Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 *
   5 * This module enables machines with Intel VT-x extensions to run virtual
   6 * machines without emulation or binary translation.
   7 *
   8 * MMU support
   9 *
  10 * Copyright (C) 2006 Qumranet, Inc.
  11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  12 *
  13 * Authors:
  14 *   Yaniv Kamay  <yaniv@qumranet.com>
  15 *   Avi Kivity   <avi@qumranet.com>
  16 */
  17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  18
  19#include "irq.h"
  20#include "ioapic.h"
  21#include "mmu.h"
  22#include "mmu_internal.h"
  23#include "tdp_mmu.h"
  24#include "x86.h"
  25#include "kvm_cache_regs.h"
  26#include "smm.h"
  27#include "kvm_emulate.h"
  28#include "page_track.h"
  29#include "cpuid.h"
  30#include "spte.h"
  31
  32#include <linux/kvm_host.h>
  33#include <linux/types.h>
  34#include <linux/string.h>
  35#include <linux/mm.h>
  36#include <linux/highmem.h>
  37#include <linux/moduleparam.h>
  38#include <linux/export.h>
  39#include <linux/swap.h>
  40#include <linux/hugetlb.h>
  41#include <linux/compiler.h>
  42#include <linux/srcu.h>
  43#include <linux/slab.h>
  44#include <linux/sched/signal.h>
  45#include <linux/uaccess.h>
  46#include <linux/hash.h>
  47#include <linux/kern_levels.h>
  48#include <linux/kstrtox.h>
  49#include <linux/kthread.h>
  50#include <linux/wordpart.h>
  51
  52#include <asm/page.h>
  53#include <asm/memtype.h>
  54#include <asm/cmpxchg.h>
  55#include <asm/io.h>
  56#include <asm/set_memory.h>
  57#include <asm/spec-ctrl.h>
  58#include <asm/vmx.h>
  59
  60#include "trace.h"
  61
  62static bool nx_hugepage_mitigation_hard_disabled;
  63
  64int __read_mostly nx_huge_pages = -1;
  65static uint __read_mostly nx_huge_pages_recovery_period_ms;
  66#ifdef CONFIG_PREEMPT_RT
  67/* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
  68static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
  69#else
  70static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
  71#endif
  72
  73static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp);
  74static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
  75static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp);
  76
  77static const struct kernel_param_ops nx_huge_pages_ops = {
  78	.set = set_nx_huge_pages,
  79	.get = get_nx_huge_pages,
  80};
  81
  82static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = {
  83	.set = set_nx_huge_pages_recovery_param,
  84	.get = param_get_uint,
  85};
  86
  87module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
  88__MODULE_PARM_TYPE(nx_huge_pages, "bool");
  89module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops,
  90		&nx_huge_pages_recovery_ratio, 0644);
  91__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
  92module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops,
  93		&nx_huge_pages_recovery_period_ms, 0644);
  94__MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint");
  95
  96static bool __read_mostly force_flush_and_sync_on_reuse;
  97module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
  98
  99/*
 100 * When setting this variable to true it enables Two-Dimensional-Paging
 101 * where the hardware walks 2 page tables:
 102 * 1. the guest-virtual to guest-physical
 103 * 2. while doing 1. it walks guest-physical to host-physical
 104 * If the hardware supports that we don't need to do shadow paging.
 105 */
 106bool tdp_enabled = false;
 107
 108static bool __ro_after_init tdp_mmu_allowed;
 109
 110#ifdef CONFIG_X86_64
 111bool __read_mostly tdp_mmu_enabled = true;
 112module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0444);
 113#endif
 114
 115static int max_huge_page_level __read_mostly;
 116static int tdp_root_level __read_mostly;
 117static int max_tdp_level __read_mostly;
 118
 119#define PTE_PREFETCH_NUM		8
 120
 121#include <trace/events/kvm.h>
 122
 123/* make pte_list_desc fit well in cache lines */
 124#define PTE_LIST_EXT 14
 125
 126/*
 127 * struct pte_list_desc is the core data structure used to implement a custom
 128 * list for tracking a set of related SPTEs, e.g. all the SPTEs that map a
 129 * given GFN when used in the context of rmaps.  Using a custom list allows KVM
 130 * to optimize for the common case where many GFNs will have at most a handful
 131 * of SPTEs pointing at them, i.e. allows packing multiple SPTEs into a small
 132 * memory footprint, which in turn improves runtime performance by exploiting
 133 * cache locality.
 134 *
 135 * A list is comprised of one or more pte_list_desc objects (descriptors).
 136 * Each individual descriptor stores up to PTE_LIST_EXT SPTEs.  If a descriptor
 137 * is full and a new SPTEs needs to be added, a new descriptor is allocated and
 138 * becomes the head of the list.  This means that by definitions, all tail
 139 * descriptors are full.
 140 *
 141 * Note, the meta data fields are deliberately placed at the start of the
 142 * structure to optimize the cacheline layout; accessing the descriptor will
 143 * touch only a single cacheline so long as @spte_count<=6 (or if only the
 144 * descriptors metadata is accessed).
 145 */
 146struct pte_list_desc {
 147	struct pte_list_desc *more;
 148	/* The number of PTEs stored in _this_ descriptor. */
 149	u32 spte_count;
 150	/* The number of PTEs stored in all tails of this descriptor. */
 151	u32 tail_count;
 152	u64 *sptes[PTE_LIST_EXT];
 153};
 154
 155struct kvm_shadow_walk_iterator {
 156	u64 addr;
 157	hpa_t shadow_addr;
 158	u64 *sptep;
 159	int level;
 160	unsigned index;
 161};
 162
 163#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
 164	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
 165					 (_root), (_addr));                \
 166	     shadow_walk_okay(&(_walker));			           \
 167	     shadow_walk_next(&(_walker)))
 168
 169#define for_each_shadow_entry(_vcpu, _addr, _walker)            \
 170	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
 171	     shadow_walk_okay(&(_walker));			\
 172	     shadow_walk_next(&(_walker)))
 173
 174#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
 175	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
 176	     shadow_walk_okay(&(_walker)) &&				\
 177		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
 178	     __shadow_walk_next(&(_walker), spte))
 179
 180static struct kmem_cache *pte_list_desc_cache;
 181struct kmem_cache *mmu_page_header_cache;
 182
 183static void mmu_spte_set(u64 *sptep, u64 spte);
 184
 185struct kvm_mmu_role_regs {
 186	const unsigned long cr0;
 187	const unsigned long cr4;
 188	const u64 efer;
 189};
 190
 191#define CREATE_TRACE_POINTS
 192#include "mmutrace.h"
 193
 194/*
 195 * Yes, lot's of underscores.  They're a hint that you probably shouldn't be
 196 * reading from the role_regs.  Once the root_role is constructed, it becomes
 197 * the single source of truth for the MMU's state.
 198 */
 199#define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag)			\
 200static inline bool __maybe_unused					\
 201____is_##reg##_##name(const struct kvm_mmu_role_regs *regs)		\
 202{									\
 203	return !!(regs->reg & flag);					\
 204}
 205BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
 206BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
 207BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
 208BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
 209BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
 210BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
 211BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
 212BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
 213BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
 214BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);
 215
 216/*
 217 * The MMU itself (with a valid role) is the single source of truth for the
 218 * MMU.  Do not use the regs used to build the MMU/role, nor the vCPU.  The
 219 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
 220 * and the vCPU may be incorrect/irrelevant.
 221 */
 222#define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name)		\
 223static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu)	\
 224{								\
 225	return !!(mmu->cpu_role. base_or_ext . reg##_##name);	\
 226}
 227BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
 228BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pse);
 229BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smep);
 230BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smap);
 231BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pke);
 232BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, la57);
 233BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);
 234BUILD_MMU_ROLE_ACCESSOR(ext,  efer, lma);
 235
 236static inline bool is_cr0_pg(struct kvm_mmu *mmu)
 237{
 238        return mmu->cpu_role.base.level > 0;
 239}
 240
 241static inline bool is_cr4_pae(struct kvm_mmu *mmu)
 242{
 243        return !mmu->cpu_role.base.has_4_byte_gpte;
 244}
 245
 246static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
 247{
 248	struct kvm_mmu_role_regs regs = {
 249		.cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
 250		.cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
 251		.efer = vcpu->arch.efer,
 252	};
 253
 254	return regs;
 255}
 256
 257static unsigned long get_guest_cr3(struct kvm_vcpu *vcpu)
 258{
 259	return kvm_read_cr3(vcpu);
 260}
 261
 262static inline unsigned long kvm_mmu_get_guest_pgd(struct kvm_vcpu *vcpu,
 263						  struct kvm_mmu *mmu)
 264{
 265	if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && mmu->get_guest_pgd == get_guest_cr3)
 266		return kvm_read_cr3(vcpu);
 267
 268	return mmu->get_guest_pgd(vcpu);
 269}
 270
 271static inline bool kvm_available_flush_remote_tlbs_range(void)
 272{
 273#if IS_ENABLED(CONFIG_HYPERV)
 274	return kvm_x86_ops.flush_remote_tlbs_range;
 275#else
 276	return false;
 277#endif
 278}
 279
 280static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index);
 281
 282/* Flush the range of guest memory mapped by the given SPTE. */
 283static void kvm_flush_remote_tlbs_sptep(struct kvm *kvm, u64 *sptep)
 284{
 285	struct kvm_mmu_page *sp = sptep_to_sp(sptep);
 286	gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(sptep));
 287
 288	kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level);
 289}
 290
 291static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
 292			   unsigned int access)
 293{
 294	u64 spte = make_mmio_spte(vcpu, gfn, access);
 295
 296	trace_mark_mmio_spte(sptep, gfn, spte);
 297	mmu_spte_set(sptep, spte);
 298}
 299
 300static gfn_t get_mmio_spte_gfn(u64 spte)
 301{
 302	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
 303
 304	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
 305	       & shadow_nonpresent_or_rsvd_mask;
 306
 307	return gpa >> PAGE_SHIFT;
 308}
 309
 310static unsigned get_mmio_spte_access(u64 spte)
 311{
 312	return spte & shadow_mmio_access_mask;
 313}
 314
 315static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
 316{
 317	u64 kvm_gen, spte_gen, gen;
 318
 319	gen = kvm_vcpu_memslots(vcpu)->generation;
 320	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
 321		return false;
 322
 323	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
 324	spte_gen = get_mmio_spte_generation(spte);
 325
 326	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
 327	return likely(kvm_gen == spte_gen);
 328}
 329
 330static int is_cpuid_PSE36(void)
 331{
 332	return 1;
 333}
 334
 335#ifdef CONFIG_X86_64
 336static void __set_spte(u64 *sptep, u64 spte)
 337{
 338	KVM_MMU_WARN_ON(is_ept_ve_possible(spte));
 339	WRITE_ONCE(*sptep, spte);
 340}
 341
 342static void __update_clear_spte_fast(u64 *sptep, u64 spte)
 343{
 344	KVM_MMU_WARN_ON(is_ept_ve_possible(spte));
 345	WRITE_ONCE(*sptep, spte);
 346}
 347
 348static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
 349{
 350	KVM_MMU_WARN_ON(is_ept_ve_possible(spte));
 351	return xchg(sptep, spte);
 352}
 353
 354static u64 __get_spte_lockless(u64 *sptep)
 355{
 356	return READ_ONCE(*sptep);
 357}
 358#else
 359union split_spte {
 360	struct {
 361		u32 spte_low;
 362		u32 spte_high;
 363	};
 364	u64 spte;
 365};
 366
 367static void count_spte_clear(u64 *sptep, u64 spte)
 368{
 369	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
 370
 371	if (is_shadow_present_pte(spte))
 372		return;
 373
 374	/* Ensure the spte is completely set before we increase the count */
 375	smp_wmb();
 376	sp->clear_spte_count++;
 377}
 378
 379static void __set_spte(u64 *sptep, u64 spte)
 380{
 381	union split_spte *ssptep, sspte;
 382
 383	ssptep = (union split_spte *)sptep;
 384	sspte = (union split_spte)spte;
 385
 386	ssptep->spte_high = sspte.spte_high;
 387
 388	/*
 389	 * If we map the spte from nonpresent to present, We should store
 390	 * the high bits firstly, then set present bit, so cpu can not
 391	 * fetch this spte while we are setting the spte.
 392	 */
 393	smp_wmb();
 394
 395	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
 396}
 397
 398static void __update_clear_spte_fast(u64 *sptep, u64 spte)
 399{
 400	union split_spte *ssptep, sspte;
 401
 402	ssptep = (union split_spte *)sptep;
 403	sspte = (union split_spte)spte;
 404
 405	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
 406
 407	/*
 408	 * If we map the spte from present to nonpresent, we should clear
 409	 * present bit firstly to avoid vcpu fetch the old high bits.
 410	 */
 411	smp_wmb();
 412
 413	ssptep->spte_high = sspte.spte_high;
 414	count_spte_clear(sptep, spte);
 415}
 416
 417static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
 418{
 419	union split_spte *ssptep, sspte, orig;
 420
 421	ssptep = (union split_spte *)sptep;
 422	sspte = (union split_spte)spte;
 423
 424	/* xchg acts as a barrier before the setting of the high bits */
 425	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
 426	orig.spte_high = ssptep->spte_high;
 427	ssptep->spte_high = sspte.spte_high;
 428	count_spte_clear(sptep, spte);
 429
 430	return orig.spte;
 431}
 432
 433/*
 434 * The idea using the light way get the spte on x86_32 guest is from
 435 * gup_get_pte (mm/gup.c).
 436 *
 437 * An spte tlb flush may be pending, because they are coalesced and
 438 * we are running out of the MMU lock.  Therefore
 439 * we need to protect against in-progress updates of the spte.
 440 *
 441 * Reading the spte while an update is in progress may get the old value
 442 * for the high part of the spte.  The race is fine for a present->non-present
 443 * change (because the high part of the spte is ignored for non-present spte),
 444 * but for a present->present change we must reread the spte.
 445 *
 446 * All such changes are done in two steps (present->non-present and
 447 * non-present->present), hence it is enough to count the number of
 448 * present->non-present updates: if it changed while reading the spte,
 449 * we might have hit the race.  This is done using clear_spte_count.
 450 */
 451static u64 __get_spte_lockless(u64 *sptep)
 452{
 453	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
 454	union split_spte spte, *orig = (union split_spte *)sptep;
 455	int count;
 456
 457retry:
 458	count = sp->clear_spte_count;
 459	smp_rmb();
 460
 461	spte.spte_low = orig->spte_low;
 462	smp_rmb();
 463
 464	spte.spte_high = orig->spte_high;
 465	smp_rmb();
 466
 467	if (unlikely(spte.spte_low != orig->spte_low ||
 468	      count != sp->clear_spte_count))
 469		goto retry;
 470
 471	return spte.spte;
 472}
 473#endif
 474
 475/* Rules for using mmu_spte_set:
 476 * Set the sptep from nonpresent to present.
 477 * Note: the sptep being assigned *must* be either not present
 478 * or in a state where the hardware will not attempt to update
 479 * the spte.
 480 */
 481static void mmu_spte_set(u64 *sptep, u64 new_spte)
 482{
 483	WARN_ON_ONCE(is_shadow_present_pte(*sptep));
 484	__set_spte(sptep, new_spte);
 485}
 486
 487/* Rules for using mmu_spte_update:
 488 * Update the state bits, it means the mapped pfn is not changed.
 489 *
 490 * Returns true if the TLB needs to be flushed
 491 */
 492static bool mmu_spte_update(u64 *sptep, u64 new_spte)
 493{
 494	u64 old_spte = *sptep;
 495
 496	WARN_ON_ONCE(!is_shadow_present_pte(new_spte));
 497	check_spte_writable_invariants(new_spte);
 498
 499	if (!is_shadow_present_pte(old_spte)) {
 500		mmu_spte_set(sptep, new_spte);
 501		return false;
 502	}
 503
 504	if (!spte_has_volatile_bits(old_spte))
 505		__update_clear_spte_fast(sptep, new_spte);
 506	else
 507		old_spte = __update_clear_spte_slow(sptep, new_spte);
 508
 509	WARN_ON_ONCE(!is_shadow_present_pte(old_spte) ||
 510		     spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
 511
 512	return leaf_spte_change_needs_tlb_flush(old_spte, new_spte);
 513}
 514
 515/*
 516 * Rules for using mmu_spte_clear_track_bits:
 517 * It sets the sptep from present to nonpresent, and track the
 518 * state bits, it is used to clear the last level sptep.
 519 * Returns the old PTE.
 520 */
 521static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
 522{
 523	u64 old_spte = *sptep;
 524	int level = sptep_to_sp(sptep)->role.level;
 525
 526	if (!is_shadow_present_pte(old_spte) ||
 527	    !spte_has_volatile_bits(old_spte))
 528		__update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE);
 529	else
 530		old_spte = __update_clear_spte_slow(sptep, SHADOW_NONPRESENT_VALUE);
 531
 532	if (!is_shadow_present_pte(old_spte))
 533		return old_spte;
 534
 535	kvm_update_page_stats(kvm, level, -1);
 536	return old_spte;
 537}
 538
 539/*
 540 * Rules for using mmu_spte_clear_no_track:
 541 * Directly clear spte without caring the state bits of sptep,
 542 * it is used to set the upper level spte.
 543 */
 544static void mmu_spte_clear_no_track(u64 *sptep)
 545{
 546	__update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE);
 547}
 548
 549static u64 mmu_spte_get_lockless(u64 *sptep)
 550{
 551	return __get_spte_lockless(sptep);
 552}
 553
 554static inline bool is_tdp_mmu_active(struct kvm_vcpu *vcpu)
 555{
 556	return tdp_mmu_enabled && vcpu->arch.mmu->root_role.direct;
 557}
 558
 559static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
 560{
 561	if (is_tdp_mmu_active(vcpu)) {
 562		kvm_tdp_mmu_walk_lockless_begin();
 563	} else {
 564		/*
 565		 * Prevent page table teardown by making any free-er wait during
 566		 * kvm_flush_remote_tlbs() IPI to all active vcpus.
 567		 */
 568		local_irq_disable();
 569
 570		/*
 571		 * Make sure a following spte read is not reordered ahead of the write
 572		 * to vcpu->mode.
 573		 */
 574		smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
 575	}
 576}
 577
 578static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
 579{
 580	if (is_tdp_mmu_active(vcpu)) {
 581		kvm_tdp_mmu_walk_lockless_end();
 582	} else {
 583		/*
 584		 * Make sure the write to vcpu->mode is not reordered in front of
 585		 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
 586		 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
 587		 */
 588		smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
 589		local_irq_enable();
 590	}
 591}
 592
 593static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
 594{
 595	int r;
 596
 597	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
 598	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
 599				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
 600	if (r)
 601		return r;
 602	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
 603				       PT64_ROOT_MAX_LEVEL);
 604	if (r)
 605		return r;
 606	if (maybe_indirect) {
 607		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache,
 608					       PT64_ROOT_MAX_LEVEL);
 609		if (r)
 610			return r;
 611	}
 612	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
 613					  PT64_ROOT_MAX_LEVEL);
 614}
 615
 616static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
 617{
 618	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
 619	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
 620	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache);
 621	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
 622}
 623
 624static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
 625{
 626	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
 627}
 628
 629static bool sp_has_gptes(struct kvm_mmu_page *sp);
 630
 631static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
 632{
 633	if (sp->role.passthrough)
 634		return sp->gfn;
 635
 636	if (sp->shadowed_translation)
 637		return sp->shadowed_translation[index] >> PAGE_SHIFT;
 638
 639	return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS));
 640}
 641
 642/*
 643 * For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note
 644 * that the SPTE itself may have a more constrained access permissions that
 645 * what the guest enforces. For example, a guest may create an executable
 646 * huge PTE but KVM may disallow execution to mitigate iTLB multihit.
 647 */
 648static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index)
 649{
 650	if (sp->shadowed_translation)
 651		return sp->shadowed_translation[index] & ACC_ALL;
 652
 653	/*
 654	 * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs,
 655	 * KVM is not shadowing any guest page tables, so the "guest access
 656	 * permissions" are just ACC_ALL.
 657	 *
 658	 * For direct SPs in indirect MMUs (shadow paging), i.e. when KVM
 659	 * is shadowing a guest huge page with small pages, the guest access
 660	 * permissions being shadowed are the access permissions of the huge
 661	 * page.
 662	 *
 663	 * In both cases, sp->role.access contains the correct access bits.
 664	 */
 665	return sp->role.access;
 666}
 667
 668static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index,
 669					 gfn_t gfn, unsigned int access)
 670{
 671	if (sp->shadowed_translation) {
 672		sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access;
 673		return;
 674	}
 675
 676	WARN_ONCE(access != kvm_mmu_page_get_access(sp, index),
 677	          "access mismatch under %s page %llx (expected %u, got %u)\n",
 678	          sp->role.passthrough ? "passthrough" : "direct",
 679	          sp->gfn, kvm_mmu_page_get_access(sp, index), access);
 680
 681	WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index),
 682	          "gfn mismatch under %s page %llx (expected %llx, got %llx)\n",
 683	          sp->role.passthrough ? "passthrough" : "direct",
 684	          sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn);
 685}
 686
 687static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index,
 688				    unsigned int access)
 689{
 690	gfn_t gfn = kvm_mmu_page_get_gfn(sp, index);
 691
 692	kvm_mmu_page_set_translation(sp, index, gfn, access);
 693}
 694
 695/*
 696 * Return the pointer to the large page information for a given gfn,
 697 * handling slots that are not large page aligned.
 698 */
 699static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
 700		const struct kvm_memory_slot *slot, int level)
 701{
 702	unsigned long idx;
 703
 704	idx = gfn_to_index(gfn, slot->base_gfn, level);
 705	return &slot->arch.lpage_info[level - 2][idx];
 706}
 707
 708/*
 709 * The most significant bit in disallow_lpage tracks whether or not memory
 710 * attributes are mixed, i.e. not identical for all gfns at the current level.
 711 * The lower order bits are used to refcount other cases where a hugepage is
 712 * disallowed, e.g. if KVM has shadow a page table at the gfn.
 713 */
 714#define KVM_LPAGE_MIXED_FLAG	BIT(31)
 715
 716static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
 717					    gfn_t gfn, int count)
 718{
 719	struct kvm_lpage_info *linfo;
 720	int old, i;
 721
 722	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
 723		linfo = lpage_info_slot(gfn, slot, i);
 724
 725		old = linfo->disallow_lpage;
 726		linfo->disallow_lpage += count;
 727		WARN_ON_ONCE((old ^ linfo->disallow_lpage) & KVM_LPAGE_MIXED_FLAG);
 728	}
 729}
 730
 731void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
 732{
 733	update_gfn_disallow_lpage_count(slot, gfn, 1);
 734}
 735
 736void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
 737{
 738	update_gfn_disallow_lpage_count(slot, gfn, -1);
 739}
 740
 741static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
 742{
 743	struct kvm_memslots *slots;
 744	struct kvm_memory_slot *slot;
 745	gfn_t gfn;
 746
 747	kvm->arch.indirect_shadow_pages++;
 748	/*
 749	 * Ensure indirect_shadow_pages is elevated prior to re-reading guest
 750	 * child PTEs in FNAME(gpte_changed), i.e. guarantee either in-flight
 751	 * emulated writes are visible before re-reading guest PTEs, or that
 752	 * an emulated write will see the elevated count and acquire mmu_lock
 753	 * to update SPTEs.  Pairs with the smp_mb() in kvm_mmu_track_write().
 754	 */
 755	smp_mb();
 756
 757	gfn = sp->gfn;
 758	slots = kvm_memslots_for_spte_role(kvm, sp->role);
 759	slot = __gfn_to_memslot(slots, gfn);
 760
 761	/* the non-leaf shadow pages are keeping readonly. */
 762	if (sp->role.level > PG_LEVEL_4K)
 763		return __kvm_write_track_add_gfn(kvm, slot, gfn);
 764
 765	kvm_mmu_gfn_disallow_lpage(slot, gfn);
 766
 767	if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K))
 768		kvm_flush_remote_tlbs_gfn(kvm, gfn, PG_LEVEL_4K);
 769}
 770
 771void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp)
 772{
 773	/*
 774	 * If it's possible to replace the shadow page with an NX huge page,
 775	 * i.e. if the shadow page is the only thing currently preventing KVM
 776	 * from using a huge page, add the shadow page to the list of "to be
 777	 * zapped for NX recovery" pages.  Note, the shadow page can already be
 778	 * on the list if KVM is reusing an existing shadow page, i.e. if KVM
 779	 * links a shadow page at multiple points.
 780	 */
 781	if (!list_empty(&sp->possible_nx_huge_page_link))
 782		return;
 783
 784	++kvm->stat.nx_lpage_splits;
 785	list_add_tail(&sp->possible_nx_huge_page_link,
 786		      &kvm->arch.possible_nx_huge_pages);
 787}
 788
 789static void account_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp,
 790				 bool nx_huge_page_possible)
 791{
 792	sp->nx_huge_page_disallowed = true;
 793
 794	if (nx_huge_page_possible)
 795		track_possible_nx_huge_page(kvm, sp);
 796}
 797
 798static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
 799{
 800	struct kvm_memslots *slots;
 801	struct kvm_memory_slot *slot;
 802	gfn_t gfn;
 803
 804	kvm->arch.indirect_shadow_pages--;
 805	gfn = sp->gfn;
 806	slots = kvm_memslots_for_spte_role(kvm, sp->role);
 807	slot = __gfn_to_memslot(slots, gfn);
 808	if (sp->role.level > PG_LEVEL_4K)
 809		return __kvm_write_track_remove_gfn(kvm, slot, gfn);
 810
 811	kvm_mmu_gfn_allow_lpage(slot, gfn);
 812}
 813
 814void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp)
 815{
 816	if (list_empty(&sp->possible_nx_huge_page_link))
 817		return;
 818
 819	--kvm->stat.nx_lpage_splits;
 820	list_del_init(&sp->possible_nx_huge_page_link);
 821}
 822
 823static void unaccount_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp)
 824{
 825	sp->nx_huge_page_disallowed = false;
 826
 827	untrack_possible_nx_huge_page(kvm, sp);
 828}
 829
 830static struct kvm_memory_slot *gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu,
 831							   gfn_t gfn,
 832							   bool no_dirty_log)
 833{
 834	struct kvm_memory_slot *slot;
 835
 836	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
 837	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
 838		return NULL;
 839	if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
 840		return NULL;
 841
 842	return slot;
 843}
 844
 845/*
 846 * About rmap_head encoding:
 847 *
 848 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 849 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
 850 * pte_list_desc containing more mappings.
 851 */
 852#define KVM_RMAP_MANY	BIT(0)
 853
 854/*
 855 * Returns the number of pointers in the rmap chain, not counting the new one.
 856 */
 857static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte,
 858			struct kvm_rmap_head *rmap_head)
 859{
 860	struct pte_list_desc *desc;
 861	int count = 0;
 862
 863	if (!rmap_head->val) {
 864		rmap_head->val = (unsigned long)spte;
 865	} else if (!(rmap_head->val & KVM_RMAP_MANY)) {
 866		desc = kvm_mmu_memory_cache_alloc(cache);
 867		desc->sptes[0] = (u64 *)rmap_head->val;
 868		desc->sptes[1] = spte;
 869		desc->spte_count = 2;
 870		desc->tail_count = 0;
 871		rmap_head->val = (unsigned long)desc | KVM_RMAP_MANY;
 872		++count;
 873	} else {
 874		desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY);
 875		count = desc->tail_count + desc->spte_count;
 876
 877		/*
 878		 * If the previous head is full, allocate a new head descriptor
 879		 * as tail descriptors are always kept full.
 880		 */
 881		if (desc->spte_count == PTE_LIST_EXT) {
 882			desc = kvm_mmu_memory_cache_alloc(cache);
 883			desc->more = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY);
 884			desc->spte_count = 0;
 885			desc->tail_count = count;
 886			rmap_head->val = (unsigned long)desc | KVM_RMAP_MANY;
 887		}
 888		desc->sptes[desc->spte_count++] = spte;
 889	}
 890	return count;
 891}
 892
 893static void pte_list_desc_remove_entry(struct kvm *kvm,
 894				       struct kvm_rmap_head *rmap_head,
 895				       struct pte_list_desc *desc, int i)
 896{
 897	struct pte_list_desc *head_desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY);
 898	int j = head_desc->spte_count - 1;
 899
 900	/*
 901	 * The head descriptor should never be empty.  A new head is added only
 902	 * when adding an entry and the previous head is full, and heads are
 903	 * removed (this flow) when they become empty.
 904	 */
 905	KVM_BUG_ON_DATA_CORRUPTION(j < 0, kvm);
 906
 907	/*
 908	 * Replace the to-be-freed SPTE with the last valid entry from the head
 909	 * descriptor to ensure that tail descriptors are full at all times.
 910	 * Note, this also means that tail_count is stable for each descriptor.
 911	 */
 912	desc->sptes[i] = head_desc->sptes[j];
 913	head_desc->sptes[j] = NULL;
 914	head_desc->spte_count--;
 915	if (head_desc->spte_count)
 916		return;
 917
 918	/*
 919	 * The head descriptor is empty.  If there are no tail descriptors,
 920	 * nullify the rmap head to mark the list as empty, else point the rmap
 921	 * head at the next descriptor, i.e. the new head.
 922	 */
 923	if (!head_desc->more)
 924		rmap_head->val = 0;
 925	else
 926		rmap_head->val = (unsigned long)head_desc->more | KVM_RMAP_MANY;
 927	mmu_free_pte_list_desc(head_desc);
 928}
 929
 930static void pte_list_remove(struct kvm *kvm, u64 *spte,
 931			    struct kvm_rmap_head *rmap_head)
 932{
 933	struct pte_list_desc *desc;
 934	int i;
 935
 936	if (KVM_BUG_ON_DATA_CORRUPTION(!rmap_head->val, kvm))
 937		return;
 938
 939	if (!(rmap_head->val & KVM_RMAP_MANY)) {
 940		if (KVM_BUG_ON_DATA_CORRUPTION((u64 *)rmap_head->val != spte, kvm))
 941			return;
 942
 943		rmap_head->val = 0;
 944	} else {
 945		desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY);
 946		while (desc) {
 947			for (i = 0; i < desc->spte_count; ++i) {
 948				if (desc->sptes[i] == spte) {
 949					pte_list_desc_remove_entry(kvm, rmap_head,
 950								   desc, i);
 951					return;
 952				}
 953			}
 954			desc = desc->more;
 955		}
 956
 957		KVM_BUG_ON_DATA_CORRUPTION(true, kvm);
 958	}
 959}
 960
 961static void kvm_zap_one_rmap_spte(struct kvm *kvm,
 962				  struct kvm_rmap_head *rmap_head, u64 *sptep)
 963{
 964	mmu_spte_clear_track_bits(kvm, sptep);
 965	pte_list_remove(kvm, sptep, rmap_head);
 966}
 967
 968/* Return true if at least one SPTE was zapped, false otherwise */
 969static bool kvm_zap_all_rmap_sptes(struct kvm *kvm,
 970				   struct kvm_rmap_head *rmap_head)
 971{
 972	struct pte_list_desc *desc, *next;
 973	int i;
 974
 975	if (!rmap_head->val)
 976		return false;
 977
 978	if (!(rmap_head->val & KVM_RMAP_MANY)) {
 979		mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val);
 980		goto out;
 981	}
 982
 983	desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY);
 984
 985	for (; desc; desc = next) {
 986		for (i = 0; i < desc->spte_count; i++)
 987			mmu_spte_clear_track_bits(kvm, desc->sptes[i]);
 988		next = desc->more;
 989		mmu_free_pte_list_desc(desc);
 990	}
 991out:
 992	/* rmap_head is meaningless now, remember to reset it */
 993	rmap_head->val = 0;
 994	return true;
 995}
 996
 997unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
 998{
 999	struct pte_list_desc *desc;
1000
1001	if (!rmap_head->val)
1002		return 0;
1003	else if (!(rmap_head->val & KVM_RMAP_MANY))
1004		return 1;
1005
1006	desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY);
1007	return desc->tail_count + desc->spte_count;
1008}
1009
1010static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
1011					 const struct kvm_memory_slot *slot)
1012{
1013	unsigned long idx;
1014
1015	idx = gfn_to_index(gfn, slot->base_gfn, level);
1016	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1017}
1018
1019static void rmap_remove(struct kvm *kvm, u64 *spte)
1020{
1021	struct kvm_memslots *slots;
1022	struct kvm_memory_slot *slot;
1023	struct kvm_mmu_page *sp;
1024	gfn_t gfn;
1025	struct kvm_rmap_head *rmap_head;
1026
1027	sp = sptep_to_sp(spte);
1028	gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte));
1029
1030	/*
1031	 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU
1032	 * so we have to determine which memslots to use based on context
1033	 * information in sp->role.
1034	 */
1035	slots = kvm_memslots_for_spte_role(kvm, sp->role);
1036
1037	slot = __gfn_to_memslot(slots, gfn);
1038	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1039
1040	pte_list_remove(kvm, spte, rmap_head);
1041}
1042
1043/*
1044 * Used by the following functions to iterate through the sptes linked by a
1045 * rmap.  All fields are private and not assumed to be used outside.
1046 */
1047struct rmap_iterator {
1048	/* private fields */
1049	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
1050	int pos;			/* index of the sptep */
1051};
1052
1053/*
1054 * Iteration must be started by this function.  This should also be used after
1055 * removing/dropping sptes from the rmap link because in such cases the
1056 * information in the iterator may not be valid.
1057 *
1058 * Returns sptep if found, NULL otherwise.
1059 */
1060static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1061			   struct rmap_iterator *iter)
1062{
1063	u64 *sptep;
1064
1065	if (!rmap_head->val)
1066		return NULL;
1067
1068	if (!(rmap_head->val & KVM_RMAP_MANY)) {
1069		iter->desc = NULL;
1070		sptep = (u64 *)rmap_head->val;
1071		goto out;
1072	}
1073
1074	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY);
1075	iter->pos = 0;
1076	sptep = iter->desc->sptes[iter->pos];
1077out:
1078	BUG_ON(!is_shadow_present_pte(*sptep));
1079	return sptep;
1080}
1081
1082/*
1083 * Must be used with a valid iterator: e.g. after rmap_get_first().
1084 *
1085 * Returns sptep if found, NULL otherwise.
1086 */
1087static u64 *rmap_get_next(struct rmap_iterator *iter)
1088{
1089	u64 *sptep;
1090
1091	if (iter->desc) {
1092		if (iter->pos < PTE_LIST_EXT - 1) {
1093			++iter->pos;
1094			sptep = iter->desc->sptes[iter->pos];
1095			if (sptep)
1096				goto out;
1097		}
1098
1099		iter->desc = iter->desc->more;
1100
1101		if (iter->desc) {
1102			iter->pos = 0;
1103			/* desc->sptes[0] cannot be NULL */
1104			sptep = iter->desc->sptes[iter->pos];
1105			goto out;
1106		}
1107	}
1108
1109	return NULL;
1110out:
1111	BUG_ON(!is_shadow_present_pte(*sptep));
1112	return sptep;
1113}
1114
1115#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
1116	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1117	     _spte_; _spte_ = rmap_get_next(_iter_))
1118
1119static void drop_spte(struct kvm *kvm, u64 *sptep)
1120{
1121	u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
1122
1123	if (is_shadow_present_pte(old_spte))
1124		rmap_remove(kvm, sptep);
1125}
1126
1127static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush)
1128{
1129	struct kvm_mmu_page *sp;
1130
1131	sp = sptep_to_sp(sptep);
1132	WARN_ON_ONCE(sp->role.level == PG_LEVEL_4K);
1133
1134	drop_spte(kvm, sptep);
1135
1136	if (flush)
1137		kvm_flush_remote_tlbs_sptep(kvm, sptep);
1138}
1139
1140/*
1141 * Write-protect on the specified @sptep, @pt_protect indicates whether
1142 * spte write-protection is caused by protecting shadow page table.
1143 *
1144 * Note: write protection is difference between dirty logging and spte
1145 * protection:
1146 * - for dirty logging, the spte can be set to writable at anytime if
1147 *   its dirty bitmap is properly set.
1148 * - for spte protection, the spte can be writable only after unsync-ing
1149 *   shadow page.
1150 *
1151 * Return true if tlb need be flushed.
1152 */
1153static bool spte_write_protect(u64 *sptep, bool pt_protect)
1154{
1155	u64 spte = *sptep;
1156
1157	if (!is_writable_pte(spte) &&
1158	    !(pt_protect && is_mmu_writable_spte(spte)))
1159		return false;
1160
1161	if (pt_protect)
1162		spte &= ~shadow_mmu_writable_mask;
1163	spte = spte & ~PT_WRITABLE_MASK;
1164
1165	return mmu_spte_update(sptep, spte);
1166}
1167
1168static bool rmap_write_protect(struct kvm_rmap_head *rmap_head,
1169			       bool pt_protect)
1170{
1171	u64 *sptep;
1172	struct rmap_iterator iter;
1173	bool flush = false;
1174
1175	for_each_rmap_spte(rmap_head, &iter, sptep)
1176		flush |= spte_write_protect(sptep, pt_protect);
1177
1178	return flush;
1179}
1180
1181static bool spte_clear_dirty(u64 *sptep)
1182{
1183	u64 spte = *sptep;
1184
1185	KVM_MMU_WARN_ON(!spte_ad_enabled(spte));
1186	spte &= ~shadow_dirty_mask;
1187	return mmu_spte_update(sptep, spte);
1188}
1189
1190/*
1191 * Gets the GFN ready for another round of dirty logging by clearing the
1192 *	- D bit on ad-enabled SPTEs, and
1193 *	- W bit on ad-disabled SPTEs.
1194 * Returns true iff any D or W bits were cleared.
1195 */
1196static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1197			       const struct kvm_memory_slot *slot)
1198{
1199	u64 *sptep;
1200	struct rmap_iterator iter;
1201	bool flush = false;
1202
1203	for_each_rmap_spte(rmap_head, &iter, sptep)
1204		if (spte_ad_need_write_protect(*sptep))
1205			flush |= test_and_clear_bit(PT_WRITABLE_SHIFT,
1206						    (unsigned long *)sptep);
1207		else
1208			flush |= spte_clear_dirty(sptep);
1209
1210	return flush;
1211}
1212
1213static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1214				     struct kvm_memory_slot *slot,
1215				     gfn_t gfn_offset, unsigned long mask)
1216{
1217	struct kvm_rmap_head *rmap_head;
1218
1219	if (tdp_mmu_enabled)
1220		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1221				slot->base_gfn + gfn_offset, mask, true);
1222
1223	if (!kvm_memslots_have_rmaps(kvm))
1224		return;
1225
1226	while (mask) {
1227		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1228					PG_LEVEL_4K, slot);
1229		rmap_write_protect(rmap_head, false);
1230
1231		/* clear the first set bit */
1232		mask &= mask - 1;
1233	}
1234}
1235
1236static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1237					 struct kvm_memory_slot *slot,
1238					 gfn_t gfn_offset, unsigned long mask)
1239{
1240	struct kvm_rmap_head *rmap_head;
1241
1242	if (tdp_mmu_enabled)
1243		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1244				slot->base_gfn + gfn_offset, mask, false);
1245
1246	if (!kvm_memslots_have_rmaps(kvm))
1247		return;
1248
1249	while (mask) {
1250		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1251					PG_LEVEL_4K, slot);
1252		__rmap_clear_dirty(kvm, rmap_head, slot);
1253
1254		/* clear the first set bit */
1255		mask &= mask - 1;
1256	}
1257}
1258
1259void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1260				struct kvm_memory_slot *slot,
1261				gfn_t gfn_offset, unsigned long mask)
1262{
1263	/*
1264	 * If the slot was assumed to be "initially all dirty", write-protect
1265	 * huge pages to ensure they are split to 4KiB on the first write (KVM
1266	 * dirty logs at 4KiB granularity). If eager page splitting is enabled,
1267	 * immediately try to split huge pages, e.g. so that vCPUs don't get
1268	 * saddled with the cost of splitting.
1269	 *
1270	 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
1271	 * of memslot has no such restriction, so the range can cross two large
1272	 * pages.
1273	 */
1274	if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1275		gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
1276		gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);
1277
1278		if (READ_ONCE(eager_page_split))
1279			kvm_mmu_try_split_huge_pages(kvm, slot, start, end + 1, PG_LEVEL_4K);
1280
1281		kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);
1282
1283		/* Cross two large pages? */
1284		if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
1285		    ALIGN(end << PAGE_SHIFT, PMD_SIZE))
1286			kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
1287						       PG_LEVEL_2M);
1288	}
1289
1290	/*
1291	 * (Re)Enable dirty logging for all 4KiB SPTEs that map the GFNs in
1292	 * mask.  If PML is enabled and the GFN doesn't need to be write-
1293	 * protected for other reasons, e.g. shadow paging, clear the Dirty bit.
1294	 * Otherwise clear the Writable bit.
1295	 *
1296	 * Note that kvm_mmu_clear_dirty_pt_masked() is called whenever PML is
1297	 * enabled but it chooses between clearing the Dirty bit and Writeable
1298	 * bit based on the context.
1299	 */
1300	if (kvm_x86_ops.cpu_dirty_log_size)
1301		kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1302	else
1303		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1304}
1305
1306int kvm_cpu_dirty_log_size(void)
1307{
1308	return kvm_x86_ops.cpu_dirty_log_size;
1309}
1310
1311bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1312				    struct kvm_memory_slot *slot, u64 gfn,
1313				    int min_level)
1314{
1315	struct kvm_rmap_head *rmap_head;
1316	int i;
1317	bool write_protected = false;
1318
1319	if (kvm_memslots_have_rmaps(kvm)) {
1320		for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1321			rmap_head = gfn_to_rmap(gfn, i, slot);
1322			write_protected |= rmap_write_protect(rmap_head, true);
1323		}
1324	}
1325
1326	if (tdp_mmu_enabled)
1327		write_protected |=
1328			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1329
1330	return write_protected;
1331}
1332
1333static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn)
1334{
1335	struct kvm_memory_slot *slot;
1336
1337	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1338	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1339}
1340
1341static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1342			 const struct kvm_memory_slot *slot)
1343{
1344	return kvm_zap_all_rmap_sptes(kvm, rmap_head);
1345}
1346
1347struct slot_rmap_walk_iterator {
1348	/* input fields. */
1349	const struct kvm_memory_slot *slot;
1350	gfn_t start_gfn;
1351	gfn_t end_gfn;
1352	int start_level;
1353	int end_level;
1354
1355	/* output fields. */
1356	gfn_t gfn;
1357	struct kvm_rmap_head *rmap;
1358	int level;
1359
1360	/* private field. */
1361	struct kvm_rmap_head *end_rmap;
1362};
1363
1364static void rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator,
1365				 int level)
1366{
1367	iterator->level = level;
1368	iterator->gfn = iterator->start_gfn;
1369	iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
1370	iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
1371}
1372
1373static void slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1374				const struct kvm_memory_slot *slot,
1375				int start_level, int end_level,
1376				gfn_t start_gfn, gfn_t end_gfn)
1377{
1378	iterator->slot = slot;
1379	iterator->start_level = start_level;
1380	iterator->end_level = end_level;
1381	iterator->start_gfn = start_gfn;
1382	iterator->end_gfn = end_gfn;
1383
1384	rmap_walk_init_level(iterator, iterator->start_level);
1385}
1386
1387static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1388{
1389	return !!iterator->rmap;
1390}
1391
1392static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1393{
1394	while (++iterator->rmap <= iterator->end_rmap) {
1395		iterator->gfn += KVM_PAGES_PER_HPAGE(iterator->level);
1396
1397		if (iterator->rmap->val)
1398			return;
1399	}
1400
1401	if (++iterator->level > iterator->end_level) {
1402		iterator->rmap = NULL;
1403		return;
1404	}
1405
1406	rmap_walk_init_level(iterator, iterator->level);
1407}
1408
1409#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
1410	   _start_gfn, _end_gfn, _iter_)				\
1411	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
1412				 _end_level_, _start_gfn, _end_gfn);	\
1413	     slot_rmap_walk_okay(_iter_);				\
1414	     slot_rmap_walk_next(_iter_))
1415
1416/* The return value indicates if tlb flush on all vcpus is needed. */
1417typedef bool (*slot_rmaps_handler) (struct kvm *kvm,
1418				    struct kvm_rmap_head *rmap_head,
1419				    const struct kvm_memory_slot *slot);
1420
1421static __always_inline bool __walk_slot_rmaps(struct kvm *kvm,
1422					      const struct kvm_memory_slot *slot,
1423					      slot_rmaps_handler fn,
1424					      int start_level, int end_level,
1425					      gfn_t start_gfn, gfn_t end_gfn,
1426					      bool can_yield, bool flush_on_yield,
1427					      bool flush)
1428{
1429	struct slot_rmap_walk_iterator iterator;
1430
1431	lockdep_assert_held_write(&kvm->mmu_lock);
1432
1433	for_each_slot_rmap_range(slot, start_level, end_level, start_gfn,
1434			end_gfn, &iterator) {
1435		if (iterator.rmap)
1436			flush |= fn(kvm, iterator.rmap, slot);
1437
1438		if (!can_yield)
1439			continue;
1440
1441		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
1442			if (flush && flush_on_yield) {
1443				kvm_flush_remote_tlbs_range(kvm, start_gfn,
1444							    iterator.gfn - start_gfn + 1);
1445				flush = false;
1446			}
1447			cond_resched_rwlock_write(&kvm->mmu_lock);
1448		}
1449	}
1450
1451	return flush;
1452}
1453
1454static __always_inline bool walk_slot_rmaps(struct kvm *kvm,
1455					    const struct kvm_memory_slot *slot,
1456					    slot_rmaps_handler fn,
1457					    int start_level, int end_level,
1458					    bool flush_on_yield)
1459{
1460	return __walk_slot_rmaps(kvm, slot, fn, start_level, end_level,
1461				 slot->base_gfn, slot->base_gfn + slot->npages - 1,
1462				 true, flush_on_yield, false);
1463}
1464
1465static __always_inline bool walk_slot_rmaps_4k(struct kvm *kvm,
1466					       const struct kvm_memory_slot *slot,
1467					       slot_rmaps_handler fn,
1468					       bool flush_on_yield)
1469{
1470	return walk_slot_rmaps(kvm, slot, fn, PG_LEVEL_4K, PG_LEVEL_4K, flush_on_yield);
1471}
1472
1473static bool __kvm_rmap_zap_gfn_range(struct kvm *kvm,
1474				     const struct kvm_memory_slot *slot,
1475				     gfn_t start, gfn_t end, bool can_yield,
1476				     bool flush)
1477{
1478	return __walk_slot_rmaps(kvm, slot, kvm_zap_rmap,
1479				 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1480				 start, end - 1, can_yield, true, flush);
1481}
1482
1483bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1484{
1485	bool flush = false;
1486
1487	/*
1488	 * To prevent races with vCPUs faulting in a gfn using stale data,
1489	 * zapping a gfn range must be protected by mmu_invalidate_in_progress
1490	 * (and mmu_invalidate_seq).  The only exception is memslot deletion;
1491	 * in that case, SRCU synchronization ensures that SPTEs are zapped
1492	 * after all vCPUs have unlocked SRCU, guaranteeing that vCPUs see the
1493	 * invalid slot.
1494	 */
1495	lockdep_assert_once(kvm->mmu_invalidate_in_progress ||
1496			    lockdep_is_held(&kvm->slots_lock));
1497
1498	if (kvm_memslots_have_rmaps(kvm))
1499		flush = __kvm_rmap_zap_gfn_range(kvm, range->slot,
1500						 range->start, range->end,
1501						 range->may_block, flush);
1502
1503	if (tdp_mmu_enabled)
1504		flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1505
1506	if (kvm_x86_ops.set_apic_access_page_addr &&
1507	    range->slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT)
1508		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
1509
1510	return flush;
1511}
1512
1513#define RMAP_RECYCLE_THRESHOLD 1000
1514
1515static void __rmap_add(struct kvm *kvm,
1516		       struct kvm_mmu_memory_cache *cache,
1517		       const struct kvm_memory_slot *slot,
1518		       u64 *spte, gfn_t gfn, unsigned int access)
1519{
1520	struct kvm_mmu_page *sp;
1521	struct kvm_rmap_head *rmap_head;
1522	int rmap_count;
1523
1524	sp = sptep_to_sp(spte);
1525	kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access);
1526	kvm_update_page_stats(kvm, sp->role.level, 1);
1527
1528	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1529	rmap_count = pte_list_add(cache, spte, rmap_head);
1530
1531	if (rmap_count > kvm->stat.max_mmu_rmap_size)
1532		kvm->stat.max_mmu_rmap_size = rmap_count;
1533	if (rmap_count > RMAP_RECYCLE_THRESHOLD) {
1534		kvm_zap_all_rmap_sptes(kvm, rmap_head);
1535		kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level);
1536	}
1537}
1538
1539static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot,
1540		     u64 *spte, gfn_t gfn, unsigned int access)
1541{
1542	struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache;
1543
1544	__rmap_add(vcpu->kvm, cache, slot, spte, gfn, access);
1545}
1546
1547static bool kvm_rmap_age_gfn_range(struct kvm *kvm,
1548				   struct kvm_gfn_range *range, bool test_only)
1549{
1550	struct slot_rmap_walk_iterator iterator;
1551	struct rmap_iterator iter;
1552	bool young = false;
1553	u64 *sptep;
1554
1555	for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1556				 range->start, range->end - 1, &iterator) {
1557		for_each_rmap_spte(iterator.rmap, &iter, sptep) {
1558			u64 spte = *sptep;
1559
1560			if (!is_accessed_spte(spte))
1561				continue;
1562
1563			if (test_only)
1564				return true;
1565
1566			if (spte_ad_enabled(spte)) {
1567				clear_bit((ffs(shadow_accessed_mask) - 1),
1568					(unsigned long *)sptep);
1569			} else {
1570				/*
1571				 * WARN if mmu_spte_update() signals the need
1572				 * for a TLB flush, as Access tracking a SPTE
1573				 * should never trigger an _immediate_ flush.
1574				 */
1575				spte = mark_spte_for_access_track(spte);
1576				WARN_ON_ONCE(mmu_spte_update(sptep, spte));
1577			}
1578			young = true;
1579		}
1580	}
1581	return young;
1582}
1583
1584bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1585{
1586	bool young = false;
1587
1588	if (kvm_memslots_have_rmaps(kvm))
1589		young = kvm_rmap_age_gfn_range(kvm, range, false);
1590
1591	if (tdp_mmu_enabled)
1592		young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1593
1594	return young;
1595}
1596
1597bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1598{
1599	bool young = false;
1600
1601	if (kvm_memslots_have_rmaps(kvm))
1602		young = kvm_rmap_age_gfn_range(kvm, range, true);
1603
1604	if (tdp_mmu_enabled)
1605		young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1606
1607	return young;
1608}
1609
1610static void kvm_mmu_check_sptes_at_free(struct kvm_mmu_page *sp)
1611{
1612#ifdef CONFIG_KVM_PROVE_MMU
1613	int i;
1614
1615	for (i = 0; i < SPTE_ENT_PER_PAGE; i++) {
1616		if (KVM_MMU_WARN_ON(is_shadow_present_pte(sp->spt[i])))
1617			pr_err_ratelimited("SPTE %llx (@ %p) for gfn %llx shadow-present at free",
1618					   sp->spt[i], &sp->spt[i],
1619					   kvm_mmu_page_get_gfn(sp, i));
1620	}
1621#endif
1622}
1623
1624static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1625{
1626	kvm->arch.n_used_mmu_pages++;
1627	kvm_account_pgtable_pages((void *)sp->spt, +1);
1628}
1629
1630static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1631{
1632	kvm->arch.n_used_mmu_pages--;
1633	kvm_account_pgtable_pages((void *)sp->spt, -1);
1634}
1635
1636static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp)
1637{
1638	kvm_mmu_check_sptes_at_free(sp);
1639
1640	hlist_del(&sp->hash_link);
1641	list_del(&sp->link);
1642	free_page((unsigned long)sp->spt);
1643	free_page((unsigned long)sp->shadowed_translation);
1644	kmem_cache_free(mmu_page_header_cache, sp);
1645}
1646
1647static unsigned kvm_page_table_hashfn(gfn_t gfn)
1648{
1649	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1650}
1651
1652static void mmu_page_add_parent_pte(struct kvm_mmu_memory_cache *cache,
1653				    struct kvm_mmu_page *sp, u64 *parent_pte)
1654{
1655	if (!parent_pte)
1656		return;
1657
1658	pte_list_add(cache, parent_pte, &sp->parent_ptes);
1659}
1660
1661static void mmu_page_remove_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1662				       u64 *parent_pte)
1663{
1664	pte_list_remove(kvm, parent_pte, &sp->parent_ptes);
1665}
1666
1667static void drop_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1668			    u64 *parent_pte)
1669{
1670	mmu_page_remove_parent_pte(kvm, sp, parent_pte);
1671	mmu_spte_clear_no_track(parent_pte);
1672}
1673
1674static void mark_unsync(u64 *spte);
1675static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1676{
1677	u64 *sptep;
1678	struct rmap_iterator iter;
1679
1680	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1681		mark_unsync(sptep);
1682	}
1683}
1684
1685static void mark_unsync(u64 *spte)
1686{
1687	struct kvm_mmu_page *sp;
1688
1689	sp = sptep_to_sp(spte);
1690	if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap))
1691		return;
1692	if (sp->unsync_children++)
1693		return;
1694	kvm_mmu_mark_parents_unsync(sp);
1695}
1696
1697#define KVM_PAGE_ARRAY_NR 16
1698
1699struct kvm_mmu_pages {
1700	struct mmu_page_and_offset {
1701		struct kvm_mmu_page *sp;
1702		unsigned int idx;
1703	} page[KVM_PAGE_ARRAY_NR];
1704	unsigned int nr;
1705};
1706
1707static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1708			 int idx)
1709{
1710	int i;
1711
1712	if (sp->unsync)
1713		for (i=0; i < pvec->nr; i++)
1714			if (pvec->page[i].sp == sp)
1715				return 0;
1716
1717	pvec->page[pvec->nr].sp = sp;
1718	pvec->page[pvec->nr].idx = idx;
1719	pvec->nr++;
1720	return (pvec->nr == KVM_PAGE_ARRAY_NR);
1721}
1722
1723static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1724{
1725	--sp->unsync_children;
1726	WARN_ON_ONCE((int)sp->unsync_children < 0);
1727	__clear_bit(idx, sp->unsync_child_bitmap);
1728}
1729
1730static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1731			   struct kvm_mmu_pages *pvec)
1732{
1733	int i, ret, nr_unsync_leaf = 0;
1734
1735	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1736		struct kvm_mmu_page *child;
1737		u64 ent = sp->spt[i];
1738
1739		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1740			clear_unsync_child_bit(sp, i);
1741			continue;
1742		}
1743
1744		child = spte_to_child_sp(ent);
1745
1746		if (child->unsync_children) {
1747			if (mmu_pages_add(pvec, child, i))
1748				return -ENOSPC;
1749
1750			ret = __mmu_unsync_walk(child, pvec);
1751			if (!ret) {
1752				clear_unsync_child_bit(sp, i);
1753				continue;
1754			} else if (ret > 0) {
1755				nr_unsync_leaf += ret;
1756			} else
1757				return ret;
1758		} else if (child->unsync) {
1759			nr_unsync_leaf++;
1760			if (mmu_pages_add(pvec, child, i))
1761				return -ENOSPC;
1762		} else
1763			clear_unsync_child_bit(sp, i);
1764	}
1765
1766	return nr_unsync_leaf;
1767}
1768
1769#define INVALID_INDEX (-1)
1770
1771static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1772			   struct kvm_mmu_pages *pvec)
1773{
1774	pvec->nr = 0;
1775	if (!sp->unsync_children)
1776		return 0;
1777
1778	mmu_pages_add(pvec, sp, INVALID_INDEX);
1779	return __mmu_unsync_walk(sp, pvec);
1780}
1781
1782static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1783{
1784	WARN_ON_ONCE(!sp->unsync);
1785	trace_kvm_mmu_sync_page(sp);
1786	sp->unsync = 0;
1787	--kvm->stat.mmu_unsync;
1788}
1789
1790static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1791				     struct list_head *invalid_list);
1792static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1793				    struct list_head *invalid_list);
1794
1795static bool sp_has_gptes(struct kvm_mmu_page *sp)
1796{
1797	if (sp->role.direct)
1798		return false;
1799
1800	if (sp->role.passthrough)
1801		return false;
1802
1803	return true;
1804}
1805
1806#define for_each_valid_sp(_kvm, _sp, _list)				\
1807	hlist_for_each_entry(_sp, _list, hash_link)			\
1808		if (is_obsolete_sp((_kvm), (_sp))) {			\
1809		} else
1810
1811#define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn)		\
1812	for_each_valid_sp(_kvm, _sp,					\
1813	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
1814		if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else
1815
1816static bool kvm_sync_page_check(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1817{
1818	union kvm_mmu_page_role root_role = vcpu->arch.mmu->root_role;
1819
1820	/*
1821	 * Ignore various flags when verifying that it's safe to sync a shadow
1822	 * page using the current MMU context.
1823	 *
1824	 *  - level: not part of the overall MMU role and will never match as the MMU's
1825	 *           level tracks the root level
1826	 *  - access: updated based on the new guest PTE
1827	 *  - quadrant: not part of the overall MMU role (similar to level)
1828	 */
1829	const union kvm_mmu_page_role sync_role_ign = {
1830		.level = 0xf,
1831		.access = 0x7,
1832		.quadrant = 0x3,
1833		.passthrough = 0x1,
1834	};
1835
1836	/*
1837	 * Direct pages can never be unsync, and KVM should never attempt to
1838	 * sync a shadow page for a different MMU context, e.g. if the role
1839	 * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the
1840	 * reserved bits checks will be wrong, etc...
1841	 */
1842	if (WARN_ON_ONCE(sp->role.direct || !vcpu->arch.mmu->sync_spte ||
1843			 (sp->role.word ^ root_role.word) & ~sync_role_ign.word))
1844		return false;
1845
1846	return true;
1847}
1848
1849static int kvm_sync_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i)
1850{
1851	/* sp->spt[i] has initial value of shadow page table allocation */
1852	if (sp->spt[i] == SHADOW_NONPRESENT_VALUE)
1853		return 0;
1854
1855	return vcpu->arch.mmu->sync_spte(vcpu, sp, i);
1856}
1857
1858static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1859{
1860	int flush = 0;
1861	int i;
1862
1863	if (!kvm_sync_page_check(vcpu, sp))
1864		return -1;
1865
1866	for (i = 0; i < SPTE_ENT_PER_PAGE; i++) {
1867		int ret = kvm_sync_spte(vcpu, sp, i);
1868
1869		if (ret < -1)
1870			return -1;
1871		flush |= ret;
1872	}
1873
1874	/*
1875	 * Note, any flush is purely for KVM's correctness, e.g. when dropping
1876	 * an existing SPTE or clearing W/A/D bits to ensure an mmu_notifier
1877	 * unmap or dirty logging event doesn't fail to flush.  The guest is
1878	 * responsible for flushing the TLB to ensure any changes in protection
1879	 * bits are recognized, i.e. until the guest flushes or page faults on
1880	 * a relevant address, KVM is architecturally allowed to let vCPUs use
1881	 * cached translations with the old protection bits.
1882	 */
1883	return flush;
1884}
1885
1886static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1887			 struct list_head *invalid_list)
1888{
1889	int ret = __kvm_sync_page(vcpu, sp);
1890
1891	if (ret < 0)
1892		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1893	return ret;
1894}
1895
1896static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1897					struct list_head *invalid_list,
1898					bool remote_flush)
1899{
1900	if (!remote_flush && list_empty(invalid_list))
1901		return false;
1902
1903	if (!list_empty(invalid_list))
1904		kvm_mmu_commit_zap_page(kvm, invalid_list);
1905	else
1906		kvm_flush_remote_tlbs(kvm);
1907	return true;
1908}
1909
1910static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1911{
1912	if (sp->role.invalid)
1913		return true;
1914
1915	/* TDP MMU pages do not use the MMU generation. */
1916	return !is_tdp_mmu_page(sp) &&
1917	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1918}
1919
1920struct mmu_page_path {
1921	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1922	unsigned int idx[PT64_ROOT_MAX_LEVEL];
1923};
1924
1925#define for_each_sp(pvec, sp, parents, i)			\
1926		for (i = mmu_pages_first(&pvec, &parents);	\
1927			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
1928			i = mmu_pages_next(&pvec, &parents, i))
1929
1930static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1931			  struct mmu_page_path *parents,
1932			  int i)
1933{
1934	int n;
1935
1936	for (n = i+1; n < pvec->nr; n++) {
1937		struct kvm_mmu_page *sp = pvec->page[n].sp;
1938		unsigned idx = pvec->page[n].idx;
1939		int level = sp->role.level;
1940
1941		parents->idx[level-1] = idx;
1942		if (level == PG_LEVEL_4K)
1943			break;
1944
1945		parents->parent[level-2] = sp;
1946	}
1947
1948	return n;
1949}
1950
1951static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1952			   struct mmu_page_path *parents)
1953{
1954	struct kvm_mmu_page *sp;
1955	int level;
1956
1957	if (pvec->nr == 0)
1958		return 0;
1959
1960	WARN_ON_ONCE(pvec->page[0].idx != INVALID_INDEX);
1961
1962	sp = pvec->page[0].sp;
1963	level = sp->role.level;
1964	WARN_ON_ONCE(level == PG_LEVEL_4K);
1965
1966	parents->parent[level-2] = sp;
1967
1968	/* Also set up a sentinel.  Further entries in pvec are all
1969	 * children of sp, so this element is never overwritten.
1970	 */
1971	parents->parent[level-1] = NULL;
1972	return mmu_pages_next(pvec, parents, 0);
1973}
1974
1975static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1976{
1977	struct kvm_mmu_page *sp;
1978	unsigned int level = 0;
1979
1980	do {
1981		unsigned int idx = parents->idx[level];
1982		sp = parents->parent[level];
1983		if (!sp)
1984			return;
1985
1986		WARN_ON_ONCE(idx == INVALID_INDEX);
1987		clear_unsync_child_bit(sp, idx);
1988		level++;
1989	} while (!sp->unsync_children);
1990}
1991
1992static int mmu_sync_children(struct kvm_vcpu *vcpu,
1993			     struct kvm_mmu_page *parent, bool can_yield)
1994{
1995	int i;
1996	struct kvm_mmu_page *sp;
1997	struct mmu_page_path parents;
1998	struct kvm_mmu_pages pages;
1999	LIST_HEAD(invalid_list);
2000	bool flush = false;
2001
2002	while (mmu_unsync_walk(parent, &pages)) {
2003		bool protected = false;
2004
2005		for_each_sp(pages, sp, parents, i)
2006			protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn);
2007
2008		if (protected) {
2009			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true);
2010			flush = false;
2011		}
2012
2013		for_each_sp(pages, sp, parents, i) {
2014			kvm_unlink_unsync_page(vcpu->kvm, sp);
2015			flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0;
2016			mmu_pages_clear_parents(&parents);
2017		}
2018		if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
2019			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2020			if (!can_yield) {
2021				kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2022				return -EINTR;
2023			}
2024
2025			cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2026			flush = false;
2027		}
2028	}
2029
2030	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2031	return 0;
2032}
2033
2034static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2035{
2036	atomic_set(&sp->write_flooding_count,  0);
2037}
2038
2039static void clear_sp_write_flooding_count(u64 *spte)
2040{
2041	__clear_sp_write_flooding_count(sptep_to_sp(spte));
2042}
2043
2044/*
2045 * The vCPU is required when finding indirect shadow pages; the shadow
2046 * page may already exist and syncing it needs the vCPU pointer in
2047 * order to read guest page tables.  Direct shadow pages are never
2048 * unsync, thus @vcpu can be NULL if @role.direct is true.
2049 */
2050static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm,
2051						     struct kvm_vcpu *vcpu,
2052						     gfn_t gfn,
2053						     struct hlist_head *sp_list,
2054						     union kvm_mmu_page_role role)
2055{
2056	struct kvm_mmu_page *sp;
2057	int ret;
2058	int collisions = 0;
2059	LIST_HEAD(invalid_list);
2060
2061	for_each_valid_sp(kvm, sp, sp_list) {
2062		if (sp->gfn != gfn) {
2063			collisions++;
2064			continue;
2065		}
2066
2067		if (sp->role.word != role.word) {
2068			/*
2069			 * If the guest is creating an upper-level page, zap
2070			 * unsync pages for the same gfn.  While it's possible
2071			 * the guest is using recursive page tables, in all
2072			 * likelihood the guest has stopped using the unsync
2073			 * page and is installing a completely unrelated page.
2074			 * Unsync pages must not be left as is, because the new
2075			 * upper-level page will be write-protected.
2076			 */
2077			if (role.level > PG_LEVEL_4K && sp->unsync)
2078				kvm_mmu_prepare_zap_page(kvm, sp,
2079							 &invalid_list);
2080			continue;
2081		}
2082
2083		/* unsync and write-flooding only apply to indirect SPs. */
2084		if (sp->role.direct)
2085			goto out;
2086
2087		if (sp->unsync) {
2088			if (KVM_BUG_ON(!vcpu, kvm))
2089				break;
2090
2091			/*
2092			 * The page is good, but is stale.  kvm_sync_page does
2093			 * get the latest guest state, but (unlike mmu_unsync_children)
2094			 * it doesn't write-protect the page or mark it synchronized!
2095			 * This way the validity of the mapping is ensured, but the
2096			 * overhead of write protection is not incurred until the
2097			 * guest invalidates the TLB mapping.  This allows multiple
2098			 * SPs for a single gfn to be unsync.
2099			 *
2100			 * If the sync fails, the page is zapped.  If so, break
2101			 * in order to rebuild it.
2102			 */
2103			ret = kvm_sync_page(vcpu, sp, &invalid_list);
2104			if (ret < 0)
2105				break;
2106
2107			WARN_ON_ONCE(!list_empty(&invalid_list));
2108			if (ret > 0)
2109				kvm_flush_remote_tlbs(kvm);
2110		}
2111
2112		__clear_sp_write_flooding_count(sp);
2113
2114		goto out;
2115	}
2116
2117	sp = NULL;
2118	++kvm->stat.mmu_cache_miss;
2119
2120out:
2121	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2122
2123	if (collisions > kvm->stat.max_mmu_page_hash_collisions)
2124		kvm->stat.max_mmu_page_hash_collisions = collisions;
2125	return sp;
2126}
2127
2128/* Caches used when allocating a new shadow page. */
2129struct shadow_page_caches {
2130	struct kvm_mmu_memory_cache *page_header_cache;
2131	struct kvm_mmu_memory_cache *shadow_page_cache;
2132	struct kvm_mmu_memory_cache *shadowed_info_cache;
2133};
2134
2135static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm,
2136						      struct shadow_page_caches *caches,
2137						      gfn_t gfn,
2138						      struct hlist_head *sp_list,
2139						      union kvm_mmu_page_role role)
2140{
2141	struct kvm_mmu_page *sp;
2142
2143	sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache);
2144	sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache);
2145	if (!role.direct && role.level <= KVM_MAX_HUGEPAGE_LEVEL)
2146		sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache);
2147
2148	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2149
2150	INIT_LIST_HEAD(&sp->possible_nx_huge_page_link);
2151
2152	/*
2153	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
2154	 * depends on valid pages being added to the head of the list.  See
2155	 * comments in kvm_zap_obsolete_pages().
2156	 */
2157	sp->mmu_valid_gen = kvm->arch.mmu_valid_gen;
2158	list_add(&sp->link, &kvm->arch.active_mmu_pages);
2159	kvm_account_mmu_page(kvm, sp);
2160
2161	sp->gfn = gfn;
2162	sp->role = role;
2163	hlist_add_head(&sp->hash_link, sp_list);
2164	if (sp_has_gptes(sp))
2165		account_shadowed(kvm, sp);
2166
2167	return sp;
2168}
2169
2170/* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */
2171static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm,
2172						      struct kvm_vcpu *vcpu,
2173						      struct shadow_page_caches *caches,
2174						      gfn_t gfn,
2175						      union kvm_mmu_page_role role)
2176{
2177	struct hlist_head *sp_list;
2178	struct kvm_mmu_page *sp;
2179	bool created = false;
2180
2181	sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2182
2183	sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role);
2184	if (!sp) {
2185		created = true;
2186		sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role);
2187	}
2188
2189	trace_kvm_mmu_get_page(sp, created);
2190	return sp;
2191}
2192
2193static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu,
2194						    gfn_t gfn,
2195						    union kvm_mmu_page_role role)
2196{
2197	struct shadow_page_caches caches = {
2198		.page_header_cache = &vcpu->arch.mmu_page_header_cache,
2199		.shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache,
2200		.shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache,
2201	};
2202
2203	return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role);
2204}
2205
2206static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct,
2207						  unsigned int access)
2208{
2209	struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep);
2210	union kvm_mmu_page_role role;
2211
2212	role = parent_sp->role;
2213	role.level--;
2214	role.access = access;
2215	role.direct = direct;
2216	role.passthrough = 0;
2217
2218	/*
2219	 * If the guest has 4-byte PTEs then that means it's using 32-bit,
2220	 * 2-level, non-PAE paging. KVM shadows such guests with PAE paging
2221	 * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must
2222	 * shadow each guest page table with multiple shadow page tables, which
2223	 * requires extra bookkeeping in the role.
2224	 *
2225	 * Specifically, to shadow the guest's page directory (which covers a
2226	 * 4GiB address space), KVM uses 4 PAE page directories, each mapping
2227	 * 1GiB of the address space. @role.quadrant encodes which quarter of
2228	 * the address space each maps.
2229	 *
2230	 * To shadow the guest's page tables (which each map a 4MiB region), KVM
2231	 * uses 2 PAE page tables, each mapping a 2MiB region. For these,
2232	 * @role.quadrant encodes which half of the region they map.
2233	 *
2234	 * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE
2235	 * consumes bits 29:21.  To consume bits 31:30, KVM's uses 4 shadow
2236	 * PDPTEs; those 4 PAE page directories are pre-allocated and their
2237	 * quadrant is assigned in mmu_alloc_root().   A 4-byte PTE consumes
2238	 * bits 21:12, while an 8-byte PTE consumes bits 20:12.  To consume
2239	 * bit 21 in the PTE (the child here), KVM propagates that bit to the
2240	 * quadrant, i.e. sets quadrant to '0' or '1'.  The parent 8-byte PDE
2241	 * covers bit 21 (see above), thus the quadrant is calculated from the
2242	 * _least_ significant bit of the PDE index.
2243	 */
2244	if (role.has_4_byte_gpte) {
2245		WARN_ON_ONCE(role.level != PG_LEVEL_4K);
2246		role.quadrant = spte_index(sptep) & 1;
2247	}
2248
2249	return role;
2250}
2251
2252static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu,
2253						 u64 *sptep, gfn_t gfn,
2254						 bool direct, unsigned int access)
2255{
2256	union kvm_mmu_page_role role;
2257
2258	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep))
2259		return ERR_PTR(-EEXIST);
2260
2261	role = kvm_mmu_child_role(sptep, direct, access);
2262	return kvm_mmu_get_shadow_page(vcpu, gfn, role);
2263}
2264
2265static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2266					struct kvm_vcpu *vcpu, hpa_t root,
2267					u64 addr)
2268{
2269	iterator->addr = addr;
2270	iterator->shadow_addr = root;
2271	iterator->level = vcpu->arch.mmu->root_role.level;
2272
2273	if (iterator->level >= PT64_ROOT_4LEVEL &&
2274	    vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL &&
2275	    !vcpu->arch.mmu->root_role.direct)
2276		iterator->level = PT32E_ROOT_LEVEL;
2277
2278	if (iterator->level == PT32E_ROOT_LEVEL) {
2279		/*
2280		 * prev_root is currently only used for 64-bit hosts. So only
2281		 * the active root_hpa is valid here.
2282		 */
2283		BUG_ON(root != vcpu->arch.mmu->root.hpa);
2284
2285		iterator->shadow_addr
2286			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2287		iterator->shadow_addr &= SPTE_BASE_ADDR_MASK;
2288		--iterator->level;
2289		if (!iterator->shadow_addr)
2290			iterator->level = 0;
2291	}
2292}
2293
2294static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2295			     struct kvm_vcpu *vcpu, u64 addr)
2296{
2297	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa,
2298				    addr);
2299}
2300
2301static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2302{
2303	if (iterator->level < PG_LEVEL_4K)
2304		return false;
2305
2306	iterator->index = SPTE_INDEX(iterator->addr, iterator->level);
2307	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2308	return true;
2309}
2310
2311static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2312			       u64 spte)
2313{
2314	if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) {
2315		iterator->level = 0;
2316		return;
2317	}
2318
2319	iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK;
2320	--iterator->level;
2321}
2322
2323static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2324{
2325	__shadow_walk_next(iterator, *iterator->sptep);
2326}
2327
2328static void __link_shadow_page(struct kvm *kvm,
2329			       struct kvm_mmu_memory_cache *cache, u64 *sptep,
2330			       struct kvm_mmu_page *sp, bool flush)
2331{
2332	u64 spte;
2333
2334	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2335
2336	/*
2337	 * If an SPTE is present already, it must be a leaf and therefore
2338	 * a large one.  Drop it, and flush the TLB if needed, before
2339	 * installing sp.
2340	 */
2341	if (is_shadow_present_pte(*sptep))
2342		drop_large_spte(kvm, sptep, flush);
2343
2344	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2345
2346	mmu_spte_set(sptep, spte);
2347
2348	mmu_page_add_parent_pte(cache, sp, sptep);
2349
2350	/*
2351	 * The non-direct sub-pagetable must be updated before linking.  For
2352	 * L1 sp, the pagetable is updated via kvm_sync_page() in
2353	 * kvm_mmu_find_shadow_page() without write-protecting the gfn,
2354	 * so sp->unsync can be true or false.  For higher level non-direct
2355	 * sp, the pagetable is updated/synced via mmu_sync_children() in
2356	 * FNAME(fetch)(), so sp->unsync_children can only be false.
2357	 * WARN_ON_ONCE() if anything happens unexpectedly.
2358	 */
2359	if (WARN_ON_ONCE(sp->unsync_children) || sp->unsync)
2360		mark_unsync(sptep);
2361}
2362
2363static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2364			     struct kvm_mmu_page *sp)
2365{
2366	__link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true);
2367}
2368
2369static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2370				   unsigned direct_access)
2371{
2372	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2373		struct kvm_mmu_page *child;
2374
2375		/*
2376		 * For the direct sp, if the guest pte's dirty bit
2377		 * changed form clean to dirty, it will corrupt the
2378		 * sp's access: allow writable in the read-only sp,
2379		 * so we should update the spte at this point to get
2380		 * a new sp with the correct access.
2381		 */
2382		child = spte_to_child_sp(*sptep);
2383		if (child->role.access == direct_access)
2384			return;
2385
2386		drop_parent_pte(vcpu->kvm, child, sptep);
2387		kvm_flush_remote_tlbs_sptep(vcpu->kvm, sptep);
2388	}
2389}
2390
2391/* Returns the number of zapped non-leaf child shadow pages. */
2392static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2393			    u64 *spte, struct list_head *invalid_list)
2394{
2395	u64 pte;
2396	struct kvm_mmu_page *child;
2397
2398	pte = *spte;
2399	if (is_shadow_present_pte(pte)) {
2400		if (is_last_spte(pte, sp->role.level)) {
2401			drop_spte(kvm, spte);
2402		} else {
2403			child = spte_to_child_sp(pte);
2404			drop_parent_pte(kvm, child, spte);
2405
2406			/*
2407			 * Recursively zap nested TDP SPs, parentless SPs are
2408			 * unlikely to be used again in the near future.  This
2409			 * avoids retaining a large number of stale nested SPs.
2410			 */
2411			if (tdp_enabled && invalid_list &&
2412			    child->role.guest_mode && !child->parent_ptes.val)
2413				return kvm_mmu_prepare_zap_page(kvm, child,
2414								invalid_list);
2415		}
2416	} else if (is_mmio_spte(kvm, pte)) {
2417		mmu_spte_clear_no_track(spte);
2418	}
2419	return 0;
2420}
2421
2422static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2423					struct kvm_mmu_page *sp,
2424					struct list_head *invalid_list)
2425{
2426	int zapped = 0;
2427	unsigned i;
2428
2429	for (i = 0; i < SPTE_ENT_PER_PAGE; ++i)
2430		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2431
2432	return zapped;
2433}
2434
2435static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2436{
2437	u64 *sptep;
2438	struct rmap_iterator iter;
2439
2440	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2441		drop_parent_pte(kvm, sp, sptep);
2442}
2443
2444static int mmu_zap_unsync_children(struct kvm *kvm,
2445				   struct kvm_mmu_page *parent,
2446				   struct list_head *invalid_list)
2447{
2448	int i, zapped = 0;
2449	struct mmu_page_path parents;
2450	struct kvm_mmu_pages pages;
2451
2452	if (parent->role.level == PG_LEVEL_4K)
2453		return 0;
2454
2455	while (mmu_unsync_walk(parent, &pages)) {
2456		struct kvm_mmu_page *sp;
2457
2458		for_each_sp(pages, sp, parents, i) {
2459			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2460			mmu_pages_clear_parents(&parents);
2461			zapped++;
2462		}
2463	}
2464
2465	return zapped;
2466}
2467
2468static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2469				       struct kvm_mmu_page *sp,
2470				       struct list_head *invalid_list,
2471				       int *nr_zapped)
2472{
2473	bool list_unstable, zapped_root = false;
2474
2475	lockdep_assert_held_write(&kvm->mmu_lock);
2476	trace_kvm_mmu_prepare_zap_page(sp);
2477	++kvm->stat.mmu_shadow_zapped;
2478	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2479	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2480	kvm_mmu_unlink_parents(kvm, sp);
2481
2482	/* Zapping children means active_mmu_pages has become unstable. */
2483	list_unstable = *nr_zapped;
2484
2485	if (!sp->role.invalid && sp_has_gptes(sp))
2486		unaccount_shadowed(kvm, sp);
2487
2488	if (sp->unsync)
2489		kvm_unlink_unsync_page(kvm, sp);
2490	if (!sp->root_count) {
2491		/* Count self */
2492		(*nr_zapped)++;
2493
2494		/*
2495		 * Already invalid pages (previously active roots) are not on
2496		 * the active page list.  See list_del() in the "else" case of
2497		 * !sp->root_count.
2498		 */
2499		if (sp->role.invalid)
2500			list_add(&sp->link, invalid_list);
2501		else
2502			list_move(&sp->link, invalid_list);
2503		kvm_unaccount_mmu_page(kvm, sp);
2504	} else {
2505		/*
2506		 * Remove the active root from the active page list, the root
2507		 * will be explicitly freed when the root_count hits zero.
2508		 */
2509		list_del(&sp->link);
2510
2511		/*
2512		 * Obsolete pages cannot be used on any vCPUs, see the comment
2513		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2514		 * treats invalid shadow pages as being obsolete.
2515		 */
2516		zapped_root = !is_obsolete_sp(kvm, sp);
2517	}
2518
2519	if (sp->nx_huge_page_disallowed)
2520		unaccount_nx_huge_page(kvm, sp);
2521
2522	sp->role.invalid = 1;
2523
2524	/*
2525	 * Make the request to free obsolete roots after marking the root
2526	 * invalid, otherwise other vCPUs may not see it as invalid.
2527	 */
2528	if (zapped_root)
2529		kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
2530	return list_unstable;
2531}
2532
2533static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2534				     struct list_head *invalid_list)
2535{
2536	int nr_zapped;
2537
2538	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2539	return nr_zapped;
2540}
2541
2542static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2543				    struct list_head *invalid_list)
2544{
2545	struct kvm_mmu_page *sp, *nsp;
2546
2547	if (list_empty(invalid_list))
2548		return;
2549
2550	/*
2551	 * We need to make sure everyone sees our modifications to
2552	 * the page tables and see changes to vcpu->mode here. The barrier
2553	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2554	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2555	 *
2556	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2557	 * guest mode and/or lockless shadow page table walks.
2558	 */
2559	kvm_flush_remote_tlbs(kvm);
2560
2561	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2562		WARN_ON_ONCE(!sp->role.invalid || sp->root_count);
2563		kvm_mmu_free_shadow_page(sp);
2564	}
2565}
2566
2567static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2568						  unsigned long nr_to_zap)
2569{
2570	unsigned long total_zapped = 0;
2571	struct kvm_mmu_page *sp, *tmp;
2572	LIST_HEAD(invalid_list);
2573	bool unstable;
2574	int nr_zapped;
2575
2576	if (list_empty(&kvm->arch.active_mmu_pages))
2577		return 0;
2578
2579restart:
2580	list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2581		/*
2582		 * Don't zap active root pages, the page itself can't be freed
2583		 * and zapping it will just force vCPUs to realloc and reload.
2584		 */
2585		if (sp->root_count)
2586			continue;
2587
2588		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2589						      &nr_zapped);
2590		total_zapped += nr_zapped;
2591		if (total_zapped >= nr_to_zap)
2592			break;
2593
2594		if (unstable)
2595			goto restart;
2596	}
2597
2598	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2599
2600	kvm->stat.mmu_recycled += total_zapped;
2601	return total_zapped;
2602}
2603
2604static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2605{
2606	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2607		return kvm->arch.n_max_mmu_pages -
2608			kvm->arch.n_used_mmu_pages;
2609
2610	return 0;
2611}
2612
2613static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2614{
2615	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2616
2617	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2618		return 0;
2619
2620	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2621
2622	/*
2623	 * Note, this check is intentionally soft, it only guarantees that one
2624	 * page is available, while the caller may end up allocating as many as
2625	 * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
2626	 * exceeding the (arbitrary by default) limit will not harm the host,
2627	 * being too aggressive may unnecessarily kill the guest, and getting an
2628	 * exact count is far more trouble than it's worth, especially in the
2629	 * page fault paths.
2630	 */
2631	if (!kvm_mmu_available_pages(vcpu->kvm))
2632		return -ENOSPC;
2633	return 0;
2634}
2635
2636/*
2637 * Changing the number of mmu pages allocated to the vm
2638 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2639 */
2640void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2641{
2642	write_lock(&kvm->mmu_lock);
2643
2644	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2645		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2646						  goal_nr_mmu_pages);
2647
2648		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2649	}
2650
2651	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2652
2653	write_unlock(&kvm->mmu_lock);
2654}
2655
2656bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
2657				       bool always_retry)
2658{
2659	struct kvm *kvm = vcpu->kvm;
2660	LIST_HEAD(invalid_list);
2661	struct kvm_mmu_page *sp;
2662	gpa_t gpa = cr2_or_gpa;
2663	bool r = false;
2664
2665	/*
2666	 * Bail early if there aren't any write-protected shadow pages to avoid
2667	 * unnecessarily taking mmu_lock lock, e.g. if the gfn is write-tracked
2668	 * by a third party.  Reading indirect_shadow_pages without holding
2669	 * mmu_lock is safe, as this is purely an optimization, i.e. a false
2670	 * positive is benign, and a false negative will simply result in KVM
2671	 * skipping the unprotect+retry path, which is also an optimization.
2672	 */
2673	if (!READ_ONCE(kvm->arch.indirect_shadow_pages))
2674		goto out;
2675
2676	if (!vcpu->arch.mmu->root_role.direct) {
2677		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
2678		if (gpa == INVALID_GPA)
2679			goto out;
2680	}
2681
2682	write_lock(&kvm->mmu_lock);
2683	for_each_gfn_valid_sp_with_gptes(kvm, sp, gpa_to_gfn(gpa))
2684		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2685
2686	/*
2687	 * Snapshot the result before zapping, as zapping will remove all list
2688	 * entries, i.e. checking the list later would yield a false negative.
2689	 */
2690	r = !list_empty(&invalid_list);
2691	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2692	write_unlock(&kvm->mmu_lock);
2693
2694out:
2695	if (r || always_retry) {
2696		vcpu->arch.last_retry_eip = kvm_rip_read(vcpu);
2697		vcpu->arch.last_retry_addr = cr2_or_gpa;
2698	}
2699	return r;
2700}
2701
2702static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2703{
2704	trace_kvm_mmu_unsync_page(sp);
2705	++kvm->stat.mmu_unsync;
2706	sp->unsync = 1;
2707
2708	kvm_mmu_mark_parents_unsync(sp);
2709}
2710
2711/*
2712 * Attempt to unsync any shadow pages that can be reached by the specified gfn,
2713 * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
2714 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
2715 * be write-protected.
2716 */
2717int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
2718			    gfn_t gfn, bool synchronizing, bool prefetch)
2719{
2720	struct kvm_mmu_page *sp;
2721	bool locked = false;
2722
2723	/*
2724	 * Force write-protection if the page is being tracked.  Note, the page
2725	 * track machinery is used to write-protect upper-level shadow pages,
2726	 * i.e. this guards the role.level == 4K assertion below!
2727	 */
2728	if (kvm_gfn_is_write_tracked(kvm, slot, gfn))
2729		return -EPERM;
2730
2731	/*
2732	 * The page is not write-tracked, mark existing shadow pages unsync
2733	 * unless KVM is synchronizing an unsync SP.  In that case, KVM must
2734	 * complete emulation of the guest TLB flush before allowing shadow
2735	 * pages to become unsync (writable by the guest).
2736	 */
2737	for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) {
2738		if (synchronizing)
2739			return -EPERM;
2740
2741		if (sp->unsync)
2742			continue;
2743
2744		if (prefetch)
2745			return -EEXIST;
2746
2747		/*
2748		 * TDP MMU page faults require an additional spinlock as they
2749		 * run with mmu_lock held for read, not write, and the unsync
2750		 * logic is not thread safe.  Take the spinklock regardless of
2751		 * the MMU type to avoid extra conditionals/parameters, there's
2752		 * no meaningful penalty if mmu_lock is held for write.
2753		 */
2754		if (!locked) {
2755			locked = true;
2756			spin_lock(&kvm->arch.mmu_unsync_pages_lock);
2757
2758			/*
2759			 * Recheck after taking the spinlock, a different vCPU
2760			 * may have since marked the page unsync.  A false
2761			 * negative on the unprotected check above is not
2762			 * possible as clearing sp->unsync _must_ hold mmu_lock
2763			 * for write, i.e. unsync cannot transition from 1->0
2764			 * while this CPU holds mmu_lock for read (or write).
2765			 */
2766			if (READ_ONCE(sp->unsync))
2767				continue;
2768		}
2769
2770		WARN_ON_ONCE(sp->role.level != PG_LEVEL_4K);
2771		kvm_unsync_page(kvm, sp);
2772	}
2773	if (locked)
2774		spin_unlock(&kvm->arch.mmu_unsync_pages_lock);
2775
2776	/*
2777	 * We need to ensure that the marking of unsync pages is visible
2778	 * before the SPTE is updated to allow writes because
2779	 * kvm_mmu_sync_roots() checks the unsync flags without holding
2780	 * the MMU lock and so can race with this. If the SPTE was updated
2781	 * before the page had been marked as unsync-ed, something like the
2782	 * following could happen:
2783	 *
2784	 * CPU 1                    CPU 2
2785	 * ---------------------------------------------------------------------
2786	 * 1.2 Host updates SPTE
2787	 *     to be writable
2788	 *                      2.1 Guest writes a GPTE for GVA X.
2789	 *                          (GPTE being in the guest page table shadowed
2790	 *                           by the SP from CPU 1.)
2791	 *                          This reads SPTE during the page table walk.
2792	 *                          Since SPTE.W is read as 1, there is no
2793	 *                          fault.
2794	 *
2795	 *                      2.2 Guest issues TLB flush.
2796	 *                          That causes a VM Exit.
2797	 *
2798	 *                      2.3 Walking of unsync pages sees sp->unsync is
2799	 *                          false and skips the page.
2800	 *
2801	 *                      2.4 Guest accesses GVA X.
2802	 *                          Since the mapping in the SP was not updated,
2803	 *                          so the old mapping for GVA X incorrectly
2804	 *                          gets used.
2805	 * 1.1 Host marks SP
2806	 *     as unsync
2807	 *     (sp->unsync = true)
2808	 *
2809	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2810	 * the situation in 2.4 does not arise.  It pairs with the read barrier
2811	 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3.
2812	 */
2813	smp_wmb();
2814
2815	return 0;
2816}
2817
2818static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
2819			u64 *sptep, unsigned int pte_access, gfn_t gfn,
2820			kvm_pfn_t pfn, struct kvm_page_fault *fault)
2821{
2822	struct kvm_mmu_page *sp = sptep_to_sp(sptep);
2823	int level = sp->role.level;
2824	int was_rmapped = 0;
2825	int ret = RET_PF_FIXED;
2826	bool flush = false;
2827	bool wrprot;
2828	u64 spte;
2829
2830	/* Prefetching always gets a writable pfn.  */
2831	bool host_writable = !fault || fault->map_writable;
2832	bool prefetch = !fault || fault->prefetch;
2833	bool write_fault = fault && fault->write;
2834
2835	if (unlikely(is_noslot_pfn(pfn))) {
2836		vcpu->stat.pf_mmio_spte_created++;
2837		mark_mmio_spte(vcpu, sptep, gfn, pte_access);
2838		return RET_PF_EMULATE;
2839	}
2840
2841	if (is_shadow_present_pte(*sptep)) {
2842		if (prefetch)
2843			return RET_PF_SPURIOUS;
2844
2845		/*
2846		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2847		 * the parent of the now unreachable PTE.
2848		 */
2849		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2850			struct kvm_mmu_page *child;
2851			u64 pte = *sptep;
2852
2853			child = spte_to_child_sp(pte);
2854			drop_parent_pte(vcpu->kvm, child, sptep);
2855			flush = true;
2856		} else if (pfn != spte_to_pfn(*sptep)) {
2857			drop_spte(vcpu->kvm, sptep);
2858			flush = true;
2859		} else
2860			was_rmapped = 1;
2861	}
2862
2863	wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch,
2864			   false, host_writable, &spte);
2865
2866	if (*sptep == spte) {
2867		ret = RET_PF_SPURIOUS;
2868	} else {
2869		flush |= mmu_spte_update(sptep, spte);
2870		trace_kvm_mmu_set_spte(level, gfn, sptep);
2871	}
2872
2873	if (wrprot && write_fault)
2874		ret = RET_PF_WRITE_PROTECTED;
2875
2876	if (flush)
2877		kvm_flush_remote_tlbs_gfn(vcpu->kvm, gfn, level);
2878
2879	if (!was_rmapped) {
2880		WARN_ON_ONCE(ret == RET_PF_SPURIOUS);
2881		rmap_add(vcpu, slot, sptep, gfn, pte_access);
2882	} else {
2883		/* Already rmapped but the pte_access bits may have changed. */
2884		kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access);
2885	}
2886
2887	return ret;
2888}
2889
2890static bool kvm_mmu_prefetch_sptes(struct kvm_vcpu *vcpu, gfn_t gfn, u64 *sptep,
2891				   int nr_pages, unsigned int access)
2892{
2893	struct page *pages[PTE_PREFETCH_NUM];
2894	struct kvm_memory_slot *slot;
2895	int i;
2896
2897	if (WARN_ON_ONCE(nr_pages > PTE_PREFETCH_NUM))
2898		return false;
2899
2900	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2901	if (!slot)
2902		return false;
2903
2904	nr_pages = kvm_prefetch_pages(slot, gfn, pages, nr_pages);
2905	if (nr_pages <= 0)
2906		return false;
2907
2908	for (i = 0; i < nr_pages; i++, gfn++, sptep++) {
2909		mmu_set_spte(vcpu, slot, sptep, access, gfn,
2910			     page_to_pfn(pages[i]), NULL);
2911
2912		/*
2913		 * KVM always prefetches writable pages from the primary MMU,
2914		 * and KVM can make its SPTE writable in the fast page handler,
2915		 * without notifying the primary MMU.  Mark pages/folios dirty
2916		 * now to ensure file data is written back if it ends up being
2917		 * written by the guest.  Because KVM's prefetching GUPs
2918		 * writable PTEs, the probability of unnecessary writeback is
2919		 * extremely low.
2920		 */
2921		kvm_release_page_dirty(pages[i]);
2922	}
2923
2924	return true;
2925}
2926
2927static bool direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2928				     struct kvm_mmu_page *sp,
2929				     u64 *start, u64 *end)
2930{
2931	gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(start));
2932	unsigned int access = sp->role.access;
2933
2934	return kvm_mmu_prefetch_sptes(vcpu, gfn, start, end - start, access);
2935}
2936
2937static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2938				  struct kvm_mmu_page *sp, u64 *sptep)
2939{
2940	u64 *spte, *start = NULL;
2941	int i;
2942
2943	WARN_ON_ONCE(!sp->role.direct);
2944
2945	i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1);
2946	spte = sp->spt + i;
2947
2948	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2949		if (is_shadow_present_pte(*spte) || spte == sptep) {
2950			if (!start)
2951				continue;
2952			if (!direct_pte_prefetch_many(vcpu, sp, start, spte))
2953				return;
2954
2955			start = NULL;
2956		} else if (!start)
2957			start = spte;
2958	}
2959	if (start)
2960		direct_pte_prefetch_many(vcpu, sp, start, spte);
2961}
2962
2963static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2964{
2965	struct kvm_mmu_page *sp;
2966
2967	sp = sptep_to_sp(sptep);
2968
2969	/*
2970	 * Without accessed bits, there's no way to distinguish between
2971	 * actually accessed translations and prefetched, so disable pte
2972	 * prefetch if accessed bits aren't available.
2973	 */
2974	if (sp_ad_disabled(sp))
2975		return;
2976
2977	if (sp->role.level > PG_LEVEL_4K)
2978		return;
2979
2980	/*
2981	 * If addresses are being invalidated, skip prefetching to avoid
2982	 * accidentally prefetching those addresses.
2983	 */
2984	if (unlikely(vcpu->kvm->mmu_invalidate_in_progress))
2985		return;
2986
2987	__direct_pte_prefetch(vcpu, sp, sptep);
2988}
2989
2990/*
2991 * Lookup the mapping level for @gfn in the current mm.
2992 *
2993 * WARNING!  Use of host_pfn_mapping_level() requires the caller and the end
2994 * consumer to be tied into KVM's handlers for MMU notifier events!
2995 *
2996 * There are several ways to safely use this helper:
2997 *
2998 * - Check mmu_invalidate_retry_gfn() after grabbing the mapping level, before
2999 *   consuming it.  In this case, mmu_lock doesn't need to be held during the
3000 *   lookup, but it does need to be held while checking the MMU notifier.
3001 *
3002 * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation
3003 *   event for the hva.  This can be done by explicit checking the MMU notifier
3004 *   or by ensuring that KVM already has a valid mapping that covers the hva.
3005 *
3006 * - Do not use the result to install new mappings, e.g. use the host mapping
3007 *   level only to decide whether or not to zap an entry.  In this case, it's
3008 *   not required to hold mmu_lock (though it's highly likely the caller will
3009 *   want to hold mmu_lock anyways, e.g. to modify SPTEs).
3010 *
3011 * Note!  The lookup can still race with modifications to host page tables, but
3012 * the above "rules" ensure KVM will not _consume_ the result of the walk if a
3013 * race with the primary MMU occurs.
3014 */
3015static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn,
3016				  const struct kvm_memory_slot *slot)
3017{
3018	int level = PG_LEVEL_4K;
3019	unsigned long hva;
3020	unsigned long flags;
3021	pgd_t pgd;
3022	p4d_t p4d;
3023	pud_t pud;
3024	pmd_t pmd;
3025
3026	/*
3027	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
3028	 * is not solely for performance, it's also necessary to avoid the
3029	 * "writable" check in __gfn_to_hva_many(), which will always fail on
3030	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
3031	 * page fault steps have already verified the guest isn't writing a
3032	 * read-only memslot.
3033	 */
3034	hva = __gfn_to_hva_memslot(slot, gfn);
3035
3036	/*
3037	 * Disable IRQs to prevent concurrent tear down of host page tables,
3038	 * e.g. if the primary MMU promotes a P*D to a huge page and then frees
3039	 * the original page table.
3040	 */
3041	local_irq_save(flags);
3042
3043	/*
3044	 * Read each entry once.  As above, a non-leaf entry can be promoted to
3045	 * a huge page _during_ this walk.  Re-reading the entry could send the
3046	 * walk into the weeks, e.g. p*d_leaf() returns false (sees the old
3047	 * value) and then p*d_offset() walks into the target huge page instead
3048	 * of the old page table (sees the new value).
3049	 */
3050	pgd = READ_ONCE(*pgd_offset(kvm->mm, hva));
3051	if (pgd_none(pgd))
3052		goto out;
3053
3054	p4d = READ_ONCE(*p4d_offset(&pgd, hva));
3055	if (p4d_none(p4d) || !p4d_present(p4d))
3056		goto out;
3057
3058	pud = READ_ONCE(*pud_offset(&p4d, hva));
3059	if (pud_none(pud) || !pud_present(pud))
3060		goto out;
3061
3062	if (pud_leaf(pud)) {
3063		level = PG_LEVEL_1G;
3064		goto out;
3065	}
3066
3067	pmd = READ_ONCE(*pmd_offset(&pud, hva));
3068	if (pmd_none(pmd) || !pmd_present(pmd))
3069		goto out;
3070
3071	if (pmd_leaf(pmd))
3072		level = PG_LEVEL_2M;
3073
3074out:
3075	local_irq_restore(flags);
3076	return level;
3077}
3078
3079static int __kvm_mmu_max_mapping_level(struct kvm *kvm,
3080				       const struct kvm_memory_slot *slot,
3081				       gfn_t gfn, int max_level, bool is_private)
3082{
3083	struct kvm_lpage_info *linfo;
3084	int host_level;
3085
3086	max_level = min(max_level, max_huge_page_level);
3087	for ( ; max_level > PG_LEVEL_4K; max_level--) {
3088		linfo = lpage_info_slot(gfn, slot, max_level);
3089		if (!linfo->disallow_lpage)
3090			break;
3091	}
3092
3093	if (is_private)
3094		return max_level;
3095
3096	if (max_level == PG_LEVEL_4K)
3097		return PG_LEVEL_4K;
3098
3099	host_level = host_pfn_mapping_level(kvm, gfn, slot);
3100	return min(host_level, max_level);
3101}
3102
3103int kvm_mmu_max_mapping_level(struct kvm *kvm,
3104			      const struct kvm_memory_slot *slot, gfn_t gfn)
3105{
3106	bool is_private = kvm_slot_can_be_private(slot) &&
3107			  kvm_mem_is_private(kvm, gfn);
3108
3109	return __kvm_mmu_max_mapping_level(kvm, slot, gfn, PG_LEVEL_NUM, is_private);
3110}
3111
3112void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3113{
3114	struct kvm_memory_slot *slot = fault->slot;
3115	kvm_pfn_t mask;
3116
3117	fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled;
3118
3119	if (unlikely(fault->max_level == PG_LEVEL_4K))
3120		return;
3121
3122	if (is_error_noslot_pfn(fault->pfn))
3123		return;
3124
3125	if (kvm_slot_dirty_track_enabled(slot))
3126		return;
3127
3128	/*
3129	 * Enforce the iTLB multihit workaround after capturing the requested
3130	 * level, which will be used to do precise, accurate accounting.
3131	 */
3132	fault->req_level = __kvm_mmu_max_mapping_level(vcpu->kvm, slot,
3133						       fault->gfn, fault->max_level,
3134						       fault->is_private);
3135	if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed)
3136		return;
3137
3138	/*
3139	 * mmu_invalidate_retry() was successful and mmu_lock is held, so
3140	 * the pmd can't be split from under us.
3141	 */
3142	fault->goal_level = fault->req_level;
3143	mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1;
3144	VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask));
3145	fault->pfn &= ~mask;
3146}
3147
3148void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level)
3149{
3150	if (cur_level > PG_LEVEL_4K &&
3151	    cur_level == fault->goal_level &&
3152	    is_shadow_present_pte(spte) &&
3153	    !is_large_pte(spte) &&
3154	    spte_to_child_sp(spte)->nx_huge_page_disallowed) {
3155		/*
3156		 * A small SPTE exists for this pfn, but FNAME(fetch),
3157		 * direct_map(), or kvm_tdp_mmu_map() would like to create a
3158		 * large PTE instead: just force them to go down another level,
3159		 * patching back for them into pfn the next 9 bits of the
3160		 * address.
3161		 */
3162		u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) -
3163				KVM_PAGES_PER_HPAGE(cur_level - 1);
3164		fault->pfn |= fault->gfn & page_mask;
3165		fault->goal_level--;
3166	}
3167}
3168
3169static int direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3170{
3171	struct kvm_shadow_walk_iterator it;
3172	struct kvm_mmu_page *sp;
3173	int ret;
3174	gfn_t base_gfn = fault->gfn;
3175
3176	kvm_mmu_hugepage_adjust(vcpu, fault);
3177
3178	trace_kvm_mmu_spte_requested(fault);
3179	for_each_shadow_entry(vcpu, fault->addr, it) {
3180		/*
3181		 * We cannot overwrite existing page tables with an NX
3182		 * large page, as the leaf could be executable.
3183		 */
3184		if (fault->nx_huge_page_workaround_enabled)
3185			disallowed_hugepage_adjust(fault, *it.sptep, it.level);
3186
3187		base_gfn = gfn_round_for_level(fault->gfn, it.level);
3188		if (it.level == fault->goal_level)
3189			break;
3190
3191		sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL);
3192		if (sp == ERR_PTR(-EEXIST))
3193			continue;
3194
3195		link_shadow_page(vcpu, it.sptep, sp);
3196		if (fault->huge_page_disallowed)
3197			account_nx_huge_page(vcpu->kvm, sp,
3198					     fault->req_level >= it.level);
3199	}
3200
3201	if (WARN_ON_ONCE(it.level != fault->goal_level))
3202		return -EFAULT;
3203
3204	ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL,
3205			   base_gfn, fault->pfn, fault);
3206	if (ret == RET_PF_SPURIOUS)
3207		return ret;
3208
3209	direct_pte_prefetch(vcpu, it.sptep);
3210	return ret;
3211}
3212
3213static void kvm_send_hwpoison_signal(struct kvm_memory_slot *slot, gfn_t gfn)
3214{
3215	unsigned long hva = gfn_to_hva_memslot(slot, gfn);
3216
3217	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva, PAGE_SHIFT, current);
3218}
3219
3220static int kvm_handle_error_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3221{
3222	if (is_sigpending_pfn(fault->pfn)) {
3223		kvm_handle_signal_exit(vcpu);
3224		return -EINTR;
3225	}
3226
3227	/*
3228	 * Do not cache the mmio info caused by writing the readonly gfn
3229	 * into the spte otherwise read access on readonly gfn also can
3230	 * caused mmio page fault and treat it as mmio access.
3231	 */
3232	if (fault->pfn == KVM_PFN_ERR_RO_FAULT)
3233		return RET_PF_EMULATE;
3234
3235	if (fault->pfn == KVM_PFN_ERR_HWPOISON) {
3236		kvm_send_hwpoison_signal(fault->slot, fault->gfn);
3237		return RET_PF_RETRY;
3238	}
3239
3240	return -EFAULT;
3241}
3242
3243static int kvm_handle_noslot_fault(struct kvm_vcpu *vcpu,
3244				   struct kvm_page_fault *fault,
3245				   unsigned int access)
3246{
3247	gva_t gva = fault->is_tdp ? 0 : fault->addr;
3248
3249	if (fault->is_private) {
3250		kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
3251		return -EFAULT;
3252	}
3253
3254	vcpu_cache_mmio_info(vcpu, gva, fault->gfn,
3255			     access & shadow_mmio_access_mask);
3256
3257	fault->slot = NULL;
3258	fault->pfn = KVM_PFN_NOSLOT;
3259	fault->map_writable = false;
3260
3261	/*
3262	 * If MMIO caching is disabled, emulate immediately without
3263	 * touching the shadow page tables as attempting to install an
3264	 * MMIO SPTE will just be an expensive nop.
3265	 */
3266	if (unlikely(!enable_mmio_caching))
3267		return RET_PF_EMULATE;
3268
3269	/*
3270	 * Do not create an MMIO SPTE for a gfn greater than host.MAXPHYADDR,
3271	 * any guest that generates such gfns is running nested and is being
3272	 * tricked by L0 userspace (you can observe gfn > L1.MAXPHYADDR if and
3273	 * only if L1's MAXPHYADDR is inaccurate with respect to the
3274	 * hardware's).
3275	 */
3276	if (unlikely(fault->gfn > kvm_mmu_max_gfn()))
3277		return RET_PF_EMULATE;
3278
3279	return RET_PF_CONTINUE;
3280}
3281
3282static bool page_fault_can_be_fast(struct kvm *kvm, struct kvm_page_fault *fault)
3283{
3284	/*
3285	 * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only
3286	 * reach the common page fault handler if the SPTE has an invalid MMIO
3287	 * generation number.  Refreshing the MMIO generation needs to go down
3288	 * the slow path.  Note, EPT Misconfigs do NOT set the PRESENT flag!
3289	 */
3290	if (fault->rsvd)
3291		return false;
3292
3293	/*
3294	 * For hardware-protected VMs, certain conditions like attempting to
3295	 * perform a write to a page which is not in the state that the guest
3296	 * expects it to be in can result in a nested/extended #PF. In this
3297	 * case, the below code might misconstrue this situation as being the
3298	 * result of a write-protected access, and treat it as a spurious case
3299	 * rather than taking any action to satisfy the real source of the #PF
3300	 * such as generating a KVM_EXIT_MEMORY_FAULT. This can lead to the
3301	 * guest spinning on a #PF indefinitely, so don't attempt the fast path
3302	 * in this case.
3303	 *
3304	 * Note that the kvm_mem_is_private() check might race with an
3305	 * attribute update, but this will either result in the guest spinning
3306	 * on RET_PF_SPURIOUS until the update completes, or an actual spurious
3307	 * case might go down the slow path. Either case will resolve itself.
3308	 */
3309	if (kvm->arch.has_private_mem &&
3310	    fault->is_private != kvm_mem_is_private(kvm, fault->gfn))
3311		return false;
3312
3313	/*
3314	 * #PF can be fast if:
3315	 *
3316	 * 1. The shadow page table entry is not present and A/D bits are
3317	 *    disabled _by KVM_, which could mean that the fault is potentially
3318	 *    caused by access tracking (if enabled).  If A/D bits are enabled
3319	 *    by KVM, but disabled by L1 for L2, KVM is forced to disable A/D
3320	 *    bits for L2 and employ access tracking, but the fast page fault
3321	 *    mechanism only supports direct MMUs.
3322	 * 2. The shadow page table entry is present, the access is a write,
3323	 *    and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e.
3324	 *    the fault was caused by a write-protection violation.  If the
3325	 *    SPTE is MMU-writable (determined later), the fault can be fixed
3326	 *    by setting the Writable bit, which can be done out of mmu_lock.
3327	 */
3328	if (!fault->present)
3329		return !kvm_ad_enabled;
3330
3331	/*
3332	 * Note, instruction fetches and writes are mutually exclusive, ignore
3333	 * the "exec" flag.
3334	 */
3335	return fault->write;
3336}
3337
3338/*
3339 * Returns true if the SPTE was fixed successfully. Otherwise,
3340 * someone else modified the SPTE from its original value.
3341 */
3342static bool fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu,
3343				    struct kvm_page_fault *fault,
3344				    u64 *sptep, u64 old_spte, u64 new_spte)
3345{
3346	/*
3347	 * Theoretically we could also set dirty bit (and flush TLB) here in
3348	 * order to eliminate unnecessary PML logging. See comments in
3349	 * set_spte. But fast_page_fault is very unlikely to happen with PML
3350	 * enabled, so we do not do this. This might result in the same GPA
3351	 * to be logged in PML buffer again when the write really happens, and
3352	 * eventually to be called by mark_page_dirty twice. But it's also no
3353	 * harm. This also avoids the TLB flush needed after setting dirty bit
3354	 * so non-PML cases won't be impacted.
3355	 *
3356	 * Compare with make_spte() where instead shadow_dirty_mask is set.
3357	 */
3358	if (!try_cmpxchg64(sptep, &old_spte, new_spte))
3359		return false;
3360
3361	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte))
3362		mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn);
3363
3364	return true;
3365}
3366
3367/*
3368 * Returns the last level spte pointer of the shadow page walk for the given
3369 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
3370 * walk could be performed, returns NULL and *spte does not contain valid data.
3371 *
3372 * Contract:
3373 *  - Must be called between walk_shadow_page_lockless_{begin,end}.
3374 *  - The returned sptep must not be used after walk_shadow_page_lockless_end.
3375 */
3376static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
3377{
3378	struct kvm_shadow_walk_iterator iterator;
3379	u64 old_spte;
3380	u64 *sptep = NULL;
3381
3382	for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
3383		sptep = iterator.sptep;
3384		*spte = old_spte;
3385	}
3386
3387	return sptep;
3388}
3389
3390/*
3391 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3392 */
3393static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3394{
3395	struct kvm_mmu_page *sp;
3396	int ret = RET_PF_INVALID;
3397	u64 spte;
3398	u64 *sptep;
3399	uint retry_count = 0;
3400
3401	if (!page_fault_can_be_fast(vcpu->kvm, fault))
3402		return ret;
3403
3404	walk_shadow_page_lockless_begin(vcpu);
3405
3406	do {
3407		u64 new_spte;
3408
3409		if (tdp_mmu_enabled)
3410			sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->gfn, &spte);
3411		else
3412			sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3413
3414		/*
3415		 * It's entirely possible for the mapping to have been zapped
3416		 * by a different task, but the root page should always be
3417		 * available as the vCPU holds a reference to its root(s).
3418		 */
3419		if (WARN_ON_ONCE(!sptep))
3420			spte = FROZEN_SPTE;
3421
3422		if (!is_shadow_present_pte(spte))
3423			break;
3424
3425		sp = sptep_to_sp(sptep);
3426		if (!is_last_spte(spte, sp->role.level))
3427			break;
3428
3429		/*
3430		 * Check whether the memory access that caused the fault would
3431		 * still cause it if it were to be performed right now. If not,
3432		 * then this is a spurious fault caused by TLB lazily flushed,
3433		 * or some other CPU has already fixed the PTE after the
3434		 * current CPU took the fault.
3435		 *
3436		 * Need not check the access of upper level table entries since
3437		 * they are always ACC_ALL.
3438		 */
3439		if (is_access_allowed(fault, spte)) {
3440			ret = RET_PF_SPURIOUS;
3441			break;
3442		}
3443
3444		new_spte = spte;
3445
3446		/*
3447		 * KVM only supports fixing page faults outside of MMU lock for
3448		 * direct MMUs, nested MMUs are always indirect, and KVM always
3449		 * uses A/D bits for non-nested MMUs.  Thus, if A/D bits are
3450		 * enabled, the SPTE can't be an access-tracked SPTE.
3451		 */
3452		if (unlikely(!kvm_ad_enabled) && is_access_track_spte(spte))
3453			new_spte = restore_acc_track_spte(new_spte) |
3454				   shadow_accessed_mask;
3455
3456		/*
3457		 * To keep things simple, only SPTEs that are MMU-writable can
3458		 * be made fully writable outside of mmu_lock, e.g. only SPTEs
3459		 * that were write-protected for dirty-logging or access
3460		 * tracking are handled here.  Don't bother checking if the
3461		 * SPTE is writable to prioritize running with A/D bits enabled.
3462		 * The is_access_allowed() check above handles the common case
3463		 * of the fault being spurious, and the SPTE is known to be
3464		 * shadow-present, i.e. except for access tracking restoration
3465		 * making the new SPTE writable, the check is wasteful.
3466		 */
3467		if (fault->write && is_mmu_writable_spte(spte)) {
3468			new_spte |= PT_WRITABLE_MASK;
3469
3470			/*
3471			 * Do not fix write-permission on the large spte when
3472			 * dirty logging is enabled. Since we only dirty the
3473			 * first page into the dirty-bitmap in
3474			 * fast_pf_fix_direct_spte(), other pages are missed
3475			 * if its slot has dirty logging enabled.
3476			 *
3477			 * Instead, we let the slow page fault path create a
3478			 * normal spte to fix the access.
3479			 */
3480			if (sp->role.level > PG_LEVEL_4K &&
3481			    kvm_slot_dirty_track_enabled(fault->slot))
3482				break;
3483		}
3484
3485		/* Verify that the fault can be handled in the fast path */
3486		if (new_spte == spte ||
3487		    !is_access_allowed(fault, new_spte))
3488			break;
3489
3490		/*
3491		 * Currently, fast page fault only works for direct mapping
3492		 * since the gfn is not stable for indirect shadow page. See
3493		 * Documentation/virt/kvm/locking.rst to get more detail.
3494		 */
3495		if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) {
3496			ret = RET_PF_FIXED;
3497			break;
3498		}
3499
3500		if (++retry_count > 4) {
3501			pr_warn_once("Fast #PF retrying more than 4 times.\n");
3502			break;
3503		}
3504
3505	} while (true);
3506
3507	trace_fast_page_fault(vcpu, fault, sptep, spte, ret);
3508	walk_shadow_page_lockless_end(vcpu);
3509
3510	if (ret != RET_PF_INVALID)
3511		vcpu->stat.pf_fast++;
3512
3513	return ret;
3514}
3515
3516static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3517			       struct list_head *invalid_list)
3518{
3519	struct kvm_mmu_page *sp;
3520
3521	if (!VALID_PAGE(*root_hpa))
3522		return;
3523
3524	sp = root_to_sp(*root_hpa);
3525	if (WARN_ON_ONCE(!sp))
3526		return;
3527
3528	if (is_tdp_mmu_page(sp)) {
3529		lockdep_assert_held_read(&kvm->mmu_lock);
3530		kvm_tdp_mmu_put_root(kvm, sp);
3531	} else {
3532		lockdep_assert_held_write(&kvm->mmu_lock);
3533		if (!--sp->root_count && sp->role.invalid)
3534			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3535	}
3536
3537	*root_hpa = INVALID_PAGE;
3538}
3539
3540/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3541void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
3542			ulong roots_to_free)
3543{
3544	bool is_tdp_mmu = tdp_mmu_enabled && mmu->root_role.direct;
3545	int i;
3546	LIST_HEAD(invalid_list);
3547	bool free_active_root;
3548
3549	WARN_ON_ONCE(roots_to_free & ~KVM_MMU_ROOTS_ALL);
3550
3551	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3552
3553	/* Before acquiring the MMU lock, see if we need to do any real work. */
3554	free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT)
3555		&& VALID_PAGE(mmu->root.hpa);
3556
3557	if (!free_active_root) {
3558		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3559			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3560			    VALID_PAGE(mmu->prev_roots[i].hpa))
3561				break;
3562
3563		if (i == KVM_MMU_NUM_PREV_ROOTS)
3564			return;
3565	}
3566
3567	if (is_tdp_mmu)
3568		read_lock(&kvm->mmu_lock);
3569	else
3570		write_lock(&kvm->mmu_lock);
3571
3572	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3573		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3574			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3575					   &invalid_list);
3576
3577	if (free_active_root) {
3578		if (kvm_mmu_is_dummy_root(mmu->root.hpa)) {
3579			/* Nothing to cleanup for dummy roots. */
3580		} else if (root_to_sp(mmu->root.hpa)) {
3581			mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list);
3582		} else if (mmu->pae_root) {
3583			for (i = 0; i < 4; ++i) {
3584				if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3585					continue;
3586
3587				mmu_free_root_page(kvm, &mmu->pae_root[i],
3588						   &invalid_list);
3589				mmu->pae_root[i] = INVALID_PAE_ROOT;
3590			}
3591		}
3592		mmu->root.hpa = INVALID_PAGE;
3593		mmu->root.pgd = 0;
3594	}
3595
3596	if (is_tdp_mmu) {
3597		read_unlock(&kvm->mmu_lock);
3598		WARN_ON_ONCE(!list_empty(&invalid_list));
3599	} else {
3600		kvm_mmu_commit_zap_page(kvm, &invalid_list);
3601		write_unlock(&kvm->mmu_lock);
3602	}
3603}
3604EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3605
3606void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu)
3607{
3608	unsigned long roots_to_free = 0;
3609	struct kvm_mmu_page *sp;
3610	hpa_t root_hpa;
3611	int i;
3612
3613	/*
3614	 * This should not be called while L2 is active, L2 can't invalidate
3615	 * _only_ its own roots, e.g. INVVPID unconditionally exits.
3616	 */
3617	WARN_ON_ONCE(mmu->root_role.guest_mode);
3618
3619	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3620		root_hpa = mmu->prev_roots[i].hpa;
3621		if (!VALID_PAGE(root_hpa))
3622			continue;
3623
3624		sp = root_to_sp(root_hpa);
3625		if (!sp || sp->role.guest_mode)
3626			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3627	}
3628
3629	kvm_mmu_free_roots(kvm, mmu, roots_to_free);
3630}
3631EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);
3632
3633static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant,
3634			    u8 level)
3635{
3636	union kvm_mmu_page_role role = vcpu->arch.mmu->root_role;
3637	struct kvm_mmu_page *sp;
3638
3639	role.level = level;
3640	role.quadrant = quadrant;
3641
3642	WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte);
3643	WARN_ON_ONCE(role.direct && role.has_4_byte_gpte);
3644
3645	sp = kvm_mmu_get_shadow_page(vcpu, gfn, role);
3646	++sp->root_count;
3647
3648	return __pa(sp->spt);
3649}
3650
3651static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3652{
3653	struct kvm_mmu *mmu = vcpu->arch.mmu;
3654	u8 shadow_root_level = mmu->root_role.level;
3655	hpa_t root;
3656	unsigned i;
3657	int r;
3658
3659	if (tdp_mmu_enabled)
3660		return kvm_tdp_mmu_alloc_root(vcpu);
3661
3662	write_lock(&vcpu->kvm->mmu_lock);
3663	r = make_mmu_pages_available(vcpu);
3664	if (r < 0)
3665		goto out_unlock;
3666
3667	if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3668		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level);
3669		mmu->root.hpa = root;
3670	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3671		if (WARN_ON_ONCE(!mmu->pae_root)) {
3672			r = -EIO;
3673			goto out_unlock;
3674		}
3675
3676		for (i = 0; i < 4; ++i) {
3677			WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3678
3679			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0,
3680					      PT32_ROOT_LEVEL);
3681			mmu->pae_root[i] = root | PT_PRESENT_MASK |
3682					   shadow_me_value;
3683		}
3684		mmu->root.hpa = __pa(mmu->pae_root);
3685	} else {
3686		WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3687		r = -EIO;
3688		goto out_unlock;
3689	}
3690
3691	/* root.pgd is ignored for direct MMUs. */
3692	mmu->root.pgd = 0;
3693out_unlock:
3694	write_unlock(&vcpu->kvm->mmu_lock);
3695	return r;
3696}
3697
3698static int mmu_first_shadow_root_alloc(struct kvm *kvm)
3699{
3700	struct kvm_memslots *slots;
3701	struct kvm_memory_slot *slot;
3702	int r = 0, i, bkt;
3703
3704	/*
3705	 * Check if this is the first shadow root being allocated before
3706	 * taking the lock.
3707	 */
3708	if (kvm_shadow_root_allocated(kvm))
3709		return 0;
3710
3711	mutex_lock(&kvm->slots_arch_lock);
3712
3713	/* Recheck, under the lock, whether this is the first shadow root. */
3714	if (kvm_shadow_root_allocated(kvm))
3715		goto out_unlock;
3716
3717	/*
3718	 * Check if anything actually needs to be allocated, e.g. all metadata
3719	 * will be allocated upfront if TDP is disabled.
3720	 */
3721	if (kvm_memslots_have_rmaps(kvm) &&
3722	    kvm_page_track_write_tracking_enabled(kvm))
3723		goto out_success;
3724
3725	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
3726		slots = __kvm_memslots(kvm, i);
3727		kvm_for_each_memslot(slot, bkt, slots) {
3728			/*
3729			 * Both of these functions are no-ops if the target is
3730			 * already allocated, so unconditionally calling both
3731			 * is safe.  Intentionally do NOT free allocations on
3732			 * failure to avoid having to track which allocations
3733			 * were made now versus when the memslot was created.
3734			 * The metadata is guaranteed to be freed when the slot
3735			 * is freed, and will be kept/used if userspace retries
3736			 * KVM_RUN instead of killing the VM.
3737			 */
3738			r = memslot_rmap_alloc(slot, slot->npages);
3739			if (r)
3740				goto out_unlock;
3741			r = kvm_page_track_write_tracking_alloc(slot);
3742			if (r)
3743				goto out_unlock;
3744		}
3745	}
3746
3747	/*
3748	 * Ensure that shadow_root_allocated becomes true strictly after
3749	 * all the related pointers are set.
3750	 */
3751out_success:
3752	smp_store_release(&kvm->arch.shadow_root_allocated, true);
3753
3754out_unlock:
3755	mutex_unlock(&kvm->slots_arch_lock);
3756	return r;
3757}
3758
3759static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3760{
3761	struct kvm_mmu *mmu = vcpu->arch.mmu;
3762	u64 pdptrs[4], pm_mask;
3763	gfn_t root_gfn, root_pgd;
3764	int quadrant, i, r;
3765	hpa_t root;
3766
3767	root_pgd = kvm_mmu_get_guest_pgd(vcpu, mmu);
3768	root_gfn = (root_pgd & __PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
3769
3770	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3771		mmu->root.hpa = kvm_mmu_get_dummy_root();
3772		return 0;
3773	}
3774
3775	/*
3776	 * On SVM, reading PDPTRs might access guest memory, which might fault
3777	 * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
3778	 */
3779	if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
3780		for (i = 0; i < 4; ++i) {
3781			pdptrs[i] = mmu->get_pdptr(vcpu, i);
3782			if (!(pdptrs[i] & PT_PRESENT_MASK))
3783				continue;
3784
3785			if (!kvm_vcpu_is_visible_gfn(vcpu, pdptrs[i] >> PAGE_SHIFT))
3786				pdptrs[i] = 0;
3787		}
3788	}
3789
3790	r = mmu_first_shadow_root_alloc(vcpu->kvm);
3791	if (r)
3792		return r;
3793
3794	write_lock(&vcpu->kvm->mmu_lock);
3795	r = make_mmu_pages_available(vcpu);
3796	if (r < 0)
3797		goto out_unlock;
3798
3799	/*
3800	 * Do we shadow a long mode page table? If so we need to
3801	 * write-protect the guests page table root.
3802	 */
3803	if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
3804		root = mmu_alloc_root(vcpu, root_gfn, 0,
3805				      mmu->root_role.level);
3806		mmu->root.hpa = root;
3807		goto set_root_pgd;
3808	}
3809
3810	if (WARN_ON_ONCE(!mmu->pae_root)) {
3811		r = -EIO;
3812		goto out_unlock;
3813	}
3814
3815	/*
3816	 * We shadow a 32 bit page table. This may be a legacy 2-level
3817	 * or a PAE 3-level page table. In either case we need to be aware that
3818	 * the shadow page table may be a PAE or a long mode page table.
3819	 */
3820	pm_mask = PT_PRESENT_MASK | shadow_me_value;
3821	if (mmu->root_role.level >= PT64_ROOT_4LEVEL) {
3822		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3823
3824		if (WARN_ON_ONCE(!mmu->pml4_root)) {
3825			r = -EIO;
3826			goto out_unlock;
3827		}
3828		mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3829
3830		if (mmu->root_role.level == PT64_ROOT_5LEVEL) {
3831			if (WARN_ON_ONCE(!mmu->pml5_root)) {
3832				r = -EIO;
3833				goto out_unlock;
3834			}
3835			mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
3836		}
3837	}
3838
3839	for (i = 0; i < 4; ++i) {
3840		WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3841
3842		if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
3843			if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3844				mmu->pae_root[i] = INVALID_PAE_ROOT;
3845				continue;
3846			}
3847			root_gfn = pdptrs[i] >> PAGE_SHIFT;
3848		}
3849
3850		/*
3851		 * If shadowing 32-bit non-PAE page tables, each PAE page
3852		 * directory maps one quarter of the guest's non-PAE page
3853		 * directory. Othwerise each PAE page direct shadows one guest
3854		 * PAE page directory so that quadrant should be 0.
3855		 */
3856		quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0;
3857
3858		root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL);
3859		mmu->pae_root[i] = root | pm_mask;
3860	}
3861
3862	if (mmu->root_role.level == PT64_ROOT_5LEVEL)
3863		mmu->root.hpa = __pa(mmu->pml5_root);
3864	else if (mmu->root_role.level == PT64_ROOT_4LEVEL)
3865		mmu->root.hpa = __pa(mmu->pml4_root);
3866	else
3867		mmu->root.hpa = __pa(mmu->pae_root);
3868
3869set_root_pgd:
3870	mmu->root.pgd = root_pgd;
3871out_unlock:
3872	write_unlock(&vcpu->kvm->mmu_lock);
3873
3874	return r;
3875}
3876
3877static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
3878{
3879	struct kvm_mmu *mmu = vcpu->arch.mmu;
3880	bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL;
3881	u64 *pml5_root = NULL;
3882	u64 *pml4_root = NULL;
3883	u64 *pae_root;
3884
3885	/*
3886	 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3887	 * tables are allocated and initialized at root creation as there is no
3888	 * equivalent level in the guest's NPT to shadow.  Allocate the tables
3889	 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3890	 */
3891	if (mmu->root_role.direct ||
3892	    mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL ||
3893	    mmu->root_role.level < PT64_ROOT_4LEVEL)
3894		return 0;
3895
3896	/*
3897	 * NPT, the only paging mode that uses this horror, uses a fixed number
3898	 * of levels for the shadow page tables, e.g. all MMUs are 4-level or
3899	 * all MMus are 5-level.  Thus, this can safely require that pml5_root
3900	 * is allocated if the other roots are valid and pml5 is needed, as any
3901	 * prior MMU would also have required pml5.
3902	 */
3903	if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
3904		return 0;
3905
3906	/*
3907	 * The special roots should always be allocated in concert.  Yell and
3908	 * bail if KVM ends up in a state where only one of the roots is valid.
3909	 */
3910	if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
3911			 (need_pml5 && mmu->pml5_root)))
3912		return -EIO;
3913
3914	/*
3915	 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
3916	 * doesn't need to be decrypted.
3917	 */
3918	pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3919	if (!pae_root)
3920		return -ENOMEM;
3921
3922#ifdef CONFIG_X86_64
3923	pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3924	if (!pml4_root)
3925		goto err_pml4;
3926
3927	if (need_pml5) {
3928		pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3929		if (!pml5_root)
3930			goto err_pml5;
3931	}
3932#endif
3933
3934	mmu->pae_root = pae_root;
3935	mmu->pml4_root = pml4_root;
3936	mmu->pml5_root = pml5_root;
3937
3938	return 0;
3939
3940#ifdef CONFIG_X86_64
3941err_pml5:
3942	free_page((unsigned long)pml4_root);
3943err_pml4:
3944	free_page((unsigned long)pae_root);
3945	return -ENOMEM;
3946#endif
3947}
3948
3949static bool is_unsync_root(hpa_t root)
3950{
3951	struct kvm_mmu_page *sp;
3952
3953	if (!VALID_PAGE(root) || kvm_mmu_is_dummy_root(root))
3954		return false;
3955
3956	/*
3957	 * The read barrier orders the CPU's read of SPTE.W during the page table
3958	 * walk before the reads of sp->unsync/sp->unsync_children here.
3959	 *
3960	 * Even if another CPU was marking the SP as unsync-ed simultaneously,
3961	 * any guest page table changes are not guaranteed to be visible anyway
3962	 * until this VCPU issues a TLB flush strictly after those changes are
3963	 * made.  We only need to ensure that the other CPU sets these flags
3964	 * before any actual changes to the page tables are made.  The comments
3965	 * in mmu_try_to_unsync_pages() describe what could go wrong if this
3966	 * requirement isn't satisfied.
3967	 */
3968	smp_rmb();
3969	sp = root_to_sp(root);
3970
3971	/*
3972	 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the
3973	 * PDPTEs for a given PAE root need to be synchronized individually.
3974	 */
3975	if (WARN_ON_ONCE(!sp))
3976		return false;
3977
3978	if (sp->unsync || sp->unsync_children)
3979		return true;
3980
3981	return false;
3982}
3983
3984void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3985{
3986	int i;
3987	struct kvm_mmu_page *sp;
3988
3989	if (vcpu->arch.mmu->root_role.direct)
3990		return;
3991
3992	if (!VALID_PAGE(vcpu->arch.mmu->root.hpa))
3993		return;
3994
3995	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3996
3997	if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
3998		hpa_t root = vcpu->arch.mmu->root.hpa;
3999
4000		if (!is_unsync_root(root))
4001			return;
4002
4003		sp = root_to_sp(root);
4004
4005		write_lock(&vcpu->kvm->mmu_lock);
4006		mmu_sync_children(vcpu, sp, true);
4007		write_unlock(&vcpu->kvm->mmu_lock);
4008		return;
4009	}
4010
4011	write_lock(&vcpu->kvm->mmu_lock);
4012
4013	for (i = 0; i < 4; ++i) {
4014		hpa_t root = vcpu->arch.mmu->pae_root[i];
4015
4016		if (IS_VALID_PAE_ROOT(root)) {
4017			sp = spte_to_child_sp(root);
4018			mmu_sync_children(vcpu, sp, true);
4019		}
4020	}
4021
4022	write_unlock(&vcpu->kvm->mmu_lock);
4023}
4024
4025void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu)
4026{
4027	unsigned long roots_to_free = 0;
4028	int i;
4029
4030	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4031		if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa))
4032			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
4033
4034	/* sync prev_roots by simply freeing them */
4035	kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free);
4036}
4037
4038static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4039				  gpa_t vaddr, u64 access,
4040				  struct x86_exception *exception)
4041{
4042	if (exception)
4043		exception->error_code = 0;
4044	return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception);
4045}
4046
4047static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4048{
4049	/*
4050	 * A nested guest cannot use the MMIO cache if it is using nested
4051	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
4052	 */
4053	if (mmu_is_nested(vcpu))
4054		return false;
4055
4056	if (direct)
4057		return vcpu_match_mmio_gpa(vcpu, addr);
4058
4059	return vcpu_match_mmio_gva(vcpu, addr);
4060}
4061
4062/*
4063 * Return the level of the lowest level SPTE added to sptes.
4064 * That SPTE may be non-present.
4065 *
4066 * Must be called between walk_shadow_page_lockless_{begin,end}.
4067 */
4068static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
4069{
4070	struct kvm_shadow_walk_iterator iterator;
4071	int leaf = -1;
4072	u64 spte;
4073
4074	for (shadow_walk_init(&iterator, vcpu, addr),
4075	     *root_level = iterator.level;
4076	     shadow_walk_okay(&iterator);
4077	     __shadow_walk_next(&iterator, spte)) {
4078		leaf = iterator.level;
4079		spte = mmu_spte_get_lockless(iterator.sptep);
4080
4081		sptes[leaf] = spte;
4082	}
4083
4084	return leaf;
4085}
4086
4087static int get_sptes_lockless(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes,
4088			      int *root_level)
4089{
4090	int leaf;
4091
4092	walk_shadow_page_lockless_begin(vcpu);
4093
4094	if (is_tdp_mmu_active(vcpu))
4095		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, root_level);
4096	else
4097		leaf = get_walk(vcpu, addr, sptes, root_level);
4098
4099	walk_shadow_page_lockless_end(vcpu);
4100	return leaf;
4101}
4102
4103/* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
4104static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
4105{
4106	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
4107	struct rsvd_bits_validate *rsvd_check;
4108	int root, leaf, level;
4109	bool reserved = false;
4110
4111	leaf = get_sptes_lockless(vcpu, addr, sptes, &root);
4112	if (unlikely(leaf < 0)) {
4113		*sptep = 0ull;
4114		return reserved;
4115	}
4116
4117	*sptep = sptes[leaf];
4118
4119	/*
4120	 * Skip reserved bits checks on the terminal leaf if it's not a valid
4121	 * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
4122	 * design, always have reserved bits set.  The purpose of the checks is
4123	 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
4124	 */
4125	if (!is_shadow_present_pte(sptes[leaf]))
4126		leaf++;
4127
4128	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
4129
4130	for (level = root; level >= leaf; level--)
4131		reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
4132
4133	if (reserved) {
4134		pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
4135		       __func__, addr);
4136		for (level = root; level >= leaf; level--)
4137			pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
4138			       sptes[level], level,
4139			       get_rsvd_bits(rsvd_check, sptes[level], level));
4140	}
4141
4142	return reserved;
4143}
4144
4145static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4146{
4147	u64 spte;
4148	bool reserved;
4149
4150	if (mmio_info_in_cache(vcpu, addr, direct))
4151		return RET_PF_EMULATE;
4152
4153	reserved = get_mmio_spte(vcpu, addr, &spte);
4154	if (WARN_ON_ONCE(reserved))
4155		return -EINVAL;
4156
4157	if (is_mmio_spte(vcpu->kvm, spte)) {
4158		gfn_t gfn = get_mmio_spte_gfn(spte);
4159		unsigned int access = get_mmio_spte_access(spte);
4160
4161		if (!check_mmio_spte(vcpu, spte))
4162			return RET_PF_INVALID;
4163
4164		if (direct)
4165			addr = 0;
4166
4167		trace_handle_mmio_page_fault(addr, gfn, access);
4168		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
4169		return RET_PF_EMULATE;
4170	}
4171
4172	/*
4173	 * If the page table is zapped by other cpus, let CPU fault again on
4174	 * the address.
4175	 */
4176	return RET_PF_RETRY;
4177}
4178
4179static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
4180					 struct kvm_page_fault *fault)
4181{
4182	if (unlikely(fault->rsvd))
4183		return false;
4184
4185	if (!fault->present || !fault->write)
4186		return false;
4187
4188	/*
4189	 * guest is writing the page which is write tracked which can
4190	 * not be fixed by page fault handler.
4191	 */
4192	if (kvm_gfn_is_write_tracked(vcpu->kvm, fault->slot, fault->gfn))
4193		return true;
4194
4195	return false;
4196}
4197
4198static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4199{
4200	struct kvm_shadow_walk_iterator iterator;
4201	u64 spte;
4202
4203	walk_shadow_page_lockless_begin(vcpu);
4204	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
4205		clear_sp_write_flooding_count(iterator.sptep);
4206	walk_shadow_page_lockless_end(vcpu);
4207}
4208
4209static u32 alloc_apf_token(struct kvm_vcpu *vcpu)
4210{
4211	/* make sure the token value is not 0 */
4212	u32 id = vcpu->arch.apf.id;
4213
4214	if (id << 12 == 0)
4215		vcpu->arch.apf.id = 1;
4216
4217	return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4218}
4219
4220static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu,
4221				    struct kvm_page_fault *fault)
4222{
4223	struct kvm_arch_async_pf arch;
4224
4225	arch.token = alloc_apf_token(vcpu);
4226	arch.gfn = fault->gfn;
4227	arch.error_code = fault->error_code;
4228	arch.direct_map = vcpu->arch.mmu->root_role.direct;
4229	arch.cr3 = kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu);
4230
4231	return kvm_setup_async_pf(vcpu, fault->addr,
4232				  kvm_vcpu_gfn_to_hva(vcpu, fault->gfn), &arch);
4233}
4234
4235void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
4236{
4237	int r;
4238
4239	if (WARN_ON_ONCE(work->arch.error_code & PFERR_PRIVATE_ACCESS))
4240		return;
4241
4242	if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) ||
4243	      work->wakeup_all)
4244		return;
4245
4246	r = kvm_mmu_reload(vcpu);
4247	if (unlikely(r))
4248		return;
4249
4250	if (!vcpu->arch.mmu->root_role.direct &&
4251	      work->arch.cr3 != kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu))
4252		return;
4253
4254	r = kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, work->arch.error_code,
4255				  true, NULL, NULL);
4256
4257	/*
4258	 * Account fixed page faults, otherwise they'll never be counted, but
4259	 * ignore stats for all other return times.  Page-ready "faults" aren't
4260	 * truly spurious and never trigger emulation
4261	 */
4262	if (r == RET_PF_FIXED)
4263		vcpu->stat.pf_fixed++;
4264}
4265
4266static inline u8 kvm_max_level_for_order(int order)
4267{
4268	BUILD_BUG_ON(KVM_MAX_HUGEPAGE_LEVEL > PG_LEVEL_1G);
4269
4270	KVM_MMU_WARN_ON(order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G) &&
4271			order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M) &&
4272			order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K));
4273
4274	if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G))
4275		return PG_LEVEL_1G;
4276
4277	if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M))
4278		return PG_LEVEL_2M;
4279
4280	return PG_LEVEL_4K;
4281}
4282
4283static u8 kvm_max_private_mapping_level(struct kvm *kvm, kvm_pfn_t pfn,
4284					u8 max_level, int gmem_order)
4285{
4286	u8 req_max_level;
4287
4288	if (max_level == PG_LEVEL_4K)
4289		return PG_LEVEL_4K;
4290
4291	max_level = min(kvm_max_level_for_order(gmem_order), max_level);
4292	if (max_level == PG_LEVEL_4K)
4293		return PG_LEVEL_4K;
4294
4295	req_max_level = kvm_x86_call(private_max_mapping_level)(kvm, pfn);
4296	if (req_max_level)
4297		max_level = min(max_level, req_max_level);
4298
4299	return max_level;
4300}
4301
4302static void kvm_mmu_finish_page_fault(struct kvm_vcpu *vcpu,
4303				      struct kvm_page_fault *fault, int r)
4304{
4305	kvm_release_faultin_page(vcpu->kvm, fault->refcounted_page,
4306				 r == RET_PF_RETRY, fault->map_writable);
4307}
4308
4309static int kvm_mmu_faultin_pfn_private(struct kvm_vcpu *vcpu,
4310				       struct kvm_page_fault *fault)
4311{
4312	int max_order, r;
4313
4314	if (!kvm_slot_can_be_private(fault->slot)) {
4315		kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
4316		return -EFAULT;
4317	}
4318
4319	r = kvm_gmem_get_pfn(vcpu->kvm, fault->slot, fault->gfn, &fault->pfn,
4320			     &fault->refcounted_page, &max_order);
4321	if (r) {
4322		kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
4323		return r;
4324	}
4325
4326	fault->map_writable = !(fault->slot->flags & KVM_MEM_READONLY);
4327	fault->max_level = kvm_max_private_mapping_level(vcpu->kvm, fault->pfn,
4328							 fault->max_level, max_order);
4329
4330	return RET_PF_CONTINUE;
4331}
4332
4333static int __kvm_mmu_faultin_pfn(struct kvm_vcpu *vcpu,
4334				 struct kvm_page_fault *fault)
4335{
4336	unsigned int foll = fault->write ? FOLL_WRITE : 0;
4337
4338	if (fault->is_private)
4339		return kvm_mmu_faultin_pfn_private(vcpu, fault);
4340
4341	foll |= FOLL_NOWAIT;
4342	fault->pfn = __kvm_faultin_pfn(fault->slot, fault->gfn, foll,
4343				       &fault->map_writable, &fault->refcounted_page);
4344
4345	/*
4346	 * If resolving the page failed because I/O is needed to fault-in the
4347	 * page, then either set up an asynchronous #PF to do the I/O, or if
4348	 * doing an async #PF isn't possible, retry with I/O allowed.  All
4349	 * other failures are terminal, i.e. retrying won't help.
4350	 */
4351	if (fault->pfn != KVM_PFN_ERR_NEEDS_IO)
4352		return RET_PF_CONTINUE;
4353
4354	if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) {
4355		trace_kvm_try_async_get_page(fault->addr, fault->gfn);
4356		if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) {
4357			trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn);
4358			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4359			return RET_PF_RETRY;
4360		} else if (kvm_arch_setup_async_pf(vcpu, fault)) {
4361			return RET_PF_RETRY;
4362		}
4363	}
4364
4365	/*
4366	 * Allow gup to bail on pending non-fatal signals when it's also allowed
4367	 * to wait for IO.  Note, gup always bails if it is unable to quickly
4368	 * get a page and a fatal signal, i.e. SIGKILL, is pending.
4369	 */
4370	foll |= FOLL_INTERRUPTIBLE;
4371	foll &= ~FOLL_NOWAIT;
4372	fault->pfn = __kvm_faultin_pfn(fault->slot, fault->gfn, foll,
4373				       &fault->map_writable, &fault->refcounted_page);
4374
4375	return RET_PF_CONTINUE;
4376}
4377
4378static int kvm_mmu_faultin_pfn(struct kvm_vcpu *vcpu,
4379			       struct kvm_page_fault *fault, unsigned int access)
4380{
4381	struct kvm_memory_slot *slot = fault->slot;
4382	int ret;
4383
4384	/*
4385	 * Note that the mmu_invalidate_seq also serves to detect a concurrent
4386	 * change in attributes.  is_page_fault_stale() will detect an
4387	 * invalidation relate to fault->fn and resume the guest without
4388	 * installing a mapping in the page tables.
4389	 */
4390	fault->mmu_seq = vcpu->kvm->mmu_invalidate_seq;
4391	smp_rmb();
4392
4393	/*
4394	 * Now that we have a snapshot of mmu_invalidate_seq we can check for a
4395	 * private vs. shared mismatch.
4396	 */
4397	if (fault->is_private != kvm_mem_is_private(vcpu->kvm, fault->gfn)) {
4398		kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
4399		return -EFAULT;
4400	}
4401
4402	if (unlikely(!slot))
4403		return kvm_handle_noslot_fault(vcpu, fault, access);
4404
4405	/*
4406	 * Retry the page fault if the gfn hit a memslot that is being deleted
4407	 * or moved.  This ensures any existing SPTEs for the old memslot will
4408	 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
4409	 */
4410	if (slot->flags & KVM_MEMSLOT_INVALID)
4411		return RET_PF_RETRY;
4412
4413	if (slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) {
4414		/*
4415		 * Don't map L1's APIC access page into L2, KVM doesn't support
4416		 * using APICv/AVIC to accelerate L2 accesses to L1's APIC,
4417		 * i.e. the access needs to be emulated.  Emulating access to
4418		 * L1's APIC is also correct if L1 is accelerating L2's own
4419		 * virtual APIC, but for some reason L1 also maps _L1's_ APIC
4420		 * into L2.  Note, vcpu_is_mmio_gpa() always treats access to
4421		 * the APIC as MMIO.  Allow an MMIO SPTE to be created, as KVM
4422		 * uses different roots for L1 vs. L2, i.e. there is no danger
4423		 * of breaking APICv/AVIC for L1.
4424		 */
4425		if (is_guest_mode(vcpu))
4426			return kvm_handle_noslot_fault(vcpu, fault, access);
4427
4428		/*
4429		 * If the APIC access page exists but is disabled, go directly
4430		 * to emulation without caching the MMIO access or creating a
4431		 * MMIO SPTE.  That way the cache doesn't need to be purged
4432		 * when the AVIC is re-enabled.
4433		 */
4434		if (!kvm_apicv_activated(vcpu->kvm))
4435			return RET_PF_EMULATE;
4436	}
4437
4438	/*
4439	 * Check for a relevant mmu_notifier invalidation event before getting
4440	 * the pfn from the primary MMU, and before acquiring mmu_lock.
4441	 *
4442	 * For mmu_lock, if there is an in-progress invalidation and the kernel
4443	 * allows preemption, the invalidation task may drop mmu_lock and yield
4444	 * in response to mmu_lock being contended, which is *very* counter-
4445	 * productive as this vCPU can't actually make forward progress until
4446	 * the invalidation completes.
4447	 *
4448	 * Retrying now can also avoid unnessary lock contention in the primary
4449	 * MMU, as the primary MMU doesn't necessarily hold a single lock for
4450	 * the duration of the invalidation, i.e. faulting in a conflicting pfn
4451	 * can cause the invalidation to take longer by holding locks that are
4452	 * needed to complete the invalidation.
4453	 *
4454	 * Do the pre-check even for non-preemtible kernels, i.e. even if KVM
4455	 * will never yield mmu_lock in response to contention, as this vCPU is
4456	 * *guaranteed* to need to retry, i.e. waiting until mmu_lock is held
4457	 * to detect retry guarantees the worst case latency for the vCPU.
4458	 */
4459	if (mmu_invalidate_retry_gfn_unsafe(vcpu->kvm, fault->mmu_seq, fault->gfn))
4460		return RET_PF_RETRY;
4461
4462	ret = __kvm_mmu_faultin_pfn(vcpu, fault);
4463	if (ret != RET_PF_CONTINUE)
4464		return ret;
4465
4466	if (unlikely(is_error_pfn(fault->pfn)))
4467		return kvm_handle_error_pfn(vcpu, fault);
4468
4469	if (WARN_ON_ONCE(!fault->slot || is_noslot_pfn(fault->pfn)))
4470		return kvm_handle_noslot_fault(vcpu, fault, access);
4471
4472	/*
4473	 * Check again for a relevant mmu_notifier invalidation event purely to
4474	 * avoid contending mmu_lock.  Most invalidations will be detected by
4475	 * the previous check, but checking is extremely cheap relative to the
4476	 * overall cost of failing to detect the invalidation until after
4477	 * mmu_lock is acquired.
4478	 */
4479	if (mmu_invalidate_retry_gfn_unsafe(vcpu->kvm, fault->mmu_seq, fault->gfn)) {
4480		kvm_mmu_finish_page_fault(vcpu, fault, RET_PF_RETRY);
4481		return RET_PF_RETRY;
4482	}
4483
4484	return RET_PF_CONTINUE;
4485}
4486
4487/*
4488 * Returns true if the page fault is stale and needs to be retried, i.e. if the
4489 * root was invalidated by a memslot update or a relevant mmu_notifier fired.
4490 */
4491static bool is_page_fault_stale(struct kvm_vcpu *vcpu,
4492				struct kvm_page_fault *fault)
4493{
4494	struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa);
4495
4496	/* Special roots, e.g. pae_root, are not backed by shadow pages. */
4497	if (sp && is_obsolete_sp(vcpu->kvm, sp))
4498		return true;
4499
4500	/*
4501	 * Roots without an associated shadow page are considered invalid if
4502	 * there is a pending request to free obsolete roots.  The request is
4503	 * only a hint that the current root _may_ be obsolete and needs to be
4504	 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a
4505	 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs
4506	 * to reload even if no vCPU is actively using the root.
4507	 */
4508	if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
4509		return true;
4510
4511	/*
4512	 * Check for a relevant mmu_notifier invalidation event one last time
4513	 * now that mmu_lock is held, as the "unsafe" checks performed without
4514	 * holding mmu_lock can get false negatives.
4515	 */
4516	return fault->slot &&
4517	       mmu_invalidate_retry_gfn(vcpu->kvm, fault->mmu_seq, fault->gfn);
4518}
4519
4520static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4521{
4522	int r;
4523
4524	/* Dummy roots are used only for shadowing bad guest roots. */
4525	if (WARN_ON_ONCE(kvm_mmu_is_dummy_root(vcpu->arch.mmu->root.hpa)))
4526		return RET_PF_RETRY;
4527
4528	if (page_fault_handle_page_track(vcpu, fault))
4529		return RET_PF_WRITE_PROTECTED;
4530
4531	r = fast_page_fault(vcpu, fault);
4532	if (r != RET_PF_INVALID)
4533		return r;
4534
4535	r = mmu_topup_memory_caches(vcpu, false);
4536	if (r)
4537		return r;
4538
4539	r = kvm_mmu_faultin_pfn(vcpu, fault, ACC_ALL);
4540	if (r != RET_PF_CONTINUE)
4541		return r;
4542
4543	r = RET_PF_RETRY;
4544	write_lock(&vcpu->kvm->mmu_lock);
4545
4546	if (is_page_fault_stale(vcpu, fault))
4547		goto out_unlock;
4548
4549	r = make_mmu_pages_available(vcpu);
4550	if (r)
4551		goto out_unlock;
4552
4553	r = direct_map(vcpu, fault);
4554
4555out_unlock:
4556	kvm_mmu_finish_page_fault(vcpu, fault, r);
4557	write_unlock(&vcpu->kvm->mmu_lock);
4558	return r;
4559}
4560
4561static int nonpaging_page_fault(struct kvm_vcpu *vcpu,
4562				struct kvm_page_fault *fault)
4563{
4564	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4565	fault->max_level = PG_LEVEL_2M;
4566	return direct_page_fault(vcpu, fault);
4567}
4568
4569int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4570				u64 fault_address, char *insn, int insn_len)
4571{
4572	int r = 1;
4573	u32 flags = vcpu->arch.apf.host_apf_flags;
4574
4575#ifndef CONFIG_X86_64
4576	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
4577	if (WARN_ON_ONCE(fault_address >> 32))
4578		return -EFAULT;
4579#endif
4580	/*
4581	 * Legacy #PF exception only have a 32-bit error code.  Simply drop the
4582	 * upper bits as KVM doesn't use them for #PF (because they are never
4583	 * set), and to ensure there are no collisions with KVM-defined bits.
4584	 */
4585	if (WARN_ON_ONCE(error_code >> 32))
4586		error_code = lower_32_bits(error_code);
4587
4588	/*
4589	 * Restrict KVM-defined flags to bits 63:32 so that it's impossible for
4590	 * them to conflict with #PF error codes, which are limited to 32 bits.
4591	 */
4592	BUILD_BUG_ON(lower_32_bits(PFERR_SYNTHETIC_MASK));
4593
4594	vcpu->arch.l1tf_flush_l1d = true;
4595	if (!flags) {
4596		trace_kvm_page_fault(vcpu, fault_address, error_code);
4597
4598		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4599				insn_len);
4600	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4601		vcpu->arch.apf.host_apf_flags = 0;
4602		local_irq_disable();
4603		kvm_async_pf_task_wait_schedule(fault_address);
4604		local_irq_enable();
4605	} else {
4606		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4607	}
4608
4609	return r;
4610}
4611EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4612
4613#ifdef CONFIG_X86_64
4614static int kvm_tdp_mmu_page_fault(struct kvm_vcpu *vcpu,
4615				  struct kvm_page_fault *fault)
4616{
4617	int r;
4618
4619	if (page_fault_handle_page_track(vcpu, fault))
4620		return RET_PF_WRITE_PROTECTED;
4621
4622	r = fast_page_fault(vcpu, fault);
4623	if (r != RET_PF_INVALID)
4624		return r;
4625
4626	r = mmu_topup_memory_caches(vcpu, false);
4627	if (r)
4628		return r;
4629
4630	r = kvm_mmu_faultin_pfn(vcpu, fault, ACC_ALL);
4631	if (r != RET_PF_CONTINUE)
4632		return r;
4633
4634	r = RET_PF_RETRY;
4635	read_lock(&vcpu->kvm->mmu_lock);
4636
4637	if (is_page_fault_stale(vcpu, fault))
4638		goto out_unlock;
4639
4640	r = kvm_tdp_mmu_map(vcpu, fault);
4641
4642out_unlock:
4643	kvm_mmu_finish_page_fault(vcpu, fault, r);
4644	read_unlock(&vcpu->kvm->mmu_lock);
4645	return r;
4646}
4647#endif
4648
4649bool kvm_mmu_may_ignore_guest_pat(void)
4650{
4651	/*
4652	 * When EPT is enabled (shadow_memtype_mask is non-zero), and the VM
4653	 * has non-coherent DMA (DMA doesn't snoop CPU caches), KVM's ABI is to
4654	 * honor the memtype from the guest's PAT so that guest accesses to
4655	 * memory that is DMA'd aren't cached against the guest's wishes.  As a
4656	 * result, KVM _may_ ignore guest PAT, whereas without non-coherent DMA,
4657	 * KVM _always_ ignores guest PAT (when EPT is enabled).
4658	 */
4659	return shadow_memtype_mask;
4660}
4661
4662int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4663{
4664#ifdef CONFIG_X86_64
4665	if (tdp_mmu_enabled)
4666		return kvm_tdp_mmu_page_fault(vcpu, fault);
4667#endif
4668
4669	return direct_page_fault(vcpu, fault);
4670}
4671
4672static int kvm_tdp_map_page(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code,
4673			    u8 *level)
4674{
4675	int r;
4676
4677	/*
4678	 * Restrict to TDP page fault, since that's the only case where the MMU
4679	 * is indexed by GPA.
4680	 */
4681	if (vcpu->arch.mmu->page_fault != kvm_tdp_page_fault)
4682		return -EOPNOTSUPP;
4683
4684	do {
4685		if (signal_pending(current))
4686			return -EINTR;
4687		cond_resched();
4688		r = kvm_mmu_do_page_fault(vcpu, gpa, error_code, true, NULL, level);
4689	} while (r == RET_PF_RETRY);
4690
4691	if (r < 0)
4692		return r;
4693
4694	switch (r) {
4695	case RET_PF_FIXED:
4696	case RET_PF_SPURIOUS:
4697	case RET_PF_WRITE_PROTECTED:
4698		return 0;
4699
4700	case RET_PF_EMULATE:
4701		return -ENOENT;
4702
4703	case RET_PF_RETRY:
4704	case RET_PF_CONTINUE:
4705	case RET_PF_INVALID:
4706	default:
4707		WARN_ONCE(1, "could not fix page fault during prefault");
4708		return -EIO;
4709	}
4710}
4711
4712long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
4713				    struct kvm_pre_fault_memory *range)
4714{
4715	u64 error_code = PFERR_GUEST_FINAL_MASK;
4716	u8 level = PG_LEVEL_4K;
4717	u64 end;
4718	int r;
4719
4720	if (!vcpu->kvm->arch.pre_fault_allowed)
4721		return -EOPNOTSUPP;
4722
4723	/*
4724	 * reload is efficient when called repeatedly, so we can do it on
4725	 * every iteration.
4726	 */
4727	r = kvm_mmu_reload(vcpu);
4728	if (r)
4729		return r;
4730
4731	if (kvm_arch_has_private_mem(vcpu->kvm) &&
4732	    kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(range->gpa)))
4733		error_code |= PFERR_PRIVATE_ACCESS;
4734
4735	/*
4736	 * Shadow paging uses GVA for kvm page fault, so restrict to
4737	 * two-dimensional paging.
4738	 */
4739	r = kvm_tdp_map_page(vcpu, range->gpa, error_code, &level);
4740	if (r < 0)
4741		return r;
4742
4743	/*
4744	 * If the mapping that covers range->gpa can use a huge page, it
4745	 * may start below it or end after range->gpa + range->size.
4746	 */
4747	end = (range->gpa & KVM_HPAGE_MASK(level)) + KVM_HPAGE_SIZE(level);
4748	return min(range->size, end - range->gpa);
4749}
4750
4751static void nonpaging_init_context(struct kvm_mmu *context)
4752{
4753	context->page_fault = nonpaging_page_fault;
4754	context->gva_to_gpa = nonpaging_gva_to_gpa;
4755	context->sync_spte = NULL;
4756}
4757
4758static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4759				  union kvm_mmu_page_role role)
4760{
4761	struct kvm_mmu_page *sp;
4762
4763	if (!VALID_PAGE(root->hpa))
4764		return false;
4765
4766	if (!role.direct && pgd != root->pgd)
4767		return false;
4768
4769	sp = root_to_sp(root->hpa);
4770	if (WARN_ON_ONCE(!sp))
4771		return false;
4772
4773	return role.word == sp->role.word;
4774}
4775
4776/*
4777 * Find out if a previously cached root matching the new pgd/role is available,
4778 * and insert the current root as the MRU in the cache.
4779 * If a matching root is found, it is assigned to kvm_mmu->root and
4780 * true is returned.
4781 * If no match is found, kvm_mmu->root is left invalid, the LRU root is
4782 * evicted to make room for the current root, and false is returned.
4783 */
4784static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu,
4785					      gpa_t new_pgd,
4786					      union kvm_mmu_page_role new_role)
4787{
4788	uint i;
4789
4790	if (is_root_usable(&mmu->root, new_pgd, new_role))
4791		return true;
4792
4793	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4794		/*
4795		 * The swaps end up rotating the cache like this:
4796		 *   C   0 1 2 3   (on entry to the function)
4797		 *   0   C 1 2 3
4798		 *   1   C 0 2 3
4799		 *   2   C 0 1 3
4800		 *   3   C 0 1 2   (on exit from the loop)
4801		 */
4802		swap(mmu->root, mmu->prev_roots[i]);
4803		if (is_root_usable(&mmu->root, new_pgd, new_role))
4804			return true;
4805	}
4806
4807	kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
4808	return false;
4809}
4810
4811/*
4812 * Find out if a previously cached root matching the new pgd/role is available.
4813 * On entry, mmu->root is invalid.
4814 * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry
4815 * of the cache becomes invalid, and true is returned.
4816 * If no match is found, kvm_mmu->root is left invalid and false is returned.
4817 */
4818static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu,
4819					     gpa_t new_pgd,
4820					     union kvm_mmu_page_role new_role)
4821{
4822	uint i;
4823
4824	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4825		if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role))
4826			goto hit;
4827
4828	return false;
4829
4830hit:
4831	swap(mmu->root, mmu->prev_roots[i]);
4832	/* Bubble up the remaining roots.  */
4833	for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++)
4834		mmu->prev_roots[i] = mmu->prev_roots[i + 1];
4835	mmu->prev_roots[i].hpa = INVALID_PAGE;
4836	return true;
4837}
4838
4839static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu,
4840			    gpa_t new_pgd, union kvm_mmu_page_role new_role)
4841{
4842	/*
4843	 * Limit reuse to 64-bit hosts+VMs without "special" roots in order to
4844	 * avoid having to deal with PDPTEs and other complexities.
4845	 */
4846	if (VALID_PAGE(mmu->root.hpa) && !root_to_sp(mmu->root.hpa))
4847		kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
4848
4849	if (VALID_PAGE(mmu->root.hpa))
4850		return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role);
4851	else
4852		return cached_root_find_without_current(kvm, mmu, new_pgd, new_role);
4853}
4854
4855void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4856{
4857	struct kvm_mmu *mmu = vcpu->arch.mmu;
4858	union kvm_mmu_page_role new_role = mmu->root_role;
4859
4860	/*
4861	 * Return immediately if no usable root was found, kvm_mmu_reload()
4862	 * will establish a valid root prior to the next VM-Enter.
4863	 */
4864	if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role))
4865		return;
4866
4867	/*
4868	 * It's possible that the cached previous root page is obsolete because
4869	 * of a change in the MMU generation number. However, changing the
4870	 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS,
4871	 * which will free the root set here and allocate a new one.
4872	 */
4873	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4874
4875	if (force_flush_and_sync_on_reuse) {
4876		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4877		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4878	}
4879
4880	/*
4881	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
4882	 * switching to a new CR3, that GVA->GPA mapping may no longer be
4883	 * valid. So clear any cached MMIO info even when we don't need to sync
4884	 * the shadow page tables.
4885	 */
4886	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4887
4888	/*
4889	 * If this is a direct root page, it doesn't have a write flooding
4890	 * count. Otherwise, clear the write flooding count.
4891	 */
4892	if (!new_role.direct) {
4893		struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa);
4894
4895		if (!WARN_ON_ONCE(!sp))
4896			__clear_sp_write_flooding_count(sp);
4897	}
4898}
4899EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4900
4901static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4902			   unsigned int access)
4903{
4904	if (unlikely(is_mmio_spte(vcpu->kvm, *sptep))) {
4905		if (gfn != get_mmio_spte_gfn(*sptep)) {
4906			mmu_spte_clear_no_track(sptep);
4907			return true;
4908		}
4909
4910		mark_mmio_spte(vcpu, sptep, gfn, access);
4911		return true;
4912	}
4913
4914	return false;
4915}
4916
4917#define PTTYPE_EPT 18 /* arbitrary */
4918#define PTTYPE PTTYPE_EPT
4919#include "paging_tmpl.h"
4920#undef PTTYPE
4921
4922#define PTTYPE 64
4923#include "paging_tmpl.h"
4924#undef PTTYPE
4925
4926#define PTTYPE 32
4927#include "paging_tmpl.h"
4928#undef PTTYPE
4929
4930static void __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4931				    u64 pa_bits_rsvd, int level, bool nx,
4932				    bool gbpages, bool pse, bool amd)
4933{
4934	u64 gbpages_bit_rsvd = 0;
4935	u64 nonleaf_bit8_rsvd = 0;
4936	u64 high_bits_rsvd;
4937
4938	rsvd_check->bad_mt_xwr = 0;
4939
4940	if (!gbpages)
4941		gbpages_bit_rsvd = rsvd_bits(7, 7);
4942
4943	if (level == PT32E_ROOT_LEVEL)
4944		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4945	else
4946		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4947
4948	/* Note, NX doesn't exist in PDPTEs, this is handled below. */
4949	if (!nx)
4950		high_bits_rsvd |= rsvd_bits(63, 63);
4951
4952	/*
4953	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4954	 * leaf entries) on AMD CPUs only.
4955	 */
4956	if (amd)
4957		nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4958
4959	switch (level) {
4960	case PT32_ROOT_LEVEL:
4961		/* no rsvd bits for 2 level 4K page table entries */
4962		rsvd_check->rsvd_bits_mask[0][1] = 0;
4963		rsvd_check->rsvd_bits_mask[0][0] = 0;
4964		rsvd_check->rsvd_bits_mask[1][0] =
4965			rsvd_check->rsvd_bits_mask[0][0];
4966
4967		if (!pse) {
4968			rsvd_check->rsvd_bits_mask[1][1] = 0;
4969			break;
4970		}
4971
4972		if (is_cpuid_PSE36())
4973			/* 36bits PSE 4MB page */
4974			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4975		else
4976			/* 32 bits PSE 4MB page */
4977			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4978		break;
4979	case PT32E_ROOT_LEVEL:
4980		rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4981						   high_bits_rsvd |
4982						   rsvd_bits(5, 8) |
4983						   rsvd_bits(1, 2);	/* PDPTE */
4984		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;	/* PDE */
4985		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;	/* PTE */
4986		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4987						   rsvd_bits(13, 20);	/* large page */
4988		rsvd_check->rsvd_bits_mask[1][0] =
4989			rsvd_check->rsvd_bits_mask[0][0];
4990		break;
4991	case PT64_ROOT_5LEVEL:
4992		rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4993						   nonleaf_bit8_rsvd |
4994						   rsvd_bits(7, 7);
4995		rsvd_check->rsvd_bits_mask[1][4] =
4996			rsvd_check->rsvd_bits_mask[0][4];
4997		fallthrough;
4998	case PT64_ROOT_4LEVEL:
4999		rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
5000						   nonleaf_bit8_rsvd |
5001						   rsvd_bits(7, 7);
5002		rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
5003						   gbpages_bit_rsvd;
5004		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
5005		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
5006		rsvd_check->rsvd_bits_mask[1][3] =
5007			rsvd_check->rsvd_bits_mask[0][3];
5008		rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
5009						   gbpages_bit_rsvd |
5010						   rsvd_bits(13, 29);
5011		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
5012						   rsvd_bits(13, 20); /* large page */
5013		rsvd_check->rsvd_bits_mask[1][0] =
5014			rsvd_check->rsvd_bits_mask[0][0];
5015		break;
5016	}
5017}
5018
5019static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu,
5020					struct kvm_mmu *context)
5021{
5022	__reset_rsvds_bits_mask(&context->guest_rsvd_check,
5023				vcpu->arch.reserved_gpa_bits,
5024				context->cpu_role.base.level, is_efer_nx(context),
5025				guest_can_use(vcpu, X86_FEATURE_GBPAGES),
5026				is_cr4_pse(context),
5027				guest_cpuid_is_amd_compatible(vcpu));
5028}
5029
5030static void __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
5031					u64 pa_bits_rsvd, bool execonly,
5032					int huge_page_level)
5033{
5034	u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
5035	u64 large_1g_rsvd = 0, large_2m_rsvd = 0;
5036	u64 bad_mt_xwr;
5037
5038	if (huge_page_level < PG_LEVEL_1G)
5039		large_1g_rsvd = rsvd_bits(7, 7);
5040	if (huge_page_level < PG_LEVEL_2M)
5041		large_2m_rsvd = rsvd_bits(7, 7);
5042
5043	rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
5044	rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
5045	rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd;
5046	rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd;
5047	rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
5048
5049	/* large page */
5050	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
5051	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
5052	rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd;
5053	rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd;
5054	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
5055
5056	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
5057	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
5058	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
5059	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
5060	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
5061	if (!execonly) {
5062		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
5063		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
5064	}
5065	rsvd_check->bad_mt_xwr = bad_mt_xwr;
5066}
5067
5068static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
5069		struct kvm_mmu *context, bool execonly, int huge_page_level)
5070{
5071	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
5072				    vcpu->arch.reserved_gpa_bits, execonly,
5073				    huge_page_level);
5074}
5075
5076static inline u64 reserved_hpa_bits(void)
5077{
5078	return rsvd_bits(kvm_host.maxphyaddr, 63);
5079}
5080
5081/*
5082 * the page table on host is the shadow page table for the page
5083 * table in guest or amd nested guest, its mmu features completely
5084 * follow the features in guest.
5085 */
5086static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
5087					struct kvm_mmu *context)
5088{
5089	/* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
5090	bool is_amd = true;
5091	/* KVM doesn't use 2-level page tables for the shadow MMU. */
5092	bool is_pse = false;
5093	struct rsvd_bits_validate *shadow_zero_check;
5094	int i;
5095
5096	WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL);
5097
5098	shadow_zero_check = &context->shadow_zero_check;
5099	__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
5100				context->root_role.level,
5101				context->root_role.efer_nx,
5102				guest_can_use(vcpu, X86_FEATURE_GBPAGES),
5103				is_pse, is_amd);
5104
5105	if (!shadow_me_mask)
5106		return;
5107
5108	for (i = context->root_role.level; --i >= 0;) {
5109		/*
5110		 * So far shadow_me_value is a constant during KVM's life
5111		 * time.  Bits in shadow_me_value are allowed to be set.
5112		 * Bits in shadow_me_mask but not in shadow_me_value are
5113		 * not allowed to be set.
5114		 */
5115		shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask;
5116		shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask;
5117		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value;
5118		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value;
5119	}
5120
5121}
5122
5123static inline bool boot_cpu_is_amd(void)
5124{
5125	WARN_ON_ONCE(!tdp_enabled);
5126	return shadow_x_mask == 0;
5127}
5128
5129/*
5130 * the direct page table on host, use as much mmu features as
5131 * possible, however, kvm currently does not do execution-protection.
5132 */
5133static void reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context)
5134{
5135	struct rsvd_bits_validate *shadow_zero_check;
5136	int i;
5137
5138	shadow_zero_check = &context->shadow_zero_check;
5139
5140	if (boot_cpu_is_amd())
5141		__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
5142					context->root_role.level, true,
5143					boot_cpu_has(X86_FEATURE_GBPAGES),
5144					false, true);
5145	else
5146		__reset_rsvds_bits_mask_ept(shadow_zero_check,
5147					    reserved_hpa_bits(), false,
5148					    max_huge_page_level);
5149
5150	if (!shadow_me_mask)
5151		return;
5152
5153	for (i = context->root_role.level; --i >= 0;) {
5154		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
5155		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
5156	}
5157}
5158
5159/*
5160 * as the comments in reset_shadow_zero_bits_mask() except it
5161 * is the shadow page table for intel nested guest.
5162 */
5163static void
5164reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly)
5165{
5166	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
5167				    reserved_hpa_bits(), execonly,
5168				    max_huge_page_level);
5169}
5170
5171#define BYTE_MASK(access) \
5172	((1 & (access) ? 2 : 0) | \
5173	 (2 & (access) ? 4 : 0) | \
5174	 (3 & (access) ? 8 : 0) | \
5175	 (4 & (access) ? 16 : 0) | \
5176	 (5 & (access) ? 32 : 0) | \
5177	 (6 & (access) ? 64 : 0) | \
5178	 (7 & (access) ? 128 : 0))
5179
5180
5181static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
5182{
5183	unsigned byte;
5184
5185	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
5186	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
5187	const u8 u = BYTE_MASK(ACC_USER_MASK);
5188
5189	bool cr4_smep = is_cr4_smep(mmu);
5190	bool cr4_smap = is_cr4_smap(mmu);
5191	bool cr0_wp = is_cr0_wp(mmu);
5192	bool efer_nx = is_efer_nx(mmu);
5193
5194	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
5195		unsigned pfec = byte << 1;
5196
5197		/*
5198		 * Each "*f" variable has a 1 bit for each UWX value
5199		 * that causes a fault with the given PFEC.
5200		 */
5201
5202		/* Faults from writes to non-writable pages */
5203		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
5204		/* Faults from user mode accesses to supervisor pages */
5205		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
5206		/* Faults from fetches of non-executable pages*/
5207		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
5208		/* Faults from kernel mode fetches of user pages */
5209		u8 smepf = 0;
5210		/* Faults from kernel mode accesses of user pages */
5211		u8 smapf = 0;
5212
5213		if (!ept) {
5214			/* Faults from kernel mode accesses to user pages */
5215			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
5216
5217			/* Not really needed: !nx will cause pte.nx to fault */
5218			if (!efer_nx)
5219				ff = 0;
5220
5221			/* Allow supervisor writes if !cr0.wp */
5222			if (!cr0_wp)
5223				wf = (pfec & PFERR_USER_MASK) ? wf : 0;
5224
5225			/* Disallow supervisor fetches of user code if cr4.smep */
5226			if (cr4_smep)
5227				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
5228
5229			/*
5230			 * SMAP:kernel-mode data accesses from user-mode
5231			 * mappings should fault. A fault is considered
5232			 * as a SMAP violation if all of the following
5233			 * conditions are true:
5234			 *   - X86_CR4_SMAP is set in CR4
5235			 *   - A user page is accessed
5236			 *   - The access is not a fetch
5237			 *   - The access is supervisor mode
5238			 *   - If implicit supervisor access or X86_EFLAGS_AC is clear
5239			 *
5240			 * Here, we cover the first four conditions.
5241			 * The fifth is computed dynamically in permission_fault();
5242			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
5243			 * *not* subject to SMAP restrictions.
5244			 */
5245			if (cr4_smap)
5246				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
5247		}
5248
5249		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
5250	}
5251}
5252
5253/*
5254* PKU is an additional mechanism by which the paging controls access to
5255* user-mode addresses based on the value in the PKRU register.  Protection
5256* key violations are reported through a bit in the page fault error code.
5257* Unlike other bits of the error code, the PK bit is not known at the
5258* call site of e.g. gva_to_gpa; it must be computed directly in
5259* permission_fault based on two bits of PKRU, on some machine state (CR4,
5260* CR0, EFER, CPL), and on other bits of the error code and the page tables.
5261*
5262* In particular the following conditions come from the error code, the
5263* page tables and the machine state:
5264* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
5265* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
5266* - PK is always zero if U=0 in the page tables
5267* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
5268*
5269* The PKRU bitmask caches the result of these four conditions.  The error
5270* code (minus the P bit) and the page table's U bit form an index into the
5271* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
5272* with the two bits of the PKRU register corresponding to the protection key.
5273* For the first three conditions above the bits will be 00, thus masking
5274* away both AD and WD.  For all reads or if the last condition holds, WD
5275* only will be masked away.
5276*/
5277static void update_pkru_bitmask(struct kvm_mmu *mmu)
5278{
5279	unsigned bit;
5280	bool wp;
5281
5282	mmu->pkru_mask = 0;
5283
5284	if (!is_cr4_pke(mmu))
5285		return;
5286
5287	wp = is_cr0_wp(mmu);
5288
5289	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
5290		unsigned pfec, pkey_bits;
5291		bool check_pkey, check_write, ff, uf, wf, pte_user;
5292
5293		pfec = bit << 1;
5294		ff = pfec & PFERR_FETCH_MASK;
5295		uf = pfec & PFERR_USER_MASK;
5296		wf = pfec & PFERR_WRITE_MASK;
5297
5298		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
5299		pte_user = pfec & PFERR_RSVD_MASK;
5300
5301		/*
5302		 * Only need to check the access which is not an
5303		 * instruction fetch and is to a user page.
5304		 */
5305		check_pkey = (!ff && pte_user);
5306		/*
5307		 * write access is controlled by PKRU if it is a
5308		 * user access or CR0.WP = 1.
5309		 */
5310		check_write = check_pkey && wf && (uf || wp);
5311
5312		/* PKRU.AD stops both read and write access. */
5313		pkey_bits = !!check_pkey;
5314		/* PKRU.WD stops write access. */
5315		pkey_bits |= (!!check_write) << 1;
5316
5317		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
5318	}
5319}
5320
5321static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
5322					struct kvm_mmu *mmu)
5323{
5324	if (!is_cr0_pg(mmu))
5325		return;
5326
5327	reset_guest_rsvds_bits_mask(vcpu, mmu);
5328	update_permission_bitmask(mmu, false);
5329	update_pkru_bitmask(mmu);
5330}
5331
5332static void paging64_init_context(struct kvm_mmu *context)
5333{
5334	context->page_fault = paging64_page_fault;
5335	context->gva_to_gpa = paging64_gva_to_gpa;
5336	context->sync_spte = paging64_sync_spte;
5337}
5338
5339static void paging32_init_context(struct kvm_mmu *context)
5340{
5341	context->page_fault = paging32_page_fault;
5342	context->gva_to_gpa = paging32_gva_to_gpa;
5343	context->sync_spte = paging32_sync_spte;
5344}
5345
5346static union kvm_cpu_role kvm_calc_cpu_role(struct kvm_vcpu *vcpu,
5347					    const struct kvm_mmu_role_regs *regs)
5348{
5349	union kvm_cpu_role role = {0};
5350
5351	role.base.access = ACC_ALL;
5352	role.base.smm = is_smm(vcpu);
5353	role.base.guest_mode = is_guest_mode(vcpu);
5354	role.ext.valid = 1;
5355
5356	if (!____is_cr0_pg(regs)) {
5357		role.base.direct = 1;
5358		return role;
5359	}
5360
5361	role.base.efer_nx = ____is_efer_nx(regs);
5362	role.base.cr0_wp = ____is_cr0_wp(regs);
5363	role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs);
5364	role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs);
5365	role.base.has_4_byte_gpte = !____is_cr4_pae(regs);
5366
5367	if (____is_efer_lma(regs))
5368		role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL
5369							: PT64_ROOT_4LEVEL;
5370	else if (____is_cr4_pae(regs))
5371		role.base.level = PT32E_ROOT_LEVEL;
5372	else
5373		role.base.level = PT32_ROOT_LEVEL;
5374
5375	role.ext.cr4_smep = ____is_cr4_smep(regs);
5376	role.ext.cr4_smap = ____is_cr4_smap(regs);
5377	role.ext.cr4_pse = ____is_cr4_pse(regs);
5378
5379	/* PKEY and LA57 are active iff long mode is active. */
5380	role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
5381	role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
5382	role.ext.efer_lma = ____is_efer_lma(regs);
5383	return role;
5384}
5385
5386void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu,
5387					struct kvm_mmu *mmu)
5388{
5389	const bool cr0_wp = kvm_is_cr0_bit_set(vcpu, X86_CR0_WP);
5390
5391	BUILD_BUG_ON((KVM_MMU_CR0_ROLE_BITS & KVM_POSSIBLE_CR0_GUEST_BITS) != X86_CR0_WP);
5392	BUILD_BUG_ON((KVM_MMU_CR4_ROLE_BITS & KVM_POSSIBLE_CR4_GUEST_BITS));
5393
5394	if (is_cr0_wp(mmu) == cr0_wp)
5395		return;
5396
5397	mmu->cpu_role.base.cr0_wp = cr0_wp;
5398	reset_guest_paging_metadata(vcpu, mmu);
5399}
5400
5401static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
5402{
5403	/* tdp_root_level is architecture forced level, use it if nonzero */
5404	if (tdp_root_level)
5405		return tdp_root_level;
5406
5407	/* Use 5-level TDP if and only if it's useful/necessary. */
5408	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
5409		return 4;
5410
5411	return max_tdp_level;
5412}
5413
5414u8 kvm_mmu_get_max_tdp_level(void)
5415{
5416	return tdp_root_level ? tdp_root_level : max_tdp_level;
5417}
5418
5419static union kvm_mmu_page_role
5420kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
5421				union kvm_cpu_role cpu_role)
5422{
5423	union kvm_mmu_page_role role = {0};
5424
5425	role.access = ACC_ALL;
5426	role.cr0_wp = true;
5427	role.efer_nx = true;
5428	role.smm = cpu_role.base.smm;
5429	role.guest_mode = cpu_role.base.guest_mode;
5430	role.ad_disabled = !kvm_ad_enabled;
5431	role.level = kvm_mmu_get_tdp_level(vcpu);
5432	role.direct = true;
5433	role.has_4_byte_gpte = false;
5434
5435	return role;
5436}
5437
5438static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu,
5439			     union kvm_cpu_role cpu_role)
5440{
5441	struct kvm_mmu *context = &vcpu->arch.root_mmu;
5442	union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role);
5443
5444	if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
5445	    root_role.word == context->root_role.word)
5446		return;
5447
5448	context->cpu_role.as_u64 = cpu_role.as_u64;
5449	context->root_role.word = root_role.word;
5450	context->page_fault = kvm_tdp_page_fault;
5451	context->sync_spte = NULL;
5452	context->get_guest_pgd = get_guest_cr3;
5453	context->get_pdptr = kvm_pdptr_read;
5454	context->inject_page_fault = kvm_inject_page_fault;
5455
5456	if (!is_cr0_pg(context))
5457		context->gva_to_gpa = nonpaging_gva_to_gpa;
5458	else if (is_cr4_pae(context))
5459		context->gva_to_gpa = paging64_gva_to_gpa;
5460	else
5461		context->gva_to_gpa = paging32_gva_to_gpa;
5462
5463	reset_guest_paging_metadata(vcpu, context);
5464	reset_tdp_shadow_zero_bits_mask(context);
5465}
5466
5467static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
5468				    union kvm_cpu_role cpu_role,
5469				    union kvm_mmu_page_role root_role)
5470{
5471	if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
5472	    root_role.word == context->root_role.word)
5473		return;
5474
5475	context->cpu_role.as_u64 = cpu_role.as_u64;
5476	context->root_role.word = root_role.word;
5477
5478	if (!is_cr0_pg(context))
5479		nonpaging_init_context(context);
5480	else if (is_cr4_pae(context))
5481		paging64_init_context(context);
5482	else
5483		paging32_init_context(context);
5484
5485	reset_guest_paging_metadata(vcpu, context);
5486	reset_shadow_zero_bits_mask(vcpu, context);
5487}
5488
5489static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
5490				union kvm_cpu_role cpu_role)
5491{
5492	struct kvm_mmu *context = &vcpu->arch.root_mmu;
5493	union kvm_mmu_page_role root_role;
5494
5495	root_role = cpu_role.base;
5496
5497	/* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */
5498	root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL);
5499
5500	/*
5501	 * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role.
5502	 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
5503	 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
5504	 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
5505	 * The iTLB multi-hit workaround can be toggled at any time, so assume
5506	 * NX can be used by any non-nested shadow MMU to avoid having to reset
5507	 * MMU contexts.
5508	 */
5509	root_role.efer_nx = true;
5510
5511	shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
5512}
5513
5514void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
5515			     unsigned long cr4, u64 efer, gpa_t nested_cr3)
5516{
5517	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
5518	struct kvm_mmu_role_regs regs = {
5519		.cr0 = cr0,
5520		.cr4 = cr4 & ~X86_CR4_PKE,
5521		.efer = efer,
5522	};
5523	union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, &regs);
5524	union kvm_mmu_page_role root_role;
5525
5526	/* NPT requires CR0.PG=1. */
5527	WARN_ON_ONCE(cpu_role.base.direct || !cpu_role.base.guest_mode);
5528
5529	root_role = cpu_role.base;
5530	root_role.level = kvm_mmu_get_tdp_level(vcpu);
5531	if (root_role.level == PT64_ROOT_5LEVEL &&
5532	    cpu_role.base.level == PT64_ROOT_4LEVEL)
5533		root_role.passthrough = 1;
5534
5535	shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
5536	kvm_mmu_new_pgd(vcpu, nested_cr3);
5537}
5538EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
5539
5540static union kvm_cpu_role
5541kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
5542				   bool execonly, u8 level)
5543{
5544	union kvm_cpu_role role = {0};
5545
5546	/*
5547	 * KVM does not support SMM transfer monitors, and consequently does not
5548	 * support the "entry to SMM" control either.  role.base.smm is always 0.
5549	 */
5550	WARN_ON_ONCE(is_smm(vcpu));
5551	role.base.level = level;
5552	role.base.has_4_byte_gpte = false;
5553	role.base.direct = false;
5554	role.base.ad_disabled = !accessed_dirty;
5555	role.base.guest_mode = true;
5556	role.base.access = ACC_ALL;
5557
5558	role.ext.word = 0;
5559	role.ext.execonly = execonly;
5560	role.ext.valid = 1;
5561
5562	return role;
5563}
5564
5565void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5566			     int huge_page_level, bool accessed_dirty,
5567			     gpa_t new_eptp)
5568{
5569	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
5570	u8 level = vmx_eptp_page_walk_level(new_eptp);
5571	union kvm_cpu_role new_mode =
5572		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
5573						   execonly, level);
5574
5575	if (new_mode.as_u64 != context->cpu_role.as_u64) {
5576		/* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
5577		context->cpu_role.as_u64 = new_mode.as_u64;
5578		context->root_role.word = new_mode.base.word;
5579
5580		context->page_fault = ept_page_fault;
5581		context->gva_to_gpa = ept_gva_to_gpa;
5582		context->sync_spte = ept_sync_spte;
5583
5584		update_permission_bitmask(context, true);
5585		context->pkru_mask = 0;
5586		reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level);
5587		reset_ept_shadow_zero_bits_mask(context, execonly);
5588	}
5589
5590	kvm_mmu_new_pgd(vcpu, new_eptp);
5591}
5592EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5593
5594static void init_kvm_softmmu(struct kvm_vcpu *vcpu,
5595			     union kvm_cpu_role cpu_role)
5596{
5597	struct kvm_mmu *context = &vcpu->arch.root_mmu;
5598
5599	kvm_init_shadow_mmu(vcpu, cpu_role);
5600
5601	context->get_guest_pgd     = get_guest_cr3;
5602	context->get_pdptr         = kvm_pdptr_read;
5603	context->inject_page_fault = kvm_inject_page_fault;
5604}
5605
5606static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu,
5607				union kvm_cpu_role new_mode)
5608{
5609	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5610
5611	if (new_mode.as_u64 == g_context->cpu_role.as_u64)
5612		return;
5613
5614	g_context->cpu_role.as_u64   = new_mode.as_u64;
5615	g_context->get_guest_pgd     = get_guest_cr3;
5616	g_context->get_pdptr         = kvm_pdptr_read;
5617	g_context->inject_page_fault = kvm_inject_page_fault;
5618
5619	/*
5620	 * L2 page tables are never shadowed, so there is no need to sync
5621	 * SPTEs.
5622	 */
5623	g_context->sync_spte         = NULL;
5624
5625	/*
5626	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5627	 * L1's nested page tables (e.g. EPT12). The nested translation
5628	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5629	 * L2's page tables as the first level of translation and L1's
5630	 * nested page tables as the second level of translation. Basically
5631	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5632	 */
5633	if (!is_paging(vcpu))
5634		g_context->gva_to_gpa = nonpaging_gva_to_gpa;
5635	else if (is_long_mode(vcpu))
5636		g_context->gva_to_gpa = paging64_gva_to_gpa;
5637	else if (is_pae(vcpu))
5638		g_context->gva_to_gpa = paging64_gva_to_gpa;
5639	else
5640		g_context->gva_to_gpa = paging32_gva_to_gpa;
5641
5642	reset_guest_paging_metadata(vcpu, g_context);
5643}
5644
5645void kvm_init_mmu(struct kvm_vcpu *vcpu)
5646{
5647	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
5648	union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, &regs);
5649
5650	if (mmu_is_nested(vcpu))
5651		init_kvm_nested_mmu(vcpu, cpu_role);
5652	else if (tdp_enabled)
5653		init_kvm_tdp_mmu(vcpu, cpu_role);
5654	else
5655		init_kvm_softmmu(vcpu, cpu_role);
5656}
5657EXPORT_SYMBOL_GPL(kvm_init_mmu);
5658
5659void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
5660{
5661	/*
5662	 * Invalidate all MMU roles to force them to reinitialize as CPUID
5663	 * information is factored into reserved bit calculations.
5664	 *
5665	 * Correctly handling multiple vCPU models with respect to paging and
5666	 * physical address properties) in a single VM would require tracking
5667	 * all relevant CPUID information in kvm_mmu_page_role. That is very
5668	 * undesirable as it would increase the memory requirements for
5669	 * gfn_write_track (see struct kvm_mmu_page_role comments).  For now
5670	 * that problem is swept under the rug; KVM's CPUID API is horrific and
5671	 * it's all but impossible to solve it without introducing a new API.
5672	 */
5673	vcpu->arch.root_mmu.root_role.invalid = 1;
5674	vcpu->arch.guest_mmu.root_role.invalid = 1;
5675	vcpu->arch.nested_mmu.root_role.invalid = 1;
5676	vcpu->arch.root_mmu.cpu_role.ext.valid = 0;
5677	vcpu->arch.guest_mmu.cpu_role.ext.valid = 0;
5678	vcpu->arch.nested_mmu.cpu_role.ext.valid = 0;
5679	kvm_mmu_reset_context(vcpu);
5680
5681	/*
5682	 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in
5683	 * kvm_arch_vcpu_ioctl().
5684	 */
5685	KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm);
5686}
5687
5688void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5689{
5690	kvm_mmu_unload(vcpu);
5691	kvm_init_mmu(vcpu);
5692}
5693EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5694
5695int kvm_mmu_load(struct kvm_vcpu *vcpu)
5696{
5697	int r;
5698
5699	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct);
5700	if (r)
5701		goto out;
5702	r = mmu_alloc_special_roots(vcpu);
5703	if (r)
5704		goto out;
5705	if (vcpu->arch.mmu->root_role.direct)
5706		r = mmu_alloc_direct_roots(vcpu);
5707	else
5708		r = mmu_alloc_shadow_roots(vcpu);
5709	if (r)
5710		goto out;
5711
5712	kvm_mmu_sync_roots(vcpu);
5713
5714	kvm_mmu_load_pgd(vcpu);
5715
5716	/*
5717	 * Flush any TLB entries for the new root, the provenance of the root
5718	 * is unknown.  Even if KVM ensures there are no stale TLB entries
5719	 * for a freed root, in theory another hypervisor could have left
5720	 * stale entries.  Flushing on alloc also allows KVM to skip the TLB
5721	 * flush when freeing a root (see kvm_tdp_mmu_put_root()).
5722	 */
5723	kvm_x86_call(flush_tlb_current)(vcpu);
5724out:
5725	return r;
5726}
5727
5728void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5729{
5730	struct kvm *kvm = vcpu->kvm;
5731
5732	kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5733	WARN_ON_ONCE(VALID_PAGE(vcpu->arch.root_mmu.root.hpa));
5734	kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5735	WARN_ON_ONCE(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa));
5736	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
5737}
5738
5739static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa)
5740{
5741	struct kvm_mmu_page *sp;
5742
5743	if (!VALID_PAGE(root_hpa))
5744		return false;
5745
5746	/*
5747	 * When freeing obsolete roots, treat roots as obsolete if they don't
5748	 * have an associated shadow page, as it's impossible to determine if
5749	 * such roots are fresh or stale.  This does mean KVM will get false
5750	 * positives and free roots that don't strictly need to be freed, but
5751	 * such false positives are relatively rare:
5752	 *
5753	 *  (a) only PAE paging and nested NPT have roots without shadow pages
5754	 *      (or any shadow paging flavor with a dummy root, see note below)
5755	 *  (b) remote reloads due to a memslot update obsoletes _all_ roots
5756	 *  (c) KVM doesn't track previous roots for PAE paging, and the guest
5757	 *      is unlikely to zap an in-use PGD.
5758	 *
5759	 * Note!  Dummy roots are unique in that they are obsoleted by memslot
5760	 * _creation_!  See also FNAME(fetch).
5761	 */
5762	sp = root_to_sp(root_hpa);
5763	return !sp || is_obsolete_sp(kvm, sp);
5764}
5765
5766static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu)
5767{
5768	unsigned long roots_to_free = 0;
5769	int i;
5770
5771	if (is_obsolete_root(kvm, mmu->root.hpa))
5772		roots_to_free |= KVM_MMU_ROOT_CURRENT;
5773
5774	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5775		if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa))
5776			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5777	}
5778
5779	if (roots_to_free)
5780		kvm_mmu_free_roots(kvm, mmu, roots_to_free);
5781}
5782
5783void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu)
5784{
5785	__kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu);
5786	__kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu);
5787}
5788
5789static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5790				    int *bytes)
5791{
5792	u64 gentry = 0;
5793	int r;
5794
5795	/*
5796	 * Assume that the pte write on a page table of the same type
5797	 * as the current vcpu paging mode since we update the sptes only
5798	 * when they have the same mode.
5799	 */
5800	if (is_pae(vcpu) && *bytes == 4) {
5801		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5802		*gpa &= ~(gpa_t)7;
5803		*bytes = 8;
5804	}
5805
5806	if (*bytes == 4 || *bytes == 8) {
5807		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5808		if (r)
5809			gentry = 0;
5810	}
5811
5812	return gentry;
5813}
5814
5815/*
5816 * If we're seeing too many writes to a page, it may no longer be a page table,
5817 * or we may be forking, in which case it is better to unmap the page.
5818 */
5819static bool detect_write_flooding(struct kvm_mmu_page *sp)
5820{
5821	/*
5822	 * Skip write-flooding detected for the sp whose level is 1, because
5823	 * it can become unsync, then the guest page is not write-protected.
5824	 */
5825	if (sp->role.level == PG_LEVEL_4K)
5826		return false;
5827
5828	atomic_inc(&sp->write_flooding_count);
5829	return atomic_read(&sp->write_flooding_count) >= 3;
5830}
5831
5832/*
5833 * Misaligned accesses are too much trouble to fix up; also, they usually
5834 * indicate a page is not used as a page table.
5835 */
5836static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5837				    int bytes)
5838{
5839	unsigned offset, pte_size, misaligned;
5840
5841	offset = offset_in_page(gpa);
5842	pte_size = sp->role.has_4_byte_gpte ? 4 : 8;
5843
5844	/*
5845	 * Sometimes, the OS only writes the last one bytes to update status
5846	 * bits, for example, in linux, andb instruction is used in clear_bit().
5847	 */
5848	if (!(offset & (pte_size - 1)) && bytes == 1)
5849		return false;
5850
5851	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5852	misaligned |= bytes < 4;
5853
5854	return misaligned;
5855}
5856
5857static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5858{
5859	unsigned page_offset, quadrant;
5860	u64 *spte;
5861	int level;
5862
5863	page_offset = offset_in_page(gpa);
5864	level = sp->role.level;
5865	*nspte = 1;
5866	if (sp->role.has_4_byte_gpte) {
5867		page_offset <<= 1;	/* 32->64 */
5868		/*
5869		 * A 32-bit pde maps 4MB while the shadow pdes map
5870		 * only 2MB.  So we need to double the offset again
5871		 * and zap two pdes instead of one.
5872		 */
5873		if (level == PT32_ROOT_LEVEL) {
5874			page_offset &= ~7; /* kill rounding error */
5875			page_offset <<= 1;
5876			*nspte = 2;
5877		}
5878		quadrant = page_offset >> PAGE_SHIFT;
5879		page_offset &= ~PAGE_MASK;
5880		if (quadrant != sp->role.quadrant)
5881			return NULL;
5882	}
5883
5884	spte = &sp->spt[page_offset / sizeof(*spte)];
5885	return spte;
5886}
5887
5888void kvm_mmu_track_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *new,
5889			 int bytes)
5890{
5891	gfn_t gfn = gpa >> PAGE_SHIFT;
5892	struct kvm_mmu_page *sp;
5893	LIST_HEAD(invalid_list);
5894	u64 entry, gentry, *spte;
5895	int npte;
5896	bool flush = false;
5897
5898	/*
5899	 * When emulating guest writes, ensure the written value is visible to
5900	 * any task that is handling page faults before checking whether or not
5901	 * KVM is shadowing a guest PTE.  This ensures either KVM will create
5902	 * the correct SPTE in the page fault handler, or this task will see
5903	 * a non-zero indirect_shadow_pages.  Pairs with the smp_mb() in
5904	 * account_shadowed().
5905	 */
5906	smp_mb();
5907	if (!vcpu->kvm->arch.indirect_shadow_pages)
5908		return;
5909
5910	write_lock(&vcpu->kvm->mmu_lock);
5911
5912	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5913
5914	++vcpu->kvm->stat.mmu_pte_write;
5915
5916	for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) {
5917		if (detect_write_misaligned(sp, gpa, bytes) ||
5918		      detect_write_flooding(sp)) {
5919			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5920			++vcpu->kvm->stat.mmu_flooded;
5921			continue;
5922		}
5923
5924		spte = get_written_sptes(sp, gpa, &npte);
5925		if (!spte)
5926			continue;
5927
5928		while (npte--) {
5929			entry = *spte;
5930			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5931			if (gentry && sp->role.level != PG_LEVEL_4K)
5932				++vcpu->kvm->stat.mmu_pde_zapped;
5933			if (is_shadow_present_pte(entry))
5934				flush = true;
5935			++spte;
5936		}
5937	}
5938	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
5939	write_unlock(&vcpu->kvm->mmu_lock);
5940}
5941
5942static bool is_write_to_guest_page_table(u64 error_code)
5943{
5944	const u64 mask = PFERR_GUEST_PAGE_MASK | PFERR_WRITE_MASK | PFERR_PRESENT_MASK;
5945
5946	return (error_code & mask) == mask;
5947}
5948
5949static int kvm_mmu_write_protect_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
5950				       u64 error_code, int *emulation_type)
5951{
5952	bool direct = vcpu->arch.mmu->root_role.direct;
5953
5954	/*
5955	 * Do not try to unprotect and retry if the vCPU re-faulted on the same
5956	 * RIP with the same address that was previously unprotected, as doing
5957	 * so will likely put the vCPU into an infinite.  E.g. if the vCPU uses
5958	 * a non-page-table modifying instruction on the PDE that points to the
5959	 * instruction, then unprotecting the gfn will unmap the instruction's
5960	 * code, i.e. make it impossible for the instruction to ever complete.
5961	 */
5962	if (vcpu->arch.last_retry_eip == kvm_rip_read(vcpu) &&
5963	    vcpu->arch.last_retry_addr == cr2_or_gpa)
5964		return RET_PF_EMULATE;
5965
5966	/*
5967	 * Reset the unprotect+retry values that guard against infinite loops.
5968	 * The values will be refreshed if KVM explicitly unprotects a gfn and
5969	 * retries, in all other cases it's safe to retry in the future even if
5970	 * the next page fault happens on the same RIP+address.
5971	 */
5972	vcpu->arch.last_retry_eip = 0;
5973	vcpu->arch.last_retry_addr = 0;
5974
5975	/*
5976	 * It should be impossible to reach this point with an MMIO cache hit,
5977	 * as RET_PF_WRITE_PROTECTED is returned if and only if there's a valid,
5978	 * writable memslot, and creating a memslot should invalidate the MMIO
5979	 * cache by way of changing the memslot generation.  WARN and disallow
5980	 * retry if MMIO is detected, as retrying MMIO emulation is pointless
5981	 * and could put the vCPU into an infinite loop because the processor
5982	 * will keep faulting on the non-existent MMIO address.
5983	 */
5984	if (WARN_ON_ONCE(mmio_info_in_cache(vcpu, cr2_or_gpa, direct)))
5985		return RET_PF_EMULATE;
5986
5987	/*
5988	 * Before emulating the instruction, check to see if the access was due
5989	 * to a read-only violation while the CPU was walking non-nested NPT
5990	 * page tables, i.e. for a direct MMU, for _guest_ page tables in L1.
5991	 * If L1 is sharing (a subset of) its page tables with L2, e.g. by
5992	 * having nCR3 share lower level page tables with hCR3, then when KVM
5993	 * (L0) write-protects the nested NPTs, i.e. npt12 entries, KVM is also
5994	 * unknowingly write-protecting L1's guest page tables, which KVM isn't
5995	 * shadowing.
5996	 *
5997	 * Because the CPU (by default) walks NPT page tables using a write
5998	 * access (to ensure the CPU can do A/D updates), page walks in L1 can
5999	 * trigger write faults for the above case even when L1 isn't modifying
6000	 * PTEs.  As a result, KVM will unnecessarily emulate (or at least, try
6001	 * to emulate) an excessive number of L1 instructions; because L1's MMU
6002	 * isn't shadowed by KVM, there is no need to write-protect L1's gPTEs
6003	 * and thus no need to emulate in order to guarantee forward progress.
6004	 *
6005	 * Try to unprotect the gfn, i.e. zap any shadow pages, so that L1 can
6006	 * proceed without triggering emulation.  If one or more shadow pages
6007	 * was zapped, skip emulation and resume L1 to let it natively execute
6008	 * the instruction.  If no shadow pages were zapped, then the write-
6009	 * fault is due to something else entirely, i.e. KVM needs to emulate,
6010	 * as resuming the guest will put it into an infinite loop.
6011	 *
6012	 * Note, this code also applies to Intel CPUs, even though it is *very*
6013	 * unlikely that an L1 will share its page tables (IA32/PAE/paging64
6014	 * format) with L2's page tables (EPT format).
6015	 *
6016	 * For indirect MMUs, i.e. if KVM is shadowing the current MMU, try to
6017	 * unprotect the gfn and retry if an event is awaiting reinjection.  If
6018	 * KVM emulates multiple instructions before completing event injection,
6019	 * the event could be delayed beyond what is architecturally allowed,
6020	 * e.g. KVM could inject an IRQ after the TPR has been raised.
6021	 */
6022	if (((direct && is_write_to_guest_page_table(error_code)) ||
6023	     (!direct && kvm_event_needs_reinjection(vcpu))) &&
6024	    kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa))
6025		return RET_PF_RETRY;
6026
6027	/*
6028	 * The gfn is write-protected, but if KVM detects its emulating an
6029	 * instruction that is unlikely to be used to modify page tables, or if
6030	 * emulation fails, KVM can try to unprotect the gfn and let the CPU
6031	 * re-execute the instruction that caused the page fault.  Do not allow
6032	 * retrying an instruction from a nested guest as KVM is only explicitly
6033	 * shadowing L1's page tables, i.e. unprotecting something for L1 isn't
6034	 * going to magically fix whatever issue caused L2 to fail.
6035	 */
6036	if (!is_guest_mode(vcpu))
6037		*emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
6038
6039	return RET_PF_EMULATE;
6040}
6041
6042int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
6043		       void *insn, int insn_len)
6044{
6045	int r, emulation_type = EMULTYPE_PF;
6046	bool direct = vcpu->arch.mmu->root_role.direct;
6047
6048	if (WARN_ON_ONCE(!VALID_PAGE(vcpu->arch.mmu->root.hpa)))
6049		return RET_PF_RETRY;
6050
6051	/*
6052	 * Except for reserved faults (emulated MMIO is shared-only), set the
6053	 * PFERR_PRIVATE_ACCESS flag for software-protected VMs based on the gfn's
6054	 * current attributes, which are the source of truth for such VMs.  Note,
6055	 * this wrong for nested MMUs as the GPA is an L2 GPA, but KVM doesn't
6056	 * currently supported nested virtualization (among many other things)
6057	 * for software-protected VMs.
6058	 */
6059	if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) &&
6060	    !(error_code & PFERR_RSVD_MASK) &&
6061	    vcpu->kvm->arch.vm_type == KVM_X86_SW_PROTECTED_VM &&
6062	    kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(cr2_or_gpa)))
6063		error_code |= PFERR_PRIVATE_ACCESS;
6064
6065	r = RET_PF_INVALID;
6066	if (unlikely(error_code & PFERR_RSVD_MASK)) {
6067		if (WARN_ON_ONCE(error_code & PFERR_PRIVATE_ACCESS))
6068			return -EFAULT;
6069
6070		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
6071		if (r == RET_PF_EMULATE)
6072			goto emulate;
6073	}
6074
6075	if (r == RET_PF_INVALID) {
6076		vcpu->stat.pf_taken++;
6077
6078		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, error_code, false,
6079					  &emulation_type, NULL);
6080		if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
6081			return -EIO;
6082	}
6083
6084	if (r < 0)
6085		return r;
6086
6087	if (r == RET_PF_WRITE_PROTECTED)
6088		r = kvm_mmu_write_protect_fault(vcpu, cr2_or_gpa, error_code,
6089						&emulation_type);
6090
6091	if (r == RET_PF_FIXED)
6092		vcpu->stat.pf_fixed++;
6093	else if (r == RET_PF_EMULATE)
6094		vcpu->stat.pf_emulate++;
6095	else if (r == RET_PF_SPURIOUS)
6096		vcpu->stat.pf_spurious++;
6097
6098	if (r != RET_PF_EMULATE)
6099		return 1;
6100
6101emulate:
6102	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
6103				       insn_len);
6104}
6105EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
6106
6107void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg)
6108{
6109	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
6110	int root_level, leaf, level;
6111
6112	leaf = get_sptes_lockless(vcpu, gpa, sptes, &root_level);
6113	if (unlikely(leaf < 0))
6114		return;
6115
6116	pr_err("%s %llx", msg, gpa);
6117	for (level = root_level; level >= leaf; level--)
6118		pr_cont(", spte[%d] = 0x%llx", level, sptes[level]);
6119	pr_cont("\n");
6120}
6121EXPORT_SYMBOL_GPL(kvm_mmu_print_sptes);
6122
6123static void __kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
6124				      u64 addr, hpa_t root_hpa)
6125{
6126	struct kvm_shadow_walk_iterator iterator;
6127
6128	vcpu_clear_mmio_info(vcpu, addr);
6129
6130	/*
6131	 * Walking and synchronizing SPTEs both assume they are operating in
6132	 * the context of the current MMU, and would need to be reworked if
6133	 * this is ever used to sync the guest_mmu, e.g. to emulate INVEPT.
6134	 */
6135	if (WARN_ON_ONCE(mmu != vcpu->arch.mmu))
6136		return;
6137
6138	if (!VALID_PAGE(root_hpa))
6139		return;
6140
6141	write_lock(&vcpu->kvm->mmu_lock);
6142	for_each_shadow_entry_using_root(vcpu, root_hpa, addr, iterator) {
6143		struct kvm_mmu_page *sp = sptep_to_sp(iterator.sptep);
6144
6145		if (sp->unsync) {
6146			int ret = kvm_sync_spte(vcpu, sp, iterator.index);
6147
6148			if (ret < 0)
6149				mmu_page_zap_pte(vcpu->kvm, sp, iterator.sptep, NULL);
6150			if (ret)
6151				kvm_flush_remote_tlbs_sptep(vcpu->kvm, iterator.sptep);
6152		}
6153
6154		if (!sp->unsync_children)
6155			break;
6156	}
6157	write_unlock(&vcpu->kvm->mmu_lock);
6158}
6159
6160void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
6161			     u64 addr, unsigned long roots)
6162{
6163	int i;
6164
6165	WARN_ON_ONCE(roots & ~KVM_MMU_ROOTS_ALL);
6166
6167	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
6168	if (mmu != &vcpu->arch.guest_mmu) {
6169		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
6170		if (is_noncanonical_invlpg_address(addr, vcpu))
6171			return;
6172
6173		kvm_x86_call(flush_tlb_gva)(vcpu, addr);
6174	}
6175
6176	if (!mmu->sync_spte)
6177		return;
6178
6179	if (roots & KVM_MMU_ROOT_CURRENT)
6180		__kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->root.hpa);
6181
6182	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
6183		if (roots & KVM_MMU_ROOT_PREVIOUS(i))
6184			__kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->prev_roots[i].hpa);
6185	}
6186}
6187EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_addr);
6188
6189void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
6190{
6191	/*
6192	 * INVLPG is required to invalidate any global mappings for the VA,
6193	 * irrespective of PCID.  Blindly sync all roots as it would take
6194	 * roughly the same amount of work/time to determine whether any of the
6195	 * previous roots have a global mapping.
6196	 *
6197	 * Mappings not reachable via the current or previous cached roots will
6198	 * be synced when switching to that new cr3, so nothing needs to be
6199	 * done here for them.
6200	 */
6201	kvm_mmu_invalidate_addr(vcpu, vcpu->arch.walk_mmu, gva, KVM_MMU_ROOTS_ALL);
6202	++vcpu->stat.invlpg;
6203}
6204EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
6205
6206
6207void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
6208{
6209	struct kvm_mmu *mmu = vcpu->arch.mmu;
6210	unsigned long roots = 0;
6211	uint i;
6212
6213	if (pcid == kvm_get_active_pcid(vcpu))
6214		roots |= KVM_MMU_ROOT_CURRENT;
6215
6216	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
6217		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
6218		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd))
6219			roots |= KVM_MMU_ROOT_PREVIOUS(i);
6220	}
6221
6222	if (roots)
6223		kvm_mmu_invalidate_addr(vcpu, mmu, gva, roots);
6224	++vcpu->stat.invlpg;
6225
6226	/*
6227	 * Mappings not reachable via the current cr3 or the prev_roots will be
6228	 * synced when switching to that cr3, so nothing needs to be done here
6229	 * for them.
6230	 */
6231}
6232
6233void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
6234		       int tdp_max_root_level, int tdp_huge_page_level)
6235{
6236	tdp_enabled = enable_tdp;
6237	tdp_root_level = tdp_forced_root_level;
6238	max_tdp_level = tdp_max_root_level;
6239
6240#ifdef CONFIG_X86_64
6241	tdp_mmu_enabled = tdp_mmu_allowed && tdp_enabled;
6242#endif
6243	/*
6244	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
6245	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
6246	 * the kernel is not.  But, KVM never creates a page size greater than
6247	 * what is used by the kernel for any given HVA, i.e. the kernel's
6248	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
6249	 */
6250	if (tdp_enabled)
6251		max_huge_page_level = tdp_huge_page_level;
6252	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
6253		max_huge_page_level = PG_LEVEL_1G;
6254	else
6255		max_huge_page_level = PG_LEVEL_2M;
6256}
6257EXPORT_SYMBOL_GPL(kvm_configure_mmu);
6258
6259static void free_mmu_pages(struct kvm_mmu *mmu)
6260{
6261	if (!tdp_enabled && mmu->pae_root)
6262		set_memory_encrypted((unsigned long)mmu->pae_root, 1);
6263	free_page((unsigned long)mmu->pae_root);
6264	free_page((unsigned long)mmu->pml4_root);
6265	free_page((unsigned long)mmu->pml5_root);
6266}
6267
6268static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6269{
6270	struct page *page;
6271	int i;
6272
6273	mmu->root.hpa = INVALID_PAGE;
6274	mmu->root.pgd = 0;
6275	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
6276		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
6277
6278	/* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */
6279	if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu)
6280		return 0;
6281
6282	/*
6283	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
6284	 * while the PDP table is a per-vCPU construct that's allocated at MMU
6285	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
6286	 * x86_64.  Therefore we need to allocate the PDP table in the first
6287	 * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
6288	 * generally doesn't use PAE paging and can skip allocating the PDP
6289	 * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
6290	 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
6291	 * KVM; that horror is handled on-demand by mmu_alloc_special_roots().
6292	 */
6293	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
6294		return 0;
6295
6296	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
6297	if (!page)
6298		return -ENOMEM;
6299
6300	mmu->pae_root = page_address(page);
6301
6302	/*
6303	 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
6304	 * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
6305	 * that KVM's writes and the CPU's reads get along.  Note, this is
6306	 * only necessary when using shadow paging, as 64-bit NPT can get at
6307	 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
6308	 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
6309	 */
6310	if (!tdp_enabled)
6311		set_memory_decrypted((unsigned long)mmu->pae_root, 1);
6312	else
6313		WARN_ON_ONCE(shadow_me_value);
6314
6315	for (i = 0; i < 4; ++i)
6316		mmu->pae_root[i] = INVALID_PAE_ROOT;
6317
6318	return 0;
6319}
6320
6321int kvm_mmu_create(struct kvm_vcpu *vcpu)
6322{
6323	int ret;
6324
6325	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
6326	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
6327
6328	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
6329	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
6330
6331	vcpu->arch.mmu_shadow_page_cache.init_value =
6332		SHADOW_NONPRESENT_VALUE;
6333	if (!vcpu->arch.mmu_shadow_page_cache.init_value)
6334		vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
6335
6336	vcpu->arch.mmu = &vcpu->arch.root_mmu;
6337	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
6338
6339	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
6340	if (ret)
6341		return ret;
6342
6343	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
6344	if (ret)
6345		goto fail_allocate_root;
6346
6347	return ret;
6348 fail_allocate_root:
6349	free_mmu_pages(&vcpu->arch.guest_mmu);
6350	return ret;
6351}
6352
6353#define BATCH_ZAP_PAGES	10
6354static void kvm_zap_obsolete_pages(struct kvm *kvm)
6355{
6356	struct kvm_mmu_page *sp, *node;
6357	int nr_zapped, batch = 0;
6358	LIST_HEAD(invalid_list);
6359	bool unstable;
6360
6361	lockdep_assert_held(&kvm->slots_lock);
6362
6363restart:
6364	list_for_each_entry_safe_reverse(sp, node,
6365	      &kvm->arch.active_mmu_pages, link) {
6366		/*
6367		 * No obsolete valid page exists before a newly created page
6368		 * since active_mmu_pages is a FIFO list.
6369		 */
6370		if (!is_obsolete_sp(kvm, sp))
6371			break;
6372
6373		/*
6374		 * Invalid pages should never land back on the list of active
6375		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
6376		 * infinite loop if the page gets put back on the list (again).
6377		 */
6378		if (WARN_ON_ONCE(sp->role.invalid))
6379			continue;
6380
6381		/*
6382		 * No need to flush the TLB since we're only zapping shadow
6383		 * pages with an obsolete generation number and all vCPUS have
6384		 * loaded a new root, i.e. the shadow pages being zapped cannot
6385		 * be in active use by the guest.
6386		 */
6387		if (batch >= BATCH_ZAP_PAGES &&
6388		    cond_resched_rwlock_write(&kvm->mmu_lock)) {
6389			batch = 0;
6390			goto restart;
6391		}
6392
6393		unstable = __kvm_mmu_prepare_zap_page(kvm, sp,
6394				&invalid_list, &nr_zapped);
6395		batch += nr_zapped;
6396
6397		if (unstable)
6398			goto restart;
6399	}
6400
6401	/*
6402	 * Kick all vCPUs (via remote TLB flush) before freeing the page tables
6403	 * to ensure KVM is not in the middle of a lockless shadow page table
6404	 * walk, which may reference the pages.  The remote TLB flush itself is
6405	 * not required and is simply a convenient way to kick vCPUs as needed.
6406	 * KVM performs a local TLB flush when allocating a new root (see
6407	 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are
6408	 * running with an obsolete MMU.
6409	 */
6410	kvm_mmu_commit_zap_page(kvm, &invalid_list);
6411}
6412
6413/*
6414 * Fast invalidate all shadow pages and use lock-break technique
6415 * to zap obsolete pages.
6416 *
6417 * It's required when memslot is being deleted or VM is being
6418 * destroyed, in these cases, we should ensure that KVM MMU does
6419 * not use any resource of the being-deleted slot or all slots
6420 * after calling the function.
6421 */
6422static void kvm_mmu_zap_all_fast(struct kvm *kvm)
6423{
6424	lockdep_assert_held(&kvm->slots_lock);
6425
6426	write_lock(&kvm->mmu_lock);
6427	trace_kvm_mmu_zap_all_fast(kvm);
6428
6429	/*
6430	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
6431	 * held for the entire duration of zapping obsolete pages, it's
6432	 * impossible for there to be multiple invalid generations associated
6433	 * with *valid* shadow pages at any given time, i.e. there is exactly
6434	 * one valid generation and (at most) one invalid generation.
6435	 */
6436	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
6437
6438	/*
6439	 * In order to ensure all vCPUs drop their soon-to-be invalid roots,
6440	 * invalidating TDP MMU roots must be done while holding mmu_lock for
6441	 * write and in the same critical section as making the reload request,
6442	 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield.
6443	 */
6444	if (tdp_mmu_enabled)
6445		kvm_tdp_mmu_invalidate_all_roots(kvm);
6446
6447	/*
6448	 * Notify all vcpus to reload its shadow page table and flush TLB.
6449	 * Then all vcpus will switch to new shadow page table with the new
6450	 * mmu_valid_gen.
6451	 *
6452	 * Note: we need to do this under the protection of mmu_lock,
6453	 * otherwise, vcpu would purge shadow page but miss tlb flush.
6454	 */
6455	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
6456
6457	kvm_zap_obsolete_pages(kvm);
6458
6459	write_unlock(&kvm->mmu_lock);
6460
6461	/*
6462	 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before
6463	 * returning to the caller, e.g. if the zap is in response to a memslot
6464	 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs
6465	 * associated with the deleted memslot once the update completes, and
6466	 * Deferring the zap until the final reference to the root is put would
6467	 * lead to use-after-free.
6468	 */
6469	if (tdp_mmu_enabled)
6470		kvm_tdp_mmu_zap_invalidated_roots(kvm);
6471}
6472
6473void kvm_mmu_init_vm(struct kvm *kvm)
6474{
6475	kvm->arch.shadow_mmio_value = shadow_mmio_value;
6476	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6477	INIT_LIST_HEAD(&kvm->arch.possible_nx_huge_pages);
6478	spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);
6479
6480	if (tdp_mmu_enabled)
6481		kvm_mmu_init_tdp_mmu(kvm);
6482
6483	kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache;
6484	kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO;
6485
6486	kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO;
6487
6488	kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache;
6489	kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO;
6490}
6491
6492static void mmu_free_vm_memory_caches(struct kvm *kvm)
6493{
6494	kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache);
6495	kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache);
6496	kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache);
6497}
6498
6499void kvm_mmu_uninit_vm(struct kvm *kvm)
6500{
6501	if (tdp_mmu_enabled)
6502		kvm_mmu_uninit_tdp_mmu(kvm);
6503
6504	mmu_free_vm_memory_caches(kvm);
6505}
6506
6507static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
6508{
6509	const struct kvm_memory_slot *memslot;
6510	struct kvm_memslots *slots;
6511	struct kvm_memslot_iter iter;
6512	bool flush = false;
6513	gfn_t start, end;
6514	int i;
6515
6516	if (!kvm_memslots_have_rmaps(kvm))
6517		return flush;
6518
6519	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
6520		slots = __kvm_memslots(kvm, i);
6521
6522		kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) {
6523			memslot = iter.slot;
6524			start = max(gfn_start, memslot->base_gfn);
6525			end = min(gfn_end, memslot->base_gfn + memslot->npages);
6526			if (WARN_ON_ONCE(start >= end))
6527				continue;
6528
6529			flush = __kvm_rmap_zap_gfn_range(kvm, memslot, start,
6530							 end, true, flush);
6531		}
6532	}
6533
6534	return flush;
6535}
6536
6537/*
6538 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
6539 * (not including it)
6540 */
6541void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
6542{
6543	bool flush;
6544
6545	if (WARN_ON_ONCE(gfn_end <= gfn_start))
6546		return;
6547
6548	write_lock(&kvm->mmu_lock);
6549
6550	kvm_mmu_invalidate_begin(kvm);
6551
6552	kvm_mmu_invalidate_range_add(kvm, gfn_start, gfn_end);
6553
6554	flush = kvm_rmap_zap_gfn_range(kvm, gfn_start, gfn_end);
6555
6556	if (tdp_mmu_enabled)
6557		flush = kvm_tdp_mmu_zap_leafs(kvm, gfn_start, gfn_end, flush);
6558
6559	if (flush)
6560		kvm_flush_remote_tlbs_range(kvm, gfn_start, gfn_end - gfn_start);
6561
6562	kvm_mmu_invalidate_end(kvm);
6563
6564	write_unlock(&kvm->mmu_lock);
6565}
6566
6567static bool slot_rmap_write_protect(struct kvm *kvm,
6568				    struct kvm_rmap_head *rmap_head,
6569				    const struct kvm_memory_slot *slot)
6570{
6571	return rmap_write_protect(rmap_head, false);
6572}
6573
6574void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
6575				      const struct kvm_memory_slot *memslot,
6576				      int start_level)
6577{
6578	if (kvm_memslots_have_rmaps(kvm)) {
6579		write_lock(&kvm->mmu_lock);
6580		walk_slot_rmaps(kvm, memslot, slot_rmap_write_protect,
6581				start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
6582		write_unlock(&kvm->mmu_lock);
6583	}
6584
6585	if (tdp_mmu_enabled) {
6586		read_lock(&kvm->mmu_lock);
6587		kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
6588		read_unlock(&kvm->mmu_lock);
6589	}
6590}
6591
6592static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min)
6593{
6594	return kvm_mmu_memory_cache_nr_free_objects(cache) < min;
6595}
6596
6597static bool need_topup_split_caches_or_resched(struct kvm *kvm)
6598{
6599	if (need_resched() || rwlock_needbreak(&kvm->mmu_lock))
6600		return true;
6601
6602	/*
6603	 * In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed
6604	 * to split a single huge page. Calculating how many are actually needed
6605	 * is possible but not worth the complexity.
6606	 */
6607	return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) ||
6608	       need_topup(&kvm->arch.split_page_header_cache, 1) ||
6609	       need_topup(&kvm->arch.split_shadow_page_cache, 1);
6610}
6611
6612static int topup_split_caches(struct kvm *kvm)
6613{
6614	/*
6615	 * Allocating rmap list entries when splitting huge pages for nested
6616	 * MMUs is uncommon as KVM needs to use a list if and only if there is
6617	 * more than one rmap entry for a gfn, i.e. requires an L1 gfn to be
6618	 * aliased by multiple L2 gfns and/or from multiple nested roots with
6619	 * different roles.  Aliasing gfns when using TDP is atypical for VMMs;
6620	 * a few gfns are often aliased during boot, e.g. when remapping BIOS,
6621	 * but aliasing rarely occurs post-boot or for many gfns.  If there is
6622	 * only one rmap entry, rmap->val points directly at that one entry and
6623	 * doesn't need to allocate a list.  Buffer the cache by the default
6624	 * capacity so that KVM doesn't have to drop mmu_lock to topup if KVM
6625	 * encounters an aliased gfn or two.
6626	 */
6627	const int capacity = SPLIT_DESC_CACHE_MIN_NR_OBJECTS +
6628			     KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE;
6629	int r;
6630
6631	lockdep_assert_held(&kvm->slots_lock);
6632
6633	r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity,
6634					 SPLIT_DESC_CACHE_MIN_NR_OBJECTS);
6635	if (r)
6636		return r;
6637
6638	r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1);
6639	if (r)
6640		return r;
6641
6642	return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1);
6643}
6644
6645static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep)
6646{
6647	struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep);
6648	struct shadow_page_caches caches = {};
6649	union kvm_mmu_page_role role;
6650	unsigned int access;
6651	gfn_t gfn;
6652
6653	gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep));
6654	access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep));
6655
6656	/*
6657	 * Note, huge page splitting always uses direct shadow pages, regardless
6658	 * of whether the huge page itself is mapped by a direct or indirect
6659	 * shadow page, since the huge page region itself is being directly
6660	 * mapped with smaller pages.
6661	 */
6662	role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access);
6663
6664	/* Direct SPs do not require a shadowed_info_cache. */
6665	caches.page_header_cache = &kvm->arch.split_page_header_cache;
6666	caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache;
6667
6668	/* Safe to pass NULL for vCPU since requesting a direct SP. */
6669	return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role);
6670}
6671
6672static void shadow_mmu_split_huge_page(struct kvm *kvm,
6673				       const struct kvm_memory_slot *slot,
6674				       u64 *huge_sptep)
6675
6676{
6677	struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache;
6678	u64 huge_spte = READ_ONCE(*huge_sptep);
6679	struct kvm_mmu_page *sp;
6680	bool flush = false;
6681	u64 *sptep, spte;
6682	gfn_t gfn;
6683	int index;
6684
6685	sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep);
6686
6687	for (index = 0; index < SPTE_ENT_PER_PAGE; index++) {
6688		sptep = &sp->spt[index];
6689		gfn = kvm_mmu_page_get_gfn(sp, index);
6690
6691		/*
6692		 * The SP may already have populated SPTEs, e.g. if this huge
6693		 * page is aliased by multiple sptes with the same access
6694		 * permissions. These entries are guaranteed to map the same
6695		 * gfn-to-pfn translation since the SP is direct, so no need to
6696		 * modify them.
6697		 *
6698		 * However, if a given SPTE points to a lower level page table,
6699		 * that lower level page table may only be partially populated.
6700		 * Installing such SPTEs would effectively unmap a potion of the
6701		 * huge page. Unmapping guest memory always requires a TLB flush
6702		 * since a subsequent operation on the unmapped regions would
6703		 * fail to detect the need to flush.
6704		 */
6705		if (is_shadow_present_pte(*sptep)) {
6706			flush |= !is_last_spte(*sptep, sp->role.level);
6707			continue;
6708		}
6709
6710		spte = make_small_spte(kvm, huge_spte, sp->role, index);
6711		mmu_spte_set(sptep, spte);
6712		__rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access);
6713	}
6714
6715	__link_shadow_page(kvm, cache, huge_sptep, sp, flush);
6716}
6717
6718static int shadow_mmu_try_split_huge_page(struct kvm *kvm,
6719					  const struct kvm_memory_slot *slot,
6720					  u64 *huge_sptep)
6721{
6722	struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep);
6723	int level, r = 0;
6724	gfn_t gfn;
6725	u64 spte;
6726
6727	/* Grab information for the tracepoint before dropping the MMU lock. */
6728	gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep));
6729	level = huge_sp->role.level;
6730	spte = *huge_sptep;
6731
6732	if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) {
6733		r = -ENOSPC;
6734		goto out;
6735	}
6736
6737	if (need_topup_split_caches_or_resched(kvm)) {
6738		write_unlock(&kvm->mmu_lock);
6739		cond_resched();
6740		/*
6741		 * If the topup succeeds, return -EAGAIN to indicate that the
6742		 * rmap iterator should be restarted because the MMU lock was
6743		 * dropped.
6744		 */
6745		r = topup_split_caches(kvm) ?: -EAGAIN;
6746		write_lock(&kvm->mmu_lock);
6747		goto out;
6748	}
6749
6750	shadow_mmu_split_huge_page(kvm, slot, huge_sptep);
6751
6752out:
6753	trace_kvm_mmu_split_huge_page(gfn, spte, level, r);
6754	return r;
6755}
6756
6757static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm,
6758					    struct kvm_rmap_head *rmap_head,
6759					    const struct kvm_memory_slot *slot)
6760{
6761	struct rmap_iterator iter;
6762	struct kvm_mmu_page *sp;
6763	u64 *huge_sptep;
6764	int r;
6765
6766restart:
6767	for_each_rmap_spte(rmap_head, &iter, huge_sptep) {
6768		sp = sptep_to_sp(huge_sptep);
6769
6770		/* TDP MMU is enabled, so rmap only contains nested MMU SPs. */
6771		if (WARN_ON_ONCE(!sp->role.guest_mode))
6772			continue;
6773
6774		/* The rmaps should never contain non-leaf SPTEs. */
6775		if (WARN_ON_ONCE(!is_large_pte(*huge_sptep)))
6776			continue;
6777
6778		/* SPs with level >PG_LEVEL_4K should never by unsync. */
6779		if (WARN_ON_ONCE(sp->unsync))
6780			continue;
6781
6782		/* Don't bother splitting huge pages on invalid SPs. */
6783		if (sp->role.invalid)
6784			continue;
6785
6786		r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep);
6787
6788		/*
6789		 * The split succeeded or needs to be retried because the MMU
6790		 * lock was dropped. Either way, restart the iterator to get it
6791		 * back into a consistent state.
6792		 */
6793		if (!r || r == -EAGAIN)
6794			goto restart;
6795
6796		/* The split failed and shouldn't be retried (e.g. -ENOMEM). */
6797		break;
6798	}
6799
6800	return false;
6801}
6802
6803static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm,
6804						const struct kvm_memory_slot *slot,
6805						gfn_t start, gfn_t end,
6806						int target_level)
6807{
6808	int level;
6809
6810	/*
6811	 * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working
6812	 * down to the target level. This ensures pages are recursively split
6813	 * all the way to the target level. There's no need to split pages
6814	 * already at the target level.
6815	 */
6816	for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--)
6817		__walk_slot_rmaps(kvm, slot, shadow_mmu_try_split_huge_pages,
6818				  level, level, start, end - 1, true, true, false);
6819}
6820
6821/* Must be called with the mmu_lock held in write-mode. */
6822void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
6823				   const struct kvm_memory_slot *memslot,
6824				   u64 start, u64 end,
6825				   int target_level)
6826{
6827	if (!tdp_mmu_enabled)
6828		return;
6829
6830	if (kvm_memslots_have_rmaps(kvm))
6831		kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level);
6832
6833	kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false);
6834
6835	/*
6836	 * A TLB flush is unnecessary at this point for the same reasons as in
6837	 * kvm_mmu_slot_try_split_huge_pages().
6838	 */
6839}
6840
6841void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
6842					const struct kvm_memory_slot *memslot,
6843					int target_level)
6844{
6845	u64 start = memslot->base_gfn;
6846	u64 end = start + memslot->npages;
6847
6848	if (!tdp_mmu_enabled)
6849		return;
6850
6851	if (kvm_memslots_have_rmaps(kvm)) {
6852		write_lock(&kvm->mmu_lock);
6853		kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level);
6854		write_unlock(&kvm->mmu_lock);
6855	}
6856
6857	read_lock(&kvm->mmu_lock);
6858	kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true);
6859	read_unlock(&kvm->mmu_lock);
6860
6861	/*
6862	 * No TLB flush is necessary here. KVM will flush TLBs after
6863	 * write-protecting and/or clearing dirty on the newly split SPTEs to
6864	 * ensure that guest writes are reflected in the dirty log before the
6865	 * ioctl to enable dirty logging on this memslot completes. Since the
6866	 * split SPTEs retain the write and dirty bits of the huge SPTE, it is
6867	 * safe for KVM to decide if a TLB flush is necessary based on the split
6868	 * SPTEs.
6869	 */
6870}
6871
6872static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
6873					 struct kvm_rmap_head *rmap_head,
6874					 const struct kvm_memory_slot *slot)
6875{
6876	u64 *sptep;
6877	struct rmap_iterator iter;
6878	int need_tlb_flush = 0;
6879	struct kvm_mmu_page *sp;
6880
6881restart:
6882	for_each_rmap_spte(rmap_head, &iter, sptep) {
6883		sp = sptep_to_sp(sptep);
6884
6885		/*
6886		 * We cannot do huge page mapping for indirect shadow pages,
6887		 * which are found on the last rmap (level = 1) when not using
6888		 * tdp; such shadow pages are synced with the page table in
6889		 * the guest, and the guest page table is using 4K page size
6890		 * mapping if the indirect sp has level = 1.
6891		 */
6892		if (sp->role.direct &&
6893		    sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn)) {
6894			kvm_zap_one_rmap_spte(kvm, rmap_head, sptep);
6895
6896			if (kvm_available_flush_remote_tlbs_range())
6897				kvm_flush_remote_tlbs_sptep(kvm, sptep);
6898			else
6899				need_tlb_flush = 1;
6900
6901			goto restart;
6902		}
6903	}
6904
6905	return need_tlb_flush;
6906}
6907EXPORT_SYMBOL_GPL(kvm_zap_gfn_range);
6908
6909static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm,
6910					   const struct kvm_memory_slot *slot)
6911{
6912	/*
6913	 * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap
6914	 * pages that are already mapped at the maximum hugepage level.
6915	 */
6916	if (walk_slot_rmaps(kvm, slot, kvm_mmu_zap_collapsible_spte,
6917			    PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true))
6918		kvm_flush_remote_tlbs_memslot(kvm, slot);
6919}
6920
6921void kvm_mmu_recover_huge_pages(struct kvm *kvm,
6922				const struct kvm_memory_slot *slot)
6923{
6924	if (kvm_memslots_have_rmaps(kvm)) {
6925		write_lock(&kvm->mmu_lock);
6926		kvm_rmap_zap_collapsible_sptes(kvm, slot);
6927		write_unlock(&kvm->mmu_lock);
6928	}
6929
6930	if (tdp_mmu_enabled) {
6931		read_lock(&kvm->mmu_lock);
6932		kvm_tdp_mmu_recover_huge_pages(kvm, slot);
6933		read_unlock(&kvm->mmu_lock);
6934	}
6935}
6936
6937void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
6938				   const struct kvm_memory_slot *memslot)
6939{
6940	if (kvm_memslots_have_rmaps(kvm)) {
6941		write_lock(&kvm->mmu_lock);
6942		/*
6943		 * Clear dirty bits only on 4k SPTEs since the legacy MMU only
6944		 * support dirty logging at a 4k granularity.
6945		 */
6946		walk_slot_rmaps_4k(kvm, memslot, __rmap_clear_dirty, false);
6947		write_unlock(&kvm->mmu_lock);
6948	}
6949
6950	if (tdp_mmu_enabled) {
6951		read_lock(&kvm->mmu_lock);
6952		kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
6953		read_unlock(&kvm->mmu_lock);
6954	}
6955
6956	/*
6957	 * The caller will flush the TLBs after this function returns.
6958	 *
6959	 * It's also safe to flush TLBs out of mmu lock here as currently this
6960	 * function is only used for dirty logging, in which case flushing TLB
6961	 * out of mmu lock also guarantees no dirty pages will be lost in
6962	 * dirty_bitmap.
6963	 */
6964}
6965
6966static void kvm_mmu_zap_all(struct kvm *kvm)
6967{
6968	struct kvm_mmu_page *sp, *node;
6969	LIST_HEAD(invalid_list);
6970	int ign;
6971
6972	write_lock(&kvm->mmu_lock);
6973restart:
6974	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6975		if (WARN_ON_ONCE(sp->role.invalid))
6976			continue;
6977		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6978			goto restart;
6979		if (cond_resched_rwlock_write(&kvm->mmu_lock))
6980			goto restart;
6981	}
6982
6983	kvm_mmu_commit_zap_page(kvm, &invalid_list);
6984
6985	if (tdp_mmu_enabled)
6986		kvm_tdp_mmu_zap_all(kvm);
6987
6988	write_unlock(&kvm->mmu_lock);
6989}
6990
6991void kvm_arch_flush_shadow_all(struct kvm *kvm)
6992{
6993	kvm_mmu_zap_all(kvm);
6994}
6995
6996static void kvm_mmu_zap_memslot_pages_and_flush(struct kvm *kvm,
6997						struct kvm_memory_slot *slot,
6998						bool flush)
6999{
7000	LIST_HEAD(invalid_list);
7001	unsigned long i;
7002
7003	if (list_empty(&kvm->arch.active_mmu_pages))
7004		goto out_flush;
7005
7006	/*
7007	 * Since accounting information is stored in struct kvm_arch_memory_slot,
7008	 * all MMU pages that are shadowing guest PTEs must be zapped before the
7009	 * memslot is deleted, as freeing such pages after the memslot is freed
7010	 * will result in use-after-free, e.g. in unaccount_shadowed().
7011	 */
7012	for (i = 0; i < slot->npages; i++) {
7013		struct kvm_mmu_page *sp;
7014		gfn_t gfn = slot->base_gfn + i;
7015
7016		for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn)
7017			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7018
7019		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
7020			kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
7021			flush = false;
7022			cond_resched_rwlock_write(&kvm->mmu_lock);
7023		}
7024	}
7025
7026out_flush:
7027	kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
7028}
7029
7030static void kvm_mmu_zap_memslot(struct kvm *kvm,
7031				struct kvm_memory_slot *slot)
7032{
7033	struct kvm_gfn_range range = {
7034		.slot = slot,
7035		.start = slot->base_gfn,
7036		.end = slot->base_gfn + slot->npages,
7037		.may_block = true,
7038	};
7039	bool flush;
7040
7041	write_lock(&kvm->mmu_lock);
7042	flush = kvm_unmap_gfn_range(kvm, &range);
7043	kvm_mmu_zap_memslot_pages_and_flush(kvm, slot, flush);
7044	write_unlock(&kvm->mmu_lock);
7045}
7046
7047static inline bool kvm_memslot_flush_zap_all(struct kvm *kvm)
7048{
7049	return kvm->arch.vm_type == KVM_X86_DEFAULT_VM &&
7050	       kvm_check_has_quirk(kvm, KVM_X86_QUIRK_SLOT_ZAP_ALL);
7051}
7052
7053void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7054				   struct kvm_memory_slot *slot)
7055{
7056	if (kvm_memslot_flush_zap_all(kvm))
7057		kvm_mmu_zap_all_fast(kvm);
7058	else
7059		kvm_mmu_zap_memslot(kvm, slot);
7060}
7061
7062void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
7063{
7064	WARN_ON_ONCE(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
7065
7066	gen &= MMIO_SPTE_GEN_MASK;
7067
7068	/*
7069	 * Generation numbers are incremented in multiples of the number of
7070	 * address spaces in order to provide unique generations across all
7071	 * address spaces.  Strip what is effectively the address space
7072	 * modifier prior to checking for a wrap of the MMIO generation so
7073	 * that a wrap in any address space is detected.
7074	 */
7075	gen &= ~((u64)kvm_arch_nr_memslot_as_ids(kvm) - 1);
7076
7077	/*
7078	 * The very rare case: if the MMIO generation number has wrapped,
7079	 * zap all shadow pages.
7080	 */
7081	if (unlikely(gen == 0)) {
7082		kvm_debug_ratelimited("zapping shadow pages for mmio generation wraparound\n");
7083		kvm_mmu_zap_all_fast(kvm);
7084	}
7085}
7086
7087static void mmu_destroy_caches(void)
7088{
7089	kmem_cache_destroy(pte_list_desc_cache);
7090	kmem_cache_destroy(mmu_page_header_cache);
7091}
7092
7093static void kvm_wake_nx_recovery_thread(struct kvm *kvm)
7094{
7095	/*
7096	 * The NX recovery thread is spawned on-demand at the first KVM_RUN and
7097	 * may not be valid even though the VM is globally visible.  Do nothing,
7098	 * as such a VM can't have any possible NX huge pages.
7099	 */
7100	struct vhost_task *nx_thread = READ_ONCE(kvm->arch.nx_huge_page_recovery_thread);
7101
7102	if (nx_thread)
7103		vhost_task_wake(nx_thread);
7104}
7105
7106static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp)
7107{
7108	if (nx_hugepage_mitigation_hard_disabled)
7109		return sysfs_emit(buffer, "never\n");
7110
7111	return param_get_bool(buffer, kp);
7112}
7113
7114static bool get_nx_auto_mode(void)
7115{
7116	/* Return true when CPU has the bug, and mitigations are ON */
7117	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
7118}
7119
7120static void __set_nx_huge_pages(bool val)
7121{
7122	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
7123}
7124
7125static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
7126{
7127	bool old_val = nx_huge_pages;
7128	bool new_val;
7129
7130	if (nx_hugepage_mitigation_hard_disabled)
7131		return -EPERM;
7132
7133	/* In "auto" mode deploy workaround only if CPU has the bug. */
7134	if (sysfs_streq(val, "off")) {
7135		new_val = 0;
7136	} else if (sysfs_streq(val, "force")) {
7137		new_val = 1;
7138	} else if (sysfs_streq(val, "auto")) {
7139		new_val = get_nx_auto_mode();
7140	} else if (sysfs_streq(val, "never")) {
7141		new_val = 0;
7142
7143		mutex_lock(&kvm_lock);
7144		if (!list_empty(&vm_list)) {
7145			mutex_unlock(&kvm_lock);
7146			return -EBUSY;
7147		}
7148		nx_hugepage_mitigation_hard_disabled = true;
7149		mutex_unlock(&kvm_lock);
7150	} else if (kstrtobool(val, &new_val) < 0) {
7151		return -EINVAL;
7152	}
7153
7154	__set_nx_huge_pages(new_val);
7155
7156	if (new_val != old_val) {
7157		struct kvm *kvm;
7158
7159		mutex_lock(&kvm_lock);
7160
7161		list_for_each_entry(kvm, &vm_list, vm_list) {
7162			mutex_lock(&kvm->slots_lock);
7163			kvm_mmu_zap_all_fast(kvm);
7164			mutex_unlock(&kvm->slots_lock);
7165
7166			kvm_wake_nx_recovery_thread(kvm);
7167		}
7168		mutex_unlock(&kvm_lock);
7169	}
7170
7171	return 0;
7172}
7173
7174/*
7175 * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as
7176 * its default value of -1 is technically undefined behavior for a boolean.
7177 * Forward the module init call to SPTE code so that it too can handle module
7178 * params that need to be resolved/snapshot.
7179 */
7180void __init kvm_mmu_x86_module_init(void)
7181{
7182	if (nx_huge_pages == -1)
7183		__set_nx_huge_pages(get_nx_auto_mode());
7184
7185	/*
7186	 * Snapshot userspace's desire to enable the TDP MMU. Whether or not the
7187	 * TDP MMU is actually enabled is determined in kvm_configure_mmu()
7188	 * when the vendor module is loaded.
7189	 */
7190	tdp_mmu_allowed = tdp_mmu_enabled;
7191
7192	kvm_mmu_spte_module_init();
7193}
7194
7195/*
7196 * The bulk of the MMU initialization is deferred until the vendor module is
7197 * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need
7198 * to be reset when a potentially different vendor module is loaded.
7199 */
7200int kvm_mmu_vendor_module_init(void)
7201{
7202	int ret = -ENOMEM;
7203
7204	/*
7205	 * MMU roles use union aliasing which is, generally speaking, an
7206	 * undefined behavior. However, we supposedly know how compilers behave
7207	 * and the current status quo is unlikely to change. Guardians below are
7208	 * supposed to let us know if the assumption becomes false.
7209	 */
7210	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
7211	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
7212	BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64));
7213
7214	kvm_mmu_reset_all_pte_masks();
7215
7216	pte_list_desc_cache = KMEM_CACHE(pte_list_desc, SLAB_ACCOUNT);
7217	if (!pte_list_desc_cache)
7218		goto out;
7219
7220	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
7221						  sizeof(struct kvm_mmu_page),
7222						  0, SLAB_ACCOUNT, NULL);
7223	if (!mmu_page_header_cache)
7224		goto out;
7225
7226	return 0;
7227
7228out:
7229	mmu_destroy_caches();
7230	return ret;
7231}
7232
7233void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
7234{
7235	kvm_mmu_unload(vcpu);
7236	free_mmu_pages(&vcpu->arch.root_mmu);
7237	free_mmu_pages(&vcpu->arch.guest_mmu);
7238	mmu_free_memory_caches(vcpu);
7239}
7240
7241void kvm_mmu_vendor_module_exit(void)
7242{
7243	mmu_destroy_caches();
7244}
7245
7246/*
7247 * Calculate the effective recovery period, accounting for '0' meaning "let KVM
7248 * select a halving time of 1 hour".  Returns true if recovery is enabled.
7249 */
7250static bool calc_nx_huge_pages_recovery_period(uint *period)
7251{
7252	/*
7253	 * Use READ_ONCE to get the params, this may be called outside of the
7254	 * param setters, e.g. by the kthread to compute its next timeout.
7255	 */
7256	bool enabled = READ_ONCE(nx_huge_pages);
7257	uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
7258
7259	if (!enabled || !ratio)
7260		return false;
7261
7262	*period = READ_ONCE(nx_huge_pages_recovery_period_ms);
7263	if (!*period) {
7264		/* Make sure the period is not less than one second.  */
7265		ratio = min(ratio, 3600u);
7266		*period = 60 * 60 * 1000 / ratio;
7267	}
7268	return true;
7269}
7270
7271static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp)
7272{
7273	bool was_recovery_enabled, is_recovery_enabled;
7274	uint old_period, new_period;
7275	int err;
7276
7277	if (nx_hugepage_mitigation_hard_disabled)
7278		return -EPERM;
7279
7280	was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period);
7281
7282	err = param_set_uint(val, kp);
7283	if (err)
7284		return err;
7285
7286	is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period);
7287
7288	if (is_recovery_enabled &&
7289	    (!was_recovery_enabled || old_period > new_period)) {
7290		struct kvm *kvm;
7291
7292		mutex_lock(&kvm_lock);
7293
7294		list_for_each_entry(kvm, &vm_list, vm_list)
7295			kvm_wake_nx_recovery_thread(kvm);
7296
7297		mutex_unlock(&kvm_lock);
7298	}
7299
7300	return err;
7301}
7302
7303static void kvm_recover_nx_huge_pages(struct kvm *kvm)
7304{
7305	unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
7306	struct kvm_memory_slot *slot;
7307	int rcu_idx;
7308	struct kvm_mmu_page *sp;
7309	unsigned int ratio;
7310	LIST_HEAD(invalid_list);
7311	bool flush = false;
7312	ulong to_zap;
7313
7314	rcu_idx = srcu_read_lock(&kvm->srcu);
7315	write_lock(&kvm->mmu_lock);
7316
7317	/*
7318	 * Zapping TDP MMU shadow pages, including the remote TLB flush, must
7319	 * be done under RCU protection, because the pages are freed via RCU
7320	 * callback.
7321	 */
7322	rcu_read_lock();
7323
7324	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
7325	to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
7326	for ( ; to_zap; --to_zap) {
7327		if (list_empty(&kvm->arch.possible_nx_huge_pages))
7328			break;
7329
7330		/*
7331		 * We use a separate list instead of just using active_mmu_pages
7332		 * because the number of shadow pages that be replaced with an
7333		 * NX huge page is expected to be relatively small compared to
7334		 * the total number of shadow pages.  And because the TDP MMU
7335		 * doesn't use active_mmu_pages.
7336		 */
7337		sp = list_first_entry(&kvm->arch.possible_nx_huge_pages,
7338				      struct kvm_mmu_page,
7339				      possible_nx_huge_page_link);
7340		WARN_ON_ONCE(!sp->nx_huge_page_disallowed);
7341		WARN_ON_ONCE(!sp->role.direct);
7342
7343		/*
7344		 * Unaccount and do not attempt to recover any NX Huge Pages
7345		 * that are being dirty tracked, as they would just be faulted
7346		 * back in as 4KiB pages. The NX Huge Pages in this slot will be
7347		 * recovered, along with all the other huge pages in the slot,
7348		 * when dirty logging is disabled.
7349		 *
7350		 * Since gfn_to_memslot() is relatively expensive, it helps to
7351		 * skip it if it the test cannot possibly return true.  On the
7352		 * other hand, if any memslot has logging enabled, chances are
7353		 * good that all of them do, in which case unaccount_nx_huge_page()
7354		 * is much cheaper than zapping the page.
7355		 *
7356		 * If a memslot update is in progress, reading an incorrect value
7357		 * of kvm->nr_memslots_dirty_logging is not a problem: if it is
7358		 * becoming zero, gfn_to_memslot() will be done unnecessarily; if
7359		 * it is becoming nonzero, the page will be zapped unnecessarily.
7360		 * Either way, this only affects efficiency in racy situations,
7361		 * and not correctness.
7362		 */
7363		slot = NULL;
7364		if (atomic_read(&kvm->nr_memslots_dirty_logging)) {
7365			struct kvm_memslots *slots;
7366
7367			slots = kvm_memslots_for_spte_role(kvm, sp->role);
7368			slot = __gfn_to_memslot(slots, sp->gfn);
7369			WARN_ON_ONCE(!slot);
7370		}
7371
7372		if (slot && kvm_slot_dirty_track_enabled(slot))
7373			unaccount_nx_huge_page(kvm, sp);
7374		else if (is_tdp_mmu_page(sp))
7375			flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
7376		else
7377			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7378		WARN_ON_ONCE(sp->nx_huge_page_disallowed);
7379
7380		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
7381			kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
7382			rcu_read_unlock();
7383
7384			cond_resched_rwlock_write(&kvm->mmu_lock);
7385			flush = false;
7386
7387			rcu_read_lock();
7388		}
7389	}
7390	kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
7391
7392	rcu_read_unlock();
7393
7394	write_unlock(&kvm->mmu_lock);
7395	srcu_read_unlock(&kvm->srcu, rcu_idx);
7396}
7397
7398static void kvm_nx_huge_page_recovery_worker_kill(void *data)
7399{
7400}
7401
7402static bool kvm_nx_huge_page_recovery_worker(void *data)
7403{
7404	struct kvm *kvm = data;
7405	bool enabled;
7406	uint period;
7407	long remaining_time;
7408
7409	enabled = calc_nx_huge_pages_recovery_period(&period);
7410	if (!enabled)
7411		return false;
7412
7413	remaining_time = kvm->arch.nx_huge_page_last + msecs_to_jiffies(period)
7414		- get_jiffies_64();
7415	if (remaining_time > 0) {
7416		schedule_timeout(remaining_time);
7417		/* check for signals and come back */
7418		return true;
7419	}
7420
7421	__set_current_state(TASK_RUNNING);
7422	kvm_recover_nx_huge_pages(kvm);
7423	kvm->arch.nx_huge_page_last = get_jiffies_64();
7424	return true;
7425}
7426
7427static void kvm_mmu_start_lpage_recovery(struct once *once)
7428{
7429	struct kvm_arch *ka = container_of(once, struct kvm_arch, nx_once);
7430	struct kvm *kvm = container_of(ka, struct kvm, arch);
7431	struct vhost_task *nx_thread;
7432
7433	kvm->arch.nx_huge_page_last = get_jiffies_64();
7434	nx_thread = vhost_task_create(kvm_nx_huge_page_recovery_worker,
7435				      kvm_nx_huge_page_recovery_worker_kill,
7436				      kvm, "kvm-nx-lpage-recovery");
7437
7438	if (!nx_thread)
7439		return;
7440
7441	vhost_task_start(nx_thread);
7442
7443	/* Make the task visible only once it is fully started. */
7444	WRITE_ONCE(kvm->arch.nx_huge_page_recovery_thread, nx_thread);
7445}
7446
7447int kvm_mmu_post_init_vm(struct kvm *kvm)
7448{
7449	if (nx_hugepage_mitigation_hard_disabled)
7450		return 0;
7451
7452	call_once(&kvm->arch.nx_once, kvm_mmu_start_lpage_recovery);
7453	if (!kvm->arch.nx_huge_page_recovery_thread)
7454		return -ENOMEM;
7455	return 0;
7456}
7457
7458void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
7459{
7460	if (kvm->arch.nx_huge_page_recovery_thread)
7461		vhost_task_stop(kvm->arch.nx_huge_page_recovery_thread);
7462}
7463
7464#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
7465bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
7466					struct kvm_gfn_range *range)
7467{
7468	/*
7469	 * Zap SPTEs even if the slot can't be mapped PRIVATE.  KVM x86 only
7470	 * supports KVM_MEMORY_ATTRIBUTE_PRIVATE, and so it *seems* like KVM
7471	 * can simply ignore such slots.  But if userspace is making memory
7472	 * PRIVATE, then KVM must prevent the guest from accessing the memory
7473	 * as shared.  And if userspace is making memory SHARED and this point
7474	 * is reached, then at least one page within the range was previously
7475	 * PRIVATE, i.e. the slot's possible hugepage ranges are changing.
7476	 * Zapping SPTEs in this case ensures KVM will reassess whether or not
7477	 * a hugepage can be used for affected ranges.
7478	 */
7479	if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm)))
7480		return false;
7481
7482	return kvm_unmap_gfn_range(kvm, range);
7483}
7484
7485static bool hugepage_test_mixed(struct kvm_memory_slot *slot, gfn_t gfn,
7486				int level)
7487{
7488	return lpage_info_slot(gfn, slot, level)->disallow_lpage & KVM_LPAGE_MIXED_FLAG;
7489}
7490
7491static void hugepage_clear_mixed(struct kvm_memory_slot *slot, gfn_t gfn,
7492				 int level)
7493{
7494	lpage_info_slot(gfn, slot, level)->disallow_lpage &= ~KVM_LPAGE_MIXED_FLAG;
7495}
7496
7497static void hugepage_set_mixed(struct kvm_memory_slot *slot, gfn_t gfn,
7498			       int level)
7499{
7500	lpage_info_slot(gfn, slot, level)->disallow_lpage |= KVM_LPAGE_MIXED_FLAG;
7501}
7502
7503static bool hugepage_has_attrs(struct kvm *kvm, struct kvm_memory_slot *slot,
7504			       gfn_t gfn, int level, unsigned long attrs)
7505{
7506	const unsigned long start = gfn;
7507	const unsigned long end = start + KVM_PAGES_PER_HPAGE(level);
7508
7509	if (level == PG_LEVEL_2M)
7510		return kvm_range_has_memory_attributes(kvm, start, end, ~0, attrs);
7511
7512	for (gfn = start; gfn < end; gfn += KVM_PAGES_PER_HPAGE(level - 1)) {
7513		if (hugepage_test_mixed(slot, gfn, level - 1) ||
7514		    attrs != kvm_get_memory_attributes(kvm, gfn))
7515			return false;
7516	}
7517	return true;
7518}
7519
7520bool kvm_arch_post_set_memory_attributes(struct kvm *kvm,
7521					 struct kvm_gfn_range *range)
7522{
7523	unsigned long attrs = range->arg.attributes;
7524	struct kvm_memory_slot *slot = range->slot;
7525	int level;
7526
7527	lockdep_assert_held_write(&kvm->mmu_lock);
7528	lockdep_assert_held(&kvm->slots_lock);
7529
7530	/*
7531	 * Calculate which ranges can be mapped with hugepages even if the slot
7532	 * can't map memory PRIVATE.  KVM mustn't create a SHARED hugepage over
7533	 * a range that has PRIVATE GFNs, and conversely converting a range to
7534	 * SHARED may now allow hugepages.
7535	 */
7536	if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm)))
7537		return false;
7538
7539	/*
7540	 * The sequence matters here: upper levels consume the result of lower
7541	 * level's scanning.
7542	 */
7543	for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) {
7544		gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level);
7545		gfn_t gfn = gfn_round_for_level(range->start, level);
7546
7547		/* Process the head page if it straddles the range. */
7548		if (gfn != range->start || gfn + nr_pages > range->end) {
7549			/*
7550			 * Skip mixed tracking if the aligned gfn isn't covered
7551			 * by the memslot, KVM can't use a hugepage due to the
7552			 * misaligned address regardless of memory attributes.
7553			 */
7554			if (gfn >= slot->base_gfn &&
7555			    gfn + nr_pages <= slot->base_gfn + slot->npages) {
7556				if (hugepage_has_attrs(kvm, slot, gfn, level, attrs))
7557					hugepage_clear_mixed(slot, gfn, level);
7558				else
7559					hugepage_set_mixed(slot, gfn, level);
7560			}
7561			gfn += nr_pages;
7562		}
7563
7564		/*
7565		 * Pages entirely covered by the range are guaranteed to have
7566		 * only the attributes which were just set.
7567		 */
7568		for ( ; gfn + nr_pages <= range->end; gfn += nr_pages)
7569			hugepage_clear_mixed(slot, gfn, level);
7570
7571		/*
7572		 * Process the last tail page if it straddles the range and is
7573		 * contained by the memslot.  Like the head page, KVM can't
7574		 * create a hugepage if the slot size is misaligned.
7575		 */
7576		if (gfn < range->end &&
7577		    (gfn + nr_pages) <= (slot->base_gfn + slot->npages)) {
7578			if (hugepage_has_attrs(kvm, slot, gfn, level, attrs))
7579				hugepage_clear_mixed(slot, gfn, level);
7580			else
7581				hugepage_set_mixed(slot, gfn, level);
7582		}
7583	}
7584	return false;
7585}
7586
7587void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm,
7588					    struct kvm_memory_slot *slot)
7589{
7590	int level;
7591
7592	if (!kvm_arch_has_private_mem(kvm))
7593		return;
7594
7595	for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) {
7596		/*
7597		 * Don't bother tracking mixed attributes for pages that can't
7598		 * be huge due to alignment, i.e. process only pages that are
7599		 * entirely contained by the memslot.
7600		 */
7601		gfn_t end = gfn_round_for_level(slot->base_gfn + slot->npages, level);
7602		gfn_t start = gfn_round_for_level(slot->base_gfn, level);
7603		gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level);
7604		gfn_t gfn;
7605
7606		if (start < slot->base_gfn)
7607			start += nr_pages;
7608
7609		/*
7610		 * Unlike setting attributes, every potential hugepage needs to
7611		 * be manually checked as the attributes may already be mixed.
7612		 */
7613		for (gfn = start; gfn < end; gfn += nr_pages) {
7614			unsigned long attrs = kvm_get_memory_attributes(kvm, gfn);
7615
7616			if (hugepage_has_attrs(kvm, slot, gfn, level, attrs))
7617				hugepage_clear_mixed(slot, gfn, level);
7618			else
7619				hugepage_set_mixed(slot, gfn, level);
7620		}
7621	}
7622}
7623#endif