Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * BPF JIT compiler for PA-RISC (64-bit)
   4 *
   5 * Copyright(c) 2023 Helge Deller <deller@gmx.de>
   6 *
   7 * The code is based on the BPF JIT compiler for RV64 by Björn Töpel.
   8 *
   9 * TODO:
  10 * - check if bpf_jit_needs_zext() is needed (currently enabled)
  11 * - implement arch_prepare_bpf_trampoline(), poke(), ...
  12 */
  13
  14#include <linux/bitfield.h>
  15#include <linux/bpf.h>
  16#include <linux/filter.h>
  17#include <linux/libgcc.h>
  18#include "bpf_jit.h"
  19
  20static const int regmap[] = {
  21	[BPF_REG_0] =	HPPA_REG_RET0,
  22	[BPF_REG_1] =	HPPA_R(5),
  23	[BPF_REG_2] =	HPPA_R(6),
  24	[BPF_REG_3] =	HPPA_R(7),
  25	[BPF_REG_4] =	HPPA_R(8),
  26	[BPF_REG_5] =	HPPA_R(9),
  27	[BPF_REG_6] =	HPPA_R(10),
  28	[BPF_REG_7] =	HPPA_R(11),
  29	[BPF_REG_8] =	HPPA_R(12),
  30	[BPF_REG_9] =	HPPA_R(13),
  31	[BPF_REG_FP] =	HPPA_R(14),
  32	[BPF_REG_AX] =	HPPA_R(15),
  33};
  34
  35/*
  36 * Stack layout during BPF program execution (note: stack grows up):
  37 *
  38 *                     high
  39 *   HPPA64 sp =>  +----------+ <= HPPA64 fp
  40 *                 | saved sp |
  41 *                 | saved rp |
  42 *                 |   ...    | HPPA64 callee-saved registers
  43 *                 | curr args|
  44 *                 | local var|
  45 *                 +----------+ <= (BPF FP)
  46 *                 |          |
  47 *                 |   ...    | BPF program stack
  48 *                 |          |
  49 *                 |   ...    | Function call stack
  50 *                 |          |
  51 *                 +----------+
  52 *                     low
  53 */
  54
  55/* Offset from fp for BPF registers stored on stack. */
  56#define STACK_ALIGN	FRAME_SIZE
  57
  58#define EXIT_PTR_LOAD(reg)	hppa64_ldd_im16(-FRAME_SIZE, HPPA_REG_SP, reg)
  59#define EXIT_PTR_STORE(reg)	hppa64_std_im16(reg, -FRAME_SIZE, HPPA_REG_SP)
  60#define EXIT_PTR_JUMP(reg, nop)	hppa_bv(HPPA_REG_ZERO, reg, nop)
  61
  62static u8 bpf_to_hppa_reg(int bpf_reg, struct hppa_jit_context *ctx)
  63{
  64	u8 reg = regmap[bpf_reg];
  65
  66	REG_SET_SEEN(ctx, reg);
  67	return reg;
  68};
  69
  70static void emit_hppa_copy(const s8 rs, const s8 rd, struct hppa_jit_context *ctx)
  71{
  72	REG_SET_SEEN(ctx, rd);
  73	if (OPTIMIZE_HPPA && (rs == rd))
  74		return;
  75	REG_SET_SEEN(ctx, rs);
  76	emit(hppa_copy(rs, rd), ctx);
  77}
  78
  79static void emit_hppa64_depd(u8 src, u8 pos, u8 len, u8 target, bool no_zero, struct hppa_jit_context *ctx)
  80{
  81	int c;
  82
  83	pos &= (BITS_PER_LONG - 1);
  84	pos = 63 - pos;
  85	len = 64 - len;
  86	c =  (len < 32)  ? 0x4 : 0;
  87	c |= (pos >= 32) ? 0x2 : 0;
  88	c |= (no_zero)   ? 0x1 : 0;
  89	emit(hppa_t10_insn(0x3c, target, src, 0, c, pos & 0x1f, len & 0x1f), ctx);
  90}
  91
  92static void emit_hppa64_shld(u8 src, int num, u8 target, struct hppa_jit_context *ctx)
  93{
  94	emit_hppa64_depd(src, 63-num, 64-num, target, 0, ctx);
  95}
  96
  97static void emit_hppa64_extrd(u8 src, u8 pos, u8 len, u8 target, bool signed_op, struct hppa_jit_context *ctx)
  98{
  99	int c;
 100
 101	pos &= (BITS_PER_LONG - 1);
 102	len = 64 - len;
 103	c =  (len <  32) ? 0x4 : 0;
 104	c |= (pos >= 32) ? 0x2 : 0;
 105	c |= signed_op   ? 0x1 : 0;
 106	emit(hppa_t10_insn(0x36, src, target, 0, c, pos & 0x1f, len & 0x1f), ctx);
 107}
 108
 109static void emit_hppa64_extrw(u8 src, u8 pos, u8 len, u8 target, bool signed_op, struct hppa_jit_context *ctx)
 110{
 111	int c;
 112
 113	pos &= (32 - 1);
 114	len = 32 - len;
 115	c = 0x06 | (signed_op ? 1 : 0);
 116	emit(hppa_t10_insn(0x34, src, target, 0, c, pos, len), ctx);
 117}
 118
 119#define emit_hppa64_zext32(r, target, ctx) \
 120	emit_hppa64_extrd(r, 63, 32, target, false, ctx)
 121#define emit_hppa64_sext32(r, target, ctx) \
 122	emit_hppa64_extrd(r, 63, 32, target, true, ctx)
 123
 124static void emit_hppa64_shrd(u8 src, int num, u8 target, bool signed_op, struct hppa_jit_context *ctx)
 125{
 126	emit_hppa64_extrd(src, 63-num, 64-num, target, signed_op, ctx);
 127}
 128
 129static void emit_hppa64_shrw(u8 src, int num, u8 target, bool signed_op, struct hppa_jit_context *ctx)
 130{
 131	emit_hppa64_extrw(src, 31-num, 32-num, target, signed_op, ctx);
 132}
 133
 134/* Emit variable-length instructions for 32-bit imm */
 135static void emit_imm32(u8 rd, s32 imm, struct hppa_jit_context *ctx)
 136{
 137	u32 lower = im11(imm);
 138
 139	REG_SET_SEEN(ctx, rd);
 140	if (OPTIMIZE_HPPA && relative_bits_ok(imm, 14)) {
 141		emit(hppa_ldi(imm, rd), ctx);
 142		return;
 143	}
 144	if (OPTIMIZE_HPPA && lower == imm) {
 145		emit(hppa_ldo(lower, HPPA_REG_ZERO, rd), ctx);
 146		return;
 147	}
 148	emit(hppa_ldil(imm, rd), ctx);
 149	if (OPTIMIZE_HPPA && (lower == 0))
 150		return;
 151	emit(hppa_ldo(lower, rd, rd), ctx);
 152}
 153
 154static bool is_32b_int(s64 val)
 155{
 156	return val == (s32) val;
 157}
 158
 159/* Emit variable-length instructions for 64-bit imm */
 160static void emit_imm(u8 rd, s64 imm, u8 tmpreg, struct hppa_jit_context *ctx)
 161{
 162	u32 upper32;
 163
 164	/* get lower 32-bits into rd, sign extended */
 165	emit_imm32(rd, imm, ctx);
 166
 167	/* do we have upper 32-bits too ? */
 168	if (OPTIMIZE_HPPA && is_32b_int(imm))
 169		return;
 170
 171	/* load upper 32-bits into lower tmpreg and deposit into rd */
 172	upper32 = imm >> 32;
 173	if (upper32 || !OPTIMIZE_HPPA) {
 174		emit_imm32(tmpreg, upper32, ctx);
 175		emit_hppa64_depd(tmpreg, 31, 32, rd, 1, ctx);
 176	} else
 177		emit_hppa64_depd(HPPA_REG_ZERO, 31, 32, rd, 1, ctx);
 178
 179}
 180
 181static int emit_jump(signed long paoff, bool force_far,
 182			       struct hppa_jit_context *ctx)
 183{
 184	unsigned long pc, addr;
 185
 186	/* Note: Use 2 instructions for jumps if force_far is set. */
 187	if (relative_bits_ok(paoff - HPPA_BRANCH_DISPLACEMENT, 22)) {
 188		/* use BL,long branch followed by nop() */
 189		emit(hppa64_bl_long(paoff - HPPA_BRANCH_DISPLACEMENT), ctx);
 190		if (force_far)
 191			emit(hppa_nop(), ctx);
 192		return 0;
 193	}
 194
 195	pc = (uintptr_t) &ctx->insns[ctx->ninsns];
 196	addr = pc + (paoff * HPPA_INSN_SIZE);
 197	/* even the 64-bit kernel runs in memory below 4GB */
 198	if (WARN_ON_ONCE(addr >> 32))
 199		return -E2BIG;
 200	emit(hppa_ldil(addr, HPPA_REG_R31), ctx);
 201	emit(hppa_be_l(im11(addr) >> 2, HPPA_REG_R31, NOP_NEXT_INSTR), ctx);
 202	return 0;
 203}
 204
 205static void __build_epilogue(bool is_tail_call, struct hppa_jit_context *ctx)
 206{
 207	int i;
 208
 209	if (is_tail_call) {
 210		/*
 211		 * goto *(t0 + 4);
 212		 * Skips first instruction of prologue which initializes tail
 213		 * call counter. Assumes t0 contains address of target program,
 214		 * see emit_bpf_tail_call.
 215		 */
 216		emit(hppa_ldo(1 * HPPA_INSN_SIZE, HPPA_REG_T0, HPPA_REG_T0), ctx);
 217		emit(hppa_bv(HPPA_REG_ZERO, HPPA_REG_T0, EXEC_NEXT_INSTR), ctx);
 218		/* in delay slot: */
 219		emit(hppa_copy(HPPA_REG_TCC, HPPA_REG_TCC_IN_INIT), ctx);
 220
 221		return;
 222	}
 223
 224	/* load epilogue function pointer and jump to it. */
 225	/* exit point is either at next instruction, or the outest TCC exit function */
 226	emit(EXIT_PTR_LOAD(HPPA_REG_RP), ctx);
 227	emit(EXIT_PTR_JUMP(HPPA_REG_RP, NOP_NEXT_INSTR), ctx);
 228
 229	/* NOTE: we are 64-bit and big-endian, so return lower sign-extended 32-bit value */
 230	emit_hppa64_sext32(regmap[BPF_REG_0], HPPA_REG_RET0, ctx);
 231
 232	/* Restore callee-saved registers. */
 233	for (i = 3; i <= 15; i++) {
 234		if (OPTIMIZE_HPPA && !REG_WAS_SEEN(ctx, HPPA_R(i)))
 235			continue;
 236		emit(hppa64_ldd_im16(-REG_SIZE * i, HPPA_REG_SP, HPPA_R(i)), ctx);
 237	}
 238
 239	/* load original return pointer (stored by outest TCC function) */
 240	emit(hppa64_ldd_im16(-2*REG_SIZE, HPPA_REG_SP, HPPA_REG_RP), ctx);
 241	emit(hppa_bv(HPPA_REG_ZERO, HPPA_REG_RP, EXEC_NEXT_INSTR), ctx);
 242	/* in delay slot: */
 243	emit(hppa64_ldd_im5(-REG_SIZE, HPPA_REG_SP, HPPA_REG_SP), ctx);
 244
 245	emit(hppa_nop(), ctx); // XXX WARUM einer zu wenig ??
 246}
 247
 248static int emit_branch(u8 op, u8 rd, u8 rs, signed long paoff,
 249			struct hppa_jit_context *ctx)
 250{
 251	int e, s;
 252	bool far = false;
 253	int off;
 254
 255	if (op == BPF_JSET) {
 256		/*
 257		 * BPF_JSET is a special case: it has no inverse so translate
 258		 * to and() function and compare against zero
 259		 */
 260		emit(hppa_and(rd, rs, HPPA_REG_T0), ctx);
 261		paoff -= 1; /* reduce offset due to hppa_and() above */
 262		rd = HPPA_REG_T0;
 263		rs = HPPA_REG_ZERO;
 264		op = BPF_JNE;
 265	}
 266
 267	/* set start after BPF_JSET */
 268	s = ctx->ninsns;
 269
 270	if (!relative_branch_ok(paoff - HPPA_BRANCH_DISPLACEMENT + 1, 12)) {
 271		op = invert_bpf_cond(op);
 272		far = true;
 273	}
 274
 275	/*
 276	 * For a far branch, the condition is negated and we jump over the
 277	 * branch itself, and the two instructions from emit_jump.
 278	 * For a near branch, just use paoff.
 279	 */
 280	off = far ? (2 - HPPA_BRANCH_DISPLACEMENT) : paoff - HPPA_BRANCH_DISPLACEMENT;
 281
 282	switch (op) {
 283	/* IF (dst COND src) JUMP off */
 284	case BPF_JEQ:
 285		emit(hppa_beq(rd, rs, off), ctx);
 286		break;
 287	case BPF_JGT:
 288		emit(hppa_bgtu(rd, rs, off), ctx);
 289		break;
 290	case BPF_JLT:
 291		emit(hppa_bltu(rd, rs, off), ctx);
 292		break;
 293	case BPF_JGE:
 294		emit(hppa_bgeu(rd, rs, off), ctx);
 295		break;
 296	case BPF_JLE:
 297		emit(hppa_bleu(rd, rs, off), ctx);
 298		break;
 299	case BPF_JNE:
 300		emit(hppa_bne(rd, rs, off), ctx);
 301		break;
 302	case BPF_JSGT:
 303		emit(hppa_bgt(rd, rs, off), ctx);
 304		break;
 305	case BPF_JSLT:
 306		emit(hppa_blt(rd, rs, off), ctx);
 307		break;
 308	case BPF_JSGE:
 309		emit(hppa_bge(rd, rs, off), ctx);
 310		break;
 311	case BPF_JSLE:
 312		emit(hppa_ble(rd, rs, off), ctx);
 313		break;
 314	default:
 315		WARN_ON(1);
 316	}
 317
 318	if (far) {
 319		int ret;
 320		e = ctx->ninsns;
 321		/* Adjust for extra insns. */
 322		paoff -= (e - s);
 323		ret = emit_jump(paoff, true, ctx);
 324		if (ret)
 325			return ret;
 326	} else {
 327		/*
 328		 * always allocate 2 nops instead of the far branch to
 329		 * reduce translation loops
 330		 */
 331		emit(hppa_nop(), ctx);
 332		emit(hppa_nop(), ctx);
 333	}
 334	return 0;
 335}
 336
 337static void emit_zext_32(u8 reg, struct hppa_jit_context *ctx)
 338{
 339	emit_hppa64_zext32(reg, reg, ctx);
 340}
 341
 342static void emit_bpf_tail_call(int insn, struct hppa_jit_context *ctx)
 343{
 344	/*
 345	 * R1 -> &ctx
 346	 * R2 -> &array
 347	 * R3 -> index
 348	 */
 349	int off;
 350	const s8 arr_reg = regmap[BPF_REG_2];
 351	const s8 idx_reg = regmap[BPF_REG_3];
 352	struct bpf_array bpfa;
 353	struct bpf_prog bpfp;
 354
 355	/* if there is any tail call, we need to save & restore all registers */
 356	REG_SET_SEEN_ALL(ctx);
 357
 358	/* get address of TCC main exit function for error case into rp */
 359	emit(EXIT_PTR_LOAD(HPPA_REG_RP), ctx);
 360
 361	/* max_entries = array->map.max_entries; */
 362	off = offsetof(struct bpf_array, map.max_entries);
 363	BUILD_BUG_ON(sizeof(bpfa.map.max_entries) != 4);
 364	emit(hppa_ldw(off, arr_reg, HPPA_REG_T1), ctx);
 365
 366	/*
 367	 * if (index >= max_entries)
 368	 *   goto out;
 369	 */
 370	emit(hppa_bltu(idx_reg, HPPA_REG_T1, 2 - HPPA_BRANCH_DISPLACEMENT), ctx);
 371	emit(EXIT_PTR_JUMP(HPPA_REG_RP, NOP_NEXT_INSTR), ctx);
 372
 373	/*
 374	 * if (--tcc < 0)
 375	 *   goto out;
 376	 */
 377	REG_FORCE_SEEN(ctx, HPPA_REG_TCC);
 378	emit(hppa_ldo(-1, HPPA_REG_TCC, HPPA_REG_TCC), ctx);
 379	emit(hppa_bge(HPPA_REG_TCC, HPPA_REG_ZERO, 2 - HPPA_BRANCH_DISPLACEMENT), ctx);
 380	emit(EXIT_PTR_JUMP(HPPA_REG_RP, NOP_NEXT_INSTR), ctx);
 381
 382	/*
 383	 * prog = array->ptrs[index];
 384	 * if (!prog)
 385	 *   goto out;
 386	 */
 387	BUILD_BUG_ON(sizeof(bpfa.ptrs[0]) != 8);
 388	emit(hppa64_shladd(idx_reg, 3, arr_reg, HPPA_REG_T0), ctx);
 389	off = offsetof(struct bpf_array, ptrs);
 390	BUILD_BUG_ON(off < 16);
 391	emit(hppa64_ldd_im16(off, HPPA_REG_T0, HPPA_REG_T0), ctx);
 392	emit(hppa_bne(HPPA_REG_T0, HPPA_REG_ZERO, 2 - HPPA_BRANCH_DISPLACEMENT), ctx);
 393	emit(EXIT_PTR_JUMP(HPPA_REG_RP, NOP_NEXT_INSTR), ctx);
 394
 395	/*
 396	 * tcc = temp_tcc;
 397	 * goto *(prog->bpf_func + 4);
 398	 */
 399	off = offsetof(struct bpf_prog, bpf_func);
 400	BUILD_BUG_ON(off < 16);
 401	BUILD_BUG_ON(sizeof(bpfp.bpf_func) != 8);
 402	emit(hppa64_ldd_im16(off, HPPA_REG_T0, HPPA_REG_T0), ctx);
 403	/* Epilogue jumps to *(t0 + 4). */
 404	__build_epilogue(true, ctx);
 405}
 406
 407static void init_regs(u8 *rd, u8 *rs, const struct bpf_insn *insn,
 408		      struct hppa_jit_context *ctx)
 409{
 410	u8 code = insn->code;
 411
 412	switch (code) {
 413	case BPF_JMP | BPF_JA:
 414	case BPF_JMP | BPF_CALL:
 415	case BPF_JMP | BPF_EXIT:
 416	case BPF_JMP | BPF_TAIL_CALL:
 417		break;
 418	default:
 419		*rd = bpf_to_hppa_reg(insn->dst_reg, ctx);
 420	}
 421
 422	if (code & (BPF_ALU | BPF_X) || code & (BPF_ALU64 | BPF_X) ||
 423	    code & (BPF_JMP | BPF_X) || code & (BPF_JMP32 | BPF_X) ||
 424	    code & BPF_LDX || code & BPF_STX)
 425		*rs = bpf_to_hppa_reg(insn->src_reg, ctx);
 426}
 427
 428static void emit_zext_32_rd_rs(u8 *rd, u8 *rs, struct hppa_jit_context *ctx)
 429{
 430	emit_hppa64_zext32(*rd, HPPA_REG_T2, ctx);
 431	*rd = HPPA_REG_T2;
 432	emit_hppa64_zext32(*rs, HPPA_REG_T1, ctx);
 433	*rs = HPPA_REG_T1;
 434}
 435
 436static void emit_sext_32_rd_rs(u8 *rd, u8 *rs, struct hppa_jit_context *ctx)
 437{
 438	emit_hppa64_sext32(*rd, HPPA_REG_T2, ctx);
 439	*rd = HPPA_REG_T2;
 440	emit_hppa64_sext32(*rs, HPPA_REG_T1, ctx);
 441	*rs = HPPA_REG_T1;
 442}
 443
 444static void emit_zext_32_rd_t1(u8 *rd, struct hppa_jit_context *ctx)
 445{
 446	emit_hppa64_zext32(*rd, HPPA_REG_T2, ctx);
 447	*rd = HPPA_REG_T2;
 448	emit_zext_32(HPPA_REG_T1, ctx);
 449}
 450
 451static void emit_sext_32_rd(u8 *rd, struct hppa_jit_context *ctx)
 452{
 453	emit_hppa64_sext32(*rd, HPPA_REG_T2, ctx);
 454	*rd = HPPA_REG_T2;
 455}
 456
 457static bool is_signed_bpf_cond(u8 cond)
 458{
 459	return cond == BPF_JSGT || cond == BPF_JSLT ||
 460		cond == BPF_JSGE || cond == BPF_JSLE;
 461}
 462
 463static void emit_call(u64 addr, bool fixed, struct hppa_jit_context *ctx)
 464{
 465	const int offset_sp = 2*FRAME_SIZE;
 466
 467	emit(hppa_ldo(offset_sp, HPPA_REG_SP, HPPA_REG_SP), ctx);
 468
 469	emit_hppa_copy(regmap[BPF_REG_1], HPPA_REG_ARG0, ctx);
 470	emit_hppa_copy(regmap[BPF_REG_2], HPPA_REG_ARG1, ctx);
 471	emit_hppa_copy(regmap[BPF_REG_3], HPPA_REG_ARG2, ctx);
 472	emit_hppa_copy(regmap[BPF_REG_4], HPPA_REG_ARG3, ctx);
 473	emit_hppa_copy(regmap[BPF_REG_5], HPPA_REG_ARG4, ctx);
 474
 475	/* Backup TCC. */
 476	REG_FORCE_SEEN(ctx, HPPA_REG_TCC_SAVED);
 477	if (REG_WAS_SEEN(ctx, HPPA_REG_TCC))
 478		emit(hppa_copy(HPPA_REG_TCC, HPPA_REG_TCC_SAVED), ctx);
 479
 480	/*
 481	 * Use ldil() to load absolute address. Don't use emit_imm as the
 482	 * number of emitted instructions should not depend on the value of
 483	 * addr.
 484	 */
 485	WARN_ON(addr >> 32);
 486	/* load function address and gp from Elf64_Fdesc descriptor */
 487	emit(hppa_ldil(addr, HPPA_REG_R31), ctx);
 488	emit(hppa_ldo(im11(addr), HPPA_REG_R31, HPPA_REG_R31), ctx);
 489	emit(hppa64_ldd_im16(offsetof(struct elf64_fdesc, addr),
 490			     HPPA_REG_R31, HPPA_REG_RP), ctx);
 491	emit(hppa64_bve_l_rp(HPPA_REG_RP), ctx);
 492	emit(hppa64_ldd_im16(offsetof(struct elf64_fdesc, gp),
 493			     HPPA_REG_R31, HPPA_REG_GP), ctx);
 494
 495	/* Restore TCC. */
 496	if (REG_WAS_SEEN(ctx, HPPA_REG_TCC))
 497		emit(hppa_copy(HPPA_REG_TCC_SAVED, HPPA_REG_TCC), ctx);
 498
 499	emit(hppa_ldo(-offset_sp, HPPA_REG_SP, HPPA_REG_SP), ctx);
 500
 501	/* Set return value. */
 502	emit_hppa_copy(HPPA_REG_RET0, regmap[BPF_REG_0], ctx);
 503}
 504
 505static void emit_call_libgcc_ll(void *func, const s8 arg0,
 506		const s8 arg1, u8 opcode, struct hppa_jit_context *ctx)
 507{
 508	u64 func_addr;
 509
 510	if (BPF_CLASS(opcode) == BPF_ALU) {
 511		emit_hppa64_zext32(arg0, HPPA_REG_ARG0, ctx);
 512		emit_hppa64_zext32(arg1, HPPA_REG_ARG1, ctx);
 513	} else {
 514		emit_hppa_copy(arg0, HPPA_REG_ARG0, ctx);
 515		emit_hppa_copy(arg1, HPPA_REG_ARG1, ctx);
 516	}
 517
 518	/* libcgcc overwrites HPPA_REG_RET0, so keep copy in HPPA_REG_TCC_SAVED */
 519	if (arg0 != HPPA_REG_RET0) {
 520		REG_SET_SEEN(ctx, HPPA_REG_TCC_SAVED);
 521		emit(hppa_copy(HPPA_REG_RET0, HPPA_REG_TCC_SAVED), ctx);
 522	}
 523
 524	/* set up stack */
 525	emit(hppa_ldo(FRAME_SIZE, HPPA_REG_SP, HPPA_REG_SP), ctx);
 526
 527	func_addr = (uintptr_t) func;
 528	/* load function func_address and gp from Elf64_Fdesc descriptor */
 529	emit_imm(HPPA_REG_R31, func_addr, arg0, ctx);
 530	emit(hppa64_ldd_im16(offsetof(struct elf64_fdesc, addr),
 531			     HPPA_REG_R31, HPPA_REG_RP), ctx);
 532        /* skip the following bve_l instruction if divisor is 0. */
 533        if (BPF_OP(opcode) == BPF_DIV || BPF_OP(opcode) == BPF_MOD) {
 534		if (BPF_OP(opcode) == BPF_DIV)
 535			emit_hppa_copy(HPPA_REG_ZERO, HPPA_REG_RET0, ctx);
 536		else {
 537			emit_hppa_copy(HPPA_REG_ARG0, HPPA_REG_RET0, ctx);
 538		}
 539		emit(hppa_beq(HPPA_REG_ARG1, HPPA_REG_ZERO, 2 - HPPA_BRANCH_DISPLACEMENT), ctx);
 540	}
 541	emit(hppa64_bve_l_rp(HPPA_REG_RP), ctx);
 542	emit(hppa64_ldd_im16(offsetof(struct elf64_fdesc, gp),
 543			     HPPA_REG_R31, HPPA_REG_GP), ctx);
 544
 545	emit(hppa_ldo(-FRAME_SIZE, HPPA_REG_SP, HPPA_REG_SP), ctx);
 546
 547	emit_hppa_copy(HPPA_REG_RET0, arg0, ctx);
 548
 549	/* restore HPPA_REG_RET0 */
 550	if (arg0 != HPPA_REG_RET0)
 551		emit(hppa_copy(HPPA_REG_TCC_SAVED, HPPA_REG_RET0), ctx);
 552}
 553
 554static void emit_store(const s8 rd, const s8 rs, s16 off,
 555			  struct hppa_jit_context *ctx, const u8 size,
 556			  const u8 mode)
 557{
 558	s8 dstreg;
 559
 560	/* need to calculate address since offset does not fit in 14 bits? */
 561	if (relative_bits_ok(off, 14))
 562		dstreg = rd;
 563	else {
 564		/* need to use R1 here, since addil puts result into R1 */
 565		dstreg = HPPA_REG_R1;
 566		emit(hppa_addil(off, rd), ctx);
 567		off = im11(off);
 568	}
 569
 570	switch (size) {
 571	case BPF_B:
 572		emit(hppa_stb(rs, off, dstreg), ctx);
 573		break;
 574	case BPF_H:
 575		emit(hppa_sth(rs, off, dstreg), ctx);
 576		break;
 577	case BPF_W:
 578		emit(hppa_stw(rs, off, dstreg), ctx);
 579		break;
 580	case BPF_DW:
 581		if (off & 7) {
 582			emit(hppa_ldo(off, dstreg, HPPA_REG_R1), ctx);
 583			emit(hppa64_std_im5(rs, 0, HPPA_REG_R1), ctx);
 584		} else if (off >= -16 && off <= 15)
 585			emit(hppa64_std_im5(rs, off, dstreg), ctx);
 586		else
 587			emit(hppa64_std_im16(rs, off, dstreg), ctx);
 588		break;
 589	}
 590}
 591
 592int bpf_jit_emit_insn(const struct bpf_insn *insn, struct hppa_jit_context *ctx,
 593		      bool extra_pass)
 594{
 595	bool is64 = BPF_CLASS(insn->code) == BPF_ALU64 ||
 596		    BPF_CLASS(insn->code) == BPF_JMP;
 597	int s, e, ret, i = insn - ctx->prog->insnsi;
 598	s64 paoff;
 599	struct bpf_prog_aux *aux = ctx->prog->aux;
 600	u8 rd = -1, rs = -1, code = insn->code;
 601	s16 off = insn->off;
 602	s32 imm = insn->imm;
 603
 604	init_regs(&rd, &rs, insn, ctx);
 605
 606	switch (code) {
 607	/* dst = src */
 608	case BPF_ALU | BPF_MOV | BPF_X:
 609	case BPF_ALU64 | BPF_MOV | BPF_X:
 610		if (imm == 1) {
 611			/* Special mov32 for zext */
 612			emit_zext_32(rd, ctx);
 613			break;
 614		}
 615		if (!is64 && !aux->verifier_zext)
 616			emit_hppa64_zext32(rs, rd, ctx);
 617		else
 618			emit_hppa_copy(rs, rd, ctx);
 619		break;
 620
 621	/* dst = dst OP src */
 622	case BPF_ALU | BPF_ADD | BPF_X:
 623	case BPF_ALU64 | BPF_ADD | BPF_X:
 624                emit(hppa_add(rd, rs, rd), ctx);
 625		if (!is64 && !aux->verifier_zext)
 626			emit_zext_32(rd, ctx);
 627		break;
 628	case BPF_ALU | BPF_SUB | BPF_X:
 629	case BPF_ALU64 | BPF_SUB | BPF_X:
 630                emit(hppa_sub(rd, rs, rd), ctx);
 631		if (!is64 && !aux->verifier_zext)
 632			emit_zext_32(rd, ctx);
 633		break;
 634	case BPF_ALU | BPF_AND | BPF_X:
 635	case BPF_ALU64 | BPF_AND | BPF_X:
 636                emit(hppa_and(rd, rs, rd), ctx);
 637		if (!is64 && !aux->verifier_zext)
 638			emit_zext_32(rd, ctx);
 639		break;
 640	case BPF_ALU | BPF_OR | BPF_X:
 641	case BPF_ALU64 | BPF_OR | BPF_X:
 642                emit(hppa_or(rd, rs, rd), ctx);
 643		if (!is64 && !aux->verifier_zext)
 644			emit_zext_32(rd, ctx);
 645		break;
 646	case BPF_ALU | BPF_XOR | BPF_X:
 647	case BPF_ALU64 | BPF_XOR | BPF_X:
 648                emit(hppa_xor(rd, rs, rd), ctx);
 649		if (!is64 && !aux->verifier_zext && rs != rd)
 650			emit_zext_32(rd, ctx);
 651		break;
 652	case BPF_ALU | BPF_MUL | BPF_K:
 653	case BPF_ALU64 | BPF_MUL | BPF_K:
 654		emit_imm(HPPA_REG_T1, is64 ? (s64)(s32)imm : (u32)imm, HPPA_REG_T2, ctx);
 655		rs = HPPA_REG_T1;
 656		fallthrough;
 657	case BPF_ALU | BPF_MUL | BPF_X:
 658	case BPF_ALU64 | BPF_MUL | BPF_X:
 659		emit_call_libgcc_ll(__muldi3, rd, rs, code, ctx);
 660		if (!is64 && !aux->verifier_zext)
 661			emit_zext_32(rd, ctx);
 662		break;
 663	case BPF_ALU | BPF_DIV | BPF_K:
 664	case BPF_ALU64 | BPF_DIV | BPF_K:
 665		emit_imm(HPPA_REG_T1, is64 ? (s64)(s32)imm : (u32)imm, HPPA_REG_T2, ctx);
 666		rs = HPPA_REG_T1;
 667		fallthrough;
 668	case BPF_ALU | BPF_DIV | BPF_X:
 669	case BPF_ALU64 | BPF_DIV | BPF_X:
 670		emit_call_libgcc_ll(&hppa_div64, rd, rs, code, ctx);
 671		if (!is64 && !aux->verifier_zext)
 672			emit_zext_32(rd, ctx);
 673		break;
 674	case BPF_ALU | BPF_MOD | BPF_K:
 675	case BPF_ALU64 | BPF_MOD | BPF_K:
 676		emit_imm(HPPA_REG_T1, is64 ? (s64)(s32)imm : (u32)imm, HPPA_REG_T2, ctx);
 677		rs = HPPA_REG_T1;
 678		fallthrough;
 679	case BPF_ALU | BPF_MOD | BPF_X:
 680	case BPF_ALU64 | BPF_MOD | BPF_X:
 681		emit_call_libgcc_ll(&hppa_div64_rem, rd, rs, code, ctx);
 682		if (!is64 && !aux->verifier_zext)
 683			emit_zext_32(rd, ctx);
 684		break;
 685
 686	case BPF_ALU | BPF_LSH | BPF_X:
 687	case BPF_ALU64 | BPF_LSH | BPF_X:
 688		emit_hppa64_sext32(rs, HPPA_REG_T0, ctx);
 689		emit(hppa64_mtsarcm(HPPA_REG_T0), ctx);
 690		if (is64)
 691			emit(hppa64_depdz_sar(rd, rd), ctx);
 692		else
 693			emit(hppa_depwz_sar(rd, rd), ctx);
 694		if (!is64 && !aux->verifier_zext)
 695			emit_zext_32(rd, ctx);
 696		break;
 697	case BPF_ALU | BPF_RSH | BPF_X:
 698	case BPF_ALU64 | BPF_RSH | BPF_X:
 699		emit(hppa_mtsar(rs), ctx);
 700		if (is64)
 701			emit(hppa64_shrpd_sar(rd, rd), ctx);
 702		else
 703			emit(hppa_shrpw_sar(rd, rd), ctx);
 704		if (!is64 && !aux->verifier_zext)
 705			emit_zext_32(rd, ctx);
 706		break;
 707	case BPF_ALU | BPF_ARSH | BPF_X:
 708	case BPF_ALU64 | BPF_ARSH | BPF_X:
 709		emit_hppa64_sext32(rs, HPPA_REG_T0, ctx);
 710                emit(hppa64_mtsarcm(HPPA_REG_T0), ctx);
 711		if (is64)
 712			emit(hppa_extrd_sar(rd, rd, 1), ctx);
 713		else
 714			emit(hppa_extrws_sar(rd, rd), ctx);
 715		if (!is64 && !aux->verifier_zext)
 716			emit_zext_32(rd, ctx);
 717		break;
 718
 719	/* dst = -dst */
 720	case BPF_ALU | BPF_NEG:
 721	case BPF_ALU64 | BPF_NEG:
 722		emit(hppa_sub(HPPA_REG_ZERO, rd, rd), ctx);
 723		if (!is64 && !aux->verifier_zext)
 724			emit_zext_32(rd, ctx);
 725		break;
 726
 727	/* dst = BSWAP##imm(dst) */
 728	case BPF_ALU | BPF_END | BPF_FROM_BE:
 729		switch (imm) {
 730		case 16:
 731			/* zero-extend 16 bits into 64 bits */
 732			emit_hppa64_depd(HPPA_REG_ZERO, 63-16, 64-16, rd, 1, ctx);
 733			break;
 734		case 32:
 735			if (!aux->verifier_zext)
 736				emit_zext_32(rd, ctx);
 737			break;
 738		case 64:
 739			/* Do nothing */
 740			break;
 741		}
 742		break;
 743
 744	case BPF_ALU | BPF_END | BPF_FROM_LE:
 745		switch (imm) {
 746		case 16:
 747			emit(hppa_extru(rd, 31 - 8, 8, HPPA_REG_T1), ctx);
 748			emit(hppa_depwz(rd, 23, 8, HPPA_REG_T1), ctx);
 749			emit(hppa_extru(HPPA_REG_T1, 31, 16, rd), ctx);
 750			emit_hppa64_extrd(HPPA_REG_T1, 63, 16, rd, 0, ctx);
 751			break;
 752		case 32:
 753			emit(hppa_shrpw(rd, rd, 16, HPPA_REG_T1), ctx);
 754			emit_hppa64_depd(HPPA_REG_T1, 63-16, 8, HPPA_REG_T1, 1, ctx);
 755			emit(hppa_shrpw(rd, HPPA_REG_T1, 8, HPPA_REG_T1), ctx);
 756			emit_hppa64_extrd(HPPA_REG_T1, 63, 32, rd, 0, ctx);
 757			break;
 758		case 64:
 759			emit(hppa64_permh_3210(rd, HPPA_REG_T1), ctx);
 760			emit(hppa64_hshl(HPPA_REG_T1, 8, HPPA_REG_T2), ctx);
 761			emit(hppa64_hshr_u(HPPA_REG_T1, 8, HPPA_REG_T1), ctx);
 762			emit(hppa_or(HPPA_REG_T2, HPPA_REG_T1, rd), ctx);
 763			break;
 764		default:
 765			pr_err("bpf-jit: BPF_END imm %d invalid\n", imm);
 766			return -1;
 767		}
 768		break;
 769
 770	/* dst = imm */
 771	case BPF_ALU | BPF_MOV | BPF_K:
 772	case BPF_ALU64 | BPF_MOV | BPF_K:
 773		emit_imm(rd, imm, HPPA_REG_T2, ctx);
 774		if (!is64 && !aux->verifier_zext)
 775			emit_zext_32(rd, ctx);
 776		break;
 777
 778	/* dst = dst OP imm */
 779	case BPF_ALU | BPF_ADD | BPF_K:
 780	case BPF_ALU64 | BPF_ADD | BPF_K:
 781		if (relative_bits_ok(imm, 14)) {
 782			emit(hppa_ldo(imm, rd, rd), ctx);
 783		} else {
 784			emit_imm(HPPA_REG_T1, imm, HPPA_REG_T2, ctx);
 785			emit(hppa_add(rd, HPPA_REG_T1, rd), ctx);
 786		}
 787		if (!is64 && !aux->verifier_zext)
 788			emit_zext_32(rd, ctx);
 789		break;
 790	case BPF_ALU | BPF_SUB | BPF_K:
 791	case BPF_ALU64 | BPF_SUB | BPF_K:
 792		if (relative_bits_ok(-imm, 14)) {
 793			emit(hppa_ldo(-imm, rd, rd), ctx);
 794		} else {
 795			emit_imm(HPPA_REG_T1, imm, HPPA_REG_T2, ctx);
 796			emit(hppa_sub(rd, HPPA_REG_T1, rd), ctx);
 797		}
 798		if (!is64 && !aux->verifier_zext)
 799			emit_zext_32(rd, ctx);
 800		break;
 801	case BPF_ALU | BPF_AND | BPF_K:
 802	case BPF_ALU64 | BPF_AND | BPF_K:
 803		emit_imm(HPPA_REG_T1, imm, HPPA_REG_T2, ctx);
 804                emit(hppa_and(rd, HPPA_REG_T1, rd), ctx);
 805		if (!is64 && !aux->verifier_zext)
 806			emit_zext_32(rd, ctx);
 807		break;
 808	case BPF_ALU | BPF_OR | BPF_K:
 809	case BPF_ALU64 | BPF_OR | BPF_K:
 810		emit_imm(HPPA_REG_T1, imm, HPPA_REG_T2, ctx);
 811                emit(hppa_or(rd, HPPA_REG_T1, rd), ctx);
 812		if (!is64 && !aux->verifier_zext)
 813			emit_zext_32(rd, ctx);
 814		break;
 815	case BPF_ALU | BPF_XOR | BPF_K:
 816	case BPF_ALU64 | BPF_XOR | BPF_K:
 817		emit_imm(HPPA_REG_T1, imm, HPPA_REG_T2, ctx);
 818                emit(hppa_xor(rd, HPPA_REG_T1, rd), ctx);
 819		if (!is64 && !aux->verifier_zext)
 820			emit_zext_32(rd, ctx);
 821		break;
 822	case BPF_ALU | BPF_LSH | BPF_K:
 823	case BPF_ALU64 | BPF_LSH | BPF_K:
 824		if (imm != 0) {
 825			emit_hppa64_shld(rd, imm, rd, ctx);
 826		}
 827
 828		if (!is64 && !aux->verifier_zext)
 829			emit_zext_32(rd, ctx);
 830		break;
 831	case BPF_ALU | BPF_RSH | BPF_K:
 832	case BPF_ALU64 | BPF_RSH | BPF_K:
 833		if (imm != 0) {
 834			if (is64)
 835				emit_hppa64_shrd(rd, imm, rd, false, ctx);
 836			else
 837				emit_hppa64_shrw(rd, imm, rd, false, ctx);
 838		}
 839
 840		if (!is64 && !aux->verifier_zext)
 841			emit_zext_32(rd, ctx);
 842		break;
 843	case BPF_ALU | BPF_ARSH | BPF_K:
 844	case BPF_ALU64 | BPF_ARSH | BPF_K:
 845		if (imm != 0) {
 846			if (is64)
 847				emit_hppa64_shrd(rd, imm, rd, true, ctx);
 848			else
 849				emit_hppa64_shrw(rd, imm, rd, true, ctx);
 850		}
 851
 852		if (!is64 && !aux->verifier_zext)
 853			emit_zext_32(rd, ctx);
 854		break;
 855
 856	/* JUMP off */
 857	case BPF_JMP | BPF_JA:
 858		paoff = hppa_offset(i, off, ctx);
 859		ret = emit_jump(paoff, false, ctx);
 860		if (ret)
 861			return ret;
 862		break;
 863
 864	/* IF (dst COND src) JUMP off */
 865	case BPF_JMP | BPF_JEQ | BPF_X:
 866	case BPF_JMP32 | BPF_JEQ | BPF_X:
 867	case BPF_JMP | BPF_JGT | BPF_X:
 868	case BPF_JMP32 | BPF_JGT | BPF_X:
 869	case BPF_JMP | BPF_JLT | BPF_X:
 870	case BPF_JMP32 | BPF_JLT | BPF_X:
 871	case BPF_JMP | BPF_JGE | BPF_X:
 872	case BPF_JMP32 | BPF_JGE | BPF_X:
 873	case BPF_JMP | BPF_JLE | BPF_X:
 874	case BPF_JMP32 | BPF_JLE | BPF_X:
 875	case BPF_JMP | BPF_JNE | BPF_X:
 876	case BPF_JMP32 | BPF_JNE | BPF_X:
 877	case BPF_JMP | BPF_JSGT | BPF_X:
 878	case BPF_JMP32 | BPF_JSGT | BPF_X:
 879	case BPF_JMP | BPF_JSLT | BPF_X:
 880	case BPF_JMP32 | BPF_JSLT | BPF_X:
 881	case BPF_JMP | BPF_JSGE | BPF_X:
 882	case BPF_JMP32 | BPF_JSGE | BPF_X:
 883	case BPF_JMP | BPF_JSLE | BPF_X:
 884	case BPF_JMP32 | BPF_JSLE | BPF_X:
 885	case BPF_JMP | BPF_JSET | BPF_X:
 886	case BPF_JMP32 | BPF_JSET | BPF_X:
 887		paoff = hppa_offset(i, off, ctx);
 888		if (!is64) {
 889			s = ctx->ninsns;
 890			if (is_signed_bpf_cond(BPF_OP(code)))
 891				emit_sext_32_rd_rs(&rd, &rs, ctx);
 892			else
 893				emit_zext_32_rd_rs(&rd, &rs, ctx);
 894			e = ctx->ninsns;
 895
 896			/* Adjust for extra insns */
 897			paoff -= (e - s);
 898		}
 899		if (BPF_OP(code) == BPF_JSET) {
 900			/* Adjust for and */
 901			paoff -= 1;
 902			emit(hppa_and(rs, rd, HPPA_REG_T1), ctx);
 903			emit_branch(BPF_JNE, HPPA_REG_T1, HPPA_REG_ZERO, paoff,
 904				    ctx);
 905		} else {
 906			emit_branch(BPF_OP(code), rd, rs, paoff, ctx);
 907		}
 908		break;
 909
 910	/* IF (dst COND imm) JUMP off */
 911	case BPF_JMP | BPF_JEQ | BPF_K:
 912	case BPF_JMP32 | BPF_JEQ | BPF_K:
 913	case BPF_JMP | BPF_JGT | BPF_K:
 914	case BPF_JMP32 | BPF_JGT | BPF_K:
 915	case BPF_JMP | BPF_JLT | BPF_K:
 916	case BPF_JMP32 | BPF_JLT | BPF_K:
 917	case BPF_JMP | BPF_JGE | BPF_K:
 918	case BPF_JMP32 | BPF_JGE | BPF_K:
 919	case BPF_JMP | BPF_JLE | BPF_K:
 920	case BPF_JMP32 | BPF_JLE | BPF_K:
 921	case BPF_JMP | BPF_JNE | BPF_K:
 922	case BPF_JMP32 | BPF_JNE | BPF_K:
 923	case BPF_JMP | BPF_JSGT | BPF_K:
 924	case BPF_JMP32 | BPF_JSGT | BPF_K:
 925	case BPF_JMP | BPF_JSLT | BPF_K:
 926	case BPF_JMP32 | BPF_JSLT | BPF_K:
 927	case BPF_JMP | BPF_JSGE | BPF_K:
 928	case BPF_JMP32 | BPF_JSGE | BPF_K:
 929	case BPF_JMP | BPF_JSLE | BPF_K:
 930	case BPF_JMP32 | BPF_JSLE | BPF_K:
 931		paoff = hppa_offset(i, off, ctx);
 932		s = ctx->ninsns;
 933		if (imm) {
 934			emit_imm(HPPA_REG_T1, imm, HPPA_REG_T2, ctx);
 935			rs = HPPA_REG_T1;
 936		} else {
 937			rs = HPPA_REG_ZERO;
 938		}
 939		if (!is64) {
 940			if (is_signed_bpf_cond(BPF_OP(code)))
 941				emit_sext_32_rd(&rd, ctx);
 942			else
 943				emit_zext_32_rd_t1(&rd, ctx);
 944		}
 945		e = ctx->ninsns;
 946
 947		/* Adjust for extra insns */
 948		paoff -= (e - s);
 949		emit_branch(BPF_OP(code), rd, rs, paoff, ctx);
 950		break;
 951	case BPF_JMP | BPF_JSET | BPF_K:
 952	case BPF_JMP32 | BPF_JSET | BPF_K:
 953		paoff = hppa_offset(i, off, ctx);
 954		s = ctx->ninsns;
 955		emit_imm(HPPA_REG_T1, imm, HPPA_REG_T2, ctx);
 956		emit(hppa_and(HPPA_REG_T1, rd, HPPA_REG_T1), ctx);
 957		/* For jset32, we should clear the upper 32 bits of t1, but
 958		 * sign-extension is sufficient here and saves one instruction,
 959		 * as t1 is used only in comparison against zero.
 960		 */
 961		if (!is64 && imm < 0)
 962			emit_hppa64_sext32(HPPA_REG_T1, HPPA_REG_T1, ctx);
 963		e = ctx->ninsns;
 964		paoff -= (e - s);
 965		emit_branch(BPF_JNE, HPPA_REG_T1, HPPA_REG_ZERO, paoff, ctx);
 966		break;
 967	/* function call */
 968	case BPF_JMP | BPF_CALL:
 969	{
 970		bool fixed_addr;
 971		u64 addr;
 972
 973		ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass,
 974					    &addr, &fixed_addr);
 975		if (ret < 0)
 976			return ret;
 977
 978		REG_SET_SEEN_ALL(ctx);
 979		emit_call(addr, fixed_addr, ctx);
 980		break;
 981	}
 982	/* tail call */
 983	case BPF_JMP | BPF_TAIL_CALL:
 984		emit_bpf_tail_call(i, ctx);
 985		break;
 986
 987	/* function return */
 988	case BPF_JMP | BPF_EXIT:
 989		if (i == ctx->prog->len - 1)
 990			break;
 991
 992		paoff = epilogue_offset(ctx);
 993		ret = emit_jump(paoff, false, ctx);
 994		if (ret)
 995			return ret;
 996		break;
 997
 998	/* dst = imm64 */
 999	case BPF_LD | BPF_IMM | BPF_DW:
1000	{
1001		struct bpf_insn insn1 = insn[1];
1002		u64 imm64 = (u64)insn1.imm << 32 | (u32)imm;
1003		if (bpf_pseudo_func(insn))
1004			imm64 = (uintptr_t)dereference_function_descriptor((void*)imm64);
1005		emit_imm(rd, imm64, HPPA_REG_T2, ctx);
1006
1007		return 1;
1008	}
1009
1010	/* LDX: dst = *(size *)(src + off) */
1011	case BPF_LDX | BPF_MEM | BPF_B:
1012	case BPF_LDX | BPF_MEM | BPF_H:
1013	case BPF_LDX | BPF_MEM | BPF_W:
1014	case BPF_LDX | BPF_MEM | BPF_DW:
1015	case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1016	case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1017	case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1018	case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1019	{
1020		u8 srcreg;
1021
1022		/* need to calculate address since offset does not fit in 14 bits? */
1023		if (relative_bits_ok(off, 14))
1024			srcreg = rs;
1025		else {
1026			/* need to use R1 here, since addil puts result into R1 */
1027			srcreg = HPPA_REG_R1;
1028			BUG_ON(rs == HPPA_REG_R1);
1029			BUG_ON(rd == HPPA_REG_R1);
1030			emit(hppa_addil(off, rs), ctx);
1031			off = im11(off);
1032		}
1033
1034		switch (BPF_SIZE(code)) {
1035		case BPF_B:
1036			emit(hppa_ldb(off, srcreg, rd), ctx);
1037			if (insn_is_zext(&insn[1]))
1038				return 1;
1039			break;
1040		case BPF_H:
1041			emit(hppa_ldh(off, srcreg, rd), ctx);
1042			if (insn_is_zext(&insn[1]))
1043				return 1;
1044			break;
1045		case BPF_W:
1046			emit(hppa_ldw(off, srcreg, rd), ctx);
1047			if (insn_is_zext(&insn[1]))
1048				return 1;
1049			break;
1050		case BPF_DW:
1051			if (off & 7) {
1052				emit(hppa_ldo(off, srcreg, HPPA_REG_R1), ctx);
1053				emit(hppa64_ldd_reg(HPPA_REG_ZERO, HPPA_REG_R1, rd), ctx);
1054			} else if (off >= -16 && off <= 15)
1055				emit(hppa64_ldd_im5(off, srcreg, rd), ctx);
1056			else
1057				emit(hppa64_ldd_im16(off, srcreg, rd), ctx);
1058			break;
1059		}
1060		break;
1061	}
1062	/* speculation barrier */
1063	case BPF_ST | BPF_NOSPEC:
1064		break;
1065
1066	/* ST: *(size *)(dst + off) = imm */
1067	/* STX: *(size *)(dst + off) = src */
1068	case BPF_ST | BPF_MEM | BPF_B:
1069	case BPF_ST | BPF_MEM | BPF_H:
1070	case BPF_ST | BPF_MEM | BPF_W:
1071	case BPF_ST | BPF_MEM | BPF_DW:
1072
1073	case BPF_STX | BPF_MEM | BPF_B:
1074	case BPF_STX | BPF_MEM | BPF_H:
1075	case BPF_STX | BPF_MEM | BPF_W:
1076	case BPF_STX | BPF_MEM | BPF_DW:
1077		if (BPF_CLASS(code) == BPF_ST) {
1078			emit_imm(HPPA_REG_T2, imm, HPPA_REG_T1, ctx);
1079			rs = HPPA_REG_T2;
1080		}
1081
1082		emit_store(rd, rs, off, ctx, BPF_SIZE(code), BPF_MODE(code));
1083		break;
1084
1085	case BPF_STX | BPF_ATOMIC | BPF_W:
1086	case BPF_STX | BPF_ATOMIC | BPF_DW:
1087		pr_info_once(
1088			"bpf-jit: not supported: atomic operation %02x ***\n",
1089			insn->imm);
1090		return -EFAULT;
1091
1092	default:
1093		pr_err("bpf-jit: unknown opcode %02x\n", code);
1094		return -EINVAL;
1095	}
1096
1097	return 0;
1098}
1099
1100void bpf_jit_build_prologue(struct hppa_jit_context *ctx)
1101{
1102	int bpf_stack_adjust, stack_adjust, i;
1103	unsigned long addr;
1104	s8 reg;
1105
1106	/*
1107	 * stack on hppa grows up, so if tail calls are used we need to
1108	 * allocate the maximum stack size
1109	 */
1110	if (REG_ALL_SEEN(ctx))
1111		bpf_stack_adjust = MAX_BPF_STACK;
1112	else
1113		bpf_stack_adjust = ctx->prog->aux->stack_depth;
1114	bpf_stack_adjust = round_up(bpf_stack_adjust, STACK_ALIGN);
1115
1116	stack_adjust = FRAME_SIZE + bpf_stack_adjust;
1117	stack_adjust = round_up(stack_adjust, STACK_ALIGN);
1118
1119	/*
1120	 * NOTE: We construct an Elf64_Fdesc descriptor here.
1121	 * The first 4 words initialize the TCC and compares them.
1122	 * Then follows the virtual address of the eBPF function,
1123	 * and the gp for this function.
1124	 *
1125	 * The first instruction sets the tail-call-counter (TCC) register.
1126	 * This instruction is skipped by tail calls.
1127	 * Use a temporary register instead of a caller-saved register initially.
1128	 */
1129	REG_FORCE_SEEN(ctx, HPPA_REG_TCC_IN_INIT);
1130	emit(hppa_ldi(MAX_TAIL_CALL_CNT, HPPA_REG_TCC_IN_INIT), ctx);
1131
1132	/*
1133	 * Skip all initializations when called as BPF TAIL call.
1134	 */
1135	emit(hppa_ldi(MAX_TAIL_CALL_CNT, HPPA_REG_R1), ctx);
1136	emit(hppa_beq(HPPA_REG_TCC_IN_INIT, HPPA_REG_R1, 6 - HPPA_BRANCH_DISPLACEMENT), ctx);
1137	emit(hppa64_bl_long(ctx->prologue_len - 3 - HPPA_BRANCH_DISPLACEMENT), ctx);
1138
1139	/* store entry address of this eBPF function */
1140	addr = (uintptr_t) &ctx->insns[0];
1141	emit(addr >> 32, ctx);
1142	emit(addr & 0xffffffff, ctx);
1143
1144	/* store gp of this eBPF function */
1145	asm("copy %%r27,%0" : "=r" (addr) );
1146	emit(addr >> 32, ctx);
1147	emit(addr & 0xffffffff, ctx);
1148
1149	/* Set up hppa stack frame. */
1150	emit_hppa_copy(HPPA_REG_SP, HPPA_REG_R1, ctx);
1151	emit(hppa_ldo(stack_adjust, HPPA_REG_SP, HPPA_REG_SP), ctx);
1152	emit(hppa64_std_im5 (HPPA_REG_R1, -REG_SIZE, HPPA_REG_SP), ctx);
1153	emit(hppa64_std_im16(HPPA_REG_RP, -2*REG_SIZE, HPPA_REG_SP), ctx);
1154
1155	/* Save callee-save registers. */
1156	for (i = 3; i <= 15; i++) {
1157		if (OPTIMIZE_HPPA && !REG_WAS_SEEN(ctx, HPPA_R(i)))
1158			continue;
1159		emit(hppa64_std_im16(HPPA_R(i), -REG_SIZE * i, HPPA_REG_SP), ctx);
1160	}
1161
1162	/* load function parameters; load all if we use tail functions */
1163	#define LOAD_PARAM(arg, dst) \
1164		if (REG_WAS_SEEN(ctx, regmap[dst]) ||	\
1165		    REG_WAS_SEEN(ctx, HPPA_REG_TCC))	\
1166			emit_hppa_copy(arg, regmap[dst], ctx)
1167	LOAD_PARAM(HPPA_REG_ARG0, BPF_REG_1);
1168	LOAD_PARAM(HPPA_REG_ARG1, BPF_REG_2);
1169	LOAD_PARAM(HPPA_REG_ARG2, BPF_REG_3);
1170	LOAD_PARAM(HPPA_REG_ARG3, BPF_REG_4);
1171	LOAD_PARAM(HPPA_REG_ARG4, BPF_REG_5);
1172	#undef LOAD_PARAM
1173
1174	REG_FORCE_SEEN(ctx, HPPA_REG_T0);
1175	REG_FORCE_SEEN(ctx, HPPA_REG_T1);
1176	REG_FORCE_SEEN(ctx, HPPA_REG_T2);
1177
1178	/*
1179	 * Now really set the tail call counter (TCC) register.
1180	 */
1181	if (REG_WAS_SEEN(ctx, HPPA_REG_TCC))
1182		emit(hppa_ldi(MAX_TAIL_CALL_CNT, HPPA_REG_TCC), ctx);
1183
1184	/*
1185	 * Save epilogue function pointer for outer TCC call chain.
1186	 * The main TCC call stores the final RP on stack.
1187	 */
1188	addr = (uintptr_t) &ctx->insns[ctx->epilogue_offset];
1189	/* skip first two instructions which jump to exit */
1190	addr += 2 * HPPA_INSN_SIZE;
1191	emit_imm(HPPA_REG_T2, addr, HPPA_REG_T1, ctx);
1192	emit(EXIT_PTR_STORE(HPPA_REG_T2), ctx);
1193
1194	/* Set up BPF frame pointer. */
1195	reg = regmap[BPF_REG_FP];	/* -> HPPA_REG_FP */
1196	if (REG_WAS_SEEN(ctx, reg)) {
1197		emit(hppa_ldo(-FRAME_SIZE, HPPA_REG_SP, reg), ctx);
1198	}
1199}
1200
1201void bpf_jit_build_epilogue(struct hppa_jit_context *ctx)
1202{
1203	__build_epilogue(false, ctx);
1204}
1205
1206bool bpf_jit_supports_kfunc_call(void)
1207{
1208	return true;
1209}