Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * lib/btree.c	- Simple In-memory B+Tree
  4 *
 
 
  5 * Copyright (c) 2007-2008 Joern Engel <joern@purestorage.com>
  6 * Bits and pieces stolen from Peter Zijlstra's code, which is
  7 * Copyright 2007, Red Hat Inc. Peter Zijlstra
 
  8 *
  9 * see http://programming.kicks-ass.net/kernel-patches/vma_lookup/btree.patch
 10 *
 11 * A relatively simple B+Tree implementation.  I have written it as a learning
 12 * exercise to understand how B+Trees work.  Turned out to be useful as well.
 13 *
 14 * B+Trees can be used similar to Linux radix trees (which don't have anything
 15 * in common with textbook radix trees, beware).  Prerequisite for them working
 16 * well is that access to a random tree node is much faster than a large number
 17 * of operations within each node.
 18 *
 19 * Disks have fulfilled the prerequisite for a long time.  More recently DRAM
 20 * has gained similar properties, as memory access times, when measured in cpu
 21 * cycles, have increased.  Cacheline sizes have increased as well, which also
 22 * helps B+Trees.
 23 *
 24 * Compared to radix trees, B+Trees are more efficient when dealing with a
 25 * sparsely populated address space.  Between 25% and 50% of the memory is
 26 * occupied with valid pointers.  When densely populated, radix trees contain
 27 * ~98% pointers - hard to beat.  Very sparse radix trees contain only ~2%
 28 * pointers.
 29 *
 30 * This particular implementation stores pointers identified by a long value.
 31 * Storing NULL pointers is illegal, lookup will return NULL when no entry
 32 * was found.
 33 *
 34 * A tricks was used that is not commonly found in textbooks.  The lowest
 35 * values are to the right, not to the left.  All used slots within a node
 36 * are on the left, all unused slots contain NUL values.  Most operations
 37 * simply loop once over all slots and terminate on the first NUL.
 38 */
 39
 40#include <linux/btree.h>
 41#include <linux/cache.h>
 42#include <linux/kernel.h>
 43#include <linux/slab.h>
 44#include <linux/module.h>
 45
 
 46#define NODESIZE MAX(L1_CACHE_BYTES, 128)
 47
 48struct btree_geo {
 49	int keylen;
 50	int no_pairs;
 51	int no_longs;
 52};
 53
 54struct btree_geo btree_geo32 = {
 55	.keylen = 1,
 56	.no_pairs = NODESIZE / sizeof(long) / 2,
 57	.no_longs = NODESIZE / sizeof(long) / 2,
 58};
 59EXPORT_SYMBOL_GPL(btree_geo32);
 60
 61#define LONG_PER_U64 (64 / BITS_PER_LONG)
 62struct btree_geo btree_geo64 = {
 63	.keylen = LONG_PER_U64,
 64	.no_pairs = NODESIZE / sizeof(long) / (1 + LONG_PER_U64),
 65	.no_longs = LONG_PER_U64 * (NODESIZE / sizeof(long) / (1 + LONG_PER_U64)),
 66};
 67EXPORT_SYMBOL_GPL(btree_geo64);
 68
 69struct btree_geo btree_geo128 = {
 70	.keylen = 2 * LONG_PER_U64,
 71	.no_pairs = NODESIZE / sizeof(long) / (1 + 2 * LONG_PER_U64),
 72	.no_longs = 2 * LONG_PER_U64 * (NODESIZE / sizeof(long) / (1 + 2 * LONG_PER_U64)),
 73};
 74EXPORT_SYMBOL_GPL(btree_geo128);
 75
 76#define MAX_KEYLEN	(2 * LONG_PER_U64)
 77
 78static struct kmem_cache *btree_cachep;
 79
 80void *btree_alloc(gfp_t gfp_mask, void *pool_data)
 81{
 82	return kmem_cache_alloc(btree_cachep, gfp_mask);
 83}
 84EXPORT_SYMBOL_GPL(btree_alloc);
 85
 86void btree_free(void *element, void *pool_data)
 87{
 88	kmem_cache_free(btree_cachep, element);
 89}
 90EXPORT_SYMBOL_GPL(btree_free);
 91
 92static unsigned long *btree_node_alloc(struct btree_head *head, gfp_t gfp)
 93{
 94	unsigned long *node;
 95
 96	node = mempool_alloc(head->mempool, gfp);
 97	if (likely(node))
 98		memset(node, 0, NODESIZE);
 99	return node;
100}
101
102static int longcmp(const unsigned long *l1, const unsigned long *l2, size_t n)
103{
104	size_t i;
105
106	for (i = 0; i < n; i++) {
107		if (l1[i] < l2[i])
108			return -1;
109		if (l1[i] > l2[i])
110			return 1;
111	}
112	return 0;
113}
114
115static unsigned long *longcpy(unsigned long *dest, const unsigned long *src,
116		size_t n)
117{
118	size_t i;
119
120	for (i = 0; i < n; i++)
121		dest[i] = src[i];
122	return dest;
123}
124
125static unsigned long *longset(unsigned long *s, unsigned long c, size_t n)
126{
127	size_t i;
128
129	for (i = 0; i < n; i++)
130		s[i] = c;
131	return s;
132}
133
134static void dec_key(struct btree_geo *geo, unsigned long *key)
135{
136	unsigned long val;
137	int i;
138
139	for (i = geo->keylen - 1; i >= 0; i--) {
140		val = key[i];
141		key[i] = val - 1;
142		if (val)
143			break;
144	}
145}
146
147static unsigned long *bkey(struct btree_geo *geo, unsigned long *node, int n)
148{
149	return &node[n * geo->keylen];
150}
151
152static void *bval(struct btree_geo *geo, unsigned long *node, int n)
153{
154	return (void *)node[geo->no_longs + n];
155}
156
157static void setkey(struct btree_geo *geo, unsigned long *node, int n,
158		   unsigned long *key)
159{
160	longcpy(bkey(geo, node, n), key, geo->keylen);
161}
162
163static void setval(struct btree_geo *geo, unsigned long *node, int n,
164		   void *val)
165{
166	node[geo->no_longs + n] = (unsigned long) val;
167}
168
169static void clearpair(struct btree_geo *geo, unsigned long *node, int n)
170{
171	longset(bkey(geo, node, n), 0, geo->keylen);
172	node[geo->no_longs + n] = 0;
173}
174
175static inline void __btree_init(struct btree_head *head)
176{
177	head->node = NULL;
178	head->height = 0;
179}
180
181void btree_init_mempool(struct btree_head *head, mempool_t *mempool)
182{
183	__btree_init(head);
184	head->mempool = mempool;
185}
186EXPORT_SYMBOL_GPL(btree_init_mempool);
187
188int btree_init(struct btree_head *head)
189{
190	__btree_init(head);
191	head->mempool = mempool_create(0, btree_alloc, btree_free, NULL);
192	if (!head->mempool)
193		return -ENOMEM;
194	return 0;
195}
196EXPORT_SYMBOL_GPL(btree_init);
197
198void btree_destroy(struct btree_head *head)
199{
200	mempool_free(head->node, head->mempool);
201	mempool_destroy(head->mempool);
202	head->mempool = NULL;
203}
204EXPORT_SYMBOL_GPL(btree_destroy);
205
206void *btree_last(struct btree_head *head, struct btree_geo *geo,
207		 unsigned long *key)
208{
209	int height = head->height;
210	unsigned long *node = head->node;
211
212	if (height == 0)
213		return NULL;
214
215	for ( ; height > 1; height--)
216		node = bval(geo, node, 0);
217
218	longcpy(key, bkey(geo, node, 0), geo->keylen);
219	return bval(geo, node, 0);
220}
221EXPORT_SYMBOL_GPL(btree_last);
222
223static int keycmp(struct btree_geo *geo, unsigned long *node, int pos,
224		  unsigned long *key)
225{
226	return longcmp(bkey(geo, node, pos), key, geo->keylen);
227}
228
229static int keyzero(struct btree_geo *geo, unsigned long *key)
230{
231	int i;
232
233	for (i = 0; i < geo->keylen; i++)
234		if (key[i])
235			return 0;
236
237	return 1;
238}
239
240static void *btree_lookup_node(struct btree_head *head, struct btree_geo *geo,
241		unsigned long *key)
242{
243	int i, height = head->height;
244	unsigned long *node = head->node;
245
246	if (height == 0)
247		return NULL;
248
249	for ( ; height > 1; height--) {
250		for (i = 0; i < geo->no_pairs; i++)
251			if (keycmp(geo, node, i, key) <= 0)
252				break;
253		if (i == geo->no_pairs)
254			return NULL;
255		node = bval(geo, node, i);
256		if (!node)
257			return NULL;
258	}
259	return node;
260}
261
262void *btree_lookup(struct btree_head *head, struct btree_geo *geo,
263		unsigned long *key)
264{
265	int i;
266	unsigned long *node;
267
268	node = btree_lookup_node(head, geo, key);
269	if (!node)
270		return NULL;
271
272	for (i = 0; i < geo->no_pairs; i++)
273		if (keycmp(geo, node, i, key) == 0)
274			return bval(geo, node, i);
275	return NULL;
276}
277EXPORT_SYMBOL_GPL(btree_lookup);
278
279int btree_update(struct btree_head *head, struct btree_geo *geo,
280		 unsigned long *key, void *val)
281{
282	int i;
283	unsigned long *node;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
284
285	node = btree_lookup_node(head, geo, key);
286	if (!node)
287		return -ENOENT;
288
289	for (i = 0; i < geo->no_pairs; i++)
290		if (keycmp(geo, node, i, key) == 0) {
291			setval(geo, node, i, val);
292			return 0;
293		}
294	return -ENOENT;
295}
296EXPORT_SYMBOL_GPL(btree_update);
297
298/*
299 * Usually this function is quite similar to normal lookup.  But the key of
300 * a parent node may be smaller than the smallest key of all its siblings.
301 * In such a case we cannot just return NULL, as we have only proven that no
302 * key smaller than __key, but larger than this parent key exists.
303 * So we set __key to the parent key and retry.  We have to use the smallest
304 * such parent key, which is the last parent key we encountered.
305 */
306void *btree_get_prev(struct btree_head *head, struct btree_geo *geo,
307		     unsigned long *__key)
308{
309	int i, height;
310	unsigned long *node, *oldnode;
311	unsigned long *retry_key = NULL, key[MAX_KEYLEN];
312
313	if (keyzero(geo, __key))
314		return NULL;
315
316	if (head->height == 0)
317		return NULL;
318	longcpy(key, __key, geo->keylen);
319retry:
320	dec_key(geo, key);
321
322	node = head->node;
323	for (height = head->height ; height > 1; height--) {
324		for (i = 0; i < geo->no_pairs; i++)
325			if (keycmp(geo, node, i, key) <= 0)
326				break;
327		if (i == geo->no_pairs)
328			goto miss;
329		oldnode = node;
330		node = bval(geo, node, i);
331		if (!node)
332			goto miss;
333		retry_key = bkey(geo, oldnode, i);
334	}
335
336	if (!node)
337		goto miss;
338
339	for (i = 0; i < geo->no_pairs; i++) {
340		if (keycmp(geo, node, i, key) <= 0) {
341			if (bval(geo, node, i)) {
342				longcpy(__key, bkey(geo, node, i), geo->keylen);
343				return bval(geo, node, i);
344			} else
345				goto miss;
346		}
347	}
348miss:
349	if (retry_key) {
350		longcpy(key, retry_key, geo->keylen);
351		retry_key = NULL;
352		goto retry;
353	}
354	return NULL;
355}
356EXPORT_SYMBOL_GPL(btree_get_prev);
357
358static int getpos(struct btree_geo *geo, unsigned long *node,
359		unsigned long *key)
360{
361	int i;
362
363	for (i = 0; i < geo->no_pairs; i++) {
364		if (keycmp(geo, node, i, key) <= 0)
365			break;
366	}
367	return i;
368}
369
370static int getfill(struct btree_geo *geo, unsigned long *node, int start)
371{
372	int i;
373
374	for (i = start; i < geo->no_pairs; i++)
375		if (!bval(geo, node, i))
376			break;
377	return i;
378}
379
380/*
381 * locate the correct leaf node in the btree
382 */
383static unsigned long *find_level(struct btree_head *head, struct btree_geo *geo,
384		unsigned long *key, int level)
385{
386	unsigned long *node = head->node;
387	int i, height;
388
389	for (height = head->height; height > level; height--) {
390		for (i = 0; i < geo->no_pairs; i++)
391			if (keycmp(geo, node, i, key) <= 0)
392				break;
393
394		if ((i == geo->no_pairs) || !bval(geo, node, i)) {
395			/* right-most key is too large, update it */
396			/* FIXME: If the right-most key on higher levels is
397			 * always zero, this wouldn't be necessary. */
398			i--;
399			setkey(geo, node, i, key);
400		}
401		BUG_ON(i < 0);
402		node = bval(geo, node, i);
403	}
404	BUG_ON(!node);
405	return node;
406}
407
408static int btree_grow(struct btree_head *head, struct btree_geo *geo,
409		      gfp_t gfp)
410{
411	unsigned long *node;
412	int fill;
413
414	node = btree_node_alloc(head, gfp);
415	if (!node)
416		return -ENOMEM;
417	if (head->node) {
418		fill = getfill(geo, head->node, 0);
419		setkey(geo, node, 0, bkey(geo, head->node, fill - 1));
420		setval(geo, node, 0, head->node);
421	}
422	head->node = node;
423	head->height++;
424	return 0;
425}
426
427static void btree_shrink(struct btree_head *head, struct btree_geo *geo)
428{
429	unsigned long *node;
430	int fill;
431
432	if (head->height <= 1)
433		return;
434
435	node = head->node;
436	fill = getfill(geo, node, 0);
437	BUG_ON(fill > 1);
438	head->node = bval(geo, node, 0);
439	head->height--;
440	mempool_free(node, head->mempool);
441}
442
443static int btree_insert_level(struct btree_head *head, struct btree_geo *geo,
444			      unsigned long *key, void *val, int level,
445			      gfp_t gfp)
446{
447	unsigned long *node;
448	int i, pos, fill, err;
449
450	BUG_ON(!val);
451	if (head->height < level) {
452		err = btree_grow(head, geo, gfp);
453		if (err)
454			return err;
455	}
456
457retry:
458	node = find_level(head, geo, key, level);
459	pos = getpos(geo, node, key);
460	fill = getfill(geo, node, pos);
461	/* two identical keys are not allowed */
462	BUG_ON(pos < fill && keycmp(geo, node, pos, key) == 0);
463
464	if (fill == geo->no_pairs) {
465		/* need to split node */
466		unsigned long *new;
467
468		new = btree_node_alloc(head, gfp);
469		if (!new)
470			return -ENOMEM;
471		err = btree_insert_level(head, geo,
472				bkey(geo, node, fill / 2 - 1),
473				new, level + 1, gfp);
474		if (err) {
475			mempool_free(new, head->mempool);
476			return err;
477		}
478		for (i = 0; i < fill / 2; i++) {
479			setkey(geo, new, i, bkey(geo, node, i));
480			setval(geo, new, i, bval(geo, node, i));
481			setkey(geo, node, i, bkey(geo, node, i + fill / 2));
482			setval(geo, node, i, bval(geo, node, i + fill / 2));
483			clearpair(geo, node, i + fill / 2);
484		}
485		if (fill & 1) {
486			setkey(geo, node, i, bkey(geo, node, fill - 1));
487			setval(geo, node, i, bval(geo, node, fill - 1));
488			clearpair(geo, node, fill - 1);
489		}
490		goto retry;
491	}
492	BUG_ON(fill >= geo->no_pairs);
493
494	/* shift and insert */
495	for (i = fill; i > pos; i--) {
496		setkey(geo, node, i, bkey(geo, node, i - 1));
497		setval(geo, node, i, bval(geo, node, i - 1));
498	}
499	setkey(geo, node, pos, key);
500	setval(geo, node, pos, val);
501
502	return 0;
503}
504
505int btree_insert(struct btree_head *head, struct btree_geo *geo,
506		unsigned long *key, void *val, gfp_t gfp)
507{
508	BUG_ON(!val);
509	return btree_insert_level(head, geo, key, val, 1, gfp);
510}
511EXPORT_SYMBOL_GPL(btree_insert);
512
513static void *btree_remove_level(struct btree_head *head, struct btree_geo *geo,
514		unsigned long *key, int level);
515static void merge(struct btree_head *head, struct btree_geo *geo, int level,
516		unsigned long *left, int lfill,
517		unsigned long *right, int rfill,
518		unsigned long *parent, int lpos)
519{
520	int i;
521
522	for (i = 0; i < rfill; i++) {
523		/* Move all keys to the left */
524		setkey(geo, left, lfill + i, bkey(geo, right, i));
525		setval(geo, left, lfill + i, bval(geo, right, i));
526	}
527	/* Exchange left and right child in parent */
528	setval(geo, parent, lpos, right);
529	setval(geo, parent, lpos + 1, left);
530	/* Remove left (formerly right) child from parent */
531	btree_remove_level(head, geo, bkey(geo, parent, lpos), level + 1);
532	mempool_free(right, head->mempool);
533}
534
535static void rebalance(struct btree_head *head, struct btree_geo *geo,
536		unsigned long *key, int level, unsigned long *child, int fill)
537{
538	unsigned long *parent, *left = NULL, *right = NULL;
539	int i, no_left, no_right;
540
541	if (fill == 0) {
542		/* Because we don't steal entries from a neighbour, this case
543		 * can happen.  Parent node contains a single child, this
544		 * node, so merging with a sibling never happens.
545		 */
546		btree_remove_level(head, geo, key, level + 1);
547		mempool_free(child, head->mempool);
548		return;
549	}
550
551	parent = find_level(head, geo, key, level + 1);
552	i = getpos(geo, parent, key);
553	BUG_ON(bval(geo, parent, i) != child);
554
555	if (i > 0) {
556		left = bval(geo, parent, i - 1);
557		no_left = getfill(geo, left, 0);
558		if (fill + no_left <= geo->no_pairs) {
559			merge(head, geo, level,
560					left, no_left,
561					child, fill,
562					parent, i - 1);
563			return;
564		}
565	}
566	if (i + 1 < getfill(geo, parent, i)) {
567		right = bval(geo, parent, i + 1);
568		no_right = getfill(geo, right, 0);
569		if (fill + no_right <= geo->no_pairs) {
570			merge(head, geo, level,
571					child, fill,
572					right, no_right,
573					parent, i);
574			return;
575		}
576	}
577	/*
578	 * We could also try to steal one entry from the left or right
579	 * neighbor.  By not doing so we changed the invariant from
580	 * "all nodes are at least half full" to "no two neighboring
581	 * nodes can be merged".  Which means that the average fill of
582	 * all nodes is still half or better.
583	 */
584}
585
586static void *btree_remove_level(struct btree_head *head, struct btree_geo *geo,
587		unsigned long *key, int level)
588{
589	unsigned long *node;
590	int i, pos, fill;
591	void *ret;
592
593	if (level > head->height) {
594		/* we recursed all the way up */
595		head->height = 0;
596		head->node = NULL;
597		return NULL;
598	}
599
600	node = find_level(head, geo, key, level);
601	pos = getpos(geo, node, key);
602	fill = getfill(geo, node, pos);
603	if ((level == 1) && (keycmp(geo, node, pos, key) != 0))
604		return NULL;
605	ret = bval(geo, node, pos);
606
607	/* remove and shift */
608	for (i = pos; i < fill - 1; i++) {
609		setkey(geo, node, i, bkey(geo, node, i + 1));
610		setval(geo, node, i, bval(geo, node, i + 1));
611	}
612	clearpair(geo, node, fill - 1);
613
614	if (fill - 1 < geo->no_pairs / 2) {
615		if (level < head->height)
616			rebalance(head, geo, key, level, node, fill - 1);
617		else if (fill - 1 == 1)
618			btree_shrink(head, geo);
619	}
620
621	return ret;
622}
623
624void *btree_remove(struct btree_head *head, struct btree_geo *geo,
625		unsigned long *key)
626{
627	if (head->height == 0)
628		return NULL;
629
630	return btree_remove_level(head, geo, key, 1);
631}
632EXPORT_SYMBOL_GPL(btree_remove);
633
634int btree_merge(struct btree_head *target, struct btree_head *victim,
635		struct btree_geo *geo, gfp_t gfp)
636{
637	unsigned long key[MAX_KEYLEN];
638	unsigned long dup[MAX_KEYLEN];
639	void *val;
640	int err;
641
642	BUG_ON(target == victim);
643
644	if (!(target->node)) {
645		/* target is empty, just copy fields over */
646		target->node = victim->node;
647		target->height = victim->height;
648		__btree_init(victim);
649		return 0;
650	}
651
652	/* TODO: This needs some optimizations.  Currently we do three tree
653	 * walks to remove a single object from the victim.
654	 */
655	for (;;) {
656		if (!btree_last(victim, geo, key))
657			break;
658		val = btree_lookup(victim, geo, key);
659		err = btree_insert(target, geo, key, val, gfp);
660		if (err)
661			return err;
662		/* We must make a copy of the key, as the original will get
663		 * mangled inside btree_remove. */
664		longcpy(dup, key, geo->keylen);
665		btree_remove(victim, geo, dup);
666	}
667	return 0;
668}
669EXPORT_SYMBOL_GPL(btree_merge);
670
671static size_t __btree_for_each(struct btree_head *head, struct btree_geo *geo,
672			       unsigned long *node, unsigned long opaque,
673			       void (*func)(void *elem, unsigned long opaque,
674					    unsigned long *key, size_t index,
675					    void *func2),
676			       void *func2, int reap, int height, size_t count)
677{
678	int i;
679	unsigned long *child;
680
681	for (i = 0; i < geo->no_pairs; i++) {
682		child = bval(geo, node, i);
683		if (!child)
684			break;
685		if (height > 1)
686			count = __btree_for_each(head, geo, child, opaque,
687					func, func2, reap, height - 1, count);
688		else
689			func(child, opaque, bkey(geo, node, i), count++,
690					func2);
691	}
692	if (reap)
693		mempool_free(node, head->mempool);
694	return count;
695}
696
697static void empty(void *elem, unsigned long opaque, unsigned long *key,
698		  size_t index, void *func2)
699{
700}
701
702void visitorl(void *elem, unsigned long opaque, unsigned long *key,
703	      size_t index, void *__func)
704{
705	visitorl_t func = __func;
706
707	func(elem, opaque, *key, index);
708}
709EXPORT_SYMBOL_GPL(visitorl);
710
711void visitor32(void *elem, unsigned long opaque, unsigned long *__key,
712	       size_t index, void *__func)
713{
714	visitor32_t func = __func;
715	u32 *key = (void *)__key;
716
717	func(elem, opaque, *key, index);
718}
719EXPORT_SYMBOL_GPL(visitor32);
720
721void visitor64(void *elem, unsigned long opaque, unsigned long *__key,
722	       size_t index, void *__func)
723{
724	visitor64_t func = __func;
725	u64 *key = (void *)__key;
726
727	func(elem, opaque, *key, index);
728}
729EXPORT_SYMBOL_GPL(visitor64);
730
731void visitor128(void *elem, unsigned long opaque, unsigned long *__key,
732		size_t index, void *__func)
733{
734	visitor128_t func = __func;
735	u64 *key = (void *)__key;
736
737	func(elem, opaque, key[0], key[1], index);
738}
739EXPORT_SYMBOL_GPL(visitor128);
740
741size_t btree_visitor(struct btree_head *head, struct btree_geo *geo,
742		     unsigned long opaque,
743		     void (*func)(void *elem, unsigned long opaque,
744		     		  unsigned long *key,
745		     		  size_t index, void *func2),
746		     void *func2)
747{
748	size_t count = 0;
749
750	if (!func2)
751		func = empty;
752	if (head->node)
753		count = __btree_for_each(head, geo, head->node, opaque, func,
754				func2, 0, head->height, 0);
755	return count;
756}
757EXPORT_SYMBOL_GPL(btree_visitor);
758
759size_t btree_grim_visitor(struct btree_head *head, struct btree_geo *geo,
760			  unsigned long opaque,
761			  void (*func)(void *elem, unsigned long opaque,
762				       unsigned long *key,
763				       size_t index, void *func2),
764			  void *func2)
765{
766	size_t count = 0;
767
768	if (!func2)
769		func = empty;
770	if (head->node)
771		count = __btree_for_each(head, geo, head->node, opaque, func,
772				func2, 1, head->height, 0);
773	__btree_init(head);
774	return count;
775}
776EXPORT_SYMBOL_GPL(btree_grim_visitor);
777
778static int __init btree_module_init(void)
779{
780	btree_cachep = kmem_cache_create("btree_node", NODESIZE, 0,
781			SLAB_HWCACHE_ALIGN, NULL);
782	return 0;
783}
784
785static void __exit btree_module_exit(void)
786{
787	kmem_cache_destroy(btree_cachep);
788}
789
790/* If core code starts using btree, initialization should happen even earlier */
791module_init(btree_module_init);
792module_exit(btree_module_exit);
793
794MODULE_AUTHOR("Joern Engel <joern@logfs.org>");
795MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
v4.17
 
  1/*
  2 * lib/btree.c	- Simple In-memory B+Tree
  3 *
  4 * As should be obvious for Linux kernel code, license is GPLv2
  5 *
  6 * Copyright (c) 2007-2008 Joern Engel <joern@purestorage.com>
  7 * Bits and pieces stolen from Peter Zijlstra's code, which is
  8 * Copyright 2007, Red Hat Inc. Peter Zijlstra
  9 * GPLv2
 10 *
 11 * see http://programming.kicks-ass.net/kernel-patches/vma_lookup/btree.patch
 12 *
 13 * A relatively simple B+Tree implementation.  I have written it as a learning
 14 * exercise to understand how B+Trees work.  Turned out to be useful as well.
 15 *
 16 * B+Trees can be used similar to Linux radix trees (which don't have anything
 17 * in common with textbook radix trees, beware).  Prerequisite for them working
 18 * well is that access to a random tree node is much faster than a large number
 19 * of operations within each node.
 20 *
 21 * Disks have fulfilled the prerequisite for a long time.  More recently DRAM
 22 * has gained similar properties, as memory access times, when measured in cpu
 23 * cycles, have increased.  Cacheline sizes have increased as well, which also
 24 * helps B+Trees.
 25 *
 26 * Compared to radix trees, B+Trees are more efficient when dealing with a
 27 * sparsely populated address space.  Between 25% and 50% of the memory is
 28 * occupied with valid pointers.  When densely populated, radix trees contain
 29 * ~98% pointers - hard to beat.  Very sparse radix trees contain only ~2%
 30 * pointers.
 31 *
 32 * This particular implementation stores pointers identified by a long value.
 33 * Storing NULL pointers is illegal, lookup will return NULL when no entry
 34 * was found.
 35 *
 36 * A tricks was used that is not commonly found in textbooks.  The lowest
 37 * values are to the right, not to the left.  All used slots within a node
 38 * are on the left, all unused slots contain NUL values.  Most operations
 39 * simply loop once over all slots and terminate on the first NUL.
 40 */
 41
 42#include <linux/btree.h>
 43#include <linux/cache.h>
 44#include <linux/kernel.h>
 45#include <linux/slab.h>
 46#include <linux/module.h>
 47
 48#define MAX(a, b) ((a) > (b) ? (a) : (b))
 49#define NODESIZE MAX(L1_CACHE_BYTES, 128)
 50
 51struct btree_geo {
 52	int keylen;
 53	int no_pairs;
 54	int no_longs;
 55};
 56
 57struct btree_geo btree_geo32 = {
 58	.keylen = 1,
 59	.no_pairs = NODESIZE / sizeof(long) / 2,
 60	.no_longs = NODESIZE / sizeof(long) / 2,
 61};
 62EXPORT_SYMBOL_GPL(btree_geo32);
 63
 64#define LONG_PER_U64 (64 / BITS_PER_LONG)
 65struct btree_geo btree_geo64 = {
 66	.keylen = LONG_PER_U64,
 67	.no_pairs = NODESIZE / sizeof(long) / (1 + LONG_PER_U64),
 68	.no_longs = LONG_PER_U64 * (NODESIZE / sizeof(long) / (1 + LONG_PER_U64)),
 69};
 70EXPORT_SYMBOL_GPL(btree_geo64);
 71
 72struct btree_geo btree_geo128 = {
 73	.keylen = 2 * LONG_PER_U64,
 74	.no_pairs = NODESIZE / sizeof(long) / (1 + 2 * LONG_PER_U64),
 75	.no_longs = 2 * LONG_PER_U64 * (NODESIZE / sizeof(long) / (1 + 2 * LONG_PER_U64)),
 76};
 77EXPORT_SYMBOL_GPL(btree_geo128);
 78
 79#define MAX_KEYLEN	(2 * LONG_PER_U64)
 80
 81static struct kmem_cache *btree_cachep;
 82
 83void *btree_alloc(gfp_t gfp_mask, void *pool_data)
 84{
 85	return kmem_cache_alloc(btree_cachep, gfp_mask);
 86}
 87EXPORT_SYMBOL_GPL(btree_alloc);
 88
 89void btree_free(void *element, void *pool_data)
 90{
 91	kmem_cache_free(btree_cachep, element);
 92}
 93EXPORT_SYMBOL_GPL(btree_free);
 94
 95static unsigned long *btree_node_alloc(struct btree_head *head, gfp_t gfp)
 96{
 97	unsigned long *node;
 98
 99	node = mempool_alloc(head->mempool, gfp);
100	if (likely(node))
101		memset(node, 0, NODESIZE);
102	return node;
103}
104
105static int longcmp(const unsigned long *l1, const unsigned long *l2, size_t n)
106{
107	size_t i;
108
109	for (i = 0; i < n; i++) {
110		if (l1[i] < l2[i])
111			return -1;
112		if (l1[i] > l2[i])
113			return 1;
114	}
115	return 0;
116}
117
118static unsigned long *longcpy(unsigned long *dest, const unsigned long *src,
119		size_t n)
120{
121	size_t i;
122
123	for (i = 0; i < n; i++)
124		dest[i] = src[i];
125	return dest;
126}
127
128static unsigned long *longset(unsigned long *s, unsigned long c, size_t n)
129{
130	size_t i;
131
132	for (i = 0; i < n; i++)
133		s[i] = c;
134	return s;
135}
136
137static void dec_key(struct btree_geo *geo, unsigned long *key)
138{
139	unsigned long val;
140	int i;
141
142	for (i = geo->keylen - 1; i >= 0; i--) {
143		val = key[i];
144		key[i] = val - 1;
145		if (val)
146			break;
147	}
148}
149
150static unsigned long *bkey(struct btree_geo *geo, unsigned long *node, int n)
151{
152	return &node[n * geo->keylen];
153}
154
155static void *bval(struct btree_geo *geo, unsigned long *node, int n)
156{
157	return (void *)node[geo->no_longs + n];
158}
159
160static void setkey(struct btree_geo *geo, unsigned long *node, int n,
161		   unsigned long *key)
162{
163	longcpy(bkey(geo, node, n), key, geo->keylen);
164}
165
166static void setval(struct btree_geo *geo, unsigned long *node, int n,
167		   void *val)
168{
169	node[geo->no_longs + n] = (unsigned long) val;
170}
171
172static void clearpair(struct btree_geo *geo, unsigned long *node, int n)
173{
174	longset(bkey(geo, node, n), 0, geo->keylen);
175	node[geo->no_longs + n] = 0;
176}
177
178static inline void __btree_init(struct btree_head *head)
179{
180	head->node = NULL;
181	head->height = 0;
182}
183
184void btree_init_mempool(struct btree_head *head, mempool_t *mempool)
185{
186	__btree_init(head);
187	head->mempool = mempool;
188}
189EXPORT_SYMBOL_GPL(btree_init_mempool);
190
191int btree_init(struct btree_head *head)
192{
193	__btree_init(head);
194	head->mempool = mempool_create(0, btree_alloc, btree_free, NULL);
195	if (!head->mempool)
196		return -ENOMEM;
197	return 0;
198}
199EXPORT_SYMBOL_GPL(btree_init);
200
201void btree_destroy(struct btree_head *head)
202{
203	mempool_free(head->node, head->mempool);
204	mempool_destroy(head->mempool);
205	head->mempool = NULL;
206}
207EXPORT_SYMBOL_GPL(btree_destroy);
208
209void *btree_last(struct btree_head *head, struct btree_geo *geo,
210		 unsigned long *key)
211{
212	int height = head->height;
213	unsigned long *node = head->node;
214
215	if (height == 0)
216		return NULL;
217
218	for ( ; height > 1; height--)
219		node = bval(geo, node, 0);
220
221	longcpy(key, bkey(geo, node, 0), geo->keylen);
222	return bval(geo, node, 0);
223}
224EXPORT_SYMBOL_GPL(btree_last);
225
226static int keycmp(struct btree_geo *geo, unsigned long *node, int pos,
227		  unsigned long *key)
228{
229	return longcmp(bkey(geo, node, pos), key, geo->keylen);
230}
231
232static int keyzero(struct btree_geo *geo, unsigned long *key)
233{
234	int i;
235
236	for (i = 0; i < geo->keylen; i++)
237		if (key[i])
238			return 0;
239
240	return 1;
241}
242
243void *btree_lookup(struct btree_head *head, struct btree_geo *geo,
244		unsigned long *key)
245{
246	int i, height = head->height;
247	unsigned long *node = head->node;
248
249	if (height == 0)
250		return NULL;
251
252	for ( ; height > 1; height--) {
253		for (i = 0; i < geo->no_pairs; i++)
254			if (keycmp(geo, node, i, key) <= 0)
255				break;
256		if (i == geo->no_pairs)
257			return NULL;
258		node = bval(geo, node, i);
259		if (!node)
260			return NULL;
261	}
 
 
262
 
 
 
 
 
 
 
263	if (!node)
264		return NULL;
265
266	for (i = 0; i < geo->no_pairs; i++)
267		if (keycmp(geo, node, i, key) == 0)
268			return bval(geo, node, i);
269	return NULL;
270}
271EXPORT_SYMBOL_GPL(btree_lookup);
272
273int btree_update(struct btree_head *head, struct btree_geo *geo,
274		 unsigned long *key, void *val)
275{
276	int i, height = head->height;
277	unsigned long *node = head->node;
278
279	if (height == 0)
280		return -ENOENT;
281
282	for ( ; height > 1; height--) {
283		for (i = 0; i < geo->no_pairs; i++)
284			if (keycmp(geo, node, i, key) <= 0)
285				break;
286		if (i == geo->no_pairs)
287			return -ENOENT;
288		node = bval(geo, node, i);
289		if (!node)
290			return -ENOENT;
291	}
292
 
293	if (!node)
294		return -ENOENT;
295
296	for (i = 0; i < geo->no_pairs; i++)
297		if (keycmp(geo, node, i, key) == 0) {
298			setval(geo, node, i, val);
299			return 0;
300		}
301	return -ENOENT;
302}
303EXPORT_SYMBOL_GPL(btree_update);
304
305/*
306 * Usually this function is quite similar to normal lookup.  But the key of
307 * a parent node may be smaller than the smallest key of all its siblings.
308 * In such a case we cannot just return NULL, as we have only proven that no
309 * key smaller than __key, but larger than this parent key exists.
310 * So we set __key to the parent key and retry.  We have to use the smallest
311 * such parent key, which is the last parent key we encountered.
312 */
313void *btree_get_prev(struct btree_head *head, struct btree_geo *geo,
314		     unsigned long *__key)
315{
316	int i, height;
317	unsigned long *node, *oldnode;
318	unsigned long *retry_key = NULL, key[MAX_KEYLEN];
319
320	if (keyzero(geo, __key))
321		return NULL;
322
323	if (head->height == 0)
324		return NULL;
325	longcpy(key, __key, geo->keylen);
326retry:
327	dec_key(geo, key);
328
329	node = head->node;
330	for (height = head->height ; height > 1; height--) {
331		for (i = 0; i < geo->no_pairs; i++)
332			if (keycmp(geo, node, i, key) <= 0)
333				break;
334		if (i == geo->no_pairs)
335			goto miss;
336		oldnode = node;
337		node = bval(geo, node, i);
338		if (!node)
339			goto miss;
340		retry_key = bkey(geo, oldnode, i);
341	}
342
343	if (!node)
344		goto miss;
345
346	for (i = 0; i < geo->no_pairs; i++) {
347		if (keycmp(geo, node, i, key) <= 0) {
348			if (bval(geo, node, i)) {
349				longcpy(__key, bkey(geo, node, i), geo->keylen);
350				return bval(geo, node, i);
351			} else
352				goto miss;
353		}
354	}
355miss:
356	if (retry_key) {
357		longcpy(key, retry_key, geo->keylen);
358		retry_key = NULL;
359		goto retry;
360	}
361	return NULL;
362}
363EXPORT_SYMBOL_GPL(btree_get_prev);
364
365static int getpos(struct btree_geo *geo, unsigned long *node,
366		unsigned long *key)
367{
368	int i;
369
370	for (i = 0; i < geo->no_pairs; i++) {
371		if (keycmp(geo, node, i, key) <= 0)
372			break;
373	}
374	return i;
375}
376
377static int getfill(struct btree_geo *geo, unsigned long *node, int start)
378{
379	int i;
380
381	for (i = start; i < geo->no_pairs; i++)
382		if (!bval(geo, node, i))
383			break;
384	return i;
385}
386
387/*
388 * locate the correct leaf node in the btree
389 */
390static unsigned long *find_level(struct btree_head *head, struct btree_geo *geo,
391		unsigned long *key, int level)
392{
393	unsigned long *node = head->node;
394	int i, height;
395
396	for (height = head->height; height > level; height--) {
397		for (i = 0; i < geo->no_pairs; i++)
398			if (keycmp(geo, node, i, key) <= 0)
399				break;
400
401		if ((i == geo->no_pairs) || !bval(geo, node, i)) {
402			/* right-most key is too large, update it */
403			/* FIXME: If the right-most key on higher levels is
404			 * always zero, this wouldn't be necessary. */
405			i--;
406			setkey(geo, node, i, key);
407		}
408		BUG_ON(i < 0);
409		node = bval(geo, node, i);
410	}
411	BUG_ON(!node);
412	return node;
413}
414
415static int btree_grow(struct btree_head *head, struct btree_geo *geo,
416		      gfp_t gfp)
417{
418	unsigned long *node;
419	int fill;
420
421	node = btree_node_alloc(head, gfp);
422	if (!node)
423		return -ENOMEM;
424	if (head->node) {
425		fill = getfill(geo, head->node, 0);
426		setkey(geo, node, 0, bkey(geo, head->node, fill - 1));
427		setval(geo, node, 0, head->node);
428	}
429	head->node = node;
430	head->height++;
431	return 0;
432}
433
434static void btree_shrink(struct btree_head *head, struct btree_geo *geo)
435{
436	unsigned long *node;
437	int fill;
438
439	if (head->height <= 1)
440		return;
441
442	node = head->node;
443	fill = getfill(geo, node, 0);
444	BUG_ON(fill > 1);
445	head->node = bval(geo, node, 0);
446	head->height--;
447	mempool_free(node, head->mempool);
448}
449
450static int btree_insert_level(struct btree_head *head, struct btree_geo *geo,
451			      unsigned long *key, void *val, int level,
452			      gfp_t gfp)
453{
454	unsigned long *node;
455	int i, pos, fill, err;
456
457	BUG_ON(!val);
458	if (head->height < level) {
459		err = btree_grow(head, geo, gfp);
460		if (err)
461			return err;
462	}
463
464retry:
465	node = find_level(head, geo, key, level);
466	pos = getpos(geo, node, key);
467	fill = getfill(geo, node, pos);
468	/* two identical keys are not allowed */
469	BUG_ON(pos < fill && keycmp(geo, node, pos, key) == 0);
470
471	if (fill == geo->no_pairs) {
472		/* need to split node */
473		unsigned long *new;
474
475		new = btree_node_alloc(head, gfp);
476		if (!new)
477			return -ENOMEM;
478		err = btree_insert_level(head, geo,
479				bkey(geo, node, fill / 2 - 1),
480				new, level + 1, gfp);
481		if (err) {
482			mempool_free(new, head->mempool);
483			return err;
484		}
485		for (i = 0; i < fill / 2; i++) {
486			setkey(geo, new, i, bkey(geo, node, i));
487			setval(geo, new, i, bval(geo, node, i));
488			setkey(geo, node, i, bkey(geo, node, i + fill / 2));
489			setval(geo, node, i, bval(geo, node, i + fill / 2));
490			clearpair(geo, node, i + fill / 2);
491		}
492		if (fill & 1) {
493			setkey(geo, node, i, bkey(geo, node, fill - 1));
494			setval(geo, node, i, bval(geo, node, fill - 1));
495			clearpair(geo, node, fill - 1);
496		}
497		goto retry;
498	}
499	BUG_ON(fill >= geo->no_pairs);
500
501	/* shift and insert */
502	for (i = fill; i > pos; i--) {
503		setkey(geo, node, i, bkey(geo, node, i - 1));
504		setval(geo, node, i, bval(geo, node, i - 1));
505	}
506	setkey(geo, node, pos, key);
507	setval(geo, node, pos, val);
508
509	return 0;
510}
511
512int btree_insert(struct btree_head *head, struct btree_geo *geo,
513		unsigned long *key, void *val, gfp_t gfp)
514{
515	BUG_ON(!val);
516	return btree_insert_level(head, geo, key, val, 1, gfp);
517}
518EXPORT_SYMBOL_GPL(btree_insert);
519
520static void *btree_remove_level(struct btree_head *head, struct btree_geo *geo,
521		unsigned long *key, int level);
522static void merge(struct btree_head *head, struct btree_geo *geo, int level,
523		unsigned long *left, int lfill,
524		unsigned long *right, int rfill,
525		unsigned long *parent, int lpos)
526{
527	int i;
528
529	for (i = 0; i < rfill; i++) {
530		/* Move all keys to the left */
531		setkey(geo, left, lfill + i, bkey(geo, right, i));
532		setval(geo, left, lfill + i, bval(geo, right, i));
533	}
534	/* Exchange left and right child in parent */
535	setval(geo, parent, lpos, right);
536	setval(geo, parent, lpos + 1, left);
537	/* Remove left (formerly right) child from parent */
538	btree_remove_level(head, geo, bkey(geo, parent, lpos), level + 1);
539	mempool_free(right, head->mempool);
540}
541
542static void rebalance(struct btree_head *head, struct btree_geo *geo,
543		unsigned long *key, int level, unsigned long *child, int fill)
544{
545	unsigned long *parent, *left = NULL, *right = NULL;
546	int i, no_left, no_right;
547
548	if (fill == 0) {
549		/* Because we don't steal entries from a neighbour, this case
550		 * can happen.  Parent node contains a single child, this
551		 * node, so merging with a sibling never happens.
552		 */
553		btree_remove_level(head, geo, key, level + 1);
554		mempool_free(child, head->mempool);
555		return;
556	}
557
558	parent = find_level(head, geo, key, level + 1);
559	i = getpos(geo, parent, key);
560	BUG_ON(bval(geo, parent, i) != child);
561
562	if (i > 0) {
563		left = bval(geo, parent, i - 1);
564		no_left = getfill(geo, left, 0);
565		if (fill + no_left <= geo->no_pairs) {
566			merge(head, geo, level,
567					left, no_left,
568					child, fill,
569					parent, i - 1);
570			return;
571		}
572	}
573	if (i + 1 < getfill(geo, parent, i)) {
574		right = bval(geo, parent, i + 1);
575		no_right = getfill(geo, right, 0);
576		if (fill + no_right <= geo->no_pairs) {
577			merge(head, geo, level,
578					child, fill,
579					right, no_right,
580					parent, i);
581			return;
582		}
583	}
584	/*
585	 * We could also try to steal one entry from the left or right
586	 * neighbor.  By not doing so we changed the invariant from
587	 * "all nodes are at least half full" to "no two neighboring
588	 * nodes can be merged".  Which means that the average fill of
589	 * all nodes is still half or better.
590	 */
591}
592
593static void *btree_remove_level(struct btree_head *head, struct btree_geo *geo,
594		unsigned long *key, int level)
595{
596	unsigned long *node;
597	int i, pos, fill;
598	void *ret;
599
600	if (level > head->height) {
601		/* we recursed all the way up */
602		head->height = 0;
603		head->node = NULL;
604		return NULL;
605	}
606
607	node = find_level(head, geo, key, level);
608	pos = getpos(geo, node, key);
609	fill = getfill(geo, node, pos);
610	if ((level == 1) && (keycmp(geo, node, pos, key) != 0))
611		return NULL;
612	ret = bval(geo, node, pos);
613
614	/* remove and shift */
615	for (i = pos; i < fill - 1; i++) {
616		setkey(geo, node, i, bkey(geo, node, i + 1));
617		setval(geo, node, i, bval(geo, node, i + 1));
618	}
619	clearpair(geo, node, fill - 1);
620
621	if (fill - 1 < geo->no_pairs / 2) {
622		if (level < head->height)
623			rebalance(head, geo, key, level, node, fill - 1);
624		else if (fill - 1 == 1)
625			btree_shrink(head, geo);
626	}
627
628	return ret;
629}
630
631void *btree_remove(struct btree_head *head, struct btree_geo *geo,
632		unsigned long *key)
633{
634	if (head->height == 0)
635		return NULL;
636
637	return btree_remove_level(head, geo, key, 1);
638}
639EXPORT_SYMBOL_GPL(btree_remove);
640
641int btree_merge(struct btree_head *target, struct btree_head *victim,
642		struct btree_geo *geo, gfp_t gfp)
643{
644	unsigned long key[MAX_KEYLEN];
645	unsigned long dup[MAX_KEYLEN];
646	void *val;
647	int err;
648
649	BUG_ON(target == victim);
650
651	if (!(target->node)) {
652		/* target is empty, just copy fields over */
653		target->node = victim->node;
654		target->height = victim->height;
655		__btree_init(victim);
656		return 0;
657	}
658
659	/* TODO: This needs some optimizations.  Currently we do three tree
660	 * walks to remove a single object from the victim.
661	 */
662	for (;;) {
663		if (!btree_last(victim, geo, key))
664			break;
665		val = btree_lookup(victim, geo, key);
666		err = btree_insert(target, geo, key, val, gfp);
667		if (err)
668			return err;
669		/* We must make a copy of the key, as the original will get
670		 * mangled inside btree_remove. */
671		longcpy(dup, key, geo->keylen);
672		btree_remove(victim, geo, dup);
673	}
674	return 0;
675}
676EXPORT_SYMBOL_GPL(btree_merge);
677
678static size_t __btree_for_each(struct btree_head *head, struct btree_geo *geo,
679			       unsigned long *node, unsigned long opaque,
680			       void (*func)(void *elem, unsigned long opaque,
681					    unsigned long *key, size_t index,
682					    void *func2),
683			       void *func2, int reap, int height, size_t count)
684{
685	int i;
686	unsigned long *child;
687
688	for (i = 0; i < geo->no_pairs; i++) {
689		child = bval(geo, node, i);
690		if (!child)
691			break;
692		if (height > 1)
693			count = __btree_for_each(head, geo, child, opaque,
694					func, func2, reap, height - 1, count);
695		else
696			func(child, opaque, bkey(geo, node, i), count++,
697					func2);
698	}
699	if (reap)
700		mempool_free(node, head->mempool);
701	return count;
702}
703
704static void empty(void *elem, unsigned long opaque, unsigned long *key,
705		  size_t index, void *func2)
706{
707}
708
709void visitorl(void *elem, unsigned long opaque, unsigned long *key,
710	      size_t index, void *__func)
711{
712	visitorl_t func = __func;
713
714	func(elem, opaque, *key, index);
715}
716EXPORT_SYMBOL_GPL(visitorl);
717
718void visitor32(void *elem, unsigned long opaque, unsigned long *__key,
719	       size_t index, void *__func)
720{
721	visitor32_t func = __func;
722	u32 *key = (void *)__key;
723
724	func(elem, opaque, *key, index);
725}
726EXPORT_SYMBOL_GPL(visitor32);
727
728void visitor64(void *elem, unsigned long opaque, unsigned long *__key,
729	       size_t index, void *__func)
730{
731	visitor64_t func = __func;
732	u64 *key = (void *)__key;
733
734	func(elem, opaque, *key, index);
735}
736EXPORT_SYMBOL_GPL(visitor64);
737
738void visitor128(void *elem, unsigned long opaque, unsigned long *__key,
739		size_t index, void *__func)
740{
741	visitor128_t func = __func;
742	u64 *key = (void *)__key;
743
744	func(elem, opaque, key[0], key[1], index);
745}
746EXPORT_SYMBOL_GPL(visitor128);
747
748size_t btree_visitor(struct btree_head *head, struct btree_geo *geo,
749		     unsigned long opaque,
750		     void (*func)(void *elem, unsigned long opaque,
751		     		  unsigned long *key,
752		     		  size_t index, void *func2),
753		     void *func2)
754{
755	size_t count = 0;
756
757	if (!func2)
758		func = empty;
759	if (head->node)
760		count = __btree_for_each(head, geo, head->node, opaque, func,
761				func2, 0, head->height, 0);
762	return count;
763}
764EXPORT_SYMBOL_GPL(btree_visitor);
765
766size_t btree_grim_visitor(struct btree_head *head, struct btree_geo *geo,
767			  unsigned long opaque,
768			  void (*func)(void *elem, unsigned long opaque,
769				       unsigned long *key,
770				       size_t index, void *func2),
771			  void *func2)
772{
773	size_t count = 0;
774
775	if (!func2)
776		func = empty;
777	if (head->node)
778		count = __btree_for_each(head, geo, head->node, opaque, func,
779				func2, 1, head->height, 0);
780	__btree_init(head);
781	return count;
782}
783EXPORT_SYMBOL_GPL(btree_grim_visitor);
784
785static int __init btree_module_init(void)
786{
787	btree_cachep = kmem_cache_create("btree_node", NODESIZE, 0,
788			SLAB_HWCACHE_ALIGN, NULL);
789	return 0;
790}
791
792static void __exit btree_module_exit(void)
793{
794	kmem_cache_destroy(btree_cachep);
795}
796
797/* If core code starts using btree, initialization should happen even earlier */
798module_init(btree_module_init);
799module_exit(btree_module_exit);
800
801MODULE_AUTHOR("Joern Engel <joern@logfs.org>");
802MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
803MODULE_LICENSE("GPL");