Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
 
   3 * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/slab.h>
   8#include <linux/highmem.h>
   9#include <linux/pagemap.h>
  10#include <asm/byteorder.h>
  11#include <linux/swap.h>
 
  12#include <linux/mpage.h>
  13#include <linux/quotaops.h>
  14#include <linux/blkdev.h>
  15#include <linux/uio.h>
  16#include <linux/mm.h>
  17
  18#include <cluster/masklog.h>
  19
  20#include "ocfs2.h"
  21
  22#include "alloc.h"
  23#include "aops.h"
  24#include "dlmglue.h"
  25#include "extent_map.h"
  26#include "file.h"
  27#include "inode.h"
  28#include "journal.h"
  29#include "suballoc.h"
  30#include "super.h"
  31#include "symlink.h"
  32#include "refcounttree.h"
  33#include "ocfs2_trace.h"
  34
  35#include "buffer_head_io.h"
  36#include "dir.h"
  37#include "namei.h"
  38#include "sysfile.h"
  39
  40static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
  41				   struct buffer_head *bh_result, int create)
  42{
  43	int err = -EIO;
  44	int status;
  45	struct ocfs2_dinode *fe = NULL;
  46	struct buffer_head *bh = NULL;
  47	struct buffer_head *buffer_cache_bh = NULL;
  48	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  49	void *kaddr;
  50
  51	trace_ocfs2_symlink_get_block(
  52			(unsigned long long)OCFS2_I(inode)->ip_blkno,
  53			(unsigned long long)iblock, bh_result, create);
  54
  55	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
  56
  57	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
  58		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
  59		     (unsigned long long)iblock);
  60		goto bail;
  61	}
  62
  63	status = ocfs2_read_inode_block(inode, &bh);
  64	if (status < 0) {
  65		mlog_errno(status);
  66		goto bail;
  67	}
  68	fe = (struct ocfs2_dinode *) bh->b_data;
  69
  70	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
  71						    le32_to_cpu(fe->i_clusters))) {
  72		err = -ENOMEM;
  73		mlog(ML_ERROR, "block offset is outside the allocated size: "
  74		     "%llu\n", (unsigned long long)iblock);
  75		goto bail;
  76	}
  77
  78	/* We don't use the page cache to create symlink data, so if
  79	 * need be, copy it over from the buffer cache. */
  80	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
  81		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
  82			    iblock;
  83		buffer_cache_bh = sb_getblk(osb->sb, blkno);
  84		if (!buffer_cache_bh) {
  85			err = -ENOMEM;
  86			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
  87			goto bail;
  88		}
  89
  90		/* we haven't locked out transactions, so a commit
  91		 * could've happened. Since we've got a reference on
  92		 * the bh, even if it commits while we're doing the
  93		 * copy, the data is still good. */
  94		if (buffer_jbd(buffer_cache_bh)
  95		    && ocfs2_inode_is_new(inode)) {
  96			kaddr = kmap_atomic(bh_result->b_page);
  97			if (!kaddr) {
  98				mlog(ML_ERROR, "couldn't kmap!\n");
  99				goto bail;
 100			}
 101			memcpy(kaddr + (bh_result->b_size * iblock),
 102			       buffer_cache_bh->b_data,
 103			       bh_result->b_size);
 104			kunmap_atomic(kaddr);
 105			set_buffer_uptodate(bh_result);
 106		}
 107		brelse(buffer_cache_bh);
 108	}
 109
 110	map_bh(bh_result, inode->i_sb,
 111	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
 112
 113	err = 0;
 114
 115bail:
 116	brelse(bh);
 117
 118	return err;
 119}
 120
 121static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
 122		    struct buffer_head *bh_result, int create)
 123{
 124	int ret = 0;
 125	struct ocfs2_inode_info *oi = OCFS2_I(inode);
 126
 127	down_read(&oi->ip_alloc_sem);
 128	ret = ocfs2_get_block(inode, iblock, bh_result, create);
 129	up_read(&oi->ip_alloc_sem);
 130
 131	return ret;
 132}
 133
 134int ocfs2_get_block(struct inode *inode, sector_t iblock,
 135		    struct buffer_head *bh_result, int create)
 136{
 137	int err = 0;
 138	unsigned int ext_flags;
 139	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
 140	u64 p_blkno, count, past_eof;
 141	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 142
 143	trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
 144			      (unsigned long long)iblock, bh_result, create);
 145
 146	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
 147		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
 148		     inode, inode->i_ino);
 149
 150	if (S_ISLNK(inode->i_mode)) {
 151		/* this always does I/O for some reason. */
 152		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
 153		goto bail;
 154	}
 155
 156	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
 157					  &ext_flags);
 158	if (err) {
 159		mlog(ML_ERROR, "get_blocks() failed, inode: 0x%p, "
 160		     "block: %llu\n", inode, (unsigned long long)iblock);
 
 161		goto bail;
 162	}
 163
 164	if (max_blocks < count)
 165		count = max_blocks;
 166
 167	/*
 168	 * ocfs2 never allocates in this function - the only time we
 169	 * need to use BH_New is when we're extending i_size on a file
 170	 * system which doesn't support holes, in which case BH_New
 171	 * allows __block_write_begin() to zero.
 172	 *
 173	 * If we see this on a sparse file system, then a truncate has
 174	 * raced us and removed the cluster. In this case, we clear
 175	 * the buffers dirty and uptodate bits and let the buffer code
 176	 * ignore it as a hole.
 177	 */
 178	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
 179		clear_buffer_dirty(bh_result);
 180		clear_buffer_uptodate(bh_result);
 181		goto bail;
 182	}
 183
 184	/* Treat the unwritten extent as a hole for zeroing purposes. */
 185	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
 186		map_bh(bh_result, inode->i_sb, p_blkno);
 187
 188	bh_result->b_size = count << inode->i_blkbits;
 189
 190	if (!ocfs2_sparse_alloc(osb)) {
 191		if (p_blkno == 0) {
 192			err = -EIO;
 193			mlog(ML_ERROR,
 194			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
 195			     (unsigned long long)iblock,
 196			     (unsigned long long)p_blkno,
 197			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
 198			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
 199			dump_stack();
 200			goto bail;
 201		}
 202	}
 203
 204	past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
 205
 206	trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
 207				  (unsigned long long)past_eof);
 208	if (create && (iblock >= past_eof))
 209		set_buffer_new(bh_result);
 210
 211bail:
 212	if (err < 0)
 213		err = -EIO;
 214
 215	return err;
 216}
 217
 218int ocfs2_read_inline_data(struct inode *inode, struct page *page,
 219			   struct buffer_head *di_bh)
 220{
 221	void *kaddr;
 222	loff_t size;
 223	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
 224
 225	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
 226		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
 227			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
 228		return -EROFS;
 229	}
 230
 231	size = i_size_read(inode);
 232
 233	if (size > PAGE_SIZE ||
 234	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
 235		ocfs2_error(inode->i_sb,
 236			    "Inode %llu has with inline data has bad size: %Lu\n",
 237			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
 238			    (unsigned long long)size);
 239		return -EROFS;
 240	}
 241
 242	kaddr = kmap_atomic(page);
 243	if (size)
 244		memcpy(kaddr, di->id2.i_data.id_data, size);
 245	/* Clear the remaining part of the page */
 246	memset(kaddr + size, 0, PAGE_SIZE - size);
 247	flush_dcache_page(page);
 248	kunmap_atomic(kaddr);
 249
 250	SetPageUptodate(page);
 251
 252	return 0;
 253}
 254
 255static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
 256{
 257	int ret;
 258	struct buffer_head *di_bh = NULL;
 259
 260	BUG_ON(!PageLocked(page));
 261	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
 262
 263	ret = ocfs2_read_inode_block(inode, &di_bh);
 264	if (ret) {
 265		mlog_errno(ret);
 266		goto out;
 267	}
 268
 269	ret = ocfs2_read_inline_data(inode, page, di_bh);
 270out:
 271	unlock_page(page);
 272
 273	brelse(di_bh);
 274	return ret;
 275}
 276
 277static int ocfs2_read_folio(struct file *file, struct folio *folio)
 278{
 279	struct inode *inode = folio->mapping->host;
 280	struct ocfs2_inode_info *oi = OCFS2_I(inode);
 281	loff_t start = folio_pos(folio);
 282	int ret, unlock = 1;
 283
 284	trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, folio->index);
 
 285
 286	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, &folio->page);
 287	if (ret != 0) {
 288		if (ret == AOP_TRUNCATED_PAGE)
 289			unlock = 0;
 290		mlog_errno(ret);
 291		goto out;
 292	}
 293
 294	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
 295		/*
 296		 * Unlock the folio and cycle ip_alloc_sem so that we don't
 297		 * busyloop waiting for ip_alloc_sem to unlock
 298		 */
 299		ret = AOP_TRUNCATED_PAGE;
 300		folio_unlock(folio);
 301		unlock = 0;
 302		down_read(&oi->ip_alloc_sem);
 303		up_read(&oi->ip_alloc_sem);
 304		goto out_inode_unlock;
 305	}
 306
 307	/*
 308	 * i_size might have just been updated as we grabed the meta lock.  We
 309	 * might now be discovering a truncate that hit on another node.
 310	 * block_read_full_folio->get_block freaks out if it is asked to read
 311	 * beyond the end of a file, so we check here.  Callers
 312	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
 313	 * and notice that the folio they just read isn't needed.
 314	 *
 315	 * XXX sys_readahead() seems to get that wrong?
 316	 */
 317	if (start >= i_size_read(inode)) {
 318		folio_zero_segment(folio, 0, folio_size(folio));
 319		folio_mark_uptodate(folio);
 320		ret = 0;
 321		goto out_alloc;
 322	}
 323
 324	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 325		ret = ocfs2_readpage_inline(inode, &folio->page);
 326	else
 327		ret = block_read_full_folio(folio, ocfs2_get_block);
 328	unlock = 0;
 329
 330out_alloc:
 331	up_read(&oi->ip_alloc_sem);
 332out_inode_unlock:
 333	ocfs2_inode_unlock(inode, 0);
 334out:
 335	if (unlock)
 336		folio_unlock(folio);
 337	return ret;
 338}
 339
 340/*
 341 * This is used only for read-ahead. Failures or difficult to handle
 342 * situations are safe to ignore.
 343 *
 344 * Right now, we don't bother with BH_Boundary - in-inode extent lists
 345 * are quite large (243 extents on 4k blocks), so most inodes don't
 346 * grow out to a tree. If need be, detecting boundary extents could
 347 * trivially be added in a future version of ocfs2_get_block().
 348 */
 349static void ocfs2_readahead(struct readahead_control *rac)
 
 350{
 351	int ret;
 352	struct inode *inode = rac->mapping->host;
 353	struct ocfs2_inode_info *oi = OCFS2_I(inode);
 
 
 354
 355	/*
 356	 * Use the nonblocking flag for the dlm code to avoid page
 357	 * lock inversion, but don't bother with retrying.
 358	 */
 359	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
 360	if (ret)
 361		return;
 362
 363	if (down_read_trylock(&oi->ip_alloc_sem) == 0)
 364		goto out_unlock;
 
 
 365
 366	/*
 367	 * Don't bother with inline-data. There isn't anything
 368	 * to read-ahead in that case anyway...
 369	 */
 370	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 371		goto out_up;
 372
 373	/*
 374	 * Check whether a remote node truncated this file - we just
 375	 * drop out in that case as it's not worth handling here.
 376	 */
 377	if (readahead_pos(rac) >= i_size_read(inode))
 378		goto out_up;
 
 
 379
 380	mpage_readahead(rac, ocfs2_get_block);
 381
 382out_up:
 383	up_read(&oi->ip_alloc_sem);
 384out_unlock:
 
 385	ocfs2_inode_unlock(inode, 0);
 
 
 386}
 387
 388/* Note: Because we don't support holes, our allocation has
 389 * already happened (allocation writes zeros to the file data)
 390 * so we don't have to worry about ordered writes in
 391 * ocfs2_writepages.
 392 *
 393 * ->writepages is called during the process of invalidating the page cache
 394 * during blocked lock processing.  It can't block on any cluster locks
 395 * to during block mapping.  It's relying on the fact that the block
 396 * mapping can't have disappeared under the dirty pages that it is
 397 * being asked to write back.
 398 */
 399static int ocfs2_writepages(struct address_space *mapping,
 400		struct writeback_control *wbc)
 401{
 402	return mpage_writepages(mapping, wbc, ocfs2_get_block);
 
 
 
 
 403}
 404
 405/* Taken from ext3. We don't necessarily need the full blown
 406 * functionality yet, but IMHO it's better to cut and paste the whole
 407 * thing so we can avoid introducing our own bugs (and easily pick up
 408 * their fixes when they happen) --Mark */
 409int walk_page_buffers(	handle_t *handle,
 410			struct buffer_head *head,
 411			unsigned from,
 412			unsigned to,
 413			int *partial,
 414			int (*fn)(	handle_t *handle,
 415					struct buffer_head *bh))
 416{
 417	struct buffer_head *bh;
 418	unsigned block_start, block_end;
 419	unsigned blocksize = head->b_size;
 420	int err, ret = 0;
 421	struct buffer_head *next;
 422
 423	for (	bh = head, block_start = 0;
 424		ret == 0 && (bh != head || !block_start);
 425	    	block_start = block_end, bh = next)
 426	{
 427		next = bh->b_this_page;
 428		block_end = block_start + blocksize;
 429		if (block_end <= from || block_start >= to) {
 430			if (partial && !buffer_uptodate(bh))
 431				*partial = 1;
 432			continue;
 433		}
 434		err = (*fn)(handle, bh);
 435		if (!ret)
 436			ret = err;
 437	}
 438	return ret;
 439}
 440
 441static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
 442{
 443	sector_t status;
 444	u64 p_blkno = 0;
 445	int err = 0;
 446	struct inode *inode = mapping->host;
 447
 448	trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
 449			 (unsigned long long)block);
 450
 451	/*
 452	 * The swap code (ab-)uses ->bmap to get a block mapping and then
 453	 * bypasseѕ the file system for actual I/O.  We really can't allow
 454	 * that on refcounted inodes, so we have to skip out here.  And yes,
 455	 * 0 is the magic code for a bmap error..
 456	 */
 457	if (ocfs2_is_refcount_inode(inode))
 458		return 0;
 459
 460	/* We don't need to lock journal system files, since they aren't
 461	 * accessed concurrently from multiple nodes.
 462	 */
 463	if (!INODE_JOURNAL(inode)) {
 464		err = ocfs2_inode_lock(inode, NULL, 0);
 465		if (err) {
 466			if (err != -ENOENT)
 467				mlog_errno(err);
 468			goto bail;
 469		}
 470		down_read(&OCFS2_I(inode)->ip_alloc_sem);
 471	}
 472
 473	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
 474		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
 475						  NULL);
 476
 477	if (!INODE_JOURNAL(inode)) {
 478		up_read(&OCFS2_I(inode)->ip_alloc_sem);
 479		ocfs2_inode_unlock(inode, 0);
 480	}
 481
 482	if (err) {
 483		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
 484		     (unsigned long long)block);
 485		mlog_errno(err);
 486		goto bail;
 487	}
 488
 489bail:
 490	status = err ? 0 : p_blkno;
 491
 492	return status;
 493}
 494
 495static bool ocfs2_release_folio(struct folio *folio, gfp_t wait)
 496{
 497	if (!folio_buffers(folio))
 498		return false;
 499	return try_to_free_buffers(folio);
 500}
 501
 502static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
 503					    u32 cpos,
 504					    unsigned int *start,
 505					    unsigned int *end)
 506{
 507	unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
 508
 509	if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
 510		unsigned int cpp;
 511
 512		cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
 513
 514		cluster_start = cpos % cpp;
 515		cluster_start = cluster_start << osb->s_clustersize_bits;
 516
 517		cluster_end = cluster_start + osb->s_clustersize;
 518	}
 519
 520	BUG_ON(cluster_start > PAGE_SIZE);
 521	BUG_ON(cluster_end > PAGE_SIZE);
 522
 523	if (start)
 524		*start = cluster_start;
 525	if (end)
 526		*end = cluster_end;
 527}
 528
 529/*
 530 * 'from' and 'to' are the region in the page to avoid zeroing.
 531 *
 532 * If pagesize > clustersize, this function will avoid zeroing outside
 533 * of the cluster boundary.
 534 *
 535 * from == to == 0 is code for "zero the entire cluster region"
 536 */
 537static void ocfs2_clear_page_regions(struct page *page,
 538				     struct ocfs2_super *osb, u32 cpos,
 539				     unsigned from, unsigned to)
 540{
 541	void *kaddr;
 542	unsigned int cluster_start, cluster_end;
 543
 544	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
 545
 546	kaddr = kmap_atomic(page);
 547
 548	if (from || to) {
 549		if (from > cluster_start)
 550			memset(kaddr + cluster_start, 0, from - cluster_start);
 551		if (to < cluster_end)
 552			memset(kaddr + to, 0, cluster_end - to);
 553	} else {
 554		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
 555	}
 556
 557	kunmap_atomic(kaddr);
 558}
 559
 560/*
 561 * Nonsparse file systems fully allocate before we get to the write
 562 * code. This prevents ocfs2_write() from tagging the write as an
 563 * allocating one, which means ocfs2_map_page_blocks() might try to
 564 * read-in the blocks at the tail of our file. Avoid reading them by
 565 * testing i_size against each block offset.
 566 */
 567static int ocfs2_should_read_blk(struct inode *inode, struct folio *folio,
 568				 unsigned int block_start)
 569{
 570	u64 offset = folio_pos(folio) + block_start;
 571
 572	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
 573		return 1;
 574
 575	if (i_size_read(inode) > offset)
 576		return 1;
 577
 578	return 0;
 579}
 580
 581/*
 582 * Some of this taken from __block_write_begin(). We already have our
 583 * mapping by now though, and the entire write will be allocating or
 584 * it won't, so not much need to use BH_New.
 585 *
 586 * This will also skip zeroing, which is handled externally.
 587 */
 588int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
 589			  struct inode *inode, unsigned int from,
 590			  unsigned int to, int new)
 591{
 592	struct folio *folio = page_folio(page);
 593	int ret = 0;
 594	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
 595	unsigned int block_end, block_start;
 596	unsigned int bsize = i_blocksize(inode);
 597
 598	head = folio_buffers(folio);
 599	if (!head)
 600		head = create_empty_buffers(folio, bsize, 0);
 601
 
 602	for (bh = head, block_start = 0; bh != head || !block_start;
 603	     bh = bh->b_this_page, block_start += bsize) {
 604		block_end = block_start + bsize;
 605
 606		clear_buffer_new(bh);
 607
 608		/*
 609		 * Ignore blocks outside of our i/o range -
 610		 * they may belong to unallocated clusters.
 611		 */
 612		if (block_start >= to || block_end <= from) {
 613			if (folio_test_uptodate(folio))
 614				set_buffer_uptodate(bh);
 615			continue;
 616		}
 617
 618		/*
 619		 * For an allocating write with cluster size >= page
 620		 * size, we always write the entire page.
 621		 */
 622		if (new)
 623			set_buffer_new(bh);
 624
 625		if (!buffer_mapped(bh)) {
 626			map_bh(bh, inode->i_sb, *p_blkno);
 627			clean_bdev_bh_alias(bh);
 628		}
 629
 630		if (folio_test_uptodate(folio)) {
 631			set_buffer_uptodate(bh);
 
 632		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
 633			   !buffer_new(bh) &&
 634			   ocfs2_should_read_blk(inode, folio, block_start) &&
 635			   (block_start < from || block_end > to)) {
 636			bh_read_nowait(bh, 0);
 637			*wait_bh++=bh;
 638		}
 639
 640		*p_blkno = *p_blkno + 1;
 641	}
 642
 643	/*
 644	 * If we issued read requests - let them complete.
 645	 */
 646	while(wait_bh > wait) {
 647		wait_on_buffer(*--wait_bh);
 648		if (!buffer_uptodate(*wait_bh))
 649			ret = -EIO;
 650	}
 651
 652	if (ret == 0 || !new)
 653		return ret;
 654
 655	/*
 656	 * If we get -EIO above, zero out any newly allocated blocks
 657	 * to avoid exposing stale data.
 658	 */
 659	bh = head;
 660	block_start = 0;
 661	do {
 662		block_end = block_start + bsize;
 663		if (block_end <= from)
 664			goto next_bh;
 665		if (block_start >= to)
 666			break;
 667
 668		folio_zero_range(folio, block_start, bh->b_size);
 669		set_buffer_uptodate(bh);
 670		mark_buffer_dirty(bh);
 671
 672next_bh:
 673		block_start = block_end;
 674		bh = bh->b_this_page;
 675	} while (bh != head);
 676
 677	return ret;
 678}
 679
 680#if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
 681#define OCFS2_MAX_CTXT_PAGES	1
 682#else
 683#define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
 684#endif
 685
 686#define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
 687
 688struct ocfs2_unwritten_extent {
 689	struct list_head	ue_node;
 690	struct list_head	ue_ip_node;
 691	u32			ue_cpos;
 692	u32			ue_phys;
 693};
 694
 695/*
 696 * Describe the state of a single cluster to be written to.
 697 */
 698struct ocfs2_write_cluster_desc {
 699	u32		c_cpos;
 700	u32		c_phys;
 701	/*
 702	 * Give this a unique field because c_phys eventually gets
 703	 * filled.
 704	 */
 705	unsigned	c_new;
 706	unsigned	c_clear_unwritten;
 707	unsigned	c_needs_zero;
 708};
 709
 710struct ocfs2_write_ctxt {
 711	/* Logical cluster position / len of write */
 712	u32				w_cpos;
 713	u32				w_clen;
 714
 715	/* First cluster allocated in a nonsparse extend */
 716	u32				w_first_new_cpos;
 717
 718	/* Type of caller. Must be one of buffer, mmap, direct.  */
 719	ocfs2_write_type_t		w_type;
 720
 721	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
 722
 723	/*
 724	 * This is true if page_size > cluster_size.
 725	 *
 726	 * It triggers a set of special cases during write which might
 727	 * have to deal with allocating writes to partial pages.
 728	 */
 729	unsigned int			w_large_pages;
 730
 731	/*
 732	 * Pages involved in this write.
 733	 *
 734	 * w_target_page is the page being written to by the user.
 735	 *
 736	 * w_pages is an array of pages which always contains
 737	 * w_target_page, and in the case of an allocating write with
 738	 * page_size < cluster size, it will contain zero'd and mapped
 739	 * pages adjacent to w_target_page which need to be written
 740	 * out in so that future reads from that region will get
 741	 * zero's.
 742	 */
 743	unsigned int			w_num_pages;
 744	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
 745	struct page			*w_target_page;
 746
 747	/*
 748	 * w_target_locked is used for page_mkwrite path indicating no unlocking
 749	 * against w_target_page in ocfs2_write_end_nolock.
 750	 */
 751	unsigned int			w_target_locked:1;
 752
 753	/*
 754	 * ocfs2_write_end() uses this to know what the real range to
 755	 * write in the target should be.
 756	 */
 757	unsigned int			w_target_from;
 758	unsigned int			w_target_to;
 759
 760	/*
 761	 * We could use journal_current_handle() but this is cleaner,
 762	 * IMHO -Mark
 763	 */
 764	handle_t			*w_handle;
 765
 766	struct buffer_head		*w_di_bh;
 767
 768	struct ocfs2_cached_dealloc_ctxt w_dealloc;
 769
 770	struct list_head		w_unwritten_list;
 771	unsigned int			w_unwritten_count;
 772};
 773
 774void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
 775{
 776	int i;
 777
 778	for(i = 0; i < num_pages; i++) {
 779		if (pages[i]) {
 780			unlock_page(pages[i]);
 781			mark_page_accessed(pages[i]);
 782			put_page(pages[i]);
 783		}
 784	}
 785}
 786
 787static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
 788{
 789	int i;
 790
 791	/*
 792	 * w_target_locked is only set to true in the page_mkwrite() case.
 793	 * The intent is to allow us to lock the target page from write_begin()
 794	 * to write_end(). The caller must hold a ref on w_target_page.
 795	 */
 796	if (wc->w_target_locked) {
 797		BUG_ON(!wc->w_target_page);
 798		for (i = 0; i < wc->w_num_pages; i++) {
 799			if (wc->w_target_page == wc->w_pages[i]) {
 800				wc->w_pages[i] = NULL;
 801				break;
 802			}
 803		}
 804		mark_page_accessed(wc->w_target_page);
 805		put_page(wc->w_target_page);
 806	}
 807	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
 808}
 809
 810static void ocfs2_free_unwritten_list(struct inode *inode,
 811				 struct list_head *head)
 812{
 813	struct ocfs2_inode_info *oi = OCFS2_I(inode);
 814	struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
 815
 816	list_for_each_entry_safe(ue, tmp, head, ue_node) {
 817		list_del(&ue->ue_node);
 818		spin_lock(&oi->ip_lock);
 819		list_del(&ue->ue_ip_node);
 820		spin_unlock(&oi->ip_lock);
 821		kfree(ue);
 822	}
 823}
 824
 825static void ocfs2_free_write_ctxt(struct inode *inode,
 826				  struct ocfs2_write_ctxt *wc)
 827{
 828	ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
 829	ocfs2_unlock_pages(wc);
 830	brelse(wc->w_di_bh);
 831	kfree(wc);
 832}
 833
 834static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
 835				  struct ocfs2_super *osb, loff_t pos,
 836				  unsigned len, ocfs2_write_type_t type,
 837				  struct buffer_head *di_bh)
 838{
 839	u32 cend;
 840	struct ocfs2_write_ctxt *wc;
 841
 842	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
 843	if (!wc)
 844		return -ENOMEM;
 845
 846	wc->w_cpos = pos >> osb->s_clustersize_bits;
 847	wc->w_first_new_cpos = UINT_MAX;
 848	cend = (pos + len - 1) >> osb->s_clustersize_bits;
 849	wc->w_clen = cend - wc->w_cpos + 1;
 850	get_bh(di_bh);
 851	wc->w_di_bh = di_bh;
 852	wc->w_type = type;
 853
 854	if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
 855		wc->w_large_pages = 1;
 856	else
 857		wc->w_large_pages = 0;
 858
 859	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
 860	INIT_LIST_HEAD(&wc->w_unwritten_list);
 861
 862	*wcp = wc;
 863
 864	return 0;
 865}
 866
 867/*
 868 * If a page has any new buffers, zero them out here, and mark them uptodate
 869 * and dirty so they'll be written out (in order to prevent uninitialised
 870 * block data from leaking). And clear the new bit.
 871 */
 872static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
 873{
 874	unsigned int block_start, block_end;
 875	struct buffer_head *head, *bh;
 876
 877	BUG_ON(!PageLocked(page));
 878	if (!page_has_buffers(page))
 879		return;
 880
 881	bh = head = page_buffers(page);
 882	block_start = 0;
 883	do {
 884		block_end = block_start + bh->b_size;
 885
 886		if (buffer_new(bh)) {
 887			if (block_end > from && block_start < to) {
 888				if (!PageUptodate(page)) {
 889					unsigned start, end;
 890
 891					start = max(from, block_start);
 892					end = min(to, block_end);
 893
 894					zero_user_segment(page, start, end);
 895					set_buffer_uptodate(bh);
 896				}
 897
 898				clear_buffer_new(bh);
 899				mark_buffer_dirty(bh);
 900			}
 901		}
 902
 903		block_start = block_end;
 904		bh = bh->b_this_page;
 905	} while (bh != head);
 906}
 907
 908/*
 909 * Only called when we have a failure during allocating write to write
 910 * zero's to the newly allocated region.
 911 */
 912static void ocfs2_write_failure(struct inode *inode,
 913				struct ocfs2_write_ctxt *wc,
 914				loff_t user_pos, unsigned user_len)
 915{
 916	int i;
 917	unsigned from = user_pos & (PAGE_SIZE - 1),
 918		to = user_pos + user_len;
 919	struct page *tmppage;
 920
 921	if (wc->w_target_page)
 922		ocfs2_zero_new_buffers(wc->w_target_page, from, to);
 923
 924	for(i = 0; i < wc->w_num_pages; i++) {
 925		tmppage = wc->w_pages[i];
 926
 927		if (tmppage && page_has_buffers(tmppage)) {
 928			if (ocfs2_should_order_data(inode))
 929				ocfs2_jbd2_inode_add_write(wc->w_handle, inode,
 930							   user_pos, user_len);
 931
 932			block_commit_write(tmppage, from, to);
 933		}
 934	}
 935}
 936
 937static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
 938					struct ocfs2_write_ctxt *wc,
 939					struct page *page, u32 cpos,
 940					loff_t user_pos, unsigned user_len,
 941					int new)
 942{
 943	int ret;
 944	unsigned int map_from = 0, map_to = 0;
 945	unsigned int cluster_start, cluster_end;
 946	unsigned int user_data_from = 0, user_data_to = 0;
 947
 948	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
 949					&cluster_start, &cluster_end);
 950
 951	/* treat the write as new if the a hole/lseek spanned across
 952	 * the page boundary.
 953	 */
 954	new = new | ((i_size_read(inode) <= page_offset(page)) &&
 955			(page_offset(page) <= user_pos));
 956
 957	if (page == wc->w_target_page) {
 958		map_from = user_pos & (PAGE_SIZE - 1);
 959		map_to = map_from + user_len;
 960
 961		if (new)
 962			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
 963						    cluster_start, cluster_end,
 964						    new);
 965		else
 966			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
 967						    map_from, map_to, new);
 968		if (ret) {
 969			mlog_errno(ret);
 970			goto out;
 971		}
 972
 973		user_data_from = map_from;
 974		user_data_to = map_to;
 975		if (new) {
 976			map_from = cluster_start;
 977			map_to = cluster_end;
 978		}
 979	} else {
 980		/*
 981		 * If we haven't allocated the new page yet, we
 982		 * shouldn't be writing it out without copying user
 983		 * data. This is likely a math error from the caller.
 984		 */
 985		BUG_ON(!new);
 986
 987		map_from = cluster_start;
 988		map_to = cluster_end;
 989
 990		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
 991					    cluster_start, cluster_end, new);
 992		if (ret) {
 993			mlog_errno(ret);
 994			goto out;
 995		}
 996	}
 997
 998	/*
 999	 * Parts of newly allocated pages need to be zero'd.
1000	 *
1001	 * Above, we have also rewritten 'to' and 'from' - as far as
1002	 * the rest of the function is concerned, the entire cluster
1003	 * range inside of a page needs to be written.
1004	 *
1005	 * We can skip this if the page is up to date - it's already
1006	 * been zero'd from being read in as a hole.
1007	 */
1008	if (new && !PageUptodate(page))
1009		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1010					 cpos, user_data_from, user_data_to);
1011
1012	flush_dcache_page(page);
1013
1014out:
1015	return ret;
1016}
1017
1018/*
1019 * This function will only grab one clusters worth of pages.
1020 */
1021static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1022				      struct ocfs2_write_ctxt *wc,
1023				      u32 cpos, loff_t user_pos,
1024				      unsigned user_len, int new,
1025				      struct page *mmap_page)
1026{
1027	int ret = 0, i;
1028	unsigned long start, target_index, end_index, index;
1029	struct inode *inode = mapping->host;
1030	loff_t last_byte;
1031
1032	target_index = user_pos >> PAGE_SHIFT;
1033
1034	/*
1035	 * Figure out how many pages we'll be manipulating here. For
1036	 * non allocating write, we just change the one
1037	 * page. Otherwise, we'll need a whole clusters worth.  If we're
1038	 * writing past i_size, we only need enough pages to cover the
1039	 * last page of the write.
1040	 */
1041	if (new) {
1042		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1043		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1044		/*
1045		 * We need the index *past* the last page we could possibly
1046		 * touch.  This is the page past the end of the write or
1047		 * i_size, whichever is greater.
1048		 */
1049		last_byte = max(user_pos + user_len, i_size_read(inode));
1050		BUG_ON(last_byte < 1);
1051		end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1052		if ((start + wc->w_num_pages) > end_index)
1053			wc->w_num_pages = end_index - start;
1054	} else {
1055		wc->w_num_pages = 1;
1056		start = target_index;
1057	}
1058	end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1059
1060	for(i = 0; i < wc->w_num_pages; i++) {
1061		index = start + i;
1062
1063		if (index >= target_index && index <= end_index &&
1064		    wc->w_type == OCFS2_WRITE_MMAP) {
1065			/*
1066			 * ocfs2_pagemkwrite() is a little different
1067			 * and wants us to directly use the page
1068			 * passed in.
1069			 */
1070			lock_page(mmap_page);
1071
1072			/* Exit and let the caller retry */
1073			if (mmap_page->mapping != mapping) {
1074				WARN_ON(mmap_page->mapping);
1075				unlock_page(mmap_page);
1076				ret = -EAGAIN;
1077				goto out;
1078			}
1079
1080			get_page(mmap_page);
1081			wc->w_pages[i] = mmap_page;
1082			wc->w_target_locked = true;
1083		} else if (index >= target_index && index <= end_index &&
1084			   wc->w_type == OCFS2_WRITE_DIRECT) {
1085			/* Direct write has no mapping page. */
1086			wc->w_pages[i] = NULL;
1087			continue;
1088		} else {
1089			wc->w_pages[i] = find_or_create_page(mapping, index,
1090							     GFP_NOFS);
1091			if (!wc->w_pages[i]) {
1092				ret = -ENOMEM;
1093				mlog_errno(ret);
1094				goto out;
1095			}
1096		}
1097		wait_for_stable_page(wc->w_pages[i]);
1098
1099		if (index == target_index)
1100			wc->w_target_page = wc->w_pages[i];
1101	}
1102out:
1103	if (ret)
1104		wc->w_target_locked = false;
1105	return ret;
1106}
1107
1108/*
1109 * Prepare a single cluster for write one cluster into the file.
1110 */
1111static int ocfs2_write_cluster(struct address_space *mapping,
1112			       u32 *phys, unsigned int new,
1113			       unsigned int clear_unwritten,
1114			       unsigned int should_zero,
1115			       struct ocfs2_alloc_context *data_ac,
1116			       struct ocfs2_alloc_context *meta_ac,
1117			       struct ocfs2_write_ctxt *wc, u32 cpos,
1118			       loff_t user_pos, unsigned user_len)
1119{
1120	int ret, i;
1121	u64 p_blkno;
1122	struct inode *inode = mapping->host;
1123	struct ocfs2_extent_tree et;
1124	int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1125
1126	if (new) {
1127		u32 tmp_pos;
1128
1129		/*
1130		 * This is safe to call with the page locks - it won't take
1131		 * any additional semaphores or cluster locks.
1132		 */
1133		tmp_pos = cpos;
1134		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1135					   &tmp_pos, 1, !clear_unwritten,
1136					   wc->w_di_bh, wc->w_handle,
1137					   data_ac, meta_ac, NULL);
1138		/*
1139		 * This shouldn't happen because we must have already
1140		 * calculated the correct meta data allocation required. The
1141		 * internal tree allocation code should know how to increase
1142		 * transaction credits itself.
1143		 *
1144		 * If need be, we could handle -EAGAIN for a
1145		 * RESTART_TRANS here.
1146		 */
1147		mlog_bug_on_msg(ret == -EAGAIN,
1148				"Inode %llu: EAGAIN return during allocation.\n",
1149				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1150		if (ret < 0) {
1151			mlog_errno(ret);
1152			goto out;
1153		}
1154	} else if (clear_unwritten) {
1155		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1156					      wc->w_di_bh);
1157		ret = ocfs2_mark_extent_written(inode, &et,
1158						wc->w_handle, cpos, 1, *phys,
1159						meta_ac, &wc->w_dealloc);
1160		if (ret < 0) {
1161			mlog_errno(ret);
1162			goto out;
1163		}
1164	}
1165
1166	/*
1167	 * The only reason this should fail is due to an inability to
1168	 * find the extent added.
1169	 */
1170	ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
1171	if (ret < 0) {
1172		mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1173			    "at logical cluster %u",
1174			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
1175		goto out;
1176	}
1177
1178	BUG_ON(*phys == 0);
1179
1180	p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1181	if (!should_zero)
1182		p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1183
1184	for(i = 0; i < wc->w_num_pages; i++) {
1185		int tmpret;
1186
1187		/* This is the direct io target page. */
1188		if (wc->w_pages[i] == NULL) {
1189			p_blkno += (1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits));
1190			continue;
1191		}
1192
1193		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1194						      wc->w_pages[i], cpos,
1195						      user_pos, user_len,
1196						      should_zero);
1197		if (tmpret) {
1198			mlog_errno(tmpret);
1199			if (ret == 0)
1200				ret = tmpret;
1201		}
1202	}
1203
1204	/*
1205	 * We only have cleanup to do in case of allocating write.
1206	 */
1207	if (ret && new)
1208		ocfs2_write_failure(inode, wc, user_pos, user_len);
1209
1210out:
1211
1212	return ret;
1213}
1214
1215static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1216				       struct ocfs2_alloc_context *data_ac,
1217				       struct ocfs2_alloc_context *meta_ac,
1218				       struct ocfs2_write_ctxt *wc,
1219				       loff_t pos, unsigned len)
1220{
1221	int ret, i;
1222	loff_t cluster_off;
1223	unsigned int local_len = len;
1224	struct ocfs2_write_cluster_desc *desc;
1225	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1226
1227	for (i = 0; i < wc->w_clen; i++) {
1228		desc = &wc->w_desc[i];
1229
1230		/*
1231		 * We have to make sure that the total write passed in
1232		 * doesn't extend past a single cluster.
1233		 */
1234		local_len = len;
1235		cluster_off = pos & (osb->s_clustersize - 1);
1236		if ((cluster_off + local_len) > osb->s_clustersize)
1237			local_len = osb->s_clustersize - cluster_off;
1238
1239		ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1240					  desc->c_new,
1241					  desc->c_clear_unwritten,
1242					  desc->c_needs_zero,
1243					  data_ac, meta_ac,
1244					  wc, desc->c_cpos, pos, local_len);
1245		if (ret) {
1246			mlog_errno(ret);
1247			goto out;
1248		}
1249
1250		len -= local_len;
1251		pos += local_len;
1252	}
1253
1254	ret = 0;
1255out:
1256	return ret;
1257}
1258
1259/*
1260 * ocfs2_write_end() wants to know which parts of the target page it
1261 * should complete the write on. It's easiest to compute them ahead of
1262 * time when a more complete view of the write is available.
1263 */
1264static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1265					struct ocfs2_write_ctxt *wc,
1266					loff_t pos, unsigned len, int alloc)
1267{
1268	struct ocfs2_write_cluster_desc *desc;
1269
1270	wc->w_target_from = pos & (PAGE_SIZE - 1);
1271	wc->w_target_to = wc->w_target_from + len;
1272
1273	if (alloc == 0)
1274		return;
1275
1276	/*
1277	 * Allocating write - we may have different boundaries based
1278	 * on page size and cluster size.
1279	 *
1280	 * NOTE: We can no longer compute one value from the other as
1281	 * the actual write length and user provided length may be
1282	 * different.
1283	 */
1284
1285	if (wc->w_large_pages) {
1286		/*
1287		 * We only care about the 1st and last cluster within
1288		 * our range and whether they should be zero'd or not. Either
1289		 * value may be extended out to the start/end of a
1290		 * newly allocated cluster.
1291		 */
1292		desc = &wc->w_desc[0];
1293		if (desc->c_needs_zero)
1294			ocfs2_figure_cluster_boundaries(osb,
1295							desc->c_cpos,
1296							&wc->w_target_from,
1297							NULL);
1298
1299		desc = &wc->w_desc[wc->w_clen - 1];
1300		if (desc->c_needs_zero)
1301			ocfs2_figure_cluster_boundaries(osb,
1302							desc->c_cpos,
1303							NULL,
1304							&wc->w_target_to);
1305	} else {
1306		wc->w_target_from = 0;
1307		wc->w_target_to = PAGE_SIZE;
1308	}
1309}
1310
1311/*
1312 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1313 * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1314 * by the direct io procedure.
1315 * If this is a new extent that allocated by direct io, we should mark it in
1316 * the ip_unwritten_list.
1317 */
1318static int ocfs2_unwritten_check(struct inode *inode,
1319				 struct ocfs2_write_ctxt *wc,
1320				 struct ocfs2_write_cluster_desc *desc)
1321{
1322	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1323	struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1324	int ret = 0;
1325
1326	if (!desc->c_needs_zero)
1327		return 0;
1328
1329retry:
1330	spin_lock(&oi->ip_lock);
1331	/* Needs not to zero no metter buffer or direct. The one who is zero
1332	 * the cluster is doing zero. And he will clear unwritten after all
1333	 * cluster io finished. */
1334	list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1335		if (desc->c_cpos == ue->ue_cpos) {
1336			BUG_ON(desc->c_new);
1337			desc->c_needs_zero = 0;
1338			desc->c_clear_unwritten = 0;
1339			goto unlock;
1340		}
1341	}
1342
1343	if (wc->w_type != OCFS2_WRITE_DIRECT)
1344		goto unlock;
1345
1346	if (new == NULL) {
1347		spin_unlock(&oi->ip_lock);
1348		new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1349			     GFP_NOFS);
1350		if (new == NULL) {
1351			ret = -ENOMEM;
1352			goto out;
1353		}
1354		goto retry;
1355	}
1356	/* This direct write will doing zero. */
1357	new->ue_cpos = desc->c_cpos;
1358	new->ue_phys = desc->c_phys;
1359	desc->c_clear_unwritten = 0;
1360	list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1361	list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1362	wc->w_unwritten_count++;
1363	new = NULL;
1364unlock:
1365	spin_unlock(&oi->ip_lock);
1366out:
1367	kfree(new);
 
1368	return ret;
1369}
1370
1371/*
1372 * Populate each single-cluster write descriptor in the write context
1373 * with information about the i/o to be done.
1374 *
1375 * Returns the number of clusters that will have to be allocated, as
1376 * well as a worst case estimate of the number of extent records that
1377 * would have to be created during a write to an unwritten region.
1378 */
1379static int ocfs2_populate_write_desc(struct inode *inode,
1380				     struct ocfs2_write_ctxt *wc,
1381				     unsigned int *clusters_to_alloc,
1382				     unsigned int *extents_to_split)
1383{
1384	int ret;
1385	struct ocfs2_write_cluster_desc *desc;
1386	unsigned int num_clusters = 0;
1387	unsigned int ext_flags = 0;
1388	u32 phys = 0;
1389	int i;
1390
1391	*clusters_to_alloc = 0;
1392	*extents_to_split = 0;
1393
1394	for (i = 0; i < wc->w_clen; i++) {
1395		desc = &wc->w_desc[i];
1396		desc->c_cpos = wc->w_cpos + i;
1397
1398		if (num_clusters == 0) {
1399			/*
1400			 * Need to look up the next extent record.
1401			 */
1402			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1403						 &num_clusters, &ext_flags);
1404			if (ret) {
1405				mlog_errno(ret);
1406				goto out;
1407			}
1408
1409			/* We should already CoW the refcountd extent. */
1410			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1411
1412			/*
1413			 * Assume worst case - that we're writing in
1414			 * the middle of the extent.
1415			 *
1416			 * We can assume that the write proceeds from
1417			 * left to right, in which case the extent
1418			 * insert code is smart enough to coalesce the
1419			 * next splits into the previous records created.
1420			 */
1421			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1422				*extents_to_split = *extents_to_split + 2;
1423		} else if (phys) {
1424			/*
1425			 * Only increment phys if it doesn't describe
1426			 * a hole.
1427			 */
1428			phys++;
1429		}
1430
1431		/*
1432		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1433		 * file that got extended.  w_first_new_cpos tells us
1434		 * where the newly allocated clusters are so we can
1435		 * zero them.
1436		 */
1437		if (desc->c_cpos >= wc->w_first_new_cpos) {
1438			BUG_ON(phys == 0);
1439			desc->c_needs_zero = 1;
1440		}
1441
1442		desc->c_phys = phys;
1443		if (phys == 0) {
1444			desc->c_new = 1;
1445			desc->c_needs_zero = 1;
1446			desc->c_clear_unwritten = 1;
1447			*clusters_to_alloc = *clusters_to_alloc + 1;
1448		}
1449
1450		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1451			desc->c_clear_unwritten = 1;
1452			desc->c_needs_zero = 1;
1453		}
1454
1455		ret = ocfs2_unwritten_check(inode, wc, desc);
1456		if (ret) {
1457			mlog_errno(ret);
1458			goto out;
1459		}
1460
1461		num_clusters--;
1462	}
1463
1464	ret = 0;
1465out:
1466	return ret;
1467}
1468
1469static int ocfs2_write_begin_inline(struct address_space *mapping,
1470				    struct inode *inode,
1471				    struct ocfs2_write_ctxt *wc)
1472{
1473	int ret;
1474	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1475	struct page *page;
1476	handle_t *handle;
1477	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1478
1479	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1480	if (IS_ERR(handle)) {
1481		ret = PTR_ERR(handle);
1482		mlog_errno(ret);
1483		goto out;
1484	}
1485
1486	page = find_or_create_page(mapping, 0, GFP_NOFS);
1487	if (!page) {
1488		ocfs2_commit_trans(osb, handle);
1489		ret = -ENOMEM;
1490		mlog_errno(ret);
1491		goto out;
1492	}
1493	/*
1494	 * If we don't set w_num_pages then this page won't get unlocked
1495	 * and freed on cleanup of the write context.
1496	 */
1497	wc->w_pages[0] = wc->w_target_page = page;
1498	wc->w_num_pages = 1;
1499
1500	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1501				      OCFS2_JOURNAL_ACCESS_WRITE);
1502	if (ret) {
1503		ocfs2_commit_trans(osb, handle);
1504
1505		mlog_errno(ret);
1506		goto out;
1507	}
1508
1509	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1510		ocfs2_set_inode_data_inline(inode, di);
1511
1512	if (!PageUptodate(page)) {
1513		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1514		if (ret) {
1515			ocfs2_commit_trans(osb, handle);
1516
1517			goto out;
1518		}
1519	}
1520
1521	wc->w_handle = handle;
1522out:
1523	return ret;
1524}
1525
1526int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1527{
1528	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1529
1530	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1531		return 1;
1532	return 0;
1533}
1534
1535static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1536					  struct inode *inode, loff_t pos,
1537					  unsigned len, struct page *mmap_page,
1538					  struct ocfs2_write_ctxt *wc)
1539{
1540	int ret, written = 0;
1541	loff_t end = pos + len;
1542	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1543	struct ocfs2_dinode *di = NULL;
1544
1545	trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1546					     len, (unsigned long long)pos,
1547					     oi->ip_dyn_features);
1548
1549	/*
1550	 * Handle inodes which already have inline data 1st.
1551	 */
1552	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1553		if (mmap_page == NULL &&
1554		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1555			goto do_inline_write;
1556
1557		/*
1558		 * The write won't fit - we have to give this inode an
1559		 * inline extent list now.
1560		 */
1561		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1562		if (ret)
1563			mlog_errno(ret);
1564		goto out;
1565	}
1566
1567	/*
1568	 * Check whether the inode can accept inline data.
1569	 */
1570	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1571		return 0;
1572
1573	/*
1574	 * Check whether the write can fit.
1575	 */
1576	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1577	if (mmap_page ||
1578	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1579		return 0;
1580
1581do_inline_write:
1582	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1583	if (ret) {
1584		mlog_errno(ret);
1585		goto out;
1586	}
1587
1588	/*
1589	 * This signals to the caller that the data can be written
1590	 * inline.
1591	 */
1592	written = 1;
1593out:
1594	return written ? written : ret;
1595}
1596
1597/*
1598 * This function only does anything for file systems which can't
1599 * handle sparse files.
1600 *
1601 * What we want to do here is fill in any hole between the current end
1602 * of allocation and the end of our write. That way the rest of the
1603 * write path can treat it as an non-allocating write, which has no
1604 * special case code for sparse/nonsparse files.
1605 */
1606static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1607					struct buffer_head *di_bh,
1608					loff_t pos, unsigned len,
1609					struct ocfs2_write_ctxt *wc)
1610{
1611	int ret;
1612	loff_t newsize = pos + len;
1613
1614	BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1615
1616	if (newsize <= i_size_read(inode))
1617		return 0;
1618
1619	ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1620	if (ret)
1621		mlog_errno(ret);
1622
1623	/* There is no wc if this is call from direct. */
1624	if (wc)
1625		wc->w_first_new_cpos =
1626			ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1627
1628	return ret;
1629}
1630
1631static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1632			   loff_t pos)
1633{
1634	int ret = 0;
1635
1636	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1637	if (pos > i_size_read(inode))
1638		ret = ocfs2_zero_extend(inode, di_bh, pos);
1639
1640	return ret;
1641}
1642
1643int ocfs2_write_begin_nolock(struct address_space *mapping,
1644			     loff_t pos, unsigned len, ocfs2_write_type_t type,
1645			     struct folio **foliop, void **fsdata,
1646			     struct buffer_head *di_bh, struct page *mmap_page)
1647{
1648	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1649	unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1650	struct ocfs2_write_ctxt *wc;
1651	struct inode *inode = mapping->host;
1652	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1653	struct ocfs2_dinode *di;
1654	struct ocfs2_alloc_context *data_ac = NULL;
1655	struct ocfs2_alloc_context *meta_ac = NULL;
1656	handle_t *handle;
1657	struct ocfs2_extent_tree et;
1658	int try_free = 1, ret1;
1659
1660try_again:
1661	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1662	if (ret) {
1663		mlog_errno(ret);
1664		return ret;
1665	}
1666
1667	if (ocfs2_supports_inline_data(osb)) {
1668		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1669						     mmap_page, wc);
1670		if (ret == 1) {
1671			ret = 0;
1672			goto success;
1673		}
1674		if (ret < 0) {
1675			mlog_errno(ret);
1676			goto out;
1677		}
1678	}
1679
1680	/* Direct io change i_size late, should not zero tail here. */
1681	if (type != OCFS2_WRITE_DIRECT) {
1682		if (ocfs2_sparse_alloc(osb))
1683			ret = ocfs2_zero_tail(inode, di_bh, pos);
1684		else
1685			ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1686							   len, wc);
1687		if (ret) {
1688			mlog_errno(ret);
1689			goto out;
1690		}
1691	}
1692
1693	ret = ocfs2_check_range_for_refcount(inode, pos, len);
1694	if (ret < 0) {
1695		mlog_errno(ret);
1696		goto out;
1697	} else if (ret == 1) {
1698		clusters_need = wc->w_clen;
1699		ret = ocfs2_refcount_cow(inode, di_bh,
1700					 wc->w_cpos, wc->w_clen, UINT_MAX);
1701		if (ret) {
1702			mlog_errno(ret);
1703			goto out;
1704		}
1705	}
1706
1707	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1708					&extents_to_split);
1709	if (ret) {
1710		mlog_errno(ret);
1711		goto out;
1712	}
1713	clusters_need += clusters_to_alloc;
1714
1715	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1716
1717	trace_ocfs2_write_begin_nolock(
1718			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1719			(long long)i_size_read(inode),
1720			le32_to_cpu(di->i_clusters),
1721			pos, len, type, mmap_page,
1722			clusters_to_alloc, extents_to_split);
1723
1724	/*
1725	 * We set w_target_from, w_target_to here so that
1726	 * ocfs2_write_end() knows which range in the target page to
1727	 * write out. An allocation requires that we write the entire
1728	 * cluster range.
1729	 */
1730	if (clusters_to_alloc || extents_to_split) {
1731		/*
1732		 * XXX: We are stretching the limits of
1733		 * ocfs2_lock_allocators(). It greatly over-estimates
1734		 * the work to be done.
1735		 */
1736		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1737					      wc->w_di_bh);
1738		ret = ocfs2_lock_allocators(inode, &et,
1739					    clusters_to_alloc, extents_to_split,
1740					    &data_ac, &meta_ac);
1741		if (ret) {
1742			mlog_errno(ret);
1743			goto out;
1744		}
1745
1746		if (data_ac)
1747			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1748
1749		credits = ocfs2_calc_extend_credits(inode->i_sb,
1750						    &di->id2.i_list);
1751	} else if (type == OCFS2_WRITE_DIRECT)
1752		/* direct write needs not to start trans if no extents alloc. */
1753		goto success;
1754
1755	/*
1756	 * We have to zero sparse allocated clusters, unwritten extent clusters,
1757	 * and non-sparse clusters we just extended.  For non-sparse writes,
1758	 * we know zeros will only be needed in the first and/or last cluster.
1759	 */
1760	if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1761			   wc->w_desc[wc->w_clen - 1].c_needs_zero))
1762		cluster_of_pages = 1;
1763	else
1764		cluster_of_pages = 0;
1765
1766	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1767
1768	handle = ocfs2_start_trans(osb, credits);
1769	if (IS_ERR(handle)) {
1770		ret = PTR_ERR(handle);
1771		mlog_errno(ret);
1772		goto out;
1773	}
1774
1775	wc->w_handle = handle;
1776
1777	if (clusters_to_alloc) {
1778		ret = dquot_alloc_space_nodirty(inode,
1779			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1780		if (ret)
1781			goto out_commit;
1782	}
1783
1784	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1785				      OCFS2_JOURNAL_ACCESS_WRITE);
1786	if (ret) {
1787		mlog_errno(ret);
1788		goto out_quota;
1789	}
1790
1791	/*
1792	 * Fill our page array first. That way we've grabbed enough so
1793	 * that we can zero and flush if we error after adding the
1794	 * extent.
1795	 */
1796	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1797					 cluster_of_pages, mmap_page);
1798	if (ret) {
1799		/*
1800		 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1801		 * the target page. In this case, we exit with no error and no target
1802		 * page. This will trigger the caller, page_mkwrite(), to re-try
1803		 * the operation.
1804		 */
1805		if (type == OCFS2_WRITE_MMAP && ret == -EAGAIN) {
1806			BUG_ON(wc->w_target_page);
1807			ret = 0;
1808			goto out_quota;
1809		}
1810
1811		mlog_errno(ret);
1812		goto out_quota;
1813	}
1814
 
 
 
 
 
 
 
 
 
 
 
 
1815	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1816					  len);
1817	if (ret) {
1818		mlog_errno(ret);
1819		goto out_quota;
1820	}
1821
1822	if (data_ac)
1823		ocfs2_free_alloc_context(data_ac);
1824	if (meta_ac)
1825		ocfs2_free_alloc_context(meta_ac);
1826
1827success:
1828	if (foliop)
1829		*foliop = page_folio(wc->w_target_page);
1830	*fsdata = wc;
1831	return 0;
1832out_quota:
1833	if (clusters_to_alloc)
1834		dquot_free_space(inode,
1835			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1836out_commit:
1837	ocfs2_commit_trans(osb, handle);
1838
1839out:
1840	/*
1841	 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1842	 * even in case of error here like ENOSPC and ENOMEM. So, we need
1843	 * to unlock the target page manually to prevent deadlocks when
1844	 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1845	 * to VM code.
1846	 */
1847	if (wc->w_target_locked)
1848		unlock_page(mmap_page);
1849
1850	ocfs2_free_write_ctxt(inode, wc);
1851
1852	if (data_ac) {
1853		ocfs2_free_alloc_context(data_ac);
1854		data_ac = NULL;
1855	}
1856	if (meta_ac) {
1857		ocfs2_free_alloc_context(meta_ac);
1858		meta_ac = NULL;
1859	}
1860
1861	if (ret == -ENOSPC && try_free) {
1862		/*
1863		 * Try to free some truncate log so that we can have enough
1864		 * clusters to allocate.
1865		 */
1866		try_free = 0;
1867
1868		ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1869		if (ret1 == 1)
1870			goto try_again;
1871
1872		if (ret1 < 0)
1873			mlog_errno(ret1);
1874	}
1875
1876	return ret;
1877}
1878
1879static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1880			     loff_t pos, unsigned len,
1881			     struct folio **foliop, void **fsdata)
1882{
1883	int ret;
1884	struct buffer_head *di_bh = NULL;
1885	struct inode *inode = mapping->host;
1886
1887	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1888	if (ret) {
1889		mlog_errno(ret);
1890		return ret;
1891	}
1892
1893	/*
1894	 * Take alloc sem here to prevent concurrent lookups. That way
1895	 * the mapping, zeroing and tree manipulation within
1896	 * ocfs2_write() will be safe against ->read_folio(). This
1897	 * should also serve to lock out allocation from a shared
1898	 * writeable region.
1899	 */
1900	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1901
1902	ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1903				       foliop, fsdata, di_bh, NULL);
1904	if (ret) {
1905		mlog_errno(ret);
1906		goto out_fail;
1907	}
1908
1909	brelse(di_bh);
1910
1911	return 0;
1912
1913out_fail:
1914	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1915
1916	brelse(di_bh);
1917	ocfs2_inode_unlock(inode, 1);
1918
1919	return ret;
1920}
1921
1922static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1923				   unsigned len, unsigned *copied,
1924				   struct ocfs2_dinode *di,
1925				   struct ocfs2_write_ctxt *wc)
1926{
1927	void *kaddr;
1928
1929	if (unlikely(*copied < len)) {
1930		if (!PageUptodate(wc->w_target_page)) {
1931			*copied = 0;
1932			return;
1933		}
1934	}
1935
1936	kaddr = kmap_atomic(wc->w_target_page);
1937	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1938	kunmap_atomic(kaddr);
1939
1940	trace_ocfs2_write_end_inline(
1941	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1942	     (unsigned long long)pos, *copied,
1943	     le16_to_cpu(di->id2.i_data.id_count),
1944	     le16_to_cpu(di->i_dyn_features));
1945}
1946
1947int ocfs2_write_end_nolock(struct address_space *mapping,
1948			   loff_t pos, unsigned len, unsigned copied, void *fsdata)
1949{
1950	int i, ret;
1951	unsigned from, to, start = pos & (PAGE_SIZE - 1);
1952	struct inode *inode = mapping->host;
1953	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1954	struct ocfs2_write_ctxt *wc = fsdata;
1955	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1956	handle_t *handle = wc->w_handle;
1957	struct page *tmppage;
1958
1959	BUG_ON(!list_empty(&wc->w_unwritten_list));
1960
1961	if (handle) {
1962		ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1963				wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1964		if (ret) {
1965			copied = ret;
1966			mlog_errno(ret);
1967			goto out;
1968		}
1969	}
1970
1971	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1972		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1973		goto out_write_size;
1974	}
1975
1976	if (unlikely(copied < len) && wc->w_target_page) {
1977		loff_t new_isize;
1978
1979		if (!PageUptodate(wc->w_target_page))
1980			copied = 0;
1981
1982		new_isize = max_t(loff_t, i_size_read(inode), pos + copied);
1983		if (new_isize > page_offset(wc->w_target_page))
1984			ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1985					       start+len);
1986		else {
1987			/*
1988			 * When page is fully beyond new isize (data copy
1989			 * failed), do not bother zeroing the page. Invalidate
1990			 * it instead so that writeback does not get confused
1991			 * put page & buffer dirty bits into inconsistent
1992			 * state.
1993			 */
1994			block_invalidate_folio(page_folio(wc->w_target_page),
1995						0, PAGE_SIZE);
1996		}
1997	}
1998	if (wc->w_target_page)
1999		flush_dcache_page(wc->w_target_page);
2000
2001	for(i = 0; i < wc->w_num_pages; i++) {
2002		tmppage = wc->w_pages[i];
2003
2004		/* This is the direct io target page. */
2005		if (tmppage == NULL)
2006			continue;
2007
2008		if (tmppage == wc->w_target_page) {
2009			from = wc->w_target_from;
2010			to = wc->w_target_to;
2011
2012			BUG_ON(from > PAGE_SIZE ||
2013			       to > PAGE_SIZE ||
2014			       to < from);
2015		} else {
2016			/*
2017			 * Pages adjacent to the target (if any) imply
2018			 * a hole-filling write in which case we want
2019			 * to flush their entire range.
2020			 */
2021			from = 0;
2022			to = PAGE_SIZE;
2023		}
2024
2025		if (page_has_buffers(tmppage)) {
2026			if (handle && ocfs2_should_order_data(inode)) {
2027				loff_t start_byte =
2028					((loff_t)tmppage->index << PAGE_SHIFT) +
2029					from;
2030				loff_t length = to - from;
2031				ocfs2_jbd2_inode_add_write(handle, inode,
2032							   start_byte, length);
2033			}
2034			block_commit_write(tmppage, from, to);
2035		}
2036	}
2037
2038out_write_size:
2039	/* Direct io do not update i_size here. */
2040	if (wc->w_type != OCFS2_WRITE_DIRECT) {
2041		pos += copied;
2042		if (pos > i_size_read(inode)) {
2043			i_size_write(inode, pos);
2044			mark_inode_dirty(inode);
2045		}
2046		inode->i_blocks = ocfs2_inode_sector_count(inode);
2047		di->i_size = cpu_to_le64((u64)i_size_read(inode));
2048		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
2049		di->i_mtime = di->i_ctime = cpu_to_le64(inode_get_mtime_sec(inode));
2050		di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode_get_mtime_nsec(inode));
2051		if (handle)
2052			ocfs2_update_inode_fsync_trans(handle, inode, 1);
2053	}
2054	if (handle)
2055		ocfs2_journal_dirty(handle, wc->w_di_bh);
2056
2057out:
2058	/* unlock pages before dealloc since it needs acquiring j_trans_barrier
2059	 * lock, or it will cause a deadlock since journal commit threads holds
2060	 * this lock and will ask for the page lock when flushing the data.
2061	 * put it here to preserve the unlock order.
2062	 */
2063	ocfs2_unlock_pages(wc);
2064
2065	if (handle)
2066		ocfs2_commit_trans(osb, handle);
2067
2068	ocfs2_run_deallocs(osb, &wc->w_dealloc);
2069
2070	brelse(wc->w_di_bh);
2071	kfree(wc);
2072
2073	return copied;
2074}
2075
2076static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2077			   loff_t pos, unsigned len, unsigned copied,
2078			   struct folio *folio, void *fsdata)
2079{
2080	int ret;
2081	struct inode *inode = mapping->host;
2082
2083	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
2084
2085	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2086	ocfs2_inode_unlock(inode, 1);
2087
2088	return ret;
2089}
2090
2091struct ocfs2_dio_write_ctxt {
2092	struct list_head	dw_zero_list;
2093	unsigned		dw_zero_count;
2094	int			dw_orphaned;
2095	pid_t			dw_writer_pid;
2096};
2097
2098static struct ocfs2_dio_write_ctxt *
2099ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2100{
2101	struct ocfs2_dio_write_ctxt *dwc = NULL;
2102
2103	if (bh->b_private)
2104		return bh->b_private;
2105
2106	dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2107	if (dwc == NULL)
2108		return NULL;
2109	INIT_LIST_HEAD(&dwc->dw_zero_list);
2110	dwc->dw_zero_count = 0;
2111	dwc->dw_orphaned = 0;
2112	dwc->dw_writer_pid = task_pid_nr(current);
2113	bh->b_private = dwc;
2114	*alloc = 1;
2115
2116	return dwc;
2117}
2118
2119static void ocfs2_dio_free_write_ctx(struct inode *inode,
2120				     struct ocfs2_dio_write_ctxt *dwc)
2121{
2122	ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2123	kfree(dwc);
2124}
2125
2126/*
2127 * TODO: Make this into a generic get_blocks function.
2128 *
2129 * From do_direct_io in direct-io.c:
2130 *  "So what we do is to permit the ->get_blocks function to populate
2131 *   bh.b_size with the size of IO which is permitted at this offset and
2132 *   this i_blkbits."
2133 *
2134 * This function is called directly from get_more_blocks in direct-io.c.
2135 *
2136 * called like this: dio->get_blocks(dio->inode, fs_startblk,
2137 * 					fs_count, map_bh, dio->rw == WRITE);
2138 */
2139static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
2140			       struct buffer_head *bh_result, int create)
2141{
2142	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2143	struct ocfs2_inode_info *oi = OCFS2_I(inode);
2144	struct ocfs2_write_ctxt *wc;
2145	struct ocfs2_write_cluster_desc *desc = NULL;
2146	struct ocfs2_dio_write_ctxt *dwc = NULL;
2147	struct buffer_head *di_bh = NULL;
2148	u64 p_blkno;
2149	unsigned int i_blkbits = inode->i_sb->s_blocksize_bits;
2150	loff_t pos = iblock << i_blkbits;
2151	sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits;
2152	unsigned len, total_len = bh_result->b_size;
2153	int ret = 0, first_get_block = 0;
2154
2155	len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2156	len = min(total_len, len);
2157
2158	/*
2159	 * bh_result->b_size is count in get_more_blocks according to write
2160	 * "pos" and "end", we need map twice to return different buffer state:
2161	 * 1. area in file size, not set NEW;
2162	 * 2. area out file size, set  NEW.
2163	 *
2164	 *		   iblock    endblk
2165	 * |--------|---------|---------|---------
2166	 * |<-------area in file------->|
2167	 */
2168
2169	if ((iblock <= endblk) &&
2170	    ((iblock + ((len - 1) >> i_blkbits)) > endblk))
2171		len = (endblk - iblock + 1) << i_blkbits;
2172
2173	mlog(0, "get block of %lu at %llu:%u req %u\n",
2174			inode->i_ino, pos, len, total_len);
2175
2176	/*
2177	 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2178	 * we may need to add it to orphan dir. So can not fall to fast path
2179	 * while file size will be changed.
2180	 */
2181	if (pos + total_len <= i_size_read(inode)) {
2182
2183		/* This is the fast path for re-write. */
2184		ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
2185		if (buffer_mapped(bh_result) &&
2186		    !buffer_new(bh_result) &&
2187		    ret == 0)
2188			goto out;
2189
2190		/* Clear state set by ocfs2_get_block. */
2191		bh_result->b_state = 0;
2192	}
2193
2194	dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2195	if (unlikely(dwc == NULL)) {
2196		ret = -ENOMEM;
2197		mlog_errno(ret);
2198		goto out;
2199	}
2200
2201	if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2202	    ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2203	    !dwc->dw_orphaned) {
2204		/*
2205		 * when we are going to alloc extents beyond file size, add the
2206		 * inode to orphan dir, so we can recall those spaces when
2207		 * system crashed during write.
2208		 */
2209		ret = ocfs2_add_inode_to_orphan(osb, inode);
2210		if (ret < 0) {
2211			mlog_errno(ret);
2212			goto out;
2213		}
2214		dwc->dw_orphaned = 1;
2215	}
2216
2217	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2218	if (ret) {
2219		mlog_errno(ret);
2220		goto out;
2221	}
2222
2223	down_write(&oi->ip_alloc_sem);
2224
2225	if (first_get_block) {
2226		if (ocfs2_sparse_alloc(osb))
2227			ret = ocfs2_zero_tail(inode, di_bh, pos);
2228		else
2229			ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2230							   total_len, NULL);
2231		if (ret < 0) {
2232			mlog_errno(ret);
2233			goto unlock;
2234		}
2235	}
2236
2237	ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2238				       OCFS2_WRITE_DIRECT, NULL,
2239				       (void **)&wc, di_bh, NULL);
2240	if (ret) {
2241		mlog_errno(ret);
2242		goto unlock;
2243	}
2244
2245	desc = &wc->w_desc[0];
2246
2247	p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2248	BUG_ON(p_blkno == 0);
2249	p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2250
2251	map_bh(bh_result, inode->i_sb, p_blkno);
2252	bh_result->b_size = len;
2253	if (desc->c_needs_zero)
2254		set_buffer_new(bh_result);
2255
2256	if (iblock > endblk)
2257		set_buffer_new(bh_result);
2258
2259	/* May sleep in end_io. It should not happen in a irq context. So defer
2260	 * it to dio work queue. */
2261	set_buffer_defer_completion(bh_result);
2262
2263	if (!list_empty(&wc->w_unwritten_list)) {
2264		struct ocfs2_unwritten_extent *ue = NULL;
2265
2266		ue = list_first_entry(&wc->w_unwritten_list,
2267				      struct ocfs2_unwritten_extent,
2268				      ue_node);
2269		BUG_ON(ue->ue_cpos != desc->c_cpos);
2270		/* The physical address may be 0, fill it. */
2271		ue->ue_phys = desc->c_phys;
2272
2273		list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2274		dwc->dw_zero_count += wc->w_unwritten_count;
2275	}
2276
2277	ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
2278	BUG_ON(ret != len);
2279	ret = 0;
2280unlock:
2281	up_write(&oi->ip_alloc_sem);
2282	ocfs2_inode_unlock(inode, 1);
2283	brelse(di_bh);
2284out:
 
 
2285	return ret;
2286}
2287
2288static int ocfs2_dio_end_io_write(struct inode *inode,
2289				  struct ocfs2_dio_write_ctxt *dwc,
2290				  loff_t offset,
2291				  ssize_t bytes)
2292{
2293	struct ocfs2_cached_dealloc_ctxt dealloc;
2294	struct ocfs2_extent_tree et;
2295	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2296	struct ocfs2_inode_info *oi = OCFS2_I(inode);
2297	struct ocfs2_unwritten_extent *ue = NULL;
2298	struct buffer_head *di_bh = NULL;
2299	struct ocfs2_dinode *di;
2300	struct ocfs2_alloc_context *data_ac = NULL;
2301	struct ocfs2_alloc_context *meta_ac = NULL;
2302	handle_t *handle = NULL;
2303	loff_t end = offset + bytes;
2304	int ret = 0, credits = 0;
2305
2306	ocfs2_init_dealloc_ctxt(&dealloc);
2307
2308	/* We do clear unwritten, delete orphan, change i_size here. If neither
2309	 * of these happen, we can skip all this. */
2310	if (list_empty(&dwc->dw_zero_list) &&
2311	    end <= i_size_read(inode) &&
2312	    !dwc->dw_orphaned)
2313		goto out;
2314
 
 
 
 
 
 
 
2315	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2316	if (ret < 0) {
2317		mlog_errno(ret);
2318		goto out;
2319	}
2320
2321	down_write(&oi->ip_alloc_sem);
2322
2323	/* Delete orphan before acquire i_rwsem. */
2324	if (dwc->dw_orphaned) {
2325		BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2326
2327		end = end > i_size_read(inode) ? end : 0;
2328
2329		ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2330				!!end, end);
2331		if (ret < 0)
2332			mlog_errno(ret);
2333	}
2334
2335	di = (struct ocfs2_dinode *)di_bh->b_data;
2336
2337	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2338
2339	/* Attach dealloc with extent tree in case that we may reuse extents
2340	 * which are already unlinked from current extent tree due to extent
2341	 * rotation and merging.
2342	 */
2343	et.et_dealloc = &dealloc;
2344
2345	ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2346				    &data_ac, &meta_ac);
2347	if (ret) {
2348		mlog_errno(ret);
2349		goto unlock;
2350	}
2351
2352	credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2353
2354	handle = ocfs2_start_trans(osb, credits);
2355	if (IS_ERR(handle)) {
2356		ret = PTR_ERR(handle);
2357		mlog_errno(ret);
2358		goto unlock;
2359	}
2360	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2361				      OCFS2_JOURNAL_ACCESS_WRITE);
2362	if (ret) {
2363		mlog_errno(ret);
2364		goto commit;
2365	}
2366
2367	list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2368		ret = ocfs2_assure_trans_credits(handle, credits);
2369		if (ret < 0) {
2370			mlog_errno(ret);
2371			break;
2372		}
2373		ret = ocfs2_mark_extent_written(inode, &et, handle,
2374						ue->ue_cpos, 1,
2375						ue->ue_phys,
2376						meta_ac, &dealloc);
2377		if (ret < 0) {
2378			mlog_errno(ret);
2379			break;
2380		}
2381	}
2382
2383	if (end > i_size_read(inode)) {
2384		ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2385		if (ret < 0)
2386			mlog_errno(ret);
2387	}
2388commit:
2389	ocfs2_commit_trans(osb, handle);
2390unlock:
2391	up_write(&oi->ip_alloc_sem);
2392	ocfs2_inode_unlock(inode, 1);
2393	brelse(di_bh);
2394out:
2395	if (data_ac)
2396		ocfs2_free_alloc_context(data_ac);
2397	if (meta_ac)
2398		ocfs2_free_alloc_context(meta_ac);
2399	ocfs2_run_deallocs(osb, &dealloc);
 
 
2400	ocfs2_dio_free_write_ctx(inode, dwc);
2401
2402	return ret;
2403}
2404
2405/*
2406 * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
2407 * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
2408 * to protect io on one node from truncation on another.
2409 */
2410static int ocfs2_dio_end_io(struct kiocb *iocb,
2411			    loff_t offset,
2412			    ssize_t bytes,
2413			    void *private)
2414{
2415	struct inode *inode = file_inode(iocb->ki_filp);
2416	int level;
2417	int ret = 0;
2418
2419	/* this io's submitter should not have unlocked this before we could */
2420	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2421
2422	if (bytes <= 0)
2423		mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld",
2424				 (long long)bytes);
2425	if (private) {
2426		if (bytes > 0)
2427			ret = ocfs2_dio_end_io_write(inode, private, offset,
2428						     bytes);
2429		else
2430			ocfs2_dio_free_write_ctx(inode, private);
2431	}
2432
2433	ocfs2_iocb_clear_rw_locked(iocb);
2434
2435	level = ocfs2_iocb_rw_locked_level(iocb);
2436	ocfs2_rw_unlock(inode, level);
2437	return ret;
2438}
2439
2440static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2441{
2442	struct file *file = iocb->ki_filp;
2443	struct inode *inode = file->f_mapping->host;
2444	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2445	get_block_t *get_block;
2446
2447	/*
2448	 * Fallback to buffered I/O if we see an inode without
2449	 * extents.
2450	 */
2451	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2452		return 0;
2453
2454	/* Fallback to buffered I/O if we do not support append dio. */
2455	if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2456	    !ocfs2_supports_append_dio(osb))
2457		return 0;
2458
2459	if (iov_iter_rw(iter) == READ)
2460		get_block = ocfs2_lock_get_block;
2461	else
2462		get_block = ocfs2_dio_wr_get_block;
2463
2464	return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2465				    iter, get_block,
2466				    ocfs2_dio_end_io, 0);
2467}
2468
2469const struct address_space_operations ocfs2_aops = {
2470	.dirty_folio		= block_dirty_folio,
2471	.read_folio		= ocfs2_read_folio,
2472	.readahead		= ocfs2_readahead,
2473	.writepages		= ocfs2_writepages,
2474	.write_begin		= ocfs2_write_begin,
2475	.write_end		= ocfs2_write_end,
2476	.bmap			= ocfs2_bmap,
2477	.direct_IO		= ocfs2_direct_IO,
2478	.invalidate_folio	= block_invalidate_folio,
2479	.release_folio		= ocfs2_release_folio,
2480	.migrate_folio		= buffer_migrate_folio,
2481	.is_partially_uptodate	= block_is_partially_uptodate,
2482	.error_remove_folio	= generic_error_remove_folio,
2483};
v4.17
   1/* -*- mode: c; c-basic-offset: 8; -*-
   2 * vim: noexpandtab sw=8 ts=8 sts=0:
   3 *
   4 * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public
  17 * License along with this program; if not, write to the
  18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  19 * Boston, MA 021110-1307, USA.
  20 */
  21
  22#include <linux/fs.h>
  23#include <linux/slab.h>
  24#include <linux/highmem.h>
  25#include <linux/pagemap.h>
  26#include <asm/byteorder.h>
  27#include <linux/swap.h>
  28#include <linux/pipe_fs_i.h>
  29#include <linux/mpage.h>
  30#include <linux/quotaops.h>
  31#include <linux/blkdev.h>
  32#include <linux/uio.h>
 
  33
  34#include <cluster/masklog.h>
  35
  36#include "ocfs2.h"
  37
  38#include "alloc.h"
  39#include "aops.h"
  40#include "dlmglue.h"
  41#include "extent_map.h"
  42#include "file.h"
  43#include "inode.h"
  44#include "journal.h"
  45#include "suballoc.h"
  46#include "super.h"
  47#include "symlink.h"
  48#include "refcounttree.h"
  49#include "ocfs2_trace.h"
  50
  51#include "buffer_head_io.h"
  52#include "dir.h"
  53#include "namei.h"
  54#include "sysfile.h"
  55
  56static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
  57				   struct buffer_head *bh_result, int create)
  58{
  59	int err = -EIO;
  60	int status;
  61	struct ocfs2_dinode *fe = NULL;
  62	struct buffer_head *bh = NULL;
  63	struct buffer_head *buffer_cache_bh = NULL;
  64	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  65	void *kaddr;
  66
  67	trace_ocfs2_symlink_get_block(
  68			(unsigned long long)OCFS2_I(inode)->ip_blkno,
  69			(unsigned long long)iblock, bh_result, create);
  70
  71	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
  72
  73	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
  74		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
  75		     (unsigned long long)iblock);
  76		goto bail;
  77	}
  78
  79	status = ocfs2_read_inode_block(inode, &bh);
  80	if (status < 0) {
  81		mlog_errno(status);
  82		goto bail;
  83	}
  84	fe = (struct ocfs2_dinode *) bh->b_data;
  85
  86	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
  87						    le32_to_cpu(fe->i_clusters))) {
  88		err = -ENOMEM;
  89		mlog(ML_ERROR, "block offset is outside the allocated size: "
  90		     "%llu\n", (unsigned long long)iblock);
  91		goto bail;
  92	}
  93
  94	/* We don't use the page cache to create symlink data, so if
  95	 * need be, copy it over from the buffer cache. */
  96	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
  97		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
  98			    iblock;
  99		buffer_cache_bh = sb_getblk(osb->sb, blkno);
 100		if (!buffer_cache_bh) {
 101			err = -ENOMEM;
 102			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
 103			goto bail;
 104		}
 105
 106		/* we haven't locked out transactions, so a commit
 107		 * could've happened. Since we've got a reference on
 108		 * the bh, even if it commits while we're doing the
 109		 * copy, the data is still good. */
 110		if (buffer_jbd(buffer_cache_bh)
 111		    && ocfs2_inode_is_new(inode)) {
 112			kaddr = kmap_atomic(bh_result->b_page);
 113			if (!kaddr) {
 114				mlog(ML_ERROR, "couldn't kmap!\n");
 115				goto bail;
 116			}
 117			memcpy(kaddr + (bh_result->b_size * iblock),
 118			       buffer_cache_bh->b_data,
 119			       bh_result->b_size);
 120			kunmap_atomic(kaddr);
 121			set_buffer_uptodate(bh_result);
 122		}
 123		brelse(buffer_cache_bh);
 124	}
 125
 126	map_bh(bh_result, inode->i_sb,
 127	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
 128
 129	err = 0;
 130
 131bail:
 132	brelse(bh);
 133
 134	return err;
 135}
 136
 137static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
 138		    struct buffer_head *bh_result, int create)
 139{
 140	int ret = 0;
 141	struct ocfs2_inode_info *oi = OCFS2_I(inode);
 142
 143	down_read(&oi->ip_alloc_sem);
 144	ret = ocfs2_get_block(inode, iblock, bh_result, create);
 145	up_read(&oi->ip_alloc_sem);
 146
 147	return ret;
 148}
 149
 150int ocfs2_get_block(struct inode *inode, sector_t iblock,
 151		    struct buffer_head *bh_result, int create)
 152{
 153	int err = 0;
 154	unsigned int ext_flags;
 155	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
 156	u64 p_blkno, count, past_eof;
 157	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 158
 159	trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
 160			      (unsigned long long)iblock, bh_result, create);
 161
 162	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
 163		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
 164		     inode, inode->i_ino);
 165
 166	if (S_ISLNK(inode->i_mode)) {
 167		/* this always does I/O for some reason. */
 168		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
 169		goto bail;
 170	}
 171
 172	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
 173					  &ext_flags);
 174	if (err) {
 175		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
 176		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
 177		     (unsigned long long)p_blkno);
 178		goto bail;
 179	}
 180
 181	if (max_blocks < count)
 182		count = max_blocks;
 183
 184	/*
 185	 * ocfs2 never allocates in this function - the only time we
 186	 * need to use BH_New is when we're extending i_size on a file
 187	 * system which doesn't support holes, in which case BH_New
 188	 * allows __block_write_begin() to zero.
 189	 *
 190	 * If we see this on a sparse file system, then a truncate has
 191	 * raced us and removed the cluster. In this case, we clear
 192	 * the buffers dirty and uptodate bits and let the buffer code
 193	 * ignore it as a hole.
 194	 */
 195	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
 196		clear_buffer_dirty(bh_result);
 197		clear_buffer_uptodate(bh_result);
 198		goto bail;
 199	}
 200
 201	/* Treat the unwritten extent as a hole for zeroing purposes. */
 202	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
 203		map_bh(bh_result, inode->i_sb, p_blkno);
 204
 205	bh_result->b_size = count << inode->i_blkbits;
 206
 207	if (!ocfs2_sparse_alloc(osb)) {
 208		if (p_blkno == 0) {
 209			err = -EIO;
 210			mlog(ML_ERROR,
 211			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
 212			     (unsigned long long)iblock,
 213			     (unsigned long long)p_blkno,
 214			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
 215			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
 216			dump_stack();
 217			goto bail;
 218		}
 219	}
 220
 221	past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
 222
 223	trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
 224				  (unsigned long long)past_eof);
 225	if (create && (iblock >= past_eof))
 226		set_buffer_new(bh_result);
 227
 228bail:
 229	if (err < 0)
 230		err = -EIO;
 231
 232	return err;
 233}
 234
 235int ocfs2_read_inline_data(struct inode *inode, struct page *page,
 236			   struct buffer_head *di_bh)
 237{
 238	void *kaddr;
 239	loff_t size;
 240	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
 241
 242	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
 243		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
 244			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
 245		return -EROFS;
 246	}
 247
 248	size = i_size_read(inode);
 249
 250	if (size > PAGE_SIZE ||
 251	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
 252		ocfs2_error(inode->i_sb,
 253			    "Inode %llu has with inline data has bad size: %Lu\n",
 254			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
 255			    (unsigned long long)size);
 256		return -EROFS;
 257	}
 258
 259	kaddr = kmap_atomic(page);
 260	if (size)
 261		memcpy(kaddr, di->id2.i_data.id_data, size);
 262	/* Clear the remaining part of the page */
 263	memset(kaddr + size, 0, PAGE_SIZE - size);
 264	flush_dcache_page(page);
 265	kunmap_atomic(kaddr);
 266
 267	SetPageUptodate(page);
 268
 269	return 0;
 270}
 271
 272static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
 273{
 274	int ret;
 275	struct buffer_head *di_bh = NULL;
 276
 277	BUG_ON(!PageLocked(page));
 278	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
 279
 280	ret = ocfs2_read_inode_block(inode, &di_bh);
 281	if (ret) {
 282		mlog_errno(ret);
 283		goto out;
 284	}
 285
 286	ret = ocfs2_read_inline_data(inode, page, di_bh);
 287out:
 288	unlock_page(page);
 289
 290	brelse(di_bh);
 291	return ret;
 292}
 293
 294static int ocfs2_readpage(struct file *file, struct page *page)
 295{
 296	struct inode *inode = page->mapping->host;
 297	struct ocfs2_inode_info *oi = OCFS2_I(inode);
 298	loff_t start = (loff_t)page->index << PAGE_SHIFT;
 299	int ret, unlock = 1;
 300
 301	trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
 302			     (page ? page->index : 0));
 303
 304	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
 305	if (ret != 0) {
 306		if (ret == AOP_TRUNCATED_PAGE)
 307			unlock = 0;
 308		mlog_errno(ret);
 309		goto out;
 310	}
 311
 312	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
 313		/*
 314		 * Unlock the page and cycle ip_alloc_sem so that we don't
 315		 * busyloop waiting for ip_alloc_sem to unlock
 316		 */
 317		ret = AOP_TRUNCATED_PAGE;
 318		unlock_page(page);
 319		unlock = 0;
 320		down_read(&oi->ip_alloc_sem);
 321		up_read(&oi->ip_alloc_sem);
 322		goto out_inode_unlock;
 323	}
 324
 325	/*
 326	 * i_size might have just been updated as we grabed the meta lock.  We
 327	 * might now be discovering a truncate that hit on another node.
 328	 * block_read_full_page->get_block freaks out if it is asked to read
 329	 * beyond the end of a file, so we check here.  Callers
 330	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
 331	 * and notice that the page they just read isn't needed.
 332	 *
 333	 * XXX sys_readahead() seems to get that wrong?
 334	 */
 335	if (start >= i_size_read(inode)) {
 336		zero_user(page, 0, PAGE_SIZE);
 337		SetPageUptodate(page);
 338		ret = 0;
 339		goto out_alloc;
 340	}
 341
 342	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 343		ret = ocfs2_readpage_inline(inode, page);
 344	else
 345		ret = block_read_full_page(page, ocfs2_get_block);
 346	unlock = 0;
 347
 348out_alloc:
 349	up_read(&oi->ip_alloc_sem);
 350out_inode_unlock:
 351	ocfs2_inode_unlock(inode, 0);
 352out:
 353	if (unlock)
 354		unlock_page(page);
 355	return ret;
 356}
 357
 358/*
 359 * This is used only for read-ahead. Failures or difficult to handle
 360 * situations are safe to ignore.
 361 *
 362 * Right now, we don't bother with BH_Boundary - in-inode extent lists
 363 * are quite large (243 extents on 4k blocks), so most inodes don't
 364 * grow out to a tree. If need be, detecting boundary extents could
 365 * trivially be added in a future version of ocfs2_get_block().
 366 */
 367static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
 368			   struct list_head *pages, unsigned nr_pages)
 369{
 370	int ret, err = -EIO;
 371	struct inode *inode = mapping->host;
 372	struct ocfs2_inode_info *oi = OCFS2_I(inode);
 373	loff_t start;
 374	struct page *last;
 375
 376	/*
 377	 * Use the nonblocking flag for the dlm code to avoid page
 378	 * lock inversion, but don't bother with retrying.
 379	 */
 380	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
 381	if (ret)
 382		return err;
 383
 384	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
 385		ocfs2_inode_unlock(inode, 0);
 386		return err;
 387	}
 388
 389	/*
 390	 * Don't bother with inline-data. There isn't anything
 391	 * to read-ahead in that case anyway...
 392	 */
 393	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 394		goto out_unlock;
 395
 396	/*
 397	 * Check whether a remote node truncated this file - we just
 398	 * drop out in that case as it's not worth handling here.
 399	 */
 400	last = list_entry(pages->prev, struct page, lru);
 401	start = (loff_t)last->index << PAGE_SHIFT;
 402	if (start >= i_size_read(inode))
 403		goto out_unlock;
 404
 405	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
 406
 
 
 407out_unlock:
 408	up_read(&oi->ip_alloc_sem);
 409	ocfs2_inode_unlock(inode, 0);
 410
 411	return err;
 412}
 413
 414/* Note: Because we don't support holes, our allocation has
 415 * already happened (allocation writes zeros to the file data)
 416 * so we don't have to worry about ordered writes in
 417 * ocfs2_writepage.
 418 *
 419 * ->writepage is called during the process of invalidating the page cache
 420 * during blocked lock processing.  It can't block on any cluster locks
 421 * to during block mapping.  It's relying on the fact that the block
 422 * mapping can't have disappeared under the dirty pages that it is
 423 * being asked to write back.
 424 */
 425static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
 
 426{
 427	trace_ocfs2_writepage(
 428		(unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
 429		page->index);
 430
 431	return block_write_full_page(page, ocfs2_get_block, wbc);
 432}
 433
 434/* Taken from ext3. We don't necessarily need the full blown
 435 * functionality yet, but IMHO it's better to cut and paste the whole
 436 * thing so we can avoid introducing our own bugs (and easily pick up
 437 * their fixes when they happen) --Mark */
 438int walk_page_buffers(	handle_t *handle,
 439			struct buffer_head *head,
 440			unsigned from,
 441			unsigned to,
 442			int *partial,
 443			int (*fn)(	handle_t *handle,
 444					struct buffer_head *bh))
 445{
 446	struct buffer_head *bh;
 447	unsigned block_start, block_end;
 448	unsigned blocksize = head->b_size;
 449	int err, ret = 0;
 450	struct buffer_head *next;
 451
 452	for (	bh = head, block_start = 0;
 453		ret == 0 && (bh != head || !block_start);
 454	    	block_start = block_end, bh = next)
 455	{
 456		next = bh->b_this_page;
 457		block_end = block_start + blocksize;
 458		if (block_end <= from || block_start >= to) {
 459			if (partial && !buffer_uptodate(bh))
 460				*partial = 1;
 461			continue;
 462		}
 463		err = (*fn)(handle, bh);
 464		if (!ret)
 465			ret = err;
 466	}
 467	return ret;
 468}
 469
 470static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
 471{
 472	sector_t status;
 473	u64 p_blkno = 0;
 474	int err = 0;
 475	struct inode *inode = mapping->host;
 476
 477	trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
 478			 (unsigned long long)block);
 479
 480	/*
 481	 * The swap code (ab-)uses ->bmap to get a block mapping and then
 482	 * bypasseѕ the file system for actual I/O.  We really can't allow
 483	 * that on refcounted inodes, so we have to skip out here.  And yes,
 484	 * 0 is the magic code for a bmap error..
 485	 */
 486	if (ocfs2_is_refcount_inode(inode))
 487		return 0;
 488
 489	/* We don't need to lock journal system files, since they aren't
 490	 * accessed concurrently from multiple nodes.
 491	 */
 492	if (!INODE_JOURNAL(inode)) {
 493		err = ocfs2_inode_lock(inode, NULL, 0);
 494		if (err) {
 495			if (err != -ENOENT)
 496				mlog_errno(err);
 497			goto bail;
 498		}
 499		down_read(&OCFS2_I(inode)->ip_alloc_sem);
 500	}
 501
 502	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
 503		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
 504						  NULL);
 505
 506	if (!INODE_JOURNAL(inode)) {
 507		up_read(&OCFS2_I(inode)->ip_alloc_sem);
 508		ocfs2_inode_unlock(inode, 0);
 509	}
 510
 511	if (err) {
 512		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
 513		     (unsigned long long)block);
 514		mlog_errno(err);
 515		goto bail;
 516	}
 517
 518bail:
 519	status = err ? 0 : p_blkno;
 520
 521	return status;
 522}
 523
 524static int ocfs2_releasepage(struct page *page, gfp_t wait)
 525{
 526	if (!page_has_buffers(page))
 527		return 0;
 528	return try_to_free_buffers(page);
 529}
 530
 531static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
 532					    u32 cpos,
 533					    unsigned int *start,
 534					    unsigned int *end)
 535{
 536	unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
 537
 538	if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
 539		unsigned int cpp;
 540
 541		cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
 542
 543		cluster_start = cpos % cpp;
 544		cluster_start = cluster_start << osb->s_clustersize_bits;
 545
 546		cluster_end = cluster_start + osb->s_clustersize;
 547	}
 548
 549	BUG_ON(cluster_start > PAGE_SIZE);
 550	BUG_ON(cluster_end > PAGE_SIZE);
 551
 552	if (start)
 553		*start = cluster_start;
 554	if (end)
 555		*end = cluster_end;
 556}
 557
 558/*
 559 * 'from' and 'to' are the region in the page to avoid zeroing.
 560 *
 561 * If pagesize > clustersize, this function will avoid zeroing outside
 562 * of the cluster boundary.
 563 *
 564 * from == to == 0 is code for "zero the entire cluster region"
 565 */
 566static void ocfs2_clear_page_regions(struct page *page,
 567				     struct ocfs2_super *osb, u32 cpos,
 568				     unsigned from, unsigned to)
 569{
 570	void *kaddr;
 571	unsigned int cluster_start, cluster_end;
 572
 573	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
 574
 575	kaddr = kmap_atomic(page);
 576
 577	if (from || to) {
 578		if (from > cluster_start)
 579			memset(kaddr + cluster_start, 0, from - cluster_start);
 580		if (to < cluster_end)
 581			memset(kaddr + to, 0, cluster_end - to);
 582	} else {
 583		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
 584	}
 585
 586	kunmap_atomic(kaddr);
 587}
 588
 589/*
 590 * Nonsparse file systems fully allocate before we get to the write
 591 * code. This prevents ocfs2_write() from tagging the write as an
 592 * allocating one, which means ocfs2_map_page_blocks() might try to
 593 * read-in the blocks at the tail of our file. Avoid reading them by
 594 * testing i_size against each block offset.
 595 */
 596static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
 597				 unsigned int block_start)
 598{
 599	u64 offset = page_offset(page) + block_start;
 600
 601	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
 602		return 1;
 603
 604	if (i_size_read(inode) > offset)
 605		return 1;
 606
 607	return 0;
 608}
 609
 610/*
 611 * Some of this taken from __block_write_begin(). We already have our
 612 * mapping by now though, and the entire write will be allocating or
 613 * it won't, so not much need to use BH_New.
 614 *
 615 * This will also skip zeroing, which is handled externally.
 616 */
 617int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
 618			  struct inode *inode, unsigned int from,
 619			  unsigned int to, int new)
 620{
 
 621	int ret = 0;
 622	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
 623	unsigned int block_end, block_start;
 624	unsigned int bsize = i_blocksize(inode);
 625
 626	if (!page_has_buffers(page))
 627		create_empty_buffers(page, bsize, 0);
 
 628
 629	head = page_buffers(page);
 630	for (bh = head, block_start = 0; bh != head || !block_start;
 631	     bh = bh->b_this_page, block_start += bsize) {
 632		block_end = block_start + bsize;
 633
 634		clear_buffer_new(bh);
 635
 636		/*
 637		 * Ignore blocks outside of our i/o range -
 638		 * they may belong to unallocated clusters.
 639		 */
 640		if (block_start >= to || block_end <= from) {
 641			if (PageUptodate(page))
 642				set_buffer_uptodate(bh);
 643			continue;
 644		}
 645
 646		/*
 647		 * For an allocating write with cluster size >= page
 648		 * size, we always write the entire page.
 649		 */
 650		if (new)
 651			set_buffer_new(bh);
 652
 653		if (!buffer_mapped(bh)) {
 654			map_bh(bh, inode->i_sb, *p_blkno);
 655			clean_bdev_bh_alias(bh);
 656		}
 657
 658		if (PageUptodate(page)) {
 659			if (!buffer_uptodate(bh))
 660				set_buffer_uptodate(bh);
 661		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
 662			   !buffer_new(bh) &&
 663			   ocfs2_should_read_blk(inode, page, block_start) &&
 664			   (block_start < from || block_end > to)) {
 665			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
 666			*wait_bh++=bh;
 667		}
 668
 669		*p_blkno = *p_blkno + 1;
 670	}
 671
 672	/*
 673	 * If we issued read requests - let them complete.
 674	 */
 675	while(wait_bh > wait) {
 676		wait_on_buffer(*--wait_bh);
 677		if (!buffer_uptodate(*wait_bh))
 678			ret = -EIO;
 679	}
 680
 681	if (ret == 0 || !new)
 682		return ret;
 683
 684	/*
 685	 * If we get -EIO above, zero out any newly allocated blocks
 686	 * to avoid exposing stale data.
 687	 */
 688	bh = head;
 689	block_start = 0;
 690	do {
 691		block_end = block_start + bsize;
 692		if (block_end <= from)
 693			goto next_bh;
 694		if (block_start >= to)
 695			break;
 696
 697		zero_user(page, block_start, bh->b_size);
 698		set_buffer_uptodate(bh);
 699		mark_buffer_dirty(bh);
 700
 701next_bh:
 702		block_start = block_end;
 703		bh = bh->b_this_page;
 704	} while (bh != head);
 705
 706	return ret;
 707}
 708
 709#if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
 710#define OCFS2_MAX_CTXT_PAGES	1
 711#else
 712#define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
 713#endif
 714
 715#define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
 716
 717struct ocfs2_unwritten_extent {
 718	struct list_head	ue_node;
 719	struct list_head	ue_ip_node;
 720	u32			ue_cpos;
 721	u32			ue_phys;
 722};
 723
 724/*
 725 * Describe the state of a single cluster to be written to.
 726 */
 727struct ocfs2_write_cluster_desc {
 728	u32		c_cpos;
 729	u32		c_phys;
 730	/*
 731	 * Give this a unique field because c_phys eventually gets
 732	 * filled.
 733	 */
 734	unsigned	c_new;
 735	unsigned	c_clear_unwritten;
 736	unsigned	c_needs_zero;
 737};
 738
 739struct ocfs2_write_ctxt {
 740	/* Logical cluster position / len of write */
 741	u32				w_cpos;
 742	u32				w_clen;
 743
 744	/* First cluster allocated in a nonsparse extend */
 745	u32				w_first_new_cpos;
 746
 747	/* Type of caller. Must be one of buffer, mmap, direct.  */
 748	ocfs2_write_type_t		w_type;
 749
 750	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
 751
 752	/*
 753	 * This is true if page_size > cluster_size.
 754	 *
 755	 * It triggers a set of special cases during write which might
 756	 * have to deal with allocating writes to partial pages.
 757	 */
 758	unsigned int			w_large_pages;
 759
 760	/*
 761	 * Pages involved in this write.
 762	 *
 763	 * w_target_page is the page being written to by the user.
 764	 *
 765	 * w_pages is an array of pages which always contains
 766	 * w_target_page, and in the case of an allocating write with
 767	 * page_size < cluster size, it will contain zero'd and mapped
 768	 * pages adjacent to w_target_page which need to be written
 769	 * out in so that future reads from that region will get
 770	 * zero's.
 771	 */
 772	unsigned int			w_num_pages;
 773	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
 774	struct page			*w_target_page;
 775
 776	/*
 777	 * w_target_locked is used for page_mkwrite path indicating no unlocking
 778	 * against w_target_page in ocfs2_write_end_nolock.
 779	 */
 780	unsigned int			w_target_locked:1;
 781
 782	/*
 783	 * ocfs2_write_end() uses this to know what the real range to
 784	 * write in the target should be.
 785	 */
 786	unsigned int			w_target_from;
 787	unsigned int			w_target_to;
 788
 789	/*
 790	 * We could use journal_current_handle() but this is cleaner,
 791	 * IMHO -Mark
 792	 */
 793	handle_t			*w_handle;
 794
 795	struct buffer_head		*w_di_bh;
 796
 797	struct ocfs2_cached_dealloc_ctxt w_dealloc;
 798
 799	struct list_head		w_unwritten_list;
 800	unsigned int			w_unwritten_count;
 801};
 802
 803void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
 804{
 805	int i;
 806
 807	for(i = 0; i < num_pages; i++) {
 808		if (pages[i]) {
 809			unlock_page(pages[i]);
 810			mark_page_accessed(pages[i]);
 811			put_page(pages[i]);
 812		}
 813	}
 814}
 815
 816static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
 817{
 818	int i;
 819
 820	/*
 821	 * w_target_locked is only set to true in the page_mkwrite() case.
 822	 * The intent is to allow us to lock the target page from write_begin()
 823	 * to write_end(). The caller must hold a ref on w_target_page.
 824	 */
 825	if (wc->w_target_locked) {
 826		BUG_ON(!wc->w_target_page);
 827		for (i = 0; i < wc->w_num_pages; i++) {
 828			if (wc->w_target_page == wc->w_pages[i]) {
 829				wc->w_pages[i] = NULL;
 830				break;
 831			}
 832		}
 833		mark_page_accessed(wc->w_target_page);
 834		put_page(wc->w_target_page);
 835	}
 836	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
 837}
 838
 839static void ocfs2_free_unwritten_list(struct inode *inode,
 840				 struct list_head *head)
 841{
 842	struct ocfs2_inode_info *oi = OCFS2_I(inode);
 843	struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
 844
 845	list_for_each_entry_safe(ue, tmp, head, ue_node) {
 846		list_del(&ue->ue_node);
 847		spin_lock(&oi->ip_lock);
 848		list_del(&ue->ue_ip_node);
 849		spin_unlock(&oi->ip_lock);
 850		kfree(ue);
 851	}
 852}
 853
 854static void ocfs2_free_write_ctxt(struct inode *inode,
 855				  struct ocfs2_write_ctxt *wc)
 856{
 857	ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
 858	ocfs2_unlock_pages(wc);
 859	brelse(wc->w_di_bh);
 860	kfree(wc);
 861}
 862
 863static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
 864				  struct ocfs2_super *osb, loff_t pos,
 865				  unsigned len, ocfs2_write_type_t type,
 866				  struct buffer_head *di_bh)
 867{
 868	u32 cend;
 869	struct ocfs2_write_ctxt *wc;
 870
 871	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
 872	if (!wc)
 873		return -ENOMEM;
 874
 875	wc->w_cpos = pos >> osb->s_clustersize_bits;
 876	wc->w_first_new_cpos = UINT_MAX;
 877	cend = (pos + len - 1) >> osb->s_clustersize_bits;
 878	wc->w_clen = cend - wc->w_cpos + 1;
 879	get_bh(di_bh);
 880	wc->w_di_bh = di_bh;
 881	wc->w_type = type;
 882
 883	if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
 884		wc->w_large_pages = 1;
 885	else
 886		wc->w_large_pages = 0;
 887
 888	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
 889	INIT_LIST_HEAD(&wc->w_unwritten_list);
 890
 891	*wcp = wc;
 892
 893	return 0;
 894}
 895
 896/*
 897 * If a page has any new buffers, zero them out here, and mark them uptodate
 898 * and dirty so they'll be written out (in order to prevent uninitialised
 899 * block data from leaking). And clear the new bit.
 900 */
 901static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
 902{
 903	unsigned int block_start, block_end;
 904	struct buffer_head *head, *bh;
 905
 906	BUG_ON(!PageLocked(page));
 907	if (!page_has_buffers(page))
 908		return;
 909
 910	bh = head = page_buffers(page);
 911	block_start = 0;
 912	do {
 913		block_end = block_start + bh->b_size;
 914
 915		if (buffer_new(bh)) {
 916			if (block_end > from && block_start < to) {
 917				if (!PageUptodate(page)) {
 918					unsigned start, end;
 919
 920					start = max(from, block_start);
 921					end = min(to, block_end);
 922
 923					zero_user_segment(page, start, end);
 924					set_buffer_uptodate(bh);
 925				}
 926
 927				clear_buffer_new(bh);
 928				mark_buffer_dirty(bh);
 929			}
 930		}
 931
 932		block_start = block_end;
 933		bh = bh->b_this_page;
 934	} while (bh != head);
 935}
 936
 937/*
 938 * Only called when we have a failure during allocating write to write
 939 * zero's to the newly allocated region.
 940 */
 941static void ocfs2_write_failure(struct inode *inode,
 942				struct ocfs2_write_ctxt *wc,
 943				loff_t user_pos, unsigned user_len)
 944{
 945	int i;
 946	unsigned from = user_pos & (PAGE_SIZE - 1),
 947		to = user_pos + user_len;
 948	struct page *tmppage;
 949
 950	if (wc->w_target_page)
 951		ocfs2_zero_new_buffers(wc->w_target_page, from, to);
 952
 953	for(i = 0; i < wc->w_num_pages; i++) {
 954		tmppage = wc->w_pages[i];
 955
 956		if (tmppage && page_has_buffers(tmppage)) {
 957			if (ocfs2_should_order_data(inode))
 958				ocfs2_jbd2_file_inode(wc->w_handle, inode);
 
 959
 960			block_commit_write(tmppage, from, to);
 961		}
 962	}
 963}
 964
 965static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
 966					struct ocfs2_write_ctxt *wc,
 967					struct page *page, u32 cpos,
 968					loff_t user_pos, unsigned user_len,
 969					int new)
 970{
 971	int ret;
 972	unsigned int map_from = 0, map_to = 0;
 973	unsigned int cluster_start, cluster_end;
 974	unsigned int user_data_from = 0, user_data_to = 0;
 975
 976	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
 977					&cluster_start, &cluster_end);
 978
 979	/* treat the write as new if the a hole/lseek spanned across
 980	 * the page boundary.
 981	 */
 982	new = new | ((i_size_read(inode) <= page_offset(page)) &&
 983			(page_offset(page) <= user_pos));
 984
 985	if (page == wc->w_target_page) {
 986		map_from = user_pos & (PAGE_SIZE - 1);
 987		map_to = map_from + user_len;
 988
 989		if (new)
 990			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
 991						    cluster_start, cluster_end,
 992						    new);
 993		else
 994			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
 995						    map_from, map_to, new);
 996		if (ret) {
 997			mlog_errno(ret);
 998			goto out;
 999		}
1000
1001		user_data_from = map_from;
1002		user_data_to = map_to;
1003		if (new) {
1004			map_from = cluster_start;
1005			map_to = cluster_end;
1006		}
1007	} else {
1008		/*
1009		 * If we haven't allocated the new page yet, we
1010		 * shouldn't be writing it out without copying user
1011		 * data. This is likely a math error from the caller.
1012		 */
1013		BUG_ON(!new);
1014
1015		map_from = cluster_start;
1016		map_to = cluster_end;
1017
1018		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1019					    cluster_start, cluster_end, new);
1020		if (ret) {
1021			mlog_errno(ret);
1022			goto out;
1023		}
1024	}
1025
1026	/*
1027	 * Parts of newly allocated pages need to be zero'd.
1028	 *
1029	 * Above, we have also rewritten 'to' and 'from' - as far as
1030	 * the rest of the function is concerned, the entire cluster
1031	 * range inside of a page needs to be written.
1032	 *
1033	 * We can skip this if the page is up to date - it's already
1034	 * been zero'd from being read in as a hole.
1035	 */
1036	if (new && !PageUptodate(page))
1037		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1038					 cpos, user_data_from, user_data_to);
1039
1040	flush_dcache_page(page);
1041
1042out:
1043	return ret;
1044}
1045
1046/*
1047 * This function will only grab one clusters worth of pages.
1048 */
1049static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1050				      struct ocfs2_write_ctxt *wc,
1051				      u32 cpos, loff_t user_pos,
1052				      unsigned user_len, int new,
1053				      struct page *mmap_page)
1054{
1055	int ret = 0, i;
1056	unsigned long start, target_index, end_index, index;
1057	struct inode *inode = mapping->host;
1058	loff_t last_byte;
1059
1060	target_index = user_pos >> PAGE_SHIFT;
1061
1062	/*
1063	 * Figure out how many pages we'll be manipulating here. For
1064	 * non allocating write, we just change the one
1065	 * page. Otherwise, we'll need a whole clusters worth.  If we're
1066	 * writing past i_size, we only need enough pages to cover the
1067	 * last page of the write.
1068	 */
1069	if (new) {
1070		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1071		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1072		/*
1073		 * We need the index *past* the last page we could possibly
1074		 * touch.  This is the page past the end of the write or
1075		 * i_size, whichever is greater.
1076		 */
1077		last_byte = max(user_pos + user_len, i_size_read(inode));
1078		BUG_ON(last_byte < 1);
1079		end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1080		if ((start + wc->w_num_pages) > end_index)
1081			wc->w_num_pages = end_index - start;
1082	} else {
1083		wc->w_num_pages = 1;
1084		start = target_index;
1085	}
1086	end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1087
1088	for(i = 0; i < wc->w_num_pages; i++) {
1089		index = start + i;
1090
1091		if (index >= target_index && index <= end_index &&
1092		    wc->w_type == OCFS2_WRITE_MMAP) {
1093			/*
1094			 * ocfs2_pagemkwrite() is a little different
1095			 * and wants us to directly use the page
1096			 * passed in.
1097			 */
1098			lock_page(mmap_page);
1099
1100			/* Exit and let the caller retry */
1101			if (mmap_page->mapping != mapping) {
1102				WARN_ON(mmap_page->mapping);
1103				unlock_page(mmap_page);
1104				ret = -EAGAIN;
1105				goto out;
1106			}
1107
1108			get_page(mmap_page);
1109			wc->w_pages[i] = mmap_page;
1110			wc->w_target_locked = true;
1111		} else if (index >= target_index && index <= end_index &&
1112			   wc->w_type == OCFS2_WRITE_DIRECT) {
1113			/* Direct write has no mapping page. */
1114			wc->w_pages[i] = NULL;
1115			continue;
1116		} else {
1117			wc->w_pages[i] = find_or_create_page(mapping, index,
1118							     GFP_NOFS);
1119			if (!wc->w_pages[i]) {
1120				ret = -ENOMEM;
1121				mlog_errno(ret);
1122				goto out;
1123			}
1124		}
1125		wait_for_stable_page(wc->w_pages[i]);
1126
1127		if (index == target_index)
1128			wc->w_target_page = wc->w_pages[i];
1129	}
1130out:
1131	if (ret)
1132		wc->w_target_locked = false;
1133	return ret;
1134}
1135
1136/*
1137 * Prepare a single cluster for write one cluster into the file.
1138 */
1139static int ocfs2_write_cluster(struct address_space *mapping,
1140			       u32 *phys, unsigned int new,
1141			       unsigned int clear_unwritten,
1142			       unsigned int should_zero,
1143			       struct ocfs2_alloc_context *data_ac,
1144			       struct ocfs2_alloc_context *meta_ac,
1145			       struct ocfs2_write_ctxt *wc, u32 cpos,
1146			       loff_t user_pos, unsigned user_len)
1147{
1148	int ret, i;
1149	u64 p_blkno;
1150	struct inode *inode = mapping->host;
1151	struct ocfs2_extent_tree et;
1152	int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1153
1154	if (new) {
1155		u32 tmp_pos;
1156
1157		/*
1158		 * This is safe to call with the page locks - it won't take
1159		 * any additional semaphores or cluster locks.
1160		 */
1161		tmp_pos = cpos;
1162		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1163					   &tmp_pos, 1, !clear_unwritten,
1164					   wc->w_di_bh, wc->w_handle,
1165					   data_ac, meta_ac, NULL);
1166		/*
1167		 * This shouldn't happen because we must have already
1168		 * calculated the correct meta data allocation required. The
1169		 * internal tree allocation code should know how to increase
1170		 * transaction credits itself.
1171		 *
1172		 * If need be, we could handle -EAGAIN for a
1173		 * RESTART_TRANS here.
1174		 */
1175		mlog_bug_on_msg(ret == -EAGAIN,
1176				"Inode %llu: EAGAIN return during allocation.\n",
1177				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1178		if (ret < 0) {
1179			mlog_errno(ret);
1180			goto out;
1181		}
1182	} else if (clear_unwritten) {
1183		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1184					      wc->w_di_bh);
1185		ret = ocfs2_mark_extent_written(inode, &et,
1186						wc->w_handle, cpos, 1, *phys,
1187						meta_ac, &wc->w_dealloc);
1188		if (ret < 0) {
1189			mlog_errno(ret);
1190			goto out;
1191		}
1192	}
1193
1194	/*
1195	 * The only reason this should fail is due to an inability to
1196	 * find the extent added.
1197	 */
1198	ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
1199	if (ret < 0) {
1200		mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1201			    "at logical cluster %u",
1202			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
1203		goto out;
1204	}
1205
1206	BUG_ON(*phys == 0);
1207
1208	p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1209	if (!should_zero)
1210		p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1211
1212	for(i = 0; i < wc->w_num_pages; i++) {
1213		int tmpret;
1214
1215		/* This is the direct io target page. */
1216		if (wc->w_pages[i] == NULL) {
1217			p_blkno++;
1218			continue;
1219		}
1220
1221		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1222						      wc->w_pages[i], cpos,
1223						      user_pos, user_len,
1224						      should_zero);
1225		if (tmpret) {
1226			mlog_errno(tmpret);
1227			if (ret == 0)
1228				ret = tmpret;
1229		}
1230	}
1231
1232	/*
1233	 * We only have cleanup to do in case of allocating write.
1234	 */
1235	if (ret && new)
1236		ocfs2_write_failure(inode, wc, user_pos, user_len);
1237
1238out:
1239
1240	return ret;
1241}
1242
1243static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1244				       struct ocfs2_alloc_context *data_ac,
1245				       struct ocfs2_alloc_context *meta_ac,
1246				       struct ocfs2_write_ctxt *wc,
1247				       loff_t pos, unsigned len)
1248{
1249	int ret, i;
1250	loff_t cluster_off;
1251	unsigned int local_len = len;
1252	struct ocfs2_write_cluster_desc *desc;
1253	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1254
1255	for (i = 0; i < wc->w_clen; i++) {
1256		desc = &wc->w_desc[i];
1257
1258		/*
1259		 * We have to make sure that the total write passed in
1260		 * doesn't extend past a single cluster.
1261		 */
1262		local_len = len;
1263		cluster_off = pos & (osb->s_clustersize - 1);
1264		if ((cluster_off + local_len) > osb->s_clustersize)
1265			local_len = osb->s_clustersize - cluster_off;
1266
1267		ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1268					  desc->c_new,
1269					  desc->c_clear_unwritten,
1270					  desc->c_needs_zero,
1271					  data_ac, meta_ac,
1272					  wc, desc->c_cpos, pos, local_len);
1273		if (ret) {
1274			mlog_errno(ret);
1275			goto out;
1276		}
1277
1278		len -= local_len;
1279		pos += local_len;
1280	}
1281
1282	ret = 0;
1283out:
1284	return ret;
1285}
1286
1287/*
1288 * ocfs2_write_end() wants to know which parts of the target page it
1289 * should complete the write on. It's easiest to compute them ahead of
1290 * time when a more complete view of the write is available.
1291 */
1292static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1293					struct ocfs2_write_ctxt *wc,
1294					loff_t pos, unsigned len, int alloc)
1295{
1296	struct ocfs2_write_cluster_desc *desc;
1297
1298	wc->w_target_from = pos & (PAGE_SIZE - 1);
1299	wc->w_target_to = wc->w_target_from + len;
1300
1301	if (alloc == 0)
1302		return;
1303
1304	/*
1305	 * Allocating write - we may have different boundaries based
1306	 * on page size and cluster size.
1307	 *
1308	 * NOTE: We can no longer compute one value from the other as
1309	 * the actual write length and user provided length may be
1310	 * different.
1311	 */
1312
1313	if (wc->w_large_pages) {
1314		/*
1315		 * We only care about the 1st and last cluster within
1316		 * our range and whether they should be zero'd or not. Either
1317		 * value may be extended out to the start/end of a
1318		 * newly allocated cluster.
1319		 */
1320		desc = &wc->w_desc[0];
1321		if (desc->c_needs_zero)
1322			ocfs2_figure_cluster_boundaries(osb,
1323							desc->c_cpos,
1324							&wc->w_target_from,
1325							NULL);
1326
1327		desc = &wc->w_desc[wc->w_clen - 1];
1328		if (desc->c_needs_zero)
1329			ocfs2_figure_cluster_boundaries(osb,
1330							desc->c_cpos,
1331							NULL,
1332							&wc->w_target_to);
1333	} else {
1334		wc->w_target_from = 0;
1335		wc->w_target_to = PAGE_SIZE;
1336	}
1337}
1338
1339/*
1340 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1341 * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1342 * by the direct io procedure.
1343 * If this is a new extent that allocated by direct io, we should mark it in
1344 * the ip_unwritten_list.
1345 */
1346static int ocfs2_unwritten_check(struct inode *inode,
1347				 struct ocfs2_write_ctxt *wc,
1348				 struct ocfs2_write_cluster_desc *desc)
1349{
1350	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1351	struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1352	int ret = 0;
1353
1354	if (!desc->c_needs_zero)
1355		return 0;
1356
1357retry:
1358	spin_lock(&oi->ip_lock);
1359	/* Needs not to zero no metter buffer or direct. The one who is zero
1360	 * the cluster is doing zero. And he will clear unwritten after all
1361	 * cluster io finished. */
1362	list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1363		if (desc->c_cpos == ue->ue_cpos) {
1364			BUG_ON(desc->c_new);
1365			desc->c_needs_zero = 0;
1366			desc->c_clear_unwritten = 0;
1367			goto unlock;
1368		}
1369	}
1370
1371	if (wc->w_type != OCFS2_WRITE_DIRECT)
1372		goto unlock;
1373
1374	if (new == NULL) {
1375		spin_unlock(&oi->ip_lock);
1376		new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1377			     GFP_NOFS);
1378		if (new == NULL) {
1379			ret = -ENOMEM;
1380			goto out;
1381		}
1382		goto retry;
1383	}
1384	/* This direct write will doing zero. */
1385	new->ue_cpos = desc->c_cpos;
1386	new->ue_phys = desc->c_phys;
1387	desc->c_clear_unwritten = 0;
1388	list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1389	list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1390	wc->w_unwritten_count++;
1391	new = NULL;
1392unlock:
1393	spin_unlock(&oi->ip_lock);
1394out:
1395	if (new)
1396		kfree(new);
1397	return ret;
1398}
1399
1400/*
1401 * Populate each single-cluster write descriptor in the write context
1402 * with information about the i/o to be done.
1403 *
1404 * Returns the number of clusters that will have to be allocated, as
1405 * well as a worst case estimate of the number of extent records that
1406 * would have to be created during a write to an unwritten region.
1407 */
1408static int ocfs2_populate_write_desc(struct inode *inode,
1409				     struct ocfs2_write_ctxt *wc,
1410				     unsigned int *clusters_to_alloc,
1411				     unsigned int *extents_to_split)
1412{
1413	int ret;
1414	struct ocfs2_write_cluster_desc *desc;
1415	unsigned int num_clusters = 0;
1416	unsigned int ext_flags = 0;
1417	u32 phys = 0;
1418	int i;
1419
1420	*clusters_to_alloc = 0;
1421	*extents_to_split = 0;
1422
1423	for (i = 0; i < wc->w_clen; i++) {
1424		desc = &wc->w_desc[i];
1425		desc->c_cpos = wc->w_cpos + i;
1426
1427		if (num_clusters == 0) {
1428			/*
1429			 * Need to look up the next extent record.
1430			 */
1431			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1432						 &num_clusters, &ext_flags);
1433			if (ret) {
1434				mlog_errno(ret);
1435				goto out;
1436			}
1437
1438			/* We should already CoW the refcountd extent. */
1439			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1440
1441			/*
1442			 * Assume worst case - that we're writing in
1443			 * the middle of the extent.
1444			 *
1445			 * We can assume that the write proceeds from
1446			 * left to right, in which case the extent
1447			 * insert code is smart enough to coalesce the
1448			 * next splits into the previous records created.
1449			 */
1450			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1451				*extents_to_split = *extents_to_split + 2;
1452		} else if (phys) {
1453			/*
1454			 * Only increment phys if it doesn't describe
1455			 * a hole.
1456			 */
1457			phys++;
1458		}
1459
1460		/*
1461		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1462		 * file that got extended.  w_first_new_cpos tells us
1463		 * where the newly allocated clusters are so we can
1464		 * zero them.
1465		 */
1466		if (desc->c_cpos >= wc->w_first_new_cpos) {
1467			BUG_ON(phys == 0);
1468			desc->c_needs_zero = 1;
1469		}
1470
1471		desc->c_phys = phys;
1472		if (phys == 0) {
1473			desc->c_new = 1;
1474			desc->c_needs_zero = 1;
1475			desc->c_clear_unwritten = 1;
1476			*clusters_to_alloc = *clusters_to_alloc + 1;
1477		}
1478
1479		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1480			desc->c_clear_unwritten = 1;
1481			desc->c_needs_zero = 1;
1482		}
1483
1484		ret = ocfs2_unwritten_check(inode, wc, desc);
1485		if (ret) {
1486			mlog_errno(ret);
1487			goto out;
1488		}
1489
1490		num_clusters--;
1491	}
1492
1493	ret = 0;
1494out:
1495	return ret;
1496}
1497
1498static int ocfs2_write_begin_inline(struct address_space *mapping,
1499				    struct inode *inode,
1500				    struct ocfs2_write_ctxt *wc)
1501{
1502	int ret;
1503	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1504	struct page *page;
1505	handle_t *handle;
1506	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1507
1508	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1509	if (IS_ERR(handle)) {
1510		ret = PTR_ERR(handle);
1511		mlog_errno(ret);
1512		goto out;
1513	}
1514
1515	page = find_or_create_page(mapping, 0, GFP_NOFS);
1516	if (!page) {
1517		ocfs2_commit_trans(osb, handle);
1518		ret = -ENOMEM;
1519		mlog_errno(ret);
1520		goto out;
1521	}
1522	/*
1523	 * If we don't set w_num_pages then this page won't get unlocked
1524	 * and freed on cleanup of the write context.
1525	 */
1526	wc->w_pages[0] = wc->w_target_page = page;
1527	wc->w_num_pages = 1;
1528
1529	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1530				      OCFS2_JOURNAL_ACCESS_WRITE);
1531	if (ret) {
1532		ocfs2_commit_trans(osb, handle);
1533
1534		mlog_errno(ret);
1535		goto out;
1536	}
1537
1538	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1539		ocfs2_set_inode_data_inline(inode, di);
1540
1541	if (!PageUptodate(page)) {
1542		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1543		if (ret) {
1544			ocfs2_commit_trans(osb, handle);
1545
1546			goto out;
1547		}
1548	}
1549
1550	wc->w_handle = handle;
1551out:
1552	return ret;
1553}
1554
1555int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1556{
1557	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1558
1559	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1560		return 1;
1561	return 0;
1562}
1563
1564static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1565					  struct inode *inode, loff_t pos,
1566					  unsigned len, struct page *mmap_page,
1567					  struct ocfs2_write_ctxt *wc)
1568{
1569	int ret, written = 0;
1570	loff_t end = pos + len;
1571	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1572	struct ocfs2_dinode *di = NULL;
1573
1574	trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1575					     len, (unsigned long long)pos,
1576					     oi->ip_dyn_features);
1577
1578	/*
1579	 * Handle inodes which already have inline data 1st.
1580	 */
1581	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1582		if (mmap_page == NULL &&
1583		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1584			goto do_inline_write;
1585
1586		/*
1587		 * The write won't fit - we have to give this inode an
1588		 * inline extent list now.
1589		 */
1590		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1591		if (ret)
1592			mlog_errno(ret);
1593		goto out;
1594	}
1595
1596	/*
1597	 * Check whether the inode can accept inline data.
1598	 */
1599	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1600		return 0;
1601
1602	/*
1603	 * Check whether the write can fit.
1604	 */
1605	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1606	if (mmap_page ||
1607	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1608		return 0;
1609
1610do_inline_write:
1611	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1612	if (ret) {
1613		mlog_errno(ret);
1614		goto out;
1615	}
1616
1617	/*
1618	 * This signals to the caller that the data can be written
1619	 * inline.
1620	 */
1621	written = 1;
1622out:
1623	return written ? written : ret;
1624}
1625
1626/*
1627 * This function only does anything for file systems which can't
1628 * handle sparse files.
1629 *
1630 * What we want to do here is fill in any hole between the current end
1631 * of allocation and the end of our write. That way the rest of the
1632 * write path can treat it as an non-allocating write, which has no
1633 * special case code for sparse/nonsparse files.
1634 */
1635static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1636					struct buffer_head *di_bh,
1637					loff_t pos, unsigned len,
1638					struct ocfs2_write_ctxt *wc)
1639{
1640	int ret;
1641	loff_t newsize = pos + len;
1642
1643	BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1644
1645	if (newsize <= i_size_read(inode))
1646		return 0;
1647
1648	ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1649	if (ret)
1650		mlog_errno(ret);
1651
1652	/* There is no wc if this is call from direct. */
1653	if (wc)
1654		wc->w_first_new_cpos =
1655			ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1656
1657	return ret;
1658}
1659
1660static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1661			   loff_t pos)
1662{
1663	int ret = 0;
1664
1665	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1666	if (pos > i_size_read(inode))
1667		ret = ocfs2_zero_extend(inode, di_bh, pos);
1668
1669	return ret;
1670}
1671
1672int ocfs2_write_begin_nolock(struct address_space *mapping,
1673			     loff_t pos, unsigned len, ocfs2_write_type_t type,
1674			     struct page **pagep, void **fsdata,
1675			     struct buffer_head *di_bh, struct page *mmap_page)
1676{
1677	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1678	unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1679	struct ocfs2_write_ctxt *wc;
1680	struct inode *inode = mapping->host;
1681	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1682	struct ocfs2_dinode *di;
1683	struct ocfs2_alloc_context *data_ac = NULL;
1684	struct ocfs2_alloc_context *meta_ac = NULL;
1685	handle_t *handle;
1686	struct ocfs2_extent_tree et;
1687	int try_free = 1, ret1;
1688
1689try_again:
1690	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1691	if (ret) {
1692		mlog_errno(ret);
1693		return ret;
1694	}
1695
1696	if (ocfs2_supports_inline_data(osb)) {
1697		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1698						     mmap_page, wc);
1699		if (ret == 1) {
1700			ret = 0;
1701			goto success;
1702		}
1703		if (ret < 0) {
1704			mlog_errno(ret);
1705			goto out;
1706		}
1707	}
1708
1709	/* Direct io change i_size late, should not zero tail here. */
1710	if (type != OCFS2_WRITE_DIRECT) {
1711		if (ocfs2_sparse_alloc(osb))
1712			ret = ocfs2_zero_tail(inode, di_bh, pos);
1713		else
1714			ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1715							   len, wc);
1716		if (ret) {
1717			mlog_errno(ret);
1718			goto out;
1719		}
1720	}
1721
1722	ret = ocfs2_check_range_for_refcount(inode, pos, len);
1723	if (ret < 0) {
1724		mlog_errno(ret);
1725		goto out;
1726	} else if (ret == 1) {
1727		clusters_need = wc->w_clen;
1728		ret = ocfs2_refcount_cow(inode, di_bh,
1729					 wc->w_cpos, wc->w_clen, UINT_MAX);
1730		if (ret) {
1731			mlog_errno(ret);
1732			goto out;
1733		}
1734	}
1735
1736	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1737					&extents_to_split);
1738	if (ret) {
1739		mlog_errno(ret);
1740		goto out;
1741	}
1742	clusters_need += clusters_to_alloc;
1743
1744	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1745
1746	trace_ocfs2_write_begin_nolock(
1747			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1748			(long long)i_size_read(inode),
1749			le32_to_cpu(di->i_clusters),
1750			pos, len, type, mmap_page,
1751			clusters_to_alloc, extents_to_split);
1752
1753	/*
1754	 * We set w_target_from, w_target_to here so that
1755	 * ocfs2_write_end() knows which range in the target page to
1756	 * write out. An allocation requires that we write the entire
1757	 * cluster range.
1758	 */
1759	if (clusters_to_alloc || extents_to_split) {
1760		/*
1761		 * XXX: We are stretching the limits of
1762		 * ocfs2_lock_allocators(). It greatly over-estimates
1763		 * the work to be done.
1764		 */
1765		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1766					      wc->w_di_bh);
1767		ret = ocfs2_lock_allocators(inode, &et,
1768					    clusters_to_alloc, extents_to_split,
1769					    &data_ac, &meta_ac);
1770		if (ret) {
1771			mlog_errno(ret);
1772			goto out;
1773		}
1774
1775		if (data_ac)
1776			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1777
1778		credits = ocfs2_calc_extend_credits(inode->i_sb,
1779						    &di->id2.i_list);
1780	} else if (type == OCFS2_WRITE_DIRECT)
1781		/* direct write needs not to start trans if no extents alloc. */
1782		goto success;
1783
1784	/*
1785	 * We have to zero sparse allocated clusters, unwritten extent clusters,
1786	 * and non-sparse clusters we just extended.  For non-sparse writes,
1787	 * we know zeros will only be needed in the first and/or last cluster.
1788	 */
1789	if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1790			   wc->w_desc[wc->w_clen - 1].c_needs_zero))
1791		cluster_of_pages = 1;
1792	else
1793		cluster_of_pages = 0;
1794
1795	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1796
1797	handle = ocfs2_start_trans(osb, credits);
1798	if (IS_ERR(handle)) {
1799		ret = PTR_ERR(handle);
1800		mlog_errno(ret);
1801		goto out;
1802	}
1803
1804	wc->w_handle = handle;
1805
1806	if (clusters_to_alloc) {
1807		ret = dquot_alloc_space_nodirty(inode,
1808			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1809		if (ret)
1810			goto out_commit;
1811	}
1812
1813	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1814				      OCFS2_JOURNAL_ACCESS_WRITE);
1815	if (ret) {
1816		mlog_errno(ret);
1817		goto out_quota;
1818	}
1819
1820	/*
1821	 * Fill our page array first. That way we've grabbed enough so
1822	 * that we can zero and flush if we error after adding the
1823	 * extent.
1824	 */
1825	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1826					 cluster_of_pages, mmap_page);
1827	if (ret && ret != -EAGAIN) {
 
 
 
 
 
 
 
 
 
 
 
 
1828		mlog_errno(ret);
1829		goto out_quota;
1830	}
1831
1832	/*
1833	 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1834	 * the target page. In this case, we exit with no error and no target
1835	 * page. This will trigger the caller, page_mkwrite(), to re-try
1836	 * the operation.
1837	 */
1838	if (ret == -EAGAIN) {
1839		BUG_ON(wc->w_target_page);
1840		ret = 0;
1841		goto out_quota;
1842	}
1843
1844	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1845					  len);
1846	if (ret) {
1847		mlog_errno(ret);
1848		goto out_quota;
1849	}
1850
1851	if (data_ac)
1852		ocfs2_free_alloc_context(data_ac);
1853	if (meta_ac)
1854		ocfs2_free_alloc_context(meta_ac);
1855
1856success:
1857	if (pagep)
1858		*pagep = wc->w_target_page;
1859	*fsdata = wc;
1860	return 0;
1861out_quota:
1862	if (clusters_to_alloc)
1863		dquot_free_space(inode,
1864			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1865out_commit:
1866	ocfs2_commit_trans(osb, handle);
1867
1868out:
1869	/*
1870	 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1871	 * even in case of error here like ENOSPC and ENOMEM. So, we need
1872	 * to unlock the target page manually to prevent deadlocks when
1873	 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1874	 * to VM code.
1875	 */
1876	if (wc->w_target_locked)
1877		unlock_page(mmap_page);
1878
1879	ocfs2_free_write_ctxt(inode, wc);
1880
1881	if (data_ac) {
1882		ocfs2_free_alloc_context(data_ac);
1883		data_ac = NULL;
1884	}
1885	if (meta_ac) {
1886		ocfs2_free_alloc_context(meta_ac);
1887		meta_ac = NULL;
1888	}
1889
1890	if (ret == -ENOSPC && try_free) {
1891		/*
1892		 * Try to free some truncate log so that we can have enough
1893		 * clusters to allocate.
1894		 */
1895		try_free = 0;
1896
1897		ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1898		if (ret1 == 1)
1899			goto try_again;
1900
1901		if (ret1 < 0)
1902			mlog_errno(ret1);
1903	}
1904
1905	return ret;
1906}
1907
1908static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1909			     loff_t pos, unsigned len, unsigned flags,
1910			     struct page **pagep, void **fsdata)
1911{
1912	int ret;
1913	struct buffer_head *di_bh = NULL;
1914	struct inode *inode = mapping->host;
1915
1916	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1917	if (ret) {
1918		mlog_errno(ret);
1919		return ret;
1920	}
1921
1922	/*
1923	 * Take alloc sem here to prevent concurrent lookups. That way
1924	 * the mapping, zeroing and tree manipulation within
1925	 * ocfs2_write() will be safe against ->readpage(). This
1926	 * should also serve to lock out allocation from a shared
1927	 * writeable region.
1928	 */
1929	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1930
1931	ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1932				       pagep, fsdata, di_bh, NULL);
1933	if (ret) {
1934		mlog_errno(ret);
1935		goto out_fail;
1936	}
1937
1938	brelse(di_bh);
1939
1940	return 0;
1941
1942out_fail:
1943	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1944
1945	brelse(di_bh);
1946	ocfs2_inode_unlock(inode, 1);
1947
1948	return ret;
1949}
1950
1951static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1952				   unsigned len, unsigned *copied,
1953				   struct ocfs2_dinode *di,
1954				   struct ocfs2_write_ctxt *wc)
1955{
1956	void *kaddr;
1957
1958	if (unlikely(*copied < len)) {
1959		if (!PageUptodate(wc->w_target_page)) {
1960			*copied = 0;
1961			return;
1962		}
1963	}
1964
1965	kaddr = kmap_atomic(wc->w_target_page);
1966	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1967	kunmap_atomic(kaddr);
1968
1969	trace_ocfs2_write_end_inline(
1970	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1971	     (unsigned long long)pos, *copied,
1972	     le16_to_cpu(di->id2.i_data.id_count),
1973	     le16_to_cpu(di->i_dyn_features));
1974}
1975
1976int ocfs2_write_end_nolock(struct address_space *mapping,
1977			   loff_t pos, unsigned len, unsigned copied, void *fsdata)
1978{
1979	int i, ret;
1980	unsigned from, to, start = pos & (PAGE_SIZE - 1);
1981	struct inode *inode = mapping->host;
1982	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1983	struct ocfs2_write_ctxt *wc = fsdata;
1984	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1985	handle_t *handle = wc->w_handle;
1986	struct page *tmppage;
1987
1988	BUG_ON(!list_empty(&wc->w_unwritten_list));
1989
1990	if (handle) {
1991		ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1992				wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1993		if (ret) {
1994			copied = ret;
1995			mlog_errno(ret);
1996			goto out;
1997		}
1998	}
1999
2000	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2001		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2002		goto out_write_size;
2003	}
2004
2005	if (unlikely(copied < len) && wc->w_target_page) {
 
 
2006		if (!PageUptodate(wc->w_target_page))
2007			copied = 0;
2008
2009		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2010				       start+len);
 
 
 
 
 
 
 
 
 
 
 
 
 
2011	}
2012	if (wc->w_target_page)
2013		flush_dcache_page(wc->w_target_page);
2014
2015	for(i = 0; i < wc->w_num_pages; i++) {
2016		tmppage = wc->w_pages[i];
2017
2018		/* This is the direct io target page. */
2019		if (tmppage == NULL)
2020			continue;
2021
2022		if (tmppage == wc->w_target_page) {
2023			from = wc->w_target_from;
2024			to = wc->w_target_to;
2025
2026			BUG_ON(from > PAGE_SIZE ||
2027			       to > PAGE_SIZE ||
2028			       to < from);
2029		} else {
2030			/*
2031			 * Pages adjacent to the target (if any) imply
2032			 * a hole-filling write in which case we want
2033			 * to flush their entire range.
2034			 */
2035			from = 0;
2036			to = PAGE_SIZE;
2037		}
2038
2039		if (page_has_buffers(tmppage)) {
2040			if (handle && ocfs2_should_order_data(inode))
2041				ocfs2_jbd2_file_inode(handle, inode);
 
 
 
 
 
 
2042			block_commit_write(tmppage, from, to);
2043		}
2044	}
2045
2046out_write_size:
2047	/* Direct io do not update i_size here. */
2048	if (wc->w_type != OCFS2_WRITE_DIRECT) {
2049		pos += copied;
2050		if (pos > i_size_read(inode)) {
2051			i_size_write(inode, pos);
2052			mark_inode_dirty(inode);
2053		}
2054		inode->i_blocks = ocfs2_inode_sector_count(inode);
2055		di->i_size = cpu_to_le64((u64)i_size_read(inode));
2056		inode->i_mtime = inode->i_ctime = current_time(inode);
2057		di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2058		di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2059		ocfs2_update_inode_fsync_trans(handle, inode, 1);
 
2060	}
2061	if (handle)
2062		ocfs2_journal_dirty(handle, wc->w_di_bh);
2063
2064out:
2065	/* unlock pages before dealloc since it needs acquiring j_trans_barrier
2066	 * lock, or it will cause a deadlock since journal commit threads holds
2067	 * this lock and will ask for the page lock when flushing the data.
2068	 * put it here to preserve the unlock order.
2069	 */
2070	ocfs2_unlock_pages(wc);
2071
2072	if (handle)
2073		ocfs2_commit_trans(osb, handle);
2074
2075	ocfs2_run_deallocs(osb, &wc->w_dealloc);
2076
2077	brelse(wc->w_di_bh);
2078	kfree(wc);
2079
2080	return copied;
2081}
2082
2083static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2084			   loff_t pos, unsigned len, unsigned copied,
2085			   struct page *page, void *fsdata)
2086{
2087	int ret;
2088	struct inode *inode = mapping->host;
2089
2090	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
2091
2092	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2093	ocfs2_inode_unlock(inode, 1);
2094
2095	return ret;
2096}
2097
2098struct ocfs2_dio_write_ctxt {
2099	struct list_head	dw_zero_list;
2100	unsigned		dw_zero_count;
2101	int			dw_orphaned;
2102	pid_t			dw_writer_pid;
2103};
2104
2105static struct ocfs2_dio_write_ctxt *
2106ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2107{
2108	struct ocfs2_dio_write_ctxt *dwc = NULL;
2109
2110	if (bh->b_private)
2111		return bh->b_private;
2112
2113	dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2114	if (dwc == NULL)
2115		return NULL;
2116	INIT_LIST_HEAD(&dwc->dw_zero_list);
2117	dwc->dw_zero_count = 0;
2118	dwc->dw_orphaned = 0;
2119	dwc->dw_writer_pid = task_pid_nr(current);
2120	bh->b_private = dwc;
2121	*alloc = 1;
2122
2123	return dwc;
2124}
2125
2126static void ocfs2_dio_free_write_ctx(struct inode *inode,
2127				     struct ocfs2_dio_write_ctxt *dwc)
2128{
2129	ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2130	kfree(dwc);
2131}
2132
2133/*
2134 * TODO: Make this into a generic get_blocks function.
2135 *
2136 * From do_direct_io in direct-io.c:
2137 *  "So what we do is to permit the ->get_blocks function to populate
2138 *   bh.b_size with the size of IO which is permitted at this offset and
2139 *   this i_blkbits."
2140 *
2141 * This function is called directly from get_more_blocks in direct-io.c.
2142 *
2143 * called like this: dio->get_blocks(dio->inode, fs_startblk,
2144 * 					fs_count, map_bh, dio->rw == WRITE);
2145 */
2146static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
2147			       struct buffer_head *bh_result, int create)
2148{
2149	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2150	struct ocfs2_inode_info *oi = OCFS2_I(inode);
2151	struct ocfs2_write_ctxt *wc;
2152	struct ocfs2_write_cluster_desc *desc = NULL;
2153	struct ocfs2_dio_write_ctxt *dwc = NULL;
2154	struct buffer_head *di_bh = NULL;
2155	u64 p_blkno;
2156	loff_t pos = iblock << inode->i_sb->s_blocksize_bits;
 
 
2157	unsigned len, total_len = bh_result->b_size;
2158	int ret = 0, first_get_block = 0;
2159
2160	len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2161	len = min(total_len, len);
2162
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2163	mlog(0, "get block of %lu at %llu:%u req %u\n",
2164			inode->i_ino, pos, len, total_len);
2165
2166	/*
2167	 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2168	 * we may need to add it to orphan dir. So can not fall to fast path
2169	 * while file size will be changed.
2170	 */
2171	if (pos + total_len <= i_size_read(inode)) {
2172
2173		/* This is the fast path for re-write. */
2174		ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
2175		if (buffer_mapped(bh_result) &&
2176		    !buffer_new(bh_result) &&
2177		    ret == 0)
2178			goto out;
2179
2180		/* Clear state set by ocfs2_get_block. */
2181		bh_result->b_state = 0;
2182	}
2183
2184	dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2185	if (unlikely(dwc == NULL)) {
2186		ret = -ENOMEM;
2187		mlog_errno(ret);
2188		goto out;
2189	}
2190
2191	if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2192	    ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2193	    !dwc->dw_orphaned) {
2194		/*
2195		 * when we are going to alloc extents beyond file size, add the
2196		 * inode to orphan dir, so we can recall those spaces when
2197		 * system crashed during write.
2198		 */
2199		ret = ocfs2_add_inode_to_orphan(osb, inode);
2200		if (ret < 0) {
2201			mlog_errno(ret);
2202			goto out;
2203		}
2204		dwc->dw_orphaned = 1;
2205	}
2206
2207	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2208	if (ret) {
2209		mlog_errno(ret);
2210		goto out;
2211	}
2212
2213	down_write(&oi->ip_alloc_sem);
2214
2215	if (first_get_block) {
2216		if (ocfs2_sparse_alloc(osb))
2217			ret = ocfs2_zero_tail(inode, di_bh, pos);
2218		else
2219			ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2220							   total_len, NULL);
2221		if (ret < 0) {
2222			mlog_errno(ret);
2223			goto unlock;
2224		}
2225	}
2226
2227	ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2228				       OCFS2_WRITE_DIRECT, NULL,
2229				       (void **)&wc, di_bh, NULL);
2230	if (ret) {
2231		mlog_errno(ret);
2232		goto unlock;
2233	}
2234
2235	desc = &wc->w_desc[0];
2236
2237	p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2238	BUG_ON(p_blkno == 0);
2239	p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2240
2241	map_bh(bh_result, inode->i_sb, p_blkno);
2242	bh_result->b_size = len;
2243	if (desc->c_needs_zero)
2244		set_buffer_new(bh_result);
2245
 
 
 
2246	/* May sleep in end_io. It should not happen in a irq context. So defer
2247	 * it to dio work queue. */
2248	set_buffer_defer_completion(bh_result);
2249
2250	if (!list_empty(&wc->w_unwritten_list)) {
2251		struct ocfs2_unwritten_extent *ue = NULL;
2252
2253		ue = list_first_entry(&wc->w_unwritten_list,
2254				      struct ocfs2_unwritten_extent,
2255				      ue_node);
2256		BUG_ON(ue->ue_cpos != desc->c_cpos);
2257		/* The physical address may be 0, fill it. */
2258		ue->ue_phys = desc->c_phys;
2259
2260		list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2261		dwc->dw_zero_count += wc->w_unwritten_count;
2262	}
2263
2264	ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
2265	BUG_ON(ret != len);
2266	ret = 0;
2267unlock:
2268	up_write(&oi->ip_alloc_sem);
2269	ocfs2_inode_unlock(inode, 1);
2270	brelse(di_bh);
2271out:
2272	if (ret < 0)
2273		ret = -EIO;
2274	return ret;
2275}
2276
2277static int ocfs2_dio_end_io_write(struct inode *inode,
2278				  struct ocfs2_dio_write_ctxt *dwc,
2279				  loff_t offset,
2280				  ssize_t bytes)
2281{
2282	struct ocfs2_cached_dealloc_ctxt dealloc;
2283	struct ocfs2_extent_tree et;
2284	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2285	struct ocfs2_inode_info *oi = OCFS2_I(inode);
2286	struct ocfs2_unwritten_extent *ue = NULL;
2287	struct buffer_head *di_bh = NULL;
2288	struct ocfs2_dinode *di;
2289	struct ocfs2_alloc_context *data_ac = NULL;
2290	struct ocfs2_alloc_context *meta_ac = NULL;
2291	handle_t *handle = NULL;
2292	loff_t end = offset + bytes;
2293	int ret = 0, credits = 0, locked = 0;
2294
2295	ocfs2_init_dealloc_ctxt(&dealloc);
2296
2297	/* We do clear unwritten, delete orphan, change i_size here. If neither
2298	 * of these happen, we can skip all this. */
2299	if (list_empty(&dwc->dw_zero_list) &&
2300	    end <= i_size_read(inode) &&
2301	    !dwc->dw_orphaned)
2302		goto out;
2303
2304	/* ocfs2_file_write_iter will get i_mutex, so we need not lock if we
2305	 * are in that context. */
2306	if (dwc->dw_writer_pid != task_pid_nr(current)) {
2307		inode_lock(inode);
2308		locked = 1;
2309	}
2310
2311	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2312	if (ret < 0) {
2313		mlog_errno(ret);
2314		goto out;
2315	}
2316
2317	down_write(&oi->ip_alloc_sem);
2318
2319	/* Delete orphan before acquire i_mutex. */
2320	if (dwc->dw_orphaned) {
2321		BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2322
2323		end = end > i_size_read(inode) ? end : 0;
2324
2325		ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2326				!!end, end);
2327		if (ret < 0)
2328			mlog_errno(ret);
2329	}
2330
2331	di = (struct ocfs2_dinode *)di_bh->b_data;
2332
2333	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2334
2335	/* Attach dealloc with extent tree in case that we may reuse extents
2336	 * which are already unlinked from current extent tree due to extent
2337	 * rotation and merging.
2338	 */
2339	et.et_dealloc = &dealloc;
2340
2341	ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2342				    &data_ac, &meta_ac);
2343	if (ret) {
2344		mlog_errno(ret);
2345		goto unlock;
2346	}
2347
2348	credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2349
2350	handle = ocfs2_start_trans(osb, credits);
2351	if (IS_ERR(handle)) {
2352		ret = PTR_ERR(handle);
2353		mlog_errno(ret);
2354		goto unlock;
2355	}
2356	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2357				      OCFS2_JOURNAL_ACCESS_WRITE);
2358	if (ret) {
2359		mlog_errno(ret);
2360		goto commit;
2361	}
2362
2363	list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
 
 
 
 
 
2364		ret = ocfs2_mark_extent_written(inode, &et, handle,
2365						ue->ue_cpos, 1,
2366						ue->ue_phys,
2367						meta_ac, &dealloc);
2368		if (ret < 0) {
2369			mlog_errno(ret);
2370			break;
2371		}
2372	}
2373
2374	if (end > i_size_read(inode)) {
2375		ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2376		if (ret < 0)
2377			mlog_errno(ret);
2378	}
2379commit:
2380	ocfs2_commit_trans(osb, handle);
2381unlock:
2382	up_write(&oi->ip_alloc_sem);
2383	ocfs2_inode_unlock(inode, 1);
2384	brelse(di_bh);
2385out:
2386	if (data_ac)
2387		ocfs2_free_alloc_context(data_ac);
2388	if (meta_ac)
2389		ocfs2_free_alloc_context(meta_ac);
2390	ocfs2_run_deallocs(osb, &dealloc);
2391	if (locked)
2392		inode_unlock(inode);
2393	ocfs2_dio_free_write_ctx(inode, dwc);
2394
2395	return ret;
2396}
2397
2398/*
2399 * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
2400 * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
2401 * to protect io on one node from truncation on another.
2402 */
2403static int ocfs2_dio_end_io(struct kiocb *iocb,
2404			    loff_t offset,
2405			    ssize_t bytes,
2406			    void *private)
2407{
2408	struct inode *inode = file_inode(iocb->ki_filp);
2409	int level;
2410	int ret = 0;
2411
2412	/* this io's submitter should not have unlocked this before we could */
2413	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2414
2415	if (bytes > 0 && private)
2416		ret = ocfs2_dio_end_io_write(inode, private, offset, bytes);
 
 
 
 
 
 
 
 
2417
2418	ocfs2_iocb_clear_rw_locked(iocb);
2419
2420	level = ocfs2_iocb_rw_locked_level(iocb);
2421	ocfs2_rw_unlock(inode, level);
2422	return ret;
2423}
2424
2425static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2426{
2427	struct file *file = iocb->ki_filp;
2428	struct inode *inode = file->f_mapping->host;
2429	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2430	get_block_t *get_block;
2431
2432	/*
2433	 * Fallback to buffered I/O if we see an inode without
2434	 * extents.
2435	 */
2436	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2437		return 0;
2438
2439	/* Fallback to buffered I/O if we do not support append dio. */
2440	if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2441	    !ocfs2_supports_append_dio(osb))
2442		return 0;
2443
2444	if (iov_iter_rw(iter) == READ)
2445		get_block = ocfs2_lock_get_block;
2446	else
2447		get_block = ocfs2_dio_wr_get_block;
2448
2449	return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2450				    iter, get_block,
2451				    ocfs2_dio_end_io, NULL, 0);
2452}
2453
2454const struct address_space_operations ocfs2_aops = {
2455	.readpage		= ocfs2_readpage,
2456	.readpages		= ocfs2_readpages,
2457	.writepage		= ocfs2_writepage,
 
2458	.write_begin		= ocfs2_write_begin,
2459	.write_end		= ocfs2_write_end,
2460	.bmap			= ocfs2_bmap,
2461	.direct_IO		= ocfs2_direct_IO,
2462	.invalidatepage		= block_invalidatepage,
2463	.releasepage		= ocfs2_releasepage,
2464	.migratepage		= buffer_migrate_page,
2465	.is_partially_uptodate	= block_is_partially_uptodate,
2466	.error_remove_page	= generic_error_remove_page,
2467};