Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2014 Red Hat, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_trans.h"
14#include "xfs_alloc.h"
15#include "xfs_btree.h"
16#include "xfs_btree_staging.h"
17#include "xfs_rmap.h"
18#include "xfs_rmap_btree.h"
19#include "xfs_health.h"
20#include "xfs_trace.h"
21#include "xfs_error.h"
22#include "xfs_extent_busy.h"
23#include "xfs_ag.h"
24#include "xfs_ag_resv.h"
25#include "xfs_buf_mem.h"
26#include "xfs_btree_mem.h"
27
28static struct kmem_cache *xfs_rmapbt_cur_cache;
29
30/*
31 * Reverse map btree.
32 *
33 * This is a per-ag tree used to track the owner(s) of a given extent. With
34 * reflink it is possible for there to be multiple owners, which is a departure
35 * from classic XFS. Owner records for data extents are inserted when the
36 * extent is mapped and removed when an extent is unmapped. Owner records for
37 * all other block types (i.e. metadata) are inserted when an extent is
38 * allocated and removed when an extent is freed. There can only be one owner
39 * of a metadata extent, usually an inode or some other metadata structure like
40 * an AG btree.
41 *
42 * The rmap btree is part of the free space management, so blocks for the tree
43 * are sourced from the agfl. Hence we need transaction reservation support for
44 * this tree so that the freelist is always large enough. This also impacts on
45 * the minimum space we need to leave free in the AG.
46 *
47 * The tree is ordered by [ag block, owner, offset]. This is a large key size,
48 * but it is the only way to enforce unique keys when a block can be owned by
49 * multiple files at any offset. There's no need to order/search by extent
50 * size for online updating/management of the tree. It is intended that most
51 * reverse lookups will be to find the owner(s) of a particular block, or to
52 * try to recover tree and file data from corrupt primary metadata.
53 */
54
55static struct xfs_btree_cur *
56xfs_rmapbt_dup_cursor(
57 struct xfs_btree_cur *cur)
58{
59 return xfs_rmapbt_init_cursor(cur->bc_mp, cur->bc_tp,
60 cur->bc_ag.agbp, to_perag(cur->bc_group));
61}
62
63STATIC void
64xfs_rmapbt_set_root(
65 struct xfs_btree_cur *cur,
66 const union xfs_btree_ptr *ptr,
67 int inc)
68{
69 struct xfs_buf *agbp = cur->bc_ag.agbp;
70 struct xfs_agf *agf = agbp->b_addr;
71 struct xfs_perag *pag = to_perag(cur->bc_group);
72
73 ASSERT(ptr->s != 0);
74
75 agf->agf_rmap_root = ptr->s;
76 be32_add_cpu(&agf->agf_rmap_level, inc);
77 pag->pagf_rmap_level += inc;
78
79 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
80}
81
82STATIC int
83xfs_rmapbt_alloc_block(
84 struct xfs_btree_cur *cur,
85 const union xfs_btree_ptr *start,
86 union xfs_btree_ptr *new,
87 int *stat)
88{
89 struct xfs_buf *agbp = cur->bc_ag.agbp;
90 struct xfs_agf *agf = agbp->b_addr;
91 struct xfs_perag *pag = to_perag(cur->bc_group);
92 struct xfs_alloc_arg args = { .len = 1 };
93 int error;
94 xfs_agblock_t bno;
95
96 /* Allocate the new block from the freelist. If we can't, give up. */
97 error = xfs_alloc_get_freelist(pag, cur->bc_tp, cur->bc_ag.agbp,
98 &bno, 1);
99 if (error)
100 return error;
101 if (bno == NULLAGBLOCK) {
102 *stat = 0;
103 return 0;
104 }
105
106 xfs_extent_busy_reuse(pag_group(pag), bno, 1, false);
107
108 new->s = cpu_to_be32(bno);
109 be32_add_cpu(&agf->agf_rmap_blocks, 1);
110 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
111
112 /*
113 * Since rmapbt blocks are sourced from the AGFL, they are allocated one
114 * at a time and the reservation updates don't require a transaction.
115 */
116 xfs_ag_resv_alloc_extent(pag, XFS_AG_RESV_RMAPBT, &args);
117
118 *stat = 1;
119 return 0;
120}
121
122STATIC int
123xfs_rmapbt_free_block(
124 struct xfs_btree_cur *cur,
125 struct xfs_buf *bp)
126{
127 struct xfs_buf *agbp = cur->bc_ag.agbp;
128 struct xfs_agf *agf = agbp->b_addr;
129 struct xfs_perag *pag = to_perag(cur->bc_group);
130 xfs_agblock_t bno;
131 int error;
132
133 bno = xfs_daddr_to_agbno(cur->bc_mp, xfs_buf_daddr(bp));
134 be32_add_cpu(&agf->agf_rmap_blocks, -1);
135 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
136 error = xfs_alloc_put_freelist(pag, cur->bc_tp, agbp, NULL, bno, 1);
137 if (error)
138 return error;
139
140 xfs_extent_busy_insert(cur->bc_tp, pag_group(pag), bno, 1,
141 XFS_EXTENT_BUSY_SKIP_DISCARD);
142
143 xfs_ag_resv_free_extent(pag, XFS_AG_RESV_RMAPBT, NULL, 1);
144 return 0;
145}
146
147STATIC int
148xfs_rmapbt_get_minrecs(
149 struct xfs_btree_cur *cur,
150 int level)
151{
152 return cur->bc_mp->m_rmap_mnr[level != 0];
153}
154
155STATIC int
156xfs_rmapbt_get_maxrecs(
157 struct xfs_btree_cur *cur,
158 int level)
159{
160 return cur->bc_mp->m_rmap_mxr[level != 0];
161}
162
163/*
164 * Convert the ondisk record's offset field into the ondisk key's offset field.
165 * Fork and bmbt are significant parts of the rmap record key, but written
166 * status is merely a record attribute.
167 */
168static inline __be64 ondisk_rec_offset_to_key(const union xfs_btree_rec *rec)
169{
170 return rec->rmap.rm_offset & ~cpu_to_be64(XFS_RMAP_OFF_UNWRITTEN);
171}
172
173STATIC void
174xfs_rmapbt_init_key_from_rec(
175 union xfs_btree_key *key,
176 const union xfs_btree_rec *rec)
177{
178 key->rmap.rm_startblock = rec->rmap.rm_startblock;
179 key->rmap.rm_owner = rec->rmap.rm_owner;
180 key->rmap.rm_offset = ondisk_rec_offset_to_key(rec);
181}
182
183/*
184 * The high key for a reverse mapping record can be computed by shifting
185 * the startblock and offset to the highest value that would still map
186 * to that record. In practice this means that we add blockcount-1 to
187 * the startblock for all records, and if the record is for a data/attr
188 * fork mapping, we add blockcount-1 to the offset too.
189 */
190STATIC void
191xfs_rmapbt_init_high_key_from_rec(
192 union xfs_btree_key *key,
193 const union xfs_btree_rec *rec)
194{
195 uint64_t off;
196 int adj;
197
198 adj = be32_to_cpu(rec->rmap.rm_blockcount) - 1;
199
200 key->rmap.rm_startblock = rec->rmap.rm_startblock;
201 be32_add_cpu(&key->rmap.rm_startblock, adj);
202 key->rmap.rm_owner = rec->rmap.rm_owner;
203 key->rmap.rm_offset = ondisk_rec_offset_to_key(rec);
204 if (XFS_RMAP_NON_INODE_OWNER(be64_to_cpu(rec->rmap.rm_owner)) ||
205 XFS_RMAP_IS_BMBT_BLOCK(be64_to_cpu(rec->rmap.rm_offset)))
206 return;
207 off = be64_to_cpu(key->rmap.rm_offset);
208 off = (XFS_RMAP_OFF(off) + adj) | (off & ~XFS_RMAP_OFF_MASK);
209 key->rmap.rm_offset = cpu_to_be64(off);
210}
211
212STATIC void
213xfs_rmapbt_init_rec_from_cur(
214 struct xfs_btree_cur *cur,
215 union xfs_btree_rec *rec)
216{
217 rec->rmap.rm_startblock = cpu_to_be32(cur->bc_rec.r.rm_startblock);
218 rec->rmap.rm_blockcount = cpu_to_be32(cur->bc_rec.r.rm_blockcount);
219 rec->rmap.rm_owner = cpu_to_be64(cur->bc_rec.r.rm_owner);
220 rec->rmap.rm_offset = cpu_to_be64(
221 xfs_rmap_irec_offset_pack(&cur->bc_rec.r));
222}
223
224STATIC void
225xfs_rmapbt_init_ptr_from_cur(
226 struct xfs_btree_cur *cur,
227 union xfs_btree_ptr *ptr)
228{
229 struct xfs_agf *agf = cur->bc_ag.agbp->b_addr;
230
231 ASSERT(cur->bc_group->xg_gno == be32_to_cpu(agf->agf_seqno));
232
233 ptr->s = agf->agf_rmap_root;
234}
235
236/*
237 * Mask the appropriate parts of the ondisk key field for a key comparison.
238 * Fork and bmbt are significant parts of the rmap record key, but written
239 * status is merely a record attribute.
240 */
241static inline uint64_t offset_keymask(uint64_t offset)
242{
243 return offset & ~XFS_RMAP_OFF_UNWRITTEN;
244}
245
246STATIC int64_t
247xfs_rmapbt_key_diff(
248 struct xfs_btree_cur *cur,
249 const union xfs_btree_key *key)
250{
251 struct xfs_rmap_irec *rec = &cur->bc_rec.r;
252 const struct xfs_rmap_key *kp = &key->rmap;
253 __u64 x, y;
254 int64_t d;
255
256 d = (int64_t)be32_to_cpu(kp->rm_startblock) - rec->rm_startblock;
257 if (d)
258 return d;
259
260 x = be64_to_cpu(kp->rm_owner);
261 y = rec->rm_owner;
262 if (x > y)
263 return 1;
264 else if (y > x)
265 return -1;
266
267 x = offset_keymask(be64_to_cpu(kp->rm_offset));
268 y = offset_keymask(xfs_rmap_irec_offset_pack(rec));
269 if (x > y)
270 return 1;
271 else if (y > x)
272 return -1;
273 return 0;
274}
275
276STATIC int64_t
277xfs_rmapbt_diff_two_keys(
278 struct xfs_btree_cur *cur,
279 const union xfs_btree_key *k1,
280 const union xfs_btree_key *k2,
281 const union xfs_btree_key *mask)
282{
283 const struct xfs_rmap_key *kp1 = &k1->rmap;
284 const struct xfs_rmap_key *kp2 = &k2->rmap;
285 int64_t d;
286 __u64 x, y;
287
288 /* Doesn't make sense to mask off the physical space part */
289 ASSERT(!mask || mask->rmap.rm_startblock);
290
291 d = (int64_t)be32_to_cpu(kp1->rm_startblock) -
292 be32_to_cpu(kp2->rm_startblock);
293 if (d)
294 return d;
295
296 if (!mask || mask->rmap.rm_owner) {
297 x = be64_to_cpu(kp1->rm_owner);
298 y = be64_to_cpu(kp2->rm_owner);
299 if (x > y)
300 return 1;
301 else if (y > x)
302 return -1;
303 }
304
305 if (!mask || mask->rmap.rm_offset) {
306 /* Doesn't make sense to allow offset but not owner */
307 ASSERT(!mask || mask->rmap.rm_owner);
308
309 x = offset_keymask(be64_to_cpu(kp1->rm_offset));
310 y = offset_keymask(be64_to_cpu(kp2->rm_offset));
311 if (x > y)
312 return 1;
313 else if (y > x)
314 return -1;
315 }
316
317 return 0;
318}
319
320static xfs_failaddr_t
321xfs_rmapbt_verify(
322 struct xfs_buf *bp)
323{
324 struct xfs_mount *mp = bp->b_mount;
325 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
326 struct xfs_perag *pag = bp->b_pag;
327 xfs_failaddr_t fa;
328 unsigned int level;
329
330 /*
331 * magic number and level verification
332 *
333 * During growfs operations, we can't verify the exact level or owner as
334 * the perag is not fully initialised and hence not attached to the
335 * buffer. In this case, check against the maximum tree depth.
336 *
337 * Similarly, during log recovery we will have a perag structure
338 * attached, but the agf information will not yet have been initialised
339 * from the on disk AGF. Again, we can only check against maximum limits
340 * in this case.
341 */
342 if (!xfs_verify_magic(bp, block->bb_magic))
343 return __this_address;
344
345 if (!xfs_has_rmapbt(mp))
346 return __this_address;
347 fa = xfs_btree_agblock_v5hdr_verify(bp);
348 if (fa)
349 return fa;
350
351 level = be16_to_cpu(block->bb_level);
352 if (pag && xfs_perag_initialised_agf(pag)) {
353 unsigned int maxlevel = pag->pagf_rmap_level;
354
355#ifdef CONFIG_XFS_ONLINE_REPAIR
356 /*
357 * Online repair could be rewriting the free space btrees, so
358 * we'll validate against the larger of either tree while this
359 * is going on.
360 */
361 maxlevel = max_t(unsigned int, maxlevel,
362 pag->pagf_repair_rmap_level);
363#endif
364 if (level >= maxlevel)
365 return __this_address;
366 } else if (level >= mp->m_rmap_maxlevels)
367 return __this_address;
368
369 return xfs_btree_agblock_verify(bp, mp->m_rmap_mxr[level != 0]);
370}
371
372static void
373xfs_rmapbt_read_verify(
374 struct xfs_buf *bp)
375{
376 xfs_failaddr_t fa;
377
378 if (!xfs_btree_agblock_verify_crc(bp))
379 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
380 else {
381 fa = xfs_rmapbt_verify(bp);
382 if (fa)
383 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
384 }
385
386 if (bp->b_error)
387 trace_xfs_btree_corrupt(bp, _RET_IP_);
388}
389
390static void
391xfs_rmapbt_write_verify(
392 struct xfs_buf *bp)
393{
394 xfs_failaddr_t fa;
395
396 fa = xfs_rmapbt_verify(bp);
397 if (fa) {
398 trace_xfs_btree_corrupt(bp, _RET_IP_);
399 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
400 return;
401 }
402 xfs_btree_agblock_calc_crc(bp);
403
404}
405
406const struct xfs_buf_ops xfs_rmapbt_buf_ops = {
407 .name = "xfs_rmapbt",
408 .magic = { 0, cpu_to_be32(XFS_RMAP_CRC_MAGIC) },
409 .verify_read = xfs_rmapbt_read_verify,
410 .verify_write = xfs_rmapbt_write_verify,
411 .verify_struct = xfs_rmapbt_verify,
412};
413
414STATIC int
415xfs_rmapbt_keys_inorder(
416 struct xfs_btree_cur *cur,
417 const union xfs_btree_key *k1,
418 const union xfs_btree_key *k2)
419{
420 uint32_t x;
421 uint32_t y;
422 uint64_t a;
423 uint64_t b;
424
425 x = be32_to_cpu(k1->rmap.rm_startblock);
426 y = be32_to_cpu(k2->rmap.rm_startblock);
427 if (x < y)
428 return 1;
429 else if (x > y)
430 return 0;
431 a = be64_to_cpu(k1->rmap.rm_owner);
432 b = be64_to_cpu(k2->rmap.rm_owner);
433 if (a < b)
434 return 1;
435 else if (a > b)
436 return 0;
437 a = offset_keymask(be64_to_cpu(k1->rmap.rm_offset));
438 b = offset_keymask(be64_to_cpu(k2->rmap.rm_offset));
439 if (a <= b)
440 return 1;
441 return 0;
442}
443
444STATIC int
445xfs_rmapbt_recs_inorder(
446 struct xfs_btree_cur *cur,
447 const union xfs_btree_rec *r1,
448 const union xfs_btree_rec *r2)
449{
450 uint32_t x;
451 uint32_t y;
452 uint64_t a;
453 uint64_t b;
454
455 x = be32_to_cpu(r1->rmap.rm_startblock);
456 y = be32_to_cpu(r2->rmap.rm_startblock);
457 if (x < y)
458 return 1;
459 else if (x > y)
460 return 0;
461 a = be64_to_cpu(r1->rmap.rm_owner);
462 b = be64_to_cpu(r2->rmap.rm_owner);
463 if (a < b)
464 return 1;
465 else if (a > b)
466 return 0;
467 a = offset_keymask(be64_to_cpu(r1->rmap.rm_offset));
468 b = offset_keymask(be64_to_cpu(r2->rmap.rm_offset));
469 if (a <= b)
470 return 1;
471 return 0;
472}
473
474STATIC enum xbtree_key_contig
475xfs_rmapbt_keys_contiguous(
476 struct xfs_btree_cur *cur,
477 const union xfs_btree_key *key1,
478 const union xfs_btree_key *key2,
479 const union xfs_btree_key *mask)
480{
481 ASSERT(!mask || mask->rmap.rm_startblock);
482
483 /*
484 * We only support checking contiguity of the physical space component.
485 * If any callers ever need more specificity than that, they'll have to
486 * implement it here.
487 */
488 ASSERT(!mask || (!mask->rmap.rm_owner && !mask->rmap.rm_offset));
489
490 return xbtree_key_contig(be32_to_cpu(key1->rmap.rm_startblock),
491 be32_to_cpu(key2->rmap.rm_startblock));
492}
493
494const struct xfs_btree_ops xfs_rmapbt_ops = {
495 .name = "rmap",
496 .type = XFS_BTREE_TYPE_AG,
497 .geom_flags = XFS_BTGEO_OVERLAPPING,
498
499 .rec_len = sizeof(struct xfs_rmap_rec),
500 /* Overlapping btree; 2 keys per pointer. */
501 .key_len = 2 * sizeof(struct xfs_rmap_key),
502 .ptr_len = XFS_BTREE_SHORT_PTR_LEN,
503
504 .lru_refs = XFS_RMAP_BTREE_REF,
505 .statoff = XFS_STATS_CALC_INDEX(xs_rmap_2),
506 .sick_mask = XFS_SICK_AG_RMAPBT,
507
508 .dup_cursor = xfs_rmapbt_dup_cursor,
509 .set_root = xfs_rmapbt_set_root,
510 .alloc_block = xfs_rmapbt_alloc_block,
511 .free_block = xfs_rmapbt_free_block,
512 .get_minrecs = xfs_rmapbt_get_minrecs,
513 .get_maxrecs = xfs_rmapbt_get_maxrecs,
514 .init_key_from_rec = xfs_rmapbt_init_key_from_rec,
515 .init_high_key_from_rec = xfs_rmapbt_init_high_key_from_rec,
516 .init_rec_from_cur = xfs_rmapbt_init_rec_from_cur,
517 .init_ptr_from_cur = xfs_rmapbt_init_ptr_from_cur,
518 .key_diff = xfs_rmapbt_key_diff,
519 .buf_ops = &xfs_rmapbt_buf_ops,
520 .diff_two_keys = xfs_rmapbt_diff_two_keys,
521 .keys_inorder = xfs_rmapbt_keys_inorder,
522 .recs_inorder = xfs_rmapbt_recs_inorder,
523 .keys_contiguous = xfs_rmapbt_keys_contiguous,
524};
525
526/*
527 * Create a new reverse mapping btree cursor.
528 *
529 * For staging cursors tp and agbp are NULL.
530 */
531struct xfs_btree_cur *
532xfs_rmapbt_init_cursor(
533 struct xfs_mount *mp,
534 struct xfs_trans *tp,
535 struct xfs_buf *agbp,
536 struct xfs_perag *pag)
537{
538 struct xfs_btree_cur *cur;
539
540 cur = xfs_btree_alloc_cursor(mp, tp, &xfs_rmapbt_ops,
541 mp->m_rmap_maxlevels, xfs_rmapbt_cur_cache);
542 cur->bc_group = xfs_group_hold(pag_group(pag));
543 cur->bc_ag.agbp = agbp;
544 if (agbp) {
545 struct xfs_agf *agf = agbp->b_addr;
546
547 cur->bc_nlevels = be32_to_cpu(agf->agf_rmap_level);
548 }
549 return cur;
550}
551
552#ifdef CONFIG_XFS_BTREE_IN_MEM
553static inline unsigned int
554xfs_rmapbt_mem_block_maxrecs(
555 unsigned int blocklen,
556 bool leaf)
557{
558 if (leaf)
559 return blocklen / sizeof(struct xfs_rmap_rec);
560 return blocklen /
561 (2 * sizeof(struct xfs_rmap_key) + sizeof(__be64));
562}
563
564/*
565 * Validate an in-memory rmap btree block. Callers are allowed to generate an
566 * in-memory btree even if the ondisk feature is not enabled.
567 */
568static xfs_failaddr_t
569xfs_rmapbt_mem_verify(
570 struct xfs_buf *bp)
571{
572 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
573 xfs_failaddr_t fa;
574 unsigned int level;
575 unsigned int maxrecs;
576
577 if (!xfs_verify_magic(bp, block->bb_magic))
578 return __this_address;
579
580 fa = xfs_btree_fsblock_v5hdr_verify(bp, XFS_RMAP_OWN_UNKNOWN);
581 if (fa)
582 return fa;
583
584 level = be16_to_cpu(block->bb_level);
585 if (level >= xfs_rmapbt_maxlevels_ondisk())
586 return __this_address;
587
588 maxrecs = xfs_rmapbt_mem_block_maxrecs(
589 XFBNO_BLOCKSIZE - XFS_BTREE_LBLOCK_CRC_LEN, level == 0);
590 return xfs_btree_memblock_verify(bp, maxrecs);
591}
592
593static void
594xfs_rmapbt_mem_rw_verify(
595 struct xfs_buf *bp)
596{
597 xfs_failaddr_t fa = xfs_rmapbt_mem_verify(bp);
598
599 if (fa)
600 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
601}
602
603/* skip crc checks on in-memory btrees to save time */
604static const struct xfs_buf_ops xfs_rmapbt_mem_buf_ops = {
605 .name = "xfs_rmapbt_mem",
606 .magic = { 0, cpu_to_be32(XFS_RMAP_CRC_MAGIC) },
607 .verify_read = xfs_rmapbt_mem_rw_verify,
608 .verify_write = xfs_rmapbt_mem_rw_verify,
609 .verify_struct = xfs_rmapbt_mem_verify,
610};
611
612const struct xfs_btree_ops xfs_rmapbt_mem_ops = {
613 .name = "mem_rmap",
614 .type = XFS_BTREE_TYPE_MEM,
615 .geom_flags = XFS_BTGEO_OVERLAPPING,
616
617 .rec_len = sizeof(struct xfs_rmap_rec),
618 /* Overlapping btree; 2 keys per pointer. */
619 .key_len = 2 * sizeof(struct xfs_rmap_key),
620 .ptr_len = XFS_BTREE_LONG_PTR_LEN,
621
622 .lru_refs = XFS_RMAP_BTREE_REF,
623 .statoff = XFS_STATS_CALC_INDEX(xs_rmap_mem_2),
624
625 .dup_cursor = xfbtree_dup_cursor,
626 .set_root = xfbtree_set_root,
627 .alloc_block = xfbtree_alloc_block,
628 .free_block = xfbtree_free_block,
629 .get_minrecs = xfbtree_get_minrecs,
630 .get_maxrecs = xfbtree_get_maxrecs,
631 .init_key_from_rec = xfs_rmapbt_init_key_from_rec,
632 .init_high_key_from_rec = xfs_rmapbt_init_high_key_from_rec,
633 .init_rec_from_cur = xfs_rmapbt_init_rec_from_cur,
634 .init_ptr_from_cur = xfbtree_init_ptr_from_cur,
635 .key_diff = xfs_rmapbt_key_diff,
636 .buf_ops = &xfs_rmapbt_mem_buf_ops,
637 .diff_two_keys = xfs_rmapbt_diff_two_keys,
638 .keys_inorder = xfs_rmapbt_keys_inorder,
639 .recs_inorder = xfs_rmapbt_recs_inorder,
640 .keys_contiguous = xfs_rmapbt_keys_contiguous,
641};
642
643/* Create a cursor for an in-memory btree. */
644struct xfs_btree_cur *
645xfs_rmapbt_mem_cursor(
646 struct xfs_perag *pag,
647 struct xfs_trans *tp,
648 struct xfbtree *xfbt)
649{
650 struct xfs_btree_cur *cur;
651
652 cur = xfs_btree_alloc_cursor(pag_mount(pag), tp, &xfs_rmapbt_mem_ops,
653 xfs_rmapbt_maxlevels_ondisk(), xfs_rmapbt_cur_cache);
654 cur->bc_mem.xfbtree = xfbt;
655 cur->bc_nlevels = xfbt->nlevels;
656
657 cur->bc_group = xfs_group_hold(pag_group(pag));
658 return cur;
659}
660
661/* Create an in-memory rmap btree. */
662int
663xfs_rmapbt_mem_init(
664 struct xfs_mount *mp,
665 struct xfbtree *xfbt,
666 struct xfs_buftarg *btp,
667 xfs_agnumber_t agno)
668{
669 xfbt->owner = agno;
670 return xfbtree_init(mp, xfbt, btp, &xfs_rmapbt_mem_ops);
671}
672
673/* Compute the max possible height for reverse mapping btrees in memory. */
674static unsigned int
675xfs_rmapbt_mem_maxlevels(void)
676{
677 unsigned int minrecs[2];
678 unsigned int blocklen;
679
680 blocklen = XFBNO_BLOCKSIZE - XFS_BTREE_LBLOCK_CRC_LEN;
681
682 minrecs[0] = xfs_rmapbt_mem_block_maxrecs(blocklen, true) / 2;
683 minrecs[1] = xfs_rmapbt_mem_block_maxrecs(blocklen, false) / 2;
684
685 /*
686 * How tall can an in-memory rmap btree become if we filled the entire
687 * AG with rmap records?
688 */
689 return xfs_btree_compute_maxlevels(minrecs,
690 XFS_MAX_AG_BYTES / sizeof(struct xfs_rmap_rec));
691}
692#else
693# define xfs_rmapbt_mem_maxlevels() (0)
694#endif /* CONFIG_XFS_BTREE_IN_MEM */
695
696/*
697 * Install a new reverse mapping btree root. Caller is responsible for
698 * invalidating and freeing the old btree blocks.
699 */
700void
701xfs_rmapbt_commit_staged_btree(
702 struct xfs_btree_cur *cur,
703 struct xfs_trans *tp,
704 struct xfs_buf *agbp)
705{
706 struct xfs_agf *agf = agbp->b_addr;
707 struct xbtree_afakeroot *afake = cur->bc_ag.afake;
708
709 ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
710
711 agf->agf_rmap_root = cpu_to_be32(afake->af_root);
712 agf->agf_rmap_level = cpu_to_be32(afake->af_levels);
713 agf->agf_rmap_blocks = cpu_to_be32(afake->af_blocks);
714 xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS |
715 XFS_AGF_RMAP_BLOCKS);
716 xfs_btree_commit_afakeroot(cur, tp, agbp);
717}
718
719/* Calculate number of records in a reverse mapping btree block. */
720static inline unsigned int
721xfs_rmapbt_block_maxrecs(
722 unsigned int blocklen,
723 bool leaf)
724{
725 if (leaf)
726 return blocklen / sizeof(struct xfs_rmap_rec);
727 return blocklen /
728 (2 * sizeof(struct xfs_rmap_key) + sizeof(xfs_rmap_ptr_t));
729}
730
731/*
732 * Calculate number of records in an rmap btree block.
733 */
734unsigned int
735xfs_rmapbt_maxrecs(
736 struct xfs_mount *mp,
737 unsigned int blocklen,
738 bool leaf)
739{
740 blocklen -= XFS_RMAP_BLOCK_LEN;
741 return xfs_rmapbt_block_maxrecs(blocklen, leaf);
742}
743
744/* Compute the max possible height for reverse mapping btrees. */
745unsigned int
746xfs_rmapbt_maxlevels_ondisk(void)
747{
748 unsigned int minrecs[2];
749 unsigned int blocklen;
750
751 blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN;
752
753 minrecs[0] = xfs_rmapbt_block_maxrecs(blocklen, true) / 2;
754 minrecs[1] = xfs_rmapbt_block_maxrecs(blocklen, false) / 2;
755
756 /*
757 * Compute the asymptotic maxlevels for an rmapbt on any reflink fs.
758 *
759 * On a reflink filesystem, each AG block can have up to 2^32 (per the
760 * refcount record format) owners, which means that theoretically we
761 * could face up to 2^64 rmap records. However, we're likely to run
762 * out of blocks in the AG long before that happens, which means that
763 * we must compute the max height based on what the btree will look
764 * like if it consumes almost all the blocks in the AG due to maximal
765 * sharing factor.
766 */
767 return max(xfs_btree_space_to_height(minrecs, XFS_MAX_CRC_AG_BLOCKS),
768 xfs_rmapbt_mem_maxlevels());
769}
770
771/* Compute the maximum height of an rmap btree. */
772void
773xfs_rmapbt_compute_maxlevels(
774 struct xfs_mount *mp)
775{
776 if (!xfs_has_rmapbt(mp)) {
777 mp->m_rmap_maxlevels = 0;
778 return;
779 }
780
781 if (xfs_has_reflink(mp)) {
782 /*
783 * Compute the asymptotic maxlevels for an rmap btree on a
784 * filesystem that supports reflink.
785 *
786 * On a reflink filesystem, each AG block can have up to 2^32
787 * (per the refcount record format) owners, which means that
788 * theoretically we could face up to 2^64 rmap records.
789 * However, we're likely to run out of blocks in the AG long
790 * before that happens, which means that we must compute the
791 * max height based on what the btree will look like if it
792 * consumes almost all the blocks in the AG due to maximal
793 * sharing factor.
794 */
795 mp->m_rmap_maxlevels = xfs_btree_space_to_height(mp->m_rmap_mnr,
796 mp->m_sb.sb_agblocks);
797 } else {
798 /*
799 * If there's no block sharing, compute the maximum rmapbt
800 * height assuming one rmap record per AG block.
801 */
802 mp->m_rmap_maxlevels = xfs_btree_compute_maxlevels(
803 mp->m_rmap_mnr, mp->m_sb.sb_agblocks);
804 }
805 ASSERT(mp->m_rmap_maxlevels <= xfs_rmapbt_maxlevels_ondisk());
806}
807
808/* Calculate the refcount btree size for some records. */
809xfs_extlen_t
810xfs_rmapbt_calc_size(
811 struct xfs_mount *mp,
812 unsigned long long len)
813{
814 return xfs_btree_calc_size(mp->m_rmap_mnr, len);
815}
816
817/*
818 * Calculate the maximum refcount btree size.
819 */
820xfs_extlen_t
821xfs_rmapbt_max_size(
822 struct xfs_mount *mp,
823 xfs_agblock_t agblocks)
824{
825 /* Bail out if we're uninitialized, which can happen in mkfs. */
826 if (mp->m_rmap_mxr[0] == 0)
827 return 0;
828
829 return xfs_rmapbt_calc_size(mp, agblocks);
830}
831
832/*
833 * Figure out how many blocks to reserve and how many are used by this btree.
834 */
835int
836xfs_rmapbt_calc_reserves(
837 struct xfs_mount *mp,
838 struct xfs_trans *tp,
839 struct xfs_perag *pag,
840 xfs_extlen_t *ask,
841 xfs_extlen_t *used)
842{
843 struct xfs_buf *agbp;
844 struct xfs_agf *agf;
845 xfs_agblock_t agblocks;
846 xfs_extlen_t tree_len;
847 int error;
848
849 if (!xfs_has_rmapbt(mp))
850 return 0;
851
852 error = xfs_alloc_read_agf(pag, tp, 0, &agbp);
853 if (error)
854 return error;
855
856 agf = agbp->b_addr;
857 agblocks = be32_to_cpu(agf->agf_length);
858 tree_len = be32_to_cpu(agf->agf_rmap_blocks);
859 xfs_trans_brelse(tp, agbp);
860
861 /*
862 * The log is permanently allocated, so the space it occupies will
863 * never be available for the kinds of things that would require btree
864 * expansion. We therefore can pretend the space isn't there.
865 */
866 if (xfs_ag_contains_log(mp, pag_agno(pag)))
867 agblocks -= mp->m_sb.sb_logblocks;
868
869 /* Reserve 1% of the AG or enough for 1 block per record. */
870 *ask += max(agblocks / 100, xfs_rmapbt_max_size(mp, agblocks));
871 *used += tree_len;
872
873 return error;
874}
875
876int __init
877xfs_rmapbt_init_cur_cache(void)
878{
879 xfs_rmapbt_cur_cache = kmem_cache_create("xfs_rmapbt_cur",
880 xfs_btree_cur_sizeof(xfs_rmapbt_maxlevels_ondisk()),
881 0, 0, NULL);
882
883 if (!xfs_rmapbt_cur_cache)
884 return -ENOMEM;
885 return 0;
886}
887
888void
889xfs_rmapbt_destroy_cur_cache(void)
890{
891 kmem_cache_destroy(xfs_rmapbt_cur_cache);
892 xfs_rmapbt_cur_cache = NULL;
893}
1/*
2 * Copyright (c) 2014 Red Hat, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_shared.h"
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
24#include "xfs_bit.h"
25#include "xfs_sb.h"
26#include "xfs_mount.h"
27#include "xfs_defer.h"
28#include "xfs_inode.h"
29#include "xfs_trans.h"
30#include "xfs_alloc.h"
31#include "xfs_btree.h"
32#include "xfs_rmap.h"
33#include "xfs_rmap_btree.h"
34#include "xfs_trace.h"
35#include "xfs_cksum.h"
36#include "xfs_error.h"
37#include "xfs_extent_busy.h"
38#include "xfs_ag_resv.h"
39
40/*
41 * Reverse map btree.
42 *
43 * This is a per-ag tree used to track the owner(s) of a given extent. With
44 * reflink it is possible for there to be multiple owners, which is a departure
45 * from classic XFS. Owner records for data extents are inserted when the
46 * extent is mapped and removed when an extent is unmapped. Owner records for
47 * all other block types (i.e. metadata) are inserted when an extent is
48 * allocated and removed when an extent is freed. There can only be one owner
49 * of a metadata extent, usually an inode or some other metadata structure like
50 * an AG btree.
51 *
52 * The rmap btree is part of the free space management, so blocks for the tree
53 * are sourced from the agfl. Hence we need transaction reservation support for
54 * this tree so that the freelist is always large enough. This also impacts on
55 * the minimum space we need to leave free in the AG.
56 *
57 * The tree is ordered by [ag block, owner, offset]. This is a large key size,
58 * but it is the only way to enforce unique keys when a block can be owned by
59 * multiple files at any offset. There's no need to order/search by extent
60 * size for online updating/management of the tree. It is intended that most
61 * reverse lookups will be to find the owner(s) of a particular block, or to
62 * try to recover tree and file data from corrupt primary metadata.
63 */
64
65static struct xfs_btree_cur *
66xfs_rmapbt_dup_cursor(
67 struct xfs_btree_cur *cur)
68{
69 return xfs_rmapbt_init_cursor(cur->bc_mp, cur->bc_tp,
70 cur->bc_private.a.agbp, cur->bc_private.a.agno);
71}
72
73STATIC void
74xfs_rmapbt_set_root(
75 struct xfs_btree_cur *cur,
76 union xfs_btree_ptr *ptr,
77 int inc)
78{
79 struct xfs_buf *agbp = cur->bc_private.a.agbp;
80 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
81 xfs_agnumber_t seqno = be32_to_cpu(agf->agf_seqno);
82 int btnum = cur->bc_btnum;
83 struct xfs_perag *pag = xfs_perag_get(cur->bc_mp, seqno);
84
85 ASSERT(ptr->s != 0);
86
87 agf->agf_roots[btnum] = ptr->s;
88 be32_add_cpu(&agf->agf_levels[btnum], inc);
89 pag->pagf_levels[btnum] += inc;
90 xfs_perag_put(pag);
91
92 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
93}
94
95STATIC int
96xfs_rmapbt_alloc_block(
97 struct xfs_btree_cur *cur,
98 union xfs_btree_ptr *start,
99 union xfs_btree_ptr *new,
100 int *stat)
101{
102 struct xfs_buf *agbp = cur->bc_private.a.agbp;
103 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
104 int error;
105 xfs_agblock_t bno;
106
107 /* Allocate the new block from the freelist. If we can't, give up. */
108 error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_private.a.agbp,
109 &bno, 1);
110 if (error)
111 return error;
112
113 trace_xfs_rmapbt_alloc_block(cur->bc_mp, cur->bc_private.a.agno,
114 bno, 1);
115 if (bno == NULLAGBLOCK) {
116 *stat = 0;
117 return 0;
118 }
119
120 xfs_extent_busy_reuse(cur->bc_mp, cur->bc_private.a.agno, bno, 1,
121 false);
122
123 xfs_trans_agbtree_delta(cur->bc_tp, 1);
124 new->s = cpu_to_be32(bno);
125 be32_add_cpu(&agf->agf_rmap_blocks, 1);
126 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
127
128 xfs_ag_resv_rmapbt_alloc(cur->bc_mp, cur->bc_private.a.agno);
129
130 *stat = 1;
131 return 0;
132}
133
134STATIC int
135xfs_rmapbt_free_block(
136 struct xfs_btree_cur *cur,
137 struct xfs_buf *bp)
138{
139 struct xfs_buf *agbp = cur->bc_private.a.agbp;
140 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
141 xfs_agblock_t bno;
142 int error;
143
144 bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp));
145 trace_xfs_rmapbt_free_block(cur->bc_mp, cur->bc_private.a.agno,
146 bno, 1);
147 be32_add_cpu(&agf->agf_rmap_blocks, -1);
148 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
149 error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1);
150 if (error)
151 return error;
152
153 xfs_extent_busy_insert(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1,
154 XFS_EXTENT_BUSY_SKIP_DISCARD);
155 xfs_trans_agbtree_delta(cur->bc_tp, -1);
156
157 xfs_ag_resv_rmapbt_free(cur->bc_mp, cur->bc_private.a.agno);
158
159 return 0;
160}
161
162STATIC int
163xfs_rmapbt_get_minrecs(
164 struct xfs_btree_cur *cur,
165 int level)
166{
167 return cur->bc_mp->m_rmap_mnr[level != 0];
168}
169
170STATIC int
171xfs_rmapbt_get_maxrecs(
172 struct xfs_btree_cur *cur,
173 int level)
174{
175 return cur->bc_mp->m_rmap_mxr[level != 0];
176}
177
178STATIC void
179xfs_rmapbt_init_key_from_rec(
180 union xfs_btree_key *key,
181 union xfs_btree_rec *rec)
182{
183 key->rmap.rm_startblock = rec->rmap.rm_startblock;
184 key->rmap.rm_owner = rec->rmap.rm_owner;
185 key->rmap.rm_offset = rec->rmap.rm_offset;
186}
187
188/*
189 * The high key for a reverse mapping record can be computed by shifting
190 * the startblock and offset to the highest value that would still map
191 * to that record. In practice this means that we add blockcount-1 to
192 * the startblock for all records, and if the record is for a data/attr
193 * fork mapping, we add blockcount-1 to the offset too.
194 */
195STATIC void
196xfs_rmapbt_init_high_key_from_rec(
197 union xfs_btree_key *key,
198 union xfs_btree_rec *rec)
199{
200 uint64_t off;
201 int adj;
202
203 adj = be32_to_cpu(rec->rmap.rm_blockcount) - 1;
204
205 key->rmap.rm_startblock = rec->rmap.rm_startblock;
206 be32_add_cpu(&key->rmap.rm_startblock, adj);
207 key->rmap.rm_owner = rec->rmap.rm_owner;
208 key->rmap.rm_offset = rec->rmap.rm_offset;
209 if (XFS_RMAP_NON_INODE_OWNER(be64_to_cpu(rec->rmap.rm_owner)) ||
210 XFS_RMAP_IS_BMBT_BLOCK(be64_to_cpu(rec->rmap.rm_offset)))
211 return;
212 off = be64_to_cpu(key->rmap.rm_offset);
213 off = (XFS_RMAP_OFF(off) + adj) | (off & ~XFS_RMAP_OFF_MASK);
214 key->rmap.rm_offset = cpu_to_be64(off);
215}
216
217STATIC void
218xfs_rmapbt_init_rec_from_cur(
219 struct xfs_btree_cur *cur,
220 union xfs_btree_rec *rec)
221{
222 rec->rmap.rm_startblock = cpu_to_be32(cur->bc_rec.r.rm_startblock);
223 rec->rmap.rm_blockcount = cpu_to_be32(cur->bc_rec.r.rm_blockcount);
224 rec->rmap.rm_owner = cpu_to_be64(cur->bc_rec.r.rm_owner);
225 rec->rmap.rm_offset = cpu_to_be64(
226 xfs_rmap_irec_offset_pack(&cur->bc_rec.r));
227}
228
229STATIC void
230xfs_rmapbt_init_ptr_from_cur(
231 struct xfs_btree_cur *cur,
232 union xfs_btree_ptr *ptr)
233{
234 struct xfs_agf *agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
235
236 ASSERT(cur->bc_private.a.agno == be32_to_cpu(agf->agf_seqno));
237 ASSERT(agf->agf_roots[cur->bc_btnum] != 0);
238
239 ptr->s = agf->agf_roots[cur->bc_btnum];
240}
241
242STATIC int64_t
243xfs_rmapbt_key_diff(
244 struct xfs_btree_cur *cur,
245 union xfs_btree_key *key)
246{
247 struct xfs_rmap_irec *rec = &cur->bc_rec.r;
248 struct xfs_rmap_key *kp = &key->rmap;
249 __u64 x, y;
250 int64_t d;
251
252 d = (int64_t)be32_to_cpu(kp->rm_startblock) - rec->rm_startblock;
253 if (d)
254 return d;
255
256 x = be64_to_cpu(kp->rm_owner);
257 y = rec->rm_owner;
258 if (x > y)
259 return 1;
260 else if (y > x)
261 return -1;
262
263 x = XFS_RMAP_OFF(be64_to_cpu(kp->rm_offset));
264 y = rec->rm_offset;
265 if (x > y)
266 return 1;
267 else if (y > x)
268 return -1;
269 return 0;
270}
271
272STATIC int64_t
273xfs_rmapbt_diff_two_keys(
274 struct xfs_btree_cur *cur,
275 union xfs_btree_key *k1,
276 union xfs_btree_key *k2)
277{
278 struct xfs_rmap_key *kp1 = &k1->rmap;
279 struct xfs_rmap_key *kp2 = &k2->rmap;
280 int64_t d;
281 __u64 x, y;
282
283 d = (int64_t)be32_to_cpu(kp1->rm_startblock) -
284 be32_to_cpu(kp2->rm_startblock);
285 if (d)
286 return d;
287
288 x = be64_to_cpu(kp1->rm_owner);
289 y = be64_to_cpu(kp2->rm_owner);
290 if (x > y)
291 return 1;
292 else if (y > x)
293 return -1;
294
295 x = XFS_RMAP_OFF(be64_to_cpu(kp1->rm_offset));
296 y = XFS_RMAP_OFF(be64_to_cpu(kp2->rm_offset));
297 if (x > y)
298 return 1;
299 else if (y > x)
300 return -1;
301 return 0;
302}
303
304static xfs_failaddr_t
305xfs_rmapbt_verify(
306 struct xfs_buf *bp)
307{
308 struct xfs_mount *mp = bp->b_target->bt_mount;
309 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
310 struct xfs_perag *pag = bp->b_pag;
311 xfs_failaddr_t fa;
312 unsigned int level;
313
314 /*
315 * magic number and level verification
316 *
317 * During growfs operations, we can't verify the exact level or owner as
318 * the perag is not fully initialised and hence not attached to the
319 * buffer. In this case, check against the maximum tree depth.
320 *
321 * Similarly, during log recovery we will have a perag structure
322 * attached, but the agf information will not yet have been initialised
323 * from the on disk AGF. Again, we can only check against maximum limits
324 * in this case.
325 */
326 if (block->bb_magic != cpu_to_be32(XFS_RMAP_CRC_MAGIC))
327 return __this_address;
328
329 if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
330 return __this_address;
331 fa = xfs_btree_sblock_v5hdr_verify(bp);
332 if (fa)
333 return fa;
334
335 level = be16_to_cpu(block->bb_level);
336 if (pag && pag->pagf_init) {
337 if (level >= pag->pagf_levels[XFS_BTNUM_RMAPi])
338 return __this_address;
339 } else if (level >= mp->m_rmap_maxlevels)
340 return __this_address;
341
342 return xfs_btree_sblock_verify(bp, mp->m_rmap_mxr[level != 0]);
343}
344
345static void
346xfs_rmapbt_read_verify(
347 struct xfs_buf *bp)
348{
349 xfs_failaddr_t fa;
350
351 if (!xfs_btree_sblock_verify_crc(bp))
352 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
353 else {
354 fa = xfs_rmapbt_verify(bp);
355 if (fa)
356 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
357 }
358
359 if (bp->b_error)
360 trace_xfs_btree_corrupt(bp, _RET_IP_);
361}
362
363static void
364xfs_rmapbt_write_verify(
365 struct xfs_buf *bp)
366{
367 xfs_failaddr_t fa;
368
369 fa = xfs_rmapbt_verify(bp);
370 if (fa) {
371 trace_xfs_btree_corrupt(bp, _RET_IP_);
372 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
373 return;
374 }
375 xfs_btree_sblock_calc_crc(bp);
376
377}
378
379const struct xfs_buf_ops xfs_rmapbt_buf_ops = {
380 .name = "xfs_rmapbt",
381 .verify_read = xfs_rmapbt_read_verify,
382 .verify_write = xfs_rmapbt_write_verify,
383 .verify_struct = xfs_rmapbt_verify,
384};
385
386STATIC int
387xfs_rmapbt_keys_inorder(
388 struct xfs_btree_cur *cur,
389 union xfs_btree_key *k1,
390 union xfs_btree_key *k2)
391{
392 uint32_t x;
393 uint32_t y;
394 uint64_t a;
395 uint64_t b;
396
397 x = be32_to_cpu(k1->rmap.rm_startblock);
398 y = be32_to_cpu(k2->rmap.rm_startblock);
399 if (x < y)
400 return 1;
401 else if (x > y)
402 return 0;
403 a = be64_to_cpu(k1->rmap.rm_owner);
404 b = be64_to_cpu(k2->rmap.rm_owner);
405 if (a < b)
406 return 1;
407 else if (a > b)
408 return 0;
409 a = XFS_RMAP_OFF(be64_to_cpu(k1->rmap.rm_offset));
410 b = XFS_RMAP_OFF(be64_to_cpu(k2->rmap.rm_offset));
411 if (a <= b)
412 return 1;
413 return 0;
414}
415
416STATIC int
417xfs_rmapbt_recs_inorder(
418 struct xfs_btree_cur *cur,
419 union xfs_btree_rec *r1,
420 union xfs_btree_rec *r2)
421{
422 uint32_t x;
423 uint32_t y;
424 uint64_t a;
425 uint64_t b;
426
427 x = be32_to_cpu(r1->rmap.rm_startblock);
428 y = be32_to_cpu(r2->rmap.rm_startblock);
429 if (x < y)
430 return 1;
431 else if (x > y)
432 return 0;
433 a = be64_to_cpu(r1->rmap.rm_owner);
434 b = be64_to_cpu(r2->rmap.rm_owner);
435 if (a < b)
436 return 1;
437 else if (a > b)
438 return 0;
439 a = XFS_RMAP_OFF(be64_to_cpu(r1->rmap.rm_offset));
440 b = XFS_RMAP_OFF(be64_to_cpu(r2->rmap.rm_offset));
441 if (a <= b)
442 return 1;
443 return 0;
444}
445
446static const struct xfs_btree_ops xfs_rmapbt_ops = {
447 .rec_len = sizeof(struct xfs_rmap_rec),
448 .key_len = 2 * sizeof(struct xfs_rmap_key),
449
450 .dup_cursor = xfs_rmapbt_dup_cursor,
451 .set_root = xfs_rmapbt_set_root,
452 .alloc_block = xfs_rmapbt_alloc_block,
453 .free_block = xfs_rmapbt_free_block,
454 .get_minrecs = xfs_rmapbt_get_minrecs,
455 .get_maxrecs = xfs_rmapbt_get_maxrecs,
456 .init_key_from_rec = xfs_rmapbt_init_key_from_rec,
457 .init_high_key_from_rec = xfs_rmapbt_init_high_key_from_rec,
458 .init_rec_from_cur = xfs_rmapbt_init_rec_from_cur,
459 .init_ptr_from_cur = xfs_rmapbt_init_ptr_from_cur,
460 .key_diff = xfs_rmapbt_key_diff,
461 .buf_ops = &xfs_rmapbt_buf_ops,
462 .diff_two_keys = xfs_rmapbt_diff_two_keys,
463 .keys_inorder = xfs_rmapbt_keys_inorder,
464 .recs_inorder = xfs_rmapbt_recs_inorder,
465};
466
467/*
468 * Allocate a new allocation btree cursor.
469 */
470struct xfs_btree_cur *
471xfs_rmapbt_init_cursor(
472 struct xfs_mount *mp,
473 struct xfs_trans *tp,
474 struct xfs_buf *agbp,
475 xfs_agnumber_t agno)
476{
477 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
478 struct xfs_btree_cur *cur;
479
480 cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS);
481 cur->bc_tp = tp;
482 cur->bc_mp = mp;
483 /* Overlapping btree; 2 keys per pointer. */
484 cur->bc_btnum = XFS_BTNUM_RMAP;
485 cur->bc_flags = XFS_BTREE_CRC_BLOCKS | XFS_BTREE_OVERLAPPING;
486 cur->bc_blocklog = mp->m_sb.sb_blocklog;
487 cur->bc_ops = &xfs_rmapbt_ops;
488 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]);
489 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_rmap_2);
490
491 cur->bc_private.a.agbp = agbp;
492 cur->bc_private.a.agno = agno;
493
494 return cur;
495}
496
497/*
498 * Calculate number of records in an rmap btree block.
499 */
500int
501xfs_rmapbt_maxrecs(
502 int blocklen,
503 int leaf)
504{
505 blocklen -= XFS_RMAP_BLOCK_LEN;
506
507 if (leaf)
508 return blocklen / sizeof(struct xfs_rmap_rec);
509 return blocklen /
510 (2 * sizeof(struct xfs_rmap_key) + sizeof(xfs_rmap_ptr_t));
511}
512
513/* Compute the maximum height of an rmap btree. */
514void
515xfs_rmapbt_compute_maxlevels(
516 struct xfs_mount *mp)
517{
518 /*
519 * On a non-reflink filesystem, the maximum number of rmap
520 * records is the number of blocks in the AG, hence the max
521 * rmapbt height is log_$maxrecs($agblocks). However, with
522 * reflink each AG block can have up to 2^32 (per the refcount
523 * record format) owners, which means that theoretically we
524 * could face up to 2^64 rmap records.
525 *
526 * That effectively means that the max rmapbt height must be
527 * XFS_BTREE_MAXLEVELS. "Fortunately" we'll run out of AG
528 * blocks to feed the rmapbt long before the rmapbt reaches
529 * maximum height. The reflink code uses ag_resv_critical to
530 * disallow reflinking when less than 10% of the per-AG metadata
531 * block reservation since the fallback is a regular file copy.
532 */
533 if (xfs_sb_version_hasreflink(&mp->m_sb))
534 mp->m_rmap_maxlevels = XFS_BTREE_MAXLEVELS;
535 else
536 mp->m_rmap_maxlevels = xfs_btree_compute_maxlevels(
537 mp->m_rmap_mnr, mp->m_sb.sb_agblocks);
538}
539
540/* Calculate the refcount btree size for some records. */
541xfs_extlen_t
542xfs_rmapbt_calc_size(
543 struct xfs_mount *mp,
544 unsigned long long len)
545{
546 return xfs_btree_calc_size(mp->m_rmap_mnr, len);
547}
548
549/*
550 * Calculate the maximum refcount btree size.
551 */
552xfs_extlen_t
553xfs_rmapbt_max_size(
554 struct xfs_mount *mp,
555 xfs_agblock_t agblocks)
556{
557 /* Bail out if we're uninitialized, which can happen in mkfs. */
558 if (mp->m_rmap_mxr[0] == 0)
559 return 0;
560
561 return xfs_rmapbt_calc_size(mp, agblocks);
562}
563
564/*
565 * Figure out how many blocks to reserve and how many are used by this btree.
566 */
567int
568xfs_rmapbt_calc_reserves(
569 struct xfs_mount *mp,
570 xfs_agnumber_t agno,
571 xfs_extlen_t *ask,
572 xfs_extlen_t *used)
573{
574 struct xfs_buf *agbp;
575 struct xfs_agf *agf;
576 xfs_agblock_t agblocks;
577 xfs_extlen_t tree_len;
578 int error;
579
580 if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
581 return 0;
582
583 error = xfs_alloc_read_agf(mp, NULL, agno, 0, &agbp);
584 if (error)
585 return error;
586
587 agf = XFS_BUF_TO_AGF(agbp);
588 agblocks = be32_to_cpu(agf->agf_length);
589 tree_len = be32_to_cpu(agf->agf_rmap_blocks);
590 xfs_buf_relse(agbp);
591
592 /* Reserve 1% of the AG or enough for 1 block per record. */
593 *ask += max(agblocks / 100, xfs_rmapbt_max_size(mp, agblocks));
594 *used += tree_len;
595
596 return error;
597}