Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
   1--------------------------------------------------------------------------------
   2+ ABSTRACT
   3--------------------------------------------------------------------------------
   4
   5This file documents the mmap() facility available with the PACKET
   6socket interface on 2.4/2.6/3.x kernels. This type of sockets is used for
   7i) capture network traffic with utilities like tcpdump, ii) transmit network
   8traffic, or any other that needs raw access to network interface.
   9
  10Howto can be found at:
  11    https://sites.google.com/site/packetmmap/
  12
  13Please send your comments to
  14    Ulisses Alonso CamarĂ³ <uaca@i.hate.spam.alumni.uv.es>
  15    Johann Baudy
  16
  17-------------------------------------------------------------------------------
  18+ Why use PACKET_MMAP
  19--------------------------------------------------------------------------------
  20
  21In Linux 2.4/2.6/3.x if PACKET_MMAP is not enabled, the capture process is very
  22inefficient. It uses very limited buffers and requires one system call to
  23capture each packet, it requires two if you want to get packet's timestamp
  24(like libpcap always does).
  25
  26In the other hand PACKET_MMAP is very efficient. PACKET_MMAP provides a size 
  27configurable circular buffer mapped in user space that can be used to either
  28send or receive packets. This way reading packets just needs to wait for them,
  29most of the time there is no need to issue a single system call. Concerning
  30transmission, multiple packets can be sent through one system call to get the
  31highest bandwidth. By using a shared buffer between the kernel and the user
  32also has the benefit of minimizing packet copies.
  33
  34It's fine to use PACKET_MMAP to improve the performance of the capture and
  35transmission process, but it isn't everything. At least, if you are capturing
  36at high speeds (this is relative to the cpu speed), you should check if the
  37device driver of your network interface card supports some sort of interrupt
  38load mitigation or (even better) if it supports NAPI, also make sure it is
  39enabled. For transmission, check the MTU (Maximum Transmission Unit) used and
  40supported by devices of your network. CPU IRQ pinning of your network interface
  41card can also be an advantage.
  42
  43--------------------------------------------------------------------------------
  44+ How to use mmap() to improve capture process
  45--------------------------------------------------------------------------------
  46
  47From the user standpoint, you should use the higher level libpcap library, which
  48is a de facto standard, portable across nearly all operating systems
  49including Win32. 
  50
  51Packet MMAP support was integrated into libpcap around the time of version 1.3.0;
  52TPACKET_V3 support was added in version 1.5.0
  53
  54--------------------------------------------------------------------------------
  55+ How to use mmap() directly to improve capture process
  56--------------------------------------------------------------------------------
  57
  58From the system calls stand point, the use of PACKET_MMAP involves
  59the following process:
  60
  61
  62[setup]     socket() -------> creation of the capture socket
  63            setsockopt() ---> allocation of the circular buffer (ring)
  64                              option: PACKET_RX_RING
  65            mmap() ---------> mapping of the allocated buffer to the
  66                              user process
  67
  68[capture]   poll() ---------> to wait for incoming packets
  69
  70[shutdown]  close() --------> destruction of the capture socket and
  71                              deallocation of all associated 
  72                              resources.
  73
  74
  75socket creation and destruction is straight forward, and is done 
  76the same way with or without PACKET_MMAP:
  77
  78 int fd = socket(PF_PACKET, mode, htons(ETH_P_ALL));
  79
  80where mode is SOCK_RAW for the raw interface were link level
  81information can be captured or SOCK_DGRAM for the cooked
  82interface where link level information capture is not 
  83supported and a link level pseudo-header is provided 
  84by the kernel.
  85
  86The destruction of the socket and all associated resources
  87is done by a simple call to close(fd).
  88
  89Similarly as without PACKET_MMAP, it is possible to use one socket
  90for capture and transmission. This can be done by mapping the
  91allocated RX and TX buffer ring with a single mmap() call.
  92See "Mapping and use of the circular buffer (ring)".
  93
  94Next I will describe PACKET_MMAP settings and its constraints,
  95also the mapping of the circular buffer in the user process and 
  96the use of this buffer.
  97
  98--------------------------------------------------------------------------------
  99+ How to use mmap() directly to improve transmission process
 100--------------------------------------------------------------------------------
 101Transmission process is similar to capture as shown below.
 102
 103[setup]          socket() -------> creation of the transmission socket
 104                 setsockopt() ---> allocation of the circular buffer (ring)
 105                                   option: PACKET_TX_RING
 106                 bind() ---------> bind transmission socket with a network interface
 107                 mmap() ---------> mapping of the allocated buffer to the
 108                                   user process
 109
 110[transmission]   poll() ---------> wait for free packets (optional)
 111                 send() ---------> send all packets that are set as ready in
 112                                   the ring
 113                                   The flag MSG_DONTWAIT can be used to return
 114                                   before end of transfer.
 115
 116[shutdown]  close() --------> destruction of the transmission socket and
 117                              deallocation of all associated resources.
 118
 119Socket creation and destruction is also straight forward, and is done
 120the same way as in capturing described in the previous paragraph:
 121
 122 int fd = socket(PF_PACKET, mode, 0);
 123
 124The protocol can optionally be 0 in case we only want to transmit
 125via this socket, which avoids an expensive call to packet_rcv().
 126In this case, you also need to bind(2) the TX_RING with sll_protocol = 0
 127set. Otherwise, htons(ETH_P_ALL) or any other protocol, for example.
 128
 129Binding the socket to your network interface is mandatory (with zero copy) to
 130know the header size of frames used in the circular buffer.
 131
 132As capture, each frame contains two parts:
 133
 134 --------------------
 135| struct tpacket_hdr | Header. It contains the status of
 136|                    | of this frame
 137|--------------------|
 138| data buffer        |
 139.                    .  Data that will be sent over the network interface.
 140.                    .
 141 --------------------
 142
 143 bind() associates the socket to your network interface thanks to
 144 sll_ifindex parameter of struct sockaddr_ll.
 145
 146 Initialization example:
 147
 148 struct sockaddr_ll my_addr;
 149 struct ifreq s_ifr;
 150 ...
 151
 152 strncpy (s_ifr.ifr_name, "eth0", sizeof(s_ifr.ifr_name));
 153
 154 /* get interface index of eth0 */
 155 ioctl(this->socket, SIOCGIFINDEX, &s_ifr);
 156
 157 /* fill sockaddr_ll struct to prepare binding */
 158 my_addr.sll_family = AF_PACKET;
 159 my_addr.sll_protocol = htons(ETH_P_ALL);
 160 my_addr.sll_ifindex =  s_ifr.ifr_ifindex;
 161
 162 /* bind socket to eth0 */
 163 bind(this->socket, (struct sockaddr *)&my_addr, sizeof(struct sockaddr_ll));
 164
 165 A complete tutorial is available at: https://sites.google.com/site/packetmmap/
 166
 167By default, the user should put data at :
 168 frame base + TPACKET_HDRLEN - sizeof(struct sockaddr_ll)
 169
 170So, whatever you choose for the socket mode (SOCK_DGRAM or SOCK_RAW),
 171the beginning of the user data will be at :
 172 frame base + TPACKET_ALIGN(sizeof(struct tpacket_hdr))
 173
 174If you wish to put user data at a custom offset from the beginning of
 175the frame (for payload alignment with SOCK_RAW mode for instance) you
 176can set tp_net (with SOCK_DGRAM) or tp_mac (with SOCK_RAW). In order
 177to make this work it must be enabled previously with setsockopt()
 178and the PACKET_TX_HAS_OFF option.
 179
 180--------------------------------------------------------------------------------
 181+ PACKET_MMAP settings
 182--------------------------------------------------------------------------------
 183
 184To setup PACKET_MMAP from user level code is done with a call like
 185
 186 - Capture process
 187     setsockopt(fd, SOL_PACKET, PACKET_RX_RING, (void *) &req, sizeof(req))
 188 - Transmission process
 189     setsockopt(fd, SOL_PACKET, PACKET_TX_RING, (void *) &req, sizeof(req))
 190
 191The most significant argument in the previous call is the req parameter, 
 192this parameter must to have the following structure:
 193
 194    struct tpacket_req
 195    {
 196        unsigned int    tp_block_size;  /* Minimal size of contiguous block */
 197        unsigned int    tp_block_nr;    /* Number of blocks */
 198        unsigned int    tp_frame_size;  /* Size of frame */
 199        unsigned int    tp_frame_nr;    /* Total number of frames */
 200    };
 201
 202This structure is defined in /usr/include/linux/if_packet.h and establishes a 
 203circular buffer (ring) of unswappable memory.
 204Being mapped in the capture process allows reading the captured frames and 
 205related meta-information like timestamps without requiring a system call.
 206
 207Frames are grouped in blocks. Each block is a physically contiguous
 208region of memory and holds tp_block_size/tp_frame_size frames. The total number 
 209of blocks is tp_block_nr. Note that tp_frame_nr is a redundant parameter because
 210
 211    frames_per_block = tp_block_size/tp_frame_size
 212
 213indeed, packet_set_ring checks that the following condition is true
 214
 215    frames_per_block * tp_block_nr == tp_frame_nr
 216
 217Lets see an example, with the following values:
 218
 219     tp_block_size= 4096
 220     tp_frame_size= 2048
 221     tp_block_nr  = 4
 222     tp_frame_nr  = 8
 223
 224we will get the following buffer structure:
 225
 226        block #1                 block #2         
 227+---------+---------+    +---------+---------+    
 228| frame 1 | frame 2 |    | frame 3 | frame 4 |    
 229+---------+---------+    +---------+---------+    
 230
 231        block #3                 block #4
 232+---------+---------+    +---------+---------+
 233| frame 5 | frame 6 |    | frame 7 | frame 8 |
 234+---------+---------+    +---------+---------+
 235
 236A frame can be of any size with the only condition it can fit in a block. A block
 237can only hold an integer number of frames, or in other words, a frame cannot 
 238be spawned across two blocks, so there are some details you have to take into 
 239account when choosing the frame_size. See "Mapping and use of the circular 
 240buffer (ring)".
 241
 242--------------------------------------------------------------------------------
 243+ PACKET_MMAP setting constraints
 244--------------------------------------------------------------------------------
 245
 246In kernel versions prior to 2.4.26 (for the 2.4 branch) and 2.6.5 (2.6 branch),
 247the PACKET_MMAP buffer could hold only 32768 frames in a 32 bit architecture or
 24816384 in a 64 bit architecture. For information on these kernel versions
 249see http://pusa.uv.es/~ulisses/packet_mmap/packet_mmap.pre-2.4.26_2.6.5.txt
 250
 251 Block size limit
 252------------------
 253
 254As stated earlier, each block is a contiguous physical region of memory. These 
 255memory regions are allocated with calls to the __get_free_pages() function. As 
 256the name indicates, this function allocates pages of memory, and the second
 257argument is "order" or a power of two number of pages, that is 
 258(for PAGE_SIZE == 4096) order=0 ==> 4096 bytes, order=1 ==> 8192 bytes, 
 259order=2 ==> 16384 bytes, etc. The maximum size of a 
 260region allocated by __get_free_pages is determined by the MAX_ORDER macro. More 
 261precisely the limit can be calculated as:
 262
 263   PAGE_SIZE << MAX_ORDER
 264
 265   In a i386 architecture PAGE_SIZE is 4096 bytes 
 266   In a 2.4/i386 kernel MAX_ORDER is 10
 267   In a 2.6/i386 kernel MAX_ORDER is 11
 268
 269So get_free_pages can allocate as much as 4MB or 8MB in a 2.4/2.6 kernel 
 270respectively, with an i386 architecture.
 271
 272User space programs can include /usr/include/sys/user.h and 
 273/usr/include/linux/mmzone.h to get PAGE_SIZE MAX_ORDER declarations.
 274
 275The pagesize can also be determined dynamically with the getpagesize (2) 
 276system call. 
 277
 278 Block number limit
 279--------------------
 280
 281To understand the constraints of PACKET_MMAP, we have to see the structure 
 282used to hold the pointers to each block.
 283
 284Currently, this structure is a dynamically allocated vector with kmalloc 
 285called pg_vec, its size limits the number of blocks that can be allocated.
 286
 287    +---+---+---+---+
 288    | x | x | x | x |
 289    +---+---+---+---+
 290      |   |   |   |
 291      |   |   |   v
 292      |   |   v  block #4
 293      |   v  block #3
 294      v  block #2
 295     block #1
 296
 297kmalloc allocates any number of bytes of physically contiguous memory from 
 298a pool of pre-determined sizes. This pool of memory is maintained by the slab 
 299allocator which is at the end the responsible for doing the allocation and 
 300hence which imposes the maximum memory that kmalloc can allocate. 
 301
 302In a 2.4/2.6 kernel and the i386 architecture, the limit is 131072 bytes. The 
 303predetermined sizes that kmalloc uses can be checked in the "size-<bytes>" 
 304entries of /proc/slabinfo
 305
 306In a 32 bit architecture, pointers are 4 bytes long, so the total number of 
 307pointers to blocks is
 308
 309     131072/4 = 32768 blocks
 310
 311 PACKET_MMAP buffer size calculator
 312------------------------------------
 313
 314Definitions:
 315
 316<size-max>    : is the maximum size of allocable with kmalloc (see /proc/slabinfo)
 317<pointer size>: depends on the architecture -- sizeof(void *)
 318<page size>   : depends on the architecture -- PAGE_SIZE or getpagesize (2)
 319<max-order>   : is the value defined with MAX_ORDER
 320<frame size>  : it's an upper bound of frame's capture size (more on this later)
 321
 322from these definitions we will derive 
 323
 324	<block number> = <size-max>/<pointer size>
 325	<block size> = <pagesize> << <max-order>
 326
 327so, the max buffer size is
 328
 329	<block number> * <block size>
 330
 331and, the number of frames be
 332
 333	<block number> * <block size> / <frame size>
 334
 335Suppose the following parameters, which apply for 2.6 kernel and an
 336i386 architecture:
 337
 338	<size-max> = 131072 bytes
 339	<pointer size> = 4 bytes
 340	<pagesize> = 4096 bytes
 341	<max-order> = 11
 342
 343and a value for <frame size> of 2048 bytes. These parameters will yield
 344
 345	<block number> = 131072/4 = 32768 blocks
 346	<block size> = 4096 << 11 = 8 MiB.
 347
 348and hence the buffer will have a 262144 MiB size. So it can hold 
 349262144 MiB / 2048 bytes = 134217728 frames
 350
 351Actually, this buffer size is not possible with an i386 architecture. 
 352Remember that the memory is allocated in kernel space, in the case of 
 353an i386 kernel's memory size is limited to 1GiB.
 354
 355All memory allocations are not freed until the socket is closed. The memory 
 356allocations are done with GFP_KERNEL priority, this basically means that 
 357the allocation can wait and swap other process' memory in order to allocate 
 358the necessary memory, so normally limits can be reached.
 359
 360 Other constraints
 361-------------------
 362
 363If you check the source code you will see that what I draw here as a frame
 364is not only the link level frame. At the beginning of each frame there is a 
 365header called struct tpacket_hdr used in PACKET_MMAP to hold link level's frame
 366meta information like timestamp. So what we draw here a frame it's really 
 367the following (from include/linux/if_packet.h):
 368
 369/*
 370   Frame structure:
 371
 372   - Start. Frame must be aligned to TPACKET_ALIGNMENT=16
 373   - struct tpacket_hdr
 374   - pad to TPACKET_ALIGNMENT=16
 375   - struct sockaddr_ll
 376   - Gap, chosen so that packet data (Start+tp_net) aligns to 
 377     TPACKET_ALIGNMENT=16
 378   - Start+tp_mac: [ Optional MAC header ]
 379   - Start+tp_net: Packet data, aligned to TPACKET_ALIGNMENT=16.
 380   - Pad to align to TPACKET_ALIGNMENT=16
 381 */
 382 
 383 The following are conditions that are checked in packet_set_ring
 384
 385   tp_block_size must be a multiple of PAGE_SIZE (1)
 386   tp_frame_size must be greater than TPACKET_HDRLEN (obvious)
 387   tp_frame_size must be a multiple of TPACKET_ALIGNMENT
 388   tp_frame_nr   must be exactly frames_per_block*tp_block_nr
 389
 390Note that tp_block_size should be chosen to be a power of two or there will
 391be a waste of memory.
 392
 393--------------------------------------------------------------------------------
 394+ Mapping and use of the circular buffer (ring)
 395--------------------------------------------------------------------------------
 396
 397The mapping of the buffer in the user process is done with the conventional 
 398mmap function. Even the circular buffer is compound of several physically
 399discontiguous blocks of memory, they are contiguous to the user space, hence
 400just one call to mmap is needed:
 401
 402    mmap(0, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
 403
 404If tp_frame_size is a divisor of tp_block_size frames will be 
 405contiguously spaced by tp_frame_size bytes. If not, each
 406tp_block_size/tp_frame_size frames there will be a gap between 
 407the frames. This is because a frame cannot be spawn across two
 408blocks. 
 409
 410To use one socket for capture and transmission, the mapping of both the
 411RX and TX buffer ring has to be done with one call to mmap:
 412
 413    ...
 414    setsockopt(fd, SOL_PACKET, PACKET_RX_RING, &foo, sizeof(foo));
 415    setsockopt(fd, SOL_PACKET, PACKET_TX_RING, &bar, sizeof(bar));
 416    ...
 417    rx_ring = mmap(0, size * 2, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
 418    tx_ring = rx_ring + size;
 419
 420RX must be the first as the kernel maps the TX ring memory right
 421after the RX one.
 422
 423At the beginning of each frame there is an status field (see 
 424struct tpacket_hdr). If this field is 0 means that the frame is ready
 425to be used for the kernel, If not, there is a frame the user can read 
 426and the following flags apply:
 427
 428+++ Capture process:
 429     from include/linux/if_packet.h
 430
 431     #define TP_STATUS_COPY          (1 << 1)
 432     #define TP_STATUS_LOSING        (1 << 2)
 433     #define TP_STATUS_CSUMNOTREADY  (1 << 3)
 434     #define TP_STATUS_CSUM_VALID    (1 << 7)
 435
 436TP_STATUS_COPY        : This flag indicates that the frame (and associated
 437                        meta information) has been truncated because it's 
 438                        larger than tp_frame_size. This packet can be 
 439                        read entirely with recvfrom().
 440                        
 441                        In order to make this work it must to be
 442                        enabled previously with setsockopt() and 
 443                        the PACKET_COPY_THRESH option. 
 444
 445                        The number of frames that can be buffered to
 446                        be read with recvfrom is limited like a normal socket.
 447                        See the SO_RCVBUF option in the socket (7) man page.
 448
 449TP_STATUS_LOSING      : indicates there were packet drops from last time 
 450                        statistics where checked with getsockopt() and
 451                        the PACKET_STATISTICS option.
 452
 453TP_STATUS_CSUMNOTREADY: currently it's used for outgoing IP packets which 
 454                        its checksum will be done in hardware. So while
 455                        reading the packet we should not try to check the 
 456                        checksum. 
 457
 458TP_STATUS_CSUM_VALID  : This flag indicates that at least the transport
 459                        header checksum of the packet has been already
 460                        validated on the kernel side. If the flag is not set
 461                        then we are free to check the checksum by ourselves
 462                        provided that TP_STATUS_CSUMNOTREADY is also not set.
 463
 464for convenience there are also the following defines:
 465
 466     #define TP_STATUS_KERNEL        0
 467     #define TP_STATUS_USER          1
 468
 469The kernel initializes all frames to TP_STATUS_KERNEL, when the kernel
 470receives a packet it puts in the buffer and updates the status with
 471at least the TP_STATUS_USER flag. Then the user can read the packet,
 472once the packet is read the user must zero the status field, so the kernel 
 473can use again that frame buffer.
 474
 475The user can use poll (any other variant should apply too) to check if new
 476packets are in the ring:
 477
 478    struct pollfd pfd;
 479
 480    pfd.fd = fd;
 481    pfd.revents = 0;
 482    pfd.events = POLLIN|POLLRDNORM|POLLERR;
 483
 484    if (status == TP_STATUS_KERNEL)
 485        retval = poll(&pfd, 1, timeout);
 486
 487It doesn't incur in a race condition to first check the status value and 
 488then poll for frames.
 489
 490++ Transmission process
 491Those defines are also used for transmission:
 492
 493     #define TP_STATUS_AVAILABLE        0 // Frame is available
 494     #define TP_STATUS_SEND_REQUEST     1 // Frame will be sent on next send()
 495     #define TP_STATUS_SENDING          2 // Frame is currently in transmission
 496     #define TP_STATUS_WRONG_FORMAT     4 // Frame format is not correct
 497
 498First, the kernel initializes all frames to TP_STATUS_AVAILABLE. To send a
 499packet, the user fills a data buffer of an available frame, sets tp_len to
 500current data buffer size and sets its status field to TP_STATUS_SEND_REQUEST.
 501This can be done on multiple frames. Once the user is ready to transmit, it
 502calls send(). Then all buffers with status equal to TP_STATUS_SEND_REQUEST are
 503forwarded to the network device. The kernel updates each status of sent
 504frames with TP_STATUS_SENDING until the end of transfer.
 505At the end of each transfer, buffer status returns to TP_STATUS_AVAILABLE.
 506
 507    header->tp_len = in_i_size;
 508    header->tp_status = TP_STATUS_SEND_REQUEST;
 509    retval = send(this->socket, NULL, 0, 0);
 510
 511The user can also use poll() to check if a buffer is available:
 512(status == TP_STATUS_SENDING)
 513
 514    struct pollfd pfd;
 515    pfd.fd = fd;
 516    pfd.revents = 0;
 517    pfd.events = POLLOUT;
 518    retval = poll(&pfd, 1, timeout);
 519
 520-------------------------------------------------------------------------------
 521+ What TPACKET versions are available and when to use them?
 522-------------------------------------------------------------------------------
 523
 524 int val = tpacket_version;
 525 setsockopt(fd, SOL_PACKET, PACKET_VERSION, &val, sizeof(val));
 526 getsockopt(fd, SOL_PACKET, PACKET_VERSION, &val, sizeof(val));
 527
 528where 'tpacket_version' can be TPACKET_V1 (default), TPACKET_V2, TPACKET_V3.
 529
 530TPACKET_V1:
 531	- Default if not otherwise specified by setsockopt(2)
 532	- RX_RING, TX_RING available
 533
 534TPACKET_V1 --> TPACKET_V2:
 535	- Made 64 bit clean due to unsigned long usage in TPACKET_V1
 536	  structures, thus this also works on 64 bit kernel with 32 bit
 537	  userspace and the like
 538	- Timestamp resolution in nanoseconds instead of microseconds
 539	- RX_RING, TX_RING available
 540	- VLAN metadata information available for packets
 541	  (TP_STATUS_VLAN_VALID, TP_STATUS_VLAN_TPID_VALID),
 542	  in the tpacket2_hdr structure:
 543		- TP_STATUS_VLAN_VALID bit being set into the tp_status field indicates
 544		  that the tp_vlan_tci field has valid VLAN TCI value
 545		- TP_STATUS_VLAN_TPID_VALID bit being set into the tp_status field
 546		  indicates that the tp_vlan_tpid field has valid VLAN TPID value
 547	- How to switch to TPACKET_V2:
 548		1. Replace struct tpacket_hdr by struct tpacket2_hdr
 549		2. Query header len and save
 550		3. Set protocol version to 2, set up ring as usual
 551		4. For getting the sockaddr_ll,
 552		   use (void *)hdr + TPACKET_ALIGN(hdrlen) instead of
 553		   (void *)hdr + TPACKET_ALIGN(sizeof(struct tpacket_hdr))
 554
 555TPACKET_V2 --> TPACKET_V3:
 556	- Flexible buffer implementation for RX_RING:
 557		1. Blocks can be configured with non-static frame-size
 558		2. Read/poll is at a block-level (as opposed to packet-level)
 559		3. Added poll timeout to avoid indefinite user-space wait
 560		   on idle links
 561		4. Added user-configurable knobs:
 562			4.1 block::timeout
 563			4.2 tpkt_hdr::sk_rxhash
 564	- RX Hash data available in user space
 565	- TX_RING semantics are conceptually similar to TPACKET_V2;
 566	  use tpacket3_hdr instead of tpacket2_hdr, and TPACKET3_HDRLEN
 567	  instead of TPACKET2_HDRLEN. In the current implementation,
 568	  the tp_next_offset field in the tpacket3_hdr MUST be set to
 569	  zero, indicating that the ring does not hold variable sized frames.
 570	  Packets with non-zero values of tp_next_offset will be dropped.
 571
 572-------------------------------------------------------------------------------
 573+ AF_PACKET fanout mode
 574-------------------------------------------------------------------------------
 575
 576In the AF_PACKET fanout mode, packet reception can be load balanced among
 577processes. This also works in combination with mmap(2) on packet sockets.
 578
 579Currently implemented fanout policies are:
 580
 581  - PACKET_FANOUT_HASH: schedule to socket by skb's packet hash
 582  - PACKET_FANOUT_LB: schedule to socket by round-robin
 583  - PACKET_FANOUT_CPU: schedule to socket by CPU packet arrives on
 584  - PACKET_FANOUT_RND: schedule to socket by random selection
 585  - PACKET_FANOUT_ROLLOVER: if one socket is full, rollover to another
 586  - PACKET_FANOUT_QM: schedule to socket by skbs recorded queue_mapping
 587
 588Minimal example code by David S. Miller (try things like "./test eth0 hash",
 589"./test eth0 lb", etc.):
 590
 591#include <stddef.h>
 592#include <stdlib.h>
 593#include <stdio.h>
 594#include <string.h>
 595
 596#include <sys/types.h>
 597#include <sys/wait.h>
 598#include <sys/socket.h>
 599#include <sys/ioctl.h>
 600
 601#include <unistd.h>
 602
 603#include <linux/if_ether.h>
 604#include <linux/if_packet.h>
 605
 606#include <net/if.h>
 607
 608static const char *device_name;
 609static int fanout_type;
 610static int fanout_id;
 611
 612#ifndef PACKET_FANOUT
 613# define PACKET_FANOUT			18
 614# define PACKET_FANOUT_HASH		0
 615# define PACKET_FANOUT_LB		1
 616#endif
 617
 618static int setup_socket(void)
 619{
 620	int err, fd = socket(AF_PACKET, SOCK_RAW, htons(ETH_P_IP));
 621	struct sockaddr_ll ll;
 622	struct ifreq ifr;
 623	int fanout_arg;
 624
 625	if (fd < 0) {
 626		perror("socket");
 627		return EXIT_FAILURE;
 628	}
 629
 630	memset(&ifr, 0, sizeof(ifr));
 631	strcpy(ifr.ifr_name, device_name);
 632	err = ioctl(fd, SIOCGIFINDEX, &ifr);
 633	if (err < 0) {
 634		perror("SIOCGIFINDEX");
 635		return EXIT_FAILURE;
 636	}
 637
 638	memset(&ll, 0, sizeof(ll));
 639	ll.sll_family = AF_PACKET;
 640	ll.sll_ifindex = ifr.ifr_ifindex;
 641	err = bind(fd, (struct sockaddr *) &ll, sizeof(ll));
 642	if (err < 0) {
 643		perror("bind");
 644		return EXIT_FAILURE;
 645	}
 646
 647	fanout_arg = (fanout_id | (fanout_type << 16));
 648	err = setsockopt(fd, SOL_PACKET, PACKET_FANOUT,
 649			 &fanout_arg, sizeof(fanout_arg));
 650	if (err) {
 651		perror("setsockopt");
 652		return EXIT_FAILURE;
 653	}
 654
 655	return fd;
 656}
 657
 658static void fanout_thread(void)
 659{
 660	int fd = setup_socket();
 661	int limit = 10000;
 662
 663	if (fd < 0)
 664		exit(fd);
 665
 666	while (limit-- > 0) {
 667		char buf[1600];
 668		int err;
 669
 670		err = read(fd, buf, sizeof(buf));
 671		if (err < 0) {
 672			perror("read");
 673			exit(EXIT_FAILURE);
 674		}
 675		if ((limit % 10) == 0)
 676			fprintf(stdout, "(%d) \n", getpid());
 677	}
 678
 679	fprintf(stdout, "%d: Received 10000 packets\n", getpid());
 680
 681	close(fd);
 682	exit(0);
 683}
 684
 685int main(int argc, char **argp)
 686{
 687	int fd, err;
 688	int i;
 689
 690	if (argc != 3) {
 691		fprintf(stderr, "Usage: %s INTERFACE {hash|lb}\n", argp[0]);
 692		return EXIT_FAILURE;
 693	}
 694
 695	if (!strcmp(argp[2], "hash"))
 696		fanout_type = PACKET_FANOUT_HASH;
 697	else if (!strcmp(argp[2], "lb"))
 698		fanout_type = PACKET_FANOUT_LB;
 699	else {
 700		fprintf(stderr, "Unknown fanout type [%s]\n", argp[2]);
 701		exit(EXIT_FAILURE);
 702	}
 703
 704	device_name = argp[1];
 705	fanout_id = getpid() & 0xffff;
 706
 707	for (i = 0; i < 4; i++) {
 708		pid_t pid = fork();
 709
 710		switch (pid) {
 711		case 0:
 712			fanout_thread();
 713
 714		case -1:
 715			perror("fork");
 716			exit(EXIT_FAILURE);
 717		}
 718	}
 719
 720	for (i = 0; i < 4; i++) {
 721		int status;
 722
 723		wait(&status);
 724	}
 725
 726	return 0;
 727}
 728
 729-------------------------------------------------------------------------------
 730+ AF_PACKET TPACKET_V3 example
 731-------------------------------------------------------------------------------
 732
 733AF_PACKET's TPACKET_V3 ring buffer can be configured to use non-static frame
 734sizes by doing it's own memory management. It is based on blocks where polling
 735works on a per block basis instead of per ring as in TPACKET_V2 and predecessor.
 736
 737It is said that TPACKET_V3 brings the following benefits:
 738 *) ~15 - 20% reduction in CPU-usage
 739 *) ~20% increase in packet capture rate
 740 *) ~2x increase in packet density
 741 *) Port aggregation analysis
 742 *) Non static frame size to capture entire packet payload
 743
 744So it seems to be a good candidate to be used with packet fanout.
 745
 746Minimal example code by Daniel Borkmann based on Chetan Loke's lolpcap (compile
 747it with gcc -Wall -O2 blob.c, and try things like "./a.out eth0", etc.):
 748
 749/* Written from scratch, but kernel-to-user space API usage
 750 * dissected from lolpcap:
 751 *  Copyright 2011, Chetan Loke <loke.chetan@gmail.com>
 752 *  License: GPL, version 2.0
 753 */
 754
 755#include <stdio.h>
 756#include <stdlib.h>
 757#include <stdint.h>
 758#include <string.h>
 759#include <assert.h>
 760#include <net/if.h>
 761#include <arpa/inet.h>
 762#include <netdb.h>
 763#include <poll.h>
 764#include <unistd.h>
 765#include <signal.h>
 766#include <inttypes.h>
 767#include <sys/socket.h>
 768#include <sys/mman.h>
 769#include <linux/if_packet.h>
 770#include <linux/if_ether.h>
 771#include <linux/ip.h>
 772
 773#ifndef likely
 774# define likely(x)		__builtin_expect(!!(x), 1)
 775#endif
 776#ifndef unlikely
 777# define unlikely(x)		__builtin_expect(!!(x), 0)
 778#endif
 779
 780struct block_desc {
 781	uint32_t version;
 782	uint32_t offset_to_priv;
 783	struct tpacket_hdr_v1 h1;
 784};
 785
 786struct ring {
 787	struct iovec *rd;
 788	uint8_t *map;
 789	struct tpacket_req3 req;
 790};
 791
 792static unsigned long packets_total = 0, bytes_total = 0;
 793static sig_atomic_t sigint = 0;
 794
 795static void sighandler(int num)
 796{
 797	sigint = 1;
 798}
 799
 800static int setup_socket(struct ring *ring, char *netdev)
 801{
 802	int err, i, fd, v = TPACKET_V3;
 803	struct sockaddr_ll ll;
 804	unsigned int blocksiz = 1 << 22, framesiz = 1 << 11;
 805	unsigned int blocknum = 64;
 806
 807	fd = socket(AF_PACKET, SOCK_RAW, htons(ETH_P_ALL));
 808	if (fd < 0) {
 809		perror("socket");
 810		exit(1);
 811	}
 812
 813	err = setsockopt(fd, SOL_PACKET, PACKET_VERSION, &v, sizeof(v));
 814	if (err < 0) {
 815		perror("setsockopt");
 816		exit(1);
 817	}
 818
 819	memset(&ring->req, 0, sizeof(ring->req));
 820	ring->req.tp_block_size = blocksiz;
 821	ring->req.tp_frame_size = framesiz;
 822	ring->req.tp_block_nr = blocknum;
 823	ring->req.tp_frame_nr = (blocksiz * blocknum) / framesiz;
 824	ring->req.tp_retire_blk_tov = 60;
 825	ring->req.tp_feature_req_word = TP_FT_REQ_FILL_RXHASH;
 826
 827	err = setsockopt(fd, SOL_PACKET, PACKET_RX_RING, &ring->req,
 828			 sizeof(ring->req));
 829	if (err < 0) {
 830		perror("setsockopt");
 831		exit(1);
 832	}
 833
 834	ring->map = mmap(NULL, ring->req.tp_block_size * ring->req.tp_block_nr,
 835			 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_LOCKED, fd, 0);
 836	if (ring->map == MAP_FAILED) {
 837		perror("mmap");
 838		exit(1);
 839	}
 840
 841	ring->rd = malloc(ring->req.tp_block_nr * sizeof(*ring->rd));
 842	assert(ring->rd);
 843	for (i = 0; i < ring->req.tp_block_nr; ++i) {
 844		ring->rd[i].iov_base = ring->map + (i * ring->req.tp_block_size);
 845		ring->rd[i].iov_len = ring->req.tp_block_size;
 846	}
 847
 848	memset(&ll, 0, sizeof(ll));
 849	ll.sll_family = PF_PACKET;
 850	ll.sll_protocol = htons(ETH_P_ALL);
 851	ll.sll_ifindex = if_nametoindex(netdev);
 852	ll.sll_hatype = 0;
 853	ll.sll_pkttype = 0;
 854	ll.sll_halen = 0;
 855
 856	err = bind(fd, (struct sockaddr *) &ll, sizeof(ll));
 857	if (err < 0) {
 858		perror("bind");
 859		exit(1);
 860	}
 861
 862	return fd;
 863}
 864
 865static void display(struct tpacket3_hdr *ppd)
 866{
 867	struct ethhdr *eth = (struct ethhdr *) ((uint8_t *) ppd + ppd->tp_mac);
 868	struct iphdr *ip = (struct iphdr *) ((uint8_t *) eth + ETH_HLEN);
 869
 870	if (eth->h_proto == htons(ETH_P_IP)) {
 871		struct sockaddr_in ss, sd;
 872		char sbuff[NI_MAXHOST], dbuff[NI_MAXHOST];
 873
 874		memset(&ss, 0, sizeof(ss));
 875		ss.sin_family = PF_INET;
 876		ss.sin_addr.s_addr = ip->saddr;
 877		getnameinfo((struct sockaddr *) &ss, sizeof(ss),
 878			    sbuff, sizeof(sbuff), NULL, 0, NI_NUMERICHOST);
 879
 880		memset(&sd, 0, sizeof(sd));
 881		sd.sin_family = PF_INET;
 882		sd.sin_addr.s_addr = ip->daddr;
 883		getnameinfo((struct sockaddr *) &sd, sizeof(sd),
 884			    dbuff, sizeof(dbuff), NULL, 0, NI_NUMERICHOST);
 885
 886		printf("%s -> %s, ", sbuff, dbuff);
 887	}
 888
 889	printf("rxhash: 0x%x\n", ppd->hv1.tp_rxhash);
 890}
 891
 892static void walk_block(struct block_desc *pbd, const int block_num)
 893{
 894	int num_pkts = pbd->h1.num_pkts, i;
 895	unsigned long bytes = 0;
 896	struct tpacket3_hdr *ppd;
 897
 898	ppd = (struct tpacket3_hdr *) ((uint8_t *) pbd +
 899				       pbd->h1.offset_to_first_pkt);
 900	for (i = 0; i < num_pkts; ++i) {
 901		bytes += ppd->tp_snaplen;
 902		display(ppd);
 903
 904		ppd = (struct tpacket3_hdr *) ((uint8_t *) ppd +
 905					       ppd->tp_next_offset);
 906	}
 907
 908	packets_total += num_pkts;
 909	bytes_total += bytes;
 910}
 911
 912static void flush_block(struct block_desc *pbd)
 913{
 914	pbd->h1.block_status = TP_STATUS_KERNEL;
 915}
 916
 917static void teardown_socket(struct ring *ring, int fd)
 918{
 919	munmap(ring->map, ring->req.tp_block_size * ring->req.tp_block_nr);
 920	free(ring->rd);
 921	close(fd);
 922}
 923
 924int main(int argc, char **argp)
 925{
 926	int fd, err;
 927	socklen_t len;
 928	struct ring ring;
 929	struct pollfd pfd;
 930	unsigned int block_num = 0, blocks = 64;
 931	struct block_desc *pbd;
 932	struct tpacket_stats_v3 stats;
 933
 934	if (argc != 2) {
 935		fprintf(stderr, "Usage: %s INTERFACE\n", argp[0]);
 936		return EXIT_FAILURE;
 937	}
 938
 939	signal(SIGINT, sighandler);
 940
 941	memset(&ring, 0, sizeof(ring));
 942	fd = setup_socket(&ring, argp[argc - 1]);
 943	assert(fd > 0);
 944
 945	memset(&pfd, 0, sizeof(pfd));
 946	pfd.fd = fd;
 947	pfd.events = POLLIN | POLLERR;
 948	pfd.revents = 0;
 949
 950	while (likely(!sigint)) {
 951		pbd = (struct block_desc *) ring.rd[block_num].iov_base;
 952
 953		if ((pbd->h1.block_status & TP_STATUS_USER) == 0) {
 954			poll(&pfd, 1, -1);
 955			continue;
 956		}
 957
 958		walk_block(pbd, block_num);
 959		flush_block(pbd);
 960		block_num = (block_num + 1) % blocks;
 961	}
 962
 963	len = sizeof(stats);
 964	err = getsockopt(fd, SOL_PACKET, PACKET_STATISTICS, &stats, &len);
 965	if (err < 0) {
 966		perror("getsockopt");
 967		exit(1);
 968	}
 969
 970	fflush(stdout);
 971	printf("\nReceived %u packets, %lu bytes, %u dropped, freeze_q_cnt: %u\n",
 972	       stats.tp_packets, bytes_total, stats.tp_drops,
 973	       stats.tp_freeze_q_cnt);
 974
 975	teardown_socket(&ring, fd);
 976	return 0;
 977}
 978
 979-------------------------------------------------------------------------------
 980+ PACKET_QDISC_BYPASS
 981-------------------------------------------------------------------------------
 982
 983If there is a requirement to load the network with many packets in a similar
 984fashion as pktgen does, you might set the following option after socket
 985creation:
 986
 987    int one = 1;
 988    setsockopt(fd, SOL_PACKET, PACKET_QDISC_BYPASS, &one, sizeof(one));
 989
 990This has the side-effect, that packets sent through PF_PACKET will bypass the
 991kernel's qdisc layer and are forcedly pushed to the driver directly. Meaning,
 992packet are not buffered, tc disciplines are ignored, increased loss can occur
 993and such packets are also not visible to other PF_PACKET sockets anymore. So,
 994you have been warned; generally, this can be useful for stress testing various
 995components of a system.
 996
 997On default, PACKET_QDISC_BYPASS is disabled and needs to be explicitly enabled
 998on PF_PACKET sockets.
 999
1000-------------------------------------------------------------------------------
1001+ PACKET_TIMESTAMP
1002-------------------------------------------------------------------------------
1003
1004The PACKET_TIMESTAMP setting determines the source of the timestamp in
1005the packet meta information for mmap(2)ed RX_RING and TX_RINGs.  If your
1006NIC is capable of timestamping packets in hardware, you can request those
1007hardware timestamps to be used. Note: you may need to enable the generation
1008of hardware timestamps with SIOCSHWTSTAMP (see related information from
1009Documentation/networking/timestamping.txt).
1010
1011PACKET_TIMESTAMP accepts the same integer bit field as SO_TIMESTAMPING:
1012
1013    int req = SOF_TIMESTAMPING_RAW_HARDWARE;
1014    setsockopt(fd, SOL_PACKET, PACKET_TIMESTAMP, (void *) &req, sizeof(req))
1015
1016For the mmap(2)ed ring buffers, such timestamps are stored in the
1017tpacket{,2,3}_hdr structure's tp_sec and tp_{n,u}sec members. To determine
1018what kind of timestamp has been reported, the tp_status field is binary |'ed
1019with the following possible bits ...
1020
1021    TP_STATUS_TS_RAW_HARDWARE
1022    TP_STATUS_TS_SOFTWARE
1023
1024... that are equivalent to its SOF_TIMESTAMPING_* counterparts. For the
1025RX_RING, if neither is set (i.e. PACKET_TIMESTAMP is not set), then a
1026software fallback was invoked *within* PF_PACKET's processing code (less
1027precise).
1028
1029Getting timestamps for the TX_RING works as follows: i) fill the ring frames,
1030ii) call sendto() e.g. in blocking mode, iii) wait for status of relevant
1031frames to be updated resp. the frame handed over to the application, iv) walk
1032through the frames to pick up the individual hw/sw timestamps.
1033
1034Only (!) if transmit timestamping is enabled, then these bits are combined
1035with binary | with TP_STATUS_AVAILABLE, so you must check for that in your
1036application (e.g. !(tp_status & (TP_STATUS_SEND_REQUEST | TP_STATUS_SENDING))
1037in a first step to see if the frame belongs to the application, and then
1038one can extract the type of timestamp in a second step from tp_status)!
1039
1040If you don't care about them, thus having it disabled, checking for
1041TP_STATUS_AVAILABLE resp. TP_STATUS_WRONG_FORMAT is sufficient. If in the
1042TX_RING part only TP_STATUS_AVAILABLE is set, then the tp_sec and tp_{n,u}sec
1043members do not contain a valid value. For TX_RINGs, by default no timestamp
1044is generated!
1045
1046See include/linux/net_tstamp.h and Documentation/networking/timestamping.txt
1047for more information on hardware timestamps.
1048
1049-------------------------------------------------------------------------------
1050+ Miscellaneous bits
1051-------------------------------------------------------------------------------
1052
1053- Packet sockets work well together with Linux socket filters, thus you also
1054  might want to have a look at Documentation/networking/filter.txt
1055
1056--------------------------------------------------------------------------------
1057+ THANKS
1058--------------------------------------------------------------------------------
1059   
1060   Jesse Brandeburg, for fixing my grammathical/spelling errors
1061