Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Randomized tests for eBPF longest-prefix-match maps
  4 *
  5 * This program runs randomized tests against the lpm-bpf-map. It implements a
  6 * "Trivial Longest Prefix Match" (tlpm) based on simple, linear, singly linked
  7 * lists. The implementation should be pretty straightforward.
  8 *
  9 * Based on tlpm, this inserts randomized data into bpf-lpm-maps and verifies
 10 * the trie-based bpf-map implementation behaves the same way as tlpm.
 11 */
 12
 13#include <assert.h>
 14#include <errno.h>
 15#include <inttypes.h>
 16#include <linux/bpf.h>
 17#include <pthread.h>
 18#include <stdio.h>
 19#include <stdlib.h>
 20#include <string.h>
 21#include <time.h>
 22#include <unistd.h>
 23#include <arpa/inet.h>
 24#include <sys/time.h>
 25
 26#include <bpf/bpf.h>
 27
 28#include "bpf_util.h"
 29#include "bpf_rlimit.h"
 30
 31struct tlpm_node {
 32	struct tlpm_node *next;
 33	size_t n_bits;
 34	uint8_t key[];
 35};
 36
 37static struct tlpm_node *tlpm_match(struct tlpm_node *list,
 38				    const uint8_t *key,
 39				    size_t n_bits);
 40
 41static struct tlpm_node *tlpm_add(struct tlpm_node *list,
 42				  const uint8_t *key,
 43				  size_t n_bits)
 44{
 45	struct tlpm_node *node;
 46	size_t n;
 47
 48	n = (n_bits + 7) / 8;
 49
 50	/* 'overwrite' an equivalent entry if one already exists */
 51	node = tlpm_match(list, key, n_bits);
 52	if (node && node->n_bits == n_bits) {
 53		memcpy(node->key, key, n);
 54		return list;
 55	}
 56
 57	/* add new entry with @key/@n_bits to @list and return new head */
 58
 59	node = malloc(sizeof(*node) + n);
 60	assert(node);
 61
 62	node->next = list;
 63	node->n_bits = n_bits;
 64	memcpy(node->key, key, n);
 65
 66	return node;
 67}
 68
 69static void tlpm_clear(struct tlpm_node *list)
 70{
 71	struct tlpm_node *node;
 72
 73	/* free all entries in @list */
 74
 75	while ((node = list)) {
 76		list = list->next;
 77		free(node);
 78	}
 79}
 80
 81static struct tlpm_node *tlpm_match(struct tlpm_node *list,
 82				    const uint8_t *key,
 83				    size_t n_bits)
 84{
 85	struct tlpm_node *best = NULL;
 86	size_t i;
 87
 88	/* Perform longest prefix-match on @key/@n_bits. That is, iterate all
 89	 * entries and match each prefix against @key. Remember the "best"
 90	 * entry we find (i.e., the longest prefix that matches) and return it
 91	 * to the caller when done.
 92	 */
 93
 94	for ( ; list; list = list->next) {
 95		for (i = 0; i < n_bits && i < list->n_bits; ++i) {
 96			if ((key[i / 8] & (1 << (7 - i % 8))) !=
 97			    (list->key[i / 8] & (1 << (7 - i % 8))))
 98				break;
 99		}
100
101		if (i >= list->n_bits) {
102			if (!best || i > best->n_bits)
103				best = list;
104		}
105	}
106
107	return best;
108}
109
110static struct tlpm_node *tlpm_delete(struct tlpm_node *list,
111				     const uint8_t *key,
112				     size_t n_bits)
113{
114	struct tlpm_node *best = tlpm_match(list, key, n_bits);
115	struct tlpm_node *node;
116
117	if (!best || best->n_bits != n_bits)
118		return list;
119
120	if (best == list) {
121		node = best->next;
122		free(best);
123		return node;
124	}
125
126	for (node = list; node; node = node->next) {
127		if (node->next == best) {
128			node->next = best->next;
129			free(best);
130			return list;
131		}
132	}
133	/* should never get here */
134	assert(0);
135	return list;
136}
137
138static void test_lpm_basic(void)
139{
140	struct tlpm_node *list = NULL, *t1, *t2;
141
142	/* very basic, static tests to verify tlpm works as expected */
143
144	assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 8));
145
146	t1 = list = tlpm_add(list, (uint8_t[]){ 0xff }, 8);
147	assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8));
148	assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16));
149	assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0x00 }, 16));
150	assert(!tlpm_match(list, (uint8_t[]){ 0x7f }, 8));
151	assert(!tlpm_match(list, (uint8_t[]){ 0xfe }, 8));
152	assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 7));
153
154	t2 = list = tlpm_add(list, (uint8_t[]){ 0xff, 0xff }, 16);
155	assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8));
156	assert(t2 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16));
157	assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 15));
158	assert(!tlpm_match(list, (uint8_t[]){ 0x7f, 0xff }, 16));
159
160	list = tlpm_delete(list, (uint8_t[]){ 0xff, 0xff }, 16);
161	assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8));
162	assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16));
163
164	list = tlpm_delete(list, (uint8_t[]){ 0xff }, 8);
165	assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 8));
166
167	tlpm_clear(list);
168}
169
170static void test_lpm_order(void)
171{
172	struct tlpm_node *t1, *t2, *l1 = NULL, *l2 = NULL;
173	size_t i, j;
174
175	/* Verify the tlpm implementation works correctly regardless of the
176	 * order of entries. Insert a random set of entries into @l1, and copy
177	 * the same data in reverse order into @l2. Then verify a lookup of
178	 * random keys will yield the same result in both sets.
179	 */
180
181	for (i = 0; i < (1 << 12); ++i)
182		l1 = tlpm_add(l1, (uint8_t[]){
183					rand() % 0xff,
184					rand() % 0xff,
185				}, rand() % 16 + 1);
186
187	for (t1 = l1; t1; t1 = t1->next)
188		l2 = tlpm_add(l2, t1->key, t1->n_bits);
189
190	for (i = 0; i < (1 << 8); ++i) {
191		uint8_t key[] = { rand() % 0xff, rand() % 0xff };
192
193		t1 = tlpm_match(l1, key, 16);
194		t2 = tlpm_match(l2, key, 16);
195
196		assert(!t1 == !t2);
197		if (t1) {
198			assert(t1->n_bits == t2->n_bits);
199			for (j = 0; j < t1->n_bits; ++j)
200				assert((t1->key[j / 8] & (1 << (7 - j % 8))) ==
201				       (t2->key[j / 8] & (1 << (7 - j % 8))));
202		}
203	}
204
205	tlpm_clear(l1);
206	tlpm_clear(l2);
207}
208
209static void test_lpm_map(int keysize)
210{
211	size_t i, j, n_matches, n_matches_after_delete, n_nodes, n_lookups;
212	struct tlpm_node *t, *list = NULL;
213	struct bpf_lpm_trie_key *key;
214	uint8_t *data, *value;
215	int r, map;
216
217	/* Compare behavior of tlpm vs. bpf-lpm. Create a randomized set of
218	 * prefixes and insert it into both tlpm and bpf-lpm. Then run some
219	 * randomized lookups and verify both maps return the same result.
220	 */
221
222	n_matches = 0;
223	n_matches_after_delete = 0;
224	n_nodes = 1 << 8;
225	n_lookups = 1 << 16;
226
227	data = alloca(keysize);
228	memset(data, 0, keysize);
229
230	value = alloca(keysize + 1);
231	memset(value, 0, keysize + 1);
232
233	key = alloca(sizeof(*key) + keysize);
234	memset(key, 0, sizeof(*key) + keysize);
235
236	map = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE,
237			     sizeof(*key) + keysize,
238			     keysize + 1,
239			     4096,
240			     BPF_F_NO_PREALLOC);
241	assert(map >= 0);
242
243	for (i = 0; i < n_nodes; ++i) {
244		for (j = 0; j < keysize; ++j)
245			value[j] = rand() & 0xff;
246		value[keysize] = rand() % (8 * keysize + 1);
247
248		list = tlpm_add(list, value, value[keysize]);
249
250		key->prefixlen = value[keysize];
251		memcpy(key->data, value, keysize);
252		r = bpf_map_update_elem(map, key, value, 0);
253		assert(!r);
254	}
255
256	for (i = 0; i < n_lookups; ++i) {
257		for (j = 0; j < keysize; ++j)
258			data[j] = rand() & 0xff;
259
260		t = tlpm_match(list, data, 8 * keysize);
261
262		key->prefixlen = 8 * keysize;
263		memcpy(key->data, data, keysize);
264		r = bpf_map_lookup_elem(map, key, value);
265		assert(!r || errno == ENOENT);
266		assert(!t == !!r);
267
268		if (t) {
269			++n_matches;
270			assert(t->n_bits == value[keysize]);
271			for (j = 0; j < t->n_bits; ++j)
272				assert((t->key[j / 8] & (1 << (7 - j % 8))) ==
273				       (value[j / 8] & (1 << (7 - j % 8))));
274		}
275	}
276
277	/* Remove the first half of the elements in the tlpm and the
278	 * corresponding nodes from the bpf-lpm.  Then run the same
279	 * large number of random lookups in both and make sure they match.
280	 * Note: we need to count the number of nodes actually inserted
281	 * since there may have been duplicates.
282	 */
283	for (i = 0, t = list; t; i++, t = t->next)
284		;
285	for (j = 0; j < i / 2; ++j) {
286		key->prefixlen = list->n_bits;
287		memcpy(key->data, list->key, keysize);
288		r = bpf_map_delete_elem(map, key);
289		assert(!r);
290		list = tlpm_delete(list, list->key, list->n_bits);
291		assert(list);
292	}
293	for (i = 0; i < n_lookups; ++i) {
294		for (j = 0; j < keysize; ++j)
295			data[j] = rand() & 0xff;
296
297		t = tlpm_match(list, data, 8 * keysize);
298
299		key->prefixlen = 8 * keysize;
300		memcpy(key->data, data, keysize);
301		r = bpf_map_lookup_elem(map, key, value);
302		assert(!r || errno == ENOENT);
303		assert(!t == !!r);
304
305		if (t) {
306			++n_matches_after_delete;
307			assert(t->n_bits == value[keysize]);
308			for (j = 0; j < t->n_bits; ++j)
309				assert((t->key[j / 8] & (1 << (7 - j % 8))) ==
310				       (value[j / 8] & (1 << (7 - j % 8))));
311		}
312	}
313
314	close(map);
315	tlpm_clear(list);
316
317	/* With 255 random nodes in the map, we are pretty likely to match
318	 * something on every lookup. For statistics, use this:
319	 *
320	 *     printf("          nodes: %zu\n"
321	 *            "        lookups: %zu\n"
322	 *            "        matches: %zu\n"
323	 *            "matches(delete): %zu\n",
324	 *            n_nodes, n_lookups, n_matches, n_matches_after_delete);
325	 */
326}
327
328/* Test the implementation with some 'real world' examples */
329
330static void test_lpm_ipaddr(void)
331{
332	struct bpf_lpm_trie_key *key_ipv4;
333	struct bpf_lpm_trie_key *key_ipv6;
334	size_t key_size_ipv4;
335	size_t key_size_ipv6;
336	int map_fd_ipv4;
337	int map_fd_ipv6;
338	__u64 value;
339
340	key_size_ipv4 = sizeof(*key_ipv4) + sizeof(__u32);
341	key_size_ipv6 = sizeof(*key_ipv6) + sizeof(__u32) * 4;
342	key_ipv4 = alloca(key_size_ipv4);
343	key_ipv6 = alloca(key_size_ipv6);
344
345	map_fd_ipv4 = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE,
346				     key_size_ipv4, sizeof(value),
347				     100, BPF_F_NO_PREALLOC);
348	assert(map_fd_ipv4 >= 0);
349
350	map_fd_ipv6 = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE,
351				     key_size_ipv6, sizeof(value),
352				     100, BPF_F_NO_PREALLOC);
353	assert(map_fd_ipv6 >= 0);
354
355	/* Fill data some IPv4 and IPv6 address ranges */
356	value = 1;
357	key_ipv4->prefixlen = 16;
358	inet_pton(AF_INET, "192.168.0.0", key_ipv4->data);
359	assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0);
360
361	value = 2;
362	key_ipv4->prefixlen = 24;
363	inet_pton(AF_INET, "192.168.0.0", key_ipv4->data);
364	assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0);
365
366	value = 3;
367	key_ipv4->prefixlen = 24;
368	inet_pton(AF_INET, "192.168.128.0", key_ipv4->data);
369	assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0);
370
371	value = 5;
372	key_ipv4->prefixlen = 24;
373	inet_pton(AF_INET, "192.168.1.0", key_ipv4->data);
374	assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0);
375
376	value = 4;
377	key_ipv4->prefixlen = 23;
378	inet_pton(AF_INET, "192.168.0.0", key_ipv4->data);
379	assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0);
380
381	value = 0xdeadbeef;
382	key_ipv6->prefixlen = 64;
383	inet_pton(AF_INET6, "2a00:1450:4001:814::200e", key_ipv6->data);
384	assert(bpf_map_update_elem(map_fd_ipv6, key_ipv6, &value, 0) == 0);
385
386	/* Set tprefixlen to maximum for lookups */
387	key_ipv4->prefixlen = 32;
388	key_ipv6->prefixlen = 128;
389
390	/* Test some lookups that should come back with a value */
391	inet_pton(AF_INET, "192.168.128.23", key_ipv4->data);
392	assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == 0);
393	assert(value == 3);
394
395	inet_pton(AF_INET, "192.168.0.1", key_ipv4->data);
396	assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == 0);
397	assert(value == 2);
398
399	inet_pton(AF_INET6, "2a00:1450:4001:814::", key_ipv6->data);
400	assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == 0);
401	assert(value == 0xdeadbeef);
402
403	inet_pton(AF_INET6, "2a00:1450:4001:814::1", key_ipv6->data);
404	assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == 0);
405	assert(value == 0xdeadbeef);
406
407	/* Test some lookups that should not match any entry */
408	inet_pton(AF_INET, "10.0.0.1", key_ipv4->data);
409	assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == -1 &&
410	       errno == ENOENT);
411
412	inet_pton(AF_INET, "11.11.11.11", key_ipv4->data);
413	assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == -1 &&
414	       errno == ENOENT);
415
416	inet_pton(AF_INET6, "2a00:ffff::", key_ipv6->data);
417	assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == -1 &&
418	       errno == ENOENT);
419
420	close(map_fd_ipv4);
421	close(map_fd_ipv6);
422}
423
424static void test_lpm_delete(void)
425{
426	struct bpf_lpm_trie_key *key;
427	size_t key_size;
428	int map_fd;
429	__u64 value;
430
431	key_size = sizeof(*key) + sizeof(__u32);
432	key = alloca(key_size);
433
434	map_fd = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE,
435				key_size, sizeof(value),
436				100, BPF_F_NO_PREALLOC);
437	assert(map_fd >= 0);
438
439	/* Add nodes:
440	 * 192.168.0.0/16   (1)
441	 * 192.168.0.0/24   (2)
442	 * 192.168.128.0/24 (3)
443	 * 192.168.1.0/24   (4)
444	 *
445	 *         (1)
446	 *        /   \
447         *     (IM)    (3)
448	 *    /   \
449         *   (2)  (4)
450	 */
451	value = 1;
452	key->prefixlen = 16;
453	inet_pton(AF_INET, "192.168.0.0", key->data);
454	assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0);
455
456	value = 2;
457	key->prefixlen = 24;
458	inet_pton(AF_INET, "192.168.0.0", key->data);
459	assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0);
460
461	value = 3;
462	key->prefixlen = 24;
463	inet_pton(AF_INET, "192.168.128.0", key->data);
464	assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0);
465
466	value = 4;
467	key->prefixlen = 24;
468	inet_pton(AF_INET, "192.168.1.0", key->data);
469	assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0);
470
471	/* remove non-existent node */
472	key->prefixlen = 32;
473	inet_pton(AF_INET, "10.0.0.1", key->data);
474	assert(bpf_map_lookup_elem(map_fd, key, &value) == -1 &&
475		errno == ENOENT);
476
477	/* assert initial lookup */
478	key->prefixlen = 32;
479	inet_pton(AF_INET, "192.168.0.1", key->data);
480	assert(bpf_map_lookup_elem(map_fd, key, &value) == 0);
481	assert(value == 2);
482
483	/* remove leaf node */
484	key->prefixlen = 24;
485	inet_pton(AF_INET, "192.168.0.0", key->data);
486	assert(bpf_map_delete_elem(map_fd, key) == 0);
487
488	key->prefixlen = 32;
489	inet_pton(AF_INET, "192.168.0.1", key->data);
490	assert(bpf_map_lookup_elem(map_fd, key, &value) == 0);
491	assert(value == 1);
492
493	/* remove leaf (and intermediary) node */
494	key->prefixlen = 24;
495	inet_pton(AF_INET, "192.168.1.0", key->data);
496	assert(bpf_map_delete_elem(map_fd, key) == 0);
497
498	key->prefixlen = 32;
499	inet_pton(AF_INET, "192.168.1.1", key->data);
500	assert(bpf_map_lookup_elem(map_fd, key, &value) == 0);
501	assert(value == 1);
502
503	/* remove root node */
504	key->prefixlen = 16;
505	inet_pton(AF_INET, "192.168.0.0", key->data);
506	assert(bpf_map_delete_elem(map_fd, key) == 0);
507
508	key->prefixlen = 32;
509	inet_pton(AF_INET, "192.168.128.1", key->data);
510	assert(bpf_map_lookup_elem(map_fd, key, &value) == 0);
511	assert(value == 3);
512
513	/* remove last node */
514	key->prefixlen = 24;
515	inet_pton(AF_INET, "192.168.128.0", key->data);
516	assert(bpf_map_delete_elem(map_fd, key) == 0);
517
518	key->prefixlen = 32;
519	inet_pton(AF_INET, "192.168.128.1", key->data);
520	assert(bpf_map_lookup_elem(map_fd, key, &value) == -1 &&
521		errno == ENOENT);
522
523	close(map_fd);
524}
525
526static void test_lpm_get_next_key(void)
527{
528	struct bpf_lpm_trie_key *key_p, *next_key_p;
529	size_t key_size;
530	__u32 value = 0;
531	int map_fd;
532
533	key_size = sizeof(*key_p) + sizeof(__u32);
534	key_p = alloca(key_size);
535	next_key_p = alloca(key_size);
536
537	map_fd = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE, key_size, sizeof(value),
538				100, BPF_F_NO_PREALLOC);
539	assert(map_fd >= 0);
540
541	/* empty tree. get_next_key should return ENOENT */
542	assert(bpf_map_get_next_key(map_fd, NULL, key_p) == -1 &&
543	       errno == ENOENT);
544
545	/* get and verify the first key, get the second one should fail. */
546	key_p->prefixlen = 16;
547	inet_pton(AF_INET, "192.168.0.0", key_p->data);
548	assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0);
549
550	memset(key_p, 0, key_size);
551	assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0);
552	assert(key_p->prefixlen == 16 && key_p->data[0] == 192 &&
553	       key_p->data[1] == 168);
554
555	assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -1 &&
556	       errno == ENOENT);
557
558	/* no exact matching key should get the first one in post order. */
559	key_p->prefixlen = 8;
560	assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0);
561	assert(key_p->prefixlen == 16 && key_p->data[0] == 192 &&
562	       key_p->data[1] == 168);
563
564	/* add one more element (total two) */
565	key_p->prefixlen = 24;
566	inet_pton(AF_INET, "192.168.0.0", key_p->data);
567	assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0);
568
569	memset(key_p, 0, key_size);
570	assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0);
571	assert(key_p->prefixlen == 24 && key_p->data[0] == 192 &&
572	       key_p->data[1] == 168 && key_p->data[2] == 0);
573
574	memset(next_key_p, 0, key_size);
575	assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
576	assert(next_key_p->prefixlen == 16 && next_key_p->data[0] == 192 &&
577	       next_key_p->data[1] == 168);
578
579	memcpy(key_p, next_key_p, key_size);
580	assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -1 &&
581	       errno == ENOENT);
582
583	/* Add one more element (total three) */
584	key_p->prefixlen = 24;
585	inet_pton(AF_INET, "192.168.128.0", key_p->data);
586	assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0);
587
588	memset(key_p, 0, key_size);
589	assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0);
590	assert(key_p->prefixlen == 24 && key_p->data[0] == 192 &&
591	       key_p->data[1] == 168 && key_p->data[2] == 0);
592
593	memset(next_key_p, 0, key_size);
594	assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
595	assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 &&
596	       next_key_p->data[1] == 168 && next_key_p->data[2] == 128);
597
598	memcpy(key_p, next_key_p, key_size);
599	assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
600	assert(next_key_p->prefixlen == 16 && next_key_p->data[0] == 192 &&
601	       next_key_p->data[1] == 168);
602
603	memcpy(key_p, next_key_p, key_size);
604	assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -1 &&
605	       errno == ENOENT);
606
607	/* Add one more element (total four) */
608	key_p->prefixlen = 24;
609	inet_pton(AF_INET, "192.168.1.0", key_p->data);
610	assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0);
611
612	memset(key_p, 0, key_size);
613	assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0);
614	assert(key_p->prefixlen == 24 && key_p->data[0] == 192 &&
615	       key_p->data[1] == 168 && key_p->data[2] == 0);
616
617	memset(next_key_p, 0, key_size);
618	assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
619	assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 &&
620	       next_key_p->data[1] == 168 && next_key_p->data[2] == 1);
621
622	memcpy(key_p, next_key_p, key_size);
623	assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
624	assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 &&
625	       next_key_p->data[1] == 168 && next_key_p->data[2] == 128);
626
627	memcpy(key_p, next_key_p, key_size);
628	assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
629	assert(next_key_p->prefixlen == 16 && next_key_p->data[0] == 192 &&
630	       next_key_p->data[1] == 168);
631
632	memcpy(key_p, next_key_p, key_size);
633	assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -1 &&
634	       errno == ENOENT);
635
636	/* no exact matching key should return the first one in post order */
637	key_p->prefixlen = 22;
638	inet_pton(AF_INET, "192.168.1.0", key_p->data);
639	assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
640	assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 &&
641	       next_key_p->data[1] == 168 && next_key_p->data[2] == 0);
642
643	close(map_fd);
644}
645
646#define MAX_TEST_KEYS	4
647struct lpm_mt_test_info {
648	int cmd; /* 0: update, 1: delete, 2: lookup, 3: get_next_key */
649	int iter;
650	int map_fd;
651	struct {
652		__u32 prefixlen;
653		__u32 data;
654	} key[MAX_TEST_KEYS];
655};
656
657static void *lpm_test_command(void *arg)
658{
659	int i, j, ret, iter, key_size;
660	struct lpm_mt_test_info *info = arg;
661	struct bpf_lpm_trie_key *key_p;
662
663	key_size = sizeof(struct bpf_lpm_trie_key) + sizeof(__u32);
664	key_p = alloca(key_size);
665	for (iter = 0; iter < info->iter; iter++)
666		for (i = 0; i < MAX_TEST_KEYS; i++) {
667			/* first half of iterations in forward order,
668			 * and second half in backward order.
669			 */
670			j = (iter < (info->iter / 2)) ? i : MAX_TEST_KEYS - i - 1;
671			key_p->prefixlen = info->key[j].prefixlen;
672			memcpy(key_p->data, &info->key[j].data, sizeof(__u32));
673			if (info->cmd == 0) {
674				__u32 value = j;
675				/* update must succeed */
676				assert(bpf_map_update_elem(info->map_fd, key_p, &value, 0) == 0);
677			} else if (info->cmd == 1) {
678				ret = bpf_map_delete_elem(info->map_fd, key_p);
679				assert(ret == 0 || errno == ENOENT);
680			} else if (info->cmd == 2) {
681				__u32 value;
682				ret = bpf_map_lookup_elem(info->map_fd, key_p, &value);
683				assert(ret == 0 || errno == ENOENT);
684			} else {
685				struct bpf_lpm_trie_key *next_key_p = alloca(key_size);
686				ret = bpf_map_get_next_key(info->map_fd, key_p, next_key_p);
687				assert(ret == 0 || errno == ENOENT || errno == ENOMEM);
688			}
689		}
690
691	// Pass successful exit info back to the main thread
692	pthread_exit((void *)info);
693}
694
695static void setup_lpm_mt_test_info(struct lpm_mt_test_info *info, int map_fd)
696{
697	info->iter = 2000;
698	info->map_fd = map_fd;
699	info->key[0].prefixlen = 16;
700	inet_pton(AF_INET, "192.168.0.0", &info->key[0].data);
701	info->key[1].prefixlen = 24;
702	inet_pton(AF_INET, "192.168.0.0", &info->key[1].data);
703	info->key[2].prefixlen = 24;
704	inet_pton(AF_INET, "192.168.128.0", &info->key[2].data);
705	info->key[3].prefixlen = 24;
706	inet_pton(AF_INET, "192.168.1.0", &info->key[3].data);
707}
708
709static void test_lpm_multi_thread(void)
710{
711	struct lpm_mt_test_info info[4];
712	size_t key_size, value_size;
713	pthread_t thread_id[4];
714	int i, map_fd;
715	void *ret;
716
717	/* create a trie */
718	value_size = sizeof(__u32);
719	key_size = sizeof(struct bpf_lpm_trie_key) + value_size;
720	map_fd = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE, key_size, value_size,
721				100, BPF_F_NO_PREALLOC);
722
723	/* create 4 threads to test update, delete, lookup and get_next_key */
724	setup_lpm_mt_test_info(&info[0], map_fd);
725	for (i = 0; i < 4; i++) {
726		if (i != 0)
727			memcpy(&info[i], &info[0], sizeof(info[i]));
728		info[i].cmd = i;
729		assert(pthread_create(&thread_id[i], NULL, &lpm_test_command, &info[i]) == 0);
730	}
731
732	for (i = 0; i < 4; i++)
733		assert(pthread_join(thread_id[i], &ret) == 0 && ret == (void *)&info[i]);
734
735	close(map_fd);
736}
737
738int main(void)
739{
740	int i;
741
742	/* we want predictable, pseudo random tests */
743	srand(0xf00ba1);
744
745	test_lpm_basic();
746	test_lpm_order();
747
748	/* Test with 8, 16, 24, 32, ... 128 bit prefix length */
749	for (i = 1; i <= 16; ++i)
750		test_lpm_map(i);
751
752	test_lpm_ipaddr();
753	test_lpm_delete();
754	test_lpm_get_next_key();
755	test_lpm_multi_thread();
756
757	printf("test_lpm: OK\n");
758	return 0;
759}