Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_X86_PROCESSOR_H
3#define _ASM_X86_PROCESSOR_H
4
5#include <asm/processor-flags.h>
6
7/* Forward declaration, a strange C thing */
8struct task_struct;
9struct mm_struct;
10struct io_bitmap;
11struct vm86;
12
13#include <asm/math_emu.h>
14#include <asm/segment.h>
15#include <asm/types.h>
16#include <uapi/asm/sigcontext.h>
17#include <asm/current.h>
18#include <asm/cpufeatures.h>
19#include <asm/cpuid.h>
20#include <asm/page.h>
21#include <asm/pgtable_types.h>
22#include <asm/percpu.h>
23#include <asm/desc_defs.h>
24#include <asm/nops.h>
25#include <asm/special_insns.h>
26#include <asm/fpu/types.h>
27#include <asm/unwind_hints.h>
28#include <asm/vmxfeatures.h>
29#include <asm/vdso/processor.h>
30#include <asm/shstk.h>
31
32#include <linux/personality.h>
33#include <linux/cache.h>
34#include <linux/threads.h>
35#include <linux/math64.h>
36#include <linux/err.h>
37#include <linux/irqflags.h>
38#include <linux/mem_encrypt.h>
39
40/*
41 * We handle most unaligned accesses in hardware. On the other hand
42 * unaligned DMA can be quite expensive on some Nehalem processors.
43 *
44 * Based on this we disable the IP header alignment in network drivers.
45 */
46#define NET_IP_ALIGN 0
47
48#define HBP_NUM 4
49
50/*
51 * These alignment constraints are for performance in the vSMP case,
52 * but in the task_struct case we must also meet hardware imposed
53 * alignment requirements of the FPU state:
54 */
55#ifdef CONFIG_X86_VSMP
56# define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT)
57# define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT)
58#else
59# define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state)
60# define ARCH_MIN_MMSTRUCT_ALIGN 0
61#endif
62
63enum tlb_infos {
64 ENTRIES,
65 NR_INFO
66};
67
68extern u16 __read_mostly tlb_lli_4k[NR_INFO];
69extern u16 __read_mostly tlb_lli_2m[NR_INFO];
70extern u16 __read_mostly tlb_lli_4m[NR_INFO];
71extern u16 __read_mostly tlb_lld_4k[NR_INFO];
72extern u16 __read_mostly tlb_lld_2m[NR_INFO];
73extern u16 __read_mostly tlb_lld_4m[NR_INFO];
74extern u16 __read_mostly tlb_lld_1g[NR_INFO];
75
76/*
77 * CPU type and hardware bug flags. Kept separately for each CPU.
78 */
79
80struct cpuinfo_topology {
81 // Real APIC ID read from the local APIC
82 u32 apicid;
83 // The initial APIC ID provided by CPUID
84 u32 initial_apicid;
85
86 // Physical package ID
87 u32 pkg_id;
88
89 // Physical die ID on AMD, Relative on Intel
90 u32 die_id;
91
92 // Compute unit ID - AMD specific
93 u32 cu_id;
94
95 // Core ID relative to the package
96 u32 core_id;
97
98 // Logical ID mappings
99 u32 logical_pkg_id;
100 u32 logical_die_id;
101
102 // AMD Node ID and Nodes per Package info
103 u32 amd_node_id;
104
105 // Cache level topology IDs
106 u32 llc_id;
107 u32 l2c_id;
108
109 // Hardware defined CPU-type
110 union {
111 u32 cpu_type;
112 struct {
113 // CPUID.1A.EAX[23-0]
114 u32 intel_native_model_id :24;
115 // CPUID.1A.EAX[31-24]
116 u32 intel_type :8;
117 };
118 struct {
119 // CPUID 0x80000026.EBX
120 u32 amd_num_processors :16,
121 amd_power_eff_ranking :8,
122 amd_native_model_id :4,
123 amd_type :4;
124 };
125 };
126};
127
128struct cpuinfo_x86 {
129 union {
130 /*
131 * The particular ordering (low-to-high) of (vendor,
132 * family, model) is done in case range of models, like
133 * it is usually done on AMD, need to be compared.
134 */
135 struct {
136 __u8 x86_model;
137 /* CPU family */
138 __u8 x86;
139 /* CPU vendor */
140 __u8 x86_vendor;
141 __u8 x86_reserved;
142 };
143 /* combined vendor, family, model */
144 __u32 x86_vfm;
145 };
146 __u8 x86_stepping;
147#ifdef CONFIG_X86_64
148 /* Number of 4K pages in DTLB/ITLB combined(in pages): */
149 int x86_tlbsize;
150#endif
151#ifdef CONFIG_X86_VMX_FEATURE_NAMES
152 __u32 vmx_capability[NVMXINTS];
153#endif
154 __u8 x86_virt_bits;
155 __u8 x86_phys_bits;
156 /* Max extended CPUID function supported: */
157 __u32 extended_cpuid_level;
158 /* Maximum supported CPUID level, -1=no CPUID: */
159 int cpuid_level;
160 /*
161 * Align to size of unsigned long because the x86_capability array
162 * is passed to bitops which require the alignment. Use unnamed
163 * union to enforce the array is aligned to size of unsigned long.
164 */
165 union {
166 __u32 x86_capability[NCAPINTS + NBUGINTS];
167 unsigned long x86_capability_alignment;
168 };
169 char x86_vendor_id[16];
170 char x86_model_id[64];
171 struct cpuinfo_topology topo;
172 /* in KB - valid for CPUS which support this call: */
173 unsigned int x86_cache_size;
174 int x86_cache_alignment; /* In bytes */
175 /* Cache QoS architectural values, valid only on the BSP: */
176 int x86_cache_max_rmid; /* max index */
177 int x86_cache_occ_scale; /* scale to bytes */
178 int x86_cache_mbm_width_offset;
179 int x86_power;
180 unsigned long loops_per_jiffy;
181 /* protected processor identification number */
182 u64 ppin;
183 u16 x86_clflush_size;
184 /* number of cores as seen by the OS: */
185 u16 booted_cores;
186 /* Index into per_cpu list: */
187 u16 cpu_index;
188 /* Is SMT active on this core? */
189 bool smt_active;
190 u32 microcode;
191 /* Address space bits used by the cache internally */
192 u8 x86_cache_bits;
193 unsigned initialized : 1;
194} __randomize_layout;
195
196#define X86_VENDOR_INTEL 0
197#define X86_VENDOR_CYRIX 1
198#define X86_VENDOR_AMD 2
199#define X86_VENDOR_UMC 3
200#define X86_VENDOR_CENTAUR 5
201#define X86_VENDOR_TRANSMETA 7
202#define X86_VENDOR_NSC 8
203#define X86_VENDOR_HYGON 9
204#define X86_VENDOR_ZHAOXIN 10
205#define X86_VENDOR_VORTEX 11
206#define X86_VENDOR_NUM 12
207
208#define X86_VENDOR_UNKNOWN 0xff
209
210/*
211 * capabilities of CPUs
212 */
213extern struct cpuinfo_x86 boot_cpu_data;
214extern struct cpuinfo_x86 new_cpu_data;
215
216extern __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
217extern __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
218
219DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
220#define cpu_data(cpu) per_cpu(cpu_info, cpu)
221
222extern const struct seq_operations cpuinfo_op;
223
224#define cache_line_size() (boot_cpu_data.x86_cache_alignment)
225
226extern void cpu_detect(struct cpuinfo_x86 *c);
227
228static inline unsigned long long l1tf_pfn_limit(void)
229{
230 return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT);
231}
232
233void init_cpu_devs(void);
234void get_cpu_vendor(struct cpuinfo_x86 *c);
235extern void early_cpu_init(void);
236extern void identify_secondary_cpu(struct cpuinfo_x86 *);
237extern void print_cpu_info(struct cpuinfo_x86 *);
238void print_cpu_msr(struct cpuinfo_x86 *);
239
240/*
241 * Friendlier CR3 helpers.
242 */
243static inline unsigned long read_cr3_pa(void)
244{
245 return __read_cr3() & CR3_ADDR_MASK;
246}
247
248static inline unsigned long native_read_cr3_pa(void)
249{
250 return __native_read_cr3() & CR3_ADDR_MASK;
251}
252
253static inline void load_cr3(pgd_t *pgdir)
254{
255 write_cr3(__sme_pa(pgdir));
256}
257
258/*
259 * Note that while the legacy 'TSS' name comes from 'Task State Segment',
260 * on modern x86 CPUs the TSS also holds information important to 64-bit mode,
261 * unrelated to the task-switch mechanism:
262 */
263#ifdef CONFIG_X86_32
264/* This is the TSS defined by the hardware. */
265struct x86_hw_tss {
266 unsigned short back_link, __blh;
267 unsigned long sp0;
268 unsigned short ss0, __ss0h;
269 unsigned long sp1;
270
271 /*
272 * We don't use ring 1, so ss1 is a convenient scratch space in
273 * the same cacheline as sp0. We use ss1 to cache the value in
274 * MSR_IA32_SYSENTER_CS. When we context switch
275 * MSR_IA32_SYSENTER_CS, we first check if the new value being
276 * written matches ss1, and, if it's not, then we wrmsr the new
277 * value and update ss1.
278 *
279 * The only reason we context switch MSR_IA32_SYSENTER_CS is
280 * that we set it to zero in vm86 tasks to avoid corrupting the
281 * stack if we were to go through the sysenter path from vm86
282 * mode.
283 */
284 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */
285
286 unsigned short __ss1h;
287 unsigned long sp2;
288 unsigned short ss2, __ss2h;
289 unsigned long __cr3;
290 unsigned long ip;
291 unsigned long flags;
292 unsigned long ax;
293 unsigned long cx;
294 unsigned long dx;
295 unsigned long bx;
296 unsigned long sp;
297 unsigned long bp;
298 unsigned long si;
299 unsigned long di;
300 unsigned short es, __esh;
301 unsigned short cs, __csh;
302 unsigned short ss, __ssh;
303 unsigned short ds, __dsh;
304 unsigned short fs, __fsh;
305 unsigned short gs, __gsh;
306 unsigned short ldt, __ldth;
307 unsigned short trace;
308 unsigned short io_bitmap_base;
309
310} __attribute__((packed));
311#else
312struct x86_hw_tss {
313 u32 reserved1;
314 u64 sp0;
315 u64 sp1;
316
317 /*
318 * Since Linux does not use ring 2, the 'sp2' slot is unused by
319 * hardware. entry_SYSCALL_64 uses it as scratch space to stash
320 * the user RSP value.
321 */
322 u64 sp2;
323
324 u64 reserved2;
325 u64 ist[7];
326 u32 reserved3;
327 u32 reserved4;
328 u16 reserved5;
329 u16 io_bitmap_base;
330
331} __attribute__((packed));
332#endif
333
334/*
335 * IO-bitmap sizes:
336 */
337#define IO_BITMAP_BITS 65536
338#define IO_BITMAP_BYTES (IO_BITMAP_BITS / BITS_PER_BYTE)
339#define IO_BITMAP_LONGS (IO_BITMAP_BYTES / sizeof(long))
340
341#define IO_BITMAP_OFFSET_VALID_MAP \
342 (offsetof(struct tss_struct, io_bitmap.bitmap) - \
343 offsetof(struct tss_struct, x86_tss))
344
345#define IO_BITMAP_OFFSET_VALID_ALL \
346 (offsetof(struct tss_struct, io_bitmap.mapall) - \
347 offsetof(struct tss_struct, x86_tss))
348
349#ifdef CONFIG_X86_IOPL_IOPERM
350/*
351 * sizeof(unsigned long) coming from an extra "long" at the end of the
352 * iobitmap. The limit is inclusive, i.e. the last valid byte.
353 */
354# define __KERNEL_TSS_LIMIT \
355 (IO_BITMAP_OFFSET_VALID_ALL + IO_BITMAP_BYTES + \
356 sizeof(unsigned long) - 1)
357#else
358# define __KERNEL_TSS_LIMIT \
359 (offsetof(struct tss_struct, x86_tss) + sizeof(struct x86_hw_tss) - 1)
360#endif
361
362/* Base offset outside of TSS_LIMIT so unpriviledged IO causes #GP */
363#define IO_BITMAP_OFFSET_INVALID (__KERNEL_TSS_LIMIT + 1)
364
365struct entry_stack {
366 char stack[PAGE_SIZE];
367};
368
369struct entry_stack_page {
370 struct entry_stack stack;
371} __aligned(PAGE_SIZE);
372
373/*
374 * All IO bitmap related data stored in the TSS:
375 */
376struct x86_io_bitmap {
377 /* The sequence number of the last active bitmap. */
378 u64 prev_sequence;
379
380 /*
381 * Store the dirty size of the last io bitmap offender. The next
382 * one will have to do the cleanup as the switch out to a non io
383 * bitmap user will just set x86_tss.io_bitmap_base to a value
384 * outside of the TSS limit. So for sane tasks there is no need to
385 * actually touch the io_bitmap at all.
386 */
387 unsigned int prev_max;
388
389 /*
390 * The extra 1 is there because the CPU will access an
391 * additional byte beyond the end of the IO permission
392 * bitmap. The extra byte must be all 1 bits, and must
393 * be within the limit.
394 */
395 unsigned long bitmap[IO_BITMAP_LONGS + 1];
396
397 /*
398 * Special I/O bitmap to emulate IOPL(3). All bytes zero,
399 * except the additional byte at the end.
400 */
401 unsigned long mapall[IO_BITMAP_LONGS + 1];
402};
403
404struct tss_struct {
405 /*
406 * The fixed hardware portion. This must not cross a page boundary
407 * at risk of violating the SDM's advice and potentially triggering
408 * errata.
409 */
410 struct x86_hw_tss x86_tss;
411
412 struct x86_io_bitmap io_bitmap;
413} __aligned(PAGE_SIZE);
414
415DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw);
416
417/* Per CPU interrupt stacks */
418struct irq_stack {
419 char stack[IRQ_STACK_SIZE];
420} __aligned(IRQ_STACK_SIZE);
421
422#ifdef CONFIG_X86_64
423struct fixed_percpu_data {
424 /*
425 * GCC hardcodes the stack canary as %gs:40. Since the
426 * irq_stack is the object at %gs:0, we reserve the bottom
427 * 48 bytes of the irq stack for the canary.
428 *
429 * Once we are willing to require -mstack-protector-guard-symbol=
430 * support for x86_64 stackprotector, we can get rid of this.
431 */
432 char gs_base[40];
433 unsigned long stack_canary;
434};
435
436DECLARE_PER_CPU_FIRST(struct fixed_percpu_data, fixed_percpu_data) __visible;
437DECLARE_INIT_PER_CPU(fixed_percpu_data);
438
439static inline unsigned long cpu_kernelmode_gs_base(int cpu)
440{
441 return (unsigned long)per_cpu(fixed_percpu_data.gs_base, cpu);
442}
443
444extern asmlinkage void entry_SYSCALL32_ignore(void);
445
446/* Save actual FS/GS selectors and bases to current->thread */
447void current_save_fsgs(void);
448#else /* X86_64 */
449#ifdef CONFIG_STACKPROTECTOR
450DECLARE_PER_CPU(unsigned long, __stack_chk_guard);
451#endif
452#endif /* !X86_64 */
453
454struct perf_event;
455
456struct thread_struct {
457 /* Cached TLS descriptors: */
458 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES];
459#ifdef CONFIG_X86_32
460 unsigned long sp0;
461#endif
462 unsigned long sp;
463#ifdef CONFIG_X86_32
464 unsigned long sysenter_cs;
465#else
466 unsigned short es;
467 unsigned short ds;
468 unsigned short fsindex;
469 unsigned short gsindex;
470#endif
471
472#ifdef CONFIG_X86_64
473 unsigned long fsbase;
474 unsigned long gsbase;
475#else
476 /*
477 * XXX: this could presumably be unsigned short. Alternatively,
478 * 32-bit kernels could be taught to use fsindex instead.
479 */
480 unsigned long fs;
481 unsigned long gs;
482#endif
483
484 /* Save middle states of ptrace breakpoints */
485 struct perf_event *ptrace_bps[HBP_NUM];
486 /* Debug status used for traps, single steps, etc... */
487 unsigned long virtual_dr6;
488 /* Keep track of the exact dr7 value set by the user */
489 unsigned long ptrace_dr7;
490 /* Fault info: */
491 unsigned long cr2;
492 unsigned long trap_nr;
493 unsigned long error_code;
494#ifdef CONFIG_VM86
495 /* Virtual 86 mode info */
496 struct vm86 *vm86;
497#endif
498 /* IO permissions: */
499 struct io_bitmap *io_bitmap;
500
501 /*
502 * IOPL. Privilege level dependent I/O permission which is
503 * emulated via the I/O bitmap to prevent user space from disabling
504 * interrupts.
505 */
506 unsigned long iopl_emul;
507
508 unsigned int iopl_warn:1;
509
510 /*
511 * Protection Keys Register for Userspace. Loaded immediately on
512 * context switch. Store it in thread_struct to avoid a lookup in
513 * the tasks's FPU xstate buffer. This value is only valid when a
514 * task is scheduled out. For 'current' the authoritative source of
515 * PKRU is the hardware itself.
516 */
517 u32 pkru;
518
519#ifdef CONFIG_X86_USER_SHADOW_STACK
520 unsigned long features;
521 unsigned long features_locked;
522
523 struct thread_shstk shstk;
524#endif
525
526 /* Floating point and extended processor state */
527 struct fpu fpu;
528 /*
529 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at
530 * the end.
531 */
532};
533
534extern void fpu_thread_struct_whitelist(unsigned long *offset, unsigned long *size);
535
536static inline void arch_thread_struct_whitelist(unsigned long *offset,
537 unsigned long *size)
538{
539 fpu_thread_struct_whitelist(offset, size);
540}
541
542static inline void
543native_load_sp0(unsigned long sp0)
544{
545 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
546}
547
548static __always_inline void native_swapgs(void)
549{
550#ifdef CONFIG_X86_64
551 asm volatile("swapgs" ::: "memory");
552#endif
553}
554
555static __always_inline unsigned long current_top_of_stack(void)
556{
557 /*
558 * We can't read directly from tss.sp0: sp0 on x86_32 is special in
559 * and around vm86 mode and sp0 on x86_64 is special because of the
560 * entry trampoline.
561 */
562 if (IS_ENABLED(CONFIG_USE_X86_SEG_SUPPORT))
563 return this_cpu_read_const(const_pcpu_hot.top_of_stack);
564
565 return this_cpu_read_stable(pcpu_hot.top_of_stack);
566}
567
568static __always_inline bool on_thread_stack(void)
569{
570 return (unsigned long)(current_top_of_stack() -
571 current_stack_pointer) < THREAD_SIZE;
572}
573
574#ifdef CONFIG_PARAVIRT_XXL
575#include <asm/paravirt.h>
576#else
577
578static inline void load_sp0(unsigned long sp0)
579{
580 native_load_sp0(sp0);
581}
582
583#endif /* CONFIG_PARAVIRT_XXL */
584
585unsigned long __get_wchan(struct task_struct *p);
586
587extern void select_idle_routine(void);
588extern void amd_e400_c1e_apic_setup(void);
589
590extern unsigned long boot_option_idle_override;
591
592enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
593 IDLE_POLL};
594
595extern void enable_sep_cpu(void);
596
597
598/* Defined in head.S */
599extern struct desc_ptr early_gdt_descr;
600
601extern void switch_gdt_and_percpu_base(int);
602extern void load_direct_gdt(int);
603extern void load_fixmap_gdt(int);
604extern void cpu_init(void);
605extern void cpu_init_exception_handling(bool boot_cpu);
606extern void cpu_init_replace_early_idt(void);
607extern void cr4_init(void);
608
609extern void set_task_blockstep(struct task_struct *task, bool on);
610
611/* Boot loader type from the setup header: */
612extern int bootloader_type;
613extern int bootloader_version;
614
615extern char ignore_fpu_irq;
616
617#define HAVE_ARCH_PICK_MMAP_LAYOUT 1
618#define ARCH_HAS_PREFETCHW
619
620#ifdef CONFIG_X86_32
621# define BASE_PREFETCH ""
622# define ARCH_HAS_PREFETCH
623#else
624# define BASE_PREFETCH "prefetcht0 %1"
625#endif
626
627/*
628 * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
629 *
630 * It's not worth to care about 3dnow prefetches for the K6
631 * because they are microcoded there and very slow.
632 */
633static inline void prefetch(const void *x)
634{
635 alternative_input(BASE_PREFETCH, "prefetchnta %1",
636 X86_FEATURE_XMM,
637 "m" (*(const char *)x));
638}
639
640/*
641 * 3dnow prefetch to get an exclusive cache line.
642 * Useful for spinlocks to avoid one state transition in the
643 * cache coherency protocol:
644 */
645static __always_inline void prefetchw(const void *x)
646{
647 alternative_input(BASE_PREFETCH, "prefetchw %1",
648 X86_FEATURE_3DNOWPREFETCH,
649 "m" (*(const char *)x));
650}
651
652#define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
653 TOP_OF_KERNEL_STACK_PADDING)
654
655#define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1))
656
657#define task_pt_regs(task) \
658({ \
659 unsigned long __ptr = (unsigned long)task_stack_page(task); \
660 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \
661 ((struct pt_regs *)__ptr) - 1; \
662})
663
664#ifdef CONFIG_X86_32
665#define INIT_THREAD { \
666 .sp0 = TOP_OF_INIT_STACK, \
667 .sysenter_cs = __KERNEL_CS, \
668}
669
670#define KSTK_ESP(task) (task_pt_regs(task)->sp)
671
672#else
673extern unsigned long __top_init_kernel_stack[];
674
675#define INIT_THREAD { \
676 .sp = (unsigned long)&__top_init_kernel_stack, \
677}
678
679extern unsigned long KSTK_ESP(struct task_struct *task);
680
681#endif /* CONFIG_X86_64 */
682
683extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
684 unsigned long new_sp);
685
686/*
687 * This decides where the kernel will search for a free chunk of vm
688 * space during mmap's.
689 */
690#define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3))
691#define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW)
692
693#define KSTK_EIP(task) (task_pt_regs(task)->ip)
694
695/* Get/set a process' ability to use the timestamp counter instruction */
696#define GET_TSC_CTL(adr) get_tsc_mode((adr))
697#define SET_TSC_CTL(val) set_tsc_mode((val))
698
699extern int get_tsc_mode(unsigned long adr);
700extern int set_tsc_mode(unsigned int val);
701
702DECLARE_PER_CPU(u64, msr_misc_features_shadow);
703
704static inline u32 per_cpu_llc_id(unsigned int cpu)
705{
706 return per_cpu(cpu_info.topo.llc_id, cpu);
707}
708
709static inline u32 per_cpu_l2c_id(unsigned int cpu)
710{
711 return per_cpu(cpu_info.topo.l2c_id, cpu);
712}
713
714#ifdef CONFIG_CPU_SUP_AMD
715/*
716 * Issue a DIV 0/1 insn to clear any division data from previous DIV
717 * operations.
718 */
719static __always_inline void amd_clear_divider(void)
720{
721 asm volatile(ALTERNATIVE("", "div %2\n\t", X86_BUG_DIV0)
722 :: "a" (0), "d" (0), "r" (1));
723}
724
725extern void amd_check_microcode(void);
726#else
727static inline void amd_clear_divider(void) { }
728static inline void amd_check_microcode(void) { }
729#endif
730
731extern unsigned long arch_align_stack(unsigned long sp);
732void free_init_pages(const char *what, unsigned long begin, unsigned long end);
733extern void free_kernel_image_pages(const char *what, void *begin, void *end);
734
735void default_idle(void);
736#ifdef CONFIG_XEN
737bool xen_set_default_idle(void);
738#else
739#define xen_set_default_idle 0
740#endif
741
742void __noreturn stop_this_cpu(void *dummy);
743void microcode_check(struct cpuinfo_x86 *prev_info);
744void store_cpu_caps(struct cpuinfo_x86 *info);
745
746enum l1tf_mitigations {
747 L1TF_MITIGATION_OFF,
748 L1TF_MITIGATION_FLUSH_NOWARN,
749 L1TF_MITIGATION_FLUSH,
750 L1TF_MITIGATION_FLUSH_NOSMT,
751 L1TF_MITIGATION_FULL,
752 L1TF_MITIGATION_FULL_FORCE
753};
754
755extern enum l1tf_mitigations l1tf_mitigation;
756
757enum mds_mitigations {
758 MDS_MITIGATION_OFF,
759 MDS_MITIGATION_FULL,
760 MDS_MITIGATION_VMWERV,
761};
762
763extern bool gds_ucode_mitigated(void);
764
765/*
766 * Make previous memory operations globally visible before
767 * a WRMSR.
768 *
769 * MFENCE makes writes visible, but only affects load/store
770 * instructions. WRMSR is unfortunately not a load/store
771 * instruction and is unaffected by MFENCE. The LFENCE ensures
772 * that the WRMSR is not reordered.
773 *
774 * Most WRMSRs are full serializing instructions themselves and
775 * do not require this barrier. This is only required for the
776 * IA32_TSC_DEADLINE and X2APIC MSRs.
777 */
778static inline void weak_wrmsr_fence(void)
779{
780 alternative("mfence; lfence", "", ALT_NOT(X86_FEATURE_APIC_MSRS_FENCE));
781}
782
783#endif /* _ASM_X86_PROCESSOR_H */
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_X86_PROCESSOR_H
3#define _ASM_X86_PROCESSOR_H
4
5#include <asm/processor-flags.h>
6
7/* Forward declaration, a strange C thing */
8struct task_struct;
9struct mm_struct;
10struct vm86;
11
12#include <asm/math_emu.h>
13#include <asm/segment.h>
14#include <asm/types.h>
15#include <uapi/asm/sigcontext.h>
16#include <asm/current.h>
17#include <asm/cpufeatures.h>
18#include <asm/page.h>
19#include <asm/pgtable_types.h>
20#include <asm/percpu.h>
21#include <asm/msr.h>
22#include <asm/desc_defs.h>
23#include <asm/nops.h>
24#include <asm/special_insns.h>
25#include <asm/fpu/types.h>
26#include <asm/unwind_hints.h>
27
28#include <linux/personality.h>
29#include <linux/cache.h>
30#include <linux/threads.h>
31#include <linux/math64.h>
32#include <linux/err.h>
33#include <linux/irqflags.h>
34#include <linux/mem_encrypt.h>
35
36/*
37 * We handle most unaligned accesses in hardware. On the other hand
38 * unaligned DMA can be quite expensive on some Nehalem processors.
39 *
40 * Based on this we disable the IP header alignment in network drivers.
41 */
42#define NET_IP_ALIGN 0
43
44#define HBP_NUM 4
45/*
46 * Default implementation of macro that returns current
47 * instruction pointer ("program counter").
48 */
49static inline void *current_text_addr(void)
50{
51 void *pc;
52
53 asm volatile("mov $1f, %0; 1:":"=r" (pc));
54
55 return pc;
56}
57
58/*
59 * These alignment constraints are for performance in the vSMP case,
60 * but in the task_struct case we must also meet hardware imposed
61 * alignment requirements of the FPU state:
62 */
63#ifdef CONFIG_X86_VSMP
64# define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT)
65# define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT)
66#else
67# define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state)
68# define ARCH_MIN_MMSTRUCT_ALIGN 0
69#endif
70
71enum tlb_infos {
72 ENTRIES,
73 NR_INFO
74};
75
76extern u16 __read_mostly tlb_lli_4k[NR_INFO];
77extern u16 __read_mostly tlb_lli_2m[NR_INFO];
78extern u16 __read_mostly tlb_lli_4m[NR_INFO];
79extern u16 __read_mostly tlb_lld_4k[NR_INFO];
80extern u16 __read_mostly tlb_lld_2m[NR_INFO];
81extern u16 __read_mostly tlb_lld_4m[NR_INFO];
82extern u16 __read_mostly tlb_lld_1g[NR_INFO];
83
84/*
85 * CPU type and hardware bug flags. Kept separately for each CPU.
86 * Members of this structure are referenced in head_32.S, so think twice
87 * before touching them. [mj]
88 */
89
90struct cpuinfo_x86 {
91 __u8 x86; /* CPU family */
92 __u8 x86_vendor; /* CPU vendor */
93 __u8 x86_model;
94 __u8 x86_stepping;
95#ifdef CONFIG_X86_64
96 /* Number of 4K pages in DTLB/ITLB combined(in pages): */
97 int x86_tlbsize;
98#endif
99 __u8 x86_virt_bits;
100 __u8 x86_phys_bits;
101 /* CPUID returned core id bits: */
102 __u8 x86_coreid_bits;
103 __u8 cu_id;
104 /* Max extended CPUID function supported: */
105 __u32 extended_cpuid_level;
106 /* Maximum supported CPUID level, -1=no CPUID: */
107 int cpuid_level;
108 __u32 x86_capability[NCAPINTS + NBUGINTS];
109 char x86_vendor_id[16];
110 char x86_model_id[64];
111 /* in KB - valid for CPUS which support this call: */
112 unsigned int x86_cache_size;
113 int x86_cache_alignment; /* In bytes */
114 /* Cache QoS architectural values: */
115 int x86_cache_max_rmid; /* max index */
116 int x86_cache_occ_scale; /* scale to bytes */
117 int x86_power;
118 unsigned long loops_per_jiffy;
119 /* cpuid returned max cores value: */
120 u16 x86_max_cores;
121 u16 apicid;
122 u16 initial_apicid;
123 u16 x86_clflush_size;
124 /* number of cores as seen by the OS: */
125 u16 booted_cores;
126 /* Physical processor id: */
127 u16 phys_proc_id;
128 /* Logical processor id: */
129 u16 logical_proc_id;
130 /* Core id: */
131 u16 cpu_core_id;
132 /* Index into per_cpu list: */
133 u16 cpu_index;
134 u32 microcode;
135 unsigned initialized : 1;
136} __randomize_layout;
137
138struct cpuid_regs {
139 u32 eax, ebx, ecx, edx;
140};
141
142enum cpuid_regs_idx {
143 CPUID_EAX = 0,
144 CPUID_EBX,
145 CPUID_ECX,
146 CPUID_EDX,
147};
148
149#define X86_VENDOR_INTEL 0
150#define X86_VENDOR_CYRIX 1
151#define X86_VENDOR_AMD 2
152#define X86_VENDOR_UMC 3
153#define X86_VENDOR_CENTAUR 5
154#define X86_VENDOR_TRANSMETA 7
155#define X86_VENDOR_NSC 8
156#define X86_VENDOR_NUM 9
157
158#define X86_VENDOR_UNKNOWN 0xff
159
160/*
161 * capabilities of CPUs
162 */
163extern struct cpuinfo_x86 boot_cpu_data;
164extern struct cpuinfo_x86 new_cpu_data;
165
166extern struct x86_hw_tss doublefault_tss;
167extern __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
168extern __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
169
170#ifdef CONFIG_SMP
171DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
172#define cpu_data(cpu) per_cpu(cpu_info, cpu)
173#else
174#define cpu_info boot_cpu_data
175#define cpu_data(cpu) boot_cpu_data
176#endif
177
178extern const struct seq_operations cpuinfo_op;
179
180#define cache_line_size() (boot_cpu_data.x86_cache_alignment)
181
182extern void cpu_detect(struct cpuinfo_x86 *c);
183
184extern void early_cpu_init(void);
185extern void identify_boot_cpu(void);
186extern void identify_secondary_cpu(struct cpuinfo_x86 *);
187extern void print_cpu_info(struct cpuinfo_x86 *);
188void print_cpu_msr(struct cpuinfo_x86 *);
189extern void init_scattered_cpuid_features(struct cpuinfo_x86 *c);
190extern u32 get_scattered_cpuid_leaf(unsigned int level,
191 unsigned int sub_leaf,
192 enum cpuid_regs_idx reg);
193extern unsigned int init_intel_cacheinfo(struct cpuinfo_x86 *c);
194extern void init_amd_cacheinfo(struct cpuinfo_x86 *c);
195
196extern void detect_extended_topology(struct cpuinfo_x86 *c);
197extern void detect_ht(struct cpuinfo_x86 *c);
198
199#ifdef CONFIG_X86_32
200extern int have_cpuid_p(void);
201#else
202static inline int have_cpuid_p(void)
203{
204 return 1;
205}
206#endif
207static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
208 unsigned int *ecx, unsigned int *edx)
209{
210 /* ecx is often an input as well as an output. */
211 asm volatile("cpuid"
212 : "=a" (*eax),
213 "=b" (*ebx),
214 "=c" (*ecx),
215 "=d" (*edx)
216 : "0" (*eax), "2" (*ecx)
217 : "memory");
218}
219
220#define native_cpuid_reg(reg) \
221static inline unsigned int native_cpuid_##reg(unsigned int op) \
222{ \
223 unsigned int eax = op, ebx, ecx = 0, edx; \
224 \
225 native_cpuid(&eax, &ebx, &ecx, &edx); \
226 \
227 return reg; \
228}
229
230/*
231 * Native CPUID functions returning a single datum.
232 */
233native_cpuid_reg(eax)
234native_cpuid_reg(ebx)
235native_cpuid_reg(ecx)
236native_cpuid_reg(edx)
237
238/*
239 * Friendlier CR3 helpers.
240 */
241static inline unsigned long read_cr3_pa(void)
242{
243 return __read_cr3() & CR3_ADDR_MASK;
244}
245
246static inline unsigned long native_read_cr3_pa(void)
247{
248 return __native_read_cr3() & CR3_ADDR_MASK;
249}
250
251static inline void load_cr3(pgd_t *pgdir)
252{
253 write_cr3(__sme_pa(pgdir));
254}
255
256/*
257 * Note that while the legacy 'TSS' name comes from 'Task State Segment',
258 * on modern x86 CPUs the TSS also holds information important to 64-bit mode,
259 * unrelated to the task-switch mechanism:
260 */
261#ifdef CONFIG_X86_32
262/* This is the TSS defined by the hardware. */
263struct x86_hw_tss {
264 unsigned short back_link, __blh;
265 unsigned long sp0;
266 unsigned short ss0, __ss0h;
267 unsigned long sp1;
268
269 /*
270 * We don't use ring 1, so ss1 is a convenient scratch space in
271 * the same cacheline as sp0. We use ss1 to cache the value in
272 * MSR_IA32_SYSENTER_CS. When we context switch
273 * MSR_IA32_SYSENTER_CS, we first check if the new value being
274 * written matches ss1, and, if it's not, then we wrmsr the new
275 * value and update ss1.
276 *
277 * The only reason we context switch MSR_IA32_SYSENTER_CS is
278 * that we set it to zero in vm86 tasks to avoid corrupting the
279 * stack if we were to go through the sysenter path from vm86
280 * mode.
281 */
282 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */
283
284 unsigned short __ss1h;
285 unsigned long sp2;
286 unsigned short ss2, __ss2h;
287 unsigned long __cr3;
288 unsigned long ip;
289 unsigned long flags;
290 unsigned long ax;
291 unsigned long cx;
292 unsigned long dx;
293 unsigned long bx;
294 unsigned long sp;
295 unsigned long bp;
296 unsigned long si;
297 unsigned long di;
298 unsigned short es, __esh;
299 unsigned short cs, __csh;
300 unsigned short ss, __ssh;
301 unsigned short ds, __dsh;
302 unsigned short fs, __fsh;
303 unsigned short gs, __gsh;
304 unsigned short ldt, __ldth;
305 unsigned short trace;
306 unsigned short io_bitmap_base;
307
308} __attribute__((packed));
309#else
310struct x86_hw_tss {
311 u32 reserved1;
312 u64 sp0;
313
314 /*
315 * We store cpu_current_top_of_stack in sp1 so it's always accessible.
316 * Linux does not use ring 1, so sp1 is not otherwise needed.
317 */
318 u64 sp1;
319
320 u64 sp2;
321 u64 reserved2;
322 u64 ist[7];
323 u32 reserved3;
324 u32 reserved4;
325 u16 reserved5;
326 u16 io_bitmap_base;
327
328} __attribute__((packed));
329#endif
330
331/*
332 * IO-bitmap sizes:
333 */
334#define IO_BITMAP_BITS 65536
335#define IO_BITMAP_BYTES (IO_BITMAP_BITS/8)
336#define IO_BITMAP_LONGS (IO_BITMAP_BYTES/sizeof(long))
337#define IO_BITMAP_OFFSET (offsetof(struct tss_struct, io_bitmap) - offsetof(struct tss_struct, x86_tss))
338#define INVALID_IO_BITMAP_OFFSET 0x8000
339
340struct entry_stack {
341 unsigned long words[64];
342};
343
344struct entry_stack_page {
345 struct entry_stack stack;
346} __aligned(PAGE_SIZE);
347
348struct tss_struct {
349 /*
350 * The fixed hardware portion. This must not cross a page boundary
351 * at risk of violating the SDM's advice and potentially triggering
352 * errata.
353 */
354 struct x86_hw_tss x86_tss;
355
356 /*
357 * The extra 1 is there because the CPU will access an
358 * additional byte beyond the end of the IO permission
359 * bitmap. The extra byte must be all 1 bits, and must
360 * be within the limit.
361 */
362 unsigned long io_bitmap[IO_BITMAP_LONGS + 1];
363} __aligned(PAGE_SIZE);
364
365DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw);
366
367/*
368 * sizeof(unsigned long) coming from an extra "long" at the end
369 * of the iobitmap.
370 *
371 * -1? seg base+limit should be pointing to the address of the
372 * last valid byte
373 */
374#define __KERNEL_TSS_LIMIT \
375 (IO_BITMAP_OFFSET + IO_BITMAP_BYTES + sizeof(unsigned long) - 1)
376
377#ifdef CONFIG_X86_32
378DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
379#else
380/* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */
381#define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1
382#endif
383
384/*
385 * Save the original ist values for checking stack pointers during debugging
386 */
387struct orig_ist {
388 unsigned long ist[7];
389};
390
391#ifdef CONFIG_X86_64
392DECLARE_PER_CPU(struct orig_ist, orig_ist);
393
394union irq_stack_union {
395 char irq_stack[IRQ_STACK_SIZE];
396 /*
397 * GCC hardcodes the stack canary as %gs:40. Since the
398 * irq_stack is the object at %gs:0, we reserve the bottom
399 * 48 bytes of the irq stack for the canary.
400 */
401 struct {
402 char gs_base[40];
403 unsigned long stack_canary;
404 };
405};
406
407DECLARE_PER_CPU_FIRST(union irq_stack_union, irq_stack_union) __visible;
408DECLARE_INIT_PER_CPU(irq_stack_union);
409
410static inline unsigned long cpu_kernelmode_gs_base(int cpu)
411{
412 return (unsigned long)per_cpu(irq_stack_union.gs_base, cpu);
413}
414
415DECLARE_PER_CPU(char *, irq_stack_ptr);
416DECLARE_PER_CPU(unsigned int, irq_count);
417extern asmlinkage void ignore_sysret(void);
418
419#if IS_ENABLED(CONFIG_KVM)
420/* Save actual FS/GS selectors and bases to current->thread */
421void save_fsgs_for_kvm(void);
422#endif
423#else /* X86_64 */
424#ifdef CONFIG_CC_STACKPROTECTOR
425/*
426 * Make sure stack canary segment base is cached-aligned:
427 * "For Intel Atom processors, avoid non zero segment base address
428 * that is not aligned to cache line boundary at all cost."
429 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
430 */
431struct stack_canary {
432 char __pad[20]; /* canary at %gs:20 */
433 unsigned long canary;
434};
435DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
436#endif
437/*
438 * per-CPU IRQ handling stacks
439 */
440struct irq_stack {
441 u32 stack[THREAD_SIZE/sizeof(u32)];
442} __aligned(THREAD_SIZE);
443
444DECLARE_PER_CPU(struct irq_stack *, hardirq_stack);
445DECLARE_PER_CPU(struct irq_stack *, softirq_stack);
446#endif /* X86_64 */
447
448extern unsigned int fpu_kernel_xstate_size;
449extern unsigned int fpu_user_xstate_size;
450
451struct perf_event;
452
453typedef struct {
454 unsigned long seg;
455} mm_segment_t;
456
457struct thread_struct {
458 /* Cached TLS descriptors: */
459 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES];
460#ifdef CONFIG_X86_32
461 unsigned long sp0;
462#endif
463 unsigned long sp;
464#ifdef CONFIG_X86_32
465 unsigned long sysenter_cs;
466#else
467 unsigned short es;
468 unsigned short ds;
469 unsigned short fsindex;
470 unsigned short gsindex;
471#endif
472
473#ifdef CONFIG_X86_64
474 unsigned long fsbase;
475 unsigned long gsbase;
476#else
477 /*
478 * XXX: this could presumably be unsigned short. Alternatively,
479 * 32-bit kernels could be taught to use fsindex instead.
480 */
481 unsigned long fs;
482 unsigned long gs;
483#endif
484
485 /* Save middle states of ptrace breakpoints */
486 struct perf_event *ptrace_bps[HBP_NUM];
487 /* Debug status used for traps, single steps, etc... */
488 unsigned long debugreg6;
489 /* Keep track of the exact dr7 value set by the user */
490 unsigned long ptrace_dr7;
491 /* Fault info: */
492 unsigned long cr2;
493 unsigned long trap_nr;
494 unsigned long error_code;
495#ifdef CONFIG_VM86
496 /* Virtual 86 mode info */
497 struct vm86 *vm86;
498#endif
499 /* IO permissions: */
500 unsigned long *io_bitmap_ptr;
501 unsigned long iopl;
502 /* Max allowed port in the bitmap, in bytes: */
503 unsigned io_bitmap_max;
504
505 mm_segment_t addr_limit;
506
507 unsigned int sig_on_uaccess_err:1;
508 unsigned int uaccess_err:1; /* uaccess failed */
509
510 /* Floating point and extended processor state */
511 struct fpu fpu;
512 /*
513 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at
514 * the end.
515 */
516};
517
518/* Whitelist the FPU state from the task_struct for hardened usercopy. */
519static inline void arch_thread_struct_whitelist(unsigned long *offset,
520 unsigned long *size)
521{
522 *offset = offsetof(struct thread_struct, fpu.state);
523 *size = fpu_kernel_xstate_size;
524}
525
526/*
527 * Thread-synchronous status.
528 *
529 * This is different from the flags in that nobody else
530 * ever touches our thread-synchronous status, so we don't
531 * have to worry about atomic accesses.
532 */
533#define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/
534
535/*
536 * Set IOPL bits in EFLAGS from given mask
537 */
538static inline void native_set_iopl_mask(unsigned mask)
539{
540#ifdef CONFIG_X86_32
541 unsigned int reg;
542
543 asm volatile ("pushfl;"
544 "popl %0;"
545 "andl %1, %0;"
546 "orl %2, %0;"
547 "pushl %0;"
548 "popfl"
549 : "=&r" (reg)
550 : "i" (~X86_EFLAGS_IOPL), "r" (mask));
551#endif
552}
553
554static inline void
555native_load_sp0(unsigned long sp0)
556{
557 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
558}
559
560static inline void native_swapgs(void)
561{
562#ifdef CONFIG_X86_64
563 asm volatile("swapgs" ::: "memory");
564#endif
565}
566
567static inline unsigned long current_top_of_stack(void)
568{
569 /*
570 * We can't read directly from tss.sp0: sp0 on x86_32 is special in
571 * and around vm86 mode and sp0 on x86_64 is special because of the
572 * entry trampoline.
573 */
574 return this_cpu_read_stable(cpu_current_top_of_stack);
575}
576
577static inline bool on_thread_stack(void)
578{
579 return (unsigned long)(current_top_of_stack() -
580 current_stack_pointer) < THREAD_SIZE;
581}
582
583#ifdef CONFIG_PARAVIRT
584#include <asm/paravirt.h>
585#else
586#define __cpuid native_cpuid
587
588static inline void load_sp0(unsigned long sp0)
589{
590 native_load_sp0(sp0);
591}
592
593#define set_iopl_mask native_set_iopl_mask
594#endif /* CONFIG_PARAVIRT */
595
596/* Free all resources held by a thread. */
597extern void release_thread(struct task_struct *);
598
599unsigned long get_wchan(struct task_struct *p);
600
601/*
602 * Generic CPUID function
603 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
604 * resulting in stale register contents being returned.
605 */
606static inline void cpuid(unsigned int op,
607 unsigned int *eax, unsigned int *ebx,
608 unsigned int *ecx, unsigned int *edx)
609{
610 *eax = op;
611 *ecx = 0;
612 __cpuid(eax, ebx, ecx, edx);
613}
614
615/* Some CPUID calls want 'count' to be placed in ecx */
616static inline void cpuid_count(unsigned int op, int count,
617 unsigned int *eax, unsigned int *ebx,
618 unsigned int *ecx, unsigned int *edx)
619{
620 *eax = op;
621 *ecx = count;
622 __cpuid(eax, ebx, ecx, edx);
623}
624
625/*
626 * CPUID functions returning a single datum
627 */
628static inline unsigned int cpuid_eax(unsigned int op)
629{
630 unsigned int eax, ebx, ecx, edx;
631
632 cpuid(op, &eax, &ebx, &ecx, &edx);
633
634 return eax;
635}
636
637static inline unsigned int cpuid_ebx(unsigned int op)
638{
639 unsigned int eax, ebx, ecx, edx;
640
641 cpuid(op, &eax, &ebx, &ecx, &edx);
642
643 return ebx;
644}
645
646static inline unsigned int cpuid_ecx(unsigned int op)
647{
648 unsigned int eax, ebx, ecx, edx;
649
650 cpuid(op, &eax, &ebx, &ecx, &edx);
651
652 return ecx;
653}
654
655static inline unsigned int cpuid_edx(unsigned int op)
656{
657 unsigned int eax, ebx, ecx, edx;
658
659 cpuid(op, &eax, &ebx, &ecx, &edx);
660
661 return edx;
662}
663
664/* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */
665static __always_inline void rep_nop(void)
666{
667 asm volatile("rep; nop" ::: "memory");
668}
669
670static __always_inline void cpu_relax(void)
671{
672 rep_nop();
673}
674
675/*
676 * This function forces the icache and prefetched instruction stream to
677 * catch up with reality in two very specific cases:
678 *
679 * a) Text was modified using one virtual address and is about to be executed
680 * from the same physical page at a different virtual address.
681 *
682 * b) Text was modified on a different CPU, may subsequently be
683 * executed on this CPU, and you want to make sure the new version
684 * gets executed. This generally means you're calling this in a IPI.
685 *
686 * If you're calling this for a different reason, you're probably doing
687 * it wrong.
688 */
689static inline void sync_core(void)
690{
691 /*
692 * There are quite a few ways to do this. IRET-to-self is nice
693 * because it works on every CPU, at any CPL (so it's compatible
694 * with paravirtualization), and it never exits to a hypervisor.
695 * The only down sides are that it's a bit slow (it seems to be
696 * a bit more than 2x slower than the fastest options) and that
697 * it unmasks NMIs. The "push %cs" is needed because, in
698 * paravirtual environments, __KERNEL_CS may not be a valid CS
699 * value when we do IRET directly.
700 *
701 * In case NMI unmasking or performance ever becomes a problem,
702 * the next best option appears to be MOV-to-CR2 and an
703 * unconditional jump. That sequence also works on all CPUs,
704 * but it will fault at CPL3 (i.e. Xen PV).
705 *
706 * CPUID is the conventional way, but it's nasty: it doesn't
707 * exist on some 486-like CPUs, and it usually exits to a
708 * hypervisor.
709 *
710 * Like all of Linux's memory ordering operations, this is a
711 * compiler barrier as well.
712 */
713#ifdef CONFIG_X86_32
714 asm volatile (
715 "pushfl\n\t"
716 "pushl %%cs\n\t"
717 "pushl $1f\n\t"
718 "iret\n\t"
719 "1:"
720 : ASM_CALL_CONSTRAINT : : "memory");
721#else
722 unsigned int tmp;
723
724 asm volatile (
725 UNWIND_HINT_SAVE
726 "mov %%ss, %0\n\t"
727 "pushq %q0\n\t"
728 "pushq %%rsp\n\t"
729 "addq $8, (%%rsp)\n\t"
730 "pushfq\n\t"
731 "mov %%cs, %0\n\t"
732 "pushq %q0\n\t"
733 "pushq $1f\n\t"
734 "iretq\n\t"
735 UNWIND_HINT_RESTORE
736 "1:"
737 : "=&r" (tmp), ASM_CALL_CONSTRAINT : : "cc", "memory");
738#endif
739}
740
741extern void select_idle_routine(const struct cpuinfo_x86 *c);
742extern void amd_e400_c1e_apic_setup(void);
743
744extern unsigned long boot_option_idle_override;
745
746enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
747 IDLE_POLL};
748
749extern void enable_sep_cpu(void);
750extern int sysenter_setup(void);
751
752void early_trap_pf_init(void);
753
754/* Defined in head.S */
755extern struct desc_ptr early_gdt_descr;
756
757extern void switch_to_new_gdt(int);
758extern void load_direct_gdt(int);
759extern void load_fixmap_gdt(int);
760extern void load_percpu_segment(int);
761extern void cpu_init(void);
762
763static inline unsigned long get_debugctlmsr(void)
764{
765 unsigned long debugctlmsr = 0;
766
767#ifndef CONFIG_X86_DEBUGCTLMSR
768 if (boot_cpu_data.x86 < 6)
769 return 0;
770#endif
771 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
772
773 return debugctlmsr;
774}
775
776static inline void update_debugctlmsr(unsigned long debugctlmsr)
777{
778#ifndef CONFIG_X86_DEBUGCTLMSR
779 if (boot_cpu_data.x86 < 6)
780 return;
781#endif
782 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
783}
784
785extern void set_task_blockstep(struct task_struct *task, bool on);
786
787/* Boot loader type from the setup header: */
788extern int bootloader_type;
789extern int bootloader_version;
790
791extern char ignore_fpu_irq;
792
793#define HAVE_ARCH_PICK_MMAP_LAYOUT 1
794#define ARCH_HAS_PREFETCHW
795#define ARCH_HAS_SPINLOCK_PREFETCH
796
797#ifdef CONFIG_X86_32
798# define BASE_PREFETCH ""
799# define ARCH_HAS_PREFETCH
800#else
801# define BASE_PREFETCH "prefetcht0 %P1"
802#endif
803
804/*
805 * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
806 *
807 * It's not worth to care about 3dnow prefetches for the K6
808 * because they are microcoded there and very slow.
809 */
810static inline void prefetch(const void *x)
811{
812 alternative_input(BASE_PREFETCH, "prefetchnta %P1",
813 X86_FEATURE_XMM,
814 "m" (*(const char *)x));
815}
816
817/*
818 * 3dnow prefetch to get an exclusive cache line.
819 * Useful for spinlocks to avoid one state transition in the
820 * cache coherency protocol:
821 */
822static inline void prefetchw(const void *x)
823{
824 alternative_input(BASE_PREFETCH, "prefetchw %P1",
825 X86_FEATURE_3DNOWPREFETCH,
826 "m" (*(const char *)x));
827}
828
829static inline void spin_lock_prefetch(const void *x)
830{
831 prefetchw(x);
832}
833
834#define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
835 TOP_OF_KERNEL_STACK_PADDING)
836
837#define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1))
838
839#define task_pt_regs(task) \
840({ \
841 unsigned long __ptr = (unsigned long)task_stack_page(task); \
842 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \
843 ((struct pt_regs *)__ptr) - 1; \
844})
845
846#ifdef CONFIG_X86_32
847/*
848 * User space process size: 3GB (default).
849 */
850#define IA32_PAGE_OFFSET PAGE_OFFSET
851#define TASK_SIZE PAGE_OFFSET
852#define TASK_SIZE_LOW TASK_SIZE
853#define TASK_SIZE_MAX TASK_SIZE
854#define DEFAULT_MAP_WINDOW TASK_SIZE
855#define STACK_TOP TASK_SIZE
856#define STACK_TOP_MAX STACK_TOP
857
858#define INIT_THREAD { \
859 .sp0 = TOP_OF_INIT_STACK, \
860 .sysenter_cs = __KERNEL_CS, \
861 .io_bitmap_ptr = NULL, \
862 .addr_limit = KERNEL_DS, \
863}
864
865#define KSTK_ESP(task) (task_pt_regs(task)->sp)
866
867#else
868/*
869 * User space process size. This is the first address outside the user range.
870 * There are a few constraints that determine this:
871 *
872 * On Intel CPUs, if a SYSCALL instruction is at the highest canonical
873 * address, then that syscall will enter the kernel with a
874 * non-canonical return address, and SYSRET will explode dangerously.
875 * We avoid this particular problem by preventing anything executable
876 * from being mapped at the maximum canonical address.
877 *
878 * On AMD CPUs in the Ryzen family, there's a nasty bug in which the
879 * CPUs malfunction if they execute code from the highest canonical page.
880 * They'll speculate right off the end of the canonical space, and
881 * bad things happen. This is worked around in the same way as the
882 * Intel problem.
883 *
884 * With page table isolation enabled, we map the LDT in ... [stay tuned]
885 */
886#define TASK_SIZE_MAX ((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE)
887
888#define DEFAULT_MAP_WINDOW ((1UL << 47) - PAGE_SIZE)
889
890/* This decides where the kernel will search for a free chunk of vm
891 * space during mmap's.
892 */
893#define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \
894 0xc0000000 : 0xFFFFe000)
895
896#define TASK_SIZE_LOW (test_thread_flag(TIF_ADDR32) ? \
897 IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW)
898#define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \
899 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
900#define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
901 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
902
903#define STACK_TOP TASK_SIZE_LOW
904#define STACK_TOP_MAX TASK_SIZE_MAX
905
906#define INIT_THREAD { \
907 .addr_limit = KERNEL_DS, \
908}
909
910extern unsigned long KSTK_ESP(struct task_struct *task);
911
912#endif /* CONFIG_X86_64 */
913
914extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
915 unsigned long new_sp);
916
917/*
918 * This decides where the kernel will search for a free chunk of vm
919 * space during mmap's.
920 */
921#define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3))
922#define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW)
923
924#define KSTK_EIP(task) (task_pt_regs(task)->ip)
925
926/* Get/set a process' ability to use the timestamp counter instruction */
927#define GET_TSC_CTL(adr) get_tsc_mode((adr))
928#define SET_TSC_CTL(val) set_tsc_mode((val))
929
930extern int get_tsc_mode(unsigned long adr);
931extern int set_tsc_mode(unsigned int val);
932
933DECLARE_PER_CPU(u64, msr_misc_features_shadow);
934
935/* Register/unregister a process' MPX related resource */
936#define MPX_ENABLE_MANAGEMENT() mpx_enable_management()
937#define MPX_DISABLE_MANAGEMENT() mpx_disable_management()
938
939#ifdef CONFIG_X86_INTEL_MPX
940extern int mpx_enable_management(void);
941extern int mpx_disable_management(void);
942#else
943static inline int mpx_enable_management(void)
944{
945 return -EINVAL;
946}
947static inline int mpx_disable_management(void)
948{
949 return -EINVAL;
950}
951#endif /* CONFIG_X86_INTEL_MPX */
952
953#ifdef CONFIG_CPU_SUP_AMD
954extern u16 amd_get_nb_id(int cpu);
955extern u32 amd_get_nodes_per_socket(void);
956#else
957static inline u16 amd_get_nb_id(int cpu) { return 0; }
958static inline u32 amd_get_nodes_per_socket(void) { return 0; }
959#endif
960
961static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
962{
963 uint32_t base, eax, signature[3];
964
965 for (base = 0x40000000; base < 0x40010000; base += 0x100) {
966 cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);
967
968 if (!memcmp(sig, signature, 12) &&
969 (leaves == 0 || ((eax - base) >= leaves)))
970 return base;
971 }
972
973 return 0;
974}
975
976extern unsigned long arch_align_stack(unsigned long sp);
977extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
978
979void default_idle(void);
980#ifdef CONFIG_XEN
981bool xen_set_default_idle(void);
982#else
983#define xen_set_default_idle 0
984#endif
985
986void stop_this_cpu(void *dummy);
987void df_debug(struct pt_regs *regs, long error_code);
988void microcode_check(void);
989#endif /* _ASM_X86_PROCESSOR_H */