Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_bit.h"
 
  13#include "xfs_mount.h"
 
  14#include "xfs_inode.h"
  15#include "xfs_btree.h"
  16#include "xfs_ialloc.h"
  17#include "xfs_ialloc_btree.h"
  18#include "xfs_alloc.h"
 
  19#include "xfs_errortag.h"
  20#include "xfs_error.h"
  21#include "xfs_bmap.h"
 
  22#include "xfs_trans.h"
  23#include "xfs_buf_item.h"
  24#include "xfs_icreate_item.h"
  25#include "xfs_icache.h"
  26#include "xfs_trace.h"
  27#include "xfs_log.h"
  28#include "xfs_rmap.h"
  29#include "xfs_ag.h"
  30#include "xfs_health.h"
 
 
 
 
 
 
 
 
 
 
 
 
  31
  32/*
  33 * Lookup a record by ino in the btree given by cur.
  34 */
  35int					/* error */
  36xfs_inobt_lookup(
  37	struct xfs_btree_cur	*cur,	/* btree cursor */
  38	xfs_agino_t		ino,	/* starting inode of chunk */
  39	xfs_lookup_t		dir,	/* <=, >=, == */
  40	int			*stat)	/* success/failure */
  41{
  42	cur->bc_rec.i.ir_startino = ino;
  43	cur->bc_rec.i.ir_holemask = 0;
  44	cur->bc_rec.i.ir_count = 0;
  45	cur->bc_rec.i.ir_freecount = 0;
  46	cur->bc_rec.i.ir_free = 0;
  47	return xfs_btree_lookup(cur, dir, stat);
  48}
  49
  50/*
  51 * Update the record referred to by cur to the value given.
  52 * This either works (return 0) or gets an EFSCORRUPTED error.
  53 */
  54STATIC int				/* error */
  55xfs_inobt_update(
  56	struct xfs_btree_cur	*cur,	/* btree cursor */
  57	xfs_inobt_rec_incore_t	*irec)	/* btree record */
  58{
  59	union xfs_btree_rec	rec;
  60
  61	rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
  62	if (xfs_has_sparseinodes(cur->bc_mp)) {
  63		rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
  64		rec.inobt.ir_u.sp.ir_count = irec->ir_count;
  65		rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
  66	} else {
  67		/* ir_holemask/ir_count not supported on-disk */
  68		rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
  69	}
  70	rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
  71	return xfs_btree_update(cur, &rec);
  72}
  73
  74/* Convert on-disk btree record to incore inobt record. */
  75void
  76xfs_inobt_btrec_to_irec(
  77	struct xfs_mount		*mp,
  78	const union xfs_btree_rec	*rec,
  79	struct xfs_inobt_rec_incore	*irec)
  80{
  81	irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
  82	if (xfs_has_sparseinodes(mp)) {
  83		irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
  84		irec->ir_count = rec->inobt.ir_u.sp.ir_count;
  85		irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
  86	} else {
  87		/*
  88		 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
  89		 * values for full inode chunks.
  90		 */
  91		irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
  92		irec->ir_count = XFS_INODES_PER_CHUNK;
  93		irec->ir_freecount =
  94				be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
  95	}
  96	irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
  97}
  98
  99/* Compute the freecount of an incore inode record. */
 100uint8_t
 101xfs_inobt_rec_freecount(
 102	const struct xfs_inobt_rec_incore	*irec)
 103{
 104	uint64_t				realfree = irec->ir_free;
 105
 106	if (xfs_inobt_issparse(irec->ir_holemask))
 107		realfree &= xfs_inobt_irec_to_allocmask(irec);
 108	return hweight64(realfree);
 109}
 110
 111/* Simple checks for inode records. */
 112xfs_failaddr_t
 113xfs_inobt_check_irec(
 114	struct xfs_perag			*pag,
 115	const struct xfs_inobt_rec_incore	*irec)
 116{
 117	/* Record has to be properly aligned within the AG. */
 118	if (!xfs_verify_agino(pag, irec->ir_startino))
 119		return __this_address;
 120	if (!xfs_verify_agino(pag,
 121				irec->ir_startino + XFS_INODES_PER_CHUNK - 1))
 122		return __this_address;
 123	if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
 124	    irec->ir_count > XFS_INODES_PER_CHUNK)
 125		return __this_address;
 126	if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
 127		return __this_address;
 128
 129	if (xfs_inobt_rec_freecount(irec) != irec->ir_freecount)
 130		return __this_address;
 131
 132	return NULL;
 133}
 134
 135static inline int
 136xfs_inobt_complain_bad_rec(
 137	struct xfs_btree_cur		*cur,
 138	xfs_failaddr_t			fa,
 139	const struct xfs_inobt_rec_incore *irec)
 140{
 141	struct xfs_mount		*mp = cur->bc_mp;
 142
 143	xfs_warn(mp,
 144		"%sbt record corruption in AG %d detected at %pS!",
 145		cur->bc_ops->name, cur->bc_group->xg_gno, fa);
 146	xfs_warn(mp,
 147"start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
 148		irec->ir_startino, irec->ir_count, irec->ir_freecount,
 149		irec->ir_free, irec->ir_holemask);
 150	xfs_btree_mark_sick(cur);
 151	return -EFSCORRUPTED;
 152}
 153
 154/*
 155 * Get the data from the pointed-to record.
 156 */
 157int
 158xfs_inobt_get_rec(
 159	struct xfs_btree_cur		*cur,
 160	struct xfs_inobt_rec_incore	*irec,
 161	int				*stat)
 162{
 163	struct xfs_mount		*mp = cur->bc_mp;
 164	union xfs_btree_rec		*rec;
 165	xfs_failaddr_t			fa;
 166	int				error;
 167
 168	error = xfs_btree_get_rec(cur, &rec, stat);
 169	if (error || *stat == 0)
 170		return error;
 171
 172	xfs_inobt_btrec_to_irec(mp, rec, irec);
 173	fa = xfs_inobt_check_irec(to_perag(cur->bc_group), irec);
 174	if (fa)
 175		return xfs_inobt_complain_bad_rec(cur, fa, irec);
 176
 177	return 0;
 178}
 179
 180/*
 181 * Insert a single inobt record. Cursor must already point to desired location.
 182 */
 183int
 184xfs_inobt_insert_rec(
 185	struct xfs_btree_cur	*cur,
 186	uint16_t		holemask,
 187	uint8_t			count,
 188	int32_t			freecount,
 189	xfs_inofree_t		free,
 190	int			*stat)
 191{
 192	cur->bc_rec.i.ir_holemask = holemask;
 193	cur->bc_rec.i.ir_count = count;
 194	cur->bc_rec.i.ir_freecount = freecount;
 195	cur->bc_rec.i.ir_free = free;
 196	return xfs_btree_insert(cur, stat);
 197}
 198
 199/*
 200 * Insert records describing a newly allocated inode chunk into the inobt.
 201 */
 202STATIC int
 203xfs_inobt_insert(
 204	struct xfs_perag	*pag,
 205	struct xfs_trans	*tp,
 206	struct xfs_buf		*agbp,
 207	xfs_agino_t		newino,
 208	xfs_agino_t		newlen,
 209	bool			is_finobt)
 210{
 211	struct xfs_btree_cur	*cur;
 
 
 212	xfs_agino_t		thisino;
 213	int			i;
 214	int			error;
 215
 216	if (is_finobt)
 217		cur = xfs_finobt_init_cursor(pag, tp, agbp);
 218	else
 219		cur = xfs_inobt_init_cursor(pag, tp, agbp);
 220
 221	for (thisino = newino;
 222	     thisino < newino + newlen;
 223	     thisino += XFS_INODES_PER_CHUNK) {
 224		error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
 225		if (error) {
 226			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 227			return error;
 228		}
 229		ASSERT(i == 0);
 230
 231		error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
 232					     XFS_INODES_PER_CHUNK,
 233					     XFS_INODES_PER_CHUNK,
 234					     XFS_INOBT_ALL_FREE, &i);
 235		if (error) {
 236			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 237			return error;
 238		}
 239		ASSERT(i == 1);
 240	}
 241
 242	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
 243
 244	return 0;
 245}
 246
 247/*
 248 * Verify that the number of free inodes in the AGI is correct.
 249 */
 250#ifdef DEBUG
 251static int
 252xfs_check_agi_freecount(
 253	struct xfs_btree_cur	*cur)
 
 254{
 255	if (cur->bc_nlevels == 1) {
 256		xfs_inobt_rec_incore_t rec;
 257		int		freecount = 0;
 258		int		error;
 259		int		i;
 260
 261		error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
 262		if (error)
 263			return error;
 264
 265		do {
 266			error = xfs_inobt_get_rec(cur, &rec, &i);
 267			if (error)
 268				return error;
 269
 270			if (i) {
 271				freecount += rec.ir_freecount;
 272				error = xfs_btree_increment(cur, 0, &i);
 273				if (error)
 274					return error;
 275			}
 276		} while (i == 1);
 277
 278		if (!xfs_is_shutdown(cur->bc_mp)) {
 279			ASSERT(freecount ==
 280				to_perag(cur->bc_group)->pagi_freecount);
 281		}
 282	}
 283	return 0;
 284}
 285#else
 286#define xfs_check_agi_freecount(cur)	0
 287#endif
 288
 289/*
 290 * Initialise a new set of inodes. When called without a transaction context
 291 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
 292 * than logging them (which in a transaction context puts them into the AIL
 293 * for writeback rather than the xfsbufd queue).
 294 */
 295int
 296xfs_ialloc_inode_init(
 297	struct xfs_mount	*mp,
 298	struct xfs_trans	*tp,
 299	struct list_head	*buffer_list,
 300	int			icount,
 301	xfs_agnumber_t		agno,
 302	xfs_agblock_t		agbno,
 303	xfs_agblock_t		length,
 304	unsigned int		gen)
 305{
 306	struct xfs_buf		*fbuf;
 307	struct xfs_dinode	*free;
 308	int			nbufs;
 309	int			version;
 310	int			i, j;
 311	xfs_daddr_t		d;
 312	xfs_ino_t		ino = 0;
 313	int			error;
 314
 315	/*
 316	 * Loop over the new block(s), filling in the inodes.  For small block
 317	 * sizes, manipulate the inodes in buffers  which are multiples of the
 318	 * blocks size.
 319	 */
 320	nbufs = length / M_IGEO(mp)->blocks_per_cluster;
 
 
 321
 322	/*
 323	 * Figure out what version number to use in the inodes we create.  If
 324	 * the superblock version has caught up to the one that supports the new
 325	 * inode format, then use the new inode version.  Otherwise use the old
 326	 * version so that old kernels will continue to be able to use the file
 327	 * system.
 328	 *
 329	 * For v3 inodes, we also need to write the inode number into the inode,
 330	 * so calculate the first inode number of the chunk here as
 331	 * XFS_AGB_TO_AGINO() only works within a filesystem block, not
 332	 * across multiple filesystem blocks (such as a cluster) and so cannot
 333	 * be used in the cluster buffer loop below.
 334	 *
 335	 * Further, because we are writing the inode directly into the buffer
 336	 * and calculating a CRC on the entire inode, we have ot log the entire
 337	 * inode so that the entire range the CRC covers is present in the log.
 338	 * That means for v3 inode we log the entire buffer rather than just the
 339	 * inode cores.
 340	 */
 341	if (xfs_has_v3inodes(mp)) {
 342		version = 3;
 343		ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
 
 344
 345		/*
 346		 * log the initialisation that is about to take place as an
 347		 * logical operation. This means the transaction does not
 348		 * need to log the physical changes to the inode buffers as log
 349		 * recovery will know what initialisation is actually needed.
 350		 * Hence we only need to log the buffers as "ordered" buffers so
 351		 * they track in the AIL as if they were physically logged.
 352		 */
 353		if (tp)
 354			xfs_icreate_log(tp, agno, agbno, icount,
 355					mp->m_sb.sb_inodesize, length, gen);
 356	} else
 357		version = 2;
 358
 359	for (j = 0; j < nbufs; j++) {
 360		/*
 361		 * Get the block.
 362		 */
 363		d = XFS_AGB_TO_DADDR(mp, agno, agbno +
 364				(j * M_IGEO(mp)->blocks_per_cluster));
 365		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
 366				mp->m_bsize * M_IGEO(mp)->blocks_per_cluster,
 367				XBF_UNMAPPED, &fbuf);
 368		if (error)
 369			return error;
 370
 371		/* Initialize the inode buffers and log them appropriately. */
 372		fbuf->b_ops = &xfs_inode_buf_ops;
 373		xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
 374		for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) {
 375			int	ioffset = i << mp->m_sb.sb_inodelog;
 
 376
 377			free = xfs_make_iptr(mp, fbuf, i);
 378			free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
 379			free->di_version = version;
 380			free->di_gen = cpu_to_be32(gen);
 381			free->di_next_unlinked = cpu_to_be32(NULLAGINO);
 382
 383			if (version == 3) {
 384				free->di_ino = cpu_to_be64(ino);
 385				ino++;
 386				uuid_copy(&free->di_uuid,
 387					  &mp->m_sb.sb_meta_uuid);
 388				xfs_dinode_calc_crc(mp, free);
 389			} else if (tp) {
 390				/* just log the inode core */
 391				xfs_trans_log_buf(tp, fbuf, ioffset,
 392					  ioffset + XFS_DINODE_SIZE(mp) - 1);
 393			}
 394		}
 395
 396		if (tp) {
 397			/*
 398			 * Mark the buffer as an inode allocation buffer so it
 399			 * sticks in AIL at the point of this allocation
 400			 * transaction. This ensures the they are on disk before
 401			 * the tail of the log can be moved past this
 402			 * transaction (i.e. by preventing relogging from moving
 403			 * it forward in the log).
 404			 */
 405			xfs_trans_inode_alloc_buf(tp, fbuf);
 406			if (version == 3) {
 407				/*
 408				 * Mark the buffer as ordered so that they are
 409				 * not physically logged in the transaction but
 410				 * still tracked in the AIL as part of the
 411				 * transaction and pin the log appropriately.
 412				 */
 413				xfs_trans_ordered_buf(tp, fbuf);
 414			}
 415		} else {
 416			fbuf->b_flags |= XBF_DONE;
 417			xfs_buf_delwri_queue(fbuf, buffer_list);
 418			xfs_buf_relse(fbuf);
 419		}
 420	}
 421	return 0;
 422}
 423
 424/*
 425 * Align startino and allocmask for a recently allocated sparse chunk such that
 426 * they are fit for insertion (or merge) into the on-disk inode btrees.
 427 *
 428 * Background:
 429 *
 430 * When enabled, sparse inode support increases the inode alignment from cluster
 431 * size to inode chunk size. This means that the minimum range between two
 432 * non-adjacent inode records in the inobt is large enough for a full inode
 433 * record. This allows for cluster sized, cluster aligned block allocation
 434 * without need to worry about whether the resulting inode record overlaps with
 435 * another record in the tree. Without this basic rule, we would have to deal
 436 * with the consequences of overlap by potentially undoing recent allocations in
 437 * the inode allocation codepath.
 438 *
 439 * Because of this alignment rule (which is enforced on mount), there are two
 440 * inobt possibilities for newly allocated sparse chunks. One is that the
 441 * aligned inode record for the chunk covers a range of inodes not already
 442 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
 443 * other is that a record already exists at the aligned startino that considers
 444 * the newly allocated range as sparse. In the latter case, record content is
 445 * merged in hope that sparse inode chunks fill to full chunks over time.
 446 */
 447STATIC void
 448xfs_align_sparse_ino(
 449	struct xfs_mount		*mp,
 450	xfs_agino_t			*startino,
 451	uint16_t			*allocmask)
 452{
 453	xfs_agblock_t			agbno;
 454	xfs_agblock_t			mod;
 455	int				offset;
 456
 457	agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
 458	mod = agbno % mp->m_sb.sb_inoalignmt;
 459	if (!mod)
 460		return;
 461
 462	/* calculate the inode offset and align startino */
 463	offset = XFS_AGB_TO_AGINO(mp, mod);
 464	*startino -= offset;
 465
 466	/*
 467	 * Since startino has been aligned down, left shift allocmask such that
 468	 * it continues to represent the same physical inodes relative to the
 469	 * new startino.
 470	 */
 471	*allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
 472}
 473
 474/*
 475 * Determine whether the source inode record can merge into the target. Both
 476 * records must be sparse, the inode ranges must match and there must be no
 477 * allocation overlap between the records.
 478 */
 479STATIC bool
 480__xfs_inobt_can_merge(
 481	struct xfs_inobt_rec_incore	*trec,	/* tgt record */
 482	struct xfs_inobt_rec_incore	*srec)	/* src record */
 483{
 484	uint64_t			talloc;
 485	uint64_t			salloc;
 486
 487	/* records must cover the same inode range */
 488	if (trec->ir_startino != srec->ir_startino)
 489		return false;
 490
 491	/* both records must be sparse */
 492	if (!xfs_inobt_issparse(trec->ir_holemask) ||
 493	    !xfs_inobt_issparse(srec->ir_holemask))
 494		return false;
 495
 496	/* both records must track some inodes */
 497	if (!trec->ir_count || !srec->ir_count)
 498		return false;
 499
 500	/* can't exceed capacity of a full record */
 501	if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
 502		return false;
 503
 504	/* verify there is no allocation overlap */
 505	talloc = xfs_inobt_irec_to_allocmask(trec);
 506	salloc = xfs_inobt_irec_to_allocmask(srec);
 507	if (talloc & salloc)
 508		return false;
 509
 510	return true;
 511}
 512
 513/*
 514 * Merge the source inode record into the target. The caller must call
 515 * __xfs_inobt_can_merge() to ensure the merge is valid.
 516 */
 517STATIC void
 518__xfs_inobt_rec_merge(
 519	struct xfs_inobt_rec_incore	*trec,	/* target */
 520	struct xfs_inobt_rec_incore	*srec)	/* src */
 521{
 522	ASSERT(trec->ir_startino == srec->ir_startino);
 523
 524	/* combine the counts */
 525	trec->ir_count += srec->ir_count;
 526	trec->ir_freecount += srec->ir_freecount;
 527
 528	/*
 529	 * Merge the holemask and free mask. For both fields, 0 bits refer to
 530	 * allocated inodes. We combine the allocated ranges with bitwise AND.
 531	 */
 532	trec->ir_holemask &= srec->ir_holemask;
 533	trec->ir_free &= srec->ir_free;
 534}
 535
 536/*
 537 * Insert a new sparse inode chunk into the associated inode allocation btree.
 538 * The inode record for the sparse chunk is pre-aligned to a startino that
 539 * should match any pre-existing sparse inode record in the tree. This allows
 540 * sparse chunks to fill over time.
 541 *
 542 * If no preexisting record exists, the provided record is inserted.
 543 * If there is a preexisting record, the provided record is merged with the
 544 * existing record and updated in place. The merged record is returned in nrec.
 
 
 545 *
 546 * It is considered corruption if a merge is requested and not possible. Given
 547 * the sparse inode alignment constraints, this should never happen.
 548 */
 549STATIC int
 550xfs_inobt_insert_sprec(
 551	struct xfs_perag		*pag,
 552	struct xfs_trans		*tp,
 553	struct xfs_buf			*agbp,
 554	struct xfs_inobt_rec_incore	*nrec)	/* in/out: new/merged rec. */
 
 
 555{
 556	struct xfs_mount		*mp = pag_mount(pag);
 557	struct xfs_btree_cur		*cur;
 
 
 558	int				error;
 559	int				i;
 560	struct xfs_inobt_rec_incore	rec;
 561
 562	cur = xfs_inobt_init_cursor(pag, tp, agbp);
 563
 564	/* the new record is pre-aligned so we know where to look */
 565	error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
 566	if (error)
 567		goto error;
 568	/* if nothing there, insert a new record and return */
 569	if (i == 0) {
 570		error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
 571					     nrec->ir_count, nrec->ir_freecount,
 572					     nrec->ir_free, &i);
 573		if (error)
 574			goto error;
 575		if (XFS_IS_CORRUPT(mp, i != 1)) {
 576			xfs_btree_mark_sick(cur);
 577			error = -EFSCORRUPTED;
 578			goto error;
 579		}
 580
 581		goto out;
 582	}
 583
 584	/*
 585	 * A record exists at this startino.  Merge the records.
 
 586	 */
 587	error = xfs_inobt_get_rec(cur, &rec, &i);
 588	if (error)
 589		goto error;
 590	if (XFS_IS_CORRUPT(mp, i != 1)) {
 591		xfs_btree_mark_sick(cur);
 592		error = -EFSCORRUPTED;
 593		goto error;
 594	}
 595	if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) {
 596		xfs_btree_mark_sick(cur);
 597		error = -EFSCORRUPTED;
 598		goto error;
 599	}
 600
 601	/*
 602	 * This should never fail. If we have coexisting records that
 603	 * cannot merge, something is seriously wrong.
 604	 */
 605	if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) {
 606		xfs_btree_mark_sick(cur);
 607		error = -EFSCORRUPTED;
 608		goto error;
 609	}
 610
 611	trace_xfs_irec_merge_pre(pag, &rec, nrec);
 
 
 612
 613	/* merge to nrec to output the updated record */
 614	__xfs_inobt_rec_merge(nrec, &rec);
 615
 616	trace_xfs_irec_merge_post(pag, nrec);
 
 617
 618	error = xfs_inobt_rec_check_count(mp, nrec);
 619	if (error)
 620		goto error;
 
 621
 622	error = xfs_inobt_update(cur, nrec);
 623	if (error)
 624		goto error;
 625
 626out:
 627	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
 628	return 0;
 629error:
 630	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 631	return error;
 632}
 633
 634/*
 635 * Insert a new sparse inode chunk into the free inode btree. The inode
 636 * record for the sparse chunk is pre-aligned to a startino that should match
 637 * any pre-existing sparse inode record in the tree. This allows sparse chunks
 638 * to fill over time.
 639 *
 640 * The new record is always inserted, overwriting a pre-existing record if
 641 * there is one.
 642 */
 643STATIC int
 644xfs_finobt_insert_sprec(
 645	struct xfs_perag		*pag,
 646	struct xfs_trans		*tp,
 647	struct xfs_buf			*agbp,
 648	struct xfs_inobt_rec_incore	*nrec)	/* in/out: new rec. */
 649{
 650	struct xfs_mount		*mp = pag_mount(pag);
 651	struct xfs_btree_cur		*cur;
 652	int				error;
 653	int				i;
 654
 655	cur = xfs_finobt_init_cursor(pag, tp, agbp);
 656
 657	/* the new record is pre-aligned so we know where to look */
 658	error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
 659	if (error)
 660		goto error;
 661	/* if nothing there, insert a new record and return */
 662	if (i == 0) {
 663		error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
 664					     nrec->ir_count, nrec->ir_freecount,
 665					     nrec->ir_free, &i);
 666		if (error)
 667			goto error;
 668		if (XFS_IS_CORRUPT(mp, i != 1)) {
 669			xfs_btree_mark_sick(cur);
 670			error = -EFSCORRUPTED;
 671			goto error;
 672		}
 673	} else {
 674		error = xfs_inobt_update(cur, nrec);
 675		if (error)
 676			goto error;
 677	}
 678
 679	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
 680	return 0;
 681error:
 682	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 683	return error;
 684}
 685
 686
 687/*
 688 * Allocate new inodes in the allocation group specified by agbp.  Returns 0 if
 689 * inodes were allocated in this AG; -EAGAIN if there was no space in this AG so
 690 * the caller knows it can try another AG, a hard -ENOSPC when over the maximum
 691 * inode count threshold, or the usual negative error code for other errors.
 692 */
 693STATIC int
 694xfs_ialloc_ag_alloc(
 695	struct xfs_perag	*pag,
 696	struct xfs_trans	*tp,
 697	struct xfs_buf		*agbp)
 698{
 699	struct xfs_agi		*agi;
 700	struct xfs_alloc_arg	args;
 701	int			error;
 702	xfs_agino_t		newino;		/* new first inode's number */
 703	xfs_agino_t		newlen;		/* new number of inodes */
 704	int			isaligned = 0;	/* inode allocation at stripe */
 705						/* unit boundary */
 706	/* init. to full chunk */
 
 707	struct xfs_inobt_rec_incore rec;
 708	struct xfs_ino_geometry	*igeo = M_IGEO(tp->t_mountp);
 709	uint16_t		allocmask = (uint16_t) -1;
 710	int			do_sparse = 0;
 711
 712	memset(&args, 0, sizeof(args));
 713	args.tp = tp;
 714	args.mp = tp->t_mountp;
 715	args.fsbno = NULLFSBLOCK;
 716	args.oinfo = XFS_RMAP_OINFO_INODES;
 717	args.pag = pag;
 718
 719#ifdef DEBUG
 720	/* randomly do sparse inode allocations */
 721	if (xfs_has_sparseinodes(tp->t_mountp) &&
 722	    igeo->ialloc_min_blks < igeo->ialloc_blks)
 723		do_sparse = get_random_u32_below(2);
 724#endif
 725
 726	/*
 727	 * Locking will ensure that we don't have two callers in here
 728	 * at one time.
 729	 */
 730	newlen = igeo->ialloc_inos;
 731	if (igeo->maxicount &&
 732	    percpu_counter_read_positive(&args.mp->m_icount) + newlen >
 733							igeo->maxicount)
 734		return -ENOSPC;
 735	args.minlen = args.maxlen = igeo->ialloc_blks;
 736	/*
 737	 * First try to allocate inodes contiguous with the last-allocated
 738	 * chunk of inodes.  If the filesystem is striped, this will fill
 739	 * an entire stripe unit with inodes.
 740	 */
 741	agi = agbp->b_addr;
 742	newino = be32_to_cpu(agi->agi_newino);
 
 743	args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
 744		     igeo->ialloc_blks;
 745	if (do_sparse)
 746		goto sparse_alloc;
 747	if (likely(newino != NULLAGINO &&
 748		  (args.agbno < be32_to_cpu(agi->agi_length)))) {
 
 
 749		args.prod = 1;
 750
 751		/*
 752		 * We need to take into account alignment here to ensure that
 753		 * we don't modify the free list if we fail to have an exact
 754		 * block. If we don't have an exact match, and every oher
 755		 * attempt allocation attempt fails, we'll end up cancelling
 756		 * a dirty transaction and shutting down.
 757		 *
 758		 * For an exact allocation, alignment must be 1,
 759		 * however we need to take cluster alignment into account when
 760		 * fixing up the freelist. Use the minalignslop field to
 761		 * indicate that extra blocks might be required for alignment,
 762		 * but not to use them in the actual exact allocation.
 763		 */
 764		args.alignment = 1;
 765		args.minalignslop = igeo->cluster_align - 1;
 766
 767		/* Allow space for the inode btree to split. */
 768		args.minleft = igeo->inobt_maxlevels;
 769		error = xfs_alloc_vextent_exact_bno(&args,
 770				xfs_agbno_to_fsb(pag, args.agbno));
 771		if (error)
 772			return error;
 773
 774		/*
 775		 * This request might have dirtied the transaction if the AG can
 776		 * satisfy the request, but the exact block was not available.
 777		 * If the allocation did fail, subsequent requests will relax
 778		 * the exact agbno requirement and increase the alignment
 779		 * instead. It is critical that the total size of the request
 780		 * (len + alignment + slop) does not increase from this point
 781		 * on, so reset minalignslop to ensure it is not included in
 782		 * subsequent requests.
 783		 */
 784		args.minalignslop = 0;
 785	}
 786
 787	if (unlikely(args.fsbno == NULLFSBLOCK)) {
 788		/*
 789		 * Set the alignment for the allocation.
 790		 * If stripe alignment is turned on then align at stripe unit
 791		 * boundary.
 792		 * If the cluster size is smaller than a filesystem block
 793		 * then we're doing I/O for inodes in filesystem block size
 794		 * pieces, so don't need alignment anyway.
 795		 */
 796		isaligned = 0;
 797		if (igeo->ialloc_align) {
 798			ASSERT(!xfs_has_noalign(args.mp));
 799			args.alignment = args.mp->m_dalign;
 800			isaligned = 1;
 801		} else
 802			args.alignment = igeo->cluster_align;
 
 
 
 
 
 
 
 803		/*
 804		 * Allocate a fixed-size extent of inodes.
 805		 */
 
 806		args.prod = 1;
 807		/*
 808		 * Allow space for the inode btree to split.
 809		 */
 810		args.minleft = igeo->inobt_maxlevels;
 811		error = xfs_alloc_vextent_near_bno(&args,
 812				xfs_agbno_to_fsb(pag,
 813					be32_to_cpu(agi->agi_root)));
 814		if (error)
 815			return error;
 816	}
 817
 818	/*
 819	 * If stripe alignment is turned on, then try again with cluster
 820	 * alignment.
 821	 */
 822	if (isaligned && args.fsbno == NULLFSBLOCK) {
 823		args.alignment = igeo->cluster_align;
 824		error = xfs_alloc_vextent_near_bno(&args,
 825				xfs_agbno_to_fsb(pag,
 826					be32_to_cpu(agi->agi_root)));
 827		if (error)
 828			return error;
 829	}
 830
 831	/*
 832	 * Finally, try a sparse allocation if the filesystem supports it and
 833	 * the sparse allocation length is smaller than a full chunk.
 834	 */
 835	if (xfs_has_sparseinodes(args.mp) &&
 836	    igeo->ialloc_min_blks < igeo->ialloc_blks &&
 837	    args.fsbno == NULLFSBLOCK) {
 838sparse_alloc:
 
 
 
 839		args.alignment = args.mp->m_sb.sb_spino_align;
 840		args.prod = 1;
 841
 842		args.minlen = igeo->ialloc_min_blks;
 843		args.maxlen = args.minlen;
 844
 845		/*
 846		 * The inode record will be aligned to full chunk size. We must
 847		 * prevent sparse allocation from AG boundaries that result in
 848		 * invalid inode records, such as records that start at agbno 0
 849		 * or extend beyond the AG.
 850		 *
 851		 * Set min agbno to the first aligned, non-zero agbno and max to
 852		 * the last aligned agbno that is at least one full chunk from
 853		 * the end of the AG.
 854		 */
 855		args.min_agbno = args.mp->m_sb.sb_inoalignmt;
 856		args.max_agbno = round_down(xfs_ag_block_count(args.mp,
 857							pag_agno(pag)),
 858					    args.mp->m_sb.sb_inoalignmt) -
 859				 igeo->ialloc_blks;
 860
 861		error = xfs_alloc_vextent_near_bno(&args,
 862				xfs_agbno_to_fsb(pag,
 863					be32_to_cpu(agi->agi_root)));
 864		if (error)
 865			return error;
 866
 867		newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
 868		ASSERT(newlen <= XFS_INODES_PER_CHUNK);
 869		allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
 870	}
 871
 872	if (args.fsbno == NULLFSBLOCK)
 873		return -EAGAIN;
 874
 
 875	ASSERT(args.len == args.minlen);
 876
 877	/*
 878	 * Stamp and write the inode buffers.
 879	 *
 880	 * Seed the new inode cluster with a random generation number. This
 881	 * prevents short-term reuse of generation numbers if a chunk is
 882	 * freed and then immediately reallocated. We use random numbers
 883	 * rather than a linear progression to prevent the next generation
 884	 * number from being easily guessable.
 885	 */
 886	error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, pag_agno(pag),
 887			args.agbno, args.len, get_random_u32());
 888
 889	if (error)
 890		return error;
 891	/*
 892	 * Convert the results.
 893	 */
 894	newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
 895
 896	if (xfs_inobt_issparse(~allocmask)) {
 897		/*
 898		 * We've allocated a sparse chunk. Align the startino and mask.
 899		 */
 900		xfs_align_sparse_ino(args.mp, &newino, &allocmask);
 901
 902		rec.ir_startino = newino;
 903		rec.ir_holemask = ~allocmask;
 904		rec.ir_count = newlen;
 905		rec.ir_freecount = newlen;
 906		rec.ir_free = XFS_INOBT_ALL_FREE;
 907
 908		/*
 909		 * Insert the sparse record into the inobt and allow for a merge
 910		 * if necessary. If a merge does occur, rec is updated to the
 911		 * merged record.
 912		 */
 913		error = xfs_inobt_insert_sprec(pag, tp, agbp, &rec);
 
 914		if (error == -EFSCORRUPTED) {
 915			xfs_alert(args.mp,
 916	"invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
 917				  xfs_agino_to_ino(pag, rec.ir_startino),
 
 918				  rec.ir_holemask, rec.ir_count);
 919			xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
 920		}
 921		if (error)
 922			return error;
 923
 924		/*
 925		 * We can't merge the part we've just allocated as for the inobt
 926		 * due to finobt semantics. The original record may or may not
 927		 * exist independent of whether physical inodes exist in this
 928		 * sparse chunk.
 929		 *
 930		 * We must update the finobt record based on the inobt record.
 931		 * rec contains the fully merged and up to date inobt record
 932		 * from the previous call. Set merge false to replace any
 933		 * existing record with this one.
 934		 */
 935		if (xfs_has_finobt(args.mp)) {
 936			error = xfs_finobt_insert_sprec(pag, tp, agbp, &rec);
 
 
 937			if (error)
 938				return error;
 939		}
 940	} else {
 941		/* full chunk - insert new records to both btrees */
 942		error = xfs_inobt_insert(pag, tp, agbp, newino, newlen, false);
 
 943		if (error)
 944			return error;
 945
 946		if (xfs_has_finobt(args.mp)) {
 947			error = xfs_inobt_insert(pag, tp, agbp, newino,
 948						 newlen, true);
 949			if (error)
 950				return error;
 951		}
 952	}
 953
 954	/*
 955	 * Update AGI counts and newino.
 956	 */
 957	be32_add_cpu(&agi->agi_count, newlen);
 958	be32_add_cpu(&agi->agi_freecount, newlen);
 
 959	pag->pagi_freecount += newlen;
 960	pag->pagi_count += newlen;
 961	agi->agi_newino = cpu_to_be32(newino);
 962
 963	/*
 964	 * Log allocation group header fields
 965	 */
 966	xfs_ialloc_log_agi(tp, agbp,
 967		XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
 968	/*
 969	 * Modify/log superblock values for inode count and inode free count.
 970	 */
 971	xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
 972	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
 
 973	return 0;
 974}
 975
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 976/*
 977 * Try to retrieve the next record to the left/right from the current one.
 978 */
 979STATIC int
 980xfs_ialloc_next_rec(
 981	struct xfs_btree_cur	*cur,
 982	xfs_inobt_rec_incore_t	*rec,
 983	int			*done,
 984	int			left)
 985{
 986	int                     error;
 987	int			i;
 988
 989	if (left)
 990		error = xfs_btree_decrement(cur, 0, &i);
 991	else
 992		error = xfs_btree_increment(cur, 0, &i);
 993
 994	if (error)
 995		return error;
 996	*done = !i;
 997	if (i) {
 998		error = xfs_inobt_get_rec(cur, rec, &i);
 999		if (error)
1000			return error;
1001		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1002			xfs_btree_mark_sick(cur);
1003			return -EFSCORRUPTED;
1004		}
1005	}
1006
1007	return 0;
1008}
1009
1010STATIC int
1011xfs_ialloc_get_rec(
1012	struct xfs_btree_cur	*cur,
1013	xfs_agino_t		agino,
1014	xfs_inobt_rec_incore_t	*rec,
1015	int			*done)
1016{
1017	int                     error;
1018	int			i;
1019
1020	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1021	if (error)
1022		return error;
1023	*done = !i;
1024	if (i) {
1025		error = xfs_inobt_get_rec(cur, rec, &i);
1026		if (error)
1027			return error;
1028		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1029			xfs_btree_mark_sick(cur);
1030			return -EFSCORRUPTED;
1031		}
1032	}
1033
1034	return 0;
1035}
1036
1037/*
1038 * Return the offset of the first free inode in the record. If the inode chunk
1039 * is sparsely allocated, we convert the record holemask to inode granularity
1040 * and mask off the unallocated regions from the inode free mask.
1041 */
1042STATIC int
1043xfs_inobt_first_free_inode(
1044	struct xfs_inobt_rec_incore	*rec)
1045{
1046	xfs_inofree_t			realfree;
1047
1048	/* if there are no holes, return the first available offset */
1049	if (!xfs_inobt_issparse(rec->ir_holemask))
1050		return xfs_lowbit64(rec->ir_free);
1051
1052	realfree = xfs_inobt_irec_to_allocmask(rec);
1053	realfree &= rec->ir_free;
1054
1055	return xfs_lowbit64(realfree);
1056}
1057
1058/*
1059 * If this AG has corrupt inodes, check if allocating this inode would fail
1060 * with corruption errors.  Returns 0 if we're clear, or EAGAIN to try again
1061 * somewhere else.
1062 */
1063static int
1064xfs_dialloc_check_ino(
1065	struct xfs_perag	*pag,
1066	struct xfs_trans	*tp,
1067	xfs_ino_t		ino)
1068{
1069	struct xfs_imap		imap;
1070	struct xfs_buf		*bp;
1071	int			error;
1072
1073	error = xfs_imap(pag, tp, ino, &imap, 0);
1074	if (error)
1075		return -EAGAIN;
1076
1077	error = xfs_imap_to_bp(pag_mount(pag), tp, &imap, &bp);
1078	if (error)
1079		return -EAGAIN;
1080
1081	xfs_trans_brelse(tp, bp);
1082	return 0;
1083}
1084
1085/*
1086 * Allocate an inode using the inobt-only algorithm.
1087 */
1088STATIC int
1089xfs_dialloc_ag_inobt(
1090	struct xfs_perag	*pag,
1091	struct xfs_trans	*tp,
1092	struct xfs_buf		*agbp,
1093	xfs_ino_t		parent,
1094	xfs_ino_t		*inop)
1095{
1096	struct xfs_mount	*mp = tp->t_mountp;
1097	struct xfs_agi		*agi = agbp->b_addr;
 
1098	xfs_agnumber_t		pagno = XFS_INO_TO_AGNO(mp, parent);
1099	xfs_agino_t		pagino = XFS_INO_TO_AGINO(mp, parent);
 
1100	struct xfs_btree_cur	*cur, *tcur;
1101	struct xfs_inobt_rec_incore rec, trec;
1102	xfs_ino_t		ino;
1103	int			error;
1104	int			offset;
1105	int			i, j;
1106	int			searchdistance = 10;
1107
1108	ASSERT(xfs_perag_initialised_agi(pag));
1109	ASSERT(xfs_perag_allows_inodes(pag));
 
 
1110	ASSERT(pag->pagi_freecount > 0);
1111
1112 restart_pagno:
1113	cur = xfs_inobt_init_cursor(pag, tp, agbp);
1114	/*
1115	 * If pagino is 0 (this is the root inode allocation) use newino.
1116	 * This must work because we've just allocated some.
1117	 */
1118	if (!pagino)
1119		pagino = be32_to_cpu(agi->agi_newino);
1120
1121	error = xfs_check_agi_freecount(cur);
1122	if (error)
1123		goto error0;
1124
1125	/*
1126	 * If in the same AG as the parent, try to get near the parent.
1127	 */
1128	if (pagno == pag_agno(pag)) {
1129		int		doneleft;	/* done, to the left */
1130		int		doneright;	/* done, to the right */
1131
1132		error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1133		if (error)
1134			goto error0;
1135		if (XFS_IS_CORRUPT(mp, i != 1)) {
1136			xfs_btree_mark_sick(cur);
1137			error = -EFSCORRUPTED;
1138			goto error0;
1139		}
1140
1141		error = xfs_inobt_get_rec(cur, &rec, &j);
1142		if (error)
1143			goto error0;
1144		if (XFS_IS_CORRUPT(mp, j != 1)) {
1145			xfs_btree_mark_sick(cur);
1146			error = -EFSCORRUPTED;
1147			goto error0;
1148		}
1149
1150		if (rec.ir_freecount > 0) {
1151			/*
1152			 * Found a free inode in the same chunk
1153			 * as the parent, done.
1154			 */
1155			goto alloc_inode;
1156		}
1157
1158
1159		/*
1160		 * In the same AG as parent, but parent's chunk is full.
1161		 */
1162
1163		/* duplicate the cursor, search left & right simultaneously */
1164		error = xfs_btree_dup_cursor(cur, &tcur);
1165		if (error)
1166			goto error0;
1167
1168		/*
1169		 * Skip to last blocks looked up if same parent inode.
1170		 */
1171		if (pagino != NULLAGINO &&
1172		    pag->pagl_pagino == pagino &&
1173		    pag->pagl_leftrec != NULLAGINO &&
1174		    pag->pagl_rightrec != NULLAGINO) {
1175			error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1176						   &trec, &doneleft);
1177			if (error)
1178				goto error1;
1179
1180			error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1181						   &rec, &doneright);
1182			if (error)
1183				goto error1;
1184		} else {
1185			/* search left with tcur, back up 1 record */
1186			error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1187			if (error)
1188				goto error1;
1189
1190			/* search right with cur, go forward 1 record. */
1191			error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1192			if (error)
1193				goto error1;
1194		}
1195
1196		/*
1197		 * Loop until we find an inode chunk with a free inode.
1198		 */
1199		while (--searchdistance > 0 && (!doneleft || !doneright)) {
1200			int	useleft;  /* using left inode chunk this time */
1201
1202			/* figure out the closer block if both are valid. */
1203			if (!doneleft && !doneright) {
1204				useleft = pagino -
1205				 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1206				  rec.ir_startino - pagino;
1207			} else {
1208				useleft = !doneleft;
1209			}
1210
1211			/* free inodes to the left? */
1212			if (useleft && trec.ir_freecount) {
1213				xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1214				cur = tcur;
1215
1216				pag->pagl_leftrec = trec.ir_startino;
1217				pag->pagl_rightrec = rec.ir_startino;
1218				pag->pagl_pagino = pagino;
1219				rec = trec;
1220				goto alloc_inode;
1221			}
1222
1223			/* free inodes to the right? */
1224			if (!useleft && rec.ir_freecount) {
1225				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1226
1227				pag->pagl_leftrec = trec.ir_startino;
1228				pag->pagl_rightrec = rec.ir_startino;
1229				pag->pagl_pagino = pagino;
1230				goto alloc_inode;
1231			}
1232
1233			/* get next record to check */
1234			if (useleft) {
1235				error = xfs_ialloc_next_rec(tcur, &trec,
1236								 &doneleft, 1);
1237			} else {
1238				error = xfs_ialloc_next_rec(cur, &rec,
1239								 &doneright, 0);
1240			}
1241			if (error)
1242				goto error1;
1243		}
1244
1245		if (searchdistance <= 0) {
1246			/*
1247			 * Not in range - save last search
1248			 * location and allocate a new inode
1249			 */
1250			xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1251			pag->pagl_leftrec = trec.ir_startino;
1252			pag->pagl_rightrec = rec.ir_startino;
1253			pag->pagl_pagino = pagino;
1254
1255		} else {
1256			/*
1257			 * We've reached the end of the btree. because
1258			 * we are only searching a small chunk of the
1259			 * btree each search, there is obviously free
1260			 * inodes closer to the parent inode than we
1261			 * are now. restart the search again.
1262			 */
1263			pag->pagl_pagino = NULLAGINO;
1264			pag->pagl_leftrec = NULLAGINO;
1265			pag->pagl_rightrec = NULLAGINO;
1266			xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1267			xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1268			goto restart_pagno;
1269		}
1270	}
1271
1272	/*
1273	 * In a different AG from the parent.
1274	 * See if the most recently allocated block has any free.
1275	 */
1276	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1277		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1278					 XFS_LOOKUP_EQ, &i);
1279		if (error)
1280			goto error0;
1281
1282		if (i == 1) {
1283			error = xfs_inobt_get_rec(cur, &rec, &j);
1284			if (error)
1285				goto error0;
1286
1287			if (j == 1 && rec.ir_freecount > 0) {
1288				/*
1289				 * The last chunk allocated in the group
1290				 * still has a free inode.
1291				 */
1292				goto alloc_inode;
1293			}
1294		}
1295	}
1296
1297	/*
1298	 * None left in the last group, search the whole AG
1299	 */
1300	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1301	if (error)
1302		goto error0;
1303	if (XFS_IS_CORRUPT(mp, i != 1)) {
1304		xfs_btree_mark_sick(cur);
1305		error = -EFSCORRUPTED;
1306		goto error0;
1307	}
1308
1309	for (;;) {
1310		error = xfs_inobt_get_rec(cur, &rec, &i);
1311		if (error)
1312			goto error0;
1313		if (XFS_IS_CORRUPT(mp, i != 1)) {
1314			xfs_btree_mark_sick(cur);
1315			error = -EFSCORRUPTED;
1316			goto error0;
1317		}
1318		if (rec.ir_freecount > 0)
1319			break;
1320		error = xfs_btree_increment(cur, 0, &i);
1321		if (error)
1322			goto error0;
1323		if (XFS_IS_CORRUPT(mp, i != 1)) {
1324			xfs_btree_mark_sick(cur);
1325			error = -EFSCORRUPTED;
1326			goto error0;
1327		}
1328	}
1329
1330alloc_inode:
1331	offset = xfs_inobt_first_free_inode(&rec);
1332	ASSERT(offset >= 0);
1333	ASSERT(offset < XFS_INODES_PER_CHUNK);
1334	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1335				   XFS_INODES_PER_CHUNK) == 0);
1336	ino = xfs_agino_to_ino(pag, rec.ir_startino + offset);
1337
1338	if (xfs_ag_has_sickness(pag, XFS_SICK_AG_INODES)) {
1339		error = xfs_dialloc_check_ino(pag, tp, ino);
1340		if (error)
1341			goto error0;
1342	}
1343
1344	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1345	rec.ir_freecount--;
1346	error = xfs_inobt_update(cur, &rec);
1347	if (error)
1348		goto error0;
1349	be32_add_cpu(&agi->agi_freecount, -1);
1350	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1351	pag->pagi_freecount--;
1352
1353	error = xfs_check_agi_freecount(cur);
1354	if (error)
1355		goto error0;
1356
1357	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1358	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
 
1359	*inop = ino;
1360	return 0;
1361error1:
1362	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1363error0:
1364	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 
1365	return error;
1366}
1367
1368/*
1369 * Use the free inode btree to allocate an inode based on distance from the
1370 * parent. Note that the provided cursor may be deleted and replaced.
1371 */
1372STATIC int
1373xfs_dialloc_ag_finobt_near(
1374	xfs_agino_t			pagino,
1375	struct xfs_btree_cur		**ocur,
1376	struct xfs_inobt_rec_incore	*rec)
1377{
1378	struct xfs_btree_cur		*lcur = *ocur;	/* left search cursor */
1379	struct xfs_btree_cur		*rcur;	/* right search cursor */
1380	struct xfs_inobt_rec_incore	rrec;
1381	int				error;
1382	int				i, j;
1383
1384	error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1385	if (error)
1386		return error;
1387
1388	if (i == 1) {
1389		error = xfs_inobt_get_rec(lcur, rec, &i);
1390		if (error)
1391			return error;
1392		if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1)) {
1393			xfs_btree_mark_sick(lcur);
1394			return -EFSCORRUPTED;
1395		}
1396
1397		/*
1398		 * See if we've landed in the parent inode record. The finobt
1399		 * only tracks chunks with at least one free inode, so record
1400		 * existence is enough.
1401		 */
1402		if (pagino >= rec->ir_startino &&
1403		    pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1404			return 0;
1405	}
1406
1407	error = xfs_btree_dup_cursor(lcur, &rcur);
1408	if (error)
1409		return error;
1410
1411	error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1412	if (error)
1413		goto error_rcur;
1414	if (j == 1) {
1415		error = xfs_inobt_get_rec(rcur, &rrec, &j);
1416		if (error)
1417			goto error_rcur;
1418		if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) {
1419			xfs_btree_mark_sick(lcur);
1420			error = -EFSCORRUPTED;
1421			goto error_rcur;
1422		}
1423	}
1424
1425	if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) {
1426		xfs_btree_mark_sick(lcur);
1427		error = -EFSCORRUPTED;
1428		goto error_rcur;
1429	}
1430	if (i == 1 && j == 1) {
1431		/*
1432		 * Both the left and right records are valid. Choose the closer
1433		 * inode chunk to the target.
1434		 */
1435		if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1436		    (rrec.ir_startino - pagino)) {
1437			*rec = rrec;
1438			xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1439			*ocur = rcur;
1440		} else {
1441			xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1442		}
1443	} else if (j == 1) {
1444		/* only the right record is valid */
1445		*rec = rrec;
1446		xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1447		*ocur = rcur;
1448	} else if (i == 1) {
1449		/* only the left record is valid */
1450		xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1451	}
1452
1453	return 0;
1454
1455error_rcur:
1456	xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1457	return error;
1458}
1459
1460/*
1461 * Use the free inode btree to find a free inode based on a newino hint. If
1462 * the hint is NULL, find the first free inode in the AG.
1463 */
1464STATIC int
1465xfs_dialloc_ag_finobt_newino(
1466	struct xfs_agi			*agi,
1467	struct xfs_btree_cur		*cur,
1468	struct xfs_inobt_rec_incore	*rec)
1469{
1470	int error;
1471	int i;
1472
1473	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1474		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1475					 XFS_LOOKUP_EQ, &i);
1476		if (error)
1477			return error;
1478		if (i == 1) {
1479			error = xfs_inobt_get_rec(cur, rec, &i);
1480			if (error)
1481				return error;
1482			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1483				xfs_btree_mark_sick(cur);
1484				return -EFSCORRUPTED;
1485			}
1486			return 0;
1487		}
1488	}
1489
1490	/*
1491	 * Find the first inode available in the AG.
1492	 */
1493	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1494	if (error)
1495		return error;
1496	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1497		xfs_btree_mark_sick(cur);
1498		return -EFSCORRUPTED;
1499	}
1500
1501	error = xfs_inobt_get_rec(cur, rec, &i);
1502	if (error)
1503		return error;
1504	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1505		xfs_btree_mark_sick(cur);
1506		return -EFSCORRUPTED;
1507	}
1508
1509	return 0;
1510}
1511
1512/*
1513 * Update the inobt based on a modification made to the finobt. Also ensure that
1514 * the records from both trees are equivalent post-modification.
1515 */
1516STATIC int
1517xfs_dialloc_ag_update_inobt(
1518	struct xfs_btree_cur		*cur,	/* inobt cursor */
1519	struct xfs_inobt_rec_incore	*frec,	/* finobt record */
1520	int				offset) /* inode offset */
1521{
1522	struct xfs_inobt_rec_incore	rec;
1523	int				error;
1524	int				i;
1525
1526	error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1527	if (error)
1528		return error;
1529	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1530		xfs_btree_mark_sick(cur);
1531		return -EFSCORRUPTED;
1532	}
1533
1534	error = xfs_inobt_get_rec(cur, &rec, &i);
1535	if (error)
1536		return error;
1537	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1538		xfs_btree_mark_sick(cur);
1539		return -EFSCORRUPTED;
1540	}
1541	ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1542				   XFS_INODES_PER_CHUNK) == 0);
1543
1544	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1545	rec.ir_freecount--;
1546
1547	if (XFS_IS_CORRUPT(cur->bc_mp,
1548			   rec.ir_free != frec->ir_free ||
1549			   rec.ir_freecount != frec->ir_freecount)) {
1550		xfs_btree_mark_sick(cur);
1551		return -EFSCORRUPTED;
1552	}
1553
1554	return xfs_inobt_update(cur, &rec);
1555}
1556
1557/*
1558 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1559 * back to the inobt search algorithm.
1560 *
1561 * The caller selected an AG for us, and made sure that free inodes are
1562 * available.
1563 */
1564static int
1565xfs_dialloc_ag(
1566	struct xfs_perag	*pag,
1567	struct xfs_trans	*tp,
1568	struct xfs_buf		*agbp,
1569	xfs_ino_t		parent,
1570	xfs_ino_t		*inop)
1571{
1572	struct xfs_mount		*mp = tp->t_mountp;
1573	struct xfs_agi			*agi = agbp->b_addr;
 
1574	xfs_agnumber_t			pagno = XFS_INO_TO_AGNO(mp, parent);
1575	xfs_agino_t			pagino = XFS_INO_TO_AGINO(mp, parent);
 
1576	struct xfs_btree_cur		*cur;	/* finobt cursor */
1577	struct xfs_btree_cur		*icur;	/* inobt cursor */
1578	struct xfs_inobt_rec_incore	rec;
1579	xfs_ino_t			ino;
1580	int				error;
1581	int				offset;
1582	int				i;
1583
1584	if (!xfs_has_finobt(mp))
1585		return xfs_dialloc_ag_inobt(pag, tp, agbp, parent, inop);
 
 
1586
1587	/*
1588	 * If pagino is 0 (this is the root inode allocation) use newino.
1589	 * This must work because we've just allocated some.
1590	 */
1591	if (!pagino)
1592		pagino = be32_to_cpu(agi->agi_newino);
1593
1594	cur = xfs_finobt_init_cursor(pag, tp, agbp);
1595
1596	error = xfs_check_agi_freecount(cur);
1597	if (error)
1598		goto error_cur;
1599
1600	/*
1601	 * The search algorithm depends on whether we're in the same AG as the
1602	 * parent. If so, find the closest available inode to the parent. If
1603	 * not, consider the agi hint or find the first free inode in the AG.
1604	 */
1605	if (pag_agno(pag) == pagno)
1606		error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1607	else
1608		error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1609	if (error)
1610		goto error_cur;
1611
1612	offset = xfs_inobt_first_free_inode(&rec);
1613	ASSERT(offset >= 0);
1614	ASSERT(offset < XFS_INODES_PER_CHUNK);
1615	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1616				   XFS_INODES_PER_CHUNK) == 0);
1617	ino = xfs_agino_to_ino(pag, rec.ir_startino + offset);
1618
1619	if (xfs_ag_has_sickness(pag, XFS_SICK_AG_INODES)) {
1620		error = xfs_dialloc_check_ino(pag, tp, ino);
1621		if (error)
1622			goto error_cur;
1623	}
1624
1625	/*
1626	 * Modify or remove the finobt record.
1627	 */
1628	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1629	rec.ir_freecount--;
1630	if (rec.ir_freecount)
1631		error = xfs_inobt_update(cur, &rec);
1632	else
1633		error = xfs_btree_delete(cur, &i);
1634	if (error)
1635		goto error_cur;
1636
1637	/*
1638	 * The finobt has now been updated appropriately. We haven't updated the
1639	 * agi and superblock yet, so we can create an inobt cursor and validate
1640	 * the original freecount. If all is well, make the equivalent update to
1641	 * the inobt using the finobt record and offset information.
1642	 */
1643	icur = xfs_inobt_init_cursor(pag, tp, agbp);
1644
1645	error = xfs_check_agi_freecount(icur);
1646	if (error)
1647		goto error_icur;
1648
1649	error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1650	if (error)
1651		goto error_icur;
1652
1653	/*
1654	 * Both trees have now been updated. We must update the perag and
1655	 * superblock before we can check the freecount for each btree.
1656	 */
1657	be32_add_cpu(&agi->agi_freecount, -1);
1658	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1659	pag->pagi_freecount--;
1660
1661	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1662
1663	error = xfs_check_agi_freecount(icur);
1664	if (error)
1665		goto error_icur;
1666	error = xfs_check_agi_freecount(cur);
1667	if (error)
1668		goto error_icur;
1669
1670	xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1671	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
 
1672	*inop = ino;
1673	return 0;
1674
1675error_icur:
1676	xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1677error_cur:
1678	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 
1679	return error;
1680}
1681
1682static int
1683xfs_dialloc_roll(
1684	struct xfs_trans	**tpp,
1685	struct xfs_buf		*agibp)
1686{
1687	struct xfs_trans	*tp = *tpp;
1688	struct xfs_dquot_acct	*dqinfo;
1689	int			error;
1690
1691	/*
1692	 * Hold to on to the agibp across the commit so no other allocation can
1693	 * come in and take the free inodes we just allocated for our caller.
1694	 */
1695	xfs_trans_bhold(tp, agibp);
1696
1697	/*
1698	 * We want the quota changes to be associated with the next transaction,
1699	 * NOT this one. So, detach the dqinfo from this and attach it to the
1700	 * next transaction.
1701	 */
1702	dqinfo = tp->t_dqinfo;
1703	tp->t_dqinfo = NULL;
1704
1705	error = xfs_trans_roll(&tp);
1706
1707	/* Re-attach the quota info that we detached from prev trx. */
1708	tp->t_dqinfo = dqinfo;
1709
1710	/*
1711	 * Join the buffer even on commit error so that the buffer is released
1712	 * when the caller cancels the transaction and doesn't have to handle
1713	 * this error case specially.
1714	 */
1715	xfs_trans_bjoin(tp, agibp);
1716	*tpp = tp;
1717	return error;
1718}
1719
1720static bool
1721xfs_dialloc_good_ag(
1722	struct xfs_perag	*pag,
1723	struct xfs_trans	*tp,
 
1724	umode_t			mode,
1725	int			flags,
1726	bool			ok_alloc)
1727{
1728	struct xfs_mount	*mp = tp->t_mountp;
1729	xfs_extlen_t		ineed;
1730	xfs_extlen_t		longest = 0;
1731	int			needspace;
1732	int			error;
1733
1734	if (!pag)
1735		return false;
1736	if (!xfs_perag_allows_inodes(pag))
1737		return false;
1738
1739	if (!xfs_perag_initialised_agi(pag)) {
1740		error = xfs_ialloc_read_agi(pag, tp, 0, NULL);
1741		if (error)
1742			return false;
1743	}
1744
1745	if (pag->pagi_freecount)
1746		return true;
1747	if (!ok_alloc)
1748		return false;
1749
1750	if (!xfs_perag_initialised_agf(pag)) {
1751		error = xfs_alloc_read_agf(pag, tp, flags, NULL);
1752		if (error)
1753			return false;
1754	}
1755
1756	/*
1757	 * Check that there is enough free space for the file plus a chunk of
1758	 * inodes if we need to allocate some. If this is the first pass across
1759	 * the AGs, take into account the potential space needed for alignment
1760	 * of inode chunks when checking the longest contiguous free space in
1761	 * the AG - this prevents us from getting ENOSPC because we have free
1762	 * space larger than ialloc_blks but alignment constraints prevent us
1763	 * from using it.
1764	 *
1765	 * If we can't find an AG with space for full alignment slack to be
1766	 * taken into account, we must be near ENOSPC in all AGs.  Hence we
1767	 * don't include alignment for the second pass and so if we fail
1768	 * allocation due to alignment issues then it is most likely a real
1769	 * ENOSPC condition.
1770	 *
1771	 * XXX(dgc): this calculation is now bogus thanks to the per-ag
1772	 * reservations that xfs_alloc_fix_freelist() now does via
1773	 * xfs_alloc_space_available(). When the AG fills up, pagf_freeblks will
1774	 * be more than large enough for the check below to succeed, but
1775	 * xfs_alloc_space_available() will fail because of the non-zero
1776	 * metadata reservation and hence we won't actually be able to allocate
1777	 * more inodes in this AG. We do soooo much unnecessary work near ENOSPC
1778	 * because of this.
1779	 */
1780	ineed = M_IGEO(mp)->ialloc_min_blks;
1781	if (flags && ineed > 1)
1782		ineed += M_IGEO(mp)->cluster_align;
1783	longest = pag->pagf_longest;
1784	if (!longest)
1785		longest = pag->pagf_flcount > 0;
1786	needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
1787
1788	if (pag->pagf_freeblks < needspace + ineed || longest < ineed)
1789		return false;
1790	return true;
1791}
1792
1793static int
1794xfs_dialloc_try_ag(
1795	struct xfs_perag	*pag,
1796	struct xfs_trans	**tpp,
1797	xfs_ino_t		parent,
1798	xfs_ino_t		*new_ino,
1799	bool			ok_alloc)
1800{
1801	struct xfs_buf		*agbp;
1802	xfs_ino_t		ino;
1803	int			error;
 
 
 
 
 
1804
1805	/*
1806	 * Then read in the AGI buffer and recheck with the AGI buffer
1807	 * lock held.
1808	 */
1809	error = xfs_ialloc_read_agi(pag, *tpp, 0, &agbp);
1810	if (error)
1811		return error;
1812
1813	if (!pag->pagi_freecount) {
1814		if (!ok_alloc) {
1815			error = -EAGAIN;
1816			goto out_release;
1817		}
1818
1819		error = xfs_ialloc_ag_alloc(pag, *tpp, agbp);
1820		if (error < 0)
1821			goto out_release;
1822
1823		/*
1824		 * We successfully allocated space for an inode cluster in this
1825		 * AG.  Roll the transaction so that we can allocate one of the
1826		 * new inodes.
1827		 */
1828		ASSERT(pag->pagi_freecount > 0);
1829		error = xfs_dialloc_roll(tpp, agbp);
1830		if (error)
1831			goto out_release;
1832	}
1833
1834	/* Allocate an inode in the found AG */
1835	error = xfs_dialloc_ag(pag, *tpp, agbp, parent, &ino);
1836	if (!error)
1837		*new_ino = ino;
1838	return error;
1839
1840out_release:
1841	xfs_trans_brelse(*tpp, agbp);
1842	return error;
1843}
1844
1845/*
1846 * Pick an AG for the new inode.
1847 *
1848 * Directories, symlinks, and regular files frequently allocate at least one
1849 * block, so factor that potential expansion when we examine whether an AG has
1850 * enough space for file creation.  Try to keep metadata files all in the same
1851 * AG.
1852 */
1853static inline xfs_agnumber_t
1854xfs_dialloc_pick_ag(
1855	struct xfs_mount	*mp,
1856	struct xfs_inode	*dp,
1857	umode_t			mode)
1858{
1859	xfs_agnumber_t		start_agno;
1860
1861	if (!dp)
1862		return 0;
1863	if (xfs_is_metadir_inode(dp)) {
1864		if (mp->m_sb.sb_logstart)
1865			return XFS_FSB_TO_AGNO(mp, mp->m_sb.sb_logstart);
1866		return 0;
1867	}
1868
1869	if (S_ISDIR(mode))
1870		return (atomic_inc_return(&mp->m_agirotor) - 1) % mp->m_maxagi;
1871
1872	start_agno = XFS_INO_TO_AGNO(mp, dp->i_ino);
1873	if (start_agno >= mp->m_maxagi)
1874		start_agno = 0;
1875
1876	return start_agno;
1877}
1878
1879/*
1880 * Allocate an on-disk inode.
1881 *
1882 * Mode is used to tell whether the new inode is a directory and hence where to
1883 * locate it. The on-disk inode that is allocated will be returned in @new_ino
1884 * on success, otherwise an error will be set to indicate the failure (e.g.
1885 * -ENOSPC).
1886 */
1887int
1888xfs_dialloc(
1889	struct xfs_trans	**tpp,
1890	const struct xfs_icreate_args *args,
1891	xfs_ino_t		*new_ino)
1892{
1893	struct xfs_mount	*mp = (*tpp)->t_mountp;
1894	struct xfs_perag	*pag;
1895	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
1896	xfs_ino_t		ino = NULLFSINO;
1897	xfs_ino_t		parent = args->pip ? args->pip->i_ino : 0;
1898	xfs_agnumber_t		agno;
1899	xfs_agnumber_t		start_agno;
1900	umode_t			mode = args->mode & S_IFMT;
1901	bool			ok_alloc = true;
1902	bool			low_space = false;
1903	int			flags;
1904	int			error = 0;
1905
1906	start_agno = xfs_dialloc_pick_ag(mp, args->pip, mode);
1907
1908	/*
1909	 * If we have already hit the ceiling of inode blocks then clear
1910	 * ok_alloc so we scan all available agi structures for a free
1911	 * inode.
1912	 *
1913	 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1914	 * which will sacrifice the preciseness but improve the performance.
1915	 */
1916	if (igeo->maxicount &&
1917	    percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos
1918							> igeo->maxicount) {
1919		ok_alloc = false;
1920	}
1921
1922	/*
1923	 * If we are near to ENOSPC, we want to prefer allocation from AGs that
1924	 * have free inodes in them rather than use up free space allocating new
1925	 * inode chunks. Hence we turn off allocation for the first non-blocking
1926	 * pass through the AGs if we are near ENOSPC to consume free inodes
1927	 * that we can immediately allocate, but then we allow allocation on the
1928	 * second pass if we fail to find an AG with free inodes in it.
1929	 */
1930	if (percpu_counter_read_positive(&mp->m_fdblocks) <
1931			mp->m_low_space[XFS_LOWSP_1_PCNT]) {
1932		ok_alloc = false;
1933		low_space = true;
1934	}
1935
1936	/*
1937	 * Loop until we find an allocation group that either has free inodes
1938	 * or in which we can allocate some inodes.  Iterate through the
1939	 * allocation groups upward, wrapping at the end.
1940	 */
1941	flags = XFS_ALLOC_FLAG_TRYLOCK;
1942retry:
1943	for_each_perag_wrap_at(mp, start_agno, mp->m_maxagi, agno, pag) {
1944		if (xfs_dialloc_good_ag(pag, *tpp, mode, flags, ok_alloc)) {
1945			error = xfs_dialloc_try_ag(pag, tpp, parent,
1946					&ino, ok_alloc);
1947			if (error != -EAGAIN)
1948				break;
1949			error = 0;
1950		}
1951
1952		if (xfs_is_shutdown(mp)) {
1953			error = -EFSCORRUPTED;
1954			break;
 
1955		}
1956	}
1957	if (pag)
1958		xfs_perag_rele(pag);
1959	if (error)
1960		return error;
1961	if (ino == NULLFSINO) {
1962		if (flags) {
1963			flags = 0;
1964			if (low_space)
1965				ok_alloc = true;
1966			goto retry;
 
 
 
 
 
 
 
1967		}
1968		return -ENOSPC;
1969	}
1970
1971	/*
1972	 * Protect against obviously corrupt allocation btree records. Later
1973	 * xfs_iget checks will catch re-allocation of other active in-memory
1974	 * and on-disk inodes. If we don't catch reallocating the parent inode
1975	 * here we will deadlock in xfs_iget() so we have to do these checks
1976	 * first.
1977	 */
1978	if (ino == parent || !xfs_verify_dir_ino(mp, ino)) {
1979		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
1980		xfs_agno_mark_sick(mp, XFS_INO_TO_AGNO(mp, ino),
1981				XFS_SICK_AG_INOBT);
1982		return -EFSCORRUPTED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1983	}
1984
1985	*new_ino = ino;
1986	return 0;
 
 
 
 
1987}
1988
1989/*
1990 * Free the blocks of an inode chunk. We must consider that the inode chunk
1991 * might be sparse and only free the regions that are allocated as part of the
1992 * chunk.
1993 */
1994static int
1995xfs_difree_inode_chunk(
1996	struct xfs_trans		*tp,
1997	struct xfs_perag		*pag,
1998	struct xfs_inobt_rec_incore	*rec)
1999{
2000	struct xfs_mount		*mp = tp->t_mountp;
2001	xfs_agblock_t			sagbno = XFS_AGINO_TO_AGBNO(mp,
2002							rec->ir_startino);
2003	int				startidx, endidx;
2004	int				nextbit;
2005	xfs_agblock_t			agbno;
2006	int				contigblk;
2007	DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
 
2008
2009	if (!xfs_inobt_issparse(rec->ir_holemask)) {
2010		/* not sparse, calculate extent info directly */
2011		return xfs_free_extent_later(tp, xfs_agbno_to_fsb(pag, sagbno),
2012				M_IGEO(mp)->ialloc_blks, &XFS_RMAP_OINFO_INODES,
2013				XFS_AG_RESV_NONE, 0);
2014	}
2015
2016	/* holemask is only 16-bits (fits in an unsigned long) */
2017	ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
2018	holemask[0] = rec->ir_holemask;
2019
2020	/*
2021	 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
2022	 * holemask and convert the start/end index of each range to an extent.
2023	 * We start with the start and end index both pointing at the first 0 in
2024	 * the mask.
2025	 */
2026	startidx = endidx = find_first_zero_bit(holemask,
2027						XFS_INOBT_HOLEMASK_BITS);
2028	nextbit = startidx + 1;
2029	while (startidx < XFS_INOBT_HOLEMASK_BITS) {
2030		int error;
2031
2032		nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
2033					     nextbit);
2034		/*
2035		 * If the next zero bit is contiguous, update the end index of
2036		 * the current range and continue.
2037		 */
2038		if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
2039		    nextbit == endidx + 1) {
2040			endidx = nextbit;
2041			goto next;
2042		}
2043
2044		/*
2045		 * nextbit is not contiguous with the current end index. Convert
2046		 * the current start/end to an extent and add it to the free
2047		 * list.
2048		 */
2049		agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
2050				  mp->m_sb.sb_inopblock;
2051		contigblk = ((endidx - startidx + 1) *
2052			     XFS_INODES_PER_HOLEMASK_BIT) /
2053			    mp->m_sb.sb_inopblock;
2054
2055		ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
2056		ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
2057		error = xfs_free_extent_later(tp, xfs_agbno_to_fsb(pag, agbno),
2058				contigblk, &XFS_RMAP_OINFO_INODES,
2059				XFS_AG_RESV_NONE, 0);
2060		if (error)
2061			return error;
2062
2063		/* reset range to current bit and carry on... */
2064		startidx = endidx = nextbit;
2065
2066next:
2067		nextbit++;
2068	}
2069	return 0;
2070}
2071
2072STATIC int
2073xfs_difree_inobt(
2074	struct xfs_perag		*pag,
2075	struct xfs_trans		*tp,
2076	struct xfs_buf			*agbp,
2077	xfs_agino_t			agino,
 
2078	struct xfs_icluster		*xic,
2079	struct xfs_inobt_rec_incore	*orec)
2080{
2081	struct xfs_mount		*mp = pag_mount(pag);
2082	struct xfs_agi			*agi = agbp->b_addr;
 
2083	struct xfs_btree_cur		*cur;
2084	struct xfs_inobt_rec_incore	rec;
2085	int				ilen;
2086	int				error;
2087	int				i;
2088	int				off;
2089
2090	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2091	ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
2092
2093	/*
2094	 * Initialize the cursor.
2095	 */
2096	cur = xfs_inobt_init_cursor(pag, tp, agbp);
2097
2098	error = xfs_check_agi_freecount(cur);
2099	if (error)
2100		goto error0;
2101
2102	/*
2103	 * Look for the entry describing this inode.
2104	 */
2105	if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
2106		xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
2107			__func__, error);
2108		goto error0;
2109	}
2110	if (XFS_IS_CORRUPT(mp, i != 1)) {
2111		xfs_btree_mark_sick(cur);
2112		error = -EFSCORRUPTED;
2113		goto error0;
2114	}
2115	error = xfs_inobt_get_rec(cur, &rec, &i);
2116	if (error) {
2117		xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
2118			__func__, error);
2119		goto error0;
2120	}
2121	if (XFS_IS_CORRUPT(mp, i != 1)) {
2122		xfs_btree_mark_sick(cur);
2123		error = -EFSCORRUPTED;
2124		goto error0;
2125	}
2126	/*
2127	 * Get the offset in the inode chunk.
2128	 */
2129	off = agino - rec.ir_startino;
2130	ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
2131	ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
2132	/*
2133	 * Mark the inode free & increment the count.
2134	 */
2135	rec.ir_free |= XFS_INOBT_MASK(off);
2136	rec.ir_freecount++;
2137
2138	/*
2139	 * When an inode chunk is free, it becomes eligible for removal. Don't
2140	 * remove the chunk if the block size is large enough for multiple inode
2141	 * chunks (that might not be free).
2142	 */
2143	if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
 
2144	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
2145		xic->deleted = true;
2146		xic->first_ino = xfs_agino_to_ino(pag, rec.ir_startino);
2147		xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
2148
2149		/*
2150		 * Remove the inode cluster from the AGI B+Tree, adjust the
2151		 * AGI and Superblock inode counts, and mark the disk space
2152		 * to be freed when the transaction is committed.
2153		 */
2154		ilen = rec.ir_freecount;
2155		be32_add_cpu(&agi->agi_count, -ilen);
2156		be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
2157		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
 
2158		pag->pagi_freecount -= ilen - 1;
2159		pag->pagi_count -= ilen;
2160		xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
2161		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
2162
2163		if ((error = xfs_btree_delete(cur, &i))) {
2164			xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
2165				__func__, error);
2166			goto error0;
2167		}
2168
2169		error = xfs_difree_inode_chunk(tp, pag, &rec);
2170		if (error)
2171			goto error0;
2172	} else {
2173		xic->deleted = false;
2174
2175		error = xfs_inobt_update(cur, &rec);
2176		if (error) {
2177			xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
2178				__func__, error);
2179			goto error0;
2180		}
2181
2182		/*
2183		 * Change the inode free counts and log the ag/sb changes.
2184		 */
2185		be32_add_cpu(&agi->agi_freecount, 1);
2186		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
 
2187		pag->pagi_freecount++;
 
2188		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2189	}
2190
2191	error = xfs_check_agi_freecount(cur);
2192	if (error)
2193		goto error0;
2194
2195	*orec = rec;
2196	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2197	return 0;
2198
2199error0:
2200	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2201	return error;
2202}
2203
2204/*
2205 * Free an inode in the free inode btree.
2206 */
2207STATIC int
2208xfs_difree_finobt(
2209	struct xfs_perag		*pag,
2210	struct xfs_trans		*tp,
2211	struct xfs_buf			*agbp,
2212	xfs_agino_t			agino,
2213	struct xfs_inobt_rec_incore	*ibtrec) /* inobt record */
2214{
2215	struct xfs_mount		*mp = pag_mount(pag);
 
2216	struct xfs_btree_cur		*cur;
2217	struct xfs_inobt_rec_incore	rec;
2218	int				offset = agino - ibtrec->ir_startino;
2219	int				error;
2220	int				i;
2221
2222	cur = xfs_finobt_init_cursor(pag, tp, agbp);
2223
2224	error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2225	if (error)
2226		goto error;
2227	if (i == 0) {
2228		/*
2229		 * If the record does not exist in the finobt, we must have just
2230		 * freed an inode in a previously fully allocated chunk. If not,
2231		 * something is out of sync.
2232		 */
2233		if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) {
2234			xfs_btree_mark_sick(cur);
2235			error = -EFSCORRUPTED;
2236			goto error;
2237		}
2238
2239		error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2240					     ibtrec->ir_count,
2241					     ibtrec->ir_freecount,
2242					     ibtrec->ir_free, &i);
2243		if (error)
2244			goto error;
2245		ASSERT(i == 1);
2246
2247		goto out;
2248	}
2249
2250	/*
2251	 * Read and update the existing record. We could just copy the ibtrec
2252	 * across here, but that would defeat the purpose of having redundant
2253	 * metadata. By making the modifications independently, we can catch
2254	 * corruptions that we wouldn't see if we just copied from one record
2255	 * to another.
2256	 */
2257	error = xfs_inobt_get_rec(cur, &rec, &i);
2258	if (error)
2259		goto error;
2260	if (XFS_IS_CORRUPT(mp, i != 1)) {
2261		xfs_btree_mark_sick(cur);
2262		error = -EFSCORRUPTED;
2263		goto error;
2264	}
2265
2266	rec.ir_free |= XFS_INOBT_MASK(offset);
2267	rec.ir_freecount++;
2268
2269	if (XFS_IS_CORRUPT(mp,
2270			   rec.ir_free != ibtrec->ir_free ||
2271			   rec.ir_freecount != ibtrec->ir_freecount)) {
2272		xfs_btree_mark_sick(cur);
2273		error = -EFSCORRUPTED;
2274		goto error;
2275	}
2276
2277	/*
2278	 * The content of inobt records should always match between the inobt
2279	 * and finobt. The lifecycle of records in the finobt is different from
2280	 * the inobt in that the finobt only tracks records with at least one
2281	 * free inode. Hence, if all of the inodes are free and we aren't
2282	 * keeping inode chunks permanently on disk, remove the record.
2283	 * Otherwise, update the record with the new information.
2284	 *
2285	 * Note that we currently can't free chunks when the block size is large
2286	 * enough for multiple chunks. Leave the finobt record to remain in sync
2287	 * with the inobt.
2288	 */
2289	if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
2290	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
 
2291		error = xfs_btree_delete(cur, &i);
2292		if (error)
2293			goto error;
2294		ASSERT(i == 1);
2295	} else {
2296		error = xfs_inobt_update(cur, &rec);
2297		if (error)
2298			goto error;
2299	}
2300
2301out:
2302	error = xfs_check_agi_freecount(cur);
2303	if (error)
2304		goto error;
2305
2306	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2307	return 0;
2308
2309error:
2310	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2311	return error;
2312}
2313
2314/*
2315 * Free disk inode.  Carefully avoids touching the incore inode, all
2316 * manipulations incore are the caller's responsibility.
2317 * The on-disk inode is not changed by this operation, only the
2318 * btree (free inode mask) is changed.
2319 */
2320int
2321xfs_difree(
2322	struct xfs_trans	*tp,
2323	struct xfs_perag	*pag,
2324	xfs_ino_t		inode,
2325	struct xfs_icluster	*xic)
2326{
2327	/* REFERENCED */
2328	xfs_agblock_t		agbno;	/* block number containing inode */
2329	struct xfs_buf		*agbp;	/* buffer for allocation group header */
2330	xfs_agino_t		agino;	/* allocation group inode number */
 
2331	int			error;	/* error return value */
2332	struct xfs_mount	*mp = tp->t_mountp;
2333	struct xfs_inobt_rec_incore rec;/* btree record */
2334
 
 
2335	/*
2336	 * Break up inode number into its components.
2337	 */
2338	if (pag_agno(pag) != XFS_INO_TO_AGNO(mp, inode)) {
2339		xfs_warn(mp, "%s: agno != pag_agno(pag) (%d != %d).",
2340			__func__, XFS_INO_TO_AGNO(mp, inode), pag_agno(pag));
 
2341		ASSERT(0);
2342		return -EINVAL;
2343	}
2344	agino = XFS_INO_TO_AGINO(mp, inode);
2345	if (inode != xfs_agino_to_ino(pag, agino))  {
2346		xfs_warn(mp, "%s: inode != xfs_agino_to_ino() (%llu != %llu).",
2347			__func__, (unsigned long long)inode,
2348			(unsigned long long)xfs_agino_to_ino(pag, agino));
2349		ASSERT(0);
2350		return -EINVAL;
2351	}
2352	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2353	if (agbno >= xfs_ag_block_count(mp, pag_agno(pag))) {
2354		xfs_warn(mp, "%s: agbno >= xfs_ag_block_count (%d >= %d).",
2355			__func__, agbno, xfs_ag_block_count(mp, pag_agno(pag)));
2356		ASSERT(0);
2357		return -EINVAL;
2358	}
2359	/*
2360	 * Get the allocation group header.
2361	 */
2362	error = xfs_ialloc_read_agi(pag, tp, 0, &agbp);
2363	if (error) {
2364		xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2365			__func__, error);
2366		return error;
2367	}
2368
2369	/*
2370	 * Fix up the inode allocation btree.
2371	 */
2372	error = xfs_difree_inobt(pag, tp, agbp, agino, xic, &rec);
2373	if (error)
2374		goto error0;
2375
2376	/*
2377	 * Fix up the free inode btree.
2378	 */
2379	if (xfs_has_finobt(mp)) {
2380		error = xfs_difree_finobt(pag, tp, agbp, agino, &rec);
2381		if (error)
2382			goto error0;
2383	}
2384
2385	return 0;
2386
2387error0:
2388	return error;
2389}
2390
2391STATIC int
2392xfs_imap_lookup(
2393	struct xfs_perag	*pag,
2394	struct xfs_trans	*tp,
 
2395	xfs_agino_t		agino,
2396	xfs_agblock_t		agbno,
2397	xfs_agblock_t		*chunk_agbno,
2398	xfs_agblock_t		*offset_agbno,
2399	int			flags)
2400{
2401	struct xfs_mount	*mp = pag_mount(pag);
2402	struct xfs_inobt_rec_incore rec;
2403	struct xfs_btree_cur	*cur;
2404	struct xfs_buf		*agbp;
2405	int			error;
2406	int			i;
2407
2408	error = xfs_ialloc_read_agi(pag, tp, 0, &agbp);
2409	if (error) {
2410		xfs_alert(mp,
2411			"%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2412			__func__, error, pag_agno(pag));
2413		return error;
2414	}
2415
2416	/*
2417	 * Lookup the inode record for the given agino. If the record cannot be
2418	 * found, then it's an invalid inode number and we should abort. Once
2419	 * we have a record, we need to ensure it contains the inode number
2420	 * we are looking up.
2421	 */
2422	cur = xfs_inobt_init_cursor(pag, tp, agbp);
2423	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2424	if (!error) {
2425		if (i)
2426			error = xfs_inobt_get_rec(cur, &rec, &i);
2427		if (!error && i == 0)
2428			error = -EINVAL;
2429	}
2430
2431	xfs_trans_brelse(tp, agbp);
2432	xfs_btree_del_cursor(cur, error);
2433	if (error)
2434		return error;
2435
2436	/* check that the returned record contains the required inode */
2437	if (rec.ir_startino > agino ||
2438	    rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino)
2439		return -EINVAL;
2440
2441	/* for untrusted inodes check it is allocated first */
2442	if ((flags & XFS_IGET_UNTRUSTED) &&
2443	    (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2444		return -EINVAL;
2445
2446	*chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2447	*offset_agbno = agbno - *chunk_agbno;
2448	return 0;
2449}
2450
2451/*
2452 * Return the location of the inode in imap, for mapping it into a buffer.
2453 */
2454int
2455xfs_imap(
2456	struct xfs_perag	*pag,
2457	struct xfs_trans	*tp,
2458	xfs_ino_t		ino,	/* inode to locate */
2459	struct xfs_imap		*imap,	/* location map structure */
2460	uint			flags)	/* flags for inode btree lookup */
2461{
2462	struct xfs_mount	*mp = pag_mount(pag);
2463	xfs_agblock_t		agbno;	/* block number of inode in the alloc group */
2464	xfs_agino_t		agino;	/* inode number within alloc group */
2465	xfs_agblock_t		chunk_agbno;	/* first block in inode chunk */
2466	xfs_agblock_t		cluster_agbno;	/* first block in inode cluster */
2467	int			error;	/* error code */
2468	int			offset;	/* index of inode in its buffer */
2469	xfs_agblock_t		offset_agbno;	/* blks from chunk start to inode */
 
2470
2471	ASSERT(ino != NULLFSINO);
2472
2473	/*
2474	 * Split up the inode number into its parts.
2475	 */
 
2476	agino = XFS_INO_TO_AGINO(mp, ino);
2477	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2478	if (agbno >= xfs_ag_block_count(mp, pag_agno(pag)) ||
2479	    ino != xfs_agino_to_ino(pag, agino)) {
2480		error = -EINVAL;
2481#ifdef DEBUG
2482		/*
2483		 * Don't output diagnostic information for untrusted inodes
2484		 * as they can be invalid without implying corruption.
2485		 */
2486		if (flags & XFS_IGET_UNTRUSTED)
2487			return error;
2488		if (agbno >= xfs_ag_block_count(mp, pag_agno(pag))) {
 
 
 
 
 
2489			xfs_alert(mp,
2490		"%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2491				__func__, (unsigned long long)agbno,
2492				(unsigned long)xfs_ag_block_count(mp,
2493							pag_agno(pag)));
2494		}
2495		if (ino != xfs_agino_to_ino(pag, agino)) {
2496			xfs_alert(mp,
2497		"%s: ino (0x%llx) != xfs_agino_to_ino() (0x%llx)",
2498				__func__, ino,
2499				xfs_agino_to_ino(pag, agino));
2500		}
2501		xfs_stack_trace();
2502#endif /* DEBUG */
2503		return error;
2504	}
2505
 
 
2506	/*
2507	 * For bulkstat and handle lookups, we have an untrusted inode number
2508	 * that we have to verify is valid. We cannot do this just by reading
2509	 * the inode buffer as it may have been unlinked and removed leaving
2510	 * inodes in stale state on disk. Hence we have to do a btree lookup
2511	 * in all cases where an untrusted inode number is passed.
2512	 */
2513	if (flags & XFS_IGET_UNTRUSTED) {
2514		error = xfs_imap_lookup(pag, tp, agino, agbno,
2515					&chunk_agbno, &offset_agbno, flags);
2516		if (error)
2517			return error;
2518		goto out_map;
2519	}
2520
2521	/*
2522	 * If the inode cluster size is the same as the blocksize or
2523	 * smaller we get to the buffer by simple arithmetics.
2524	 */
2525	if (M_IGEO(mp)->blocks_per_cluster == 1) {
2526		offset = XFS_INO_TO_OFFSET(mp, ino);
2527		ASSERT(offset < mp->m_sb.sb_inopblock);
2528
2529		imap->im_blkno = xfs_agbno_to_daddr(pag, agbno);
2530		imap->im_len = XFS_FSB_TO_BB(mp, 1);
2531		imap->im_boffset = (unsigned short)(offset <<
2532							mp->m_sb.sb_inodelog);
2533		return 0;
2534	}
2535
2536	/*
2537	 * If the inode chunks are aligned then use simple maths to
2538	 * find the location. Otherwise we have to do a btree
2539	 * lookup to find the location.
2540	 */
2541	if (M_IGEO(mp)->inoalign_mask) {
2542		offset_agbno = agbno & M_IGEO(mp)->inoalign_mask;
2543		chunk_agbno = agbno - offset_agbno;
2544	} else {
2545		error = xfs_imap_lookup(pag, tp, agino, agbno,
2546					&chunk_agbno, &offset_agbno, flags);
2547		if (error)
2548			return error;
2549	}
2550
2551out_map:
2552	ASSERT(agbno >= chunk_agbno);
2553	cluster_agbno = chunk_agbno +
2554		((offset_agbno / M_IGEO(mp)->blocks_per_cluster) *
2555		 M_IGEO(mp)->blocks_per_cluster);
2556	offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2557		XFS_INO_TO_OFFSET(mp, ino);
2558
2559	imap->im_blkno = xfs_agbno_to_daddr(pag, cluster_agbno);
2560	imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster);
2561	imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2562
2563	/*
2564	 * If the inode number maps to a block outside the bounds
2565	 * of the file system then return NULL rather than calling
2566	 * read_buf and panicing when we get an error from the
2567	 * driver.
2568	 */
2569	if ((imap->im_blkno + imap->im_len) >
2570	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2571		xfs_alert(mp,
2572	"%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2573			__func__, (unsigned long long) imap->im_blkno,
2574			(unsigned long long) imap->im_len,
2575			XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2576		return -EINVAL;
2577	}
2578	return 0;
2579}
2580
2581/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2582 * Log specified fields for the ag hdr (inode section). The growth of the agi
2583 * structure over time requires that we interpret the buffer as two logical
2584 * regions delineated by the end of the unlinked list. This is due to the size
2585 * of the hash table and its location in the middle of the agi.
2586 *
2587 * For example, a request to log a field before agi_unlinked and a field after
2588 * agi_unlinked could cause us to log the entire hash table and use an excessive
2589 * amount of log space. To avoid this behavior, log the region up through
2590 * agi_unlinked in one call and the region after agi_unlinked through the end of
2591 * the structure in another.
2592 */
2593void
2594xfs_ialloc_log_agi(
2595	struct xfs_trans	*tp,
2596	struct xfs_buf		*bp,
2597	uint32_t		fields)
2598{
2599	int			first;		/* first byte number */
2600	int			last;		/* last byte number */
2601	static const short	offsets[] = {	/* field starting offsets */
2602					/* keep in sync with bit definitions */
2603		offsetof(xfs_agi_t, agi_magicnum),
2604		offsetof(xfs_agi_t, agi_versionnum),
2605		offsetof(xfs_agi_t, agi_seqno),
2606		offsetof(xfs_agi_t, agi_length),
2607		offsetof(xfs_agi_t, agi_count),
2608		offsetof(xfs_agi_t, agi_root),
2609		offsetof(xfs_agi_t, agi_level),
2610		offsetof(xfs_agi_t, agi_freecount),
2611		offsetof(xfs_agi_t, agi_newino),
2612		offsetof(xfs_agi_t, agi_dirino),
2613		offsetof(xfs_agi_t, agi_unlinked),
2614		offsetof(xfs_agi_t, agi_free_root),
2615		offsetof(xfs_agi_t, agi_free_level),
2616		offsetof(xfs_agi_t, agi_iblocks),
2617		sizeof(xfs_agi_t)
2618	};
2619#ifdef DEBUG
2620	struct xfs_agi		*agi = bp->b_addr;
2621
 
2622	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2623#endif
2624
2625	/*
2626	 * Compute byte offsets for the first and last fields in the first
2627	 * region and log the agi buffer. This only logs up through
2628	 * agi_unlinked.
2629	 */
2630	if (fields & XFS_AGI_ALL_BITS_R1) {
2631		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2632				  &first, &last);
2633		xfs_trans_log_buf(tp, bp, first, last);
2634	}
2635
2636	/*
2637	 * Mask off the bits in the first region and calculate the first and
2638	 * last field offsets for any bits in the second region.
2639	 */
2640	fields &= ~XFS_AGI_ALL_BITS_R1;
2641	if (fields) {
2642		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2643				  &first, &last);
2644		xfs_trans_log_buf(tp, bp, first, last);
2645	}
2646}
2647
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2648static xfs_failaddr_t
2649xfs_agi_verify(
2650	struct xfs_buf		*bp)
2651{
2652	struct xfs_mount	*mp = bp->b_mount;
2653	struct xfs_agi		*agi = bp->b_addr;
2654	xfs_failaddr_t		fa;
2655	uint32_t		agi_seqno = be32_to_cpu(agi->agi_seqno);
2656	uint32_t		agi_length = be32_to_cpu(agi->agi_length);
2657	int			i;
2658
2659	if (xfs_has_crc(mp)) {
2660		if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2661			return __this_address;
2662		if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn)))
 
2663			return __this_address;
2664	}
2665
2666	/*
2667	 * Validate the magic number of the agi block.
2668	 */
2669	if (!xfs_verify_magic(bp, agi->agi_magicnum))
2670		return __this_address;
2671	if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2672		return __this_address;
2673
2674	fa = xfs_validate_ag_length(bp, agi_seqno, agi_length);
2675	if (fa)
2676		return fa;
2677
2678	if (be32_to_cpu(agi->agi_level) < 1 ||
2679	    be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels)
2680		return __this_address;
2681
2682	if (xfs_has_finobt(mp) &&
2683	    (be32_to_cpu(agi->agi_free_level) < 1 ||
2684	     be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels))
2685		return __this_address;
2686
2687	for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
2688		if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
2689			continue;
2690		if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
2691			return __this_address;
2692	}
 
 
2693
 
2694	return NULL;
2695}
2696
2697static void
2698xfs_agi_read_verify(
2699	struct xfs_buf	*bp)
2700{
2701	struct xfs_mount *mp = bp->b_mount;
2702	xfs_failaddr_t	fa;
2703
2704	if (xfs_has_crc(mp) &&
2705	    !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2706		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2707	else {
2708		fa = xfs_agi_verify(bp);
2709		if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2710			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2711	}
2712}
2713
2714static void
2715xfs_agi_write_verify(
2716	struct xfs_buf	*bp)
2717{
2718	struct xfs_mount	*mp = bp->b_mount;
2719	struct xfs_buf_log_item	*bip = bp->b_log_item;
2720	struct xfs_agi		*agi = bp->b_addr;
2721	xfs_failaddr_t		fa;
2722
2723	fa = xfs_agi_verify(bp);
2724	if (fa) {
2725		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2726		return;
2727	}
2728
2729	if (!xfs_has_crc(mp))
2730		return;
2731
2732	if (bip)
2733		agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2734	xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2735}
2736
2737const struct xfs_buf_ops xfs_agi_buf_ops = {
2738	.name = "xfs_agi",
2739	.magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) },
2740	.verify_read = xfs_agi_read_verify,
2741	.verify_write = xfs_agi_write_verify,
2742	.verify_struct = xfs_agi_verify,
2743};
2744
2745/*
2746 * Read in the allocation group header (inode allocation section)
2747 */
2748int
2749xfs_read_agi(
2750	struct xfs_perag	*pag,
2751	struct xfs_trans	*tp,
2752	xfs_buf_flags_t		flags,
2753	struct xfs_buf		**agibpp)
2754{
2755	struct xfs_mount	*mp = pag_mount(pag);
2756	int			error;
2757
2758	trace_xfs_read_agi(pag);
2759
 
2760	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2761			XFS_AG_DADDR(mp, pag_agno(pag), XFS_AGI_DADDR(mp)),
2762			XFS_FSS_TO_BB(mp, 1), flags, agibpp, &xfs_agi_buf_ops);
2763	if (xfs_metadata_is_sick(error))
2764		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2765	if (error)
2766		return error;
2767	if (tp)
2768		xfs_trans_buf_set_type(tp, *agibpp, XFS_BLFT_AGI_BUF);
2769
2770	xfs_buf_set_ref(*agibpp, XFS_AGI_REF);
2771	return 0;
2772}
2773
2774/*
2775 * Read in the agi and initialise the per-ag data. If the caller supplies a
2776 * @agibpp, return the locked AGI buffer to them, otherwise release it.
2777 */
2778int
2779xfs_ialloc_read_agi(
2780	struct xfs_perag	*pag,
2781	struct xfs_trans	*tp,
2782	int			flags,
2783	struct xfs_buf		**agibpp)
2784{
2785	struct xfs_buf		*agibp;
2786	struct xfs_agi		*agi;
2787	int			error;
2788
2789	trace_xfs_ialloc_read_agi(pag);
2790
2791	error = xfs_read_agi(pag, tp,
2792			(flags & XFS_IALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0,
2793			&agibp);
2794	if (error)
2795		return error;
2796
2797	agi = agibp->b_addr;
2798	if (!xfs_perag_initialised_agi(pag)) {
 
2799		pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2800		pag->pagi_count = be32_to_cpu(agi->agi_count);
2801		set_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate);
2802	}
2803
2804	/*
2805	 * It's possible for these to be out of sync if
2806	 * we are in the middle of a forced shutdown.
2807	 */
2808	ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2809		xfs_is_shutdown(pag_mount(pag)));
2810	if (agibpp)
2811		*agibpp = agibp;
2812	else
2813		xfs_trans_brelse(tp, agibp);
2814	return 0;
2815}
2816
2817/* How many inodes are backed by inode clusters ondisk? */
2818STATIC int
2819xfs_ialloc_count_ondisk(
2820	struct xfs_btree_cur		*cur,
2821	xfs_agino_t			low,
2822	xfs_agino_t			high,
2823	unsigned int			*allocated)
 
2824{
2825	struct xfs_inobt_rec_incore	irec;
2826	unsigned int			ret = 0;
2827	int				has_record;
2828	int				error;
2829
2830	error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2831	if (error)
2832		return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2833
2834	while (has_record) {
2835		unsigned int		i, hole_idx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2836
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2837		error = xfs_inobt_get_rec(cur, &irec, &has_record);
2838		if (error)
2839			return error;
2840		if (irec.ir_startino > high)
2841			break;
2842
2843		for (i = 0; i < XFS_INODES_PER_CHUNK; i++) {
2844			if (irec.ir_startino + i < low)
 
 
 
2845				continue;
2846			if (irec.ir_startino + i > high)
2847				break;
2848
2849			hole_idx = i / XFS_INODES_PER_HOLEMASK_BIT;
2850			if (!(irec.ir_holemask & (1U << hole_idx)))
2851				ret++;
2852		}
2853
2854		error = xfs_btree_increment(cur, 0, &has_record);
2855		if (error)
2856			return error;
2857	}
2858
2859	*allocated = ret;
2860	return 0;
2861}
2862
2863/* Is there an inode record covering a given extent? */
2864int
2865xfs_ialloc_has_inodes_at_extent(
2866	struct xfs_btree_cur	*cur,
2867	xfs_agblock_t		bno,
2868	xfs_extlen_t		len,
2869	enum xbtree_recpacking	*outcome)
2870{
2871	xfs_agino_t		agino;
2872	xfs_agino_t		last_agino;
2873	unsigned int		allocated;
2874	int			error;
2875
2876	agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
2877	last_agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
2878
2879	error = xfs_ialloc_count_ondisk(cur, agino, last_agino, &allocated);
2880	if (error)
2881		return error;
2882
2883	if (allocated == 0)
2884		*outcome = XBTREE_RECPACKING_EMPTY;
2885	else if (allocated == last_agino - agino + 1)
2886		*outcome = XBTREE_RECPACKING_FULL;
2887	else
2888		*outcome = XBTREE_RECPACKING_SPARSE;
2889	return 0;
2890}
2891
2892struct xfs_ialloc_count_inodes {
2893	xfs_agino_t			count;
2894	xfs_agino_t			freecount;
2895};
2896
2897/* Record inode counts across all inobt records. */
2898STATIC int
2899xfs_ialloc_count_inodes_rec(
2900	struct xfs_btree_cur		*cur,
2901	const union xfs_btree_rec	*rec,
2902	void				*priv)
2903{
2904	struct xfs_inobt_rec_incore	irec;
2905	struct xfs_ialloc_count_inodes	*ci = priv;
2906	xfs_failaddr_t			fa;
2907
2908	xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2909	fa = xfs_inobt_check_irec(to_perag(cur->bc_group), &irec);
2910	if (fa)
2911		return xfs_inobt_complain_bad_rec(cur, fa, &irec);
2912
2913	ci->count += irec.ir_count;
2914	ci->freecount += irec.ir_freecount;
2915
2916	return 0;
2917}
2918
2919/* Count allocated and free inodes under an inobt. */
2920int
2921xfs_ialloc_count_inodes(
2922	struct xfs_btree_cur		*cur,
2923	xfs_agino_t			*count,
2924	xfs_agino_t			*freecount)
2925{
2926	struct xfs_ialloc_count_inodes	ci = {0};
2927	int				error;
2928
2929	ASSERT(xfs_btree_is_ino(cur->bc_ops));
2930	error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2931	if (error)
2932		return error;
2933
2934	*count = ci.count;
2935	*freecount = ci.freecount;
2936	return 0;
2937}
2938
2939/*
2940 * Initialize inode-related geometry information.
2941 *
2942 * Compute the inode btree min and max levels and set maxicount.
2943 *
2944 * Set the inode cluster size.  This may still be overridden by the file
2945 * system block size if it is larger than the chosen cluster size.
2946 *
2947 * For v5 filesystems, scale the cluster size with the inode size to keep a
2948 * constant ratio of inode per cluster buffer, but only if mkfs has set the
2949 * inode alignment value appropriately for larger cluster sizes.
2950 *
2951 * Then compute the inode cluster alignment information.
2952 */
2953void
2954xfs_ialloc_setup_geometry(
2955	struct xfs_mount	*mp)
2956{
2957	struct xfs_sb		*sbp = &mp->m_sb;
2958	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2959	uint64_t		icount;
2960	uint			inodes;
2961
2962	igeo->new_diflags2 = 0;
2963	if (xfs_has_bigtime(mp))
2964		igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME;
2965	if (xfs_has_large_extent_counts(mp))
2966		igeo->new_diflags2 |= XFS_DIFLAG2_NREXT64;
2967
2968	/* Compute inode btree geometry. */
2969	igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
2970	igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, true);
2971	igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, false);
2972	igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2;
2973	igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2;
2974
2975	igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK,
2976			sbp->sb_inopblock);
2977	igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog;
2978
2979	if (sbp->sb_spino_align)
2980		igeo->ialloc_min_blks = sbp->sb_spino_align;
2981	else
2982		igeo->ialloc_min_blks = igeo->ialloc_blks;
2983
2984	/* Compute and fill in value of m_ino_geo.inobt_maxlevels. */
2985	inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2986	igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr,
2987			inodes);
2988	ASSERT(igeo->inobt_maxlevels <= xfs_iallocbt_maxlevels_ondisk());
2989
2990	/*
2991	 * Set the maximum inode count for this filesystem, being careful not
2992	 * to use obviously garbage sb_inopblog/sb_inopblock values.  Regular
2993	 * users should never get here due to failing sb verification, but
2994	 * certain users (xfs_db) need to be usable even with corrupt metadata.
2995	 */
2996	if (sbp->sb_imax_pct && igeo->ialloc_blks) {
2997		/*
2998		 * Make sure the maximum inode count is a multiple
2999		 * of the units we allocate inodes in.
3000		 */
3001		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
3002		do_div(icount, 100);
3003		do_div(icount, igeo->ialloc_blks);
3004		igeo->maxicount = XFS_FSB_TO_INO(mp,
3005				icount * igeo->ialloc_blks);
3006	} else {
3007		igeo->maxicount = 0;
3008	}
3009
3010	/*
3011	 * Compute the desired size of an inode cluster buffer size, which
3012	 * starts at 8K and (on v5 filesystems) scales up with larger inode
3013	 * sizes.
3014	 *
3015	 * Preserve the desired inode cluster size because the sparse inodes
3016	 * feature uses that desired size (not the actual size) to compute the
3017	 * sparse inode alignment.  The mount code validates this value, so we
3018	 * cannot change the behavior.
3019	 */
3020	igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE;
3021	if (xfs_has_v3inodes(mp)) {
3022		int	new_size = igeo->inode_cluster_size_raw;
3023
3024		new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
3025		if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
3026			igeo->inode_cluster_size_raw = new_size;
3027	}
3028
3029	/* Calculate inode cluster ratios. */
3030	if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize)
3031		igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp,
3032				igeo->inode_cluster_size_raw);
3033	else
3034		igeo->blocks_per_cluster = 1;
3035	igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster);
3036	igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster);
3037
3038	/* Calculate inode cluster alignment. */
3039	if (xfs_has_align(mp) &&
3040	    mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster)
3041		igeo->cluster_align = mp->m_sb.sb_inoalignmt;
3042	else
3043		igeo->cluster_align = 1;
3044	igeo->inoalign_mask = igeo->cluster_align - 1;
3045	igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align);
3046
3047	/*
3048	 * If we are using stripe alignment, check whether
3049	 * the stripe unit is a multiple of the inode alignment
3050	 */
3051	if (mp->m_dalign && igeo->inoalign_mask &&
3052	    !(mp->m_dalign & igeo->inoalign_mask))
3053		igeo->ialloc_align = mp->m_dalign;
3054	else
3055		igeo->ialloc_align = 0;
3056
3057	if (mp->m_sb.sb_blocksize > PAGE_SIZE)
3058		igeo->min_folio_order = mp->m_sb.sb_blocklog - PAGE_SHIFT;
3059	else
3060		igeo->min_folio_order = 0;
3061}
3062
3063/* Compute the location of the root directory inode that is laid out by mkfs. */
3064xfs_ino_t
3065xfs_ialloc_calc_rootino(
3066	struct xfs_mount	*mp,
3067	int			sunit)
3068{
3069	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
3070	xfs_agblock_t		first_bno;
3071
3072	/*
3073	 * Pre-calculate the geometry of AG 0.  We know what it looks like
3074	 * because libxfs knows how to create allocation groups now.
3075	 *
3076	 * first_bno is the first block in which mkfs could possibly have
3077	 * allocated the root directory inode, once we factor in the metadata
3078	 * that mkfs formats before it.  Namely, the four AG headers...
3079	 */
3080	first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize);
3081
3082	/* ...the two free space btree roots... */
3083	first_bno += 2;
3084
3085	/* ...the inode btree root... */
3086	first_bno += 1;
3087
3088	/* ...the initial AGFL... */
3089	first_bno += xfs_alloc_min_freelist(mp, NULL);
3090
3091	/* ...the free inode btree root... */
3092	if (xfs_has_finobt(mp))
3093		first_bno++;
3094
3095	/* ...the reverse mapping btree root... */
3096	if (xfs_has_rmapbt(mp))
3097		first_bno++;
3098
3099	/* ...the reference count btree... */
3100	if (xfs_has_reflink(mp))
3101		first_bno++;
3102
3103	/*
3104	 * ...and the log, if it is allocated in the first allocation group.
3105	 *
3106	 * This can happen with filesystems that only have a single
3107	 * allocation group, or very odd geometries created by old mkfs
3108	 * versions on very small filesystems.
3109	 */
3110	if (xfs_ag_contains_log(mp, 0))
3111		 first_bno += mp->m_sb.sb_logblocks;
3112
3113	/*
3114	 * Now round first_bno up to whatever allocation alignment is given
3115	 * by the filesystem or was passed in.
3116	 */
3117	if (xfs_has_dalign(mp) && igeo->ialloc_align > 0)
3118		first_bno = roundup(first_bno, sunit);
3119	else if (xfs_has_align(mp) &&
3120			mp->m_sb.sb_inoalignmt > 1)
3121		first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt);
3122
3123	return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno));
3124}
3125
3126/*
3127 * Ensure there are not sparse inode clusters that cross the new EOAG.
3128 *
3129 * This is a no-op for non-spinode filesystems since clusters are always fully
3130 * allocated and checking the bnobt suffices.  However, a spinode filesystem
3131 * could have a record where the upper inodes are free blocks.  If those blocks
3132 * were removed from the filesystem, the inode record would extend beyond EOAG,
3133 * which will be flagged as corruption.
3134 */
3135int
3136xfs_ialloc_check_shrink(
3137	struct xfs_perag	*pag,
3138	struct xfs_trans	*tp,
3139	struct xfs_buf		*agibp,
3140	xfs_agblock_t		new_length)
3141{
3142	struct xfs_inobt_rec_incore rec;
3143	struct xfs_btree_cur	*cur;
3144	xfs_agino_t		agino;
3145	int			has;
3146	int			error;
3147
3148	if (!xfs_has_sparseinodes(pag_mount(pag)))
3149		return 0;
3150
3151	cur = xfs_inobt_init_cursor(pag, tp, agibp);
3152
3153	/* Look up the inobt record that would correspond to the new EOFS. */
3154	agino = XFS_AGB_TO_AGINO(pag_mount(pag), new_length);
3155	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &has);
3156	if (error || !has)
3157		goto out;
3158
3159	error = xfs_inobt_get_rec(cur, &rec, &has);
3160	if (error)
3161		goto out;
3162
3163	if (!has) {
3164		xfs_ag_mark_sick(pag, XFS_SICK_AG_INOBT);
3165		error = -EFSCORRUPTED;
3166		goto out;
3167	}
3168
3169	/* If the record covers inodes that would be beyond EOFS, bail out. */
3170	if (rec.ir_startino + XFS_INODES_PER_CHUNK > agino) {
3171		error = -ENOSPC;
3172		goto out;
3173	}
3174out:
3175	xfs_btree_del_cursor(cur, error);
3176	return error;
3177}
v4.17
 
   1/*
   2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_shared.h"
  21#include "xfs_format.h"
  22#include "xfs_log_format.h"
  23#include "xfs_trans_resv.h"
  24#include "xfs_bit.h"
  25#include "xfs_sb.h"
  26#include "xfs_mount.h"
  27#include "xfs_defer.h"
  28#include "xfs_inode.h"
  29#include "xfs_btree.h"
  30#include "xfs_ialloc.h"
  31#include "xfs_ialloc_btree.h"
  32#include "xfs_alloc.h"
  33#include "xfs_rtalloc.h"
  34#include "xfs_errortag.h"
  35#include "xfs_error.h"
  36#include "xfs_bmap.h"
  37#include "xfs_cksum.h"
  38#include "xfs_trans.h"
  39#include "xfs_buf_item.h"
  40#include "xfs_icreate_item.h"
  41#include "xfs_icache.h"
  42#include "xfs_trace.h"
  43#include "xfs_log.h"
  44#include "xfs_rmap.h"
  45
  46
  47/*
  48 * Allocation group level functions.
  49 */
  50int
  51xfs_ialloc_cluster_alignment(
  52	struct xfs_mount	*mp)
  53{
  54	if (xfs_sb_version_hasalign(&mp->m_sb) &&
  55	    mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
  56		return mp->m_sb.sb_inoalignmt;
  57	return 1;
  58}
  59
  60/*
  61 * Lookup a record by ino in the btree given by cur.
  62 */
  63int					/* error */
  64xfs_inobt_lookup(
  65	struct xfs_btree_cur	*cur,	/* btree cursor */
  66	xfs_agino_t		ino,	/* starting inode of chunk */
  67	xfs_lookup_t		dir,	/* <=, >=, == */
  68	int			*stat)	/* success/failure */
  69{
  70	cur->bc_rec.i.ir_startino = ino;
  71	cur->bc_rec.i.ir_holemask = 0;
  72	cur->bc_rec.i.ir_count = 0;
  73	cur->bc_rec.i.ir_freecount = 0;
  74	cur->bc_rec.i.ir_free = 0;
  75	return xfs_btree_lookup(cur, dir, stat);
  76}
  77
  78/*
  79 * Update the record referred to by cur to the value given.
  80 * This either works (return 0) or gets an EFSCORRUPTED error.
  81 */
  82STATIC int				/* error */
  83xfs_inobt_update(
  84	struct xfs_btree_cur	*cur,	/* btree cursor */
  85	xfs_inobt_rec_incore_t	*irec)	/* btree record */
  86{
  87	union xfs_btree_rec	rec;
  88
  89	rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
  90	if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
  91		rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
  92		rec.inobt.ir_u.sp.ir_count = irec->ir_count;
  93		rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
  94	} else {
  95		/* ir_holemask/ir_count not supported on-disk */
  96		rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
  97	}
  98	rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
  99	return xfs_btree_update(cur, &rec);
 100}
 101
 102/* Convert on-disk btree record to incore inobt record. */
 103void
 104xfs_inobt_btrec_to_irec(
 105	struct xfs_mount		*mp,
 106	union xfs_btree_rec		*rec,
 107	struct xfs_inobt_rec_incore	*irec)
 108{
 109	irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
 110	if (xfs_sb_version_hassparseinodes(&mp->m_sb)) {
 111		irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
 112		irec->ir_count = rec->inobt.ir_u.sp.ir_count;
 113		irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
 114	} else {
 115		/*
 116		 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
 117		 * values for full inode chunks.
 118		 */
 119		irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
 120		irec->ir_count = XFS_INODES_PER_CHUNK;
 121		irec->ir_freecount =
 122				be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
 123	}
 124	irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
 125}
 126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 127/*
 128 * Get the data from the pointed-to record.
 129 */
 130int
 131xfs_inobt_get_rec(
 132	struct xfs_btree_cur		*cur,
 133	struct xfs_inobt_rec_incore	*irec,
 134	int				*stat)
 135{
 
 136	union xfs_btree_rec		*rec;
 
 137	int				error;
 138
 139	error = xfs_btree_get_rec(cur, &rec, stat);
 140	if (error || *stat == 0)
 141		return error;
 142
 143	xfs_inobt_btrec_to_irec(cur->bc_mp, rec, irec);
 
 
 
 144
 145	return 0;
 146}
 147
 148/*
 149 * Insert a single inobt record. Cursor must already point to desired location.
 150 */
 151STATIC int
 152xfs_inobt_insert_rec(
 153	struct xfs_btree_cur	*cur,
 154	uint16_t		holemask,
 155	uint8_t			count,
 156	int32_t			freecount,
 157	xfs_inofree_t		free,
 158	int			*stat)
 159{
 160	cur->bc_rec.i.ir_holemask = holemask;
 161	cur->bc_rec.i.ir_count = count;
 162	cur->bc_rec.i.ir_freecount = freecount;
 163	cur->bc_rec.i.ir_free = free;
 164	return xfs_btree_insert(cur, stat);
 165}
 166
 167/*
 168 * Insert records describing a newly allocated inode chunk into the inobt.
 169 */
 170STATIC int
 171xfs_inobt_insert(
 172	struct xfs_mount	*mp,
 173	struct xfs_trans	*tp,
 174	struct xfs_buf		*agbp,
 175	xfs_agino_t		newino,
 176	xfs_agino_t		newlen,
 177	xfs_btnum_t		btnum)
 178{
 179	struct xfs_btree_cur	*cur;
 180	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp);
 181	xfs_agnumber_t		agno = be32_to_cpu(agi->agi_seqno);
 182	xfs_agino_t		thisino;
 183	int			i;
 184	int			error;
 185
 186	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
 
 
 
 187
 188	for (thisino = newino;
 189	     thisino < newino + newlen;
 190	     thisino += XFS_INODES_PER_CHUNK) {
 191		error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
 192		if (error) {
 193			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 194			return error;
 195		}
 196		ASSERT(i == 0);
 197
 198		error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
 199					     XFS_INODES_PER_CHUNK,
 200					     XFS_INODES_PER_CHUNK,
 201					     XFS_INOBT_ALL_FREE, &i);
 202		if (error) {
 203			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 204			return error;
 205		}
 206		ASSERT(i == 1);
 207	}
 208
 209	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
 210
 211	return 0;
 212}
 213
 214/*
 215 * Verify that the number of free inodes in the AGI is correct.
 216 */
 217#ifdef DEBUG
 218STATIC int
 219xfs_check_agi_freecount(
 220	struct xfs_btree_cur	*cur,
 221	struct xfs_agi		*agi)
 222{
 223	if (cur->bc_nlevels == 1) {
 224		xfs_inobt_rec_incore_t rec;
 225		int		freecount = 0;
 226		int		error;
 227		int		i;
 228
 229		error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
 230		if (error)
 231			return error;
 232
 233		do {
 234			error = xfs_inobt_get_rec(cur, &rec, &i);
 235			if (error)
 236				return error;
 237
 238			if (i) {
 239				freecount += rec.ir_freecount;
 240				error = xfs_btree_increment(cur, 0, &i);
 241				if (error)
 242					return error;
 243			}
 244		} while (i == 1);
 245
 246		if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
 247			ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
 
 
 248	}
 249	return 0;
 250}
 251#else
 252#define xfs_check_agi_freecount(cur, agi)	0
 253#endif
 254
 255/*
 256 * Initialise a new set of inodes. When called without a transaction context
 257 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
 258 * than logging them (which in a transaction context puts them into the AIL
 259 * for writeback rather than the xfsbufd queue).
 260 */
 261int
 262xfs_ialloc_inode_init(
 263	struct xfs_mount	*mp,
 264	struct xfs_trans	*tp,
 265	struct list_head	*buffer_list,
 266	int			icount,
 267	xfs_agnumber_t		agno,
 268	xfs_agblock_t		agbno,
 269	xfs_agblock_t		length,
 270	unsigned int		gen)
 271{
 272	struct xfs_buf		*fbuf;
 273	struct xfs_dinode	*free;
 274	int			nbufs, blks_per_cluster, inodes_per_cluster;
 275	int			version;
 276	int			i, j;
 277	xfs_daddr_t		d;
 278	xfs_ino_t		ino = 0;
 
 279
 280	/*
 281	 * Loop over the new block(s), filling in the inodes.  For small block
 282	 * sizes, manipulate the inodes in buffers  which are multiples of the
 283	 * blocks size.
 284	 */
 285	blks_per_cluster = xfs_icluster_size_fsb(mp);
 286	inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
 287	nbufs = length / blks_per_cluster;
 288
 289	/*
 290	 * Figure out what version number to use in the inodes we create.  If
 291	 * the superblock version has caught up to the one that supports the new
 292	 * inode format, then use the new inode version.  Otherwise use the old
 293	 * version so that old kernels will continue to be able to use the file
 294	 * system.
 295	 *
 296	 * For v3 inodes, we also need to write the inode number into the inode,
 297	 * so calculate the first inode number of the chunk here as
 298	 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
 299	 * across multiple filesystem blocks (such as a cluster) and so cannot
 300	 * be used in the cluster buffer loop below.
 301	 *
 302	 * Further, because we are writing the inode directly into the buffer
 303	 * and calculating a CRC on the entire inode, we have ot log the entire
 304	 * inode so that the entire range the CRC covers is present in the log.
 305	 * That means for v3 inode we log the entire buffer rather than just the
 306	 * inode cores.
 307	 */
 308	if (xfs_sb_version_hascrc(&mp->m_sb)) {
 309		version = 3;
 310		ino = XFS_AGINO_TO_INO(mp, agno,
 311				       XFS_OFFBNO_TO_AGINO(mp, agbno, 0));
 312
 313		/*
 314		 * log the initialisation that is about to take place as an
 315		 * logical operation. This means the transaction does not
 316		 * need to log the physical changes to the inode buffers as log
 317		 * recovery will know what initialisation is actually needed.
 318		 * Hence we only need to log the buffers as "ordered" buffers so
 319		 * they track in the AIL as if they were physically logged.
 320		 */
 321		if (tp)
 322			xfs_icreate_log(tp, agno, agbno, icount,
 323					mp->m_sb.sb_inodesize, length, gen);
 324	} else
 325		version = 2;
 326
 327	for (j = 0; j < nbufs; j++) {
 328		/*
 329		 * Get the block.
 330		 */
 331		d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
 332		fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
 333					 mp->m_bsize * blks_per_cluster,
 334					 XBF_UNMAPPED);
 335		if (!fbuf)
 336			return -ENOMEM;
 
 337
 338		/* Initialize the inode buffers and log them appropriately. */
 339		fbuf->b_ops = &xfs_inode_buf_ops;
 340		xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
 341		for (i = 0; i < inodes_per_cluster; i++) {
 342			int	ioffset = i << mp->m_sb.sb_inodelog;
 343			uint	isize = xfs_dinode_size(version);
 344
 345			free = xfs_make_iptr(mp, fbuf, i);
 346			free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
 347			free->di_version = version;
 348			free->di_gen = cpu_to_be32(gen);
 349			free->di_next_unlinked = cpu_to_be32(NULLAGINO);
 350
 351			if (version == 3) {
 352				free->di_ino = cpu_to_be64(ino);
 353				ino++;
 354				uuid_copy(&free->di_uuid,
 355					  &mp->m_sb.sb_meta_uuid);
 356				xfs_dinode_calc_crc(mp, free);
 357			} else if (tp) {
 358				/* just log the inode core */
 359				xfs_trans_log_buf(tp, fbuf, ioffset,
 360						  ioffset + isize - 1);
 361			}
 362		}
 363
 364		if (tp) {
 365			/*
 366			 * Mark the buffer as an inode allocation buffer so it
 367			 * sticks in AIL at the point of this allocation
 368			 * transaction. This ensures the they are on disk before
 369			 * the tail of the log can be moved past this
 370			 * transaction (i.e. by preventing relogging from moving
 371			 * it forward in the log).
 372			 */
 373			xfs_trans_inode_alloc_buf(tp, fbuf);
 374			if (version == 3) {
 375				/*
 376				 * Mark the buffer as ordered so that they are
 377				 * not physically logged in the transaction but
 378				 * still tracked in the AIL as part of the
 379				 * transaction and pin the log appropriately.
 380				 */
 381				xfs_trans_ordered_buf(tp, fbuf);
 382			}
 383		} else {
 384			fbuf->b_flags |= XBF_DONE;
 385			xfs_buf_delwri_queue(fbuf, buffer_list);
 386			xfs_buf_relse(fbuf);
 387		}
 388	}
 389	return 0;
 390}
 391
 392/*
 393 * Align startino and allocmask for a recently allocated sparse chunk such that
 394 * they are fit for insertion (or merge) into the on-disk inode btrees.
 395 *
 396 * Background:
 397 *
 398 * When enabled, sparse inode support increases the inode alignment from cluster
 399 * size to inode chunk size. This means that the minimum range between two
 400 * non-adjacent inode records in the inobt is large enough for a full inode
 401 * record. This allows for cluster sized, cluster aligned block allocation
 402 * without need to worry about whether the resulting inode record overlaps with
 403 * another record in the tree. Without this basic rule, we would have to deal
 404 * with the consequences of overlap by potentially undoing recent allocations in
 405 * the inode allocation codepath.
 406 *
 407 * Because of this alignment rule (which is enforced on mount), there are two
 408 * inobt possibilities for newly allocated sparse chunks. One is that the
 409 * aligned inode record for the chunk covers a range of inodes not already
 410 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
 411 * other is that a record already exists at the aligned startino that considers
 412 * the newly allocated range as sparse. In the latter case, record content is
 413 * merged in hope that sparse inode chunks fill to full chunks over time.
 414 */
 415STATIC void
 416xfs_align_sparse_ino(
 417	struct xfs_mount		*mp,
 418	xfs_agino_t			*startino,
 419	uint16_t			*allocmask)
 420{
 421	xfs_agblock_t			agbno;
 422	xfs_agblock_t			mod;
 423	int				offset;
 424
 425	agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
 426	mod = agbno % mp->m_sb.sb_inoalignmt;
 427	if (!mod)
 428		return;
 429
 430	/* calculate the inode offset and align startino */
 431	offset = mod << mp->m_sb.sb_inopblog;
 432	*startino -= offset;
 433
 434	/*
 435	 * Since startino has been aligned down, left shift allocmask such that
 436	 * it continues to represent the same physical inodes relative to the
 437	 * new startino.
 438	 */
 439	*allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
 440}
 441
 442/*
 443 * Determine whether the source inode record can merge into the target. Both
 444 * records must be sparse, the inode ranges must match and there must be no
 445 * allocation overlap between the records.
 446 */
 447STATIC bool
 448__xfs_inobt_can_merge(
 449	struct xfs_inobt_rec_incore	*trec,	/* tgt record */
 450	struct xfs_inobt_rec_incore	*srec)	/* src record */
 451{
 452	uint64_t			talloc;
 453	uint64_t			salloc;
 454
 455	/* records must cover the same inode range */
 456	if (trec->ir_startino != srec->ir_startino)
 457		return false;
 458
 459	/* both records must be sparse */
 460	if (!xfs_inobt_issparse(trec->ir_holemask) ||
 461	    !xfs_inobt_issparse(srec->ir_holemask))
 462		return false;
 463
 464	/* both records must track some inodes */
 465	if (!trec->ir_count || !srec->ir_count)
 466		return false;
 467
 468	/* can't exceed capacity of a full record */
 469	if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
 470		return false;
 471
 472	/* verify there is no allocation overlap */
 473	talloc = xfs_inobt_irec_to_allocmask(trec);
 474	salloc = xfs_inobt_irec_to_allocmask(srec);
 475	if (talloc & salloc)
 476		return false;
 477
 478	return true;
 479}
 480
 481/*
 482 * Merge the source inode record into the target. The caller must call
 483 * __xfs_inobt_can_merge() to ensure the merge is valid.
 484 */
 485STATIC void
 486__xfs_inobt_rec_merge(
 487	struct xfs_inobt_rec_incore	*trec,	/* target */
 488	struct xfs_inobt_rec_incore	*srec)	/* src */
 489{
 490	ASSERT(trec->ir_startino == srec->ir_startino);
 491
 492	/* combine the counts */
 493	trec->ir_count += srec->ir_count;
 494	trec->ir_freecount += srec->ir_freecount;
 495
 496	/*
 497	 * Merge the holemask and free mask. For both fields, 0 bits refer to
 498	 * allocated inodes. We combine the allocated ranges with bitwise AND.
 499	 */
 500	trec->ir_holemask &= srec->ir_holemask;
 501	trec->ir_free &= srec->ir_free;
 502}
 503
 504/*
 505 * Insert a new sparse inode chunk into the associated inode btree. The inode
 506 * record for the sparse chunk is pre-aligned to a startino that should match
 507 * any pre-existing sparse inode record in the tree. This allows sparse chunks
 508 * to fill over time.
 509 *
 510 * This function supports two modes of handling preexisting records depending on
 511 * the merge flag. If merge is true, the provided record is merged with the
 512 * existing record and updated in place. The merged record is returned in nrec.
 513 * If merge is false, an existing record is replaced with the provided record.
 514 * If no preexisting record exists, the provided record is always inserted.
 515 *
 516 * It is considered corruption if a merge is requested and not possible. Given
 517 * the sparse inode alignment constraints, this should never happen.
 518 */
 519STATIC int
 520xfs_inobt_insert_sprec(
 521	struct xfs_mount		*mp,
 522	struct xfs_trans		*tp,
 523	struct xfs_buf			*agbp,
 524	int				btnum,
 525	struct xfs_inobt_rec_incore	*nrec,	/* in/out: new/merged rec. */
 526	bool				merge)	/* merge or replace */
 527{
 
 528	struct xfs_btree_cur		*cur;
 529	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
 530	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
 531	int				error;
 532	int				i;
 533	struct xfs_inobt_rec_incore	rec;
 534
 535	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
 536
 537	/* the new record is pre-aligned so we know where to look */
 538	error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
 539	if (error)
 540		goto error;
 541	/* if nothing there, insert a new record and return */
 542	if (i == 0) {
 543		error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
 544					     nrec->ir_count, nrec->ir_freecount,
 545					     nrec->ir_free, &i);
 546		if (error)
 547			goto error;
 548		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
 
 
 
 
 549
 550		goto out;
 551	}
 552
 553	/*
 554	 * A record exists at this startino. Merge or replace the record
 555	 * depending on what we've been asked to do.
 556	 */
 557	if (merge) {
 558		error = xfs_inobt_get_rec(cur, &rec, &i);
 559		if (error)
 560			goto error;
 561		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
 562		XFS_WANT_CORRUPTED_GOTO(mp,
 563					rec.ir_startino == nrec->ir_startino,
 564					error);
 
 
 
 
 
 565
 566		/*
 567		 * This should never fail. If we have coexisting records that
 568		 * cannot merge, something is seriously wrong.
 569		 */
 570		XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec),
 571					error);
 
 
 
 572
 573		trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
 574					 rec.ir_holemask, nrec->ir_startino,
 575					 nrec->ir_holemask);
 576
 577		/* merge to nrec to output the updated record */
 578		__xfs_inobt_rec_merge(nrec, &rec);
 579
 580		trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
 581					  nrec->ir_holemask);
 582
 583		error = xfs_inobt_rec_check_count(mp, nrec);
 584		if (error)
 585			goto error;
 586	}
 587
 588	error = xfs_inobt_update(cur, nrec);
 589	if (error)
 590		goto error;
 591
 592out:
 593	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
 594	return 0;
 595error:
 596	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 597	return error;
 598}
 599
 600/*
 601 * Allocate new inodes in the allocation group specified by agbp.
 602 * Return 0 for success, else error code.
 
 
 
 
 
 603 */
 604STATIC int				/* error code or 0 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 605xfs_ialloc_ag_alloc(
 606	xfs_trans_t	*tp,		/* transaction pointer */
 607	xfs_buf_t	*agbp,		/* alloc group buffer */
 608	int		*alloc)
 609{
 610	xfs_agi_t	*agi;		/* allocation group header */
 611	xfs_alloc_arg_t	args;		/* allocation argument structure */
 612	xfs_agnumber_t	agno;
 613	int		error;
 614	xfs_agino_t	newino;		/* new first inode's number */
 615	xfs_agino_t	newlen;		/* new number of inodes */
 616	int		isaligned = 0;	/* inode allocation at stripe unit */
 617					/* boundary */
 618	uint16_t	allocmask = (uint16_t) -1; /* init. to full chunk */
 619	struct xfs_inobt_rec_incore rec;
 620	struct xfs_perag *pag;
 621	int		do_sparse = 0;
 
 622
 623	memset(&args, 0, sizeof(args));
 624	args.tp = tp;
 625	args.mp = tp->t_mountp;
 626	args.fsbno = NULLFSBLOCK;
 627	xfs_rmap_ag_owner(&args.oinfo, XFS_RMAP_OWN_INODES);
 
 628
 629#ifdef DEBUG
 630	/* randomly do sparse inode allocations */
 631	if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
 632	    args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks)
 633		do_sparse = prandom_u32() & 1;
 634#endif
 635
 636	/*
 637	 * Locking will ensure that we don't have two callers in here
 638	 * at one time.
 639	 */
 640	newlen = args.mp->m_ialloc_inos;
 641	if (args.mp->m_maxicount &&
 642	    percpu_counter_read_positive(&args.mp->m_icount) + newlen >
 643							args.mp->m_maxicount)
 644		return -ENOSPC;
 645	args.minlen = args.maxlen = args.mp->m_ialloc_blks;
 646	/*
 647	 * First try to allocate inodes contiguous with the last-allocated
 648	 * chunk of inodes.  If the filesystem is striped, this will fill
 649	 * an entire stripe unit with inodes.
 650	 */
 651	agi = XFS_BUF_TO_AGI(agbp);
 652	newino = be32_to_cpu(agi->agi_newino);
 653	agno = be32_to_cpu(agi->agi_seqno);
 654	args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
 655		     args.mp->m_ialloc_blks;
 656	if (do_sparse)
 657		goto sparse_alloc;
 658	if (likely(newino != NULLAGINO &&
 659		  (args.agbno < be32_to_cpu(agi->agi_length)))) {
 660		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
 661		args.type = XFS_ALLOCTYPE_THIS_BNO;
 662		args.prod = 1;
 663
 664		/*
 665		 * We need to take into account alignment here to ensure that
 666		 * we don't modify the free list if we fail to have an exact
 667		 * block. If we don't have an exact match, and every oher
 668		 * attempt allocation attempt fails, we'll end up cancelling
 669		 * a dirty transaction and shutting down.
 670		 *
 671		 * For an exact allocation, alignment must be 1,
 672		 * however we need to take cluster alignment into account when
 673		 * fixing up the freelist. Use the minalignslop field to
 674		 * indicate that extra blocks might be required for alignment,
 675		 * but not to use them in the actual exact allocation.
 676		 */
 677		args.alignment = 1;
 678		args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1;
 679
 680		/* Allow space for the inode btree to split. */
 681		args.minleft = args.mp->m_in_maxlevels - 1;
 682		if ((error = xfs_alloc_vextent(&args)))
 
 
 683			return error;
 684
 685		/*
 686		 * This request might have dirtied the transaction if the AG can
 687		 * satisfy the request, but the exact block was not available.
 688		 * If the allocation did fail, subsequent requests will relax
 689		 * the exact agbno requirement and increase the alignment
 690		 * instead. It is critical that the total size of the request
 691		 * (len + alignment + slop) does not increase from this point
 692		 * on, so reset minalignslop to ensure it is not included in
 693		 * subsequent requests.
 694		 */
 695		args.minalignslop = 0;
 696	}
 697
 698	if (unlikely(args.fsbno == NULLFSBLOCK)) {
 699		/*
 700		 * Set the alignment for the allocation.
 701		 * If stripe alignment is turned on then align at stripe unit
 702		 * boundary.
 703		 * If the cluster size is smaller than a filesystem block
 704		 * then we're doing I/O for inodes in filesystem block size
 705		 * pieces, so don't need alignment anyway.
 706		 */
 707		isaligned = 0;
 708		if (args.mp->m_sinoalign) {
 709			ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
 710			args.alignment = args.mp->m_dalign;
 711			isaligned = 1;
 712		} else
 713			args.alignment = xfs_ialloc_cluster_alignment(args.mp);
 714		/*
 715		 * Need to figure out where to allocate the inode blocks.
 716		 * Ideally they should be spaced out through the a.g.
 717		 * For now, just allocate blocks up front.
 718		 */
 719		args.agbno = be32_to_cpu(agi->agi_root);
 720		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
 721		/*
 722		 * Allocate a fixed-size extent of inodes.
 723		 */
 724		args.type = XFS_ALLOCTYPE_NEAR_BNO;
 725		args.prod = 1;
 726		/*
 727		 * Allow space for the inode btree to split.
 728		 */
 729		args.minleft = args.mp->m_in_maxlevels - 1;
 730		if ((error = xfs_alloc_vextent(&args)))
 
 
 
 731			return error;
 732	}
 733
 734	/*
 735	 * If stripe alignment is turned on, then try again with cluster
 736	 * alignment.
 737	 */
 738	if (isaligned && args.fsbno == NULLFSBLOCK) {
 739		args.type = XFS_ALLOCTYPE_NEAR_BNO;
 740		args.agbno = be32_to_cpu(agi->agi_root);
 741		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
 742		args.alignment = xfs_ialloc_cluster_alignment(args.mp);
 743		if ((error = xfs_alloc_vextent(&args)))
 744			return error;
 745	}
 746
 747	/*
 748	 * Finally, try a sparse allocation if the filesystem supports it and
 749	 * the sparse allocation length is smaller than a full chunk.
 750	 */
 751	if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
 752	    args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks &&
 753	    args.fsbno == NULLFSBLOCK) {
 754sparse_alloc:
 755		args.type = XFS_ALLOCTYPE_NEAR_BNO;
 756		args.agbno = be32_to_cpu(agi->agi_root);
 757		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
 758		args.alignment = args.mp->m_sb.sb_spino_align;
 759		args.prod = 1;
 760
 761		args.minlen = args.mp->m_ialloc_min_blks;
 762		args.maxlen = args.minlen;
 763
 764		/*
 765		 * The inode record will be aligned to full chunk size. We must
 766		 * prevent sparse allocation from AG boundaries that result in
 767		 * invalid inode records, such as records that start at agbno 0
 768		 * or extend beyond the AG.
 769		 *
 770		 * Set min agbno to the first aligned, non-zero agbno and max to
 771		 * the last aligned agbno that is at least one full chunk from
 772		 * the end of the AG.
 773		 */
 774		args.min_agbno = args.mp->m_sb.sb_inoalignmt;
 775		args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
 
 776					    args.mp->m_sb.sb_inoalignmt) -
 777				 args.mp->m_ialloc_blks;
 778
 779		error = xfs_alloc_vextent(&args);
 
 
 780		if (error)
 781			return error;
 782
 783		newlen = args.len << args.mp->m_sb.sb_inopblog;
 784		ASSERT(newlen <= XFS_INODES_PER_CHUNK);
 785		allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
 786	}
 787
 788	if (args.fsbno == NULLFSBLOCK) {
 789		*alloc = 0;
 790		return 0;
 791	}
 792	ASSERT(args.len == args.minlen);
 793
 794	/*
 795	 * Stamp and write the inode buffers.
 796	 *
 797	 * Seed the new inode cluster with a random generation number. This
 798	 * prevents short-term reuse of generation numbers if a chunk is
 799	 * freed and then immediately reallocated. We use random numbers
 800	 * rather than a linear progression to prevent the next generation
 801	 * number from being easily guessable.
 802	 */
 803	error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
 804			args.agbno, args.len, prandom_u32());
 805
 806	if (error)
 807		return error;
 808	/*
 809	 * Convert the results.
 810	 */
 811	newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
 812
 813	if (xfs_inobt_issparse(~allocmask)) {
 814		/*
 815		 * We've allocated a sparse chunk. Align the startino and mask.
 816		 */
 817		xfs_align_sparse_ino(args.mp, &newino, &allocmask);
 818
 819		rec.ir_startino = newino;
 820		rec.ir_holemask = ~allocmask;
 821		rec.ir_count = newlen;
 822		rec.ir_freecount = newlen;
 823		rec.ir_free = XFS_INOBT_ALL_FREE;
 824
 825		/*
 826		 * Insert the sparse record into the inobt and allow for a merge
 827		 * if necessary. If a merge does occur, rec is updated to the
 828		 * merged record.
 829		 */
 830		error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
 831					       &rec, true);
 832		if (error == -EFSCORRUPTED) {
 833			xfs_alert(args.mp,
 834	"invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
 835				  XFS_AGINO_TO_INO(args.mp, agno,
 836						   rec.ir_startino),
 837				  rec.ir_holemask, rec.ir_count);
 838			xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
 839		}
 840		if (error)
 841			return error;
 842
 843		/*
 844		 * We can't merge the part we've just allocated as for the inobt
 845		 * due to finobt semantics. The original record may or may not
 846		 * exist independent of whether physical inodes exist in this
 847		 * sparse chunk.
 848		 *
 849		 * We must update the finobt record based on the inobt record.
 850		 * rec contains the fully merged and up to date inobt record
 851		 * from the previous call. Set merge false to replace any
 852		 * existing record with this one.
 853		 */
 854		if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
 855			error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
 856						       XFS_BTNUM_FINO, &rec,
 857						       false);
 858			if (error)
 859				return error;
 860		}
 861	} else {
 862		/* full chunk - insert new records to both btrees */
 863		error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
 864					 XFS_BTNUM_INO);
 865		if (error)
 866			return error;
 867
 868		if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
 869			error = xfs_inobt_insert(args.mp, tp, agbp, newino,
 870						 newlen, XFS_BTNUM_FINO);
 871			if (error)
 872				return error;
 873		}
 874	}
 875
 876	/*
 877	 * Update AGI counts and newino.
 878	 */
 879	be32_add_cpu(&agi->agi_count, newlen);
 880	be32_add_cpu(&agi->agi_freecount, newlen);
 881	pag = xfs_perag_get(args.mp, agno);
 882	pag->pagi_freecount += newlen;
 883	xfs_perag_put(pag);
 884	agi->agi_newino = cpu_to_be32(newino);
 885
 886	/*
 887	 * Log allocation group header fields
 888	 */
 889	xfs_ialloc_log_agi(tp, agbp,
 890		XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
 891	/*
 892	 * Modify/log superblock values for inode count and inode free count.
 893	 */
 894	xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
 895	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
 896	*alloc = 1;
 897	return 0;
 898}
 899
 900STATIC xfs_agnumber_t
 901xfs_ialloc_next_ag(
 902	xfs_mount_t	*mp)
 903{
 904	xfs_agnumber_t	agno;
 905
 906	spin_lock(&mp->m_agirotor_lock);
 907	agno = mp->m_agirotor;
 908	if (++mp->m_agirotor >= mp->m_maxagi)
 909		mp->m_agirotor = 0;
 910	spin_unlock(&mp->m_agirotor_lock);
 911
 912	return agno;
 913}
 914
 915/*
 916 * Select an allocation group to look for a free inode in, based on the parent
 917 * inode and the mode.  Return the allocation group buffer.
 918 */
 919STATIC xfs_agnumber_t
 920xfs_ialloc_ag_select(
 921	xfs_trans_t	*tp,		/* transaction pointer */
 922	xfs_ino_t	parent,		/* parent directory inode number */
 923	umode_t		mode)		/* bits set to indicate file type */
 924{
 925	xfs_agnumber_t	agcount;	/* number of ag's in the filesystem */
 926	xfs_agnumber_t	agno;		/* current ag number */
 927	int		flags;		/* alloc buffer locking flags */
 928	xfs_extlen_t	ineed;		/* blocks needed for inode allocation */
 929	xfs_extlen_t	longest = 0;	/* longest extent available */
 930	xfs_mount_t	*mp;		/* mount point structure */
 931	int		needspace;	/* file mode implies space allocated */
 932	xfs_perag_t	*pag;		/* per allocation group data */
 933	xfs_agnumber_t	pagno;		/* parent (starting) ag number */
 934	int		error;
 935
 936	/*
 937	 * Files of these types need at least one block if length > 0
 938	 * (and they won't fit in the inode, but that's hard to figure out).
 939	 */
 940	needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
 941	mp = tp->t_mountp;
 942	agcount = mp->m_maxagi;
 943	if (S_ISDIR(mode))
 944		pagno = xfs_ialloc_next_ag(mp);
 945	else {
 946		pagno = XFS_INO_TO_AGNO(mp, parent);
 947		if (pagno >= agcount)
 948			pagno = 0;
 949	}
 950
 951	ASSERT(pagno < agcount);
 952
 953	/*
 954	 * Loop through allocation groups, looking for one with a little
 955	 * free space in it.  Note we don't look for free inodes, exactly.
 956	 * Instead, we include whether there is a need to allocate inodes
 957	 * to mean that blocks must be allocated for them,
 958	 * if none are currently free.
 959	 */
 960	agno = pagno;
 961	flags = XFS_ALLOC_FLAG_TRYLOCK;
 962	for (;;) {
 963		pag = xfs_perag_get(mp, agno);
 964		if (!pag->pagi_inodeok) {
 965			xfs_ialloc_next_ag(mp);
 966			goto nextag;
 967		}
 968
 969		if (!pag->pagi_init) {
 970			error = xfs_ialloc_pagi_init(mp, tp, agno);
 971			if (error)
 972				goto nextag;
 973		}
 974
 975		if (pag->pagi_freecount) {
 976			xfs_perag_put(pag);
 977			return agno;
 978		}
 979
 980		if (!pag->pagf_init) {
 981			error = xfs_alloc_pagf_init(mp, tp, agno, flags);
 982			if (error)
 983				goto nextag;
 984		}
 985
 986		/*
 987		 * Check that there is enough free space for the file plus a
 988		 * chunk of inodes if we need to allocate some. If this is the
 989		 * first pass across the AGs, take into account the potential
 990		 * space needed for alignment of inode chunks when checking the
 991		 * longest contiguous free space in the AG - this prevents us
 992		 * from getting ENOSPC because we have free space larger than
 993		 * m_ialloc_blks but alignment constraints prevent us from using
 994		 * it.
 995		 *
 996		 * If we can't find an AG with space for full alignment slack to
 997		 * be taken into account, we must be near ENOSPC in all AGs.
 998		 * Hence we don't include alignment for the second pass and so
 999		 * if we fail allocation due to alignment issues then it is most
1000		 * likely a real ENOSPC condition.
1001		 */
1002		ineed = mp->m_ialloc_min_blks;
1003		if (flags && ineed > 1)
1004			ineed += xfs_ialloc_cluster_alignment(mp);
1005		longest = pag->pagf_longest;
1006		if (!longest)
1007			longest = pag->pagf_flcount > 0;
1008
1009		if (pag->pagf_freeblks >= needspace + ineed &&
1010		    longest >= ineed) {
1011			xfs_perag_put(pag);
1012			return agno;
1013		}
1014nextag:
1015		xfs_perag_put(pag);
1016		/*
1017		 * No point in iterating over the rest, if we're shutting
1018		 * down.
1019		 */
1020		if (XFS_FORCED_SHUTDOWN(mp))
1021			return NULLAGNUMBER;
1022		agno++;
1023		if (agno >= agcount)
1024			agno = 0;
1025		if (agno == pagno) {
1026			if (flags == 0)
1027				return NULLAGNUMBER;
1028			flags = 0;
1029		}
1030	}
1031}
1032
1033/*
1034 * Try to retrieve the next record to the left/right from the current one.
1035 */
1036STATIC int
1037xfs_ialloc_next_rec(
1038	struct xfs_btree_cur	*cur,
1039	xfs_inobt_rec_incore_t	*rec,
1040	int			*done,
1041	int			left)
1042{
1043	int                     error;
1044	int			i;
1045
1046	if (left)
1047		error = xfs_btree_decrement(cur, 0, &i);
1048	else
1049		error = xfs_btree_increment(cur, 0, &i);
1050
1051	if (error)
1052		return error;
1053	*done = !i;
1054	if (i) {
1055		error = xfs_inobt_get_rec(cur, rec, &i);
1056		if (error)
1057			return error;
1058		XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
 
 
 
1059	}
1060
1061	return 0;
1062}
1063
1064STATIC int
1065xfs_ialloc_get_rec(
1066	struct xfs_btree_cur	*cur,
1067	xfs_agino_t		agino,
1068	xfs_inobt_rec_incore_t	*rec,
1069	int			*done)
1070{
1071	int                     error;
1072	int			i;
1073
1074	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1075	if (error)
1076		return error;
1077	*done = !i;
1078	if (i) {
1079		error = xfs_inobt_get_rec(cur, rec, &i);
1080		if (error)
1081			return error;
1082		XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
 
 
 
1083	}
1084
1085	return 0;
1086}
1087
1088/*
1089 * Return the offset of the first free inode in the record. If the inode chunk
1090 * is sparsely allocated, we convert the record holemask to inode granularity
1091 * and mask off the unallocated regions from the inode free mask.
1092 */
1093STATIC int
1094xfs_inobt_first_free_inode(
1095	struct xfs_inobt_rec_incore	*rec)
1096{
1097	xfs_inofree_t			realfree;
1098
1099	/* if there are no holes, return the first available offset */
1100	if (!xfs_inobt_issparse(rec->ir_holemask))
1101		return xfs_lowbit64(rec->ir_free);
1102
1103	realfree = xfs_inobt_irec_to_allocmask(rec);
1104	realfree &= rec->ir_free;
1105
1106	return xfs_lowbit64(realfree);
1107}
1108
1109/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1110 * Allocate an inode using the inobt-only algorithm.
1111 */
1112STATIC int
1113xfs_dialloc_ag_inobt(
 
1114	struct xfs_trans	*tp,
1115	struct xfs_buf		*agbp,
1116	xfs_ino_t		parent,
1117	xfs_ino_t		*inop)
1118{
1119	struct xfs_mount	*mp = tp->t_mountp;
1120	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp);
1121	xfs_agnumber_t		agno = be32_to_cpu(agi->agi_seqno);
1122	xfs_agnumber_t		pagno = XFS_INO_TO_AGNO(mp, parent);
1123	xfs_agino_t		pagino = XFS_INO_TO_AGINO(mp, parent);
1124	struct xfs_perag	*pag;
1125	struct xfs_btree_cur	*cur, *tcur;
1126	struct xfs_inobt_rec_incore rec, trec;
1127	xfs_ino_t		ino;
1128	int			error;
1129	int			offset;
1130	int			i, j;
1131	int			searchdistance = 10;
1132
1133	pag = xfs_perag_get(mp, agno);
1134
1135	ASSERT(pag->pagi_init);
1136	ASSERT(pag->pagi_inodeok);
1137	ASSERT(pag->pagi_freecount > 0);
1138
1139 restart_pagno:
1140	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1141	/*
1142	 * If pagino is 0 (this is the root inode allocation) use newino.
1143	 * This must work because we've just allocated some.
1144	 */
1145	if (!pagino)
1146		pagino = be32_to_cpu(agi->agi_newino);
1147
1148	error = xfs_check_agi_freecount(cur, agi);
1149	if (error)
1150		goto error0;
1151
1152	/*
1153	 * If in the same AG as the parent, try to get near the parent.
1154	 */
1155	if (pagno == agno) {
1156		int		doneleft;	/* done, to the left */
1157		int		doneright;	/* done, to the right */
1158
1159		error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1160		if (error)
1161			goto error0;
1162		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
 
 
 
 
1163
1164		error = xfs_inobt_get_rec(cur, &rec, &j);
1165		if (error)
1166			goto error0;
1167		XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0);
 
 
 
 
1168
1169		if (rec.ir_freecount > 0) {
1170			/*
1171			 * Found a free inode in the same chunk
1172			 * as the parent, done.
1173			 */
1174			goto alloc_inode;
1175		}
1176
1177
1178		/*
1179		 * In the same AG as parent, but parent's chunk is full.
1180		 */
1181
1182		/* duplicate the cursor, search left & right simultaneously */
1183		error = xfs_btree_dup_cursor(cur, &tcur);
1184		if (error)
1185			goto error0;
1186
1187		/*
1188		 * Skip to last blocks looked up if same parent inode.
1189		 */
1190		if (pagino != NULLAGINO &&
1191		    pag->pagl_pagino == pagino &&
1192		    pag->pagl_leftrec != NULLAGINO &&
1193		    pag->pagl_rightrec != NULLAGINO) {
1194			error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1195						   &trec, &doneleft);
1196			if (error)
1197				goto error1;
1198
1199			error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1200						   &rec, &doneright);
1201			if (error)
1202				goto error1;
1203		} else {
1204			/* search left with tcur, back up 1 record */
1205			error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1206			if (error)
1207				goto error1;
1208
1209			/* search right with cur, go forward 1 record. */
1210			error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1211			if (error)
1212				goto error1;
1213		}
1214
1215		/*
1216		 * Loop until we find an inode chunk with a free inode.
1217		 */
1218		while (--searchdistance > 0 && (!doneleft || !doneright)) {
1219			int	useleft;  /* using left inode chunk this time */
1220
1221			/* figure out the closer block if both are valid. */
1222			if (!doneleft && !doneright) {
1223				useleft = pagino -
1224				 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1225				  rec.ir_startino - pagino;
1226			} else {
1227				useleft = !doneleft;
1228			}
1229
1230			/* free inodes to the left? */
1231			if (useleft && trec.ir_freecount) {
1232				xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1233				cur = tcur;
1234
1235				pag->pagl_leftrec = trec.ir_startino;
1236				pag->pagl_rightrec = rec.ir_startino;
1237				pag->pagl_pagino = pagino;
1238				rec = trec;
1239				goto alloc_inode;
1240			}
1241
1242			/* free inodes to the right? */
1243			if (!useleft && rec.ir_freecount) {
1244				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1245
1246				pag->pagl_leftrec = trec.ir_startino;
1247				pag->pagl_rightrec = rec.ir_startino;
1248				pag->pagl_pagino = pagino;
1249				goto alloc_inode;
1250			}
1251
1252			/* get next record to check */
1253			if (useleft) {
1254				error = xfs_ialloc_next_rec(tcur, &trec,
1255								 &doneleft, 1);
1256			} else {
1257				error = xfs_ialloc_next_rec(cur, &rec,
1258								 &doneright, 0);
1259			}
1260			if (error)
1261				goto error1;
1262		}
1263
1264		if (searchdistance <= 0) {
1265			/*
1266			 * Not in range - save last search
1267			 * location and allocate a new inode
1268			 */
1269			xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1270			pag->pagl_leftrec = trec.ir_startino;
1271			pag->pagl_rightrec = rec.ir_startino;
1272			pag->pagl_pagino = pagino;
1273
1274		} else {
1275			/*
1276			 * We've reached the end of the btree. because
1277			 * we are only searching a small chunk of the
1278			 * btree each search, there is obviously free
1279			 * inodes closer to the parent inode than we
1280			 * are now. restart the search again.
1281			 */
1282			pag->pagl_pagino = NULLAGINO;
1283			pag->pagl_leftrec = NULLAGINO;
1284			pag->pagl_rightrec = NULLAGINO;
1285			xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1286			xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1287			goto restart_pagno;
1288		}
1289	}
1290
1291	/*
1292	 * In a different AG from the parent.
1293	 * See if the most recently allocated block has any free.
1294	 */
1295	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1296		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1297					 XFS_LOOKUP_EQ, &i);
1298		if (error)
1299			goto error0;
1300
1301		if (i == 1) {
1302			error = xfs_inobt_get_rec(cur, &rec, &j);
1303			if (error)
1304				goto error0;
1305
1306			if (j == 1 && rec.ir_freecount > 0) {
1307				/*
1308				 * The last chunk allocated in the group
1309				 * still has a free inode.
1310				 */
1311				goto alloc_inode;
1312			}
1313		}
1314	}
1315
1316	/*
1317	 * None left in the last group, search the whole AG
1318	 */
1319	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1320	if (error)
1321		goto error0;
1322	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
 
 
 
 
1323
1324	for (;;) {
1325		error = xfs_inobt_get_rec(cur, &rec, &i);
1326		if (error)
1327			goto error0;
1328		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
 
 
 
 
1329		if (rec.ir_freecount > 0)
1330			break;
1331		error = xfs_btree_increment(cur, 0, &i);
1332		if (error)
1333			goto error0;
1334		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
 
 
 
 
1335	}
1336
1337alloc_inode:
1338	offset = xfs_inobt_first_free_inode(&rec);
1339	ASSERT(offset >= 0);
1340	ASSERT(offset < XFS_INODES_PER_CHUNK);
1341	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1342				   XFS_INODES_PER_CHUNK) == 0);
1343	ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
 
 
 
 
 
 
 
1344	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1345	rec.ir_freecount--;
1346	error = xfs_inobt_update(cur, &rec);
1347	if (error)
1348		goto error0;
1349	be32_add_cpu(&agi->agi_freecount, -1);
1350	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1351	pag->pagi_freecount--;
1352
1353	error = xfs_check_agi_freecount(cur, agi);
1354	if (error)
1355		goto error0;
1356
1357	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1358	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1359	xfs_perag_put(pag);
1360	*inop = ino;
1361	return 0;
1362error1:
1363	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1364error0:
1365	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1366	xfs_perag_put(pag);
1367	return error;
1368}
1369
1370/*
1371 * Use the free inode btree to allocate an inode based on distance from the
1372 * parent. Note that the provided cursor may be deleted and replaced.
1373 */
1374STATIC int
1375xfs_dialloc_ag_finobt_near(
1376	xfs_agino_t			pagino,
1377	struct xfs_btree_cur		**ocur,
1378	struct xfs_inobt_rec_incore	*rec)
1379{
1380	struct xfs_btree_cur		*lcur = *ocur;	/* left search cursor */
1381	struct xfs_btree_cur		*rcur;	/* right search cursor */
1382	struct xfs_inobt_rec_incore	rrec;
1383	int				error;
1384	int				i, j;
1385
1386	error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1387	if (error)
1388		return error;
1389
1390	if (i == 1) {
1391		error = xfs_inobt_get_rec(lcur, rec, &i);
1392		if (error)
1393			return error;
1394		XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1);
 
 
 
1395
1396		/*
1397		 * See if we've landed in the parent inode record. The finobt
1398		 * only tracks chunks with at least one free inode, so record
1399		 * existence is enough.
1400		 */
1401		if (pagino >= rec->ir_startino &&
1402		    pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1403			return 0;
1404	}
1405
1406	error = xfs_btree_dup_cursor(lcur, &rcur);
1407	if (error)
1408		return error;
1409
1410	error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1411	if (error)
1412		goto error_rcur;
1413	if (j == 1) {
1414		error = xfs_inobt_get_rec(rcur, &rrec, &j);
1415		if (error)
1416			goto error_rcur;
1417		XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur);
 
 
 
 
1418	}
1419
1420	XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur);
 
 
 
 
1421	if (i == 1 && j == 1) {
1422		/*
1423		 * Both the left and right records are valid. Choose the closer
1424		 * inode chunk to the target.
1425		 */
1426		if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1427		    (rrec.ir_startino - pagino)) {
1428			*rec = rrec;
1429			xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1430			*ocur = rcur;
1431		} else {
1432			xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1433		}
1434	} else if (j == 1) {
1435		/* only the right record is valid */
1436		*rec = rrec;
1437		xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1438		*ocur = rcur;
1439	} else if (i == 1) {
1440		/* only the left record is valid */
1441		xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1442	}
1443
1444	return 0;
1445
1446error_rcur:
1447	xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1448	return error;
1449}
1450
1451/*
1452 * Use the free inode btree to find a free inode based on a newino hint. If
1453 * the hint is NULL, find the first free inode in the AG.
1454 */
1455STATIC int
1456xfs_dialloc_ag_finobt_newino(
1457	struct xfs_agi			*agi,
1458	struct xfs_btree_cur		*cur,
1459	struct xfs_inobt_rec_incore	*rec)
1460{
1461	int error;
1462	int i;
1463
1464	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1465		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1466					 XFS_LOOKUP_EQ, &i);
1467		if (error)
1468			return error;
1469		if (i == 1) {
1470			error = xfs_inobt_get_rec(cur, rec, &i);
1471			if (error)
1472				return error;
1473			XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
 
 
 
1474			return 0;
1475		}
1476	}
1477
1478	/*
1479	 * Find the first inode available in the AG.
1480	 */
1481	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1482	if (error)
1483		return error;
1484	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
 
 
 
1485
1486	error = xfs_inobt_get_rec(cur, rec, &i);
1487	if (error)
1488		return error;
1489	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
 
 
 
1490
1491	return 0;
1492}
1493
1494/*
1495 * Update the inobt based on a modification made to the finobt. Also ensure that
1496 * the records from both trees are equivalent post-modification.
1497 */
1498STATIC int
1499xfs_dialloc_ag_update_inobt(
1500	struct xfs_btree_cur		*cur,	/* inobt cursor */
1501	struct xfs_inobt_rec_incore	*frec,	/* finobt record */
1502	int				offset) /* inode offset */
1503{
1504	struct xfs_inobt_rec_incore	rec;
1505	int				error;
1506	int				i;
1507
1508	error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1509	if (error)
1510		return error;
1511	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
 
 
 
1512
1513	error = xfs_inobt_get_rec(cur, &rec, &i);
1514	if (error)
1515		return error;
1516	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
 
 
 
1517	ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1518				   XFS_INODES_PER_CHUNK) == 0);
1519
1520	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1521	rec.ir_freecount--;
1522
1523	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) &&
1524				  (rec.ir_freecount == frec->ir_freecount));
 
 
 
 
1525
1526	return xfs_inobt_update(cur, &rec);
1527}
1528
1529/*
1530 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1531 * back to the inobt search algorithm.
1532 *
1533 * The caller selected an AG for us, and made sure that free inodes are
1534 * available.
1535 */
1536STATIC int
1537xfs_dialloc_ag(
 
1538	struct xfs_trans	*tp,
1539	struct xfs_buf		*agbp,
1540	xfs_ino_t		parent,
1541	xfs_ino_t		*inop)
1542{
1543	struct xfs_mount		*mp = tp->t_mountp;
1544	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
1545	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
1546	xfs_agnumber_t			pagno = XFS_INO_TO_AGNO(mp, parent);
1547	xfs_agino_t			pagino = XFS_INO_TO_AGINO(mp, parent);
1548	struct xfs_perag		*pag;
1549	struct xfs_btree_cur		*cur;	/* finobt cursor */
1550	struct xfs_btree_cur		*icur;	/* inobt cursor */
1551	struct xfs_inobt_rec_incore	rec;
1552	xfs_ino_t			ino;
1553	int				error;
1554	int				offset;
1555	int				i;
1556
1557	if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1558		return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1559
1560	pag = xfs_perag_get(mp, agno);
1561
1562	/*
1563	 * If pagino is 0 (this is the root inode allocation) use newino.
1564	 * This must work because we've just allocated some.
1565	 */
1566	if (!pagino)
1567		pagino = be32_to_cpu(agi->agi_newino);
1568
1569	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1570
1571	error = xfs_check_agi_freecount(cur, agi);
1572	if (error)
1573		goto error_cur;
1574
1575	/*
1576	 * The search algorithm depends on whether we're in the same AG as the
1577	 * parent. If so, find the closest available inode to the parent. If
1578	 * not, consider the agi hint or find the first free inode in the AG.
1579	 */
1580	if (agno == pagno)
1581		error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1582	else
1583		error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1584	if (error)
1585		goto error_cur;
1586
1587	offset = xfs_inobt_first_free_inode(&rec);
1588	ASSERT(offset >= 0);
1589	ASSERT(offset < XFS_INODES_PER_CHUNK);
1590	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1591				   XFS_INODES_PER_CHUNK) == 0);
1592	ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
 
 
 
 
 
 
1593
1594	/*
1595	 * Modify or remove the finobt record.
1596	 */
1597	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1598	rec.ir_freecount--;
1599	if (rec.ir_freecount)
1600		error = xfs_inobt_update(cur, &rec);
1601	else
1602		error = xfs_btree_delete(cur, &i);
1603	if (error)
1604		goto error_cur;
1605
1606	/*
1607	 * The finobt has now been updated appropriately. We haven't updated the
1608	 * agi and superblock yet, so we can create an inobt cursor and validate
1609	 * the original freecount. If all is well, make the equivalent update to
1610	 * the inobt using the finobt record and offset information.
1611	 */
1612	icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1613
1614	error = xfs_check_agi_freecount(icur, agi);
1615	if (error)
1616		goto error_icur;
1617
1618	error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1619	if (error)
1620		goto error_icur;
1621
1622	/*
1623	 * Both trees have now been updated. We must update the perag and
1624	 * superblock before we can check the freecount for each btree.
1625	 */
1626	be32_add_cpu(&agi->agi_freecount, -1);
1627	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1628	pag->pagi_freecount--;
1629
1630	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1631
1632	error = xfs_check_agi_freecount(icur, agi);
1633	if (error)
1634		goto error_icur;
1635	error = xfs_check_agi_freecount(cur, agi);
1636	if (error)
1637		goto error_icur;
1638
1639	xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1640	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1641	xfs_perag_put(pag);
1642	*inop = ino;
1643	return 0;
1644
1645error_icur:
1646	xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1647error_cur:
1648	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1649	xfs_perag_put(pag);
1650	return error;
1651}
1652
1653/*
1654 * Allocate an inode on disk.
1655 *
1656 * Mode is used to tell whether the new inode will need space, and whether it
1657 * is a directory.
1658 *
1659 * This function is designed to be called twice if it has to do an allocation
1660 * to make more free inodes.  On the first call, *IO_agbp should be set to NULL.
1661 * If an inode is available without having to performn an allocation, an inode
1662 * number is returned.  In this case, *IO_agbp is set to NULL.  If an allocation
1663 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1664 * The caller should then commit the current transaction, allocate a
1665 * new transaction, and call xfs_dialloc() again, passing in the previous value
1666 * of *IO_agbp.  IO_agbp should be held across the transactions. Since the AGI
1667 * buffer is locked across the two calls, the second call is guaranteed to have
1668 * a free inode available.
1669 *
1670 * Once we successfully pick an inode its number is returned and the on-disk
1671 * data structures are updated.  The inode itself is not read in, since doing so
1672 * would break ordering constraints with xfs_reclaim.
1673 */
1674int
1675xfs_dialloc(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1676	struct xfs_trans	*tp,
1677	xfs_ino_t		parent,
1678	umode_t			mode,
1679	struct xfs_buf		**IO_agbp,
1680	xfs_ino_t		*inop)
1681{
1682	struct xfs_mount	*mp = tp->t_mountp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1683	struct xfs_buf		*agbp;
1684	xfs_agnumber_t		agno;
1685	int			error;
1686	int			ialloced;
1687	int			noroom = 0;
1688	xfs_agnumber_t		start_agno;
1689	struct xfs_perag	*pag;
1690	int			okalloc = 1;
1691
1692	if (*IO_agbp) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1693		/*
1694		 * If the caller passes in a pointer to the AGI buffer,
1695		 * continue where we left off before.  In this case, we
1696		 * know that the allocation group has free inodes.
1697		 */
1698		agbp = *IO_agbp;
1699		goto out_alloc;
 
 
1700	}
1701
1702	/*
1703	 * We do not have an agbp, so select an initial allocation
1704	 * group for inode allocation.
1705	 */
1706	start_agno = xfs_ialloc_ag_select(tp, parent, mode);
1707	if (start_agno == NULLAGNUMBER) {
1708		*inop = NULLFSINO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1709		return 0;
1710	}
1711
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1712	/*
1713	 * If we have already hit the ceiling of inode blocks then clear
1714	 * okalloc so we scan all available agi structures for a free
1715	 * inode.
1716	 *
1717	 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1718	 * which will sacrifice the preciseness but improve the performance.
1719	 */
1720	if (mp->m_maxicount &&
1721	    percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos
1722							> mp->m_maxicount) {
1723		noroom = 1;
1724		okalloc = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
1725	}
1726
1727	/*
1728	 * Loop until we find an allocation group that either has free inodes
1729	 * or in which we can allocate some inodes.  Iterate through the
1730	 * allocation groups upward, wrapping at the end.
1731	 */
1732	agno = start_agno;
1733	for (;;) {
1734		pag = xfs_perag_get(mp, agno);
1735		if (!pag->pagi_inodeok) {
1736			xfs_ialloc_next_ag(mp);
1737			goto nextag;
 
 
 
1738		}
1739
1740		if (!pag->pagi_init) {
1741			error = xfs_ialloc_pagi_init(mp, tp, agno);
1742			if (error)
1743				goto out_error;
1744		}
1745
1746		/*
1747		 * Do a first racy fast path check if this AG is usable.
1748		 */
1749		if (!pag->pagi_freecount && !okalloc)
1750			goto nextag;
1751
1752		/*
1753		 * Then read in the AGI buffer and recheck with the AGI buffer
1754		 * lock held.
1755		 */
1756		error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1757		if (error)
1758			goto out_error;
1759
1760		if (pag->pagi_freecount) {
1761			xfs_perag_put(pag);
1762			goto out_alloc;
1763		}
 
 
1764
1765		if (!okalloc)
1766			goto nextag_relse_buffer;
1767
1768
1769		error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1770		if (error) {
1771			xfs_trans_brelse(tp, agbp);
1772
1773			if (error != -ENOSPC)
1774				goto out_error;
1775
1776			xfs_perag_put(pag);
1777			*inop = NULLFSINO;
1778			return 0;
1779		}
1780
1781		if (ialloced) {
1782			/*
1783			 * We successfully allocated some inodes, return
1784			 * the current context to the caller so that it
1785			 * can commit the current transaction and call
1786			 * us again where we left off.
1787			 */
1788			ASSERT(pag->pagi_freecount > 0);
1789			xfs_perag_put(pag);
1790
1791			*IO_agbp = agbp;
1792			*inop = NULLFSINO;
1793			return 0;
1794		}
1795
1796nextag_relse_buffer:
1797		xfs_trans_brelse(tp, agbp);
1798nextag:
1799		xfs_perag_put(pag);
1800		if (++agno == mp->m_sb.sb_agcount)
1801			agno = 0;
1802		if (agno == start_agno) {
1803			*inop = NULLFSINO;
1804			return noroom ? -ENOSPC : 0;
1805		}
1806	}
1807
1808out_alloc:
1809	*IO_agbp = NULL;
1810	return xfs_dialloc_ag(tp, agbp, parent, inop);
1811out_error:
1812	xfs_perag_put(pag);
1813	return error;
1814}
1815
1816/*
1817 * Free the blocks of an inode chunk. We must consider that the inode chunk
1818 * might be sparse and only free the regions that are allocated as part of the
1819 * chunk.
1820 */
1821STATIC void
1822xfs_difree_inode_chunk(
1823	struct xfs_mount		*mp,
1824	xfs_agnumber_t			agno,
1825	struct xfs_inobt_rec_incore	*rec,
1826	struct xfs_defer_ops		*dfops)
1827{
1828	xfs_agblock_t	sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino);
1829	int		startidx, endidx;
1830	int		nextbit;
1831	xfs_agblock_t	agbno;
1832	int		contigblk;
1833	struct xfs_owner_info	oinfo;
1834	DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1835	xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_INODES);
1836
1837	if (!xfs_inobt_issparse(rec->ir_holemask)) {
1838		/* not sparse, calculate extent info directly */
1839		xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, sagbno),
1840				  mp->m_ialloc_blks, &oinfo);
1841		return;
1842	}
1843
1844	/* holemask is only 16-bits (fits in an unsigned long) */
1845	ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1846	holemask[0] = rec->ir_holemask;
1847
1848	/*
1849	 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1850	 * holemask and convert the start/end index of each range to an extent.
1851	 * We start with the start and end index both pointing at the first 0 in
1852	 * the mask.
1853	 */
1854	startidx = endidx = find_first_zero_bit(holemask,
1855						XFS_INOBT_HOLEMASK_BITS);
1856	nextbit = startidx + 1;
1857	while (startidx < XFS_INOBT_HOLEMASK_BITS) {
 
 
1858		nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1859					     nextbit);
1860		/*
1861		 * If the next zero bit is contiguous, update the end index of
1862		 * the current range and continue.
1863		 */
1864		if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1865		    nextbit == endidx + 1) {
1866			endidx = nextbit;
1867			goto next;
1868		}
1869
1870		/*
1871		 * nextbit is not contiguous with the current end index. Convert
1872		 * the current start/end to an extent and add it to the free
1873		 * list.
1874		 */
1875		agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1876				  mp->m_sb.sb_inopblock;
1877		contigblk = ((endidx - startidx + 1) *
1878			     XFS_INODES_PER_HOLEMASK_BIT) /
1879			    mp->m_sb.sb_inopblock;
1880
1881		ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1882		ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1883		xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, agbno),
1884				  contigblk, &oinfo);
 
 
 
1885
1886		/* reset range to current bit and carry on... */
1887		startidx = endidx = nextbit;
1888
1889next:
1890		nextbit++;
1891	}
 
1892}
1893
1894STATIC int
1895xfs_difree_inobt(
1896	struct xfs_mount		*mp,
1897	struct xfs_trans		*tp,
1898	struct xfs_buf			*agbp,
1899	xfs_agino_t			agino,
1900	struct xfs_defer_ops		*dfops,
1901	struct xfs_icluster		*xic,
1902	struct xfs_inobt_rec_incore	*orec)
1903{
1904	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
1905	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
1906	struct xfs_perag		*pag;
1907	struct xfs_btree_cur		*cur;
1908	struct xfs_inobt_rec_incore	rec;
1909	int				ilen;
1910	int				error;
1911	int				i;
1912	int				off;
1913
1914	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1915	ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1916
1917	/*
1918	 * Initialize the cursor.
1919	 */
1920	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1921
1922	error = xfs_check_agi_freecount(cur, agi);
1923	if (error)
1924		goto error0;
1925
1926	/*
1927	 * Look for the entry describing this inode.
1928	 */
1929	if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1930		xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1931			__func__, error);
1932		goto error0;
1933	}
1934	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
 
 
 
 
1935	error = xfs_inobt_get_rec(cur, &rec, &i);
1936	if (error) {
1937		xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1938			__func__, error);
1939		goto error0;
1940	}
1941	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
 
 
 
 
1942	/*
1943	 * Get the offset in the inode chunk.
1944	 */
1945	off = agino - rec.ir_startino;
1946	ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1947	ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1948	/*
1949	 * Mark the inode free & increment the count.
1950	 */
1951	rec.ir_free |= XFS_INOBT_MASK(off);
1952	rec.ir_freecount++;
1953
1954	/*
1955	 * When an inode chunk is free, it becomes eligible for removal. Don't
1956	 * remove the chunk if the block size is large enough for multiple inode
1957	 * chunks (that might not be free).
1958	 */
1959	if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1960	    rec.ir_free == XFS_INOBT_ALL_FREE &&
1961	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1962		xic->deleted = true;
1963		xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1964		xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1965
1966		/*
1967		 * Remove the inode cluster from the AGI B+Tree, adjust the
1968		 * AGI and Superblock inode counts, and mark the disk space
1969		 * to be freed when the transaction is committed.
1970		 */
1971		ilen = rec.ir_freecount;
1972		be32_add_cpu(&agi->agi_count, -ilen);
1973		be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1974		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1975		pag = xfs_perag_get(mp, agno);
1976		pag->pagi_freecount -= ilen - 1;
1977		xfs_perag_put(pag);
1978		xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1979		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1980
1981		if ((error = xfs_btree_delete(cur, &i))) {
1982			xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1983				__func__, error);
1984			goto error0;
1985		}
1986
1987		xfs_difree_inode_chunk(mp, agno, &rec, dfops);
 
 
1988	} else {
1989		xic->deleted = false;
1990
1991		error = xfs_inobt_update(cur, &rec);
1992		if (error) {
1993			xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1994				__func__, error);
1995			goto error0;
1996		}
1997
1998		/* 
1999		 * Change the inode free counts and log the ag/sb changes.
2000		 */
2001		be32_add_cpu(&agi->agi_freecount, 1);
2002		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2003		pag = xfs_perag_get(mp, agno);
2004		pag->pagi_freecount++;
2005		xfs_perag_put(pag);
2006		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2007	}
2008
2009	error = xfs_check_agi_freecount(cur, agi);
2010	if (error)
2011		goto error0;
2012
2013	*orec = rec;
2014	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2015	return 0;
2016
2017error0:
2018	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2019	return error;
2020}
2021
2022/*
2023 * Free an inode in the free inode btree.
2024 */
2025STATIC int
2026xfs_difree_finobt(
2027	struct xfs_mount		*mp,
2028	struct xfs_trans		*tp,
2029	struct xfs_buf			*agbp,
2030	xfs_agino_t			agino,
2031	struct xfs_inobt_rec_incore	*ibtrec) /* inobt record */
2032{
2033	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
2034	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
2035	struct xfs_btree_cur		*cur;
2036	struct xfs_inobt_rec_incore	rec;
2037	int				offset = agino - ibtrec->ir_startino;
2038	int				error;
2039	int				i;
2040
2041	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2042
2043	error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2044	if (error)
2045		goto error;
2046	if (i == 0) {
2047		/*
2048		 * If the record does not exist in the finobt, we must have just
2049		 * freed an inode in a previously fully allocated chunk. If not,
2050		 * something is out of sync.
2051		 */
2052		XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
 
 
 
 
2053
2054		error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2055					     ibtrec->ir_count,
2056					     ibtrec->ir_freecount,
2057					     ibtrec->ir_free, &i);
2058		if (error)
2059			goto error;
2060		ASSERT(i == 1);
2061
2062		goto out;
2063	}
2064
2065	/*
2066	 * Read and update the existing record. We could just copy the ibtrec
2067	 * across here, but that would defeat the purpose of having redundant
2068	 * metadata. By making the modifications independently, we can catch
2069	 * corruptions that we wouldn't see if we just copied from one record
2070	 * to another.
2071	 */
2072	error = xfs_inobt_get_rec(cur, &rec, &i);
2073	if (error)
2074		goto error;
2075	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
 
 
 
 
2076
2077	rec.ir_free |= XFS_INOBT_MASK(offset);
2078	rec.ir_freecount++;
2079
2080	XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) &&
2081				(rec.ir_freecount == ibtrec->ir_freecount),
2082				error);
 
 
 
 
2083
2084	/*
2085	 * The content of inobt records should always match between the inobt
2086	 * and finobt. The lifecycle of records in the finobt is different from
2087	 * the inobt in that the finobt only tracks records with at least one
2088	 * free inode. Hence, if all of the inodes are free and we aren't
2089	 * keeping inode chunks permanently on disk, remove the record.
2090	 * Otherwise, update the record with the new information.
2091	 *
2092	 * Note that we currently can't free chunks when the block size is large
2093	 * enough for multiple chunks. Leave the finobt record to remain in sync
2094	 * with the inobt.
2095	 */
2096	if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2097	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
2098	    !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2099		error = xfs_btree_delete(cur, &i);
2100		if (error)
2101			goto error;
2102		ASSERT(i == 1);
2103	} else {
2104		error = xfs_inobt_update(cur, &rec);
2105		if (error)
2106			goto error;
2107	}
2108
2109out:
2110	error = xfs_check_agi_freecount(cur, agi);
2111	if (error)
2112		goto error;
2113
2114	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2115	return 0;
2116
2117error:
2118	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2119	return error;
2120}
2121
2122/*
2123 * Free disk inode.  Carefully avoids touching the incore inode, all
2124 * manipulations incore are the caller's responsibility.
2125 * The on-disk inode is not changed by this operation, only the
2126 * btree (free inode mask) is changed.
2127 */
2128int
2129xfs_difree(
2130	struct xfs_trans	*tp,		/* transaction pointer */
2131	xfs_ino_t		inode,		/* inode to be freed */
2132	struct xfs_defer_ops	*dfops,		/* extents to free */
2133	struct xfs_icluster	*xic)	/* cluster info if deleted */
2134{
2135	/* REFERENCED */
2136	xfs_agblock_t		agbno;	/* block number containing inode */
2137	struct xfs_buf		*agbp;	/* buffer for allocation group header */
2138	xfs_agino_t		agino;	/* allocation group inode number */
2139	xfs_agnumber_t		agno;	/* allocation group number */
2140	int			error;	/* error return value */
2141	struct xfs_mount	*mp;	/* mount structure for filesystem */
2142	struct xfs_inobt_rec_incore rec;/* btree record */
2143
2144	mp = tp->t_mountp;
2145
2146	/*
2147	 * Break up inode number into its components.
2148	 */
2149	agno = XFS_INO_TO_AGNO(mp, inode);
2150	if (agno >= mp->m_sb.sb_agcount)  {
2151		xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2152			__func__, agno, mp->m_sb.sb_agcount);
2153		ASSERT(0);
2154		return -EINVAL;
2155	}
2156	agino = XFS_INO_TO_AGINO(mp, inode);
2157	if (inode != XFS_AGINO_TO_INO(mp, agno, agino))  {
2158		xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2159			__func__, (unsigned long long)inode,
2160			(unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2161		ASSERT(0);
2162		return -EINVAL;
2163	}
2164	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2165	if (agbno >= mp->m_sb.sb_agblocks)  {
2166		xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2167			__func__, agbno, mp->m_sb.sb_agblocks);
2168		ASSERT(0);
2169		return -EINVAL;
2170	}
2171	/*
2172	 * Get the allocation group header.
2173	 */
2174	error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2175	if (error) {
2176		xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2177			__func__, error);
2178		return error;
2179	}
2180
2181	/*
2182	 * Fix up the inode allocation btree.
2183	 */
2184	error = xfs_difree_inobt(mp, tp, agbp, agino, dfops, xic, &rec);
2185	if (error)
2186		goto error0;
2187
2188	/*
2189	 * Fix up the free inode btree.
2190	 */
2191	if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2192		error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2193		if (error)
2194			goto error0;
2195	}
2196
2197	return 0;
2198
2199error0:
2200	return error;
2201}
2202
2203STATIC int
2204xfs_imap_lookup(
2205	struct xfs_mount	*mp,
2206	struct xfs_trans	*tp,
2207	xfs_agnumber_t		agno,
2208	xfs_agino_t		agino,
2209	xfs_agblock_t		agbno,
2210	xfs_agblock_t		*chunk_agbno,
2211	xfs_agblock_t		*offset_agbno,
2212	int			flags)
2213{
 
2214	struct xfs_inobt_rec_incore rec;
2215	struct xfs_btree_cur	*cur;
2216	struct xfs_buf		*agbp;
2217	int			error;
2218	int			i;
2219
2220	error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2221	if (error) {
2222		xfs_alert(mp,
2223			"%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2224			__func__, error, agno);
2225		return error;
2226	}
2227
2228	/*
2229	 * Lookup the inode record for the given agino. If the record cannot be
2230	 * found, then it's an invalid inode number and we should abort. Once
2231	 * we have a record, we need to ensure it contains the inode number
2232	 * we are looking up.
2233	 */
2234	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
2235	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2236	if (!error) {
2237		if (i)
2238			error = xfs_inobt_get_rec(cur, &rec, &i);
2239		if (!error && i == 0)
2240			error = -EINVAL;
2241	}
2242
2243	xfs_trans_brelse(tp, agbp);
2244	xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
2245	if (error)
2246		return error;
2247
2248	/* check that the returned record contains the required inode */
2249	if (rec.ir_startino > agino ||
2250	    rec.ir_startino + mp->m_ialloc_inos <= agino)
2251		return -EINVAL;
2252
2253	/* for untrusted inodes check it is allocated first */
2254	if ((flags & XFS_IGET_UNTRUSTED) &&
2255	    (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2256		return -EINVAL;
2257
2258	*chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2259	*offset_agbno = agbno - *chunk_agbno;
2260	return 0;
2261}
2262
2263/*
2264 * Return the location of the inode in imap, for mapping it into a buffer.
2265 */
2266int
2267xfs_imap(
2268	xfs_mount_t	 *mp,	/* file system mount structure */
2269	xfs_trans_t	 *tp,	/* transaction pointer */
2270	xfs_ino_t	ino,	/* inode to locate */
2271	struct xfs_imap	*imap,	/* location map structure */
2272	uint		flags)	/* flags for inode btree lookup */
2273{
2274	xfs_agblock_t	agbno;	/* block number of inode in the alloc group */
2275	xfs_agino_t	agino;	/* inode number within alloc group */
2276	xfs_agnumber_t	agno;	/* allocation group number */
2277	int		blks_per_cluster; /* num blocks per inode cluster */
2278	xfs_agblock_t	chunk_agbno;	/* first block in inode chunk */
2279	xfs_agblock_t	cluster_agbno;	/* first block in inode cluster */
2280	int		error;	/* error code */
2281	int		offset;	/* index of inode in its buffer */
2282	xfs_agblock_t	offset_agbno;	/* blks from chunk start to inode */
2283
2284	ASSERT(ino != NULLFSINO);
2285
2286	/*
2287	 * Split up the inode number into its parts.
2288	 */
2289	agno = XFS_INO_TO_AGNO(mp, ino);
2290	agino = XFS_INO_TO_AGINO(mp, ino);
2291	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2292	if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2293	    ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
 
2294#ifdef DEBUG
2295		/*
2296		 * Don't output diagnostic information for untrusted inodes
2297		 * as they can be invalid without implying corruption.
2298		 */
2299		if (flags & XFS_IGET_UNTRUSTED)
2300			return -EINVAL;
2301		if (agno >= mp->m_sb.sb_agcount) {
2302			xfs_alert(mp,
2303				"%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2304				__func__, agno, mp->m_sb.sb_agcount);
2305		}
2306		if (agbno >= mp->m_sb.sb_agblocks) {
2307			xfs_alert(mp,
2308		"%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2309				__func__, (unsigned long long)agbno,
2310				(unsigned long)mp->m_sb.sb_agblocks);
 
2311		}
2312		if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2313			xfs_alert(mp,
2314		"%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2315				__func__, ino,
2316				XFS_AGINO_TO_INO(mp, agno, agino));
2317		}
2318		xfs_stack_trace();
2319#endif /* DEBUG */
2320		return -EINVAL;
2321	}
2322
2323	blks_per_cluster = xfs_icluster_size_fsb(mp);
2324
2325	/*
2326	 * For bulkstat and handle lookups, we have an untrusted inode number
2327	 * that we have to verify is valid. We cannot do this just by reading
2328	 * the inode buffer as it may have been unlinked and removed leaving
2329	 * inodes in stale state on disk. Hence we have to do a btree lookup
2330	 * in all cases where an untrusted inode number is passed.
2331	 */
2332	if (flags & XFS_IGET_UNTRUSTED) {
2333		error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2334					&chunk_agbno, &offset_agbno, flags);
2335		if (error)
2336			return error;
2337		goto out_map;
2338	}
2339
2340	/*
2341	 * If the inode cluster size is the same as the blocksize or
2342	 * smaller we get to the buffer by simple arithmetics.
2343	 */
2344	if (blks_per_cluster == 1) {
2345		offset = XFS_INO_TO_OFFSET(mp, ino);
2346		ASSERT(offset < mp->m_sb.sb_inopblock);
2347
2348		imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2349		imap->im_len = XFS_FSB_TO_BB(mp, 1);
2350		imap->im_boffset = (unsigned short)(offset <<
2351							mp->m_sb.sb_inodelog);
2352		return 0;
2353	}
2354
2355	/*
2356	 * If the inode chunks are aligned then use simple maths to
2357	 * find the location. Otherwise we have to do a btree
2358	 * lookup to find the location.
2359	 */
2360	if (mp->m_inoalign_mask) {
2361		offset_agbno = agbno & mp->m_inoalign_mask;
2362		chunk_agbno = agbno - offset_agbno;
2363	} else {
2364		error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2365					&chunk_agbno, &offset_agbno, flags);
2366		if (error)
2367			return error;
2368	}
2369
2370out_map:
2371	ASSERT(agbno >= chunk_agbno);
2372	cluster_agbno = chunk_agbno +
2373		((offset_agbno / blks_per_cluster) * blks_per_cluster);
 
2374	offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2375		XFS_INO_TO_OFFSET(mp, ino);
2376
2377	imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2378	imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
2379	imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2380
2381	/*
2382	 * If the inode number maps to a block outside the bounds
2383	 * of the file system then return NULL rather than calling
2384	 * read_buf and panicing when we get an error from the
2385	 * driver.
2386	 */
2387	if ((imap->im_blkno + imap->im_len) >
2388	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2389		xfs_alert(mp,
2390	"%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2391			__func__, (unsigned long long) imap->im_blkno,
2392			(unsigned long long) imap->im_len,
2393			XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2394		return -EINVAL;
2395	}
2396	return 0;
2397}
2398
2399/*
2400 * Compute and fill in value of m_in_maxlevels.
2401 */
2402void
2403xfs_ialloc_compute_maxlevels(
2404	xfs_mount_t	*mp)		/* file system mount structure */
2405{
2406	uint		inodes;
2407
2408	inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2409	mp->m_in_maxlevels = xfs_btree_compute_maxlevels(mp->m_inobt_mnr,
2410							 inodes);
2411}
2412
2413/*
2414 * Log specified fields for the ag hdr (inode section). The growth of the agi
2415 * structure over time requires that we interpret the buffer as two logical
2416 * regions delineated by the end of the unlinked list. This is due to the size
2417 * of the hash table and its location in the middle of the agi.
2418 *
2419 * For example, a request to log a field before agi_unlinked and a field after
2420 * agi_unlinked could cause us to log the entire hash table and use an excessive
2421 * amount of log space. To avoid this behavior, log the region up through
2422 * agi_unlinked in one call and the region after agi_unlinked through the end of
2423 * the structure in another.
2424 */
2425void
2426xfs_ialloc_log_agi(
2427	xfs_trans_t	*tp,		/* transaction pointer */
2428	xfs_buf_t	*bp,		/* allocation group header buffer */
2429	int		fields)		/* bitmask of fields to log */
2430{
2431	int			first;		/* first byte number */
2432	int			last;		/* last byte number */
2433	static const short	offsets[] = {	/* field starting offsets */
2434					/* keep in sync with bit definitions */
2435		offsetof(xfs_agi_t, agi_magicnum),
2436		offsetof(xfs_agi_t, agi_versionnum),
2437		offsetof(xfs_agi_t, agi_seqno),
2438		offsetof(xfs_agi_t, agi_length),
2439		offsetof(xfs_agi_t, agi_count),
2440		offsetof(xfs_agi_t, agi_root),
2441		offsetof(xfs_agi_t, agi_level),
2442		offsetof(xfs_agi_t, agi_freecount),
2443		offsetof(xfs_agi_t, agi_newino),
2444		offsetof(xfs_agi_t, agi_dirino),
2445		offsetof(xfs_agi_t, agi_unlinked),
2446		offsetof(xfs_agi_t, agi_free_root),
2447		offsetof(xfs_agi_t, agi_free_level),
 
2448		sizeof(xfs_agi_t)
2449	};
2450#ifdef DEBUG
2451	xfs_agi_t		*agi;	/* allocation group header */
2452
2453	agi = XFS_BUF_TO_AGI(bp);
2454	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2455#endif
2456
2457	/*
2458	 * Compute byte offsets for the first and last fields in the first
2459	 * region and log the agi buffer. This only logs up through
2460	 * agi_unlinked.
2461	 */
2462	if (fields & XFS_AGI_ALL_BITS_R1) {
2463		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2464				  &first, &last);
2465		xfs_trans_log_buf(tp, bp, first, last);
2466	}
2467
2468	/*
2469	 * Mask off the bits in the first region and calculate the first and
2470	 * last field offsets for any bits in the second region.
2471	 */
2472	fields &= ~XFS_AGI_ALL_BITS_R1;
2473	if (fields) {
2474		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2475				  &first, &last);
2476		xfs_trans_log_buf(tp, bp, first, last);
2477	}
2478}
2479
2480#ifdef DEBUG
2481STATIC void
2482xfs_check_agi_unlinked(
2483	struct xfs_agi		*agi)
2484{
2485	int			i;
2486
2487	for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
2488		ASSERT(agi->agi_unlinked[i]);
2489}
2490#else
2491#define xfs_check_agi_unlinked(agi)
2492#endif
2493
2494static xfs_failaddr_t
2495xfs_agi_verify(
2496	struct xfs_buf	*bp)
2497{
2498	struct xfs_mount *mp = bp->b_target->bt_mount;
2499	struct xfs_agi	*agi = XFS_BUF_TO_AGI(bp);
 
 
 
 
2500
2501	if (xfs_sb_version_hascrc(&mp->m_sb)) {
2502		if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2503			return __this_address;
2504		if (!xfs_log_check_lsn(mp,
2505				be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn)))
2506			return __this_address;
2507	}
2508
2509	/*
2510	 * Validate the magic number of the agi block.
2511	 */
2512	if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC))
2513		return __this_address;
2514	if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2515		return __this_address;
2516
 
 
 
 
2517	if (be32_to_cpu(agi->agi_level) < 1 ||
2518	    be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2519		return __this_address;
2520
2521	if (xfs_sb_version_hasfinobt(&mp->m_sb) &&
2522	    (be32_to_cpu(agi->agi_free_level) < 1 ||
2523	     be32_to_cpu(agi->agi_free_level) > XFS_BTREE_MAXLEVELS))
2524		return __this_address;
2525
2526	/*
2527	 * during growfs operations, the perag is not fully initialised,
2528	 * so we can't use it for any useful checking. growfs ensures we can't
2529	 * use it by using uncached buffers that don't have the perag attached
2530	 * so we can detect and avoid this problem.
2531	 */
2532	if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2533		return __this_address;
2534
2535	xfs_check_agi_unlinked(agi);
2536	return NULL;
2537}
2538
2539static void
2540xfs_agi_read_verify(
2541	struct xfs_buf	*bp)
2542{
2543	struct xfs_mount *mp = bp->b_target->bt_mount;
2544	xfs_failaddr_t	fa;
2545
2546	if (xfs_sb_version_hascrc(&mp->m_sb) &&
2547	    !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2548		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2549	else {
2550		fa = xfs_agi_verify(bp);
2551		if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2552			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2553	}
2554}
2555
2556static void
2557xfs_agi_write_verify(
2558	struct xfs_buf	*bp)
2559{
2560	struct xfs_mount	*mp = bp->b_target->bt_mount;
2561	struct xfs_buf_log_item	*bip = bp->b_log_item;
 
2562	xfs_failaddr_t		fa;
2563
2564	fa = xfs_agi_verify(bp);
2565	if (fa) {
2566		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2567		return;
2568	}
2569
2570	if (!xfs_sb_version_hascrc(&mp->m_sb))
2571		return;
2572
2573	if (bip)
2574		XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2575	xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2576}
2577
2578const struct xfs_buf_ops xfs_agi_buf_ops = {
2579	.name = "xfs_agi",
 
2580	.verify_read = xfs_agi_read_verify,
2581	.verify_write = xfs_agi_write_verify,
2582	.verify_struct = xfs_agi_verify,
2583};
2584
2585/*
2586 * Read in the allocation group header (inode allocation section)
2587 */
2588int
2589xfs_read_agi(
2590	struct xfs_mount	*mp,	/* file system mount structure */
2591	struct xfs_trans	*tp,	/* transaction pointer */
2592	xfs_agnumber_t		agno,	/* allocation group number */
2593	struct xfs_buf		**bpp)	/* allocation group hdr buf */
2594{
 
2595	int			error;
2596
2597	trace_xfs_read_agi(mp, agno);
2598
2599	ASSERT(agno != NULLAGNUMBER);
2600	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2601			XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2602			XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
 
 
2603	if (error)
2604		return error;
2605	if (tp)
2606		xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF);
2607
2608	xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2609	return 0;
2610}
2611
 
 
 
 
2612int
2613xfs_ialloc_read_agi(
2614	struct xfs_mount	*mp,	/* file system mount structure */
2615	struct xfs_trans	*tp,	/* transaction pointer */
2616	xfs_agnumber_t		agno,	/* allocation group number */
2617	struct xfs_buf		**bpp)	/* allocation group hdr buf */
2618{
2619	struct xfs_agi		*agi;	/* allocation group header */
2620	struct xfs_perag	*pag;	/* per allocation group data */
2621	int			error;
2622
2623	trace_xfs_ialloc_read_agi(mp, agno);
2624
2625	error = xfs_read_agi(mp, tp, agno, bpp);
 
 
2626	if (error)
2627		return error;
2628
2629	agi = XFS_BUF_TO_AGI(*bpp);
2630	pag = xfs_perag_get(mp, agno);
2631	if (!pag->pagi_init) {
2632		pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2633		pag->pagi_count = be32_to_cpu(agi->agi_count);
2634		pag->pagi_init = 1;
2635	}
2636
2637	/*
2638	 * It's possible for these to be out of sync if
2639	 * we are in the middle of a forced shutdown.
2640	 */
2641	ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2642		XFS_FORCED_SHUTDOWN(mp));
2643	xfs_perag_put(pag);
 
 
 
2644	return 0;
2645}
2646
2647/*
2648 * Read in the agi to initialise the per-ag data in the mount structure
2649 */
2650int
2651xfs_ialloc_pagi_init(
2652	xfs_mount_t	*mp,		/* file system mount structure */
2653	xfs_trans_t	*tp,		/* transaction pointer */
2654	xfs_agnumber_t	agno)		/* allocation group number */
2655{
2656	xfs_buf_t	*bp = NULL;
2657	int		error;
 
 
2658
2659	error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2660	if (error)
2661		return error;
2662	if (bp)
2663		xfs_trans_brelse(tp, bp);
2664	return 0;
2665}
2666
2667/* Calculate the first and last possible inode number in an AG. */
2668void
2669xfs_ialloc_agino_range(
2670	struct xfs_mount	*mp,
2671	xfs_agnumber_t		agno,
2672	xfs_agino_t		*first,
2673	xfs_agino_t		*last)
2674{
2675	xfs_agblock_t		bno;
2676	xfs_agblock_t		eoag;
2677
2678	eoag = xfs_ag_block_count(mp, agno);
2679
2680	/*
2681	 * Calculate the first inode, which will be in the first
2682	 * cluster-aligned block after the AGFL.
2683	 */
2684	bno = round_up(XFS_AGFL_BLOCK(mp) + 1,
2685			xfs_ialloc_cluster_alignment(mp));
2686	*first = XFS_OFFBNO_TO_AGINO(mp, bno, 0);
2687
2688	/*
2689	 * Calculate the last inode, which will be at the end of the
2690	 * last (aligned) cluster that can be allocated in the AG.
2691	 */
2692	bno = round_down(eoag, xfs_ialloc_cluster_alignment(mp));
2693	*last = XFS_OFFBNO_TO_AGINO(mp, bno, 0) - 1;
2694}
2695
2696/*
2697 * Verify that an AG inode number pointer neither points outside the AG
2698 * nor points at static metadata.
2699 */
2700bool
2701xfs_verify_agino(
2702	struct xfs_mount	*mp,
2703	xfs_agnumber_t		agno,
2704	xfs_agino_t		agino)
2705{
2706	xfs_agino_t		first;
2707	xfs_agino_t		last;
2708
2709	xfs_ialloc_agino_range(mp, agno, &first, &last);
2710	return agino >= first && agino <= last;
2711}
2712
2713/*
2714 * Verify that an FS inode number pointer neither points outside the
2715 * filesystem nor points at static AG metadata.
2716 */
2717bool
2718xfs_verify_ino(
2719	struct xfs_mount	*mp,
2720	xfs_ino_t		ino)
2721{
2722	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ino);
2723	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
2724
2725	if (agno >= mp->m_sb.sb_agcount)
2726		return false;
2727	if (XFS_AGINO_TO_INO(mp, agno, agino) != ino)
2728		return false;
2729	return xfs_verify_agino(mp, agno, agino);
2730}
2731
2732/* Is this an internal inode number? */
2733bool
2734xfs_internal_inum(
2735	struct xfs_mount	*mp,
2736	xfs_ino_t		ino)
2737{
2738	return ino == mp->m_sb.sb_rbmino || ino == mp->m_sb.sb_rsumino ||
2739		(xfs_sb_version_hasquota(&mp->m_sb) &&
2740		 xfs_is_quota_inode(&mp->m_sb, ino));
2741}
2742
2743/*
2744 * Verify that a directory entry's inode number doesn't point at an internal
2745 * inode, empty space, or static AG metadata.
2746 */
2747bool
2748xfs_verify_dir_ino(
2749	struct xfs_mount	*mp,
2750	xfs_ino_t		ino)
2751{
2752	if (xfs_internal_inum(mp, ino))
2753		return false;
2754	return xfs_verify_ino(mp, ino);
2755}
2756
2757/* Is there an inode record covering a given range of inode numbers? */
2758int
2759xfs_ialloc_has_inode_record(
2760	struct xfs_btree_cur	*cur,
2761	xfs_agino_t		low,
2762	xfs_agino_t		high,
2763	bool			*exists)
2764{
2765	struct xfs_inobt_rec_incore	irec;
2766	xfs_agino_t		agino;
2767	uint16_t		holemask;
2768	int			has_record;
2769	int			i;
2770	int			error;
2771
2772	*exists = false;
2773	error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2774	while (error == 0 && has_record) {
2775		error = xfs_inobt_get_rec(cur, &irec, &has_record);
2776		if (error || irec.ir_startino > high)
 
 
2777			break;
2778
2779		agino = irec.ir_startino;
2780		holemask = irec.ir_holemask;
2781		for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1,
2782				i++, agino += XFS_INODES_PER_HOLEMASK_BIT) {
2783			if (holemask & 1)
2784				continue;
2785			if (agino + XFS_INODES_PER_HOLEMASK_BIT > low &&
2786					agino <= high) {
2787				*exists = true;
2788				return 0;
2789			}
 
2790		}
2791
2792		error = xfs_btree_increment(cur, 0, &has_record);
 
 
2793	}
2794	return error;
 
 
2795}
2796
2797/* Is there an inode record covering a given extent? */
2798int
2799xfs_ialloc_has_inodes_at_extent(
2800	struct xfs_btree_cur	*cur,
2801	xfs_agblock_t		bno,
2802	xfs_extlen_t		len,
2803	bool			*exists)
2804{
2805	xfs_agino_t		low;
2806	xfs_agino_t		high;
 
 
2807
2808	low = XFS_OFFBNO_TO_AGINO(cur->bc_mp, bno, 0);
2809	high = XFS_OFFBNO_TO_AGINO(cur->bc_mp, bno + len, 0) - 1;
2810
2811	return xfs_ialloc_has_inode_record(cur, low, high, exists);
 
 
 
 
 
 
 
 
 
 
2812}
2813
2814struct xfs_ialloc_count_inodes {
2815	xfs_agino_t			count;
2816	xfs_agino_t			freecount;
2817};
2818
2819/* Record inode counts across all inobt records. */
2820STATIC int
2821xfs_ialloc_count_inodes_rec(
2822	struct xfs_btree_cur		*cur,
2823	union xfs_btree_rec		*rec,
2824	void				*priv)
2825{
2826	struct xfs_inobt_rec_incore	irec;
2827	struct xfs_ialloc_count_inodes	*ci = priv;
 
2828
2829	xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
 
 
 
 
2830	ci->count += irec.ir_count;
2831	ci->freecount += irec.ir_freecount;
2832
2833	return 0;
2834}
2835
2836/* Count allocated and free inodes under an inobt. */
2837int
2838xfs_ialloc_count_inodes(
2839	struct xfs_btree_cur		*cur,
2840	xfs_agino_t			*count,
2841	xfs_agino_t			*freecount)
2842{
2843	struct xfs_ialloc_count_inodes	ci = {0};
2844	int				error;
2845
2846	ASSERT(cur->bc_btnum == XFS_BTNUM_INO);
2847	error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2848	if (error)
2849		return error;
2850
2851	*count = ci.count;
2852	*freecount = ci.freecount;
2853	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2854}