Linux Audio

Check our new training course

Loading...
v6.13.7
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 *
  7 * Copyright (C) 1995, 1996, 1997, 1998 by Ralf Baechle
  8 * Copyright 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org)
  9 * Copyright 1999 Hewlett Packard Co.
 10 *
 11 */
 12
 13#include <linux/mm.h>
 14#include <linux/ptrace.h>
 15#include <linux/sched.h>
 16#include <linux/sched/debug.h>
 17#include <linux/interrupt.h>
 18#include <linux/extable.h>
 19#include <linux/uaccess.h>
 20#include <linux/hugetlb.h>
 21#include <linux/perf_event.h>
 22
 23#include <asm/traps.h>
 24
 25#define DEBUG_NATLB 0
 26
 27/* Various important other fields */
 28#define bit22set(x)		(x & 0x00000200)
 29#define bits23_25set(x)		(x & 0x000001c0)
 30#define isGraphicsFlushRead(x)	((x & 0xfc003fdf) == 0x04001a80)
 31				/* extended opcode is 0x6a */
 32
 33#define BITSSET		0x1c0	/* for identifying LDCW */
 34
 35
 36int show_unhandled_signals = 1;
 37
 38/*
 39 * parisc_acctyp(unsigned int inst) --
 40 *    Given a PA-RISC memory access instruction, determine if the
 41 *    instruction would perform a memory read or memory write
 42 *    operation.
 43 *
 44 *    This function assumes that the given instruction is a memory access
 45 *    instruction (i.e. you should really only call it if you know that
 46 *    the instruction has generated some sort of a memory access fault).
 47 *
 48 * Returns:
 49 *   VM_READ  if read operation
 50 *   VM_WRITE if write operation
 51 *   VM_EXEC  if execute operation
 52 */
 53unsigned long
 54parisc_acctyp(unsigned long code, unsigned int inst)
 55{
 56	if (code == 6 || code == 16)
 57	    return VM_EXEC;
 58
 59	switch (inst & 0xf0000000) {
 60	case 0x40000000: /* load */
 61	case 0x50000000: /* new load */
 62		return VM_READ;
 63
 64	case 0x60000000: /* store */
 65	case 0x70000000: /* new store */
 66		return VM_WRITE;
 67
 68	case 0x20000000: /* coproc */
 69	case 0x30000000: /* coproc2 */
 70		if (bit22set(inst))
 71			return VM_WRITE;
 72		fallthrough;
 73
 74	case 0x0: /* indexed/memory management */
 75		if (bit22set(inst)) {
 76			/*
 77			 * Check for the 'Graphics Flush Read' instruction.
 78			 * It resembles an FDC instruction, except for bits
 79			 * 20 and 21. Any combination other than zero will
 80			 * utilize the block mover functionality on some
 81			 * older PA-RISC platforms.  The case where a block
 82			 * move is performed from VM to graphics IO space
 83			 * should be treated as a READ.
 84			 *
 85			 * The significance of bits 20,21 in the FDC
 86			 * instruction is:
 87			 *
 88			 *   00  Flush data cache (normal instruction behavior)
 89			 *   01  Graphics flush write  (IO space -> VM)
 90			 *   10  Graphics flush read   (VM -> IO space)
 91			 *   11  Graphics flush read/write (VM <-> IO space)
 92			 */
 93			if (isGraphicsFlushRead(inst))
 94				return VM_READ;
 95			return VM_WRITE;
 96		} else {
 97			/*
 98			 * Check for LDCWX and LDCWS (semaphore instructions).
 99			 * If bits 23 through 25 are all 1's it is one of
100			 * the above two instructions and is a write.
101			 *
102			 * Note: With the limited bits we are looking at,
103			 * this will also catch PROBEW and PROBEWI. However,
104			 * these should never get in here because they don't
105			 * generate exceptions of the type:
106			 *   Data TLB miss fault/data page fault
107			 *   Data memory protection trap
108			 */
109			if (bits23_25set(inst) == BITSSET)
110				return VM_WRITE;
111		}
112		return VM_READ; /* Default */
113	}
114	return VM_READ; /* Default */
115}
116
117#undef bit22set
118#undef bits23_25set
119#undef isGraphicsFlushRead
120#undef BITSSET
121
122
123#if 0
124/* This is the treewalk to find a vma which is the highest that has
125 * a start < addr.  We're using find_vma_prev instead right now, but
126 * we might want to use this at some point in the future.  Probably
127 * not, but I want it committed to CVS so I don't lose it :-)
128 */
129			while (tree != vm_avl_empty) {
130				if (tree->vm_start > addr) {
131					tree = tree->vm_avl_left;
132				} else {
133					prev = tree;
134					if (prev->vm_next == NULL)
135						break;
136					if (prev->vm_next->vm_start > addr)
137						break;
138					tree = tree->vm_avl_right;
139				}
140			}
141#endif
142
143int fixup_exception(struct pt_regs *regs)
144{
145	const struct exception_table_entry *fix;
146
147	fix = search_exception_tables(regs->iaoq[0]);
148	if (fix) {
149		/*
150		 * Fix up get_user() and put_user().
151		 * ASM_EXCEPTIONTABLE_ENTRY_EFAULT() sets the least-significant
152		 * bit in the relative address of the fixup routine to indicate
153		 * that the register encoded in the "or %r0,%r0,register"
154		 * opcode should be loaded with -EFAULT to report a userspace
155		 * access error.
156		 */
157		if (fix->fixup & 1) {
158			int fault_error_reg = fix->err_opcode & 0x1f;
159			if (!WARN_ON(!fault_error_reg))
160				regs->gr[fault_error_reg] = -EFAULT;
161			pr_debug("Unalignment fixup of register %d at %pS\n",
162				fault_error_reg, (void*)regs->iaoq[0]);
163
164			/* zero target register for get_user() */
165			if (parisc_acctyp(0, regs->iir) == VM_READ) {
166				int treg = regs->iir & 0x1f;
167				BUG_ON(treg == 0);
168				regs->gr[treg] = 0;
169			}
170		}
171
172		regs->iaoq[0] = (unsigned long)&fix->fixup + fix->fixup;
173		regs->iaoq[0] &= ~3;
174		/*
175		 * NOTE: In some cases the faulting instruction
176		 * may be in the delay slot of a branch. We
177		 * don't want to take the branch, so we don't
178		 * increment iaoq[1], instead we set it to be
179		 * iaoq[0]+4, and clear the B bit in the PSW
180		 */
181		regs->iaoq[1] = regs->iaoq[0] + 4;
182		regs->gr[0] &= ~PSW_B; /* IPSW in gr[0] */
183
184		return 1;
185	}
186
187	return 0;
188}
189
190/*
191 * parisc hardware trap list
192 *
193 * Documented in section 3 "Addressing and Access Control" of the
194 * "PA-RISC 1.1 Architecture and Instruction Set Reference Manual"
195 * https://parisc.wiki.kernel.org/index.php/File:Pa11_acd.pdf
196 *
197 * For implementation see handle_interruption() in traps.c
198 */
199static const char * const trap_description[] = {
200	[1] =	"High-priority machine check (HPMC)",
201	[2] =	"Power failure interrupt",
202	[3] =	"Recovery counter trap",
203	[5] =	"Low-priority machine check",
204	[6] =	"Instruction TLB miss fault",
205	[7] =	"Instruction access rights / protection trap",
206	[8] =	"Illegal instruction trap",
207	[9] =	"Break instruction trap",
208	[10] =	"Privileged operation trap",
209	[11] =	"Privileged register trap",
210	[12] =	"Overflow trap",
211	[13] =	"Conditional trap",
212	[14] =	"FP Assist Exception trap",
213	[15] =	"Data TLB miss fault",
214	[16] =	"Non-access ITLB miss fault",
215	[17] =	"Non-access DTLB miss fault",
216	[18] =	"Data memory protection/unaligned access trap",
217	[19] =	"Data memory break trap",
218	[20] =	"TLB dirty bit trap",
219	[21] =	"Page reference trap",
220	[22] =	"Assist emulation trap",
221	[25] =	"Taken branch trap",
222	[26] =	"Data memory access rights trap",
223	[27] =	"Data memory protection ID trap",
224	[28] =	"Unaligned data reference trap",
225};
226
227const char *trap_name(unsigned long code)
228{
229	const char *t = NULL;
230
231	if (code < ARRAY_SIZE(trap_description))
232		t = trap_description[code];
233
234	return t ? t : "Unknown trap";
235}
236
237/*
238 * Print out info about fatal segfaults, if the show_unhandled_signals
239 * sysctl is set:
240 */
241static inline void
242show_signal_msg(struct pt_regs *regs, unsigned long code,
243		unsigned long address, struct task_struct *tsk,
244		struct vm_area_struct *vma)
245{
246	if (!unhandled_signal(tsk, SIGSEGV))
247		return;
248
249	if (!printk_ratelimit())
250		return;
251
252	pr_warn("\n");
253	pr_warn("do_page_fault() command='%s' type=%lu address=0x%08lx",
254	    tsk->comm, code, address);
255	print_vma_addr(KERN_CONT " in ", regs->iaoq[0]);
256
257	pr_cont("\ntrap #%lu: %s%c", code, trap_name(code),
258		vma ? ',':'\n');
259
260	if (vma)
261		pr_cont(" vm_start = 0x%08lx, vm_end = 0x%08lx\n",
262			vma->vm_start, vma->vm_end);
263
264	show_regs(regs);
265}
266
267void do_page_fault(struct pt_regs *regs, unsigned long code,
268			      unsigned long address)
269{
270	struct vm_area_struct *vma, *prev_vma;
271	struct task_struct *tsk;
272	struct mm_struct *mm;
273	unsigned long acc_type;
274	vm_fault_t fault = 0;
275	unsigned int flags;
276	char *msg;
 
 
277
278	tsk = current;
279	mm = tsk->mm;
280	if (!mm) {
281		msg = "Page fault: no context";
282		goto no_context;
283	}
284
285	flags = FAULT_FLAG_DEFAULT;
286	if (user_mode(regs))
287		flags |= FAULT_FLAG_USER;
288
289	acc_type = parisc_acctyp(code, regs->iir);
290	if (acc_type & VM_WRITE)
291		flags |= FAULT_FLAG_WRITE;
292	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
293retry:
294	mmap_read_lock(mm);
295	vma = find_vma_prev(mm, address, &prev_vma);
296	if (!vma || address < vma->vm_start) {
297		if (!prev_vma || !(prev_vma->vm_flags & VM_GROWSUP))
298			goto bad_area;
299		vma = expand_stack(mm, address);
300		if (!vma)
301			goto bad_area_nosemaphore;
302	}
303
304/*
305 * Ok, we have a good vm_area for this memory access. We still need to
306 * check the access permissions.
307 */
308
 
 
309	if ((vma->vm_flags & acc_type) != acc_type)
310		goto bad_area;
311
312	/*
313	 * If for any reason at all we couldn't handle the fault, make
314	 * sure we exit gracefully rather than endlessly redo the
315	 * fault.
316	 */
317
318	fault = handle_mm_fault(vma, address, flags, regs);
319
320	if (fault_signal_pending(fault, regs)) {
321		if (!user_mode(regs)) {
322			msg = "Page fault: fault signal on kernel memory";
323			goto no_context;
324		}
325		return;
326	}
327
328	/* The fault is fully completed (including releasing mmap lock) */
329	if (fault & VM_FAULT_COMPLETED)
330		return;
331
332	if (unlikely(fault & VM_FAULT_ERROR)) {
333		/*
334		 * We hit a shared mapping outside of the file, or some
335		 * other thing happened to us that made us unable to
336		 * handle the page fault gracefully.
337		 */
338		if (fault & VM_FAULT_OOM)
339			goto out_of_memory;
340		else if (fault & VM_FAULT_SIGSEGV)
341			goto bad_area;
342		else if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
343				  VM_FAULT_HWPOISON_LARGE))
344			goto bad_area;
345		BUG();
346	}
347	if (fault & VM_FAULT_RETRY) {
348		/*
349		 * No need to mmap_read_unlock(mm) as we would
350		 * have already released it in __lock_page_or_retry
351		 * in mm/filemap.c.
352		 */
353		flags |= FAULT_FLAG_TRIED;
354		goto retry;
 
 
 
 
 
 
 
 
355	}
356	mmap_read_unlock(mm);
357	return;
358
 
 
 
 
 
359/*
360 * Something tried to access memory that isn't in our memory map..
361 */
362bad_area:
363	mmap_read_unlock(mm);
364
365bad_area_nosemaphore:
366	if (user_mode(regs)) {
367		int signo, si_code;
 
368
369		switch (code) {
370		case 15:	/* Data TLB miss fault/Data page fault */
371			/* send SIGSEGV when outside of vma */
372			if (!vma ||
373			    address < vma->vm_start || address >= vma->vm_end) {
374				signo = SIGSEGV;
375				si_code = SEGV_MAPERR;
376				break;
377			}
378
379			/* send SIGSEGV for wrong permissions */
380			if ((vma->vm_flags & acc_type) != acc_type) {
381				signo = SIGSEGV;
382				si_code = SEGV_ACCERR;
383				break;
384			}
385
386			/* probably address is outside of mapped file */
387			fallthrough;
388		case 17:	/* NA data TLB miss / page fault */
389		case 18:	/* Unaligned access - PCXS only */
390			signo = SIGBUS;
391			si_code = (code == 18) ? BUS_ADRALN : BUS_ADRERR;
392			break;
393		case 16:	/* Non-access instruction TLB miss fault */
394		case 26:	/* PCXL: Data memory access rights trap */
395		default:
396			signo = SIGSEGV;
397			si_code = (code == 26) ? SEGV_ACCERR : SEGV_MAPERR;
398			break;
399		}
 
400#ifdef CONFIG_MEMORY_FAILURE
401		if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
402			unsigned int lsb = 0;
403			printk(KERN_ERR
404	"MCE: Killing %s:%d due to hardware memory corruption fault at %08lx\n",
405			tsk->comm, tsk->pid, address);
406			/*
407			 * Either small page or large page may be poisoned.
408			 * In other words, VM_FAULT_HWPOISON_LARGE and
409			 * VM_FAULT_HWPOISON are mutually exclusive.
410			 */
411			if (fault & VM_FAULT_HWPOISON_LARGE)
412				lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
413			else if (fault & VM_FAULT_HWPOISON)
414				lsb = PAGE_SHIFT;
415
416			force_sig_mceerr(BUS_MCEERR_AR, (void __user *) address,
417					 lsb);
418			return;
419		}
420#endif
421		show_signal_msg(regs, code, address, tsk, vma);
422
423		force_sig_fault(signo, si_code, (void __user *) address);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
424		return;
425	}
426	msg = "Page fault: bad address";
427
428no_context:
429
430	if (!user_mode(regs) && fixup_exception(regs)) {
431		return;
432	}
433
434	parisc_terminate(msg, regs, code, address);
435
436out_of_memory:
437	mmap_read_unlock(mm);
438	if (!user_mode(regs)) {
439		msg = "Page fault: out of memory";
440		goto no_context;
441	}
442	pagefault_out_of_memory();
443}
444
445/* Handle non-access data TLB miss faults.
446 *
447 * For probe instructions, accesses to userspace are considered allowed
448 * if they lie in a valid VMA and the access type matches. We are not
449 * allowed to handle MM faults here so there may be situations where an
450 * actual access would fail even though a probe was successful.
451 */
452int
453handle_nadtlb_fault(struct pt_regs *regs)
454{
455	unsigned long insn = regs->iir;
456	int breg, treg, xreg, val = 0;
457	struct vm_area_struct *vma;
458	struct task_struct *tsk;
459	struct mm_struct *mm;
460	unsigned long address;
461	unsigned long acc_type;
462
463	switch (insn & 0x380) {
464	case 0x280:
465		/* FDC instruction */
466		fallthrough;
467	case 0x380:
468		/* PDC and FIC instructions */
469		if (DEBUG_NATLB && printk_ratelimit()) {
470			pr_warn("WARNING: nullifying cache flush/purge instruction\n");
471			show_regs(regs);
472		}
473		if (insn & 0x20) {
474			/* Base modification */
475			breg = (insn >> 21) & 0x1f;
476			xreg = (insn >> 16) & 0x1f;
477			if (breg && xreg)
478				regs->gr[breg] += regs->gr[xreg];
479		}
480		regs->gr[0] |= PSW_N;
481		return 1;
482
483	case 0x180:
484		/* PROBE instruction */
485		treg = insn & 0x1f;
486		if (regs->isr) {
487			tsk = current;
488			mm = tsk->mm;
489			if (mm) {
490				/* Search for VMA */
491				address = regs->ior;
492				mmap_read_lock(mm);
493				vma = vma_lookup(mm, address);
494				mmap_read_unlock(mm);
495
496				/*
497				 * Check if access to the VMA is okay.
498				 * We don't allow for stack expansion.
499				 */
500				acc_type = (insn & 0x40) ? VM_WRITE : VM_READ;
501				if (vma
502				    && (vma->vm_flags & acc_type) == acc_type)
503					val = 1;
504			}
505		}
506		if (treg)
507			regs->gr[treg] = val;
508		regs->gr[0] |= PSW_N;
509		return 1;
510
511	case 0x300:
512		/* LPA instruction */
513		if (insn & 0x20) {
514			/* Base modification */
515			breg = (insn >> 21) & 0x1f;
516			xreg = (insn >> 16) & 0x1f;
517			if (breg && xreg)
518				regs->gr[breg] += regs->gr[xreg];
519		}
520		treg = insn & 0x1f;
521		if (treg)
522			regs->gr[treg] = 0;
523		regs->gr[0] |= PSW_N;
524		return 1;
525
526	default:
527		break;
528	}
529
530	return 0;
531}
v4.17
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 *
  7 * Copyright (C) 1995, 1996, 1997, 1998 by Ralf Baechle
  8 * Copyright 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org)
  9 * Copyright 1999 Hewlett Packard Co.
 10 *
 11 */
 12
 13#include <linux/mm.h>
 14#include <linux/ptrace.h>
 15#include <linux/sched.h>
 16#include <linux/sched/debug.h>
 17#include <linux/interrupt.h>
 18#include <linux/extable.h>
 19#include <linux/uaccess.h>
 20#include <linux/hugetlb.h>
 
 21
 22#include <asm/traps.h>
 23
 
 
 24/* Various important other fields */
 25#define bit22set(x)		(x & 0x00000200)
 26#define bits23_25set(x)		(x & 0x000001c0)
 27#define isGraphicsFlushRead(x)	((x & 0xfc003fdf) == 0x04001a80)
 28				/* extended opcode is 0x6a */
 29
 30#define BITSSET		0x1c0	/* for identifying LDCW */
 31
 32
 33int show_unhandled_signals = 1;
 34
 35/*
 36 * parisc_acctyp(unsigned int inst) --
 37 *    Given a PA-RISC memory access instruction, determine if the
 38 *    the instruction would perform a memory read or memory write
 39 *    operation.
 40 *
 41 *    This function assumes that the given instruction is a memory access
 42 *    instruction (i.e. you should really only call it if you know that
 43 *    the instruction has generated some sort of a memory access fault).
 44 *
 45 * Returns:
 46 *   VM_READ  if read operation
 47 *   VM_WRITE if write operation
 48 *   VM_EXEC  if execute operation
 49 */
 50static unsigned long
 51parisc_acctyp(unsigned long code, unsigned int inst)
 52{
 53	if (code == 6 || code == 16)
 54	    return VM_EXEC;
 55
 56	switch (inst & 0xf0000000) {
 57	case 0x40000000: /* load */
 58	case 0x50000000: /* new load */
 59		return VM_READ;
 60
 61	case 0x60000000: /* store */
 62	case 0x70000000: /* new store */
 63		return VM_WRITE;
 64
 65	case 0x20000000: /* coproc */
 66	case 0x30000000: /* coproc2 */
 67		if (bit22set(inst))
 68			return VM_WRITE;
 
 69
 70	case 0x0: /* indexed/memory management */
 71		if (bit22set(inst)) {
 72			/*
 73			 * Check for the 'Graphics Flush Read' instruction.
 74			 * It resembles an FDC instruction, except for bits
 75			 * 20 and 21. Any combination other than zero will
 76			 * utilize the block mover functionality on some
 77			 * older PA-RISC platforms.  The case where a block
 78			 * move is performed from VM to graphics IO space
 79			 * should be treated as a READ.
 80			 *
 81			 * The significance of bits 20,21 in the FDC
 82			 * instruction is:
 83			 *
 84			 *   00  Flush data cache (normal instruction behavior)
 85			 *   01  Graphics flush write  (IO space -> VM)
 86			 *   10  Graphics flush read   (VM -> IO space)
 87			 *   11  Graphics flush read/write (VM <-> IO space)
 88			 */
 89			if (isGraphicsFlushRead(inst))
 90				return VM_READ;
 91			return VM_WRITE;
 92		} else {
 93			/*
 94			 * Check for LDCWX and LDCWS (semaphore instructions).
 95			 * If bits 23 through 25 are all 1's it is one of
 96			 * the above two instructions and is a write.
 97			 *
 98			 * Note: With the limited bits we are looking at,
 99			 * this will also catch PROBEW and PROBEWI. However,
100			 * these should never get in here because they don't
101			 * generate exceptions of the type:
102			 *   Data TLB miss fault/data page fault
103			 *   Data memory protection trap
104			 */
105			if (bits23_25set(inst) == BITSSET)
106				return VM_WRITE;
107		}
108		return VM_READ; /* Default */
109	}
110	return VM_READ; /* Default */
111}
112
113#undef bit22set
114#undef bits23_25set
115#undef isGraphicsFlushRead
116#undef BITSSET
117
118
119#if 0
120/* This is the treewalk to find a vma which is the highest that has
121 * a start < addr.  We're using find_vma_prev instead right now, but
122 * we might want to use this at some point in the future.  Probably
123 * not, but I want it committed to CVS so I don't lose it :-)
124 */
125			while (tree != vm_avl_empty) {
126				if (tree->vm_start > addr) {
127					tree = tree->vm_avl_left;
128				} else {
129					prev = tree;
130					if (prev->vm_next == NULL)
131						break;
132					if (prev->vm_next->vm_start > addr)
133						break;
134					tree = tree->vm_avl_right;
135				}
136			}
137#endif
138
139int fixup_exception(struct pt_regs *regs)
140{
141	const struct exception_table_entry *fix;
142
143	fix = search_exception_tables(regs->iaoq[0]);
144	if (fix) {
145		/*
146		 * Fix up get_user() and put_user().
147		 * ASM_EXCEPTIONTABLE_ENTRY_EFAULT() sets the least-significant
148		 * bit in the relative address of the fixup routine to indicate
149		 * that %r8 should be loaded with -EFAULT to report a userspace
 
150		 * access error.
151		 */
152		if (fix->fixup & 1) {
153			regs->gr[8] = -EFAULT;
 
 
 
 
154
155			/* zero target register for get_user() */
156			if (parisc_acctyp(0, regs->iir) == VM_READ) {
157				int treg = regs->iir & 0x1f;
158				BUG_ON(treg == 0);
159				regs->gr[treg] = 0;
160			}
161		}
162
163		regs->iaoq[0] = (unsigned long)&fix->fixup + fix->fixup;
164		regs->iaoq[0] &= ~3;
165		/*
166		 * NOTE: In some cases the faulting instruction
167		 * may be in the delay slot of a branch. We
168		 * don't want to take the branch, so we don't
169		 * increment iaoq[1], instead we set it to be
170		 * iaoq[0]+4, and clear the B bit in the PSW
171		 */
172		regs->iaoq[1] = regs->iaoq[0] + 4;
173		regs->gr[0] &= ~PSW_B; /* IPSW in gr[0] */
174
175		return 1;
176	}
177
178	return 0;
179}
180
181/*
182 * parisc hardware trap list
183 *
184 * Documented in section 3 "Addressing and Access Control" of the
185 * "PA-RISC 1.1 Architecture and Instruction Set Reference Manual"
186 * https://parisc.wiki.kernel.org/index.php/File:Pa11_acd.pdf
187 *
188 * For implementation see handle_interruption() in traps.c
189 */
190static const char * const trap_description[] = {
191	[1] "High-priority machine check (HPMC)",
192	[2] "Power failure interrupt",
193	[3] "Recovery counter trap",
194	[5] "Low-priority machine check",
195	[6] "Instruction TLB miss fault",
196	[7] "Instruction access rights / protection trap",
197	[8] "Illegal instruction trap",
198	[9] "Break instruction trap",
199	[10] "Privileged operation trap",
200	[11] "Privileged register trap",
201	[12] "Overflow trap",
202	[13] "Conditional trap",
203	[14] "FP Assist Exception trap",
204	[15] "Data TLB miss fault",
205	[16] "Non-access ITLB miss fault",
206	[17] "Non-access DTLB miss fault",
207	[18] "Data memory protection/unaligned access trap",
208	[19] "Data memory break trap",
209	[20] "TLB dirty bit trap",
210	[21] "Page reference trap",
211	[22] "Assist emulation trap",
212	[25] "Taken branch trap",
213	[26] "Data memory access rights trap",
214	[27] "Data memory protection ID trap",
215	[28] "Unaligned data reference trap",
216};
217
218const char *trap_name(unsigned long code)
219{
220	const char *t = NULL;
221
222	if (code < ARRAY_SIZE(trap_description))
223		t = trap_description[code];
224
225	return t ? t : "Unknown trap";
226}
227
228/*
229 * Print out info about fatal segfaults, if the show_unhandled_signals
230 * sysctl is set:
231 */
232static inline void
233show_signal_msg(struct pt_regs *regs, unsigned long code,
234		unsigned long address, struct task_struct *tsk,
235		struct vm_area_struct *vma)
236{
237	if (!unhandled_signal(tsk, SIGSEGV))
238		return;
239
240	if (!printk_ratelimit())
241		return;
242
243	pr_warn("\n");
244	pr_warn("do_page_fault() command='%s' type=%lu address=0x%08lx",
245	    tsk->comm, code, address);
246	print_vma_addr(KERN_CONT " in ", regs->iaoq[0]);
247
248	pr_cont("\ntrap #%lu: %s%c", code, trap_name(code),
249		vma ? ',':'\n');
250
251	if (vma)
252		pr_cont(" vm_start = 0x%08lx, vm_end = 0x%08lx\n",
253			vma->vm_start, vma->vm_end);
254
255	show_regs(regs);
256}
257
258void do_page_fault(struct pt_regs *regs, unsigned long code,
259			      unsigned long address)
260{
261	struct vm_area_struct *vma, *prev_vma;
262	struct task_struct *tsk;
263	struct mm_struct *mm;
264	unsigned long acc_type;
265	int fault = 0;
266	unsigned int flags;
267
268	if (faulthandler_disabled())
269		goto no_context;
270
271	tsk = current;
272	mm = tsk->mm;
273	if (!mm)
 
274		goto no_context;
 
275
276	flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
277	if (user_mode(regs))
278		flags |= FAULT_FLAG_USER;
279
280	acc_type = parisc_acctyp(code, regs->iir);
281	if (acc_type & VM_WRITE)
282		flags |= FAULT_FLAG_WRITE;
 
283retry:
284	down_read(&mm->mmap_sem);
285	vma = find_vma_prev(mm, address, &prev_vma);
286	if (!vma || address < vma->vm_start)
287		goto check_expansion;
 
 
 
 
 
 
288/*
289 * Ok, we have a good vm_area for this memory access. We still need to
290 * check the access permissions.
291 */
292
293good_area:
294
295	if ((vma->vm_flags & acc_type) != acc_type)
296		goto bad_area;
297
298	/*
299	 * If for any reason at all we couldn't handle the fault, make
300	 * sure we exit gracefully rather than endlessly redo the
301	 * fault.
302	 */
303
304	fault = handle_mm_fault(vma, address, flags);
 
 
 
 
 
 
 
 
305
306	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
 
307		return;
308
309	if (unlikely(fault & VM_FAULT_ERROR)) {
310		/*
311		 * We hit a shared mapping outside of the file, or some
312		 * other thing happened to us that made us unable to
313		 * handle the page fault gracefully.
314		 */
315		if (fault & VM_FAULT_OOM)
316			goto out_of_memory;
317		else if (fault & VM_FAULT_SIGSEGV)
318			goto bad_area;
319		else if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
320				  VM_FAULT_HWPOISON_LARGE))
321			goto bad_area;
322		BUG();
323	}
324	if (flags & FAULT_FLAG_ALLOW_RETRY) {
325		if (fault & VM_FAULT_MAJOR)
326			current->maj_flt++;
327		else
328			current->min_flt++;
329		if (fault & VM_FAULT_RETRY) {
330			flags &= ~FAULT_FLAG_ALLOW_RETRY;
331
332			/*
333			 * No need to up_read(&mm->mmap_sem) as we would
334			 * have already released it in __lock_page_or_retry
335			 * in mm/filemap.c.
336			 */
337
338			goto retry;
339		}
340	}
341	up_read(&mm->mmap_sem);
342	return;
343
344check_expansion:
345	vma = prev_vma;
346	if (vma && (expand_stack(vma, address) == 0))
347		goto good_area;
348
349/*
350 * Something tried to access memory that isn't in our memory map..
351 */
352bad_area:
353	up_read(&mm->mmap_sem);
354
 
355	if (user_mode(regs)) {
356		struct siginfo si;
357		unsigned int lsb = 0;
358
359		switch (code) {
360		case 15:	/* Data TLB miss fault/Data page fault */
361			/* send SIGSEGV when outside of vma */
362			if (!vma ||
363			    address < vma->vm_start || address >= vma->vm_end) {
364				si.si_signo = SIGSEGV;
365				si.si_code = SEGV_MAPERR;
366				break;
367			}
368
369			/* send SIGSEGV for wrong permissions */
370			if ((vma->vm_flags & acc_type) != acc_type) {
371				si.si_signo = SIGSEGV;
372				si.si_code = SEGV_ACCERR;
373				break;
374			}
375
376			/* probably address is outside of mapped file */
377			/* fall through */
378		case 17:	/* NA data TLB miss / page fault */
379		case 18:	/* Unaligned access - PCXS only */
380			si.si_signo = SIGBUS;
381			si.si_code = (code == 18) ? BUS_ADRALN : BUS_ADRERR;
382			break;
383		case 16:	/* Non-access instruction TLB miss fault */
384		case 26:	/* PCXL: Data memory access rights trap */
385		default:
386			si.si_signo = SIGSEGV;
387			si.si_code = (code == 26) ? SEGV_ACCERR : SEGV_MAPERR;
388			break;
389		}
390
391#ifdef CONFIG_MEMORY_FAILURE
392		if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
 
393			printk(KERN_ERR
394	"MCE: Killing %s:%d due to hardware memory corruption fault at %08lx\n",
395			tsk->comm, tsk->pid, address);
396			si.si_signo = SIGBUS;
397			si.si_code = BUS_MCEERR_AR;
 
 
 
 
 
 
 
 
 
 
 
398		}
399#endif
 
400
401		/*
402		 * Either small page or large page may be poisoned.
403		 * In other words, VM_FAULT_HWPOISON_LARGE and
404		 * VM_FAULT_HWPOISON are mutually exclusive.
405		 */
406		if (fault & VM_FAULT_HWPOISON_LARGE)
407			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
408		else if (fault & VM_FAULT_HWPOISON)
409			lsb = PAGE_SHIFT;
410		else
411			show_signal_msg(regs, code, address, tsk, vma);
412		si.si_addr_lsb = lsb;
413
414		si.si_errno = 0;
415		si.si_addr = (void __user *) address;
416		force_sig_info(si.si_signo, &si, current);
417		return;
418	}
 
419
420no_context:
421
422	if (!user_mode(regs) && fixup_exception(regs)) {
423		return;
424	}
425
426	parisc_terminate("Bad Address (null pointer deref?)", regs, code, address);
427
428  out_of_memory:
429	up_read(&mm->mmap_sem);
430	if (!user_mode(regs))
 
431		goto no_context;
 
432	pagefault_out_of_memory();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
433}