Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * super.c
4 *
5 * PURPOSE
6 * Super block routines for the OSTA-UDF(tm) filesystem.
7 *
8 * DESCRIPTION
9 * OSTA-UDF(tm) = Optical Storage Technology Association
10 * Universal Disk Format.
11 *
12 * This code is based on version 2.00 of the UDF specification,
13 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
14 * http://www.osta.org/
15 * https://www.ecma.ch/
16 * https://www.iso.org/
17 *
18 * COPYRIGHT
19 * (C) 1998 Dave Boynton
20 * (C) 1998-2004 Ben Fennema
21 * (C) 2000 Stelias Computing Inc
22 *
23 * HISTORY
24 *
25 * 09/24/98 dgb changed to allow compiling outside of kernel, and
26 * added some debugging.
27 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
28 * 10/16/98 attempting some multi-session support
29 * 10/17/98 added freespace count for "df"
30 * 11/11/98 gr added novrs option
31 * 11/26/98 dgb added fileset,anchor mount options
32 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
33 * vol descs. rewrote option handling based on isofs
34 * 12/20/98 find the free space bitmap (if it exists)
35 */
36
37#include "udfdecl.h"
38
39#include <linux/blkdev.h>
40#include <linux/slab.h>
41#include <linux/kernel.h>
42#include <linux/module.h>
43#include <linux/stat.h>
44#include <linux/cdrom.h>
45#include <linux/nls.h>
46#include <linux/vfs.h>
47#include <linux/vmalloc.h>
48#include <linux/errno.h>
49#include <linux/seq_file.h>
50#include <linux/bitmap.h>
51#include <linux/crc-itu-t.h>
52#include <linux/log2.h>
53#include <asm/byteorder.h>
54#include <linux/iversion.h>
55#include <linux/fs_context.h>
56#include <linux/fs_parser.h>
57
58#include "udf_sb.h"
59#include "udf_i.h"
60
61#include <linux/init.h>
62#include <linux/uaccess.h>
63
64enum {
65 VDS_POS_PRIMARY_VOL_DESC,
66 VDS_POS_UNALLOC_SPACE_DESC,
67 VDS_POS_LOGICAL_VOL_DESC,
68 VDS_POS_IMP_USE_VOL_DESC,
69 VDS_POS_LENGTH
70};
71
72#define VSD_FIRST_SECTOR_OFFSET 32768
73#define VSD_MAX_SECTOR_OFFSET 0x800000
74
75/*
76 * Maximum number of Terminating Descriptor / Logical Volume Integrity
77 * Descriptor redirections. The chosen numbers are arbitrary - just that we
78 * hopefully don't limit any real use of rewritten inode on write-once media
79 * but avoid looping for too long on corrupted media.
80 */
81#define UDF_MAX_TD_NESTING 64
82#define UDF_MAX_LVID_NESTING 1000
83
84enum { UDF_MAX_LINKS = 0xffff };
85/*
86 * We limit filesize to 4TB. This is arbitrary as the on-disk format supports
87 * more but because the file space is described by a linked list of extents,
88 * each of which can have at most 1GB, the creation and handling of extents
89 * gets unusably slow beyond certain point...
90 */
91#define UDF_MAX_FILESIZE (1ULL << 42)
92
93/* These are the "meat" - everything else is stuffing */
94static int udf_fill_super(struct super_block *sb, struct fs_context *fc);
95static void udf_put_super(struct super_block *);
96static int udf_sync_fs(struct super_block *, int);
97static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
98static void udf_open_lvid(struct super_block *);
99static void udf_close_lvid(struct super_block *);
100static unsigned int udf_count_free(struct super_block *);
101static int udf_statfs(struct dentry *, struct kstatfs *);
102static int udf_show_options(struct seq_file *, struct dentry *);
103static int udf_init_fs_context(struct fs_context *fc);
104static int udf_parse_param(struct fs_context *fc, struct fs_parameter *param);
105static int udf_reconfigure(struct fs_context *fc);
106static void udf_free_fc(struct fs_context *fc);
107static const struct fs_parameter_spec udf_param_spec[];
108
109struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
110{
111 struct logicalVolIntegrityDesc *lvid;
112 unsigned int partnum;
113 unsigned int offset;
114
115 if (!UDF_SB(sb)->s_lvid_bh)
116 return NULL;
117 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
118 partnum = le32_to_cpu(lvid->numOfPartitions);
119 /* The offset is to skip freeSpaceTable and sizeTable arrays */
120 offset = partnum * 2 * sizeof(uint32_t);
121 return (struct logicalVolIntegrityDescImpUse *)
122 (((uint8_t *)(lvid + 1)) + offset);
123}
124
125/* UDF filesystem type */
126static int udf_get_tree(struct fs_context *fc)
127{
128 return get_tree_bdev(fc, udf_fill_super);
129}
130
131static const struct fs_context_operations udf_context_ops = {
132 .parse_param = udf_parse_param,
133 .get_tree = udf_get_tree,
134 .reconfigure = udf_reconfigure,
135 .free = udf_free_fc,
136};
137
138static struct file_system_type udf_fstype = {
139 .owner = THIS_MODULE,
140 .name = "udf",
141 .kill_sb = kill_block_super,
142 .fs_flags = FS_REQUIRES_DEV,
143 .init_fs_context = udf_init_fs_context,
144 .parameters = udf_param_spec,
145};
146MODULE_ALIAS_FS("udf");
147
148static struct kmem_cache *udf_inode_cachep;
149
150static struct inode *udf_alloc_inode(struct super_block *sb)
151{
152 struct udf_inode_info *ei;
153 ei = alloc_inode_sb(sb, udf_inode_cachep, GFP_KERNEL);
154 if (!ei)
155 return NULL;
156
157 ei->i_unique = 0;
158 ei->i_lenExtents = 0;
159 ei->i_lenStreams = 0;
160 ei->i_next_alloc_block = 0;
161 ei->i_next_alloc_goal = 0;
162 ei->i_strat4096 = 0;
163 ei->i_streamdir = 0;
164 ei->i_hidden = 0;
165 init_rwsem(&ei->i_data_sem);
166 ei->cached_extent.lstart = -1;
167 spin_lock_init(&ei->i_extent_cache_lock);
168 inode_set_iversion(&ei->vfs_inode, 1);
169
170 return &ei->vfs_inode;
171}
172
173static void udf_free_in_core_inode(struct inode *inode)
174{
175 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
176}
177
178static void init_once(void *foo)
179{
180 struct udf_inode_info *ei = foo;
181
182 ei->i_data = NULL;
183 inode_init_once(&ei->vfs_inode);
184}
185
186static int __init init_inodecache(void)
187{
188 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
189 sizeof(struct udf_inode_info),
190 0, (SLAB_RECLAIM_ACCOUNT |
191 SLAB_ACCOUNT),
192 init_once);
193 if (!udf_inode_cachep)
194 return -ENOMEM;
195 return 0;
196}
197
198static void destroy_inodecache(void)
199{
200 /*
201 * Make sure all delayed rcu free inodes are flushed before we
202 * destroy cache.
203 */
204 rcu_barrier();
205 kmem_cache_destroy(udf_inode_cachep);
206}
207
208/* Superblock operations */
209static const struct super_operations udf_sb_ops = {
210 .alloc_inode = udf_alloc_inode,
211 .free_inode = udf_free_in_core_inode,
212 .write_inode = udf_write_inode,
213 .evict_inode = udf_evict_inode,
214 .put_super = udf_put_super,
215 .sync_fs = udf_sync_fs,
216 .statfs = udf_statfs,
217 .show_options = udf_show_options,
218};
219
220struct udf_options {
221 unsigned int blocksize;
222 unsigned int session;
223 unsigned int lastblock;
224 unsigned int anchor;
225 unsigned int flags;
226 umode_t umask;
227 kgid_t gid;
228 kuid_t uid;
229 umode_t fmode;
230 umode_t dmode;
231 struct nls_table *nls_map;
232};
233
234/*
235 * UDF has historically preserved prior mount options across
236 * a remount, so copy those here if remounting, otherwise set
237 * initial mount defaults.
238 */
239static void udf_init_options(struct fs_context *fc, struct udf_options *uopt)
240{
241 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
242 struct super_block *sb = fc->root->d_sb;
243 struct udf_sb_info *sbi = UDF_SB(sb);
244
245 uopt->flags = sbi->s_flags;
246 uopt->uid = sbi->s_uid;
247 uopt->gid = sbi->s_gid;
248 uopt->umask = sbi->s_umask;
249 uopt->fmode = sbi->s_fmode;
250 uopt->dmode = sbi->s_dmode;
251 uopt->nls_map = NULL;
252 } else {
253 uopt->flags = (1 << UDF_FLAG_USE_AD_IN_ICB) |
254 (1 << UDF_FLAG_STRICT);
255 /*
256 * By default we'll use overflow[ug]id when UDF
257 * inode [ug]id == -1
258 */
259 uopt->uid = make_kuid(current_user_ns(), overflowuid);
260 uopt->gid = make_kgid(current_user_ns(), overflowgid);
261 uopt->umask = 0;
262 uopt->fmode = UDF_INVALID_MODE;
263 uopt->dmode = UDF_INVALID_MODE;
264 uopt->nls_map = NULL;
265 uopt->session = 0xFFFFFFFF;
266 }
267}
268
269static int udf_init_fs_context(struct fs_context *fc)
270{
271 struct udf_options *uopt;
272
273 uopt = kzalloc(sizeof(*uopt), GFP_KERNEL);
274 if (!uopt)
275 return -ENOMEM;
276
277 udf_init_options(fc, uopt);
278
279 fc->fs_private = uopt;
280 fc->ops = &udf_context_ops;
281
282 return 0;
283}
284
285static void udf_free_fc(struct fs_context *fc)
286{
287 struct udf_options *uopt = fc->fs_private;
288
289 unload_nls(uopt->nls_map);
290 kfree(fc->fs_private);
291}
292
293static int __init init_udf_fs(void)
294{
295 int err;
296
297 err = init_inodecache();
298 if (err)
299 goto out1;
300 err = register_filesystem(&udf_fstype);
301 if (err)
302 goto out;
303
304 return 0;
305
306out:
307 destroy_inodecache();
308
309out1:
310 return err;
311}
312
313static void __exit exit_udf_fs(void)
314{
315 unregister_filesystem(&udf_fstype);
316 destroy_inodecache();
317}
318
319static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
320{
321 struct udf_sb_info *sbi = UDF_SB(sb);
322
323 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
324 if (!sbi->s_partmaps) {
325 sbi->s_partitions = 0;
326 return -ENOMEM;
327 }
328
329 sbi->s_partitions = count;
330 return 0;
331}
332
333static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
334{
335 int i;
336 int nr_groups = bitmap->s_nr_groups;
337
338 for (i = 0; i < nr_groups; i++)
339 if (!IS_ERR_OR_NULL(bitmap->s_block_bitmap[i]))
340 brelse(bitmap->s_block_bitmap[i]);
341
342 kvfree(bitmap);
343}
344
345static void udf_free_partition(struct udf_part_map *map)
346{
347 int i;
348 struct udf_meta_data *mdata;
349
350 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
351 iput(map->s_uspace.s_table);
352 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
353 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
354 if (map->s_partition_type == UDF_SPARABLE_MAP15)
355 for (i = 0; i < 4; i++)
356 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
357 else if (map->s_partition_type == UDF_METADATA_MAP25) {
358 mdata = &map->s_type_specific.s_metadata;
359 iput(mdata->s_metadata_fe);
360 mdata->s_metadata_fe = NULL;
361
362 iput(mdata->s_mirror_fe);
363 mdata->s_mirror_fe = NULL;
364
365 iput(mdata->s_bitmap_fe);
366 mdata->s_bitmap_fe = NULL;
367 }
368}
369
370static void udf_sb_free_partitions(struct super_block *sb)
371{
372 struct udf_sb_info *sbi = UDF_SB(sb);
373 int i;
374
375 if (!sbi->s_partmaps)
376 return;
377 for (i = 0; i < sbi->s_partitions; i++)
378 udf_free_partition(&sbi->s_partmaps[i]);
379 kfree(sbi->s_partmaps);
380 sbi->s_partmaps = NULL;
381}
382
383static int udf_show_options(struct seq_file *seq, struct dentry *root)
384{
385 struct super_block *sb = root->d_sb;
386 struct udf_sb_info *sbi = UDF_SB(sb);
387
388 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
389 seq_puts(seq, ",nostrict");
390 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
391 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
392 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
393 seq_puts(seq, ",unhide");
394 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
395 seq_puts(seq, ",undelete");
396 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
397 seq_puts(seq, ",noadinicb");
398 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
399 seq_puts(seq, ",shortad");
400 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
401 seq_puts(seq, ",uid=forget");
402 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
403 seq_puts(seq, ",gid=forget");
404 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
405 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
406 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
407 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
408 if (sbi->s_umask != 0)
409 seq_printf(seq, ",umask=%ho", sbi->s_umask);
410 if (sbi->s_fmode != UDF_INVALID_MODE)
411 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
412 if (sbi->s_dmode != UDF_INVALID_MODE)
413 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
414 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
415 seq_printf(seq, ",session=%d", sbi->s_session);
416 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
417 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
418 if (sbi->s_anchor != 0)
419 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
420 if (sbi->s_nls_map)
421 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
422 else
423 seq_puts(seq, ",iocharset=utf8");
424
425 return 0;
426}
427
428/*
429 * udf_parse_param
430 *
431 * PURPOSE
432 * Parse mount options.
433 *
434 * DESCRIPTION
435 * The following mount options are supported:
436 *
437 * gid= Set the default group.
438 * umask= Set the default umask.
439 * mode= Set the default file permissions.
440 * dmode= Set the default directory permissions.
441 * uid= Set the default user.
442 * bs= Set the block size.
443 * unhide Show otherwise hidden files.
444 * undelete Show deleted files in lists.
445 * adinicb Embed data in the inode (default)
446 * noadinicb Don't embed data in the inode
447 * shortad Use short ad's
448 * longad Use long ad's (default)
449 * nostrict Unset strict conformance
450 * iocharset= Set the NLS character set
451 *
452 * The remaining are for debugging and disaster recovery:
453 *
454 * novrs Skip volume sequence recognition
455 *
456 * The following expect a offset from 0.
457 *
458 * session= Set the CDROM session (default= last session)
459 * anchor= Override standard anchor location. (default= 256)
460 * volume= Override the VolumeDesc location. (unused)
461 * partition= Override the PartitionDesc location. (unused)
462 * lastblock= Set the last block of the filesystem/
463 *
464 * The following expect a offset from the partition root.
465 *
466 * fileset= Override the fileset block location. (unused)
467 * rootdir= Override the root directory location. (unused)
468 * WARNING: overriding the rootdir to a non-directory may
469 * yield highly unpredictable results.
470 *
471 * PRE-CONDITIONS
472 * fc fs_context with pointer to mount options variable.
473 * param Pointer to fs_parameter being parsed.
474 *
475 * POST-CONDITIONS
476 * <return> 0 Mount options parsed okay.
477 * <return> errno Error parsing mount options.
478 *
479 * HISTORY
480 * July 1, 1997 - Andrew E. Mileski
481 * Written, tested, and released.
482 */
483
484enum {
485 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
486 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
487 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
488 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
489 Opt_rootdir, Opt_utf8, Opt_iocharset, Opt_err, Opt_fmode, Opt_dmode
490};
491
492static const struct fs_parameter_spec udf_param_spec[] = {
493 fsparam_flag ("novrs", Opt_novrs),
494 fsparam_flag ("nostrict", Opt_nostrict),
495 fsparam_u32 ("bs", Opt_bs),
496 fsparam_flag ("unhide", Opt_unhide),
497 fsparam_flag ("undelete", Opt_undelete),
498 fsparam_flag_no ("adinicb", Opt_adinicb),
499 fsparam_flag ("shortad", Opt_shortad),
500 fsparam_flag ("longad", Opt_longad),
501 fsparam_string ("gid", Opt_gid),
502 fsparam_string ("uid", Opt_uid),
503 fsparam_u32 ("umask", Opt_umask),
504 fsparam_u32 ("session", Opt_session),
505 fsparam_u32 ("lastblock", Opt_lastblock),
506 fsparam_u32 ("anchor", Opt_anchor),
507 fsparam_u32 ("volume", Opt_volume),
508 fsparam_u32 ("partition", Opt_partition),
509 fsparam_u32 ("fileset", Opt_fileset),
510 fsparam_u32 ("rootdir", Opt_rootdir),
511 fsparam_flag ("utf8", Opt_utf8),
512 fsparam_string ("iocharset", Opt_iocharset),
513 fsparam_u32 ("mode", Opt_fmode),
514 fsparam_u32 ("dmode", Opt_dmode),
515 {}
516 };
517
518static int udf_parse_param(struct fs_context *fc, struct fs_parameter *param)
519{
520 unsigned int uv;
521 unsigned int n;
522 struct udf_options *uopt = fc->fs_private;
523 struct fs_parse_result result;
524 int token;
525 bool remount = (fc->purpose & FS_CONTEXT_FOR_RECONFIGURE);
526
527 token = fs_parse(fc, udf_param_spec, param, &result);
528 if (token < 0)
529 return token;
530
531 switch (token) {
532 case Opt_novrs:
533 uopt->flags |= (1 << UDF_FLAG_NOVRS);
534 break;
535 case Opt_bs:
536 n = result.uint_32;
537 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
538 return -EINVAL;
539 uopt->blocksize = n;
540 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
541 break;
542 case Opt_unhide:
543 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
544 break;
545 case Opt_undelete:
546 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
547 break;
548 case Opt_adinicb:
549 if (result.negated)
550 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
551 else
552 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
553 break;
554 case Opt_shortad:
555 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
556 break;
557 case Opt_longad:
558 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
559 break;
560 case Opt_gid:
561 if (kstrtoint(param->string, 10, &uv) == 0) {
562 kgid_t gid = make_kgid(current_user_ns(), uv);
563 if (!gid_valid(gid))
564 return -EINVAL;
565 uopt->gid = gid;
566 uopt->flags |= (1 << UDF_FLAG_GID_SET);
567 } else if (!strcmp(param->string, "forget")) {
568 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
569 } else if (!strcmp(param->string, "ignore")) {
570 /* this option is superseded by gid=<number> */
571 ;
572 } else {
573 return -EINVAL;
574 }
575 break;
576 case Opt_uid:
577 if (kstrtoint(param->string, 10, &uv) == 0) {
578 kuid_t uid = make_kuid(current_user_ns(), uv);
579 if (!uid_valid(uid))
580 return -EINVAL;
581 uopt->uid = uid;
582 uopt->flags |= (1 << UDF_FLAG_UID_SET);
583 } else if (!strcmp(param->string, "forget")) {
584 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
585 } else if (!strcmp(param->string, "ignore")) {
586 /* this option is superseded by uid=<number> */
587 ;
588 } else {
589 return -EINVAL;
590 }
591 break;
592 case Opt_umask:
593 uopt->umask = result.uint_32;
594 break;
595 case Opt_nostrict:
596 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
597 break;
598 case Opt_session:
599 uopt->session = result.uint_32;
600 if (!remount)
601 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
602 break;
603 case Opt_lastblock:
604 uopt->lastblock = result.uint_32;
605 if (!remount)
606 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
607 break;
608 case Opt_anchor:
609 uopt->anchor = result.uint_32;
610 break;
611 case Opt_volume:
612 case Opt_partition:
613 case Opt_fileset:
614 case Opt_rootdir:
615 /* Ignored (never implemented properly) */
616 break;
617 case Opt_utf8:
618 if (!remount) {
619 unload_nls(uopt->nls_map);
620 uopt->nls_map = NULL;
621 }
622 break;
623 case Opt_iocharset:
624 if (!remount) {
625 unload_nls(uopt->nls_map);
626 uopt->nls_map = NULL;
627 }
628 /* When nls_map is not loaded then UTF-8 is used */
629 if (!remount && strcmp(param->string, "utf8") != 0) {
630 uopt->nls_map = load_nls(param->string);
631 if (!uopt->nls_map) {
632 errorf(fc, "iocharset %s not found",
633 param->string);
634 return -EINVAL;
635 }
636 }
637 break;
638 case Opt_fmode:
639 uopt->fmode = result.uint_32 & 0777;
640 break;
641 case Opt_dmode:
642 uopt->dmode = result.uint_32 & 0777;
643 break;
644 default:
645 return -EINVAL;
646 }
647 return 0;
648}
649
650static int udf_reconfigure(struct fs_context *fc)
651{
652 struct udf_options *uopt = fc->fs_private;
653 struct super_block *sb = fc->root->d_sb;
654 struct udf_sb_info *sbi = UDF_SB(sb);
655 int readonly = fc->sb_flags & SB_RDONLY;
656 int error = 0;
657
658 if (!readonly && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
659 return -EACCES;
660
661 sync_filesystem(sb);
662
663 write_lock(&sbi->s_cred_lock);
664 sbi->s_flags = uopt->flags;
665 sbi->s_uid = uopt->uid;
666 sbi->s_gid = uopt->gid;
667 sbi->s_umask = uopt->umask;
668 sbi->s_fmode = uopt->fmode;
669 sbi->s_dmode = uopt->dmode;
670 write_unlock(&sbi->s_cred_lock);
671
672 if (readonly == sb_rdonly(sb))
673 goto out_unlock;
674
675 if (readonly)
676 udf_close_lvid(sb);
677 else
678 udf_open_lvid(sb);
679
680out_unlock:
681 return error;
682}
683
684/*
685 * Check VSD descriptor. Returns -1 in case we are at the end of volume
686 * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
687 * we found one of NSR descriptors we are looking for.
688 */
689static int identify_vsd(const struct volStructDesc *vsd)
690{
691 int ret = 0;
692
693 if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
694 switch (vsd->structType) {
695 case 0:
696 udf_debug("ISO9660 Boot Record found\n");
697 break;
698 case 1:
699 udf_debug("ISO9660 Primary Volume Descriptor found\n");
700 break;
701 case 2:
702 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
703 break;
704 case 3:
705 udf_debug("ISO9660 Volume Partition Descriptor found\n");
706 break;
707 case 255:
708 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
709 break;
710 default:
711 udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
712 break;
713 }
714 } else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
715 ; /* ret = 0 */
716 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
717 ret = 1;
718 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
719 ret = 1;
720 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
721 ; /* ret = 0 */
722 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
723 ; /* ret = 0 */
724 else {
725 /* TEA01 or invalid id : end of volume recognition area */
726 ret = -1;
727 }
728
729 return ret;
730}
731
732/*
733 * Check Volume Structure Descriptors (ECMA 167 2/9.1)
734 * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
735 * @return 1 if NSR02 or NSR03 found,
736 * -1 if first sector read error, 0 otherwise
737 */
738static int udf_check_vsd(struct super_block *sb)
739{
740 struct volStructDesc *vsd = NULL;
741 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
742 int sectorsize;
743 struct buffer_head *bh = NULL;
744 int nsr = 0;
745 struct udf_sb_info *sbi;
746 loff_t session_offset;
747
748 sbi = UDF_SB(sb);
749 if (sb->s_blocksize < sizeof(struct volStructDesc))
750 sectorsize = sizeof(struct volStructDesc);
751 else
752 sectorsize = sb->s_blocksize;
753
754 session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits;
755 sector += session_offset;
756
757 udf_debug("Starting at sector %u (%lu byte sectors)\n",
758 (unsigned int)(sector >> sb->s_blocksize_bits),
759 sb->s_blocksize);
760 /* Process the sequence (if applicable). The hard limit on the sector
761 * offset is arbitrary, hopefully large enough so that all valid UDF
762 * filesystems will be recognised. There is no mention of an upper
763 * bound to the size of the volume recognition area in the standard.
764 * The limit will prevent the code to read all the sectors of a
765 * specially crafted image (like a bluray disc full of CD001 sectors),
766 * potentially causing minutes or even hours of uninterruptible I/O
767 * activity. This actually happened with uninitialised SSD partitions
768 * (all 0xFF) before the check for the limit and all valid IDs were
769 * added */
770 for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
771 /* Read a block */
772 bh = sb_bread(sb, sector >> sb->s_blocksize_bits);
773 if (!bh)
774 break;
775
776 vsd = (struct volStructDesc *)(bh->b_data +
777 (sector & (sb->s_blocksize - 1)));
778 nsr = identify_vsd(vsd);
779 /* Found NSR or end? */
780 if (nsr) {
781 brelse(bh);
782 break;
783 }
784 /*
785 * Special handling for improperly formatted VRS (e.g., Win10)
786 * where components are separated by 2048 bytes even though
787 * sectors are 4K
788 */
789 if (sb->s_blocksize == 4096) {
790 nsr = identify_vsd(vsd + 1);
791 /* Ignore unknown IDs... */
792 if (nsr < 0)
793 nsr = 0;
794 }
795 brelse(bh);
796 }
797
798 if (nsr > 0)
799 return 1;
800 else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET)
801 return -1;
802 else
803 return 0;
804}
805
806static int udf_verify_domain_identifier(struct super_block *sb,
807 struct regid *ident, char *dname)
808{
809 struct domainIdentSuffix *suffix;
810
811 if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
812 udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
813 goto force_ro;
814 }
815 if (ident->flags & ENTITYID_FLAGS_DIRTY) {
816 udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
817 dname);
818 goto force_ro;
819 }
820 suffix = (struct domainIdentSuffix *)ident->identSuffix;
821 if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
822 (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
823 if (!sb_rdonly(sb)) {
824 udf_warn(sb, "Descriptor for %s marked write protected."
825 " Forcing read only mount.\n", dname);
826 }
827 goto force_ro;
828 }
829 return 0;
830
831force_ro:
832 if (!sb_rdonly(sb))
833 return -EACCES;
834 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
835 return 0;
836}
837
838static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
839 struct kernel_lb_addr *root)
840{
841 int ret;
842
843 ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
844 if (ret < 0)
845 return ret;
846
847 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
848 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
849
850 udf_debug("Rootdir at block=%u, partition=%u\n",
851 root->logicalBlockNum, root->partitionReferenceNum);
852 return 0;
853}
854
855static int udf_find_fileset(struct super_block *sb,
856 struct kernel_lb_addr *fileset,
857 struct kernel_lb_addr *root)
858{
859 struct buffer_head *bh;
860 uint16_t ident;
861 int ret;
862
863 if (fileset->logicalBlockNum == 0xFFFFFFFF &&
864 fileset->partitionReferenceNum == 0xFFFF)
865 return -EINVAL;
866
867 bh = udf_read_ptagged(sb, fileset, 0, &ident);
868 if (!bh)
869 return -EIO;
870 if (ident != TAG_IDENT_FSD) {
871 brelse(bh);
872 return -EINVAL;
873 }
874
875 udf_debug("Fileset at block=%u, partition=%u\n",
876 fileset->logicalBlockNum, fileset->partitionReferenceNum);
877
878 UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
879 ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
880 brelse(bh);
881 return ret;
882}
883
884/*
885 * Load primary Volume Descriptor Sequence
886 *
887 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
888 * should be tried.
889 */
890static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
891{
892 struct primaryVolDesc *pvoldesc;
893 uint8_t *outstr;
894 struct buffer_head *bh;
895 uint16_t ident;
896 int ret;
897 struct timestamp *ts;
898
899 outstr = kzalloc(128, GFP_KERNEL);
900 if (!outstr)
901 return -ENOMEM;
902
903 bh = udf_read_tagged(sb, block, block, &ident);
904 if (!bh) {
905 ret = -EAGAIN;
906 goto out2;
907 }
908
909 if (ident != TAG_IDENT_PVD) {
910 ret = -EIO;
911 goto out_bh;
912 }
913
914 pvoldesc = (struct primaryVolDesc *)bh->b_data;
915
916 udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
917 pvoldesc->recordingDateAndTime);
918 ts = &pvoldesc->recordingDateAndTime;
919 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
920 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
921 ts->minute, le16_to_cpu(ts->typeAndTimezone));
922
923 ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
924 if (ret < 0) {
925 strscpy_pad(UDF_SB(sb)->s_volume_ident, "InvalidName");
926 pr_warn("incorrect volume identification, setting to "
927 "'InvalidName'\n");
928 } else {
929 strscpy_pad(UDF_SB(sb)->s_volume_ident, outstr);
930 }
931 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
932
933 ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
934 if (ret < 0) {
935 ret = 0;
936 goto out_bh;
937 }
938 outstr[ret] = 0;
939 udf_debug("volSetIdent[] = '%s'\n", outstr);
940
941 ret = 0;
942out_bh:
943 brelse(bh);
944out2:
945 kfree(outstr);
946 return ret;
947}
948
949struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
950 u32 meta_file_loc, u32 partition_ref)
951{
952 struct kernel_lb_addr addr;
953 struct inode *metadata_fe;
954
955 addr.logicalBlockNum = meta_file_loc;
956 addr.partitionReferenceNum = partition_ref;
957
958 metadata_fe = udf_iget_special(sb, &addr);
959
960 if (IS_ERR(metadata_fe)) {
961 udf_warn(sb, "metadata inode efe not found\n");
962 return metadata_fe;
963 }
964 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
965 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
966 iput(metadata_fe);
967 return ERR_PTR(-EIO);
968 }
969
970 return metadata_fe;
971}
972
973static int udf_load_metadata_files(struct super_block *sb, int partition,
974 int type1_index)
975{
976 struct udf_sb_info *sbi = UDF_SB(sb);
977 struct udf_part_map *map;
978 struct udf_meta_data *mdata;
979 struct kernel_lb_addr addr;
980 struct inode *fe;
981
982 map = &sbi->s_partmaps[partition];
983 mdata = &map->s_type_specific.s_metadata;
984 mdata->s_phys_partition_ref = type1_index;
985
986 /* metadata address */
987 udf_debug("Metadata file location: block = %u part = %u\n",
988 mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
989
990 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
991 mdata->s_phys_partition_ref);
992 if (IS_ERR(fe)) {
993 /* mirror file entry */
994 udf_debug("Mirror metadata file location: block = %u part = %u\n",
995 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
996
997 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
998 mdata->s_phys_partition_ref);
999
1000 if (IS_ERR(fe)) {
1001 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
1002 return PTR_ERR(fe);
1003 }
1004 mdata->s_mirror_fe = fe;
1005 } else
1006 mdata->s_metadata_fe = fe;
1007
1008
1009 /*
1010 * bitmap file entry
1011 * Note:
1012 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1013 */
1014 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1015 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1016 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
1017
1018 udf_debug("Bitmap file location: block = %u part = %u\n",
1019 addr.logicalBlockNum, addr.partitionReferenceNum);
1020
1021 fe = udf_iget_special(sb, &addr);
1022 if (IS_ERR(fe)) {
1023 if (sb_rdonly(sb))
1024 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1025 else {
1026 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1027 return PTR_ERR(fe);
1028 }
1029 } else
1030 mdata->s_bitmap_fe = fe;
1031 }
1032
1033 udf_debug("udf_load_metadata_files Ok\n");
1034 return 0;
1035}
1036
1037int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1038{
1039 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1040 return DIV_ROUND_UP(map->s_partition_len +
1041 (sizeof(struct spaceBitmapDesc) << 3),
1042 sb->s_blocksize * 8);
1043}
1044
1045static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1046{
1047 struct udf_bitmap *bitmap;
1048 int nr_groups = udf_compute_nr_groups(sb, index);
1049
1050 bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups),
1051 GFP_KERNEL);
1052 if (!bitmap)
1053 return NULL;
1054
1055 bitmap->s_nr_groups = nr_groups;
1056 return bitmap;
1057}
1058
1059static int check_partition_desc(struct super_block *sb,
1060 struct partitionDesc *p,
1061 struct udf_part_map *map)
1062{
1063 bool umap, utable, fmap, ftable;
1064 struct partitionHeaderDesc *phd;
1065
1066 switch (le32_to_cpu(p->accessType)) {
1067 case PD_ACCESS_TYPE_READ_ONLY:
1068 case PD_ACCESS_TYPE_WRITE_ONCE:
1069 case PD_ACCESS_TYPE_NONE:
1070 goto force_ro;
1071 }
1072
1073 /* No Partition Header Descriptor? */
1074 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1075 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1076 goto force_ro;
1077
1078 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1079 utable = phd->unallocSpaceTable.extLength;
1080 umap = phd->unallocSpaceBitmap.extLength;
1081 ftable = phd->freedSpaceTable.extLength;
1082 fmap = phd->freedSpaceBitmap.extLength;
1083
1084 /* No allocation info? */
1085 if (!utable && !umap && !ftable && !fmap)
1086 goto force_ro;
1087
1088 /* We don't support blocks that require erasing before overwrite */
1089 if (ftable || fmap)
1090 goto force_ro;
1091 /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1092 if (utable && umap)
1093 goto force_ro;
1094
1095 if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1096 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1097 map->s_partition_type == UDF_METADATA_MAP25)
1098 goto force_ro;
1099
1100 return 0;
1101force_ro:
1102 if (!sb_rdonly(sb))
1103 return -EACCES;
1104 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1105 return 0;
1106}
1107
1108static int udf_fill_partdesc_info(struct super_block *sb,
1109 struct partitionDesc *p, int p_index)
1110{
1111 struct udf_part_map *map;
1112 struct udf_sb_info *sbi = UDF_SB(sb);
1113 struct partitionHeaderDesc *phd;
1114 u32 sum;
1115 int err;
1116
1117 map = &sbi->s_partmaps[p_index];
1118
1119 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1120 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1121 if (check_add_overflow(map->s_partition_root, map->s_partition_len,
1122 &sum)) {
1123 udf_err(sb, "Partition %d has invalid location %u + %u\n",
1124 p_index, map->s_partition_root, map->s_partition_len);
1125 return -EFSCORRUPTED;
1126 }
1127
1128 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1129 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1130 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1131 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1132 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1133 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1134 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1135 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1136
1137 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1138 p_index, map->s_partition_type,
1139 map->s_partition_root, map->s_partition_len);
1140
1141 err = check_partition_desc(sb, p, map);
1142 if (err)
1143 return err;
1144
1145 /*
1146 * Skip loading allocation info it we cannot ever write to the fs.
1147 * This is a correctness thing as we may have decided to force ro mount
1148 * to avoid allocation info we don't support.
1149 */
1150 if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1151 return 0;
1152
1153 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1154 if (phd->unallocSpaceTable.extLength) {
1155 struct kernel_lb_addr loc = {
1156 .logicalBlockNum = le32_to_cpu(
1157 phd->unallocSpaceTable.extPosition),
1158 .partitionReferenceNum = p_index,
1159 };
1160 struct inode *inode;
1161
1162 inode = udf_iget_special(sb, &loc);
1163 if (IS_ERR(inode)) {
1164 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1165 p_index);
1166 return PTR_ERR(inode);
1167 }
1168 map->s_uspace.s_table = inode;
1169 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1170 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1171 p_index, map->s_uspace.s_table->i_ino);
1172 }
1173
1174 if (phd->unallocSpaceBitmap.extLength) {
1175 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1176 if (!bitmap)
1177 return -ENOMEM;
1178 map->s_uspace.s_bitmap = bitmap;
1179 bitmap->s_extPosition = le32_to_cpu(
1180 phd->unallocSpaceBitmap.extPosition);
1181 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1182 /* Check whether math over bitmap won't overflow. */
1183 if (check_add_overflow(map->s_partition_len,
1184 sizeof(struct spaceBitmapDesc) << 3,
1185 &sum)) {
1186 udf_err(sb, "Partition %d is too long (%u)\n", p_index,
1187 map->s_partition_len);
1188 return -EFSCORRUPTED;
1189 }
1190 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1191 p_index, bitmap->s_extPosition);
1192 }
1193
1194 return 0;
1195}
1196
1197static void udf_find_vat_block(struct super_block *sb, int p_index,
1198 int type1_index, sector_t start_block)
1199{
1200 struct udf_sb_info *sbi = UDF_SB(sb);
1201 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1202 sector_t vat_block;
1203 struct kernel_lb_addr ino;
1204 struct inode *inode;
1205
1206 /*
1207 * VAT file entry is in the last recorded block. Some broken disks have
1208 * it a few blocks before so try a bit harder...
1209 */
1210 ino.partitionReferenceNum = type1_index;
1211 for (vat_block = start_block;
1212 vat_block >= map->s_partition_root &&
1213 vat_block >= start_block - 3; vat_block--) {
1214 ino.logicalBlockNum = vat_block - map->s_partition_root;
1215 inode = udf_iget_special(sb, &ino);
1216 if (!IS_ERR(inode)) {
1217 sbi->s_vat_inode = inode;
1218 break;
1219 }
1220 }
1221}
1222
1223static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1224{
1225 struct udf_sb_info *sbi = UDF_SB(sb);
1226 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1227 struct buffer_head *bh = NULL;
1228 struct udf_inode_info *vati;
1229 struct virtualAllocationTable20 *vat20;
1230 sector_t blocks = sb_bdev_nr_blocks(sb);
1231
1232 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1233 if (!sbi->s_vat_inode &&
1234 sbi->s_last_block != blocks - 1) {
1235 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1236 (unsigned long)sbi->s_last_block,
1237 (unsigned long)blocks - 1);
1238 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1239 }
1240 if (!sbi->s_vat_inode)
1241 return -EIO;
1242
1243 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1244 map->s_type_specific.s_virtual.s_start_offset = 0;
1245 map->s_type_specific.s_virtual.s_num_entries =
1246 (sbi->s_vat_inode->i_size - 36) >> 2;
1247 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1248 vati = UDF_I(sbi->s_vat_inode);
1249 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1250 int err = 0;
1251
1252 bh = udf_bread(sbi->s_vat_inode, 0, 0, &err);
1253 if (!bh) {
1254 if (!err)
1255 err = -EFSCORRUPTED;
1256 return err;
1257 }
1258 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1259 } else {
1260 vat20 = (struct virtualAllocationTable20 *)
1261 vati->i_data;
1262 }
1263
1264 map->s_type_specific.s_virtual.s_start_offset =
1265 le16_to_cpu(vat20->lengthHeader);
1266 map->s_type_specific.s_virtual.s_num_entries =
1267 (sbi->s_vat_inode->i_size -
1268 map->s_type_specific.s_virtual.
1269 s_start_offset) >> 2;
1270 brelse(bh);
1271 }
1272 return 0;
1273}
1274
1275/*
1276 * Load partition descriptor block
1277 *
1278 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1279 * sequence.
1280 */
1281static int udf_load_partdesc(struct super_block *sb, sector_t block)
1282{
1283 struct buffer_head *bh;
1284 struct partitionDesc *p;
1285 struct udf_part_map *map;
1286 struct udf_sb_info *sbi = UDF_SB(sb);
1287 int i, type1_idx;
1288 uint16_t partitionNumber;
1289 uint16_t ident;
1290 int ret;
1291
1292 bh = udf_read_tagged(sb, block, block, &ident);
1293 if (!bh)
1294 return -EAGAIN;
1295 if (ident != TAG_IDENT_PD) {
1296 ret = 0;
1297 goto out_bh;
1298 }
1299
1300 p = (struct partitionDesc *)bh->b_data;
1301 partitionNumber = le16_to_cpu(p->partitionNumber);
1302
1303 /* First scan for TYPE1 and SPARABLE partitions */
1304 for (i = 0; i < sbi->s_partitions; i++) {
1305 map = &sbi->s_partmaps[i];
1306 udf_debug("Searching map: (%u == %u)\n",
1307 map->s_partition_num, partitionNumber);
1308 if (map->s_partition_num == partitionNumber &&
1309 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1310 map->s_partition_type == UDF_SPARABLE_MAP15))
1311 break;
1312 }
1313
1314 if (i >= sbi->s_partitions) {
1315 udf_debug("Partition (%u) not found in partition map\n",
1316 partitionNumber);
1317 ret = 0;
1318 goto out_bh;
1319 }
1320
1321 ret = udf_fill_partdesc_info(sb, p, i);
1322 if (ret < 0)
1323 goto out_bh;
1324
1325 /*
1326 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1327 * PHYSICAL partitions are already set up
1328 */
1329 type1_idx = i;
1330 map = NULL; /* supress 'maybe used uninitialized' warning */
1331 for (i = 0; i < sbi->s_partitions; i++) {
1332 map = &sbi->s_partmaps[i];
1333
1334 if (map->s_partition_num == partitionNumber &&
1335 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1336 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1337 map->s_partition_type == UDF_METADATA_MAP25))
1338 break;
1339 }
1340
1341 if (i >= sbi->s_partitions) {
1342 ret = 0;
1343 goto out_bh;
1344 }
1345
1346 ret = udf_fill_partdesc_info(sb, p, i);
1347 if (ret < 0)
1348 goto out_bh;
1349
1350 if (map->s_partition_type == UDF_METADATA_MAP25) {
1351 ret = udf_load_metadata_files(sb, i, type1_idx);
1352 if (ret < 0) {
1353 udf_err(sb, "error loading MetaData partition map %d\n",
1354 i);
1355 goto out_bh;
1356 }
1357 } else {
1358 /*
1359 * If we have a partition with virtual map, we don't handle
1360 * writing to it (we overwrite blocks instead of relocating
1361 * them).
1362 */
1363 if (!sb_rdonly(sb)) {
1364 ret = -EACCES;
1365 goto out_bh;
1366 }
1367 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1368 ret = udf_load_vat(sb, i, type1_idx);
1369 if (ret < 0)
1370 goto out_bh;
1371 }
1372 ret = 0;
1373out_bh:
1374 /* In case loading failed, we handle cleanup in udf_fill_super */
1375 brelse(bh);
1376 return ret;
1377}
1378
1379static int udf_load_sparable_map(struct super_block *sb,
1380 struct udf_part_map *map,
1381 struct sparablePartitionMap *spm)
1382{
1383 uint32_t loc;
1384 uint16_t ident;
1385 struct sparingTable *st;
1386 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1387 int i;
1388 struct buffer_head *bh;
1389
1390 map->s_partition_type = UDF_SPARABLE_MAP15;
1391 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1392 if (!is_power_of_2(sdata->s_packet_len)) {
1393 udf_err(sb, "error loading logical volume descriptor: "
1394 "Invalid packet length %u\n",
1395 (unsigned)sdata->s_packet_len);
1396 return -EIO;
1397 }
1398 if (spm->numSparingTables > 4) {
1399 udf_err(sb, "error loading logical volume descriptor: "
1400 "Too many sparing tables (%d)\n",
1401 (int)spm->numSparingTables);
1402 return -EIO;
1403 }
1404 if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1405 udf_err(sb, "error loading logical volume descriptor: "
1406 "Too big sparing table size (%u)\n",
1407 le32_to_cpu(spm->sizeSparingTable));
1408 return -EIO;
1409 }
1410
1411 for (i = 0; i < spm->numSparingTables; i++) {
1412 loc = le32_to_cpu(spm->locSparingTable[i]);
1413 bh = udf_read_tagged(sb, loc, loc, &ident);
1414 if (!bh)
1415 continue;
1416
1417 st = (struct sparingTable *)bh->b_data;
1418 if (ident != 0 ||
1419 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1420 strlen(UDF_ID_SPARING)) ||
1421 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1422 sb->s_blocksize) {
1423 brelse(bh);
1424 continue;
1425 }
1426
1427 sdata->s_spar_map[i] = bh;
1428 }
1429 map->s_partition_func = udf_get_pblock_spar15;
1430 return 0;
1431}
1432
1433static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1434 struct kernel_lb_addr *fileset)
1435{
1436 struct logicalVolDesc *lvd;
1437 int i, offset;
1438 uint8_t type;
1439 struct udf_sb_info *sbi = UDF_SB(sb);
1440 struct genericPartitionMap *gpm;
1441 uint16_t ident;
1442 struct buffer_head *bh;
1443 unsigned int table_len;
1444 int ret;
1445
1446 bh = udf_read_tagged(sb, block, block, &ident);
1447 if (!bh)
1448 return -EAGAIN;
1449 BUG_ON(ident != TAG_IDENT_LVD);
1450 lvd = (struct logicalVolDesc *)bh->b_data;
1451 table_len = le32_to_cpu(lvd->mapTableLength);
1452 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1453 udf_err(sb, "error loading logical volume descriptor: "
1454 "Partition table too long (%u > %lu)\n", table_len,
1455 sb->s_blocksize - sizeof(*lvd));
1456 ret = -EIO;
1457 goto out_bh;
1458 }
1459
1460 ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1461 "logical volume");
1462 if (ret)
1463 goto out_bh;
1464 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1465 if (ret)
1466 goto out_bh;
1467
1468 for (i = 0, offset = 0;
1469 i < sbi->s_partitions && offset < table_len;
1470 i++, offset += gpm->partitionMapLength) {
1471 struct udf_part_map *map = &sbi->s_partmaps[i];
1472 gpm = (struct genericPartitionMap *)
1473 &(lvd->partitionMaps[offset]);
1474 type = gpm->partitionMapType;
1475 if (type == 1) {
1476 struct genericPartitionMap1 *gpm1 =
1477 (struct genericPartitionMap1 *)gpm;
1478 map->s_partition_type = UDF_TYPE1_MAP15;
1479 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1480 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1481 map->s_partition_func = NULL;
1482 } else if (type == 2) {
1483 struct udfPartitionMap2 *upm2 =
1484 (struct udfPartitionMap2 *)gpm;
1485 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1486 strlen(UDF_ID_VIRTUAL))) {
1487 u16 suf =
1488 le16_to_cpu(((__le16 *)upm2->partIdent.
1489 identSuffix)[0]);
1490 if (suf < 0x0200) {
1491 map->s_partition_type =
1492 UDF_VIRTUAL_MAP15;
1493 map->s_partition_func =
1494 udf_get_pblock_virt15;
1495 } else {
1496 map->s_partition_type =
1497 UDF_VIRTUAL_MAP20;
1498 map->s_partition_func =
1499 udf_get_pblock_virt20;
1500 }
1501 } else if (!strncmp(upm2->partIdent.ident,
1502 UDF_ID_SPARABLE,
1503 strlen(UDF_ID_SPARABLE))) {
1504 ret = udf_load_sparable_map(sb, map,
1505 (struct sparablePartitionMap *)gpm);
1506 if (ret < 0)
1507 goto out_bh;
1508 } else if (!strncmp(upm2->partIdent.ident,
1509 UDF_ID_METADATA,
1510 strlen(UDF_ID_METADATA))) {
1511 struct udf_meta_data *mdata =
1512 &map->s_type_specific.s_metadata;
1513 struct metadataPartitionMap *mdm =
1514 (struct metadataPartitionMap *)
1515 &(lvd->partitionMaps[offset]);
1516 udf_debug("Parsing Logical vol part %d type %u id=%s\n",
1517 i, type, UDF_ID_METADATA);
1518
1519 map->s_partition_type = UDF_METADATA_MAP25;
1520 map->s_partition_func = udf_get_pblock_meta25;
1521
1522 mdata->s_meta_file_loc =
1523 le32_to_cpu(mdm->metadataFileLoc);
1524 mdata->s_mirror_file_loc =
1525 le32_to_cpu(mdm->metadataMirrorFileLoc);
1526 mdata->s_bitmap_file_loc =
1527 le32_to_cpu(mdm->metadataBitmapFileLoc);
1528 mdata->s_alloc_unit_size =
1529 le32_to_cpu(mdm->allocUnitSize);
1530 mdata->s_align_unit_size =
1531 le16_to_cpu(mdm->alignUnitSize);
1532 if (mdm->flags & 0x01)
1533 mdata->s_flags |= MF_DUPLICATE_MD;
1534
1535 udf_debug("Metadata Ident suffix=0x%x\n",
1536 le16_to_cpu(*(__le16 *)
1537 mdm->partIdent.identSuffix));
1538 udf_debug("Metadata part num=%u\n",
1539 le16_to_cpu(mdm->partitionNum));
1540 udf_debug("Metadata part alloc unit size=%u\n",
1541 le32_to_cpu(mdm->allocUnitSize));
1542 udf_debug("Metadata file loc=%u\n",
1543 le32_to_cpu(mdm->metadataFileLoc));
1544 udf_debug("Mirror file loc=%u\n",
1545 le32_to_cpu(mdm->metadataMirrorFileLoc));
1546 udf_debug("Bitmap file loc=%u\n",
1547 le32_to_cpu(mdm->metadataBitmapFileLoc));
1548 udf_debug("Flags: %d %u\n",
1549 mdata->s_flags, mdm->flags);
1550 } else {
1551 udf_debug("Unknown ident: %s\n",
1552 upm2->partIdent.ident);
1553 continue;
1554 }
1555 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1556 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1557 }
1558 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1559 i, map->s_partition_num, type, map->s_volumeseqnum);
1560 }
1561
1562 if (fileset) {
1563 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1564
1565 *fileset = lelb_to_cpu(la->extLocation);
1566 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1567 fileset->logicalBlockNum,
1568 fileset->partitionReferenceNum);
1569 }
1570 if (lvd->integritySeqExt.extLength)
1571 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1572 ret = 0;
1573
1574 if (!sbi->s_lvid_bh) {
1575 /* We can't generate unique IDs without a valid LVID */
1576 if (sb_rdonly(sb)) {
1577 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1578 } else {
1579 udf_warn(sb, "Damaged or missing LVID, forcing "
1580 "readonly mount\n");
1581 ret = -EACCES;
1582 }
1583 }
1584out_bh:
1585 brelse(bh);
1586 return ret;
1587}
1588
1589static bool udf_lvid_valid(struct super_block *sb,
1590 struct logicalVolIntegrityDesc *lvid)
1591{
1592 u32 parts, impuselen;
1593
1594 parts = le32_to_cpu(lvid->numOfPartitions);
1595 impuselen = le32_to_cpu(lvid->lengthOfImpUse);
1596 if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize ||
1597 sizeof(struct logicalVolIntegrityDesc) + impuselen +
1598 2 * parts * sizeof(u32) > sb->s_blocksize)
1599 return false;
1600 return true;
1601}
1602
1603/*
1604 * Find the prevailing Logical Volume Integrity Descriptor.
1605 */
1606static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1607{
1608 struct buffer_head *bh, *final_bh;
1609 uint16_t ident;
1610 struct udf_sb_info *sbi = UDF_SB(sb);
1611 struct logicalVolIntegrityDesc *lvid;
1612 int indirections = 0;
1613
1614 while (++indirections <= UDF_MAX_LVID_NESTING) {
1615 final_bh = NULL;
1616 while (loc.extLength > 0 &&
1617 (bh = udf_read_tagged(sb, loc.extLocation,
1618 loc.extLocation, &ident))) {
1619 if (ident != TAG_IDENT_LVID) {
1620 brelse(bh);
1621 break;
1622 }
1623
1624 brelse(final_bh);
1625 final_bh = bh;
1626
1627 loc.extLength -= sb->s_blocksize;
1628 loc.extLocation++;
1629 }
1630
1631 if (!final_bh)
1632 return;
1633
1634 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1635 if (udf_lvid_valid(sb, lvid)) {
1636 brelse(sbi->s_lvid_bh);
1637 sbi->s_lvid_bh = final_bh;
1638 } else {
1639 udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), "
1640 "ignoring.\n",
1641 le32_to_cpu(lvid->numOfPartitions),
1642 le32_to_cpu(lvid->lengthOfImpUse));
1643 }
1644
1645 if (lvid->nextIntegrityExt.extLength == 0)
1646 return;
1647
1648 loc = leea_to_cpu(lvid->nextIntegrityExt);
1649 }
1650
1651 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1652 UDF_MAX_LVID_NESTING);
1653 brelse(sbi->s_lvid_bh);
1654 sbi->s_lvid_bh = NULL;
1655}
1656
1657/*
1658 * Step for reallocation of table of partition descriptor sequence numbers.
1659 * Must be power of 2.
1660 */
1661#define PART_DESC_ALLOC_STEP 32
1662
1663struct part_desc_seq_scan_data {
1664 struct udf_vds_record rec;
1665 u32 partnum;
1666};
1667
1668struct desc_seq_scan_data {
1669 struct udf_vds_record vds[VDS_POS_LENGTH];
1670 unsigned int size_part_descs;
1671 unsigned int num_part_descs;
1672 struct part_desc_seq_scan_data *part_descs_loc;
1673};
1674
1675static struct udf_vds_record *handle_partition_descriptor(
1676 struct buffer_head *bh,
1677 struct desc_seq_scan_data *data)
1678{
1679 struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1680 int partnum;
1681 int i;
1682
1683 partnum = le16_to_cpu(desc->partitionNumber);
1684 for (i = 0; i < data->num_part_descs; i++)
1685 if (partnum == data->part_descs_loc[i].partnum)
1686 return &(data->part_descs_loc[i].rec);
1687 if (data->num_part_descs >= data->size_part_descs) {
1688 struct part_desc_seq_scan_data *new_loc;
1689 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1690
1691 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1692 if (!new_loc)
1693 return ERR_PTR(-ENOMEM);
1694 memcpy(new_loc, data->part_descs_loc,
1695 data->size_part_descs * sizeof(*new_loc));
1696 kfree(data->part_descs_loc);
1697 data->part_descs_loc = new_loc;
1698 data->size_part_descs = new_size;
1699 }
1700 return &(data->part_descs_loc[data->num_part_descs++].rec);
1701}
1702
1703
1704static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1705 struct buffer_head *bh, struct desc_seq_scan_data *data)
1706{
1707 switch (ident) {
1708 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1709 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1710 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1711 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1712 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1713 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1714 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1715 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1716 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1717 return handle_partition_descriptor(bh, data);
1718 }
1719 return NULL;
1720}
1721
1722/*
1723 * Process a main/reserve volume descriptor sequence.
1724 * @block First block of first extent of the sequence.
1725 * @lastblock Lastblock of first extent of the sequence.
1726 * @fileset There we store extent containing root fileset
1727 *
1728 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1729 * sequence
1730 */
1731static noinline int udf_process_sequence(
1732 struct super_block *sb,
1733 sector_t block, sector_t lastblock,
1734 struct kernel_lb_addr *fileset)
1735{
1736 struct buffer_head *bh = NULL;
1737 struct udf_vds_record *curr;
1738 struct generic_desc *gd;
1739 struct volDescPtr *vdp;
1740 bool done = false;
1741 uint32_t vdsn;
1742 uint16_t ident;
1743 int ret;
1744 unsigned int indirections = 0;
1745 struct desc_seq_scan_data data;
1746 unsigned int i;
1747
1748 memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1749 data.size_part_descs = PART_DESC_ALLOC_STEP;
1750 data.num_part_descs = 0;
1751 data.part_descs_loc = kcalloc(data.size_part_descs,
1752 sizeof(*data.part_descs_loc),
1753 GFP_KERNEL);
1754 if (!data.part_descs_loc)
1755 return -ENOMEM;
1756
1757 /*
1758 * Read the main descriptor sequence and find which descriptors
1759 * are in it.
1760 */
1761 for (; (!done && block <= lastblock); block++) {
1762 bh = udf_read_tagged(sb, block, block, &ident);
1763 if (!bh)
1764 break;
1765
1766 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1767 gd = (struct generic_desc *)bh->b_data;
1768 vdsn = le32_to_cpu(gd->volDescSeqNum);
1769 switch (ident) {
1770 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1771 if (++indirections > UDF_MAX_TD_NESTING) {
1772 udf_err(sb, "too many Volume Descriptor "
1773 "Pointers (max %u supported)\n",
1774 UDF_MAX_TD_NESTING);
1775 brelse(bh);
1776 ret = -EIO;
1777 goto out;
1778 }
1779
1780 vdp = (struct volDescPtr *)bh->b_data;
1781 block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1782 lastblock = le32_to_cpu(
1783 vdp->nextVolDescSeqExt.extLength) >>
1784 sb->s_blocksize_bits;
1785 lastblock += block - 1;
1786 /* For loop is going to increment 'block' again */
1787 block--;
1788 break;
1789 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1790 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1791 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1792 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1793 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1794 curr = get_volume_descriptor_record(ident, bh, &data);
1795 if (IS_ERR(curr)) {
1796 brelse(bh);
1797 ret = PTR_ERR(curr);
1798 goto out;
1799 }
1800 /* Descriptor we don't care about? */
1801 if (!curr)
1802 break;
1803 if (vdsn >= curr->volDescSeqNum) {
1804 curr->volDescSeqNum = vdsn;
1805 curr->block = block;
1806 }
1807 break;
1808 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1809 done = true;
1810 break;
1811 }
1812 brelse(bh);
1813 }
1814 /*
1815 * Now read interesting descriptors again and process them
1816 * in a suitable order
1817 */
1818 if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1819 udf_err(sb, "Primary Volume Descriptor not found!\n");
1820 ret = -EAGAIN;
1821 goto out;
1822 }
1823 ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1824 if (ret < 0)
1825 goto out;
1826
1827 if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1828 ret = udf_load_logicalvol(sb,
1829 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1830 fileset);
1831 if (ret < 0)
1832 goto out;
1833 }
1834
1835 /* Now handle prevailing Partition Descriptors */
1836 for (i = 0; i < data.num_part_descs; i++) {
1837 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1838 if (ret < 0)
1839 goto out;
1840 }
1841 ret = 0;
1842out:
1843 kfree(data.part_descs_loc);
1844 return ret;
1845}
1846
1847/*
1848 * Load Volume Descriptor Sequence described by anchor in bh
1849 *
1850 * Returns <0 on error, 0 on success
1851 */
1852static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1853 struct kernel_lb_addr *fileset)
1854{
1855 struct anchorVolDescPtr *anchor;
1856 sector_t main_s, main_e, reserve_s, reserve_e;
1857 int ret;
1858
1859 anchor = (struct anchorVolDescPtr *)bh->b_data;
1860
1861 /* Locate the main sequence */
1862 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1863 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1864 main_e = main_e >> sb->s_blocksize_bits;
1865 main_e += main_s - 1;
1866
1867 /* Locate the reserve sequence */
1868 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1869 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1870 reserve_e = reserve_e >> sb->s_blocksize_bits;
1871 reserve_e += reserve_s - 1;
1872
1873 /* Process the main & reserve sequences */
1874 /* responsible for finding the PartitionDesc(s) */
1875 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1876 if (ret != -EAGAIN)
1877 return ret;
1878 udf_sb_free_partitions(sb);
1879 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1880 if (ret < 0) {
1881 udf_sb_free_partitions(sb);
1882 /* No sequence was OK, return -EIO */
1883 if (ret == -EAGAIN)
1884 ret = -EIO;
1885 }
1886 return ret;
1887}
1888
1889/*
1890 * Check whether there is an anchor block in the given block and
1891 * load Volume Descriptor Sequence if so.
1892 *
1893 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1894 * block
1895 */
1896static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1897 struct kernel_lb_addr *fileset)
1898{
1899 struct buffer_head *bh;
1900 uint16_t ident;
1901 int ret;
1902
1903 bh = udf_read_tagged(sb, block, block, &ident);
1904 if (!bh)
1905 return -EAGAIN;
1906 if (ident != TAG_IDENT_AVDP) {
1907 brelse(bh);
1908 return -EAGAIN;
1909 }
1910 ret = udf_load_sequence(sb, bh, fileset);
1911 brelse(bh);
1912 return ret;
1913}
1914
1915/*
1916 * Search for an anchor volume descriptor pointer.
1917 *
1918 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1919 * of anchors.
1920 */
1921static int udf_scan_anchors(struct super_block *sb, udf_pblk_t *lastblock,
1922 struct kernel_lb_addr *fileset)
1923{
1924 udf_pblk_t last[6];
1925 int i;
1926 struct udf_sb_info *sbi = UDF_SB(sb);
1927 int last_count = 0;
1928 int ret;
1929
1930 /* First try user provided anchor */
1931 if (sbi->s_anchor) {
1932 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1933 if (ret != -EAGAIN)
1934 return ret;
1935 }
1936 /*
1937 * according to spec, anchor is in either:
1938 * block 256
1939 * lastblock-256
1940 * lastblock
1941 * however, if the disc isn't closed, it could be 512.
1942 */
1943 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1944 if (ret != -EAGAIN)
1945 return ret;
1946 /*
1947 * The trouble is which block is the last one. Drives often misreport
1948 * this so we try various possibilities.
1949 */
1950 last[last_count++] = *lastblock;
1951 if (*lastblock >= 1)
1952 last[last_count++] = *lastblock - 1;
1953 last[last_count++] = *lastblock + 1;
1954 if (*lastblock >= 2)
1955 last[last_count++] = *lastblock - 2;
1956 if (*lastblock >= 150)
1957 last[last_count++] = *lastblock - 150;
1958 if (*lastblock >= 152)
1959 last[last_count++] = *lastblock - 152;
1960
1961 for (i = 0; i < last_count; i++) {
1962 if (last[i] >= sb_bdev_nr_blocks(sb))
1963 continue;
1964 ret = udf_check_anchor_block(sb, last[i], fileset);
1965 if (ret != -EAGAIN) {
1966 if (!ret)
1967 *lastblock = last[i];
1968 return ret;
1969 }
1970 if (last[i] < 256)
1971 continue;
1972 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1973 if (ret != -EAGAIN) {
1974 if (!ret)
1975 *lastblock = last[i];
1976 return ret;
1977 }
1978 }
1979
1980 /* Finally try block 512 in case media is open */
1981 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1982}
1983
1984/*
1985 * Check Volume Structure Descriptor, find Anchor block and load Volume
1986 * Descriptor Sequence.
1987 *
1988 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1989 * block was not found.
1990 */
1991static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1992 int silent, struct kernel_lb_addr *fileset)
1993{
1994 struct udf_sb_info *sbi = UDF_SB(sb);
1995 int nsr = 0;
1996 int ret;
1997
1998 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1999 if (!silent)
2000 udf_warn(sb, "Bad block size\n");
2001 return -EINVAL;
2002 }
2003 sbi->s_last_block = uopt->lastblock;
2004 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_NOVRS)) {
2005 /* Check that it is NSR02 compliant */
2006 nsr = udf_check_vsd(sb);
2007 if (!nsr) {
2008 if (!silent)
2009 udf_warn(sb, "No VRS found\n");
2010 return -EINVAL;
2011 }
2012 if (nsr == -1)
2013 udf_debug("Failed to read sector at offset %d. "
2014 "Assuming open disc. Skipping validity "
2015 "check\n", VSD_FIRST_SECTOR_OFFSET);
2016 if (!sbi->s_last_block)
2017 sbi->s_last_block = udf_get_last_block(sb);
2018 } else {
2019 udf_debug("Validity check skipped because of novrs option\n");
2020 }
2021
2022 /* Look for anchor block and load Volume Descriptor Sequence */
2023 sbi->s_anchor = uopt->anchor;
2024 ret = udf_scan_anchors(sb, &sbi->s_last_block, fileset);
2025 if (ret < 0) {
2026 if (!silent && ret == -EAGAIN)
2027 udf_warn(sb, "No anchor found\n");
2028 return ret;
2029 }
2030 return 0;
2031}
2032
2033static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
2034{
2035 struct timespec64 ts;
2036
2037 ktime_get_real_ts64(&ts);
2038 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2039 lvid->descTag.descCRC = cpu_to_le16(
2040 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2041 le16_to_cpu(lvid->descTag.descCRCLength)));
2042 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2043}
2044
2045static void udf_open_lvid(struct super_block *sb)
2046{
2047 struct udf_sb_info *sbi = UDF_SB(sb);
2048 struct buffer_head *bh = sbi->s_lvid_bh;
2049 struct logicalVolIntegrityDesc *lvid;
2050 struct logicalVolIntegrityDescImpUse *lvidiu;
2051
2052 if (!bh)
2053 return;
2054 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2055 lvidiu = udf_sb_lvidiu(sb);
2056 if (!lvidiu)
2057 return;
2058
2059 mutex_lock(&sbi->s_alloc_mutex);
2060 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2061 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2062 if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2063 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2064 else
2065 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2066
2067 udf_finalize_lvid(lvid);
2068 mark_buffer_dirty(bh);
2069 sbi->s_lvid_dirty = 0;
2070 mutex_unlock(&sbi->s_alloc_mutex);
2071 /* Make opening of filesystem visible on the media immediately */
2072 sync_dirty_buffer(bh);
2073}
2074
2075static void udf_close_lvid(struct super_block *sb)
2076{
2077 struct udf_sb_info *sbi = UDF_SB(sb);
2078 struct buffer_head *bh = sbi->s_lvid_bh;
2079 struct logicalVolIntegrityDesc *lvid;
2080 struct logicalVolIntegrityDescImpUse *lvidiu;
2081
2082 if (!bh)
2083 return;
2084 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2085 lvidiu = udf_sb_lvidiu(sb);
2086 if (!lvidiu)
2087 return;
2088
2089 mutex_lock(&sbi->s_alloc_mutex);
2090 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2091 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2092 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2093 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2094 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2095 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2096 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2097 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2098 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2099 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2100
2101 /*
2102 * We set buffer uptodate unconditionally here to avoid spurious
2103 * warnings from mark_buffer_dirty() when previous EIO has marked
2104 * the buffer as !uptodate
2105 */
2106 set_buffer_uptodate(bh);
2107 udf_finalize_lvid(lvid);
2108 mark_buffer_dirty(bh);
2109 sbi->s_lvid_dirty = 0;
2110 mutex_unlock(&sbi->s_alloc_mutex);
2111 /* Make closing of filesystem visible on the media immediately */
2112 sync_dirty_buffer(bh);
2113}
2114
2115u64 lvid_get_unique_id(struct super_block *sb)
2116{
2117 struct buffer_head *bh;
2118 struct udf_sb_info *sbi = UDF_SB(sb);
2119 struct logicalVolIntegrityDesc *lvid;
2120 struct logicalVolHeaderDesc *lvhd;
2121 u64 uniqueID;
2122 u64 ret;
2123
2124 bh = sbi->s_lvid_bh;
2125 if (!bh)
2126 return 0;
2127
2128 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2129 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2130
2131 mutex_lock(&sbi->s_alloc_mutex);
2132 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2133 if (!(++uniqueID & 0xFFFFFFFF))
2134 uniqueID += 16;
2135 lvhd->uniqueID = cpu_to_le64(uniqueID);
2136 udf_updated_lvid(sb);
2137 mutex_unlock(&sbi->s_alloc_mutex);
2138
2139 return ret;
2140}
2141
2142static int udf_fill_super(struct super_block *sb, struct fs_context *fc)
2143{
2144 int ret = -EINVAL;
2145 struct inode *inode = NULL;
2146 struct udf_options *uopt = fc->fs_private;
2147 struct kernel_lb_addr rootdir, fileset;
2148 struct udf_sb_info *sbi;
2149 bool lvid_open = false;
2150 int silent = fc->sb_flags & SB_SILENT;
2151
2152 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2153 if (!sbi)
2154 return -ENOMEM;
2155
2156 sb->s_fs_info = sbi;
2157
2158 mutex_init(&sbi->s_alloc_mutex);
2159
2160 fileset.logicalBlockNum = 0xFFFFFFFF;
2161 fileset.partitionReferenceNum = 0xFFFF;
2162
2163 sbi->s_flags = uopt->flags;
2164 sbi->s_uid = uopt->uid;
2165 sbi->s_gid = uopt->gid;
2166 sbi->s_umask = uopt->umask;
2167 sbi->s_fmode = uopt->fmode;
2168 sbi->s_dmode = uopt->dmode;
2169 sbi->s_nls_map = uopt->nls_map;
2170 uopt->nls_map = NULL;
2171 rwlock_init(&sbi->s_cred_lock);
2172
2173 if (uopt->session == 0xFFFFFFFF)
2174 sbi->s_session = udf_get_last_session(sb);
2175 else
2176 sbi->s_session = uopt->session;
2177
2178 udf_debug("Multi-session=%d\n", sbi->s_session);
2179
2180 /* Fill in the rest of the superblock */
2181 sb->s_op = &udf_sb_ops;
2182 sb->s_export_op = &udf_export_ops;
2183
2184 sb->s_magic = UDF_SUPER_MAGIC;
2185 sb->s_time_gran = 1000;
2186
2187 if (uopt->flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2188 ret = udf_load_vrs(sb, uopt, silent, &fileset);
2189 } else {
2190 uopt->blocksize = bdev_logical_block_size(sb->s_bdev);
2191 while (uopt->blocksize <= 4096) {
2192 ret = udf_load_vrs(sb, uopt, silent, &fileset);
2193 if (ret < 0) {
2194 if (!silent && ret != -EACCES) {
2195 pr_notice("Scanning with blocksize %u failed\n",
2196 uopt->blocksize);
2197 }
2198 brelse(sbi->s_lvid_bh);
2199 sbi->s_lvid_bh = NULL;
2200 /*
2201 * EACCES is special - we want to propagate to
2202 * upper layers that we cannot handle RW mount.
2203 */
2204 if (ret == -EACCES)
2205 break;
2206 } else
2207 break;
2208
2209 uopt->blocksize <<= 1;
2210 }
2211 }
2212 if (ret < 0) {
2213 if (ret == -EAGAIN) {
2214 udf_warn(sb, "No partition found (1)\n");
2215 ret = -EINVAL;
2216 }
2217 goto error_out;
2218 }
2219
2220 udf_debug("Lastblock=%u\n", sbi->s_last_block);
2221
2222 if (sbi->s_lvid_bh) {
2223 struct logicalVolIntegrityDescImpUse *lvidiu =
2224 udf_sb_lvidiu(sb);
2225 uint16_t minUDFReadRev;
2226 uint16_t minUDFWriteRev;
2227
2228 if (!lvidiu) {
2229 ret = -EINVAL;
2230 goto error_out;
2231 }
2232 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2233 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2234 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2235 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2236 minUDFReadRev,
2237 UDF_MAX_READ_VERSION);
2238 ret = -EINVAL;
2239 goto error_out;
2240 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2241 if (!sb_rdonly(sb)) {
2242 ret = -EACCES;
2243 goto error_out;
2244 }
2245 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2246 }
2247
2248 sbi->s_udfrev = minUDFWriteRev;
2249
2250 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2251 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2252 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2253 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2254 }
2255
2256 if (!sbi->s_partitions) {
2257 udf_warn(sb, "No partition found (2)\n");
2258 ret = -EINVAL;
2259 goto error_out;
2260 }
2261
2262 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2263 UDF_PART_FLAG_READ_ONLY) {
2264 if (!sb_rdonly(sb)) {
2265 ret = -EACCES;
2266 goto error_out;
2267 }
2268 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2269 }
2270
2271 ret = udf_find_fileset(sb, &fileset, &rootdir);
2272 if (ret < 0) {
2273 udf_warn(sb, "No fileset found\n");
2274 goto error_out;
2275 }
2276
2277 if (!silent) {
2278 struct timestamp ts;
2279 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2280 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2281 sbi->s_volume_ident,
2282 le16_to_cpu(ts.year), ts.month, ts.day,
2283 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2284 }
2285 if (!sb_rdonly(sb)) {
2286 udf_open_lvid(sb);
2287 lvid_open = true;
2288 }
2289
2290 /* Assign the root inode */
2291 /* assign inodes by physical block number */
2292 /* perhaps it's not extensible enough, but for now ... */
2293 inode = udf_iget(sb, &rootdir);
2294 if (IS_ERR(inode)) {
2295 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2296 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2297 ret = PTR_ERR(inode);
2298 goto error_out;
2299 }
2300
2301 /* Allocate a dentry for the root inode */
2302 sb->s_root = d_make_root(inode);
2303 if (!sb->s_root) {
2304 udf_err(sb, "Couldn't allocate root dentry\n");
2305 ret = -ENOMEM;
2306 goto error_out;
2307 }
2308 sb->s_maxbytes = UDF_MAX_FILESIZE;
2309 sb->s_max_links = UDF_MAX_LINKS;
2310 return 0;
2311
2312error_out:
2313 iput(sbi->s_vat_inode);
2314 unload_nls(uopt->nls_map);
2315 if (lvid_open)
2316 udf_close_lvid(sb);
2317 brelse(sbi->s_lvid_bh);
2318 udf_sb_free_partitions(sb);
2319 kfree(sbi);
2320 sb->s_fs_info = NULL;
2321
2322 return ret;
2323}
2324
2325void _udf_err(struct super_block *sb, const char *function,
2326 const char *fmt, ...)
2327{
2328 struct va_format vaf;
2329 va_list args;
2330
2331 va_start(args, fmt);
2332
2333 vaf.fmt = fmt;
2334 vaf.va = &args;
2335
2336 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2337
2338 va_end(args);
2339}
2340
2341void _udf_warn(struct super_block *sb, const char *function,
2342 const char *fmt, ...)
2343{
2344 struct va_format vaf;
2345 va_list args;
2346
2347 va_start(args, fmt);
2348
2349 vaf.fmt = fmt;
2350 vaf.va = &args;
2351
2352 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2353
2354 va_end(args);
2355}
2356
2357static void udf_put_super(struct super_block *sb)
2358{
2359 struct udf_sb_info *sbi;
2360
2361 sbi = UDF_SB(sb);
2362
2363 iput(sbi->s_vat_inode);
2364 unload_nls(sbi->s_nls_map);
2365 if (!sb_rdonly(sb))
2366 udf_close_lvid(sb);
2367 brelse(sbi->s_lvid_bh);
2368 udf_sb_free_partitions(sb);
2369 mutex_destroy(&sbi->s_alloc_mutex);
2370 kfree(sb->s_fs_info);
2371 sb->s_fs_info = NULL;
2372}
2373
2374static int udf_sync_fs(struct super_block *sb, int wait)
2375{
2376 struct udf_sb_info *sbi = UDF_SB(sb);
2377
2378 mutex_lock(&sbi->s_alloc_mutex);
2379 if (sbi->s_lvid_dirty) {
2380 struct buffer_head *bh = sbi->s_lvid_bh;
2381 struct logicalVolIntegrityDesc *lvid;
2382
2383 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2384 udf_finalize_lvid(lvid);
2385
2386 /*
2387 * Blockdevice will be synced later so we don't have to submit
2388 * the buffer for IO
2389 */
2390 mark_buffer_dirty(bh);
2391 sbi->s_lvid_dirty = 0;
2392 }
2393 mutex_unlock(&sbi->s_alloc_mutex);
2394
2395 return 0;
2396}
2397
2398static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2399{
2400 struct super_block *sb = dentry->d_sb;
2401 struct udf_sb_info *sbi = UDF_SB(sb);
2402 struct logicalVolIntegrityDescImpUse *lvidiu;
2403 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2404
2405 lvidiu = udf_sb_lvidiu(sb);
2406 buf->f_type = UDF_SUPER_MAGIC;
2407 buf->f_bsize = sb->s_blocksize;
2408 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2409 buf->f_bfree = udf_count_free(sb);
2410 buf->f_bavail = buf->f_bfree;
2411 /*
2412 * Let's pretend each free block is also a free 'inode' since UDF does
2413 * not have separate preallocated table of inodes.
2414 */
2415 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2416 le32_to_cpu(lvidiu->numDirs)) : 0)
2417 + buf->f_bfree;
2418 buf->f_ffree = buf->f_bfree;
2419 buf->f_namelen = UDF_NAME_LEN;
2420 buf->f_fsid = u64_to_fsid(id);
2421
2422 return 0;
2423}
2424
2425static unsigned int udf_count_free_bitmap(struct super_block *sb,
2426 struct udf_bitmap *bitmap)
2427{
2428 struct buffer_head *bh = NULL;
2429 unsigned int accum = 0;
2430 int index;
2431 udf_pblk_t block = 0, newblock;
2432 struct kernel_lb_addr loc;
2433 uint32_t bytes;
2434 uint8_t *ptr;
2435 uint16_t ident;
2436 struct spaceBitmapDesc *bm;
2437
2438 loc.logicalBlockNum = bitmap->s_extPosition;
2439 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2440 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2441
2442 if (!bh) {
2443 udf_err(sb, "udf_count_free failed\n");
2444 goto out;
2445 } else if (ident != TAG_IDENT_SBD) {
2446 brelse(bh);
2447 udf_err(sb, "udf_count_free failed\n");
2448 goto out;
2449 }
2450
2451 bm = (struct spaceBitmapDesc *)bh->b_data;
2452 bytes = le32_to_cpu(bm->numOfBytes);
2453 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2454 ptr = (uint8_t *)bh->b_data;
2455
2456 while (bytes > 0) {
2457 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2458 accum += bitmap_weight((const unsigned long *)(ptr + index),
2459 cur_bytes * 8);
2460 bytes -= cur_bytes;
2461 if (bytes) {
2462 brelse(bh);
2463 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2464 bh = sb_bread(sb, newblock);
2465 if (!bh) {
2466 udf_debug("read failed\n");
2467 goto out;
2468 }
2469 index = 0;
2470 ptr = (uint8_t *)bh->b_data;
2471 }
2472 }
2473 brelse(bh);
2474out:
2475 return accum;
2476}
2477
2478static unsigned int udf_count_free_table(struct super_block *sb,
2479 struct inode *table)
2480{
2481 unsigned int accum = 0;
2482 uint32_t elen;
2483 struct kernel_lb_addr eloc;
2484 struct extent_position epos;
2485 int8_t etype;
2486
2487 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2488 epos.block = UDF_I(table)->i_location;
2489 epos.offset = sizeof(struct unallocSpaceEntry);
2490 epos.bh = NULL;
2491
2492 while (udf_next_aext(table, &epos, &eloc, &elen, &etype, 1) > 0)
2493 accum += (elen >> table->i_sb->s_blocksize_bits);
2494
2495 brelse(epos.bh);
2496 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2497
2498 return accum;
2499}
2500
2501static unsigned int udf_count_free(struct super_block *sb)
2502{
2503 unsigned int accum = 0;
2504 struct udf_sb_info *sbi = UDF_SB(sb);
2505 struct udf_part_map *map;
2506 unsigned int part = sbi->s_partition;
2507 int ptype = sbi->s_partmaps[part].s_partition_type;
2508
2509 if (ptype == UDF_METADATA_MAP25) {
2510 part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2511 s_phys_partition_ref;
2512 } else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2513 /*
2514 * Filesystems with VAT are append-only and we cannot write to
2515 * them. Let's just report 0 here.
2516 */
2517 return 0;
2518 }
2519
2520 if (sbi->s_lvid_bh) {
2521 struct logicalVolIntegrityDesc *lvid =
2522 (struct logicalVolIntegrityDesc *)
2523 sbi->s_lvid_bh->b_data;
2524 if (le32_to_cpu(lvid->numOfPartitions) > part) {
2525 accum = le32_to_cpu(
2526 lvid->freeSpaceTable[part]);
2527 if (accum == 0xFFFFFFFF)
2528 accum = 0;
2529 }
2530 }
2531
2532 if (accum)
2533 return accum;
2534
2535 map = &sbi->s_partmaps[part];
2536 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2537 accum += udf_count_free_bitmap(sb,
2538 map->s_uspace.s_bitmap);
2539 }
2540 if (accum)
2541 return accum;
2542
2543 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2544 accum += udf_count_free_table(sb,
2545 map->s_uspace.s_table);
2546 }
2547 return accum;
2548}
2549
2550MODULE_AUTHOR("Ben Fennema");
2551MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2552MODULE_LICENSE("GPL");
2553module_init(init_udf_fs)
2554module_exit(exit_udf_fs)
1/*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * http://www.ecma.ch/
15 * http://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41#include "udfdecl.h"
42
43#include <linux/blkdev.h>
44#include <linux/slab.h>
45#include <linux/kernel.h>
46#include <linux/module.h>
47#include <linux/parser.h>
48#include <linux/stat.h>
49#include <linux/cdrom.h>
50#include <linux/nls.h>
51#include <linux/vfs.h>
52#include <linux/vmalloc.h>
53#include <linux/errno.h>
54#include <linux/mount.h>
55#include <linux/seq_file.h>
56#include <linux/bitmap.h>
57#include <linux/crc-itu-t.h>
58#include <linux/log2.h>
59#include <asm/byteorder.h>
60
61#include "udf_sb.h"
62#include "udf_i.h"
63
64#include <linux/init.h>
65#include <linux/uaccess.h>
66
67enum {
68 VDS_POS_PRIMARY_VOL_DESC,
69 VDS_POS_UNALLOC_SPACE_DESC,
70 VDS_POS_LOGICAL_VOL_DESC,
71 VDS_POS_IMP_USE_VOL_DESC,
72 VDS_POS_LENGTH
73};
74
75#define VSD_FIRST_SECTOR_OFFSET 32768
76#define VSD_MAX_SECTOR_OFFSET 0x800000
77
78/*
79 * Maximum number of Terminating Descriptor / Logical Volume Integrity
80 * Descriptor redirections. The chosen numbers are arbitrary - just that we
81 * hopefully don't limit any real use of rewritten inode on write-once media
82 * but avoid looping for too long on corrupted media.
83 */
84#define UDF_MAX_TD_NESTING 64
85#define UDF_MAX_LVID_NESTING 1000
86
87enum { UDF_MAX_LINKS = 0xffff };
88
89/* These are the "meat" - everything else is stuffing */
90static int udf_fill_super(struct super_block *, void *, int);
91static void udf_put_super(struct super_block *);
92static int udf_sync_fs(struct super_block *, int);
93static int udf_remount_fs(struct super_block *, int *, char *);
94static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
95static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
96 struct kernel_lb_addr *);
97static void udf_load_fileset(struct super_block *, struct buffer_head *,
98 struct kernel_lb_addr *);
99static void udf_open_lvid(struct super_block *);
100static void udf_close_lvid(struct super_block *);
101static unsigned int udf_count_free(struct super_block *);
102static int udf_statfs(struct dentry *, struct kstatfs *);
103static int udf_show_options(struct seq_file *, struct dentry *);
104
105struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
106{
107 struct logicalVolIntegrityDesc *lvid;
108 unsigned int partnum;
109 unsigned int offset;
110
111 if (!UDF_SB(sb)->s_lvid_bh)
112 return NULL;
113 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
114 partnum = le32_to_cpu(lvid->numOfPartitions);
115 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
116 offsetof(struct logicalVolIntegrityDesc, impUse)) /
117 (2 * sizeof(uint32_t)) < partnum) {
118 udf_err(sb, "Logical volume integrity descriptor corrupted "
119 "(numOfPartitions = %u)!\n", partnum);
120 return NULL;
121 }
122 /* The offset is to skip freeSpaceTable and sizeTable arrays */
123 offset = partnum * 2 * sizeof(uint32_t);
124 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
125}
126
127/* UDF filesystem type */
128static struct dentry *udf_mount(struct file_system_type *fs_type,
129 int flags, const char *dev_name, void *data)
130{
131 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
132}
133
134static struct file_system_type udf_fstype = {
135 .owner = THIS_MODULE,
136 .name = "udf",
137 .mount = udf_mount,
138 .kill_sb = kill_block_super,
139 .fs_flags = FS_REQUIRES_DEV,
140};
141MODULE_ALIAS_FS("udf");
142
143static struct kmem_cache *udf_inode_cachep;
144
145static struct inode *udf_alloc_inode(struct super_block *sb)
146{
147 struct udf_inode_info *ei;
148 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
149 if (!ei)
150 return NULL;
151
152 ei->i_unique = 0;
153 ei->i_lenExtents = 0;
154 ei->i_next_alloc_block = 0;
155 ei->i_next_alloc_goal = 0;
156 ei->i_strat4096 = 0;
157 init_rwsem(&ei->i_data_sem);
158 ei->cached_extent.lstart = -1;
159 spin_lock_init(&ei->i_extent_cache_lock);
160
161 return &ei->vfs_inode;
162}
163
164static void udf_i_callback(struct rcu_head *head)
165{
166 struct inode *inode = container_of(head, struct inode, i_rcu);
167 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
168}
169
170static void udf_destroy_inode(struct inode *inode)
171{
172 call_rcu(&inode->i_rcu, udf_i_callback);
173}
174
175static void init_once(void *foo)
176{
177 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
178
179 ei->i_ext.i_data = NULL;
180 inode_init_once(&ei->vfs_inode);
181}
182
183static int __init init_inodecache(void)
184{
185 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
186 sizeof(struct udf_inode_info),
187 0, (SLAB_RECLAIM_ACCOUNT |
188 SLAB_MEM_SPREAD |
189 SLAB_ACCOUNT),
190 init_once);
191 if (!udf_inode_cachep)
192 return -ENOMEM;
193 return 0;
194}
195
196static void destroy_inodecache(void)
197{
198 /*
199 * Make sure all delayed rcu free inodes are flushed before we
200 * destroy cache.
201 */
202 rcu_barrier();
203 kmem_cache_destroy(udf_inode_cachep);
204}
205
206/* Superblock operations */
207static const struct super_operations udf_sb_ops = {
208 .alloc_inode = udf_alloc_inode,
209 .destroy_inode = udf_destroy_inode,
210 .write_inode = udf_write_inode,
211 .evict_inode = udf_evict_inode,
212 .put_super = udf_put_super,
213 .sync_fs = udf_sync_fs,
214 .statfs = udf_statfs,
215 .remount_fs = udf_remount_fs,
216 .show_options = udf_show_options,
217};
218
219struct udf_options {
220 unsigned char novrs;
221 unsigned int blocksize;
222 unsigned int session;
223 unsigned int lastblock;
224 unsigned int anchor;
225 unsigned int flags;
226 umode_t umask;
227 kgid_t gid;
228 kuid_t uid;
229 umode_t fmode;
230 umode_t dmode;
231 struct nls_table *nls_map;
232};
233
234static int __init init_udf_fs(void)
235{
236 int err;
237
238 err = init_inodecache();
239 if (err)
240 goto out1;
241 err = register_filesystem(&udf_fstype);
242 if (err)
243 goto out;
244
245 return 0;
246
247out:
248 destroy_inodecache();
249
250out1:
251 return err;
252}
253
254static void __exit exit_udf_fs(void)
255{
256 unregister_filesystem(&udf_fstype);
257 destroy_inodecache();
258}
259
260static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
261{
262 struct udf_sb_info *sbi = UDF_SB(sb);
263
264 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
265 if (!sbi->s_partmaps) {
266 sbi->s_partitions = 0;
267 return -ENOMEM;
268 }
269
270 sbi->s_partitions = count;
271 return 0;
272}
273
274static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
275{
276 int i;
277 int nr_groups = bitmap->s_nr_groups;
278
279 for (i = 0; i < nr_groups; i++)
280 if (bitmap->s_block_bitmap[i])
281 brelse(bitmap->s_block_bitmap[i]);
282
283 kvfree(bitmap);
284}
285
286static void udf_free_partition(struct udf_part_map *map)
287{
288 int i;
289 struct udf_meta_data *mdata;
290
291 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
292 iput(map->s_uspace.s_table);
293 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
294 iput(map->s_fspace.s_table);
295 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
296 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
297 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
298 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
299 if (map->s_partition_type == UDF_SPARABLE_MAP15)
300 for (i = 0; i < 4; i++)
301 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
302 else if (map->s_partition_type == UDF_METADATA_MAP25) {
303 mdata = &map->s_type_specific.s_metadata;
304 iput(mdata->s_metadata_fe);
305 mdata->s_metadata_fe = NULL;
306
307 iput(mdata->s_mirror_fe);
308 mdata->s_mirror_fe = NULL;
309
310 iput(mdata->s_bitmap_fe);
311 mdata->s_bitmap_fe = NULL;
312 }
313}
314
315static void udf_sb_free_partitions(struct super_block *sb)
316{
317 struct udf_sb_info *sbi = UDF_SB(sb);
318 int i;
319
320 if (!sbi->s_partmaps)
321 return;
322 for (i = 0; i < sbi->s_partitions; i++)
323 udf_free_partition(&sbi->s_partmaps[i]);
324 kfree(sbi->s_partmaps);
325 sbi->s_partmaps = NULL;
326}
327
328static int udf_show_options(struct seq_file *seq, struct dentry *root)
329{
330 struct super_block *sb = root->d_sb;
331 struct udf_sb_info *sbi = UDF_SB(sb);
332
333 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
334 seq_puts(seq, ",nostrict");
335 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
336 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
337 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
338 seq_puts(seq, ",unhide");
339 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
340 seq_puts(seq, ",undelete");
341 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
342 seq_puts(seq, ",noadinicb");
343 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
344 seq_puts(seq, ",shortad");
345 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
346 seq_puts(seq, ",uid=forget");
347 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
348 seq_puts(seq, ",gid=forget");
349 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
350 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
351 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
352 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
353 if (sbi->s_umask != 0)
354 seq_printf(seq, ",umask=%ho", sbi->s_umask);
355 if (sbi->s_fmode != UDF_INVALID_MODE)
356 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
357 if (sbi->s_dmode != UDF_INVALID_MODE)
358 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
359 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
360 seq_printf(seq, ",session=%d", sbi->s_session);
361 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
362 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
363 if (sbi->s_anchor != 0)
364 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
365 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
366 seq_puts(seq, ",utf8");
367 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
368 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
369
370 return 0;
371}
372
373/*
374 * udf_parse_options
375 *
376 * PURPOSE
377 * Parse mount options.
378 *
379 * DESCRIPTION
380 * The following mount options are supported:
381 *
382 * gid= Set the default group.
383 * umask= Set the default umask.
384 * mode= Set the default file permissions.
385 * dmode= Set the default directory permissions.
386 * uid= Set the default user.
387 * bs= Set the block size.
388 * unhide Show otherwise hidden files.
389 * undelete Show deleted files in lists.
390 * adinicb Embed data in the inode (default)
391 * noadinicb Don't embed data in the inode
392 * shortad Use short ad's
393 * longad Use long ad's (default)
394 * nostrict Unset strict conformance
395 * iocharset= Set the NLS character set
396 *
397 * The remaining are for debugging and disaster recovery:
398 *
399 * novrs Skip volume sequence recognition
400 *
401 * The following expect a offset from 0.
402 *
403 * session= Set the CDROM session (default= last session)
404 * anchor= Override standard anchor location. (default= 256)
405 * volume= Override the VolumeDesc location. (unused)
406 * partition= Override the PartitionDesc location. (unused)
407 * lastblock= Set the last block of the filesystem/
408 *
409 * The following expect a offset from the partition root.
410 *
411 * fileset= Override the fileset block location. (unused)
412 * rootdir= Override the root directory location. (unused)
413 * WARNING: overriding the rootdir to a non-directory may
414 * yield highly unpredictable results.
415 *
416 * PRE-CONDITIONS
417 * options Pointer to mount options string.
418 * uopts Pointer to mount options variable.
419 *
420 * POST-CONDITIONS
421 * <return> 1 Mount options parsed okay.
422 * <return> 0 Error parsing mount options.
423 *
424 * HISTORY
425 * July 1, 1997 - Andrew E. Mileski
426 * Written, tested, and released.
427 */
428
429enum {
430 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
431 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
432 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
433 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
434 Opt_rootdir, Opt_utf8, Opt_iocharset,
435 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
436 Opt_fmode, Opt_dmode
437};
438
439static const match_table_t tokens = {
440 {Opt_novrs, "novrs"},
441 {Opt_nostrict, "nostrict"},
442 {Opt_bs, "bs=%u"},
443 {Opt_unhide, "unhide"},
444 {Opt_undelete, "undelete"},
445 {Opt_noadinicb, "noadinicb"},
446 {Opt_adinicb, "adinicb"},
447 {Opt_shortad, "shortad"},
448 {Opt_longad, "longad"},
449 {Opt_uforget, "uid=forget"},
450 {Opt_uignore, "uid=ignore"},
451 {Opt_gforget, "gid=forget"},
452 {Opt_gignore, "gid=ignore"},
453 {Opt_gid, "gid=%u"},
454 {Opt_uid, "uid=%u"},
455 {Opt_umask, "umask=%o"},
456 {Opt_session, "session=%u"},
457 {Opt_lastblock, "lastblock=%u"},
458 {Opt_anchor, "anchor=%u"},
459 {Opt_volume, "volume=%u"},
460 {Opt_partition, "partition=%u"},
461 {Opt_fileset, "fileset=%u"},
462 {Opt_rootdir, "rootdir=%u"},
463 {Opt_utf8, "utf8"},
464 {Opt_iocharset, "iocharset=%s"},
465 {Opt_fmode, "mode=%o"},
466 {Opt_dmode, "dmode=%o"},
467 {Opt_err, NULL}
468};
469
470static int udf_parse_options(char *options, struct udf_options *uopt,
471 bool remount)
472{
473 char *p;
474 int option;
475
476 uopt->novrs = 0;
477 uopt->session = 0xFFFFFFFF;
478 uopt->lastblock = 0;
479 uopt->anchor = 0;
480
481 if (!options)
482 return 1;
483
484 while ((p = strsep(&options, ",")) != NULL) {
485 substring_t args[MAX_OPT_ARGS];
486 int token;
487 unsigned n;
488 if (!*p)
489 continue;
490
491 token = match_token(p, tokens, args);
492 switch (token) {
493 case Opt_novrs:
494 uopt->novrs = 1;
495 break;
496 case Opt_bs:
497 if (match_int(&args[0], &option))
498 return 0;
499 n = option;
500 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
501 return 0;
502 uopt->blocksize = n;
503 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
504 break;
505 case Opt_unhide:
506 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
507 break;
508 case Opt_undelete:
509 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
510 break;
511 case Opt_noadinicb:
512 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
513 break;
514 case Opt_adinicb:
515 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
516 break;
517 case Opt_shortad:
518 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
519 break;
520 case Opt_longad:
521 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
522 break;
523 case Opt_gid:
524 if (match_int(args, &option))
525 return 0;
526 uopt->gid = make_kgid(current_user_ns(), option);
527 if (!gid_valid(uopt->gid))
528 return 0;
529 uopt->flags |= (1 << UDF_FLAG_GID_SET);
530 break;
531 case Opt_uid:
532 if (match_int(args, &option))
533 return 0;
534 uopt->uid = make_kuid(current_user_ns(), option);
535 if (!uid_valid(uopt->uid))
536 return 0;
537 uopt->flags |= (1 << UDF_FLAG_UID_SET);
538 break;
539 case Opt_umask:
540 if (match_octal(args, &option))
541 return 0;
542 uopt->umask = option;
543 break;
544 case Opt_nostrict:
545 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
546 break;
547 case Opt_session:
548 if (match_int(args, &option))
549 return 0;
550 uopt->session = option;
551 if (!remount)
552 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
553 break;
554 case Opt_lastblock:
555 if (match_int(args, &option))
556 return 0;
557 uopt->lastblock = option;
558 if (!remount)
559 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
560 break;
561 case Opt_anchor:
562 if (match_int(args, &option))
563 return 0;
564 uopt->anchor = option;
565 break;
566 case Opt_volume:
567 case Opt_partition:
568 case Opt_fileset:
569 case Opt_rootdir:
570 /* Ignored (never implemented properly) */
571 break;
572 case Opt_utf8:
573 uopt->flags |= (1 << UDF_FLAG_UTF8);
574 break;
575#ifdef CONFIG_UDF_NLS
576 case Opt_iocharset:
577 if (!remount) {
578 if (uopt->nls_map)
579 unload_nls(uopt->nls_map);
580 uopt->nls_map = load_nls(args[0].from);
581 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
582 }
583 break;
584#endif
585 case Opt_uforget:
586 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
587 break;
588 case Opt_uignore:
589 case Opt_gignore:
590 /* These options are superseeded by uid=<number> */
591 break;
592 case Opt_gforget:
593 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
594 break;
595 case Opt_fmode:
596 if (match_octal(args, &option))
597 return 0;
598 uopt->fmode = option & 0777;
599 break;
600 case Opt_dmode:
601 if (match_octal(args, &option))
602 return 0;
603 uopt->dmode = option & 0777;
604 break;
605 default:
606 pr_err("bad mount option \"%s\" or missing value\n", p);
607 return 0;
608 }
609 }
610 return 1;
611}
612
613static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
614{
615 struct udf_options uopt;
616 struct udf_sb_info *sbi = UDF_SB(sb);
617 int error = 0;
618 struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
619
620 sync_filesystem(sb);
621 if (lvidiu) {
622 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
623 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & SB_RDONLY))
624 return -EACCES;
625 }
626
627 uopt.flags = sbi->s_flags;
628 uopt.uid = sbi->s_uid;
629 uopt.gid = sbi->s_gid;
630 uopt.umask = sbi->s_umask;
631 uopt.fmode = sbi->s_fmode;
632 uopt.dmode = sbi->s_dmode;
633 uopt.nls_map = NULL;
634
635 if (!udf_parse_options(options, &uopt, true))
636 return -EINVAL;
637
638 write_lock(&sbi->s_cred_lock);
639 sbi->s_flags = uopt.flags;
640 sbi->s_uid = uopt.uid;
641 sbi->s_gid = uopt.gid;
642 sbi->s_umask = uopt.umask;
643 sbi->s_fmode = uopt.fmode;
644 sbi->s_dmode = uopt.dmode;
645 write_unlock(&sbi->s_cred_lock);
646
647 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
648 goto out_unlock;
649
650 if (*flags & SB_RDONLY)
651 udf_close_lvid(sb);
652 else
653 udf_open_lvid(sb);
654
655out_unlock:
656 return error;
657}
658
659/* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
660/* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
661static loff_t udf_check_vsd(struct super_block *sb)
662{
663 struct volStructDesc *vsd = NULL;
664 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
665 int sectorsize;
666 struct buffer_head *bh = NULL;
667 int nsr02 = 0;
668 int nsr03 = 0;
669 struct udf_sb_info *sbi;
670
671 sbi = UDF_SB(sb);
672 if (sb->s_blocksize < sizeof(struct volStructDesc))
673 sectorsize = sizeof(struct volStructDesc);
674 else
675 sectorsize = sb->s_blocksize;
676
677 sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits);
678
679 udf_debug("Starting at sector %u (%lu byte sectors)\n",
680 (unsigned int)(sector >> sb->s_blocksize_bits),
681 sb->s_blocksize);
682 /* Process the sequence (if applicable). The hard limit on the sector
683 * offset is arbitrary, hopefully large enough so that all valid UDF
684 * filesystems will be recognised. There is no mention of an upper
685 * bound to the size of the volume recognition area in the standard.
686 * The limit will prevent the code to read all the sectors of a
687 * specially crafted image (like a bluray disc full of CD001 sectors),
688 * potentially causing minutes or even hours of uninterruptible I/O
689 * activity. This actually happened with uninitialised SSD partitions
690 * (all 0xFF) before the check for the limit and all valid IDs were
691 * added */
692 for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
693 sector += sectorsize) {
694 /* Read a block */
695 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
696 if (!bh)
697 break;
698
699 /* Look for ISO descriptors */
700 vsd = (struct volStructDesc *)(bh->b_data +
701 (sector & (sb->s_blocksize - 1)));
702
703 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
704 VSD_STD_ID_LEN)) {
705 switch (vsd->structType) {
706 case 0:
707 udf_debug("ISO9660 Boot Record found\n");
708 break;
709 case 1:
710 udf_debug("ISO9660 Primary Volume Descriptor found\n");
711 break;
712 case 2:
713 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
714 break;
715 case 3:
716 udf_debug("ISO9660 Volume Partition Descriptor found\n");
717 break;
718 case 255:
719 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
720 break;
721 default:
722 udf_debug("ISO9660 VRS (%u) found\n",
723 vsd->structType);
724 break;
725 }
726 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
727 VSD_STD_ID_LEN))
728 ; /* nothing */
729 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
730 VSD_STD_ID_LEN)) {
731 brelse(bh);
732 break;
733 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
734 VSD_STD_ID_LEN))
735 nsr02 = sector;
736 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
737 VSD_STD_ID_LEN))
738 nsr03 = sector;
739 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
740 VSD_STD_ID_LEN))
741 ; /* nothing */
742 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
743 VSD_STD_ID_LEN))
744 ; /* nothing */
745 else {
746 /* invalid id : end of volume recognition area */
747 brelse(bh);
748 break;
749 }
750 brelse(bh);
751 }
752
753 if (nsr03)
754 return nsr03;
755 else if (nsr02)
756 return nsr02;
757 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
758 VSD_FIRST_SECTOR_OFFSET)
759 return -1;
760 else
761 return 0;
762}
763
764static int udf_find_fileset(struct super_block *sb,
765 struct kernel_lb_addr *fileset,
766 struct kernel_lb_addr *root)
767{
768 struct buffer_head *bh = NULL;
769 long lastblock;
770 uint16_t ident;
771 struct udf_sb_info *sbi;
772
773 if (fileset->logicalBlockNum != 0xFFFFFFFF ||
774 fileset->partitionReferenceNum != 0xFFFF) {
775 bh = udf_read_ptagged(sb, fileset, 0, &ident);
776
777 if (!bh) {
778 return 1;
779 } else if (ident != TAG_IDENT_FSD) {
780 brelse(bh);
781 return 1;
782 }
783
784 }
785
786 sbi = UDF_SB(sb);
787 if (!bh) {
788 /* Search backwards through the partitions */
789 struct kernel_lb_addr newfileset;
790
791/* --> cvg: FIXME - is it reasonable? */
792 return 1;
793
794 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
795 (newfileset.partitionReferenceNum != 0xFFFF &&
796 fileset->logicalBlockNum == 0xFFFFFFFF &&
797 fileset->partitionReferenceNum == 0xFFFF);
798 newfileset.partitionReferenceNum--) {
799 lastblock = sbi->s_partmaps
800 [newfileset.partitionReferenceNum]
801 .s_partition_len;
802 newfileset.logicalBlockNum = 0;
803
804 do {
805 bh = udf_read_ptagged(sb, &newfileset, 0,
806 &ident);
807 if (!bh) {
808 newfileset.logicalBlockNum++;
809 continue;
810 }
811
812 switch (ident) {
813 case TAG_IDENT_SBD:
814 {
815 struct spaceBitmapDesc *sp;
816 sp = (struct spaceBitmapDesc *)
817 bh->b_data;
818 newfileset.logicalBlockNum += 1 +
819 ((le32_to_cpu(sp->numOfBytes) +
820 sizeof(struct spaceBitmapDesc)
821 - 1) >> sb->s_blocksize_bits);
822 brelse(bh);
823 break;
824 }
825 case TAG_IDENT_FSD:
826 *fileset = newfileset;
827 break;
828 default:
829 newfileset.logicalBlockNum++;
830 brelse(bh);
831 bh = NULL;
832 break;
833 }
834 } while (newfileset.logicalBlockNum < lastblock &&
835 fileset->logicalBlockNum == 0xFFFFFFFF &&
836 fileset->partitionReferenceNum == 0xFFFF);
837 }
838 }
839
840 if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
841 fileset->partitionReferenceNum != 0xFFFF) && bh) {
842 udf_debug("Fileset at block=%u, partition=%u\n",
843 fileset->logicalBlockNum,
844 fileset->partitionReferenceNum);
845
846 sbi->s_partition = fileset->partitionReferenceNum;
847 udf_load_fileset(sb, bh, root);
848 brelse(bh);
849 return 0;
850 }
851 return 1;
852}
853
854/*
855 * Load primary Volume Descriptor Sequence
856 *
857 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
858 * should be tried.
859 */
860static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
861{
862 struct primaryVolDesc *pvoldesc;
863 uint8_t *outstr;
864 struct buffer_head *bh;
865 uint16_t ident;
866 int ret = -ENOMEM;
867
868 outstr = kmalloc(128, GFP_NOFS);
869 if (!outstr)
870 return -ENOMEM;
871
872 bh = udf_read_tagged(sb, block, block, &ident);
873 if (!bh) {
874 ret = -EAGAIN;
875 goto out2;
876 }
877
878 if (ident != TAG_IDENT_PVD) {
879 ret = -EIO;
880 goto out_bh;
881 }
882
883 pvoldesc = (struct primaryVolDesc *)bh->b_data;
884
885 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
886 pvoldesc->recordingDateAndTime)) {
887#ifdef UDFFS_DEBUG
888 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
889 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
890 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
891 ts->minute, le16_to_cpu(ts->typeAndTimezone));
892#endif
893 }
894
895 ret = udf_dstrCS0toUTF8(outstr, 31, pvoldesc->volIdent, 32);
896 if (ret < 0)
897 goto out_bh;
898
899 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
900 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
901
902 ret = udf_dstrCS0toUTF8(outstr, 127, pvoldesc->volSetIdent, 128);
903 if (ret < 0)
904 goto out_bh;
905
906 outstr[ret] = 0;
907 udf_debug("volSetIdent[] = '%s'\n", outstr);
908
909 ret = 0;
910out_bh:
911 brelse(bh);
912out2:
913 kfree(outstr);
914 return ret;
915}
916
917struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
918 u32 meta_file_loc, u32 partition_ref)
919{
920 struct kernel_lb_addr addr;
921 struct inode *metadata_fe;
922
923 addr.logicalBlockNum = meta_file_loc;
924 addr.partitionReferenceNum = partition_ref;
925
926 metadata_fe = udf_iget_special(sb, &addr);
927
928 if (IS_ERR(metadata_fe)) {
929 udf_warn(sb, "metadata inode efe not found\n");
930 return metadata_fe;
931 }
932 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
933 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
934 iput(metadata_fe);
935 return ERR_PTR(-EIO);
936 }
937
938 return metadata_fe;
939}
940
941static int udf_load_metadata_files(struct super_block *sb, int partition,
942 int type1_index)
943{
944 struct udf_sb_info *sbi = UDF_SB(sb);
945 struct udf_part_map *map;
946 struct udf_meta_data *mdata;
947 struct kernel_lb_addr addr;
948 struct inode *fe;
949
950 map = &sbi->s_partmaps[partition];
951 mdata = &map->s_type_specific.s_metadata;
952 mdata->s_phys_partition_ref = type1_index;
953
954 /* metadata address */
955 udf_debug("Metadata file location: block = %u part = %u\n",
956 mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
957
958 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
959 mdata->s_phys_partition_ref);
960 if (IS_ERR(fe)) {
961 /* mirror file entry */
962 udf_debug("Mirror metadata file location: block = %u part = %u\n",
963 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
964
965 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
966 mdata->s_phys_partition_ref);
967
968 if (IS_ERR(fe)) {
969 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
970 return PTR_ERR(fe);
971 }
972 mdata->s_mirror_fe = fe;
973 } else
974 mdata->s_metadata_fe = fe;
975
976
977 /*
978 * bitmap file entry
979 * Note:
980 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
981 */
982 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
983 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
984 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
985
986 udf_debug("Bitmap file location: block = %u part = %u\n",
987 addr.logicalBlockNum, addr.partitionReferenceNum);
988
989 fe = udf_iget_special(sb, &addr);
990 if (IS_ERR(fe)) {
991 if (sb_rdonly(sb))
992 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
993 else {
994 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
995 return PTR_ERR(fe);
996 }
997 } else
998 mdata->s_bitmap_fe = fe;
999 }
1000
1001 udf_debug("udf_load_metadata_files Ok\n");
1002 return 0;
1003}
1004
1005static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1006 struct kernel_lb_addr *root)
1007{
1008 struct fileSetDesc *fset;
1009
1010 fset = (struct fileSetDesc *)bh->b_data;
1011
1012 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1013
1014 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1015
1016 udf_debug("Rootdir at block=%u, partition=%u\n",
1017 root->logicalBlockNum, root->partitionReferenceNum);
1018}
1019
1020int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1021{
1022 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1023 return DIV_ROUND_UP(map->s_partition_len +
1024 (sizeof(struct spaceBitmapDesc) << 3),
1025 sb->s_blocksize * 8);
1026}
1027
1028static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1029{
1030 struct udf_bitmap *bitmap;
1031 int nr_groups;
1032 int size;
1033
1034 nr_groups = udf_compute_nr_groups(sb, index);
1035 size = sizeof(struct udf_bitmap) +
1036 (sizeof(struct buffer_head *) * nr_groups);
1037
1038 if (size <= PAGE_SIZE)
1039 bitmap = kzalloc(size, GFP_KERNEL);
1040 else
1041 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1042
1043 if (!bitmap)
1044 return NULL;
1045
1046 bitmap->s_nr_groups = nr_groups;
1047 return bitmap;
1048}
1049
1050static int udf_fill_partdesc_info(struct super_block *sb,
1051 struct partitionDesc *p, int p_index)
1052{
1053 struct udf_part_map *map;
1054 struct udf_sb_info *sbi = UDF_SB(sb);
1055 struct partitionHeaderDesc *phd;
1056
1057 map = &sbi->s_partmaps[p_index];
1058
1059 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1060 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1061
1062 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1063 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1064 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1065 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1066 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1067 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1068 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1069 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1070
1071 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1072 p_index, map->s_partition_type,
1073 map->s_partition_root, map->s_partition_len);
1074
1075 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1076 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1077 return 0;
1078
1079 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1080 if (phd->unallocSpaceTable.extLength) {
1081 struct kernel_lb_addr loc = {
1082 .logicalBlockNum = le32_to_cpu(
1083 phd->unallocSpaceTable.extPosition),
1084 .partitionReferenceNum = p_index,
1085 };
1086 struct inode *inode;
1087
1088 inode = udf_iget_special(sb, &loc);
1089 if (IS_ERR(inode)) {
1090 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1091 p_index);
1092 return PTR_ERR(inode);
1093 }
1094 map->s_uspace.s_table = inode;
1095 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1096 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1097 p_index, map->s_uspace.s_table->i_ino);
1098 }
1099
1100 if (phd->unallocSpaceBitmap.extLength) {
1101 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1102 if (!bitmap)
1103 return -ENOMEM;
1104 map->s_uspace.s_bitmap = bitmap;
1105 bitmap->s_extPosition = le32_to_cpu(
1106 phd->unallocSpaceBitmap.extPosition);
1107 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1108 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1109 p_index, bitmap->s_extPosition);
1110 }
1111
1112 if (phd->partitionIntegrityTable.extLength)
1113 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1114
1115 if (phd->freedSpaceTable.extLength) {
1116 struct kernel_lb_addr loc = {
1117 .logicalBlockNum = le32_to_cpu(
1118 phd->freedSpaceTable.extPosition),
1119 .partitionReferenceNum = p_index,
1120 };
1121 struct inode *inode;
1122
1123 inode = udf_iget_special(sb, &loc);
1124 if (IS_ERR(inode)) {
1125 udf_debug("cannot load freedSpaceTable (part %d)\n",
1126 p_index);
1127 return PTR_ERR(inode);
1128 }
1129 map->s_fspace.s_table = inode;
1130 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1131 udf_debug("freedSpaceTable (part %d) @ %lu\n",
1132 p_index, map->s_fspace.s_table->i_ino);
1133 }
1134
1135 if (phd->freedSpaceBitmap.extLength) {
1136 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1137 if (!bitmap)
1138 return -ENOMEM;
1139 map->s_fspace.s_bitmap = bitmap;
1140 bitmap->s_extPosition = le32_to_cpu(
1141 phd->freedSpaceBitmap.extPosition);
1142 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1143 udf_debug("freedSpaceBitmap (part %d) @ %u\n",
1144 p_index, bitmap->s_extPosition);
1145 }
1146 return 0;
1147}
1148
1149static void udf_find_vat_block(struct super_block *sb, int p_index,
1150 int type1_index, sector_t start_block)
1151{
1152 struct udf_sb_info *sbi = UDF_SB(sb);
1153 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1154 sector_t vat_block;
1155 struct kernel_lb_addr ino;
1156 struct inode *inode;
1157
1158 /*
1159 * VAT file entry is in the last recorded block. Some broken disks have
1160 * it a few blocks before so try a bit harder...
1161 */
1162 ino.partitionReferenceNum = type1_index;
1163 for (vat_block = start_block;
1164 vat_block >= map->s_partition_root &&
1165 vat_block >= start_block - 3; vat_block--) {
1166 ino.logicalBlockNum = vat_block - map->s_partition_root;
1167 inode = udf_iget_special(sb, &ino);
1168 if (!IS_ERR(inode)) {
1169 sbi->s_vat_inode = inode;
1170 break;
1171 }
1172 }
1173}
1174
1175static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1176{
1177 struct udf_sb_info *sbi = UDF_SB(sb);
1178 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1179 struct buffer_head *bh = NULL;
1180 struct udf_inode_info *vati;
1181 uint32_t pos;
1182 struct virtualAllocationTable20 *vat20;
1183 sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1184 sb->s_blocksize_bits;
1185
1186 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1187 if (!sbi->s_vat_inode &&
1188 sbi->s_last_block != blocks - 1) {
1189 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1190 (unsigned long)sbi->s_last_block,
1191 (unsigned long)blocks - 1);
1192 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1193 }
1194 if (!sbi->s_vat_inode)
1195 return -EIO;
1196
1197 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1198 map->s_type_specific.s_virtual.s_start_offset = 0;
1199 map->s_type_specific.s_virtual.s_num_entries =
1200 (sbi->s_vat_inode->i_size - 36) >> 2;
1201 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1202 vati = UDF_I(sbi->s_vat_inode);
1203 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1204 pos = udf_block_map(sbi->s_vat_inode, 0);
1205 bh = sb_bread(sb, pos);
1206 if (!bh)
1207 return -EIO;
1208 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1209 } else {
1210 vat20 = (struct virtualAllocationTable20 *)
1211 vati->i_ext.i_data;
1212 }
1213
1214 map->s_type_specific.s_virtual.s_start_offset =
1215 le16_to_cpu(vat20->lengthHeader);
1216 map->s_type_specific.s_virtual.s_num_entries =
1217 (sbi->s_vat_inode->i_size -
1218 map->s_type_specific.s_virtual.
1219 s_start_offset) >> 2;
1220 brelse(bh);
1221 }
1222 return 0;
1223}
1224
1225/*
1226 * Load partition descriptor block
1227 *
1228 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1229 * sequence.
1230 */
1231static int udf_load_partdesc(struct super_block *sb, sector_t block)
1232{
1233 struct buffer_head *bh;
1234 struct partitionDesc *p;
1235 struct udf_part_map *map;
1236 struct udf_sb_info *sbi = UDF_SB(sb);
1237 int i, type1_idx;
1238 uint16_t partitionNumber;
1239 uint16_t ident;
1240 int ret;
1241
1242 bh = udf_read_tagged(sb, block, block, &ident);
1243 if (!bh)
1244 return -EAGAIN;
1245 if (ident != TAG_IDENT_PD) {
1246 ret = 0;
1247 goto out_bh;
1248 }
1249
1250 p = (struct partitionDesc *)bh->b_data;
1251 partitionNumber = le16_to_cpu(p->partitionNumber);
1252
1253 /* First scan for TYPE1 and SPARABLE partitions */
1254 for (i = 0; i < sbi->s_partitions; i++) {
1255 map = &sbi->s_partmaps[i];
1256 udf_debug("Searching map: (%u == %u)\n",
1257 map->s_partition_num, partitionNumber);
1258 if (map->s_partition_num == partitionNumber &&
1259 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1260 map->s_partition_type == UDF_SPARABLE_MAP15))
1261 break;
1262 }
1263
1264 if (i >= sbi->s_partitions) {
1265 udf_debug("Partition (%u) not found in partition map\n",
1266 partitionNumber);
1267 ret = 0;
1268 goto out_bh;
1269 }
1270
1271 ret = udf_fill_partdesc_info(sb, p, i);
1272 if (ret < 0)
1273 goto out_bh;
1274
1275 /*
1276 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1277 * PHYSICAL partitions are already set up
1278 */
1279 type1_idx = i;
1280#ifdef UDFFS_DEBUG
1281 map = NULL; /* supress 'maybe used uninitialized' warning */
1282#endif
1283 for (i = 0; i < sbi->s_partitions; i++) {
1284 map = &sbi->s_partmaps[i];
1285
1286 if (map->s_partition_num == partitionNumber &&
1287 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1288 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1289 map->s_partition_type == UDF_METADATA_MAP25))
1290 break;
1291 }
1292
1293 if (i >= sbi->s_partitions) {
1294 ret = 0;
1295 goto out_bh;
1296 }
1297
1298 ret = udf_fill_partdesc_info(sb, p, i);
1299 if (ret < 0)
1300 goto out_bh;
1301
1302 if (map->s_partition_type == UDF_METADATA_MAP25) {
1303 ret = udf_load_metadata_files(sb, i, type1_idx);
1304 if (ret < 0) {
1305 udf_err(sb, "error loading MetaData partition map %d\n",
1306 i);
1307 goto out_bh;
1308 }
1309 } else {
1310 /*
1311 * If we have a partition with virtual map, we don't handle
1312 * writing to it (we overwrite blocks instead of relocating
1313 * them).
1314 */
1315 if (!sb_rdonly(sb)) {
1316 ret = -EACCES;
1317 goto out_bh;
1318 }
1319 ret = udf_load_vat(sb, i, type1_idx);
1320 if (ret < 0)
1321 goto out_bh;
1322 }
1323 ret = 0;
1324out_bh:
1325 /* In case loading failed, we handle cleanup in udf_fill_super */
1326 brelse(bh);
1327 return ret;
1328}
1329
1330static int udf_load_sparable_map(struct super_block *sb,
1331 struct udf_part_map *map,
1332 struct sparablePartitionMap *spm)
1333{
1334 uint32_t loc;
1335 uint16_t ident;
1336 struct sparingTable *st;
1337 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1338 int i;
1339 struct buffer_head *bh;
1340
1341 map->s_partition_type = UDF_SPARABLE_MAP15;
1342 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1343 if (!is_power_of_2(sdata->s_packet_len)) {
1344 udf_err(sb, "error loading logical volume descriptor: "
1345 "Invalid packet length %u\n",
1346 (unsigned)sdata->s_packet_len);
1347 return -EIO;
1348 }
1349 if (spm->numSparingTables > 4) {
1350 udf_err(sb, "error loading logical volume descriptor: "
1351 "Too many sparing tables (%d)\n",
1352 (int)spm->numSparingTables);
1353 return -EIO;
1354 }
1355
1356 for (i = 0; i < spm->numSparingTables; i++) {
1357 loc = le32_to_cpu(spm->locSparingTable[i]);
1358 bh = udf_read_tagged(sb, loc, loc, &ident);
1359 if (!bh)
1360 continue;
1361
1362 st = (struct sparingTable *)bh->b_data;
1363 if (ident != 0 ||
1364 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1365 strlen(UDF_ID_SPARING)) ||
1366 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1367 sb->s_blocksize) {
1368 brelse(bh);
1369 continue;
1370 }
1371
1372 sdata->s_spar_map[i] = bh;
1373 }
1374 map->s_partition_func = udf_get_pblock_spar15;
1375 return 0;
1376}
1377
1378static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1379 struct kernel_lb_addr *fileset)
1380{
1381 struct logicalVolDesc *lvd;
1382 int i, offset;
1383 uint8_t type;
1384 struct udf_sb_info *sbi = UDF_SB(sb);
1385 struct genericPartitionMap *gpm;
1386 uint16_t ident;
1387 struct buffer_head *bh;
1388 unsigned int table_len;
1389 int ret;
1390
1391 bh = udf_read_tagged(sb, block, block, &ident);
1392 if (!bh)
1393 return -EAGAIN;
1394 BUG_ON(ident != TAG_IDENT_LVD);
1395 lvd = (struct logicalVolDesc *)bh->b_data;
1396 table_len = le32_to_cpu(lvd->mapTableLength);
1397 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1398 udf_err(sb, "error loading logical volume descriptor: "
1399 "Partition table too long (%u > %lu)\n", table_len,
1400 sb->s_blocksize - sizeof(*lvd));
1401 ret = -EIO;
1402 goto out_bh;
1403 }
1404
1405 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1406 if (ret)
1407 goto out_bh;
1408
1409 for (i = 0, offset = 0;
1410 i < sbi->s_partitions && offset < table_len;
1411 i++, offset += gpm->partitionMapLength) {
1412 struct udf_part_map *map = &sbi->s_partmaps[i];
1413 gpm = (struct genericPartitionMap *)
1414 &(lvd->partitionMaps[offset]);
1415 type = gpm->partitionMapType;
1416 if (type == 1) {
1417 struct genericPartitionMap1 *gpm1 =
1418 (struct genericPartitionMap1 *)gpm;
1419 map->s_partition_type = UDF_TYPE1_MAP15;
1420 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1421 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1422 map->s_partition_func = NULL;
1423 } else if (type == 2) {
1424 struct udfPartitionMap2 *upm2 =
1425 (struct udfPartitionMap2 *)gpm;
1426 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1427 strlen(UDF_ID_VIRTUAL))) {
1428 u16 suf =
1429 le16_to_cpu(((__le16 *)upm2->partIdent.
1430 identSuffix)[0]);
1431 if (suf < 0x0200) {
1432 map->s_partition_type =
1433 UDF_VIRTUAL_MAP15;
1434 map->s_partition_func =
1435 udf_get_pblock_virt15;
1436 } else {
1437 map->s_partition_type =
1438 UDF_VIRTUAL_MAP20;
1439 map->s_partition_func =
1440 udf_get_pblock_virt20;
1441 }
1442 } else if (!strncmp(upm2->partIdent.ident,
1443 UDF_ID_SPARABLE,
1444 strlen(UDF_ID_SPARABLE))) {
1445 ret = udf_load_sparable_map(sb, map,
1446 (struct sparablePartitionMap *)gpm);
1447 if (ret < 0)
1448 goto out_bh;
1449 } else if (!strncmp(upm2->partIdent.ident,
1450 UDF_ID_METADATA,
1451 strlen(UDF_ID_METADATA))) {
1452 struct udf_meta_data *mdata =
1453 &map->s_type_specific.s_metadata;
1454 struct metadataPartitionMap *mdm =
1455 (struct metadataPartitionMap *)
1456 &(lvd->partitionMaps[offset]);
1457 udf_debug("Parsing Logical vol part %d type %u id=%s\n",
1458 i, type, UDF_ID_METADATA);
1459
1460 map->s_partition_type = UDF_METADATA_MAP25;
1461 map->s_partition_func = udf_get_pblock_meta25;
1462
1463 mdata->s_meta_file_loc =
1464 le32_to_cpu(mdm->metadataFileLoc);
1465 mdata->s_mirror_file_loc =
1466 le32_to_cpu(mdm->metadataMirrorFileLoc);
1467 mdata->s_bitmap_file_loc =
1468 le32_to_cpu(mdm->metadataBitmapFileLoc);
1469 mdata->s_alloc_unit_size =
1470 le32_to_cpu(mdm->allocUnitSize);
1471 mdata->s_align_unit_size =
1472 le16_to_cpu(mdm->alignUnitSize);
1473 if (mdm->flags & 0x01)
1474 mdata->s_flags |= MF_DUPLICATE_MD;
1475
1476 udf_debug("Metadata Ident suffix=0x%x\n",
1477 le16_to_cpu(*(__le16 *)
1478 mdm->partIdent.identSuffix));
1479 udf_debug("Metadata part num=%u\n",
1480 le16_to_cpu(mdm->partitionNum));
1481 udf_debug("Metadata part alloc unit size=%u\n",
1482 le32_to_cpu(mdm->allocUnitSize));
1483 udf_debug("Metadata file loc=%u\n",
1484 le32_to_cpu(mdm->metadataFileLoc));
1485 udf_debug("Mirror file loc=%u\n",
1486 le32_to_cpu(mdm->metadataMirrorFileLoc));
1487 udf_debug("Bitmap file loc=%u\n",
1488 le32_to_cpu(mdm->metadataBitmapFileLoc));
1489 udf_debug("Flags: %d %u\n",
1490 mdata->s_flags, mdm->flags);
1491 } else {
1492 udf_debug("Unknown ident: %s\n",
1493 upm2->partIdent.ident);
1494 continue;
1495 }
1496 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1497 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1498 }
1499 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1500 i, map->s_partition_num, type, map->s_volumeseqnum);
1501 }
1502
1503 if (fileset) {
1504 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1505
1506 *fileset = lelb_to_cpu(la->extLocation);
1507 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1508 fileset->logicalBlockNum,
1509 fileset->partitionReferenceNum);
1510 }
1511 if (lvd->integritySeqExt.extLength)
1512 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1513 ret = 0;
1514out_bh:
1515 brelse(bh);
1516 return ret;
1517}
1518
1519/*
1520 * Find the prevailing Logical Volume Integrity Descriptor.
1521 */
1522static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1523{
1524 struct buffer_head *bh, *final_bh;
1525 uint16_t ident;
1526 struct udf_sb_info *sbi = UDF_SB(sb);
1527 struct logicalVolIntegrityDesc *lvid;
1528 int indirections = 0;
1529
1530 while (++indirections <= UDF_MAX_LVID_NESTING) {
1531 final_bh = NULL;
1532 while (loc.extLength > 0 &&
1533 (bh = udf_read_tagged(sb, loc.extLocation,
1534 loc.extLocation, &ident))) {
1535 if (ident != TAG_IDENT_LVID) {
1536 brelse(bh);
1537 break;
1538 }
1539
1540 brelse(final_bh);
1541 final_bh = bh;
1542
1543 loc.extLength -= sb->s_blocksize;
1544 loc.extLocation++;
1545 }
1546
1547 if (!final_bh)
1548 return;
1549
1550 brelse(sbi->s_lvid_bh);
1551 sbi->s_lvid_bh = final_bh;
1552
1553 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1554 if (lvid->nextIntegrityExt.extLength == 0)
1555 return;
1556
1557 loc = leea_to_cpu(lvid->nextIntegrityExt);
1558 }
1559
1560 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1561 UDF_MAX_LVID_NESTING);
1562 brelse(sbi->s_lvid_bh);
1563 sbi->s_lvid_bh = NULL;
1564}
1565
1566/*
1567 * Step for reallocation of table of partition descriptor sequence numbers.
1568 * Must be power of 2.
1569 */
1570#define PART_DESC_ALLOC_STEP 32
1571
1572struct desc_seq_scan_data {
1573 struct udf_vds_record vds[VDS_POS_LENGTH];
1574 unsigned int size_part_descs;
1575 struct udf_vds_record *part_descs_loc;
1576};
1577
1578static struct udf_vds_record *handle_partition_descriptor(
1579 struct buffer_head *bh,
1580 struct desc_seq_scan_data *data)
1581{
1582 struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1583 int partnum;
1584
1585 partnum = le16_to_cpu(desc->partitionNumber);
1586 if (partnum >= data->size_part_descs) {
1587 struct udf_vds_record *new_loc;
1588 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1589
1590 new_loc = kzalloc(sizeof(*new_loc) * new_size, GFP_KERNEL);
1591 if (!new_loc)
1592 return ERR_PTR(-ENOMEM);
1593 memcpy(new_loc, data->part_descs_loc,
1594 data->size_part_descs * sizeof(*new_loc));
1595 kfree(data->part_descs_loc);
1596 data->part_descs_loc = new_loc;
1597 data->size_part_descs = new_size;
1598 }
1599 return &(data->part_descs_loc[partnum]);
1600}
1601
1602
1603static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1604 struct buffer_head *bh, struct desc_seq_scan_data *data)
1605{
1606 switch (ident) {
1607 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1608 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1609 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1610 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1611 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1612 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1613 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1614 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1615 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1616 return handle_partition_descriptor(bh, data);
1617 }
1618 return NULL;
1619}
1620
1621/*
1622 * Process a main/reserve volume descriptor sequence.
1623 * @block First block of first extent of the sequence.
1624 * @lastblock Lastblock of first extent of the sequence.
1625 * @fileset There we store extent containing root fileset
1626 *
1627 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1628 * sequence
1629 */
1630static noinline int udf_process_sequence(
1631 struct super_block *sb,
1632 sector_t block, sector_t lastblock,
1633 struct kernel_lb_addr *fileset)
1634{
1635 struct buffer_head *bh = NULL;
1636 struct udf_vds_record *curr;
1637 struct generic_desc *gd;
1638 struct volDescPtr *vdp;
1639 bool done = false;
1640 uint32_t vdsn;
1641 uint16_t ident;
1642 int ret;
1643 unsigned int indirections = 0;
1644 struct desc_seq_scan_data data;
1645 unsigned int i;
1646
1647 memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1648 data.size_part_descs = PART_DESC_ALLOC_STEP;
1649 data.part_descs_loc = kzalloc(sizeof(*data.part_descs_loc) *
1650 data.size_part_descs, GFP_KERNEL);
1651 if (!data.part_descs_loc)
1652 return -ENOMEM;
1653
1654 /*
1655 * Read the main descriptor sequence and find which descriptors
1656 * are in it.
1657 */
1658 for (; (!done && block <= lastblock); block++) {
1659
1660 bh = udf_read_tagged(sb, block, block, &ident);
1661 if (!bh)
1662 break;
1663
1664 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1665 gd = (struct generic_desc *)bh->b_data;
1666 vdsn = le32_to_cpu(gd->volDescSeqNum);
1667 switch (ident) {
1668 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1669 if (++indirections > UDF_MAX_TD_NESTING) {
1670 udf_err(sb, "too many Volume Descriptor "
1671 "Pointers (max %u supported)\n",
1672 UDF_MAX_TD_NESTING);
1673 brelse(bh);
1674 return -EIO;
1675 }
1676
1677 vdp = (struct volDescPtr *)bh->b_data;
1678 block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1679 lastblock = le32_to_cpu(
1680 vdp->nextVolDescSeqExt.extLength) >>
1681 sb->s_blocksize_bits;
1682 lastblock += block - 1;
1683 /* For loop is going to increment 'block' again */
1684 block--;
1685 break;
1686 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1687 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1688 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1689 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1690 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1691 curr = get_volume_descriptor_record(ident, bh, &data);
1692 if (IS_ERR(curr)) {
1693 brelse(bh);
1694 return PTR_ERR(curr);
1695 }
1696 /* Descriptor we don't care about? */
1697 if (!curr)
1698 break;
1699 if (vdsn >= curr->volDescSeqNum) {
1700 curr->volDescSeqNum = vdsn;
1701 curr->block = block;
1702 }
1703 break;
1704 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1705 done = true;
1706 break;
1707 }
1708 brelse(bh);
1709 }
1710 /*
1711 * Now read interesting descriptors again and process them
1712 * in a suitable order
1713 */
1714 if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1715 udf_err(sb, "Primary Volume Descriptor not found!\n");
1716 return -EAGAIN;
1717 }
1718 ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1719 if (ret < 0)
1720 return ret;
1721
1722 if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1723 ret = udf_load_logicalvol(sb,
1724 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1725 fileset);
1726 if (ret < 0)
1727 return ret;
1728 }
1729
1730 /* Now handle prevailing Partition Descriptors */
1731 for (i = 0; i < data.size_part_descs; i++) {
1732 if (data.part_descs_loc[i].block) {
1733 ret = udf_load_partdesc(sb,
1734 data.part_descs_loc[i].block);
1735 if (ret < 0)
1736 return ret;
1737 }
1738 }
1739
1740 return 0;
1741}
1742
1743/*
1744 * Load Volume Descriptor Sequence described by anchor in bh
1745 *
1746 * Returns <0 on error, 0 on success
1747 */
1748static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1749 struct kernel_lb_addr *fileset)
1750{
1751 struct anchorVolDescPtr *anchor;
1752 sector_t main_s, main_e, reserve_s, reserve_e;
1753 int ret;
1754
1755 anchor = (struct anchorVolDescPtr *)bh->b_data;
1756
1757 /* Locate the main sequence */
1758 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1759 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1760 main_e = main_e >> sb->s_blocksize_bits;
1761 main_e += main_s - 1;
1762
1763 /* Locate the reserve sequence */
1764 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1765 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1766 reserve_e = reserve_e >> sb->s_blocksize_bits;
1767 reserve_e += reserve_s - 1;
1768
1769 /* Process the main & reserve sequences */
1770 /* responsible for finding the PartitionDesc(s) */
1771 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1772 if (ret != -EAGAIN)
1773 return ret;
1774 udf_sb_free_partitions(sb);
1775 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1776 if (ret < 0) {
1777 udf_sb_free_partitions(sb);
1778 /* No sequence was OK, return -EIO */
1779 if (ret == -EAGAIN)
1780 ret = -EIO;
1781 }
1782 return ret;
1783}
1784
1785/*
1786 * Check whether there is an anchor block in the given block and
1787 * load Volume Descriptor Sequence if so.
1788 *
1789 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1790 * block
1791 */
1792static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1793 struct kernel_lb_addr *fileset)
1794{
1795 struct buffer_head *bh;
1796 uint16_t ident;
1797 int ret;
1798
1799 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1800 udf_fixed_to_variable(block) >=
1801 i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1802 return -EAGAIN;
1803
1804 bh = udf_read_tagged(sb, block, block, &ident);
1805 if (!bh)
1806 return -EAGAIN;
1807 if (ident != TAG_IDENT_AVDP) {
1808 brelse(bh);
1809 return -EAGAIN;
1810 }
1811 ret = udf_load_sequence(sb, bh, fileset);
1812 brelse(bh);
1813 return ret;
1814}
1815
1816/*
1817 * Search for an anchor volume descriptor pointer.
1818 *
1819 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1820 * of anchors.
1821 */
1822static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1823 struct kernel_lb_addr *fileset)
1824{
1825 sector_t last[6];
1826 int i;
1827 struct udf_sb_info *sbi = UDF_SB(sb);
1828 int last_count = 0;
1829 int ret;
1830
1831 /* First try user provided anchor */
1832 if (sbi->s_anchor) {
1833 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1834 if (ret != -EAGAIN)
1835 return ret;
1836 }
1837 /*
1838 * according to spec, anchor is in either:
1839 * block 256
1840 * lastblock-256
1841 * lastblock
1842 * however, if the disc isn't closed, it could be 512.
1843 */
1844 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1845 if (ret != -EAGAIN)
1846 return ret;
1847 /*
1848 * The trouble is which block is the last one. Drives often misreport
1849 * this so we try various possibilities.
1850 */
1851 last[last_count++] = *lastblock;
1852 if (*lastblock >= 1)
1853 last[last_count++] = *lastblock - 1;
1854 last[last_count++] = *lastblock + 1;
1855 if (*lastblock >= 2)
1856 last[last_count++] = *lastblock - 2;
1857 if (*lastblock >= 150)
1858 last[last_count++] = *lastblock - 150;
1859 if (*lastblock >= 152)
1860 last[last_count++] = *lastblock - 152;
1861
1862 for (i = 0; i < last_count; i++) {
1863 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1864 sb->s_blocksize_bits)
1865 continue;
1866 ret = udf_check_anchor_block(sb, last[i], fileset);
1867 if (ret != -EAGAIN) {
1868 if (!ret)
1869 *lastblock = last[i];
1870 return ret;
1871 }
1872 if (last[i] < 256)
1873 continue;
1874 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1875 if (ret != -EAGAIN) {
1876 if (!ret)
1877 *lastblock = last[i];
1878 return ret;
1879 }
1880 }
1881
1882 /* Finally try block 512 in case media is open */
1883 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1884}
1885
1886/*
1887 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1888 * area specified by it. The function expects sbi->s_lastblock to be the last
1889 * block on the media.
1890 *
1891 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1892 * was not found.
1893 */
1894static int udf_find_anchor(struct super_block *sb,
1895 struct kernel_lb_addr *fileset)
1896{
1897 struct udf_sb_info *sbi = UDF_SB(sb);
1898 sector_t lastblock = sbi->s_last_block;
1899 int ret;
1900
1901 ret = udf_scan_anchors(sb, &lastblock, fileset);
1902 if (ret != -EAGAIN)
1903 goto out;
1904
1905 /* No anchor found? Try VARCONV conversion of block numbers */
1906 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1907 lastblock = udf_variable_to_fixed(sbi->s_last_block);
1908 /* Firstly, we try to not convert number of the last block */
1909 ret = udf_scan_anchors(sb, &lastblock, fileset);
1910 if (ret != -EAGAIN)
1911 goto out;
1912
1913 lastblock = sbi->s_last_block;
1914 /* Secondly, we try with converted number of the last block */
1915 ret = udf_scan_anchors(sb, &lastblock, fileset);
1916 if (ret < 0) {
1917 /* VARCONV didn't help. Clear it. */
1918 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1919 }
1920out:
1921 if (ret == 0)
1922 sbi->s_last_block = lastblock;
1923 return ret;
1924}
1925
1926/*
1927 * Check Volume Structure Descriptor, find Anchor block and load Volume
1928 * Descriptor Sequence.
1929 *
1930 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1931 * block was not found.
1932 */
1933static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1934 int silent, struct kernel_lb_addr *fileset)
1935{
1936 struct udf_sb_info *sbi = UDF_SB(sb);
1937 loff_t nsr_off;
1938 int ret;
1939
1940 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1941 if (!silent)
1942 udf_warn(sb, "Bad block size\n");
1943 return -EINVAL;
1944 }
1945 sbi->s_last_block = uopt->lastblock;
1946 if (!uopt->novrs) {
1947 /* Check that it is NSR02 compliant */
1948 nsr_off = udf_check_vsd(sb);
1949 if (!nsr_off) {
1950 if (!silent)
1951 udf_warn(sb, "No VRS found\n");
1952 return -EINVAL;
1953 }
1954 if (nsr_off == -1)
1955 udf_debug("Failed to read sector at offset %d. "
1956 "Assuming open disc. Skipping validity "
1957 "check\n", VSD_FIRST_SECTOR_OFFSET);
1958 if (!sbi->s_last_block)
1959 sbi->s_last_block = udf_get_last_block(sb);
1960 } else {
1961 udf_debug("Validity check skipped because of novrs option\n");
1962 }
1963
1964 /* Look for anchor block and load Volume Descriptor Sequence */
1965 sbi->s_anchor = uopt->anchor;
1966 ret = udf_find_anchor(sb, fileset);
1967 if (ret < 0) {
1968 if (!silent && ret == -EAGAIN)
1969 udf_warn(sb, "No anchor found\n");
1970 return ret;
1971 }
1972 return 0;
1973}
1974
1975static void udf_open_lvid(struct super_block *sb)
1976{
1977 struct udf_sb_info *sbi = UDF_SB(sb);
1978 struct buffer_head *bh = sbi->s_lvid_bh;
1979 struct logicalVolIntegrityDesc *lvid;
1980 struct logicalVolIntegrityDescImpUse *lvidiu;
1981 struct timespec ts;
1982
1983 if (!bh)
1984 return;
1985 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1986 lvidiu = udf_sb_lvidiu(sb);
1987 if (!lvidiu)
1988 return;
1989
1990 mutex_lock(&sbi->s_alloc_mutex);
1991 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1992 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1993 ktime_get_real_ts(&ts);
1994 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
1995 if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
1996 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1997 else
1998 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
1999
2000 lvid->descTag.descCRC = cpu_to_le16(
2001 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2002 le16_to_cpu(lvid->descTag.descCRCLength)));
2003
2004 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2005 mark_buffer_dirty(bh);
2006 sbi->s_lvid_dirty = 0;
2007 mutex_unlock(&sbi->s_alloc_mutex);
2008 /* Make opening of filesystem visible on the media immediately */
2009 sync_dirty_buffer(bh);
2010}
2011
2012static void udf_close_lvid(struct super_block *sb)
2013{
2014 struct udf_sb_info *sbi = UDF_SB(sb);
2015 struct buffer_head *bh = sbi->s_lvid_bh;
2016 struct logicalVolIntegrityDesc *lvid;
2017 struct logicalVolIntegrityDescImpUse *lvidiu;
2018 struct timespec ts;
2019
2020 if (!bh)
2021 return;
2022 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2023 lvidiu = udf_sb_lvidiu(sb);
2024 if (!lvidiu)
2025 return;
2026
2027 mutex_lock(&sbi->s_alloc_mutex);
2028 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2029 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2030 ktime_get_real_ts(&ts);
2031 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2032 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2033 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2034 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2035 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2036 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2037 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2038 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2039 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2040
2041 lvid->descTag.descCRC = cpu_to_le16(
2042 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2043 le16_to_cpu(lvid->descTag.descCRCLength)));
2044
2045 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2046 /*
2047 * We set buffer uptodate unconditionally here to avoid spurious
2048 * warnings from mark_buffer_dirty() when previous EIO has marked
2049 * the buffer as !uptodate
2050 */
2051 set_buffer_uptodate(bh);
2052 mark_buffer_dirty(bh);
2053 sbi->s_lvid_dirty = 0;
2054 mutex_unlock(&sbi->s_alloc_mutex);
2055 /* Make closing of filesystem visible on the media immediately */
2056 sync_dirty_buffer(bh);
2057}
2058
2059u64 lvid_get_unique_id(struct super_block *sb)
2060{
2061 struct buffer_head *bh;
2062 struct udf_sb_info *sbi = UDF_SB(sb);
2063 struct logicalVolIntegrityDesc *lvid;
2064 struct logicalVolHeaderDesc *lvhd;
2065 u64 uniqueID;
2066 u64 ret;
2067
2068 bh = sbi->s_lvid_bh;
2069 if (!bh)
2070 return 0;
2071
2072 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2073 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2074
2075 mutex_lock(&sbi->s_alloc_mutex);
2076 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2077 if (!(++uniqueID & 0xFFFFFFFF))
2078 uniqueID += 16;
2079 lvhd->uniqueID = cpu_to_le64(uniqueID);
2080 mutex_unlock(&sbi->s_alloc_mutex);
2081 mark_buffer_dirty(bh);
2082
2083 return ret;
2084}
2085
2086static int udf_fill_super(struct super_block *sb, void *options, int silent)
2087{
2088 int ret = -EINVAL;
2089 struct inode *inode = NULL;
2090 struct udf_options uopt;
2091 struct kernel_lb_addr rootdir, fileset;
2092 struct udf_sb_info *sbi;
2093 bool lvid_open = false;
2094
2095 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2096 /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2097 uopt.uid = make_kuid(current_user_ns(), overflowuid);
2098 uopt.gid = make_kgid(current_user_ns(), overflowgid);
2099 uopt.umask = 0;
2100 uopt.fmode = UDF_INVALID_MODE;
2101 uopt.dmode = UDF_INVALID_MODE;
2102 uopt.nls_map = NULL;
2103
2104 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2105 if (!sbi)
2106 return -ENOMEM;
2107
2108 sb->s_fs_info = sbi;
2109
2110 mutex_init(&sbi->s_alloc_mutex);
2111
2112 if (!udf_parse_options((char *)options, &uopt, false))
2113 goto parse_options_failure;
2114
2115 if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2116 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2117 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2118 goto parse_options_failure;
2119 }
2120#ifdef CONFIG_UDF_NLS
2121 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2122 uopt.nls_map = load_nls_default();
2123 if (!uopt.nls_map)
2124 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2125 else
2126 udf_debug("Using default NLS map\n");
2127 }
2128#endif
2129 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2130 uopt.flags |= (1 << UDF_FLAG_UTF8);
2131
2132 fileset.logicalBlockNum = 0xFFFFFFFF;
2133 fileset.partitionReferenceNum = 0xFFFF;
2134
2135 sbi->s_flags = uopt.flags;
2136 sbi->s_uid = uopt.uid;
2137 sbi->s_gid = uopt.gid;
2138 sbi->s_umask = uopt.umask;
2139 sbi->s_fmode = uopt.fmode;
2140 sbi->s_dmode = uopt.dmode;
2141 sbi->s_nls_map = uopt.nls_map;
2142 rwlock_init(&sbi->s_cred_lock);
2143
2144 if (uopt.session == 0xFFFFFFFF)
2145 sbi->s_session = udf_get_last_session(sb);
2146 else
2147 sbi->s_session = uopt.session;
2148
2149 udf_debug("Multi-session=%d\n", sbi->s_session);
2150
2151 /* Fill in the rest of the superblock */
2152 sb->s_op = &udf_sb_ops;
2153 sb->s_export_op = &udf_export_ops;
2154
2155 sb->s_magic = UDF_SUPER_MAGIC;
2156 sb->s_time_gran = 1000;
2157
2158 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2159 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2160 } else {
2161 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2162 while (uopt.blocksize <= 4096) {
2163 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2164 if (ret < 0) {
2165 if (!silent && ret != -EACCES) {
2166 pr_notice("Scanning with blocksize %u failed\n",
2167 uopt.blocksize);
2168 }
2169 brelse(sbi->s_lvid_bh);
2170 sbi->s_lvid_bh = NULL;
2171 /*
2172 * EACCES is special - we want to propagate to
2173 * upper layers that we cannot handle RW mount.
2174 */
2175 if (ret == -EACCES)
2176 break;
2177 } else
2178 break;
2179
2180 uopt.blocksize <<= 1;
2181 }
2182 }
2183 if (ret < 0) {
2184 if (ret == -EAGAIN) {
2185 udf_warn(sb, "No partition found (1)\n");
2186 ret = -EINVAL;
2187 }
2188 goto error_out;
2189 }
2190
2191 udf_debug("Lastblock=%u\n", sbi->s_last_block);
2192
2193 if (sbi->s_lvid_bh) {
2194 struct logicalVolIntegrityDescImpUse *lvidiu =
2195 udf_sb_lvidiu(sb);
2196 uint16_t minUDFReadRev;
2197 uint16_t minUDFWriteRev;
2198
2199 if (!lvidiu) {
2200 ret = -EINVAL;
2201 goto error_out;
2202 }
2203 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2204 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2205 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2206 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2207 minUDFReadRev,
2208 UDF_MAX_READ_VERSION);
2209 ret = -EINVAL;
2210 goto error_out;
2211 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2212 !sb_rdonly(sb)) {
2213 ret = -EACCES;
2214 goto error_out;
2215 }
2216
2217 sbi->s_udfrev = minUDFWriteRev;
2218
2219 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2220 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2221 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2222 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2223 }
2224
2225 if (!sbi->s_partitions) {
2226 udf_warn(sb, "No partition found (2)\n");
2227 ret = -EINVAL;
2228 goto error_out;
2229 }
2230
2231 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2232 UDF_PART_FLAG_READ_ONLY &&
2233 !sb_rdonly(sb)) {
2234 ret = -EACCES;
2235 goto error_out;
2236 }
2237
2238 if (udf_find_fileset(sb, &fileset, &rootdir)) {
2239 udf_warn(sb, "No fileset found\n");
2240 ret = -EINVAL;
2241 goto error_out;
2242 }
2243
2244 if (!silent) {
2245 struct timestamp ts;
2246 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2247 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2248 sbi->s_volume_ident,
2249 le16_to_cpu(ts.year), ts.month, ts.day,
2250 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2251 }
2252 if (!sb_rdonly(sb)) {
2253 udf_open_lvid(sb);
2254 lvid_open = true;
2255 }
2256
2257 /* Assign the root inode */
2258 /* assign inodes by physical block number */
2259 /* perhaps it's not extensible enough, but for now ... */
2260 inode = udf_iget(sb, &rootdir);
2261 if (IS_ERR(inode)) {
2262 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2263 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2264 ret = PTR_ERR(inode);
2265 goto error_out;
2266 }
2267
2268 /* Allocate a dentry for the root inode */
2269 sb->s_root = d_make_root(inode);
2270 if (!sb->s_root) {
2271 udf_err(sb, "Couldn't allocate root dentry\n");
2272 ret = -ENOMEM;
2273 goto error_out;
2274 }
2275 sb->s_maxbytes = MAX_LFS_FILESIZE;
2276 sb->s_max_links = UDF_MAX_LINKS;
2277 return 0;
2278
2279error_out:
2280 iput(sbi->s_vat_inode);
2281parse_options_failure:
2282#ifdef CONFIG_UDF_NLS
2283 if (uopt.nls_map)
2284 unload_nls(uopt.nls_map);
2285#endif
2286 if (lvid_open)
2287 udf_close_lvid(sb);
2288 brelse(sbi->s_lvid_bh);
2289 udf_sb_free_partitions(sb);
2290 kfree(sbi);
2291 sb->s_fs_info = NULL;
2292
2293 return ret;
2294}
2295
2296void _udf_err(struct super_block *sb, const char *function,
2297 const char *fmt, ...)
2298{
2299 struct va_format vaf;
2300 va_list args;
2301
2302 va_start(args, fmt);
2303
2304 vaf.fmt = fmt;
2305 vaf.va = &args;
2306
2307 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2308
2309 va_end(args);
2310}
2311
2312void _udf_warn(struct super_block *sb, const char *function,
2313 const char *fmt, ...)
2314{
2315 struct va_format vaf;
2316 va_list args;
2317
2318 va_start(args, fmt);
2319
2320 vaf.fmt = fmt;
2321 vaf.va = &args;
2322
2323 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2324
2325 va_end(args);
2326}
2327
2328static void udf_put_super(struct super_block *sb)
2329{
2330 struct udf_sb_info *sbi;
2331
2332 sbi = UDF_SB(sb);
2333
2334 iput(sbi->s_vat_inode);
2335#ifdef CONFIG_UDF_NLS
2336 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2337 unload_nls(sbi->s_nls_map);
2338#endif
2339 if (!sb_rdonly(sb))
2340 udf_close_lvid(sb);
2341 brelse(sbi->s_lvid_bh);
2342 udf_sb_free_partitions(sb);
2343 mutex_destroy(&sbi->s_alloc_mutex);
2344 kfree(sb->s_fs_info);
2345 sb->s_fs_info = NULL;
2346}
2347
2348static int udf_sync_fs(struct super_block *sb, int wait)
2349{
2350 struct udf_sb_info *sbi = UDF_SB(sb);
2351
2352 mutex_lock(&sbi->s_alloc_mutex);
2353 if (sbi->s_lvid_dirty) {
2354 /*
2355 * Blockdevice will be synced later so we don't have to submit
2356 * the buffer for IO
2357 */
2358 mark_buffer_dirty(sbi->s_lvid_bh);
2359 sbi->s_lvid_dirty = 0;
2360 }
2361 mutex_unlock(&sbi->s_alloc_mutex);
2362
2363 return 0;
2364}
2365
2366static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2367{
2368 struct super_block *sb = dentry->d_sb;
2369 struct udf_sb_info *sbi = UDF_SB(sb);
2370 struct logicalVolIntegrityDescImpUse *lvidiu;
2371 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2372
2373 lvidiu = udf_sb_lvidiu(sb);
2374 buf->f_type = UDF_SUPER_MAGIC;
2375 buf->f_bsize = sb->s_blocksize;
2376 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2377 buf->f_bfree = udf_count_free(sb);
2378 buf->f_bavail = buf->f_bfree;
2379 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2380 le32_to_cpu(lvidiu->numDirs)) : 0)
2381 + buf->f_bfree;
2382 buf->f_ffree = buf->f_bfree;
2383 buf->f_namelen = UDF_NAME_LEN;
2384 buf->f_fsid.val[0] = (u32)id;
2385 buf->f_fsid.val[1] = (u32)(id >> 32);
2386
2387 return 0;
2388}
2389
2390static unsigned int udf_count_free_bitmap(struct super_block *sb,
2391 struct udf_bitmap *bitmap)
2392{
2393 struct buffer_head *bh = NULL;
2394 unsigned int accum = 0;
2395 int index;
2396 udf_pblk_t block = 0, newblock;
2397 struct kernel_lb_addr loc;
2398 uint32_t bytes;
2399 uint8_t *ptr;
2400 uint16_t ident;
2401 struct spaceBitmapDesc *bm;
2402
2403 loc.logicalBlockNum = bitmap->s_extPosition;
2404 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2405 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2406
2407 if (!bh) {
2408 udf_err(sb, "udf_count_free failed\n");
2409 goto out;
2410 } else if (ident != TAG_IDENT_SBD) {
2411 brelse(bh);
2412 udf_err(sb, "udf_count_free failed\n");
2413 goto out;
2414 }
2415
2416 bm = (struct spaceBitmapDesc *)bh->b_data;
2417 bytes = le32_to_cpu(bm->numOfBytes);
2418 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2419 ptr = (uint8_t *)bh->b_data;
2420
2421 while (bytes > 0) {
2422 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2423 accum += bitmap_weight((const unsigned long *)(ptr + index),
2424 cur_bytes * 8);
2425 bytes -= cur_bytes;
2426 if (bytes) {
2427 brelse(bh);
2428 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2429 bh = udf_tread(sb, newblock);
2430 if (!bh) {
2431 udf_debug("read failed\n");
2432 goto out;
2433 }
2434 index = 0;
2435 ptr = (uint8_t *)bh->b_data;
2436 }
2437 }
2438 brelse(bh);
2439out:
2440 return accum;
2441}
2442
2443static unsigned int udf_count_free_table(struct super_block *sb,
2444 struct inode *table)
2445{
2446 unsigned int accum = 0;
2447 uint32_t elen;
2448 struct kernel_lb_addr eloc;
2449 int8_t etype;
2450 struct extent_position epos;
2451
2452 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2453 epos.block = UDF_I(table)->i_location;
2454 epos.offset = sizeof(struct unallocSpaceEntry);
2455 epos.bh = NULL;
2456
2457 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2458 accum += (elen >> table->i_sb->s_blocksize_bits);
2459
2460 brelse(epos.bh);
2461 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2462
2463 return accum;
2464}
2465
2466static unsigned int udf_count_free(struct super_block *sb)
2467{
2468 unsigned int accum = 0;
2469 struct udf_sb_info *sbi;
2470 struct udf_part_map *map;
2471
2472 sbi = UDF_SB(sb);
2473 if (sbi->s_lvid_bh) {
2474 struct logicalVolIntegrityDesc *lvid =
2475 (struct logicalVolIntegrityDesc *)
2476 sbi->s_lvid_bh->b_data;
2477 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2478 accum = le32_to_cpu(
2479 lvid->freeSpaceTable[sbi->s_partition]);
2480 if (accum == 0xFFFFFFFF)
2481 accum = 0;
2482 }
2483 }
2484
2485 if (accum)
2486 return accum;
2487
2488 map = &sbi->s_partmaps[sbi->s_partition];
2489 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2490 accum += udf_count_free_bitmap(sb,
2491 map->s_uspace.s_bitmap);
2492 }
2493 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2494 accum += udf_count_free_bitmap(sb,
2495 map->s_fspace.s_bitmap);
2496 }
2497 if (accum)
2498 return accum;
2499
2500 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2501 accum += udf_count_free_table(sb,
2502 map->s_uspace.s_table);
2503 }
2504 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2505 accum += udf_count_free_table(sb,
2506 map->s_fspace.s_table);
2507 }
2508
2509 return accum;
2510}
2511
2512MODULE_AUTHOR("Ben Fennema");
2513MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2514MODULE_LICENSE("GPL");
2515module_init(init_udf_fs)
2516module_exit(exit_udf_fs)