Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef __KVM_X86_MMU_INTERNAL_H
  3#define __KVM_X86_MMU_INTERNAL_H
  4
  5#include <linux/types.h>
  6#include <linux/kvm_host.h>
  7#include <asm/kvm_host.h>
  8
  9#ifdef CONFIG_KVM_PROVE_MMU
 10#define KVM_MMU_WARN_ON(x) WARN_ON_ONCE(x)
 11#else
 12#define KVM_MMU_WARN_ON(x) BUILD_BUG_ON_INVALID(x)
 13#endif
 14
 15/* Page table builder macros common to shadow (host) PTEs and guest PTEs. */
 16#define __PT_BASE_ADDR_MASK GENMASK_ULL(51, 12)
 17#define __PT_LEVEL_SHIFT(level, bits_per_level)	\
 18	(PAGE_SHIFT + ((level) - 1) * (bits_per_level))
 19#define __PT_INDEX(address, level, bits_per_level) \
 20	(((address) >> __PT_LEVEL_SHIFT(level, bits_per_level)) & ((1 << (bits_per_level)) - 1))
 21
 22#define __PT_LVL_ADDR_MASK(base_addr_mask, level, bits_per_level) \
 23	((base_addr_mask) & ~((1ULL << (PAGE_SHIFT + (((level) - 1) * (bits_per_level)))) - 1))
 24
 25#define __PT_LVL_OFFSET_MASK(base_addr_mask, level, bits_per_level) \
 26	((base_addr_mask) & ((1ULL << (PAGE_SHIFT + (((level) - 1) * (bits_per_level)))) - 1))
 27
 28#define __PT_ENT_PER_PAGE(bits_per_level)  (1 << (bits_per_level))
 29
 30/*
 31 * Unlike regular MMU roots, PAE "roots", a.k.a. PDPTEs/PDPTRs, have a PRESENT
 32 * bit, and thus are guaranteed to be non-zero when valid.  And, when a guest
 33 * PDPTR is !PRESENT, its corresponding PAE root cannot be set to INVALID_PAGE,
 34 * as the CPU would treat that as PRESENT PDPTR with reserved bits set.  Use
 35 * '0' instead of INVALID_PAGE to indicate an invalid PAE root.
 36 */
 37#define INVALID_PAE_ROOT	0
 38#define IS_VALID_PAE_ROOT(x)	(!!(x))
 39
 40static inline hpa_t kvm_mmu_get_dummy_root(void)
 41{
 42	return my_zero_pfn(0) << PAGE_SHIFT;
 43}
 44
 45static inline bool kvm_mmu_is_dummy_root(hpa_t shadow_page)
 46{
 47	return is_zero_pfn(shadow_page >> PAGE_SHIFT);
 48}
 49
 50typedef u64 __rcu *tdp_ptep_t;
 51
 52struct kvm_mmu_page {
 53	/*
 54	 * Note, "link" through "spt" fit in a single 64 byte cache line on
 55	 * 64-bit kernels, keep it that way unless there's a reason not to.
 56	 */
 57	struct list_head link;
 58	struct hlist_node hash_link;
 59
 60	bool tdp_mmu_page;
 61	bool unsync;
 62	union {
 63		u8 mmu_valid_gen;
 64
 65		/* Only accessed under slots_lock.  */
 66		bool tdp_mmu_scheduled_root_to_zap;
 67	};
 68
 69	 /*
 70	  * The shadow page can't be replaced by an equivalent huge page
 71	  * because it is being used to map an executable page in the guest
 72	  * and the NX huge page mitigation is enabled.
 73	  */
 74	bool nx_huge_page_disallowed;
 75
 76	/*
 77	 * The following two entries are used to key the shadow page in the
 78	 * hash table.
 79	 */
 80	union kvm_mmu_page_role role;
 81	gfn_t gfn;
 82
 83	u64 *spt;
 84
 85	/*
 86	 * Stores the result of the guest translation being shadowed by each
 87	 * SPTE.  KVM shadows two types of guest translations: nGPA -> GPA
 88	 * (shadow EPT/NPT) and GVA -> GPA (traditional shadow paging). In both
 89	 * cases the result of the translation is a GPA and a set of access
 90	 * constraints.
 91	 *
 92	 * The GFN is stored in the upper bits (PAGE_SHIFT) and the shadowed
 93	 * access permissions are stored in the lower bits. Note, for
 94	 * convenience and uniformity across guests, the access permissions are
 95	 * stored in KVM format (e.g.  ACC_EXEC_MASK) not the raw guest format.
 96	 */
 97	u64 *shadowed_translation;
 98
 99	/* Currently serving as active root */
100	union {
101		int root_count;
102		refcount_t tdp_mmu_root_count;
103	};
104	unsigned int unsync_children;
105	union {
106		struct kvm_rmap_head parent_ptes; /* rmap pointers to parent sptes */
107		tdp_ptep_t ptep;
108	};
109	DECLARE_BITMAP(unsync_child_bitmap, 512);
110
111	/*
112	 * Tracks shadow pages that, if zapped, would allow KVM to create an NX
113	 * huge page.  A shadow page will have nx_huge_page_disallowed set but
114	 * not be on the list if a huge page is disallowed for other reasons,
115	 * e.g. because KVM is shadowing a PTE at the same gfn, the memslot
116	 * isn't properly aligned, etc...
117	 */
118	struct list_head possible_nx_huge_page_link;
119#ifdef CONFIG_X86_32
120	/*
121	 * Used out of the mmu-lock to avoid reading spte values while an
122	 * update is in progress; see the comments in __get_spte_lockless().
123	 */
124	int clear_spte_count;
125#endif
126
127	/* Number of writes since the last time traversal visited this page.  */
128	atomic_t write_flooding_count;
129
130#ifdef CONFIG_X86_64
131	/* Used for freeing the page asynchronously if it is a TDP MMU page. */
132	struct rcu_head rcu_head;
133#endif
134};
135
136extern struct kmem_cache *mmu_page_header_cache;
137
138static inline int kvm_mmu_role_as_id(union kvm_mmu_page_role role)
139{
140	return role.smm ? 1 : 0;
141}
142
143static inline int kvm_mmu_page_as_id(struct kvm_mmu_page *sp)
144{
145	return kvm_mmu_role_as_id(sp->role);
146}
147
148static inline bool kvm_mmu_page_ad_need_write_protect(struct kvm_mmu_page *sp)
149{
150	/*
151	 * When using the EPT page-modification log, the GPAs in the CPU dirty
152	 * log would come from L2 rather than L1.  Therefore, we need to rely
153	 * on write protection to record dirty pages, which bypasses PML, since
154	 * writes now result in a vmexit.  Note, the check on CPU dirty logging
155	 * being enabled is mandatory as the bits used to denote WP-only SPTEs
156	 * are reserved for PAE paging (32-bit KVM).
157	 */
158	return kvm_x86_ops.cpu_dirty_log_size && sp->role.guest_mode;
159}
160
161static inline gfn_t gfn_round_for_level(gfn_t gfn, int level)
162{
163	return gfn & -KVM_PAGES_PER_HPAGE(level);
164}
165
166int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
167			    gfn_t gfn, bool synchronizing, bool prefetch);
168
169void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn);
170void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn);
171bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
172				    struct kvm_memory_slot *slot, u64 gfn,
173				    int min_level);
174
175/* Flush the given page (huge or not) of guest memory. */
176static inline void kvm_flush_remote_tlbs_gfn(struct kvm *kvm, gfn_t gfn, int level)
177{
178	kvm_flush_remote_tlbs_range(kvm, gfn_round_for_level(gfn, level),
179				    KVM_PAGES_PER_HPAGE(level));
180}
181
182unsigned int pte_list_count(struct kvm_rmap_head *rmap_head);
183
184extern int nx_huge_pages;
185static inline bool is_nx_huge_page_enabled(struct kvm *kvm)
186{
187	return READ_ONCE(nx_huge_pages) && !kvm->arch.disable_nx_huge_pages;
188}
189
190struct kvm_page_fault {
191	/* arguments to kvm_mmu_do_page_fault.  */
192	const gpa_t addr;
193	const u64 error_code;
194	const bool prefetch;
195
196	/* Derived from error_code.  */
197	const bool exec;
198	const bool write;
199	const bool present;
200	const bool rsvd;
201	const bool user;
202
203	/* Derived from mmu and global state.  */
204	const bool is_tdp;
205	const bool is_private;
206	const bool nx_huge_page_workaround_enabled;
207
208	/*
209	 * Whether a >4KB mapping can be created or is forbidden due to NX
210	 * hugepages.
211	 */
212	bool huge_page_disallowed;
213
214	/*
215	 * Maximum page size that can be created for this fault; input to
216	 * FNAME(fetch), direct_map() and kvm_tdp_mmu_map().
217	 */
218	u8 max_level;
219
220	/*
221	 * Page size that can be created based on the max_level and the
222	 * page size used by the host mapping.
223	 */
224	u8 req_level;
225
226	/*
227	 * Page size that will be created based on the req_level and
228	 * huge_page_disallowed.
229	 */
230	u8 goal_level;
231
232	/* Shifted addr, or result of guest page table walk if addr is a gva.  */
233	gfn_t gfn;
234
235	/* The memslot containing gfn. May be NULL. */
236	struct kvm_memory_slot *slot;
237
238	/* Outputs of kvm_mmu_faultin_pfn().  */
239	unsigned long mmu_seq;
240	kvm_pfn_t pfn;
241	struct page *refcounted_page;
242	bool map_writable;
243
244	/*
245	 * Indicates the guest is trying to write a gfn that contains one or
246	 * more of the PTEs used to translate the write itself, i.e. the access
247	 * is changing its own translation in the guest page tables.
248	 */
249	bool write_fault_to_shadow_pgtable;
250};
251
252int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
253
254/*
255 * Return values of handle_mmio_page_fault(), mmu.page_fault(), fast_page_fault(),
256 * and of course kvm_mmu_do_page_fault().
257 *
258 * RET_PF_CONTINUE: So far, so good, keep handling the page fault.
259 * RET_PF_RETRY: let CPU fault again on the address.
260 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
261 * RET_PF_WRITE_PROTECTED: the gfn is write-protected, either unprotected the
262 *                         gfn and retry, or emulate the instruction directly.
263 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
264 * RET_PF_FIXED: The faulting entry has been fixed.
265 * RET_PF_SPURIOUS: The faulting entry was already fixed, e.g. by another vCPU.
266 *
267 * Any names added to this enum should be exported to userspace for use in
268 * tracepoints via TRACE_DEFINE_ENUM() in mmutrace.h
269 *
270 * Note, all values must be greater than or equal to zero so as not to encroach
271 * on -errno return values.  Somewhat arbitrarily use '0' for CONTINUE, which
272 * will allow for efficient machine code when checking for CONTINUE, e.g.
273 * "TEST %rax, %rax, JNZ", as all "stop!" values are non-zero.
274 */
275enum {
276	RET_PF_CONTINUE = 0,
277	RET_PF_RETRY,
278	RET_PF_EMULATE,
279	RET_PF_WRITE_PROTECTED,
280	RET_PF_INVALID,
281	RET_PF_FIXED,
282	RET_PF_SPURIOUS,
283};
284
285static inline void kvm_mmu_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
286						     struct kvm_page_fault *fault)
287{
288	kvm_prepare_memory_fault_exit(vcpu, fault->gfn << PAGE_SHIFT,
289				      PAGE_SIZE, fault->write, fault->exec,
290				      fault->is_private);
291}
292
293static inline int kvm_mmu_do_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
294					u64 err, bool prefetch,
295					int *emulation_type, u8 *level)
296{
297	struct kvm_page_fault fault = {
298		.addr = cr2_or_gpa,
299		.error_code = err,
300		.exec = err & PFERR_FETCH_MASK,
301		.write = err & PFERR_WRITE_MASK,
302		.present = err & PFERR_PRESENT_MASK,
303		.rsvd = err & PFERR_RSVD_MASK,
304		.user = err & PFERR_USER_MASK,
305		.prefetch = prefetch,
306		.is_tdp = likely(vcpu->arch.mmu->page_fault == kvm_tdp_page_fault),
307		.nx_huge_page_workaround_enabled =
308			is_nx_huge_page_enabled(vcpu->kvm),
309
310		.max_level = KVM_MAX_HUGEPAGE_LEVEL,
311		.req_level = PG_LEVEL_4K,
312		.goal_level = PG_LEVEL_4K,
313		.is_private = err & PFERR_PRIVATE_ACCESS,
314
315		.pfn = KVM_PFN_ERR_FAULT,
316	};
317	int r;
318
319	if (vcpu->arch.mmu->root_role.direct) {
320		fault.gfn = fault.addr >> PAGE_SHIFT;
321		fault.slot = kvm_vcpu_gfn_to_memslot(vcpu, fault.gfn);
322	}
323
324	if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && fault.is_tdp)
325		r = kvm_tdp_page_fault(vcpu, &fault);
326	else
327		r = vcpu->arch.mmu->page_fault(vcpu, &fault);
328
329	/*
330	 * Not sure what's happening, but punt to userspace and hope that
331	 * they can fix it by changing memory to shared, or they can
332	 * provide a better error.
333	 */
334	if (r == RET_PF_EMULATE && fault.is_private) {
335		pr_warn_ratelimited("kvm: unexpected emulation request on private memory\n");
336		kvm_mmu_prepare_memory_fault_exit(vcpu, &fault);
337		return -EFAULT;
338	}
339
340	if (fault.write_fault_to_shadow_pgtable && emulation_type)
341		*emulation_type |= EMULTYPE_WRITE_PF_TO_SP;
342	if (level)
343		*level = fault.goal_level;
344
345	return r;
346}
347
348int kvm_mmu_max_mapping_level(struct kvm *kvm,
349			      const struct kvm_memory_slot *slot, gfn_t gfn);
350void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
351void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level);
352
353void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp);
354void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp);
355
356#endif /* __KVM_X86_MMU_INTERNAL_H */