Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Kernel-based Virtual Machine driver for Linux
  4 *
  5 * Macros and functions to access KVM PTEs (also known as SPTEs)
  6 *
  7 * Copyright (C) 2006 Qumranet, Inc.
  8 * Copyright 2020 Red Hat, Inc. and/or its affiliates.
  9 */
 10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 11
 12#include <linux/kvm_host.h>
 13#include "mmu.h"
 14#include "mmu_internal.h"
 15#include "x86.h"
 16#include "spte.h"
 17
 18#include <asm/e820/api.h>
 19#include <asm/memtype.h>
 20#include <asm/vmx.h>
 21
 22bool __read_mostly enable_mmio_caching = true;
 23static bool __ro_after_init allow_mmio_caching;
 24module_param_named(mmio_caching, enable_mmio_caching, bool, 0444);
 25EXPORT_SYMBOL_GPL(enable_mmio_caching);
 26
 27bool __read_mostly kvm_ad_enabled;
 28
 29u64 __read_mostly shadow_host_writable_mask;
 30u64 __read_mostly shadow_mmu_writable_mask;
 31u64 __read_mostly shadow_nx_mask;
 32u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
 33u64 __read_mostly shadow_user_mask;
 34u64 __read_mostly shadow_accessed_mask;
 35u64 __read_mostly shadow_dirty_mask;
 36u64 __read_mostly shadow_mmio_value;
 37u64 __read_mostly shadow_mmio_mask;
 38u64 __read_mostly shadow_mmio_access_mask;
 39u64 __read_mostly shadow_present_mask;
 40u64 __read_mostly shadow_memtype_mask;
 41u64 __read_mostly shadow_me_value;
 42u64 __read_mostly shadow_me_mask;
 43u64 __read_mostly shadow_acc_track_mask;
 44
 45u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
 46u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
 47
 48static u8 __init kvm_get_host_maxphyaddr(void)
 49{
 50	/*
 51	 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
 52	 * in CPU detection code, but the processor treats those reduced bits as
 53	 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
 54	 * the physical address bits reported by CPUID, i.e. the raw MAXPHYADDR,
 55	 * when reasoning about CPU behavior with respect to MAXPHYADDR.
 56	 */
 57	if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
 58		return cpuid_eax(0x80000008) & 0xff;
 59
 60	/*
 61	 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
 62	 * custom CPUID.  Proceed with whatever the kernel found since these features
 63	 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
 64	 */
 65	return boot_cpu_data.x86_phys_bits;
 66}
 67
 68void __init kvm_mmu_spte_module_init(void)
 69{
 70	/*
 71	 * Snapshot userspace's desire to allow MMIO caching.  Whether or not
 72	 * KVM can actually enable MMIO caching depends on vendor-specific
 73	 * hardware capabilities and other module params that can't be resolved
 74	 * until the vendor module is loaded, i.e. enable_mmio_caching can and
 75	 * will change when the vendor module is (re)loaded.
 76	 */
 77	allow_mmio_caching = enable_mmio_caching;
 78
 79	kvm_host.maxphyaddr = kvm_get_host_maxphyaddr();
 80}
 81
 82static u64 generation_mmio_spte_mask(u64 gen)
 83{
 84	u64 mask;
 85
 86	WARN_ON_ONCE(gen & ~MMIO_SPTE_GEN_MASK);
 87
 88	mask = (gen << MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_SPTE_GEN_LOW_MASK;
 89	mask |= (gen << MMIO_SPTE_GEN_HIGH_SHIFT) & MMIO_SPTE_GEN_HIGH_MASK;
 90	return mask;
 91}
 92
 93u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
 94{
 95	u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
 96	u64 spte = generation_mmio_spte_mask(gen);
 97	u64 gpa = gfn << PAGE_SHIFT;
 98
 99	WARN_ON_ONCE(!vcpu->kvm->arch.shadow_mmio_value);
100
101	access &= shadow_mmio_access_mask;
102	spte |= vcpu->kvm->arch.shadow_mmio_value | access;
103	spte |= gpa | shadow_nonpresent_or_rsvd_mask;
104	spte |= (gpa & shadow_nonpresent_or_rsvd_mask)
105		<< SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
106
107	return spte;
108}
109
110static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
111{
112	if (pfn_valid(pfn))
113		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
114			/*
115			 * Some reserved pages, such as those from NVDIMM
116			 * DAX devices, are not for MMIO, and can be mapped
117			 * with cached memory type for better performance.
118			 * However, the above check misconceives those pages
119			 * as MMIO, and results in KVM mapping them with UC
120			 * memory type, which would hurt the performance.
121			 * Therefore, we check the host memory type in addition
122			 * and only treat UC/UC-/WC pages as MMIO.
123			 */
124			(!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
125
126	return !e820__mapped_raw_any(pfn_to_hpa(pfn),
127				     pfn_to_hpa(pfn + 1) - 1,
128				     E820_TYPE_RAM);
129}
130
131/*
132 * Returns true if the SPTE has bits that may be set without holding mmu_lock.
133 * The caller is responsible for checking if the SPTE is shadow-present, and
134 * for determining whether or not the caller cares about non-leaf SPTEs.
135 */
136bool spte_has_volatile_bits(u64 spte)
137{
138	if (!is_writable_pte(spte) && is_mmu_writable_spte(spte))
139		return true;
140
141	if (is_access_track_spte(spte))
142		return true;
143
144	if (spte_ad_enabled(spte)) {
145		if (!(spte & shadow_accessed_mask) ||
146		    (is_writable_pte(spte) && !(spte & shadow_dirty_mask)))
147			return true;
148	}
149
150	return false;
151}
152
153bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
154	       const struct kvm_memory_slot *slot,
155	       unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn,
156	       u64 old_spte, bool prefetch, bool synchronizing,
157	       bool host_writable, u64 *new_spte)
158{
159	int level = sp->role.level;
160	u64 spte = SPTE_MMU_PRESENT_MASK;
161	bool wrprot = false;
162
163	/*
164	 * For the EPT case, shadow_present_mask has no RWX bits set if
165	 * exec-only page table entries are supported.  In that case,
166	 * ACC_USER_MASK and shadow_user_mask are used to represent
167	 * read access.  See FNAME(gpte_access) in paging_tmpl.h.
168	 */
169	WARN_ON_ONCE((pte_access | shadow_present_mask) == SHADOW_NONPRESENT_VALUE);
170
171	if (sp->role.ad_disabled)
172		spte |= SPTE_TDP_AD_DISABLED;
173	else if (kvm_mmu_page_ad_need_write_protect(sp))
174		spte |= SPTE_TDP_AD_WRPROT_ONLY;
175
176	spte |= shadow_present_mask;
177	if (!prefetch || synchronizing)
178		spte |= shadow_accessed_mask;
179
180	/*
181	 * For simplicity, enforce the NX huge page mitigation even if not
182	 * strictly necessary.  KVM could ignore the mitigation if paging is
183	 * disabled in the guest, as the guest doesn't have any page tables to
184	 * abuse.  But to safely ignore the mitigation, KVM would have to
185	 * ensure a new MMU is loaded (or all shadow pages zapped) when CR0.PG
186	 * is toggled on, and that's a net negative for performance when TDP is
187	 * enabled.  When TDP is disabled, KVM will always switch to a new MMU
188	 * when CR0.PG is toggled, but leveraging that to ignore the mitigation
189	 * would tie make_spte() further to vCPU/MMU state, and add complexity
190	 * just to optimize a mode that is anything but performance critical.
191	 */
192	if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) &&
193	    is_nx_huge_page_enabled(vcpu->kvm)) {
194		pte_access &= ~ACC_EXEC_MASK;
195	}
196
197	if (pte_access & ACC_EXEC_MASK)
198		spte |= shadow_x_mask;
199	else
200		spte |= shadow_nx_mask;
201
202	if (pte_access & ACC_USER_MASK)
203		spte |= shadow_user_mask;
204
205	if (level > PG_LEVEL_4K)
206		spte |= PT_PAGE_SIZE_MASK;
207
208	if (shadow_memtype_mask)
209		spte |= kvm_x86_call(get_mt_mask)(vcpu, gfn,
210						  kvm_is_mmio_pfn(pfn));
211	if (host_writable)
212		spte |= shadow_host_writable_mask;
213	else
214		pte_access &= ~ACC_WRITE_MASK;
215
216	if (shadow_me_value && !kvm_is_mmio_pfn(pfn))
217		spte |= shadow_me_value;
218
219	spte |= (u64)pfn << PAGE_SHIFT;
220
221	if (pte_access & ACC_WRITE_MASK) {
222		/*
223		 * Unsync shadow pages that are reachable by the new, writable
224		 * SPTE.  Write-protect the SPTE if the page can't be unsync'd,
225		 * e.g. it's write-tracked (upper-level SPs) or has one or more
226		 * shadow pages and unsync'ing pages is not allowed.
227		 *
228		 * When overwriting an existing leaf SPTE, and the old SPTE was
229		 * writable, skip trying to unsync shadow pages as any relevant
230		 * shadow pages must already be unsync, i.e. the hash lookup is
231		 * unnecessary (and expensive).  Note, this relies on KVM not
232		 * changing PFNs without first zapping the old SPTE, which is
233		 * guaranteed by both the shadow MMU and the TDP MMU.
234		 */
235		if ((!is_last_spte(old_spte, level) || !is_writable_pte(old_spte)) &&
236		    mmu_try_to_unsync_pages(vcpu->kvm, slot, gfn, synchronizing, prefetch))
237			wrprot = true;
238		else
239			spte |= PT_WRITABLE_MASK | shadow_mmu_writable_mask |
240				shadow_dirty_mask;
241	}
242
243	if (prefetch && !synchronizing)
244		spte = mark_spte_for_access_track(spte);
245
246	WARN_ONCE(is_rsvd_spte(&vcpu->arch.mmu->shadow_zero_check, spte, level),
247		  "spte = 0x%llx, level = %d, rsvd bits = 0x%llx", spte, level,
248		  get_rsvd_bits(&vcpu->arch.mmu->shadow_zero_check, spte, level));
249
250	/*
251	 * Mark the memslot dirty *after* modifying it for access tracking.
252	 * Unlike folios, memslots can be safely marked dirty out of mmu_lock,
253	 * i.e. in the fast page fault handler.
254	 */
255	if ((spte & PT_WRITABLE_MASK) && kvm_slot_dirty_track_enabled(slot)) {
256		/* Enforced by kvm_mmu_hugepage_adjust. */
257		WARN_ON_ONCE(level > PG_LEVEL_4K);
258		mark_page_dirty_in_slot(vcpu->kvm, slot, gfn);
259	}
260
261	*new_spte = spte;
262	return wrprot;
263}
264
265static u64 modify_spte_protections(u64 spte, u64 set, u64 clear)
266{
267	bool is_access_track = is_access_track_spte(spte);
268
269	if (is_access_track)
270		spte = restore_acc_track_spte(spte);
271
272	KVM_MMU_WARN_ON(set & clear);
273	spte = (spte | set) & ~clear;
274
275	if (is_access_track)
276		spte = mark_spte_for_access_track(spte);
277
278	return spte;
279}
280
281static u64 make_spte_executable(u64 spte)
282{
283	return modify_spte_protections(spte, shadow_x_mask, shadow_nx_mask);
284}
285
286static u64 make_spte_nonexecutable(u64 spte)
287{
288	return modify_spte_protections(spte, shadow_nx_mask, shadow_x_mask);
289}
290
291/*
292 * Construct an SPTE that maps a sub-page of the given huge page SPTE where
293 * `index` identifies which sub-page.
294 *
295 * This is used during huge page splitting to build the SPTEs that make up the
296 * new page table.
297 */
298u64 make_small_spte(struct kvm *kvm, u64 huge_spte,
299		    union kvm_mmu_page_role role, int index)
300{
301	u64 child_spte = huge_spte;
302
303	KVM_BUG_ON(!is_shadow_present_pte(huge_spte) || !is_large_pte(huge_spte), kvm);
304
305	/*
306	 * The child_spte already has the base address of the huge page being
307	 * split. So we just have to OR in the offset to the page at the next
308	 * lower level for the given index.
309	 */
310	child_spte |= (index * KVM_PAGES_PER_HPAGE(role.level)) << PAGE_SHIFT;
311
312	if (role.level == PG_LEVEL_4K) {
313		child_spte &= ~PT_PAGE_SIZE_MASK;
314
315		/*
316		 * When splitting to a 4K page where execution is allowed, mark
317		 * the page executable as the NX hugepage mitigation no longer
318		 * applies.
319		 */
320		if ((role.access & ACC_EXEC_MASK) && is_nx_huge_page_enabled(kvm))
321			child_spte = make_spte_executable(child_spte);
322	}
323
324	return child_spte;
325}
326
327u64 make_huge_spte(struct kvm *kvm, u64 small_spte, int level)
328{
329	u64 huge_spte;
330
331	KVM_BUG_ON(!is_shadow_present_pte(small_spte) || level == PG_LEVEL_4K, kvm);
332
333	huge_spte = small_spte | PT_PAGE_SIZE_MASK;
334
335	/*
336	 * huge_spte already has the address of the sub-page being collapsed
337	 * from small_spte, so just clear the lower address bits to create the
338	 * huge page address.
339	 */
340	huge_spte &= KVM_HPAGE_MASK(level) | ~PAGE_MASK;
341
342	if (is_nx_huge_page_enabled(kvm))
343		huge_spte = make_spte_nonexecutable(huge_spte);
344
345	return huge_spte;
346}
347
348u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled)
349{
350	u64 spte = SPTE_MMU_PRESENT_MASK;
351
352	spte |= __pa(child_pt) | shadow_present_mask | PT_WRITABLE_MASK |
353		shadow_user_mask | shadow_x_mask | shadow_me_value;
354
355	if (ad_disabled)
356		spte |= SPTE_TDP_AD_DISABLED;
357	else
358		spte |= shadow_accessed_mask;
359
360	return spte;
361}
362
363u64 mark_spte_for_access_track(u64 spte)
364{
365	if (spte_ad_enabled(spte))
366		return spte & ~shadow_accessed_mask;
367
368	if (is_access_track_spte(spte))
369		return spte;
370
371	check_spte_writable_invariants(spte);
372
373	WARN_ONCE(spte & (SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
374			  SHADOW_ACC_TRACK_SAVED_BITS_SHIFT),
375		  "Access Tracking saved bit locations are not zero\n");
376
377	spte |= (spte & SHADOW_ACC_TRACK_SAVED_BITS_MASK) <<
378		SHADOW_ACC_TRACK_SAVED_BITS_SHIFT;
379	spte &= ~(shadow_acc_track_mask | shadow_accessed_mask);
380
381	return spte;
382}
383
384void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask)
385{
386	BUG_ON((u64)(unsigned)access_mask != access_mask);
387	WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask);
388
389	/*
390	 * Reset to the original module param value to honor userspace's desire
391	 * to (dis)allow MMIO caching.  Update the param itself so that
392	 * userspace can see whether or not KVM is actually using MMIO caching.
393	 */
394	enable_mmio_caching = allow_mmio_caching;
395	if (!enable_mmio_caching)
396		mmio_value = 0;
397
398	/*
399	 * The mask must contain only bits that are carved out specifically for
400	 * the MMIO SPTE mask, e.g. to ensure there's no overlap with the MMIO
401	 * generation.
402	 */
403	if (WARN_ON(mmio_mask & ~SPTE_MMIO_ALLOWED_MASK))
404		mmio_value = 0;
405
406	/*
407	 * Disable MMIO caching if the MMIO value collides with the bits that
408	 * are used to hold the relocated GFN when the L1TF mitigation is
409	 * enabled.  This should never fire as there is no known hardware that
410	 * can trigger this condition, e.g. SME/SEV CPUs that require a custom
411	 * MMIO value are not susceptible to L1TF.
412	 */
413	if (WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask <<
414				  SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)))
415		mmio_value = 0;
416
417	/*
418	 * The masked MMIO value must obviously match itself and a frozen SPTE
419	 * must not get a false positive.  Frozen SPTEs and MMIO SPTEs should
420	 * never collide as MMIO must set some RWX bits, and frozen SPTEs must
421	 * not set any RWX bits.
422	 */
423	if (WARN_ON((mmio_value & mmio_mask) != mmio_value) ||
424	    WARN_ON(mmio_value && (FROZEN_SPTE & mmio_mask) == mmio_value))
425		mmio_value = 0;
426
427	if (!mmio_value)
428		enable_mmio_caching = false;
429
430	shadow_mmio_value = mmio_value;
431	shadow_mmio_mask  = mmio_mask;
432	shadow_mmio_access_mask = access_mask;
433}
434EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
435
436void kvm_mmu_set_me_spte_mask(u64 me_value, u64 me_mask)
437{
438	/* shadow_me_value must be a subset of shadow_me_mask */
439	if (WARN_ON(me_value & ~me_mask))
440		me_value = me_mask = 0;
441
442	shadow_me_value = me_value;
443	shadow_me_mask = me_mask;
444}
445EXPORT_SYMBOL_GPL(kvm_mmu_set_me_spte_mask);
446
447void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only)
448{
449	kvm_ad_enabled		= has_ad_bits;
450
451	shadow_user_mask	= VMX_EPT_READABLE_MASK;
452	shadow_accessed_mask	= VMX_EPT_ACCESS_BIT;
453	shadow_dirty_mask	= VMX_EPT_DIRTY_BIT;
454	shadow_nx_mask		= 0ull;
455	shadow_x_mask		= VMX_EPT_EXECUTABLE_MASK;
456	/* VMX_EPT_SUPPRESS_VE_BIT is needed for W or X violation. */
457	shadow_present_mask	=
458		(has_exec_only ? 0ull : VMX_EPT_READABLE_MASK) | VMX_EPT_SUPPRESS_VE_BIT;
459	/*
460	 * EPT overrides the host MTRRs, and so KVM must program the desired
461	 * memtype directly into the SPTEs.  Note, this mask is just the mask
462	 * of all bits that factor into the memtype, the actual memtype must be
463	 * dynamically calculated, e.g. to ensure host MMIO is mapped UC.
464	 */
465	shadow_memtype_mask	= VMX_EPT_MT_MASK | VMX_EPT_IPAT_BIT;
466	shadow_acc_track_mask	= VMX_EPT_RWX_MASK;
467	shadow_host_writable_mask = EPT_SPTE_HOST_WRITABLE;
468	shadow_mmu_writable_mask  = EPT_SPTE_MMU_WRITABLE;
469
470	/*
471	 * EPT Misconfigurations are generated if the value of bits 2:0
472	 * of an EPT paging-structure entry is 110b (write/execute).
473	 */
474	kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE,
475				   VMX_EPT_RWX_MASK | VMX_EPT_SUPPRESS_VE_BIT, 0);
476}
477EXPORT_SYMBOL_GPL(kvm_mmu_set_ept_masks);
478
479void kvm_mmu_reset_all_pte_masks(void)
480{
481	u8 low_phys_bits;
482	u64 mask;
483
484	kvm_ad_enabled = true;
485
486	/*
487	 * If the CPU has 46 or less physical address bits, then set an
488	 * appropriate mask to guard against L1TF attacks. Otherwise, it is
489	 * assumed that the CPU is not vulnerable to L1TF.
490	 *
491	 * Some Intel CPUs address the L1 cache using more PA bits than are
492	 * reported by CPUID. Use the PA width of the L1 cache when possible
493	 * to achieve more effective mitigation, e.g. if system RAM overlaps
494	 * the most significant bits of legal physical address space.
495	 */
496	shadow_nonpresent_or_rsvd_mask = 0;
497	low_phys_bits = boot_cpu_data.x86_phys_bits;
498	if (boot_cpu_has_bug(X86_BUG_L1TF) &&
499	    !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >=
500			  52 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)) {
501		low_phys_bits = boot_cpu_data.x86_cache_bits
502			- SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
503		shadow_nonpresent_or_rsvd_mask =
504			rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1);
505	}
506
507	shadow_nonpresent_or_rsvd_lower_gfn_mask =
508		GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
509
510	shadow_user_mask	= PT_USER_MASK;
511	shadow_accessed_mask	= PT_ACCESSED_MASK;
512	shadow_dirty_mask	= PT_DIRTY_MASK;
513	shadow_nx_mask		= PT64_NX_MASK;
514	shadow_x_mask		= 0;
515	shadow_present_mask	= PT_PRESENT_MASK;
516
517	/*
518	 * For shadow paging and NPT, KVM uses PAT entry '0' to encode WB
519	 * memtype in the SPTEs, i.e. relies on host MTRRs to provide the
520	 * correct memtype (WB is the "weakest" memtype).
521	 */
522	shadow_memtype_mask	= 0;
523	shadow_acc_track_mask	= 0;
524	shadow_me_mask		= 0;
525	shadow_me_value		= 0;
526
527	shadow_host_writable_mask = DEFAULT_SPTE_HOST_WRITABLE;
528	shadow_mmu_writable_mask  = DEFAULT_SPTE_MMU_WRITABLE;
529
530	/*
531	 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
532	 * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT
533	 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
534	 * 52-bit physical addresses then there are no reserved PA bits in the
535	 * PTEs and so the reserved PA approach must be disabled.
536	 */
537	if (kvm_host.maxphyaddr < 52)
538		mask = BIT_ULL(51) | PT_PRESENT_MASK;
539	else
540		mask = 0;
541
542	kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
543}