level);
 508		return;
 509	}
 510
 511	if (is_leaf != was_leaf)
 512		kvm_update_page_stats(kvm, level, is_leaf ? 1 : -1);
 513
 514	/*
 515	 * Recursively handle child PTs if the change removed a subtree from
 516	 * the paging structure.  Note the WARN on the PFN changing without the
 517	 * SPTE being converted to a hugepage (leaf) or being zapped.  Shadow
 518	 * pages are kernel allocations and should never be migrated.
 519	 */
 520	if (was_present && !was_leaf &&
 521	    (is_leaf || !is_present || WARN_ON_ONCE(pfn_changed)))
 522		handle_removed_pt(kvm, spte_to_child_pt(old_spte, level), shared);
 523}
 524
 525static inline int __must_check __tdp_mmu_set_spte_atomic(struct tdp_iter *iter,
 526							 u64 new_spte)
 527{
 528	u64 *sptep = rcu_dereference(iter->sptep);
 529
 530	/*
 531	 * The caller is responsible for ensuring the old SPTE is not a FROZEN
 532	 * SPTE.  KVM should never attempt to zap or manipulate a FROZEN SPTE,
 533	 * and pre-checking before inserting a new SPTE is advantageous as it
 534	 * avoids unnecessary work.
 535	 */
 536	WARN_ON_ONCE(iter->yielded || is_frozen_spte(iter->old_spte));
 537
 538	/*
 539	 * Note, fast_pf_fix_direct_spte() can also modify TDP MMU SPTEs and
 540	 * does not hold the mmu_lock.  On failure, i.e. if a different logical
 541	 * CPU modified the SPTE, try_cmpxchg64() updates iter->old_spte with
 542	 * the current value, so the caller operates on fresh data, e.g. if it
 543	 * retries tdp_mmu_set_spte_atomic()
 544	 */
 545	if (!try_cmpxchg64(sptep, &iter->old_spte, new_spte))
 546		return -EBUSY;
 547
 548	return 0;
 549}
 550
 551/*
 552 * tdp_mmu_set_spte_atomic - Set a TDP MMU SPTE atomically
 553 * and handle the associated bookkeeping.  Do not mark the page dirty
 554 * in KVM's dirty bitmaps.
 555 *
 556 * If setting the SPTE fails because it has changed, iter->old_spte will be
 557 * refreshed to the current value of the spte.
 558 *
 559 * @kvm: kvm instance
 560 * @iter: a tdp_iter instance currently on the SPTE that should be set
 561 * @new_spte: The value the SPTE should be set to
 562 * Return:
 563 * * 0      - If the SPTE was set.
 564 * * -EBUSY - If the SPTE cannot be set. In this case this function will have
 565 *            no side-effects other than setting iter->old_spte to the last
 566 *            known value of the spte.
 567 */
 568static inline int __must_check tdp_mmu_set_spte_atomic(struct kvm *kvm,
 569						       struct tdp_iter *iter,
 570						       u64 new_spte)
 571{
 572	int ret;
 573
 574	lockdep_assert_held_read(&kvm->mmu_lock);
 575
 576	ret = __tdp_mmu_set_spte_atomic(iter, new_spte);
 577	if (ret)
 578		return ret;
 579
 580	handle_changed_spte(kvm, iter->as_id, iter->gfn, iter->old_spte,
 581			    new_spte, iter->level, true);
 582
 583	return 0;
 584}
 585
 586/*
 587 * tdp_mmu_set_spte - Set a TDP MMU SPTE and handle the associated bookkeeping
 588 * @kvm:	      KVM instance
 589 * @as_id:	      Address space ID, i.e. regular vs. SMM
 590 * @sptep:	      Pointer to the SPTE
 591 * @old_spte:	      The current value of the SPTE
 592 * @new_spte:	      The new value that will be set for the SPTE
 593 * @gfn:	      The base GFN that was (or will be) mapped by the SPTE
 594 * @level:	      The level _containing_ the SPTE (its parent PT's level)
 595 *
 596 * Returns the old SPTE value, which _may_ be different than @old_spte if the
 597 * SPTE had voldatile bits.
 598 */
 599static u64 tdp_mmu_set_spte(struct kvm *kvm, int as_id, tdp_ptep_t sptep,
 600			    u64 old_spte, u64 new_spte, gfn_t gfn, int level)
 601{
 602	lockdep_assert_held_write(&kvm->mmu_lock);
 603
 604	/*
 605	 * No thread should be using this function to set SPTEs to or from the
 606	 * temporary frozen SPTE value.
 607	 * If operating under the MMU lock in read mode, tdp_mmu_set_spte_atomic
 608	 * should be used. If operating under the MMU lock in write mode, the
 609	 * use of the frozen SPTE should not be necessary.
 610	 */
 611	WARN_ON_ONCE(is_frozen_spte(old_spte) || is_frozen_spte(new_spte));
 612
 613	old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte, new_spte, level);
 614
 615	handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level, false);
 616	return old_spte;
 617}
 618
 619static inline void tdp_mmu_iter_set_spte(struct kvm *kvm, struct tdp_iter *iter,
 620					 u64 new_spte)
 621{
 622	WARN_ON_ONCE(iter->yielded);
 623	iter->old_spte = tdp_mmu_set_spte(kvm, iter->as_id, iter->sptep,
 624					  iter->old_spte, new_spte,
 625					  iter->gfn, iter->level);
 626}
 627
 628#define tdp_root_for_each_pte(_iter, _root, _start, _end) \
 629	for_each_tdp_pte(_iter, _root, _start, _end)
 630
 631#define tdp_root_for_each_leaf_pte(_iter, _root, _start, _end)	\
 632	tdp_root_for_each_pte(_iter, _root, _start, _end)		\
 633		if (!is_shadow_present_pte(_iter.old_spte) ||		\
 634		    !is_last_spte(_iter.old_spte, _iter.level))		\
 635			continue;					\
 636		else
 637
 638#define tdp_mmu_for_each_pte(_iter, _mmu, _start, _end)		\
 639	for_each_tdp_pte(_iter, root_to_sp(_mmu->root.hpa), _start, _end)
 640
 641static inline bool __must_check tdp_mmu_iter_need_resched(struct kvm *kvm,
 642							  struct tdp_iter *iter)
 643{
 644	if (!need_resched() && !rwlock_needbreak(&kvm->mmu_lock))
 645		return false;
 646
 647	/* Ensure forward progress has been made before yielding. */
 648	return iter->next_last_level_gfn != iter->yielded_gfn;
 649}
 650
 651/*
 652 * Yield if the MMU lock is contended or this thread needs to return control
 653 * to the scheduler.
 654 *
 655 * If this function should yield and flush is set, it will perform a remote
 656 * TLB flush before yielding.
 657 *
 658 * If this function yields, iter->yielded is set and the caller must skip to
 659 * the next iteration, where tdp_iter_next() will reset the tdp_iter's walk
 660 * over the paging structures to allow the iterator to continue its traversal
 661 * from the paging structure root.
 662 *
 663 * Returns true if this function yielded.
 664 */
 665static inline bool __must_check tdp_mmu_iter_cond_resched(struct kvm *kvm,
 666							  struct tdp_iter *iter,
 667							  bool flush, bool shared)
 668{
 669	KVM_MMU_WARN_ON(iter->yielded);
 670
 671	if (!tdp_mmu_iter_need_resched(kvm, iter))
 672		return false;
 673
 674	if (flush)
 675		kvm_flush_remote_tlbs(kvm);
 676
 677	rcu_read_unlock();
 678
 679	if (shared)
 680		cond_resched_rwlock_read(&kvm->mmu_lock);
 681	else
 682		cond_resched_rwlock_write(&kvm->mmu_lock);
 683
 684	rcu_read_lock();
 685
 686	WARN_ON_ONCE(iter->gfn > iter->next_last_level_gfn);
 687
 688	iter->yielded = true;
 689	return true;
 690}
 691
 692static inline gfn_t tdp_mmu_max_gfn_exclusive(void)
 693{
 694	/*
 695	 * Bound TDP MMU walks at host.MAXPHYADDR.  KVM disallows memslots with
 696	 * a gpa range that would exceed the max gfn, and KVM does not create
 697	 * MMIO SPTEs for "impossible" gfns, instead sending such accesses down
 698	 * the slow emulation path every time.
 699	 */
 700	return kvm_mmu_max_gfn() + 1;
 701}
 702
 703static void __tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root,
 704			       bool shared, int zap_level)
 705{
 706	struct tdp_iter iter;
 707
 708	gfn_t end = tdp_mmu_max_gfn_exclusive();
 709	gfn_t start = 0;
 710
 711	for_each_tdp_pte_min_level(iter, root, zap_level, start, end) {
 712retry:
 713		if (tdp_mmu_iter_cond_resched(kvm, &iter, false, shared))
 714			continue;
 715
 716		if (!is_shadow_present_pte(iter.old_spte))
 717			continue;
 718
 719		if (iter.level > zap_level)
 720			continue;
 721
 722		if (!shared)
 723			tdp_mmu_iter_set_spte(kvm, &iter, SHADOW_NONPRESENT_VALUE);
 724		else if (tdp_mmu_set_spte_atomic(kvm, &iter, SHADOW_NONPRESENT_VALUE))
 725			goto retry;
 726	}
 727}
 728
 729static void tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root,
 730			     bool shared)
 731{
 732
 733	/*
 734	 * The root must have an elevated refcount so that it's reachable via
 735	 * mmu_notifier callbacks, which allows this path to yield and drop
 736	 * mmu_lock.  When handling an unmap/release mmu_notifier command, KVM
 737	 * must drop all references to relevant pages prior to completing the
 738	 * callback.  Dropping mmu_lock with an unreachable root would result
 739	 * in zapping SPTEs after a relevant mmu_notifier callback completes
 740	 * and lead to use-after-free as zapping a SPTE triggers "writeback" of
 741	 * dirty accessed bits to the SPTE's associated struct page.
 742	 */
 743	WARN_ON_ONCE(!refcount_read(&root->tdp_mmu_root_count));
 744
 745	kvm_lockdep_assert_mmu_lock_held(kvm, shared);
 746
 747	rcu_read_lock();
 748
 749	/*
 750	 * Zap roots in multiple passes of decreasing granularity, i.e. zap at
 751	 * 4KiB=>2MiB=>1GiB=>root, in order to better honor need_resched() (all
 752	 * preempt models) or mmu_lock contention (full or real-time models).
 753	 * Zapping at finer granularity marginally increases the total time of
 754	 * the zap, but in most cases the zap itself isn't latency sensitive.
 755	 *
 756	 * If KVM is configured to prove the MMU, skip the 4KiB and 2MiB zaps
 757	 * in order to mimic the page fault path, which can replace a 1GiB page
 758	 * table with an equivalent 1GiB hugepage, i.e. can get saddled with
 759	 * zapping a 1GiB region that's fully populated with 4KiB SPTEs.  This
 760	 * allows verifying that KVM can safely zap 1GiB regions, e.g. without
 761	 * inducing RCU stalls, without relying on a relatively rare event
 762	 * (zapping roots is orders of magnitude more common).  Note, because
 763	 * zapping a SP recurses on its children, stepping down to PG_LEVEL_4K
 764	 * in the iterator itself is unnecessary.
 765	 */
 766	if (!IS_ENABLED(CONFIG_KVM_PROVE_MMU)) {
 767		__tdp_mmu_zap_root(kvm, root, shared, PG_LEVEL_4K);
 768		__tdp_mmu_zap_root(kvm, root, shared, PG_LEVEL_2M);
 769	}
 770	__tdp_mmu_zap_root(kvm, root, shared, PG_LEVEL_1G);
 771	__tdp_mmu_zap_root(kvm, root, shared, root->role.level);
 772
 773	rcu_read_unlock();
 774}
 775
 776bool kvm_tdp_mmu_zap_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
 777{
 778	u64 old_spte;
 779
 780	/*
 781	 * This helper intentionally doesn't allow zapping a root shadow page,
 782	 * which doesn't have a parent page table and thus no associated entry.
 783	 */
 784	if (WARN_ON_ONCE(!sp->ptep))
 785		return false;
 786
 787	old_spte = kvm_tdp_mmu_read_spte(sp->ptep);
 788	if (WARN_ON_ONCE(!is_shadow_present_pte(old_spte)))
 789		return false;
 790
 791	tdp_mmu_set_spte(kvm, kvm_mmu_page_as_id(sp), sp->ptep, old_spte,
 792			 SHADOW_NONPRESENT_VALUE, sp->gfn, sp->role.level + 1);
 793
 794	return true;
 795}
 796
 797/*
 798 * If can_yield is true, will release the MMU lock and reschedule if the
 799 * scheduler needs the CPU or there is contention on the MMU lock. If this
 800 * function cannot yield, it will not release the MMU lock or reschedule and
 801 * the caller must ensure it does not supply too large a GFN range, or the
 802 * operation can cause a soft lockup.
 803 */
 804static bool tdp_mmu_zap_leafs(struct kvm *kvm, struct kvm_mmu_page *root,
 805			      gfn_t start, gfn_t end, bool can_yield, bool flush)
 806{
 807	struct tdp_iter iter;
 808
 809	end = min(end, tdp_mmu_max_gfn_exclusive());
 810
 811	lockdep_assert_held_write(&kvm->mmu_lock);
 812
 813	rcu_read_lock();
 814
 815	for_each_tdp_pte_min_level(iter, root, PG_LEVEL_4K, start, end) {
 816		if (can_yield &&
 817		    tdp_mmu_iter_cond_resched(kvm, &iter, flush, false)) {
 818			flush = false;
 819			continue;
 820		}
 821
 822		if (!is_shadow_present_pte(iter.old_spte) ||
 823		    !is_last_spte(iter.old_spte, iter.level))
 824			continue;
 825
 826		tdp_mmu_iter_set_spte(kvm, &iter, SHADOW_NONPRESENT_VALUE);
 827
 828		/*
 829		 * Zappings SPTEs in invalid roots doesn't require a TLB flush,
 830		 * see kvm_tdp_mmu_zap_invalidated_roots() for details.
 831		 */
 832		if (!root->role.invalid)
 833			flush = true;
 834	}
 835
 836	rcu_read_unlock();
 837
 838	/*
 839	 * Because this flow zaps _only_ leaf SPTEs, the caller doesn't need
 840	 * to provide RCU protection as no 'struct kvm_mmu_page' will be freed.
 841	 */
 842	return flush;
 843}
 844
 845/*
 846 * Zap leaf SPTEs for the range of gfns, [start, end), for all *VALID** roots.
 847 * Returns true if a TLB flush is needed before releasing the MMU lock, i.e. if
 848 * one or more SPTEs were zapped since the MMU lock was last acquired.
 849 */
 850bool kvm_tdp_mmu_zap_leafs(struct kvm *kvm, gfn_t start, gfn_t end, bool flush)
 851{
 852	struct kvm_mmu_page *root;
 853
 854	lockdep_assert_held_write(&kvm->mmu_lock);
 855	for_each_valid_tdp_mmu_root_yield_safe(kvm, root, -1)
 856		flush = tdp_mmu_zap_leafs(kvm, root, start, end, true, flush);
 857
 858	return flush;
 859}
 860
 861void kvm_tdp_mmu_zap_all(struct kvm *kvm)
 862{
 863	struct kvm_mmu_page *root;
 864
 865	/*
 866	 * Zap all roots, including invalid roots, as all SPTEs must be dropped
 867	 * before returning to the caller.  Zap directly even if the root is
 868	 * also being zapped by a worker.  Walking zapped top-level SPTEs isn't
 869	 * all that expensive and mmu_lock is already held, which means the
 870	 * worker has yielded, i.e. flushing the work instead of zapping here
 871	 * isn't guaranteed to be any faster.
 872	 *
 873	 * A TLB flush is unnecessary, KVM zaps everything if and only the VM
 874	 * is being destroyed or the userspace VMM has exited.  In both cases,
 875	 * KVM_RUN is unreachable, i.e. no vCPUs will ever service the request.
 876	 */
 877	lockdep_assert_held_write(&kvm->mmu_lock);
 878	for_each_tdp_mmu_root_yield_safe(kvm, root)
 879		tdp_mmu_zap_root(kvm, root, false);
 880}
 881
 882/*
 883 * Zap all invalidated roots to ensure all SPTEs are dropped before the "fast
 884 * zap" completes.
 885 */
 886void kvm_tdp_mmu_zap_invalidated_roots(struct kvm *kvm)
 887{
 888	struct kvm_mmu_page *root;
 889
 890	read_lock(&kvm->mmu_lock);
 891
 892	for_each_tdp_mmu_root_yield_safe(kvm, root) {
 893		if (!root->tdp_mmu_scheduled_root_to_zap)
 894			continue;
 895
 896		root->tdp_mmu_scheduled_root_to_zap = false;
 897		KVM_BUG_ON(!root->role.invalid, kvm);
 898
 899		/*
 900		 * A TLB flush is not necessary as KVM performs a local TLB
 901		 * flush when allocating a new root (see kvm_mmu_load()), and
 902		 * when migrating a vCPU to a different pCPU.  Note, the local
 903		 * TLB flush on reuse also invalidates paging-structure-cache
 904		 * entries, i.e. TLB entries for intermediate paging structures,
 905		 * that may be zapped, as such entries are associated with the
 906		 * ASID on both VMX and SVM.
 907		 */
 908		tdp_mmu_zap_root(kvm, root, true);
 909
 910		/*
 911		 * The referenced needs to be put *after* zapping the root, as
 912		 * the root must be reachable by mmu_notifiers while it's being
 913		 * zapped
 914		 */
 915		kvm_tdp_mmu_put_root(kvm, root);
 916	}
 917
 918	read_unlock(&kvm->mmu_lock);
 919}
 920
 921/*
 922 * Mark each TDP MMU root as invalid to prevent vCPUs from reusing a root that
 923 * is about to be zapped, e.g. in response to a memslots update.  The actual
 924 * zapping is done separately so that it happens with mmu_lock with read,
 925 * whereas invalidating roots must be done with mmu_lock held for write (unless
 926 * the VM is being destroyed).
 927 *
 928 * Note, kvm_tdp_mmu_zap_invalidated_roots() is gifted the TDP MMU's reference.
 929 * See kvm_tdp_mmu_alloc_root().
 930 */
 931void kvm_tdp_mmu_invalidate_all_roots(struct kvm *kvm)
 932{
 933	struct kvm_mmu_page *root;
 934
 935	/*
 936	 * mmu_lock must be held for write to ensure that a root doesn't become
 937	 * invalid while there are active readers (invalidating a root while
 938	 * there are active readers may or may not be problematic in practice,
 939	 * but it's uncharted territory and not supported).
 940	 *
 941	 * Waive the assertion if there are no users of @kvm, i.e. the VM is
 942	 * being destroyed after all references have been put, or if no vCPUs
 943	 * have been created (which means there are no roots), i.e. the VM is
 944	 * being destroyed in an error path of KVM_CREATE_VM.
 945	 */
 946	if (IS_ENABLED(CONFIG_PROVE_LOCKING) &&
 947	    refcount_read(&kvm->users_count) && kvm->created_vcpus)
 948		lockdep_assert_held_write(&kvm->mmu_lock);
 949
 950	/*
 951	 * As above, mmu_lock isn't held when destroying the VM!  There can't
 952	 * be other references to @kvm, i.e. nothing else can invalidate roots
 953	 * or get/put references to roots.
 954	 */
 955	list_for_each_entry(root, &kvm->arch.tdp_mmu_roots, link) {
 956		/*
 957		 * Note, invalid roots can outlive a memslot update!  Invalid
 958		 * roots must be *zapped* before the memslot update completes,
 959		 * but a different task can acquire a reference and keep the
 960		 * root alive after its been zapped.
 961		 */
 962		if (!root->role.invalid) {
 963			root->tdp_mmu_scheduled_root_to_zap = true;
 964			root->role.invalid = true;
 965		}
 966	}
 967}
 968
 969/*
 970 * Installs a last-level SPTE to handle a TDP page fault.
 971 * (NPT/EPT violation/misconfiguration)
 972 */
 973static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu,
 974					  struct kvm_page_fault *fault,
 975					  struct tdp_iter *iter)
 976{
 977	struct kvm_mmu_page *sp = sptep_to_sp(rcu_dereference(iter->sptep));
 978	u64 new_spte;
 979	int ret = RET_PF_FIXED;
 980	bool wrprot = false;
 981
 982	if (WARN_ON_ONCE(sp->role.level != fault->goal_level))
 983		return RET_PF_RETRY;
 984
 985	if (fault->prefetch && is_shadow_present_pte(iter->old_spte))
 986		return RET_PF_SPURIOUS;
 987
 988	if (is_shadow_present_pte(iter->old_spte) &&
 989	    is_access_allowed(fault, iter->old_spte) &&
 990	    is_last_spte(iter->old_spte, iter->level))
 991		return RET_PF_SPURIOUS;
 992
 993	if (unlikely(!fault->slot))
 994		new_spte = make_mmio_spte(vcpu, iter->gfn, ACC_ALL);
 995	else
 996		wrprot = make_spte(vcpu, sp, fault->slot, ACC_ALL, iter->gfn,
 997				   fault->pfn, iter->old_spte, fault->prefetch,
 998				   false, fault->map_writable, &new_spte);
 999
1000	if (new_spte == iter->old_spte)
1001		ret = RET_PF_SPURIOUS;
1002	else if (tdp_mmu_set_spte_atomic(vcpu->kvm, iter, new_spte))
1003		return RET_PF_RETRY;
1004	else if (is_shadow_present_pte(iter->old_spte) &&
1005		 (!is_last_spte(iter->old_spte, iter->level) ||
1006		  WARN_ON_ONCE(leaf_spte_change_needs_tlb_flush(iter->old_spte, new_spte))))
1007		kvm_flush_remote_tlbs_gfn(vcpu->kvm, iter->gfn, iter->level);
1008
1009	/*
1010	 * If the page fault was caused by a write but the page is write
1011	 * protected, emulation is needed. If the emulation was skipped,
1012	 * the vCPU would have the same fault again.
1013	 */
1014	if (wrprot && fault->write)
1015		ret = RET_PF_WRITE_PROTECTED;
1016
1017	/* If a MMIO SPTE is installed, the MMIO will need to be emulated. */
1018	if (unlikely(is_mmio_spte(vcpu->kvm, new_spte))) {
1019		vcpu->stat.pf_mmio_spte_created++;
1020		trace_mark_mmio_spte(rcu_dereference(iter->sptep), iter->gfn,
1021				     new_spte);
1022		ret = RET_PF_EMULATE;
1023	} else {
1024		trace_kvm_mmu_set_spte(iter->level, iter->gfn,
1025				       rcu_dereference(iter->sptep));
1026	}
1027
1028	return ret;
1029}
1030
1031/*
1032 * tdp_mmu_link_sp - Replace the given spte with an spte pointing to the
1033 * provided page table.
1034 *
1035 * @kvm: kvm instance
1036 * @iter: a tdp_iter instance currently on the SPTE that should be set
1037 * @sp: The new TDP page table to install.
1038 * @shared: This operation is running under the MMU lock in read mode.
1039 *
1040 * Returns: 0 if the new page table was installed. Non-0 if the page table
1041 *          could not be installed (e.g. the atomic compare-exchange failed).
1042 */
1043static int tdp_mmu_link_sp(struct kvm *kvm, struct tdp_iter *iter,
1044			   struct kvm_mmu_page *sp, bool shared)
1045{
1046	u64 spte = make_nonleaf_spte(sp->spt, !kvm_ad_enabled);
1047	int ret = 0;
1048
1049	if (shared) {
1050		ret = tdp_mmu_set_spte_atomic(kvm, iter, spte);
1051		if (ret)
1052			return ret;
1053	} else {
1054		tdp_mmu_iter_set_spte(kvm, iter, spte);
1055	}
1056
1057	tdp_account_mmu_page(kvm, sp);
1058
1059	return 0;
1060}
1061
1062static int tdp_mmu_split_huge_page(struct kvm *kvm, struct tdp_iter *iter,
1063				   struct kvm_mmu_page *sp, bool shared);
1064
1065/*
1066 * Handle a TDP page fault (NPT/EPT violation/misconfiguration) by installing
1067 * page tables and SPTEs to translate the faulting guest physical address.
1068 */
1069int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
1070{
1071	struct kvm_mmu *mmu = vcpu->arch.mmu;
1072	struct kvm *kvm = vcpu->kvm;
1073	struct tdp_iter iter;
1074	struct kvm_mmu_page *sp;
1075	int ret = RET_PF_RETRY;
1076
1077	kvm_mmu_hugepage_adjust(vcpu, fault);
1078
1079	trace_kvm_mmu_spte_requested(fault);
1080
1081	rcu_read_lock();
1082
1083	tdp_mmu_for_each_pte(iter, mmu, fault->gfn, fault->gfn + 1) {
1084		int r;
1085
1086		if (fault->nx_huge_page_workaround_enabled)
1087			disallowed_hugepage_adjust(fault, iter.old_spte, iter.level);
1088
1089		/*
1090		 * If SPTE has been frozen by another thread, just give up and
1091		 * retry, avoiding unnecessary page table allocation and free.
1092		 */
1093		if (is_frozen_spte(iter.old_spte))
1094			goto retry;
1095
1096		if (iter.level == fault->goal_level)
1097			goto map_target_level;
1098
1099		/* Step down into the lower level page table if it exists. */
1100		if (is_shadow_present_pte(iter.old_spte) &&
1101		    !is_large_pte(iter.old_spte))
1102			continue;
1103
1104		/*
1105		 * The SPTE is either non-present or points to a huge page that
1106		 * needs to be split.
1107		 */
1108		sp = tdp_mmu_alloc_sp(vcpu);
1109		tdp_mmu_init_child_sp(sp, &iter);
1110
1111		sp->nx_huge_page_disallowed = fault->huge_page_disallowed;
1112
1113		if (is_shadow_present_pte(iter.old_spte))
1114			r = tdp_mmu_split_huge_page(kvm, &iter, sp, true);
1115		else
1116			r = tdp_mmu_link_sp(kvm, &iter, sp, true);
1117
1118		/*
1119		 * Force the guest to retry if installing an upper level SPTE
1120		 * failed, e.g. because a different task modified the SPTE.
1121		 */
1122		if (r) {
1123			tdp_mmu_free_sp(sp);
1124			goto retry;
1125		}
1126
1127		if (fault->huge_page_disallowed &&
1128		    fault->req_level >= iter.level) {
1129			spin_lock(&kvm->arch.tdp_mmu_pages_lock);
1130			if (sp->nx_huge_page_disallowed)
1131				track_possible_nx_huge_page(kvm, sp);
1132			spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
1133		}
1134	}
1135
1136	/*
1137	 * The walk aborted before reaching the target level, e.g. because the
1138	 * iterator detected an upper level SPTE was frozen during traversal.
1139	 */
1140	WARN_ON_ONCE(iter.level == fault->goal_level);
1141	goto retry;
1142
1143map_target_level:
1144	ret = tdp_mmu_map_handle_target_level(vcpu, fault, &iter);
1145
1146retry:
1147	rcu_read_unlock();
1148	return ret;
1149}
1150
1151bool kvm_tdp_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range,
1152				 bool flush)
1153{
1154	struct kvm_mmu_page *root;
1155
1156	__for_each_tdp_mmu_root_yield_safe(kvm, root, range->slot->as_id, false)
1157		flush = tdp_mmu_zap_leafs(kvm, root, range->start, range->end,
1158					  range->may_block, flush);
1159
1160	return flush;
1161}
1162
1163/*
1164 * Mark the SPTEs range of GFNs [start, end) unaccessed and return non-zero
1165 * if any of the GFNs in the range have been accessed.
1166 *
1167 * No need to mark the corresponding PFN as accessed as this call is coming
1168 * from the clear_young() or clear_flush_young() notifier, which uses the
1169 * return value to determine if the page has been accessed.
1170 */
1171static void kvm_tdp_mmu_age_spte(struct tdp_iter *iter)
1172{
1173	u64 new_spte;
1174
1175	if (spte_ad_enabled(iter->old_spte)) {
1176		iter->old_spte = tdp_mmu_clear_spte_bits(iter->sptep,
1177							 iter->old_spte,
1178							 shadow_accessed_mask,
1179							 iter->level);
1180		new_spte = iter->old_spte & ~shadow_accessed_mask;
1181	} else {
1182		new_spte = mark_spte_for_access_track(iter->old_spte);
1183		iter->old_spte = kvm_tdp_mmu_write_spte(iter->sptep,
1184							iter->old_spte, new_spte,
1185							iter->level);
1186	}
1187
1188	trace_kvm_tdp_mmu_spte_changed(iter->as_id, iter->gfn, iter->level,
1189				       iter->old_spte, new_spte);
1190}
1191
1192static bool __kvm_tdp_mmu_age_gfn_range(struct kvm *kvm,
1193					struct kvm_gfn_range *range,
1194					bool test_only)
1195{
1196	struct kvm_mmu_page *root;
1197	struct tdp_iter iter;
1198	bool ret = false;
1199
1200	/*
1201	 * Don't support rescheduling, none of the MMU notifiers that funnel
1202	 * into this helper allow blocking; it'd be dead, wasteful code.  Note,
1203	 * this helper must NOT be used to unmap GFNs, as it processes only
1204	 * valid roots!
1205	 */
1206	for_each_valid_tdp_mmu_root(kvm, root, range->slot->as_id) {
1207		guard(rcu)();
1208
1209		tdp_root_for_each_leaf_pte(iter, root, range->start, range->end) {
1210			if (!is_accessed_spte(iter.old_spte))
1211				continue;
1212
1213			if (test_only)
1214				return true;
1215
1216			ret = true;
1217			kvm_tdp_mmu_age_spte(&iter);
1218		}
1219	}
1220
1221	return ret;
1222}
1223
1224bool kvm_tdp_mmu_age_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1225{
1226	return __kvm_tdp_mmu_age_gfn_range(kvm, range, false);
1227}
1228
1229bool kvm_tdp_mmu_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1230{
1231	return __kvm_tdp_mmu_age_gfn_range(kvm, range, true);
1232}
1233
1234/*
1235 * Remove write access from all SPTEs at or above min_level that map GFNs
1236 * [start, end). Returns true if an SPTE has been changed and the TLBs need to
1237 * be flushed.
1238 */
1239static bool wrprot_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
1240			     gfn_t start, gfn_t end, int min_level)
1241{
1242	struct tdp_iter iter;
1243	u64 new_spte;
1244	bool spte_set = false;
1245
1246	rcu_read_lock();
1247
1248	BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL);
1249
1250	for_each_tdp_pte_min_level(iter, root, min_level, start, end) {
1251retry:
1252		if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true))
1253			continue;
1254
1255		if (!is_shadow_present_pte(iter.old_spte) ||
1256		    !is_last_spte(iter.old_spte, iter.level) ||
1257		    !(iter.old_spte & PT_WRITABLE_MASK))
1258			continue;
1259
1260		new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
1261
1262		if (tdp_mmu_set_spte_atomic(kvm, &iter, new_spte))
1263			goto retry;
1264
1265		spte_set = true;
1266	}
1267
1268	rcu_read_unlock();
1269	return spte_set;
1270}
1271
1272/*
1273 * Remove write access from all the SPTEs mapping GFNs in the memslot. Will
1274 * only affect leaf SPTEs down to min_level.
1275 * Returns true if an SPTE has been changed and the TLBs need to be flushed.
1276 */
1277bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm,
1278			     const struct kvm_memory_slot *slot, int min_level)
1279{
1280	struct kvm_mmu_page *root;
1281	bool spte_set = false;
1282
1283	lockdep_assert_held_read(&kvm->mmu_lock);
1284
1285	for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id)
1286		spte_set |= wrprot_gfn_range(kvm, root, slot->base_gfn,
1287			     slot->base_gfn + slot->npages, min_level);
1288
1289	return spte_set;
1290}
1291
1292static struct kvm_mmu_page *tdp_mmu_alloc_sp_for_split(void)
1293{
1294	struct kvm_mmu_page *sp;
1295
1296	sp = kmem_cache_zalloc(mmu_page_header_cache, GFP_KERNEL_ACCOUNT);
1297	if (!sp)
1298		return NULL;
1299
1300	sp->spt = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
1301	if (!sp->spt) {
1302		kmem_cache_free(mmu_page_header_cache, sp);
1303		return NULL;
1304	}
1305
1306	return sp;
1307}
1308
1309/* Note, the caller is responsible for initializing @sp. */
1310static int tdp_mmu_split_huge_page(struct kvm *kvm, struct tdp_iter *iter,
1311				   struct kvm_mmu_page *sp, bool shared)
1312{
1313	const u64 huge_spte = iter->old_spte;
1314	const int level = iter->level;
1315	int ret, i;
1316
1317	/*
1318	 * No need for atomics when writing to sp->spt since the page table has
1319	 * not been linked in yet and thus is not reachable from any other CPU.
1320	 */
1321	for (i = 0; i < SPTE_ENT_PER_PAGE; i++)
1322		sp->spt[i] = make_small_spte(kvm, huge_spte, sp->role, i);
1323
1324	/*
1325	 * Replace the huge spte with a pointer to the populated lower level
1326	 * page table. Since we are making this change without a TLB flush vCPUs
1327	 * will see a mix of the split mappings and the original huge mapping,
1328	 * depending on what's currently in their TLB. This is fine from a
1329	 * correctness standpoint since the translation will be the same either
1330	 * way.
1331	 */
1332	ret = tdp_mmu_link_sp(kvm, iter, sp, shared);
1333	if (ret)
1334		goto out;
1335
1336	/*
1337	 * tdp_mmu_link_sp_atomic() will handle subtracting the huge page we
1338	 * are overwriting from the page stats. But we have to manually update
1339	 * the page stats with the new present child pages.
1340	 */
1341	kvm_update_page_stats(kvm, level - 1, SPTE_ENT_PER_PAGE);
1342
1343out:
1344	trace_kvm_mmu_split_huge_page(iter->gfn, huge_spte, level, ret);
1345	return ret;
1346}
1347
1348static int tdp_mmu_split_huge_pages_root(struct kvm *kvm,
1349					 struct kvm_mmu_page *root,
1350					 gfn_t start, gfn_t end,
1351					 int target_level, bool shared)
1352{
1353	struct kvm_mmu_page *sp = NULL;
1354	struct tdp_iter iter;
1355
1356	rcu_read_lock();
1357
1358	/*
1359	 * Traverse the page table splitting all huge pages above the target
1360	 * level into one lower level. For example, if we encounter a 1GB page
1361	 * we split it into 512 2MB pages.
1362	 *
1363	 * Since the TDP iterator uses a pre-order traversal, we are guaranteed
1364	 * to visit an SPTE before ever visiting its children, which means we
1365	 * will correctly recursively split huge pages that are more than one
1366	 * level above the target level (e.g. splitting a 1GB to 512 2MB pages,
1367	 * and then splitting each of those to 512 4KB pages).
1368	 */
1369	for_each_tdp_pte_min_level(iter, root, target_level + 1, start, end) {
1370retry:
1371		if (tdp_mmu_iter_cond_resched(kvm, &iter, false, shared))
1372			continue;
1373
1374		if (!is_shadow_present_pte(iter.old_spte) || !is_large_pte(iter.old_spte))
1375			continue;
1376
1377		if (!sp) {
1378			rcu_read_unlock();
1379
1380			if (shared)
1381				read_unlock(&kvm->mmu_lock);
1382			else
1383				write_unlock(&kvm->mmu_lock);
1384
1385			sp = tdp_mmu_alloc_sp_for_split();
1386
1387			if (shared)
1388				read_lock(&kvm->mmu_lock);
1389			else
1390				write_lock(&kvm->mmu_lock);
1391
1392			if (!sp) {
1393				trace_kvm_mmu_split_huge_page(iter.gfn,
1394							      iter.old_spte,
1395							      iter.level, -ENOMEM);
1396				return -ENOMEM;
1397			}
1398
1399			rcu_read_lock();
1400
1401			iter.yielded = true;
1402			continue;
1403		}
1404
1405		tdp_mmu_init_child_sp(sp, &iter);
1406
1407		if (tdp_mmu_split_huge_page(kvm, &iter, sp, shared))
1408			goto retry;
1409
1410		sp = NULL;
1411	}
1412
1413	rcu_read_unlock();
1414
1415	/*
1416	 * It's possible to exit the loop having never used the last sp if, for
1417	 * example, a vCPU doing HugePage NX splitting wins the race and
1418	 * installs its own sp in place of the last sp we tried to split.
1419	 */
1420	if (sp)
1421		tdp_mmu_free_sp(sp);
1422
1423	return 0;
1424}
1425
1426
1427/*
1428 * Try to split all huge pages mapped by the TDP MMU down to the target level.
1429 */
1430void kvm_tdp_mmu_try_split_huge_pages(struct kvm *kvm,
1431				      const struct kvm_memory_slot *slot,
1432				      gfn_t start, gfn_t end,
1433				      int target_level, bool shared)
1434{
1435	struct kvm_mmu_page *root;
1436	int r = 0;
1437
1438	kvm_lockdep_assert_mmu_lock_held(kvm, shared);
1439	for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id) {
1440		r = tdp_mmu_split_huge_pages_root(kvm, root, start, end, target_level, shared);
1441		if (r) {
1442			kvm_tdp_mmu_put_root(kvm, root);
1443			break;
1444		}
1445	}
1446}
1447
1448static bool tdp_mmu_need_write_protect(struct kvm_mmu_page *sp)
1449{
1450	/*
1451	 * All TDP MMU shadow pages share the same role as their root, aside
1452	 * from level, so it is valid to key off any shadow page to determine if
1453	 * write protection is needed for an entire tree.
1454	 */
1455	return kvm_mmu_page_ad_need_write_protect(sp) || !kvm_ad_enabled;
1456}
1457
1458static void clear_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
1459				  gfn_t start, gfn_t end)
1460{
1461	const u64 dbit = tdp_mmu_need_write_protect(root) ? PT_WRITABLE_MASK :
1462							    shadow_dirty_mask;
1463	struct tdp_iter iter;
1464
1465	rcu_read_lock();
1466
1467	tdp_root_for_each_pte(iter, root, start, end) {
1468retry:
1469		if (!is_shadow_present_pte(iter.old_spte) ||
1470		    !is_last_spte(iter.old_spte, iter.level))
1471			continue;
1472
1473		if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true))
1474			continue;
1475
1476		KVM_MMU_WARN_ON(dbit == shadow_dirty_mask &&
1477				spte_ad_need_write_protect(iter.old_spte));
1478
1479		if (!(iter.old_spte & dbit))
1480			continue;
1481
1482		if (tdp_mmu_set_spte_atomic(kvm, &iter, iter.old_spte & ~dbit))
1483			goto retry;
1484	}
1485
1486	rcu_read_unlock();
1487}
1488
1489/*
1490 * Clear the dirty status (D-bit or W-bit) of all the SPTEs mapping GFNs in the
1491 * memslot.
1492 */
1493void kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm,
1494				  const struct kvm_memory_slot *slot)
1495{
1496	struct kvm_mmu_page *root;
1497
1498	lockdep_assert_held_read(&kvm->mmu_lock);
1499	for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id)
1500		clear_dirty_gfn_range(kvm, root, slot->base_gfn,
1501				      slot->base_gfn + slot->npages);
1502}
1503
1504static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root,
1505				  gfn_t gfn, unsigned long mask, bool wrprot)
1506{
1507	const u64 dbit = (wrprot || tdp_mmu_need_write_protect(root)) ? PT_WRITABLE_MASK :
1508									shadow_dirty_mask;
1509	struct tdp_iter iter;
1510
1511	lockdep_assert_held_write(&kvm->mmu_lock);
1512
1513	rcu_read_lock();
1514
1515	tdp_root_for_each_leaf_pte(iter, root, gfn + __ffs(mask),
1516				    gfn + BITS_PER_LONG) {
1517		if (!mask)
1518			break;
1519
1520		KVM_MMU_WARN_ON(dbit == shadow_dirty_mask &&
1521				spte_ad_need_write_protect(iter.old_spte));
1522
1523		if (iter.level > PG_LEVEL_4K ||
1524		    !(mask & (1UL << (iter.gfn - gfn))))
1525			continue;
1526
1527		mask &= ~(1UL << (iter.gfn - gfn));
1528
1529		if (!(iter.old_spte & dbit))
1530			continue;
1531
1532		iter.old_spte = tdp_mmu_clear_spte_bits(iter.sptep,
1533							iter.old_spte, dbit,
1534							iter.level);
1535
1536		trace_kvm_tdp_mmu_spte_changed(iter.as_id, iter.gfn, iter.level,
1537					       iter.old_spte,
1538					       iter.old_spte & ~dbit);
1539	}
1540
1541	rcu_read_unlock();
1542}
1543
1544/*
1545 * Clear the dirty status (D-bit or W-bit) of all the 4k SPTEs mapping GFNs for
1546 * which a bit is set in mask, starting at gfn. The given memslot is expected to
1547 * contain all the GFNs represented by set bits in the mask.
1548 */
1549void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1550				       struct kvm_memory_slot *slot,
1551				       gfn_t gfn, unsigned long mask,
1552				       bool wrprot)
1553{
1554	struct kvm_mmu_page *root;
1555
1556	for_each_valid_tdp_mmu_root(kvm, root, slot->as_id)
1557		clear_dirty_pt_masked(kvm, root, gfn, mask, wrprot);
1558}
1559
1560static int tdp_mmu_make_huge_spte(struct kvm *kvm,
1561				  struct tdp_iter *parent,
1562				  u64 *huge_spte)
1563{
1564	struct kvm_mmu_page *root = spte_to_child_sp(parent->old_spte);
1565	gfn_t start = parent->gfn;
1566	gfn_t end = start + KVM_PAGES_PER_HPAGE(parent->level);
1567	struct tdp_iter iter;
1568
1569	tdp_root_for_each_leaf_pte(iter, root, start, end) {
1570		/*
1571		 * Use the parent iterator when checking for forward progress so
1572		 * that KVM doesn't get stuck continuously trying to yield (i.e.
1573		 * returning -EAGAIN here and then failing the forward progress
1574		 * check in the caller ad nauseam).
1575		 */
1576		if (tdp_mmu_iter_need_resched(kvm, parent))
1577			return -EAGAIN;
1578
1579		*huge_spte = make_huge_spte(kvm, iter.old_spte, parent->level);
1580		return 0;
1581	}
1582
1583	return -ENOENT;
1584}
1585
1586static void recover_huge_pages_range(struct kvm *kvm,
1587				     struct kvm_mmu_page *root,
1588				     const struct kvm_memory_slot *slot)
1589{
1590	gfn_t start = slot->base_gfn;
1591	gfn_t end = start + slot->npages;
1592	struct tdp_iter iter;
1593	int max_mapping_level;
1594	bool flush = false;
1595	u64 huge_spte;
1596	int r;
1597
1598	if (WARN_ON_ONCE(kvm_slot_dirty_track_enabled(slot)))
1599		return;
1600
1601	rcu_read_lock();
1602
1603	for_each_tdp_pte_min_level(iter, root, PG_LEVEL_2M, start, end) {
1604retry:
1605		if (tdp_mmu_iter_cond_resched(kvm, &iter, flush, true)) {
1606			flush = false;
1607			continue;
1608		}
1609
1610		if (iter.level > KVM_MAX_HUGEPAGE_LEVEL ||
1611		    !is_shadow_present_pte(iter.old_spte))
1612			continue;
1613
1614		/*
1615		 * Don't zap leaf SPTEs, if a leaf SPTE could be replaced with
1616		 * a large page size, then its parent would have been zapped
1617		 * instead of stepping down.
1618		 */
1619		if (is_last_spte(iter.old_spte, iter.level))
1620			continue;
1621
1622		/*
1623		 * If iter.gfn resides outside of the slot, i.e. the page for
1624		 * the current level overlaps but is not contained by the slot,
1625		 * then the SPTE can't be made huge.  More importantly, trying
1626		 * to query that info from slot->arch.lpage_info will cause an
1627		 * out-of-bounds access.
1628		 */
1629		if (iter.gfn < start || iter.gfn >= end)
1630			continue;
1631
1632		max_mapping_level = kvm_mmu_max_mapping_level(kvm, slot, iter.gfn);
1633		if (max_mapping_level < iter.level)
1634			continue;
1635
1636		r = tdp_mmu_make_huge_spte(kvm, &iter, &huge_spte);
1637		if (r == -EAGAIN)
1638			goto retry;
1639		else if (r)
1640			continue;
1641
1642		if (tdp_mmu_set_spte_atomic(kvm, &iter, huge_spte))
1643			goto retry;
1644
1645		flush = true;
1646	}
1647
1648	if (flush)
1649		kvm_flush_remote_tlbs_memslot(kvm, slot);
1650
1651	rcu_read_unlock();
1652}
1653
1654/*
1655 * Recover huge page mappings within the slot by replacing non-leaf SPTEs with
1656 * huge SPTEs where possible.
1657 */
1658void kvm_tdp_mmu_recover_huge_pages(struct kvm *kvm,
1659				    const struct kvm_memory_slot *slot)
1660{
1661	struct kvm_mmu_page *root;
1662
1663	lockdep_assert_held_read(&kvm->mmu_lock);
1664	for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id)
1665		recover_huge_pages_range(kvm, root, slot);
1666}
1667
1668/*
1669 * Removes write access on the last level SPTE mapping this GFN and unsets the
1670 * MMU-writable bit to ensure future writes continue to be intercepted.
1671 * Returns true if an SPTE was set and a TLB flush is needed.
1672 */
1673static bool write_protect_gfn(struct kvm *kvm, struct kvm_mmu_page *root,
1674			      gfn_t gfn, int min_level)
1675{
1676	struct tdp_iter iter;
1677	u64 new_spte;
1678	bool spte_set = false;
1679
1680	BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL);
1681
1682	rcu_read_lock();
1683
1684	for_each_tdp_pte_min_level(iter, root, min_level, gfn, gfn + 1) {
1685		if (!is_shadow_present_pte(iter.old_spte) ||
1686		    !is_last_spte(iter.old_spte, iter.level))
1687			continue;
1688
1689		new_spte = iter.old_spte &
1690			~(PT_WRITABLE_MASK | shadow_mmu_writable_mask);
1691
1692		if (new_spte == iter.old_spte)
1693			break;
1694
1695		tdp_mmu_iter_set_spte(kvm, &iter, new_spte);
1696		spte_set = true;
1697	}
1698
1699	rcu_read_unlock();
1700
1701	return spte_set;
1702}
1703
1704/*
1705 * Removes write access on the last level SPTE mapping this GFN and unsets the
1706 * MMU-writable bit to ensure future writes continue to be intercepted.
1707 * Returns true if an SPTE was set and a TLB flush is needed.
1708 */
1709bool kvm_tdp_mmu_write_protect_gfn(struct kvm *kvm,
1710				   struct kvm_memory_slot *slot, gfn_t gfn,
1711				   int min_level)
1712{
1713	struct kvm_mmu_page *root;
1714	bool spte_set = false;
1715
1716	lockdep_assert_held_write(&kvm->mmu_lock);
1717	for_each_valid_tdp_mmu_root(kvm, root, slot->as_id)
1718		spte_set |= write_protect_gfn(kvm, root, gfn, min_level);
1719
1720	return spte_set;
1721}
1722
1723/*
1724 * Return the level of the lowest level SPTE added to sptes.
1725 * That SPTE may be non-present.
1726 *
1727 * Must be called between kvm_tdp_mmu_walk_lockless_{begin,end}.
1728 */
1729int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes,
1730			 int *root_level)
1731{
1732	struct tdp_iter iter;
1733	struct kvm_mmu *mmu = vcpu->arch.mmu;
1734	gfn_t gfn = addr >> PAGE_SHIFT;
1735	int leaf = -1;
1736
1737	*root_level = vcpu->arch.mmu->root_role.level;
1738
1739	tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
1740		leaf = iter.level;
1741		sptes[leaf] = iter.old_spte;
1742	}
1743
1744	return leaf;
1745}
1746
1747/*
1748 * Returns the last level spte pointer of the shadow page walk for the given
1749 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
1750 * walk could be performed, returns NULL and *spte does not contain valid data.
1751 *
1752 * Contract:
1753 *  - Must be called between kvm_tdp_mmu_walk_lockless_{begin,end}.
1754 *  - The returned sptep must not be used after kvm_tdp_mmu_walk_lockless_end.
1755 *
1756 * WARNING: This function is only intended to be called during fast_page_fault.
1757 */
1758u64 *kvm_tdp_mmu_fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gfn_t gfn,
1759					u64 *spte)
1760{
1761	struct tdp_iter iter;
1762	struct kvm_mmu *mmu = vcpu->arch.mmu;
1763	tdp_ptep_t sptep = NULL;
1764
1765	tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
1766		*spte = iter.old_spte;
1767		sptep = iter.sptep;
1768	}
1769
1770	/*
1771	 * Perform the rcu_dereference to get the raw spte pointer value since
1772	 * we are passing it up to fast_page_fault, which is shared with the
1773	 * legacy MMU and thus does not retain the TDP MMU-specific __rcu
1774	 * annotation.
1775	 *
1776	 * This is safe since fast_page_fault obeys the contracts of this
1777	 * function as well as all TDP MMU contracts around modifying SPTEs
1778	 * outside of mmu_lock.
1779	 */
1780	return rcu_dereference(sptep);
1781}