Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2011 Fujitsu. All rights reserved.
4 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 */
6
7#include <linux/slab.h>
8#include <linux/iversion.h>
9#include "ctree.h"
10#include "fs.h"
11#include "messages.h"
12#include "misc.h"
13#include "delayed-inode.h"
14#include "disk-io.h"
15#include "transaction.h"
16#include "qgroup.h"
17#include "locking.h"
18#include "inode-item.h"
19#include "space-info.h"
20#include "accessors.h"
21#include "file-item.h"
22
23#define BTRFS_DELAYED_WRITEBACK 512
24#define BTRFS_DELAYED_BACKGROUND 128
25#define BTRFS_DELAYED_BATCH 16
26
27static struct kmem_cache *delayed_node_cache;
28
29int __init btrfs_delayed_inode_init(void)
30{
31 delayed_node_cache = KMEM_CACHE(btrfs_delayed_node, 0);
32 if (!delayed_node_cache)
33 return -ENOMEM;
34 return 0;
35}
36
37void __cold btrfs_delayed_inode_exit(void)
38{
39 kmem_cache_destroy(delayed_node_cache);
40}
41
42void btrfs_init_delayed_root(struct btrfs_delayed_root *delayed_root)
43{
44 atomic_set(&delayed_root->items, 0);
45 atomic_set(&delayed_root->items_seq, 0);
46 delayed_root->nodes = 0;
47 spin_lock_init(&delayed_root->lock);
48 init_waitqueue_head(&delayed_root->wait);
49 INIT_LIST_HEAD(&delayed_root->node_list);
50 INIT_LIST_HEAD(&delayed_root->prepare_list);
51}
52
53static inline void btrfs_init_delayed_node(
54 struct btrfs_delayed_node *delayed_node,
55 struct btrfs_root *root, u64 inode_id)
56{
57 delayed_node->root = root;
58 delayed_node->inode_id = inode_id;
59 refcount_set(&delayed_node->refs, 0);
60 delayed_node->ins_root = RB_ROOT_CACHED;
61 delayed_node->del_root = RB_ROOT_CACHED;
62 mutex_init(&delayed_node->mutex);
63 INIT_LIST_HEAD(&delayed_node->n_list);
64 INIT_LIST_HEAD(&delayed_node->p_list);
65}
66
67static struct btrfs_delayed_node *btrfs_get_delayed_node(
68 struct btrfs_inode *btrfs_inode)
69{
70 struct btrfs_root *root = btrfs_inode->root;
71 u64 ino = btrfs_ino(btrfs_inode);
72 struct btrfs_delayed_node *node;
73
74 node = READ_ONCE(btrfs_inode->delayed_node);
75 if (node) {
76 refcount_inc(&node->refs);
77 return node;
78 }
79
80 xa_lock(&root->delayed_nodes);
81 node = xa_load(&root->delayed_nodes, ino);
82
83 if (node) {
84 if (btrfs_inode->delayed_node) {
85 refcount_inc(&node->refs); /* can be accessed */
86 BUG_ON(btrfs_inode->delayed_node != node);
87 xa_unlock(&root->delayed_nodes);
88 return node;
89 }
90
91 /*
92 * It's possible that we're racing into the middle of removing
93 * this node from the xarray. In this case, the refcount
94 * was zero and it should never go back to one. Just return
95 * NULL like it was never in the xarray at all; our release
96 * function is in the process of removing it.
97 *
98 * Some implementations of refcount_inc refuse to bump the
99 * refcount once it has hit zero. If we don't do this dance
100 * here, refcount_inc() may decide to just WARN_ONCE() instead
101 * of actually bumping the refcount.
102 *
103 * If this node is properly in the xarray, we want to bump the
104 * refcount twice, once for the inode and once for this get
105 * operation.
106 */
107 if (refcount_inc_not_zero(&node->refs)) {
108 refcount_inc(&node->refs);
109 btrfs_inode->delayed_node = node;
110 } else {
111 node = NULL;
112 }
113
114 xa_unlock(&root->delayed_nodes);
115 return node;
116 }
117 xa_unlock(&root->delayed_nodes);
118
119 return NULL;
120}
121
122/* Will return either the node or PTR_ERR(-ENOMEM) */
123static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
124 struct btrfs_inode *btrfs_inode)
125{
126 struct btrfs_delayed_node *node;
127 struct btrfs_root *root = btrfs_inode->root;
128 u64 ino = btrfs_ino(btrfs_inode);
129 int ret;
130 void *ptr;
131
132again:
133 node = btrfs_get_delayed_node(btrfs_inode);
134 if (node)
135 return node;
136
137 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
138 if (!node)
139 return ERR_PTR(-ENOMEM);
140 btrfs_init_delayed_node(node, root, ino);
141
142 /* Cached in the inode and can be accessed. */
143 refcount_set(&node->refs, 2);
144
145 /* Allocate and reserve the slot, from now it can return a NULL from xa_load(). */
146 ret = xa_reserve(&root->delayed_nodes, ino, GFP_NOFS);
147 if (ret == -ENOMEM) {
148 kmem_cache_free(delayed_node_cache, node);
149 return ERR_PTR(-ENOMEM);
150 }
151 xa_lock(&root->delayed_nodes);
152 ptr = xa_load(&root->delayed_nodes, ino);
153 if (ptr) {
154 /* Somebody inserted it, go back and read it. */
155 xa_unlock(&root->delayed_nodes);
156 kmem_cache_free(delayed_node_cache, node);
157 node = NULL;
158 goto again;
159 }
160 ptr = __xa_store(&root->delayed_nodes, ino, node, GFP_ATOMIC);
161 ASSERT(xa_err(ptr) != -EINVAL);
162 ASSERT(xa_err(ptr) != -ENOMEM);
163 ASSERT(ptr == NULL);
164 btrfs_inode->delayed_node = node;
165 xa_unlock(&root->delayed_nodes);
166
167 return node;
168}
169
170/*
171 * Call it when holding delayed_node->mutex
172 *
173 * If mod = 1, add this node into the prepared list.
174 */
175static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
176 struct btrfs_delayed_node *node,
177 int mod)
178{
179 spin_lock(&root->lock);
180 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
181 if (!list_empty(&node->p_list))
182 list_move_tail(&node->p_list, &root->prepare_list);
183 else if (mod)
184 list_add_tail(&node->p_list, &root->prepare_list);
185 } else {
186 list_add_tail(&node->n_list, &root->node_list);
187 list_add_tail(&node->p_list, &root->prepare_list);
188 refcount_inc(&node->refs); /* inserted into list */
189 root->nodes++;
190 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
191 }
192 spin_unlock(&root->lock);
193}
194
195/* Call it when holding delayed_node->mutex */
196static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
197 struct btrfs_delayed_node *node)
198{
199 spin_lock(&root->lock);
200 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
201 root->nodes--;
202 refcount_dec(&node->refs); /* not in the list */
203 list_del_init(&node->n_list);
204 if (!list_empty(&node->p_list))
205 list_del_init(&node->p_list);
206 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
207 }
208 spin_unlock(&root->lock);
209}
210
211static struct btrfs_delayed_node *btrfs_first_delayed_node(
212 struct btrfs_delayed_root *delayed_root)
213{
214 struct list_head *p;
215 struct btrfs_delayed_node *node = NULL;
216
217 spin_lock(&delayed_root->lock);
218 if (list_empty(&delayed_root->node_list))
219 goto out;
220
221 p = delayed_root->node_list.next;
222 node = list_entry(p, struct btrfs_delayed_node, n_list);
223 refcount_inc(&node->refs);
224out:
225 spin_unlock(&delayed_root->lock);
226
227 return node;
228}
229
230static struct btrfs_delayed_node *btrfs_next_delayed_node(
231 struct btrfs_delayed_node *node)
232{
233 struct btrfs_delayed_root *delayed_root;
234 struct list_head *p;
235 struct btrfs_delayed_node *next = NULL;
236
237 delayed_root = node->root->fs_info->delayed_root;
238 spin_lock(&delayed_root->lock);
239 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
240 /* not in the list */
241 if (list_empty(&delayed_root->node_list))
242 goto out;
243 p = delayed_root->node_list.next;
244 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
245 goto out;
246 else
247 p = node->n_list.next;
248
249 next = list_entry(p, struct btrfs_delayed_node, n_list);
250 refcount_inc(&next->refs);
251out:
252 spin_unlock(&delayed_root->lock);
253
254 return next;
255}
256
257static void __btrfs_release_delayed_node(
258 struct btrfs_delayed_node *delayed_node,
259 int mod)
260{
261 struct btrfs_delayed_root *delayed_root;
262
263 if (!delayed_node)
264 return;
265
266 delayed_root = delayed_node->root->fs_info->delayed_root;
267
268 mutex_lock(&delayed_node->mutex);
269 if (delayed_node->count)
270 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
271 else
272 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
273 mutex_unlock(&delayed_node->mutex);
274
275 if (refcount_dec_and_test(&delayed_node->refs)) {
276 struct btrfs_root *root = delayed_node->root;
277
278 xa_erase(&root->delayed_nodes, delayed_node->inode_id);
279 /*
280 * Once our refcount goes to zero, nobody is allowed to bump it
281 * back up. We can delete it now.
282 */
283 ASSERT(refcount_read(&delayed_node->refs) == 0);
284 kmem_cache_free(delayed_node_cache, delayed_node);
285 }
286}
287
288static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
289{
290 __btrfs_release_delayed_node(node, 0);
291}
292
293static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
294 struct btrfs_delayed_root *delayed_root)
295{
296 struct list_head *p;
297 struct btrfs_delayed_node *node = NULL;
298
299 spin_lock(&delayed_root->lock);
300 if (list_empty(&delayed_root->prepare_list))
301 goto out;
302
303 p = delayed_root->prepare_list.next;
304 list_del_init(p);
305 node = list_entry(p, struct btrfs_delayed_node, p_list);
306 refcount_inc(&node->refs);
307out:
308 spin_unlock(&delayed_root->lock);
309
310 return node;
311}
312
313static inline void btrfs_release_prepared_delayed_node(
314 struct btrfs_delayed_node *node)
315{
316 __btrfs_release_delayed_node(node, 1);
317}
318
319static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len,
320 struct btrfs_delayed_node *node,
321 enum btrfs_delayed_item_type type)
322{
323 struct btrfs_delayed_item *item;
324
325 item = kmalloc(struct_size(item, data, data_len), GFP_NOFS);
326 if (item) {
327 item->data_len = data_len;
328 item->type = type;
329 item->bytes_reserved = 0;
330 item->delayed_node = node;
331 RB_CLEAR_NODE(&item->rb_node);
332 INIT_LIST_HEAD(&item->log_list);
333 item->logged = false;
334 refcount_set(&item->refs, 1);
335 }
336 return item;
337}
338
339/*
340 * Look up the delayed item by key.
341 *
342 * @delayed_node: pointer to the delayed node
343 * @index: the dir index value to lookup (offset of a dir index key)
344 *
345 * Note: if we don't find the right item, we will return the prev item and
346 * the next item.
347 */
348static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
349 struct rb_root *root,
350 u64 index)
351{
352 struct rb_node *node = root->rb_node;
353 struct btrfs_delayed_item *delayed_item = NULL;
354
355 while (node) {
356 delayed_item = rb_entry(node, struct btrfs_delayed_item,
357 rb_node);
358 if (delayed_item->index < index)
359 node = node->rb_right;
360 else if (delayed_item->index > index)
361 node = node->rb_left;
362 else
363 return delayed_item;
364 }
365
366 return NULL;
367}
368
369static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
370 struct btrfs_delayed_item *ins)
371{
372 struct rb_node **p, *node;
373 struct rb_node *parent_node = NULL;
374 struct rb_root_cached *root;
375 struct btrfs_delayed_item *item;
376 bool leftmost = true;
377
378 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM)
379 root = &delayed_node->ins_root;
380 else
381 root = &delayed_node->del_root;
382
383 p = &root->rb_root.rb_node;
384 node = &ins->rb_node;
385
386 while (*p) {
387 parent_node = *p;
388 item = rb_entry(parent_node, struct btrfs_delayed_item,
389 rb_node);
390
391 if (item->index < ins->index) {
392 p = &(*p)->rb_right;
393 leftmost = false;
394 } else if (item->index > ins->index) {
395 p = &(*p)->rb_left;
396 } else {
397 return -EEXIST;
398 }
399 }
400
401 rb_link_node(node, parent_node, p);
402 rb_insert_color_cached(node, root, leftmost);
403
404 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM &&
405 ins->index >= delayed_node->index_cnt)
406 delayed_node->index_cnt = ins->index + 1;
407
408 delayed_node->count++;
409 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
410 return 0;
411}
412
413static void finish_one_item(struct btrfs_delayed_root *delayed_root)
414{
415 int seq = atomic_inc_return(&delayed_root->items_seq);
416
417 /* atomic_dec_return implies a barrier */
418 if ((atomic_dec_return(&delayed_root->items) <
419 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
420 cond_wake_up_nomb(&delayed_root->wait);
421}
422
423static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
424{
425 struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node;
426 struct rb_root_cached *root;
427 struct btrfs_delayed_root *delayed_root;
428
429 /* Not inserted, ignore it. */
430 if (RB_EMPTY_NODE(&delayed_item->rb_node))
431 return;
432
433 /* If it's in a rbtree, then we need to have delayed node locked. */
434 lockdep_assert_held(&delayed_node->mutex);
435
436 delayed_root = delayed_node->root->fs_info->delayed_root;
437
438 if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM)
439 root = &delayed_node->ins_root;
440 else
441 root = &delayed_node->del_root;
442
443 rb_erase_cached(&delayed_item->rb_node, root);
444 RB_CLEAR_NODE(&delayed_item->rb_node);
445 delayed_node->count--;
446
447 finish_one_item(delayed_root);
448}
449
450static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
451{
452 if (item) {
453 __btrfs_remove_delayed_item(item);
454 if (refcount_dec_and_test(&item->refs))
455 kfree(item);
456 }
457}
458
459static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
460 struct btrfs_delayed_node *delayed_node)
461{
462 struct rb_node *p;
463 struct btrfs_delayed_item *item = NULL;
464
465 p = rb_first_cached(&delayed_node->ins_root);
466 if (p)
467 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
468
469 return item;
470}
471
472static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
473 struct btrfs_delayed_node *delayed_node)
474{
475 struct rb_node *p;
476 struct btrfs_delayed_item *item = NULL;
477
478 p = rb_first_cached(&delayed_node->del_root);
479 if (p)
480 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
481
482 return item;
483}
484
485static struct btrfs_delayed_item *__btrfs_next_delayed_item(
486 struct btrfs_delayed_item *item)
487{
488 struct rb_node *p;
489 struct btrfs_delayed_item *next = NULL;
490
491 p = rb_next(&item->rb_node);
492 if (p)
493 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
494
495 return next;
496}
497
498static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
499 struct btrfs_delayed_item *item)
500{
501 struct btrfs_block_rsv *src_rsv;
502 struct btrfs_block_rsv *dst_rsv;
503 struct btrfs_fs_info *fs_info = trans->fs_info;
504 u64 num_bytes;
505 int ret;
506
507 if (!trans->bytes_reserved)
508 return 0;
509
510 src_rsv = trans->block_rsv;
511 dst_rsv = &fs_info->delayed_block_rsv;
512
513 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
514
515 /*
516 * Here we migrate space rsv from transaction rsv, since have already
517 * reserved space when starting a transaction. So no need to reserve
518 * qgroup space here.
519 */
520 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
521 if (!ret) {
522 trace_btrfs_space_reservation(fs_info, "delayed_item",
523 item->delayed_node->inode_id,
524 num_bytes, 1);
525 /*
526 * For insertions we track reserved metadata space by accounting
527 * for the number of leaves that will be used, based on the delayed
528 * node's curr_index_batch_size and index_item_leaves fields.
529 */
530 if (item->type == BTRFS_DELAYED_DELETION_ITEM)
531 item->bytes_reserved = num_bytes;
532 }
533
534 return ret;
535}
536
537static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
538 struct btrfs_delayed_item *item)
539{
540 struct btrfs_block_rsv *rsv;
541 struct btrfs_fs_info *fs_info = root->fs_info;
542
543 if (!item->bytes_reserved)
544 return;
545
546 rsv = &fs_info->delayed_block_rsv;
547 /*
548 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
549 * to release/reserve qgroup space.
550 */
551 trace_btrfs_space_reservation(fs_info, "delayed_item",
552 item->delayed_node->inode_id,
553 item->bytes_reserved, 0);
554 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
555}
556
557static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node,
558 unsigned int num_leaves)
559{
560 struct btrfs_fs_info *fs_info = node->root->fs_info;
561 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves);
562
563 /* There are no space reservations during log replay, bail out. */
564 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
565 return;
566
567 trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id,
568 bytes, 0);
569 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL);
570}
571
572static int btrfs_delayed_inode_reserve_metadata(
573 struct btrfs_trans_handle *trans,
574 struct btrfs_root *root,
575 struct btrfs_delayed_node *node)
576{
577 struct btrfs_fs_info *fs_info = root->fs_info;
578 struct btrfs_block_rsv *src_rsv;
579 struct btrfs_block_rsv *dst_rsv;
580 u64 num_bytes;
581 int ret;
582
583 src_rsv = trans->block_rsv;
584 dst_rsv = &fs_info->delayed_block_rsv;
585
586 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
587
588 /*
589 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
590 * which doesn't reserve space for speed. This is a problem since we
591 * still need to reserve space for this update, so try to reserve the
592 * space.
593 *
594 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
595 * we always reserve enough to update the inode item.
596 */
597 if (!src_rsv || (!trans->bytes_reserved &&
598 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
599 ret = btrfs_qgroup_reserve_meta(root, num_bytes,
600 BTRFS_QGROUP_RSV_META_PREALLOC, true);
601 if (ret < 0)
602 return ret;
603 ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
604 BTRFS_RESERVE_NO_FLUSH);
605 /* NO_FLUSH could only fail with -ENOSPC */
606 ASSERT(ret == 0 || ret == -ENOSPC);
607 if (ret)
608 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
609 } else {
610 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
611 }
612
613 if (!ret) {
614 trace_btrfs_space_reservation(fs_info, "delayed_inode",
615 node->inode_id, num_bytes, 1);
616 node->bytes_reserved = num_bytes;
617 }
618
619 return ret;
620}
621
622static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
623 struct btrfs_delayed_node *node,
624 bool qgroup_free)
625{
626 struct btrfs_block_rsv *rsv;
627
628 if (!node->bytes_reserved)
629 return;
630
631 rsv = &fs_info->delayed_block_rsv;
632 trace_btrfs_space_reservation(fs_info, "delayed_inode",
633 node->inode_id, node->bytes_reserved, 0);
634 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
635 if (qgroup_free)
636 btrfs_qgroup_free_meta_prealloc(node->root,
637 node->bytes_reserved);
638 else
639 btrfs_qgroup_convert_reserved_meta(node->root,
640 node->bytes_reserved);
641 node->bytes_reserved = 0;
642}
643
644/*
645 * Insert a single delayed item or a batch of delayed items, as many as possible
646 * that fit in a leaf. The delayed items (dir index keys) are sorted by their key
647 * in the rbtree, and if there's a gap between two consecutive dir index items,
648 * then it means at some point we had delayed dir indexes to add but they got
649 * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them
650 * into the subvolume tree. Dir index keys also have their offsets coming from a
651 * monotonically increasing counter, so we can't get new keys with an offset that
652 * fits within a gap between delayed dir index items.
653 */
654static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
655 struct btrfs_root *root,
656 struct btrfs_path *path,
657 struct btrfs_delayed_item *first_item)
658{
659 struct btrfs_fs_info *fs_info = root->fs_info;
660 struct btrfs_delayed_node *node = first_item->delayed_node;
661 LIST_HEAD(item_list);
662 struct btrfs_delayed_item *curr;
663 struct btrfs_delayed_item *next;
664 const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info);
665 struct btrfs_item_batch batch;
666 struct btrfs_key first_key;
667 const u32 first_data_size = first_item->data_len;
668 int total_size;
669 char *ins_data = NULL;
670 int ret;
671 bool continuous_keys_only = false;
672
673 lockdep_assert_held(&node->mutex);
674
675 /*
676 * During normal operation the delayed index offset is continuously
677 * increasing, so we can batch insert all items as there will not be any
678 * overlapping keys in the tree.
679 *
680 * The exception to this is log replay, where we may have interleaved
681 * offsets in the tree, so our batch needs to be continuous keys only in
682 * order to ensure we do not end up with out of order items in our leaf.
683 */
684 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
685 continuous_keys_only = true;
686
687 /*
688 * For delayed items to insert, we track reserved metadata bytes based
689 * on the number of leaves that we will use.
690 * See btrfs_insert_delayed_dir_index() and
691 * btrfs_delayed_item_reserve_metadata()).
692 */
693 ASSERT(first_item->bytes_reserved == 0);
694
695 list_add_tail(&first_item->tree_list, &item_list);
696 batch.total_data_size = first_data_size;
697 batch.nr = 1;
698 total_size = first_data_size + sizeof(struct btrfs_item);
699 curr = first_item;
700
701 while (true) {
702 int next_size;
703
704 next = __btrfs_next_delayed_item(curr);
705 if (!next)
706 break;
707
708 /*
709 * We cannot allow gaps in the key space if we're doing log
710 * replay.
711 */
712 if (continuous_keys_only && (next->index != curr->index + 1))
713 break;
714
715 ASSERT(next->bytes_reserved == 0);
716
717 next_size = next->data_len + sizeof(struct btrfs_item);
718 if (total_size + next_size > max_size)
719 break;
720
721 list_add_tail(&next->tree_list, &item_list);
722 batch.nr++;
723 total_size += next_size;
724 batch.total_data_size += next->data_len;
725 curr = next;
726 }
727
728 if (batch.nr == 1) {
729 first_key.objectid = node->inode_id;
730 first_key.type = BTRFS_DIR_INDEX_KEY;
731 first_key.offset = first_item->index;
732 batch.keys = &first_key;
733 batch.data_sizes = &first_data_size;
734 } else {
735 struct btrfs_key *ins_keys;
736 u32 *ins_sizes;
737 int i = 0;
738
739 ins_data = kmalloc(batch.nr * sizeof(u32) +
740 batch.nr * sizeof(struct btrfs_key), GFP_NOFS);
741 if (!ins_data) {
742 ret = -ENOMEM;
743 goto out;
744 }
745 ins_sizes = (u32 *)ins_data;
746 ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
747 batch.keys = ins_keys;
748 batch.data_sizes = ins_sizes;
749 list_for_each_entry(curr, &item_list, tree_list) {
750 ins_keys[i].objectid = node->inode_id;
751 ins_keys[i].type = BTRFS_DIR_INDEX_KEY;
752 ins_keys[i].offset = curr->index;
753 ins_sizes[i] = curr->data_len;
754 i++;
755 }
756 }
757
758 ret = btrfs_insert_empty_items(trans, root, path, &batch);
759 if (ret)
760 goto out;
761
762 list_for_each_entry(curr, &item_list, tree_list) {
763 char *data_ptr;
764
765 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
766 write_extent_buffer(path->nodes[0], &curr->data,
767 (unsigned long)data_ptr, curr->data_len);
768 path->slots[0]++;
769 }
770
771 /*
772 * Now release our path before releasing the delayed items and their
773 * metadata reservations, so that we don't block other tasks for more
774 * time than needed.
775 */
776 btrfs_release_path(path);
777
778 ASSERT(node->index_item_leaves > 0);
779
780 /*
781 * For normal operations we will batch an entire leaf's worth of delayed
782 * items, so if there are more items to process we can decrement
783 * index_item_leaves by 1 as we inserted 1 leaf's worth of items.
784 *
785 * However for log replay we may not have inserted an entire leaf's
786 * worth of items, we may have not had continuous items, so decrementing
787 * here would mess up the index_item_leaves accounting. For this case
788 * only clean up the accounting when there are no items left.
789 */
790 if (next && !continuous_keys_only) {
791 /*
792 * We inserted one batch of items into a leaf a there are more
793 * items to flush in a future batch, now release one unit of
794 * metadata space from the delayed block reserve, corresponding
795 * the leaf we just flushed to.
796 */
797 btrfs_delayed_item_release_leaves(node, 1);
798 node->index_item_leaves--;
799 } else if (!next) {
800 /*
801 * There are no more items to insert. We can have a number of
802 * reserved leaves > 1 here - this happens when many dir index
803 * items are added and then removed before they are flushed (file
804 * names with a very short life, never span a transaction). So
805 * release all remaining leaves.
806 */
807 btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
808 node->index_item_leaves = 0;
809 }
810
811 list_for_each_entry_safe(curr, next, &item_list, tree_list) {
812 list_del(&curr->tree_list);
813 btrfs_release_delayed_item(curr);
814 }
815out:
816 kfree(ins_data);
817 return ret;
818}
819
820static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
821 struct btrfs_path *path,
822 struct btrfs_root *root,
823 struct btrfs_delayed_node *node)
824{
825 int ret = 0;
826
827 while (ret == 0) {
828 struct btrfs_delayed_item *curr;
829
830 mutex_lock(&node->mutex);
831 curr = __btrfs_first_delayed_insertion_item(node);
832 if (!curr) {
833 mutex_unlock(&node->mutex);
834 break;
835 }
836 ret = btrfs_insert_delayed_item(trans, root, path, curr);
837 mutex_unlock(&node->mutex);
838 }
839
840 return ret;
841}
842
843static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
844 struct btrfs_root *root,
845 struct btrfs_path *path,
846 struct btrfs_delayed_item *item)
847{
848 const u64 ino = item->delayed_node->inode_id;
849 struct btrfs_fs_info *fs_info = root->fs_info;
850 struct btrfs_delayed_item *curr, *next;
851 struct extent_buffer *leaf = path->nodes[0];
852 LIST_HEAD(batch_list);
853 int nitems, slot, last_slot;
854 int ret;
855 u64 total_reserved_size = item->bytes_reserved;
856
857 ASSERT(leaf != NULL);
858
859 slot = path->slots[0];
860 last_slot = btrfs_header_nritems(leaf) - 1;
861 /*
862 * Our caller always gives us a path pointing to an existing item, so
863 * this can not happen.
864 */
865 ASSERT(slot <= last_slot);
866 if (WARN_ON(slot > last_slot))
867 return -ENOENT;
868
869 nitems = 1;
870 curr = item;
871 list_add_tail(&curr->tree_list, &batch_list);
872
873 /*
874 * Keep checking if the next delayed item matches the next item in the
875 * leaf - if so, we can add it to the batch of items to delete from the
876 * leaf.
877 */
878 while (slot < last_slot) {
879 struct btrfs_key key;
880
881 next = __btrfs_next_delayed_item(curr);
882 if (!next)
883 break;
884
885 slot++;
886 btrfs_item_key_to_cpu(leaf, &key, slot);
887 if (key.objectid != ino ||
888 key.type != BTRFS_DIR_INDEX_KEY ||
889 key.offset != next->index)
890 break;
891 nitems++;
892 curr = next;
893 list_add_tail(&curr->tree_list, &batch_list);
894 total_reserved_size += curr->bytes_reserved;
895 }
896
897 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
898 if (ret)
899 return ret;
900
901 /* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */
902 if (total_reserved_size > 0) {
903 /*
904 * Check btrfs_delayed_item_reserve_metadata() to see why we
905 * don't need to release/reserve qgroup space.
906 */
907 trace_btrfs_space_reservation(fs_info, "delayed_item", ino,
908 total_reserved_size, 0);
909 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv,
910 total_reserved_size, NULL);
911 }
912
913 list_for_each_entry_safe(curr, next, &batch_list, tree_list) {
914 list_del(&curr->tree_list);
915 btrfs_release_delayed_item(curr);
916 }
917
918 return 0;
919}
920
921static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
922 struct btrfs_path *path,
923 struct btrfs_root *root,
924 struct btrfs_delayed_node *node)
925{
926 struct btrfs_key key;
927 int ret = 0;
928
929 key.objectid = node->inode_id;
930 key.type = BTRFS_DIR_INDEX_KEY;
931
932 while (ret == 0) {
933 struct btrfs_delayed_item *item;
934
935 mutex_lock(&node->mutex);
936 item = __btrfs_first_delayed_deletion_item(node);
937 if (!item) {
938 mutex_unlock(&node->mutex);
939 break;
940 }
941
942 key.offset = item->index;
943 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
944 if (ret > 0) {
945 /*
946 * There's no matching item in the leaf. This means we
947 * have already deleted this item in a past run of the
948 * delayed items. We ignore errors when running delayed
949 * items from an async context, through a work queue job
950 * running btrfs_async_run_delayed_root(), and don't
951 * release delayed items that failed to complete. This
952 * is because we will retry later, and at transaction
953 * commit time we always run delayed items and will
954 * then deal with errors if they fail to run again.
955 *
956 * So just release delayed items for which we can't find
957 * an item in the tree, and move to the next item.
958 */
959 btrfs_release_path(path);
960 btrfs_release_delayed_item(item);
961 ret = 0;
962 } else if (ret == 0) {
963 ret = btrfs_batch_delete_items(trans, root, path, item);
964 btrfs_release_path(path);
965 }
966
967 /*
968 * We unlock and relock on each iteration, this is to prevent
969 * blocking other tasks for too long while we are being run from
970 * the async context (work queue job). Those tasks are typically
971 * running system calls like creat/mkdir/rename/unlink/etc which
972 * need to add delayed items to this delayed node.
973 */
974 mutex_unlock(&node->mutex);
975 }
976
977 return ret;
978}
979
980static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
981{
982 struct btrfs_delayed_root *delayed_root;
983
984 if (delayed_node &&
985 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
986 ASSERT(delayed_node->root);
987 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
988 delayed_node->count--;
989
990 delayed_root = delayed_node->root->fs_info->delayed_root;
991 finish_one_item(delayed_root);
992 }
993}
994
995static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
996{
997
998 if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
999 struct btrfs_delayed_root *delayed_root;
1000
1001 ASSERT(delayed_node->root);
1002 delayed_node->count--;
1003
1004 delayed_root = delayed_node->root->fs_info->delayed_root;
1005 finish_one_item(delayed_root);
1006 }
1007}
1008
1009static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1010 struct btrfs_root *root,
1011 struct btrfs_path *path,
1012 struct btrfs_delayed_node *node)
1013{
1014 struct btrfs_fs_info *fs_info = root->fs_info;
1015 struct btrfs_key key;
1016 struct btrfs_inode_item *inode_item;
1017 struct extent_buffer *leaf;
1018 int mod;
1019 int ret;
1020
1021 key.objectid = node->inode_id;
1022 key.type = BTRFS_INODE_ITEM_KEY;
1023 key.offset = 0;
1024
1025 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1026 mod = -1;
1027 else
1028 mod = 1;
1029
1030 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1031 if (ret > 0)
1032 ret = -ENOENT;
1033 if (ret < 0)
1034 goto out;
1035
1036 leaf = path->nodes[0];
1037 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1038 struct btrfs_inode_item);
1039 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1040 sizeof(struct btrfs_inode_item));
1041 btrfs_mark_buffer_dirty(trans, leaf);
1042
1043 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1044 goto out;
1045
1046 /*
1047 * Now we're going to delete the INODE_REF/EXTREF, which should be the
1048 * only one ref left. Check if the next item is an INODE_REF/EXTREF.
1049 *
1050 * But if we're the last item already, release and search for the last
1051 * INODE_REF/EXTREF.
1052 */
1053 if (path->slots[0] + 1 >= btrfs_header_nritems(leaf)) {
1054 key.objectid = node->inode_id;
1055 key.type = BTRFS_INODE_EXTREF_KEY;
1056 key.offset = (u64)-1;
1057
1058 btrfs_release_path(path);
1059 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1060 if (ret < 0)
1061 goto err_out;
1062 ASSERT(ret > 0);
1063 ASSERT(path->slots[0] > 0);
1064 ret = 0;
1065 path->slots[0]--;
1066 leaf = path->nodes[0];
1067 } else {
1068 path->slots[0]++;
1069 }
1070 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1071 if (key.objectid != node->inode_id)
1072 goto out;
1073 if (key.type != BTRFS_INODE_REF_KEY &&
1074 key.type != BTRFS_INODE_EXTREF_KEY)
1075 goto out;
1076
1077 /*
1078 * Delayed iref deletion is for the inode who has only one link,
1079 * so there is only one iref. The case that several irefs are
1080 * in the same item doesn't exist.
1081 */
1082 ret = btrfs_del_item(trans, root, path);
1083out:
1084 btrfs_release_delayed_iref(node);
1085 btrfs_release_path(path);
1086err_out:
1087 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1088 btrfs_release_delayed_inode(node);
1089
1090 /*
1091 * If we fail to update the delayed inode we need to abort the
1092 * transaction, because we could leave the inode with the improper
1093 * counts behind.
1094 */
1095 if (ret && ret != -ENOENT)
1096 btrfs_abort_transaction(trans, ret);
1097
1098 return ret;
1099}
1100
1101static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1102 struct btrfs_root *root,
1103 struct btrfs_path *path,
1104 struct btrfs_delayed_node *node)
1105{
1106 int ret;
1107
1108 mutex_lock(&node->mutex);
1109 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1110 mutex_unlock(&node->mutex);
1111 return 0;
1112 }
1113
1114 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1115 mutex_unlock(&node->mutex);
1116 return ret;
1117}
1118
1119static inline int
1120__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1121 struct btrfs_path *path,
1122 struct btrfs_delayed_node *node)
1123{
1124 int ret;
1125
1126 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1127 if (ret)
1128 return ret;
1129
1130 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1131 if (ret)
1132 return ret;
1133
1134 ret = btrfs_record_root_in_trans(trans, node->root);
1135 if (ret)
1136 return ret;
1137 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1138 return ret;
1139}
1140
1141/*
1142 * Called when committing the transaction.
1143 * Returns 0 on success.
1144 * Returns < 0 on error and returns with an aborted transaction with any
1145 * outstanding delayed items cleaned up.
1146 */
1147static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1148{
1149 struct btrfs_fs_info *fs_info = trans->fs_info;
1150 struct btrfs_delayed_root *delayed_root;
1151 struct btrfs_delayed_node *curr_node, *prev_node;
1152 struct btrfs_path *path;
1153 struct btrfs_block_rsv *block_rsv;
1154 int ret = 0;
1155 bool count = (nr > 0);
1156
1157 if (TRANS_ABORTED(trans))
1158 return -EIO;
1159
1160 path = btrfs_alloc_path();
1161 if (!path)
1162 return -ENOMEM;
1163
1164 block_rsv = trans->block_rsv;
1165 trans->block_rsv = &fs_info->delayed_block_rsv;
1166
1167 delayed_root = fs_info->delayed_root;
1168
1169 curr_node = btrfs_first_delayed_node(delayed_root);
1170 while (curr_node && (!count || nr--)) {
1171 ret = __btrfs_commit_inode_delayed_items(trans, path,
1172 curr_node);
1173 if (ret) {
1174 btrfs_abort_transaction(trans, ret);
1175 break;
1176 }
1177
1178 prev_node = curr_node;
1179 curr_node = btrfs_next_delayed_node(curr_node);
1180 /*
1181 * See the comment below about releasing path before releasing
1182 * node. If the commit of delayed items was successful the path
1183 * should always be released, but in case of an error, it may
1184 * point to locked extent buffers (a leaf at the very least).
1185 */
1186 ASSERT(path->nodes[0] == NULL);
1187 btrfs_release_delayed_node(prev_node);
1188 }
1189
1190 /*
1191 * Release the path to avoid a potential deadlock and lockdep splat when
1192 * releasing the delayed node, as that requires taking the delayed node's
1193 * mutex. If another task starts running delayed items before we take
1194 * the mutex, it will first lock the mutex and then it may try to lock
1195 * the same btree path (leaf).
1196 */
1197 btrfs_free_path(path);
1198
1199 if (curr_node)
1200 btrfs_release_delayed_node(curr_node);
1201 trans->block_rsv = block_rsv;
1202
1203 return ret;
1204}
1205
1206int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1207{
1208 return __btrfs_run_delayed_items(trans, -1);
1209}
1210
1211int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1212{
1213 return __btrfs_run_delayed_items(trans, nr);
1214}
1215
1216int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1217 struct btrfs_inode *inode)
1218{
1219 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1220 struct btrfs_path *path;
1221 struct btrfs_block_rsv *block_rsv;
1222 int ret;
1223
1224 if (!delayed_node)
1225 return 0;
1226
1227 mutex_lock(&delayed_node->mutex);
1228 if (!delayed_node->count) {
1229 mutex_unlock(&delayed_node->mutex);
1230 btrfs_release_delayed_node(delayed_node);
1231 return 0;
1232 }
1233 mutex_unlock(&delayed_node->mutex);
1234
1235 path = btrfs_alloc_path();
1236 if (!path) {
1237 btrfs_release_delayed_node(delayed_node);
1238 return -ENOMEM;
1239 }
1240
1241 block_rsv = trans->block_rsv;
1242 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1243
1244 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1245
1246 btrfs_release_delayed_node(delayed_node);
1247 btrfs_free_path(path);
1248 trans->block_rsv = block_rsv;
1249
1250 return ret;
1251}
1252
1253int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1254{
1255 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1256 struct btrfs_trans_handle *trans;
1257 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1258 struct btrfs_path *path;
1259 struct btrfs_block_rsv *block_rsv;
1260 int ret;
1261
1262 if (!delayed_node)
1263 return 0;
1264
1265 mutex_lock(&delayed_node->mutex);
1266 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1267 mutex_unlock(&delayed_node->mutex);
1268 btrfs_release_delayed_node(delayed_node);
1269 return 0;
1270 }
1271 mutex_unlock(&delayed_node->mutex);
1272
1273 trans = btrfs_join_transaction(delayed_node->root);
1274 if (IS_ERR(trans)) {
1275 ret = PTR_ERR(trans);
1276 goto out;
1277 }
1278
1279 path = btrfs_alloc_path();
1280 if (!path) {
1281 ret = -ENOMEM;
1282 goto trans_out;
1283 }
1284
1285 block_rsv = trans->block_rsv;
1286 trans->block_rsv = &fs_info->delayed_block_rsv;
1287
1288 mutex_lock(&delayed_node->mutex);
1289 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1290 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1291 path, delayed_node);
1292 else
1293 ret = 0;
1294 mutex_unlock(&delayed_node->mutex);
1295
1296 btrfs_free_path(path);
1297 trans->block_rsv = block_rsv;
1298trans_out:
1299 btrfs_end_transaction(trans);
1300 btrfs_btree_balance_dirty(fs_info);
1301out:
1302 btrfs_release_delayed_node(delayed_node);
1303
1304 return ret;
1305}
1306
1307void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1308{
1309 struct btrfs_delayed_node *delayed_node;
1310
1311 delayed_node = READ_ONCE(inode->delayed_node);
1312 if (!delayed_node)
1313 return;
1314
1315 inode->delayed_node = NULL;
1316 btrfs_release_delayed_node(delayed_node);
1317}
1318
1319struct btrfs_async_delayed_work {
1320 struct btrfs_delayed_root *delayed_root;
1321 int nr;
1322 struct btrfs_work work;
1323};
1324
1325static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1326{
1327 struct btrfs_async_delayed_work *async_work;
1328 struct btrfs_delayed_root *delayed_root;
1329 struct btrfs_trans_handle *trans;
1330 struct btrfs_path *path;
1331 struct btrfs_delayed_node *delayed_node = NULL;
1332 struct btrfs_root *root;
1333 struct btrfs_block_rsv *block_rsv;
1334 int total_done = 0;
1335
1336 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1337 delayed_root = async_work->delayed_root;
1338
1339 path = btrfs_alloc_path();
1340 if (!path)
1341 goto out;
1342
1343 do {
1344 if (atomic_read(&delayed_root->items) <
1345 BTRFS_DELAYED_BACKGROUND / 2)
1346 break;
1347
1348 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1349 if (!delayed_node)
1350 break;
1351
1352 root = delayed_node->root;
1353
1354 trans = btrfs_join_transaction(root);
1355 if (IS_ERR(trans)) {
1356 btrfs_release_path(path);
1357 btrfs_release_prepared_delayed_node(delayed_node);
1358 total_done++;
1359 continue;
1360 }
1361
1362 block_rsv = trans->block_rsv;
1363 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1364
1365 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1366
1367 trans->block_rsv = block_rsv;
1368 btrfs_end_transaction(trans);
1369 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1370
1371 btrfs_release_path(path);
1372 btrfs_release_prepared_delayed_node(delayed_node);
1373 total_done++;
1374
1375 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1376 || total_done < async_work->nr);
1377
1378 btrfs_free_path(path);
1379out:
1380 wake_up(&delayed_root->wait);
1381 kfree(async_work);
1382}
1383
1384
1385static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1386 struct btrfs_fs_info *fs_info, int nr)
1387{
1388 struct btrfs_async_delayed_work *async_work;
1389
1390 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1391 if (!async_work)
1392 return -ENOMEM;
1393
1394 async_work->delayed_root = delayed_root;
1395 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL);
1396 async_work->nr = nr;
1397
1398 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1399 return 0;
1400}
1401
1402void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1403{
1404 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1405}
1406
1407static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1408{
1409 int val = atomic_read(&delayed_root->items_seq);
1410
1411 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1412 return 1;
1413
1414 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1415 return 1;
1416
1417 return 0;
1418}
1419
1420void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1421{
1422 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1423
1424 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1425 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1426 return;
1427
1428 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1429 int seq;
1430 int ret;
1431
1432 seq = atomic_read(&delayed_root->items_seq);
1433
1434 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1435 if (ret)
1436 return;
1437
1438 wait_event_interruptible(delayed_root->wait,
1439 could_end_wait(delayed_root, seq));
1440 return;
1441 }
1442
1443 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1444}
1445
1446static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans)
1447{
1448 struct btrfs_fs_info *fs_info = trans->fs_info;
1449 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
1450
1451 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1452 return;
1453
1454 /*
1455 * Adding the new dir index item does not require touching another
1456 * leaf, so we can release 1 unit of metadata that was previously
1457 * reserved when starting the transaction. This applies only to
1458 * the case where we had a transaction start and excludes the
1459 * transaction join case (when replaying log trees).
1460 */
1461 trace_btrfs_space_reservation(fs_info, "transaction",
1462 trans->transid, bytes, 0);
1463 btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL);
1464 ASSERT(trans->bytes_reserved >= bytes);
1465 trans->bytes_reserved -= bytes;
1466}
1467
1468/* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */
1469int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1470 const char *name, int name_len,
1471 struct btrfs_inode *dir,
1472 const struct btrfs_disk_key *disk_key, u8 flags,
1473 u64 index)
1474{
1475 struct btrfs_fs_info *fs_info = trans->fs_info;
1476 const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info);
1477 struct btrfs_delayed_node *delayed_node;
1478 struct btrfs_delayed_item *delayed_item;
1479 struct btrfs_dir_item *dir_item;
1480 bool reserve_leaf_space;
1481 u32 data_len;
1482 int ret;
1483
1484 delayed_node = btrfs_get_or_create_delayed_node(dir);
1485 if (IS_ERR(delayed_node))
1486 return PTR_ERR(delayed_node);
1487
1488 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len,
1489 delayed_node,
1490 BTRFS_DELAYED_INSERTION_ITEM);
1491 if (!delayed_item) {
1492 ret = -ENOMEM;
1493 goto release_node;
1494 }
1495
1496 delayed_item->index = index;
1497
1498 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1499 dir_item->location = *disk_key;
1500 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1501 btrfs_set_stack_dir_data_len(dir_item, 0);
1502 btrfs_set_stack_dir_name_len(dir_item, name_len);
1503 btrfs_set_stack_dir_flags(dir_item, flags);
1504 memcpy((char *)(dir_item + 1), name, name_len);
1505
1506 data_len = delayed_item->data_len + sizeof(struct btrfs_item);
1507
1508 mutex_lock(&delayed_node->mutex);
1509
1510 /*
1511 * First attempt to insert the delayed item. This is to make the error
1512 * handling path simpler in case we fail (-EEXIST). There's no risk of
1513 * any other task coming in and running the delayed item before we do
1514 * the metadata space reservation below, because we are holding the
1515 * delayed node's mutex and that mutex must also be locked before the
1516 * node's delayed items can be run.
1517 */
1518 ret = __btrfs_add_delayed_item(delayed_node, delayed_item);
1519 if (unlikely(ret)) {
1520 btrfs_err(trans->fs_info,
1521"error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d",
1522 name_len, name, index, btrfs_root_id(delayed_node->root),
1523 delayed_node->inode_id, dir->index_cnt,
1524 delayed_node->index_cnt, ret);
1525 btrfs_release_delayed_item(delayed_item);
1526 btrfs_release_dir_index_item_space(trans);
1527 mutex_unlock(&delayed_node->mutex);
1528 goto release_node;
1529 }
1530
1531 if (delayed_node->index_item_leaves == 0 ||
1532 delayed_node->curr_index_batch_size + data_len > leaf_data_size) {
1533 delayed_node->curr_index_batch_size = data_len;
1534 reserve_leaf_space = true;
1535 } else {
1536 delayed_node->curr_index_batch_size += data_len;
1537 reserve_leaf_space = false;
1538 }
1539
1540 if (reserve_leaf_space) {
1541 ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item);
1542 /*
1543 * Space was reserved for a dir index item insertion when we
1544 * started the transaction, so getting a failure here should be
1545 * impossible.
1546 */
1547 if (WARN_ON(ret)) {
1548 btrfs_release_delayed_item(delayed_item);
1549 mutex_unlock(&delayed_node->mutex);
1550 goto release_node;
1551 }
1552
1553 delayed_node->index_item_leaves++;
1554 } else {
1555 btrfs_release_dir_index_item_space(trans);
1556 }
1557 mutex_unlock(&delayed_node->mutex);
1558
1559release_node:
1560 btrfs_release_delayed_node(delayed_node);
1561 return ret;
1562}
1563
1564static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1565 struct btrfs_delayed_node *node,
1566 u64 index)
1567{
1568 struct btrfs_delayed_item *item;
1569
1570 mutex_lock(&node->mutex);
1571 item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index);
1572 if (!item) {
1573 mutex_unlock(&node->mutex);
1574 return 1;
1575 }
1576
1577 /*
1578 * For delayed items to insert, we track reserved metadata bytes based
1579 * on the number of leaves that we will use.
1580 * See btrfs_insert_delayed_dir_index() and
1581 * btrfs_delayed_item_reserve_metadata()).
1582 */
1583 ASSERT(item->bytes_reserved == 0);
1584 ASSERT(node->index_item_leaves > 0);
1585
1586 /*
1587 * If there's only one leaf reserved, we can decrement this item from the
1588 * current batch, otherwise we can not because we don't know which leaf
1589 * it belongs to. With the current limit on delayed items, we rarely
1590 * accumulate enough dir index items to fill more than one leaf (even
1591 * when using a leaf size of 4K).
1592 */
1593 if (node->index_item_leaves == 1) {
1594 const u32 data_len = item->data_len + sizeof(struct btrfs_item);
1595
1596 ASSERT(node->curr_index_batch_size >= data_len);
1597 node->curr_index_batch_size -= data_len;
1598 }
1599
1600 btrfs_release_delayed_item(item);
1601
1602 /* If we now have no more dir index items, we can release all leaves. */
1603 if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) {
1604 btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
1605 node->index_item_leaves = 0;
1606 }
1607
1608 mutex_unlock(&node->mutex);
1609 return 0;
1610}
1611
1612int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1613 struct btrfs_inode *dir, u64 index)
1614{
1615 struct btrfs_delayed_node *node;
1616 struct btrfs_delayed_item *item;
1617 int ret;
1618
1619 node = btrfs_get_or_create_delayed_node(dir);
1620 if (IS_ERR(node))
1621 return PTR_ERR(node);
1622
1623 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, index);
1624 if (!ret)
1625 goto end;
1626
1627 item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM);
1628 if (!item) {
1629 ret = -ENOMEM;
1630 goto end;
1631 }
1632
1633 item->index = index;
1634
1635 ret = btrfs_delayed_item_reserve_metadata(trans, item);
1636 /*
1637 * we have reserved enough space when we start a new transaction,
1638 * so reserving metadata failure is impossible.
1639 */
1640 if (ret < 0) {
1641 btrfs_err(trans->fs_info,
1642"metadata reservation failed for delayed dir item deltiona, should have been reserved");
1643 btrfs_release_delayed_item(item);
1644 goto end;
1645 }
1646
1647 mutex_lock(&node->mutex);
1648 ret = __btrfs_add_delayed_item(node, item);
1649 if (unlikely(ret)) {
1650 btrfs_err(trans->fs_info,
1651 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1652 index, btrfs_root_id(node->root),
1653 node->inode_id, ret);
1654 btrfs_delayed_item_release_metadata(dir->root, item);
1655 btrfs_release_delayed_item(item);
1656 }
1657 mutex_unlock(&node->mutex);
1658end:
1659 btrfs_release_delayed_node(node);
1660 return ret;
1661}
1662
1663int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1664{
1665 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1666
1667 if (!delayed_node)
1668 return -ENOENT;
1669
1670 /*
1671 * Since we have held i_mutex of this directory, it is impossible that
1672 * a new directory index is added into the delayed node and index_cnt
1673 * is updated now. So we needn't lock the delayed node.
1674 */
1675 if (!delayed_node->index_cnt) {
1676 btrfs_release_delayed_node(delayed_node);
1677 return -EINVAL;
1678 }
1679
1680 inode->index_cnt = delayed_node->index_cnt;
1681 btrfs_release_delayed_node(delayed_node);
1682 return 0;
1683}
1684
1685bool btrfs_readdir_get_delayed_items(struct btrfs_inode *inode,
1686 u64 last_index,
1687 struct list_head *ins_list,
1688 struct list_head *del_list)
1689{
1690 struct btrfs_delayed_node *delayed_node;
1691 struct btrfs_delayed_item *item;
1692
1693 delayed_node = btrfs_get_delayed_node(inode);
1694 if (!delayed_node)
1695 return false;
1696
1697 /*
1698 * We can only do one readdir with delayed items at a time because of
1699 * item->readdir_list.
1700 */
1701 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1702 btrfs_inode_lock(inode, 0);
1703
1704 mutex_lock(&delayed_node->mutex);
1705 item = __btrfs_first_delayed_insertion_item(delayed_node);
1706 while (item && item->index <= last_index) {
1707 refcount_inc(&item->refs);
1708 list_add_tail(&item->readdir_list, ins_list);
1709 item = __btrfs_next_delayed_item(item);
1710 }
1711
1712 item = __btrfs_first_delayed_deletion_item(delayed_node);
1713 while (item && item->index <= last_index) {
1714 refcount_inc(&item->refs);
1715 list_add_tail(&item->readdir_list, del_list);
1716 item = __btrfs_next_delayed_item(item);
1717 }
1718 mutex_unlock(&delayed_node->mutex);
1719 /*
1720 * This delayed node is still cached in the btrfs inode, so refs
1721 * must be > 1 now, and we needn't check it is going to be freed
1722 * or not.
1723 *
1724 * Besides that, this function is used to read dir, we do not
1725 * insert/delete delayed items in this period. So we also needn't
1726 * requeue or dequeue this delayed node.
1727 */
1728 refcount_dec(&delayed_node->refs);
1729
1730 return true;
1731}
1732
1733void btrfs_readdir_put_delayed_items(struct btrfs_inode *inode,
1734 struct list_head *ins_list,
1735 struct list_head *del_list)
1736{
1737 struct btrfs_delayed_item *curr, *next;
1738
1739 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1740 list_del(&curr->readdir_list);
1741 if (refcount_dec_and_test(&curr->refs))
1742 kfree(curr);
1743 }
1744
1745 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1746 list_del(&curr->readdir_list);
1747 if (refcount_dec_and_test(&curr->refs))
1748 kfree(curr);
1749 }
1750
1751 /*
1752 * The VFS is going to do up_read(), so we need to downgrade back to a
1753 * read lock.
1754 */
1755 downgrade_write(&inode->vfs_inode.i_rwsem);
1756}
1757
1758int btrfs_should_delete_dir_index(const struct list_head *del_list,
1759 u64 index)
1760{
1761 struct btrfs_delayed_item *curr;
1762 int ret = 0;
1763
1764 list_for_each_entry(curr, del_list, readdir_list) {
1765 if (curr->index > index)
1766 break;
1767 if (curr->index == index) {
1768 ret = 1;
1769 break;
1770 }
1771 }
1772 return ret;
1773}
1774
1775/*
1776 * Read dir info stored in the delayed tree.
1777 */
1778int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1779 const struct list_head *ins_list)
1780{
1781 struct btrfs_dir_item *di;
1782 struct btrfs_delayed_item *curr, *next;
1783 struct btrfs_key location;
1784 char *name;
1785 int name_len;
1786 int over = 0;
1787 unsigned char d_type;
1788
1789 /*
1790 * Changing the data of the delayed item is impossible. So
1791 * we needn't lock them. And we have held i_mutex of the
1792 * directory, nobody can delete any directory indexes now.
1793 */
1794 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1795 list_del(&curr->readdir_list);
1796
1797 if (curr->index < ctx->pos) {
1798 if (refcount_dec_and_test(&curr->refs))
1799 kfree(curr);
1800 continue;
1801 }
1802
1803 ctx->pos = curr->index;
1804
1805 di = (struct btrfs_dir_item *)curr->data;
1806 name = (char *)(di + 1);
1807 name_len = btrfs_stack_dir_name_len(di);
1808
1809 d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type));
1810 btrfs_disk_key_to_cpu(&location, &di->location);
1811
1812 over = !dir_emit(ctx, name, name_len,
1813 location.objectid, d_type);
1814
1815 if (refcount_dec_and_test(&curr->refs))
1816 kfree(curr);
1817
1818 if (over)
1819 return 1;
1820 ctx->pos++;
1821 }
1822 return 0;
1823}
1824
1825static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1826 struct btrfs_inode_item *inode_item,
1827 struct inode *inode)
1828{
1829 u64 flags;
1830
1831 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1832 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1833 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1834 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1835 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1836 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1837 btrfs_set_stack_inode_generation(inode_item,
1838 BTRFS_I(inode)->generation);
1839 btrfs_set_stack_inode_sequence(inode_item,
1840 inode_peek_iversion(inode));
1841 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1842 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1843 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
1844 BTRFS_I(inode)->ro_flags);
1845 btrfs_set_stack_inode_flags(inode_item, flags);
1846 btrfs_set_stack_inode_block_group(inode_item, 0);
1847
1848 btrfs_set_stack_timespec_sec(&inode_item->atime,
1849 inode_get_atime_sec(inode));
1850 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1851 inode_get_atime_nsec(inode));
1852
1853 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1854 inode_get_mtime_sec(inode));
1855 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1856 inode_get_mtime_nsec(inode));
1857
1858 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1859 inode_get_ctime_sec(inode));
1860 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1861 inode_get_ctime_nsec(inode));
1862
1863 btrfs_set_stack_timespec_sec(&inode_item->otime, BTRFS_I(inode)->i_otime_sec);
1864 btrfs_set_stack_timespec_nsec(&inode_item->otime, BTRFS_I(inode)->i_otime_nsec);
1865}
1866
1867int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1868{
1869 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1870 struct btrfs_delayed_node *delayed_node;
1871 struct btrfs_inode_item *inode_item;
1872
1873 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1874 if (!delayed_node)
1875 return -ENOENT;
1876
1877 mutex_lock(&delayed_node->mutex);
1878 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1879 mutex_unlock(&delayed_node->mutex);
1880 btrfs_release_delayed_node(delayed_node);
1881 return -ENOENT;
1882 }
1883
1884 inode_item = &delayed_node->inode_item;
1885
1886 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1887 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1888 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1889 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1890 round_up(i_size_read(inode), fs_info->sectorsize));
1891 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1892 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1893 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1894 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1895 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1896
1897 inode_set_iversion_queried(inode,
1898 btrfs_stack_inode_sequence(inode_item));
1899 inode->i_rdev = 0;
1900 *rdev = btrfs_stack_inode_rdev(inode_item);
1901 btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1902 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
1903
1904 inode_set_atime(inode, btrfs_stack_timespec_sec(&inode_item->atime),
1905 btrfs_stack_timespec_nsec(&inode_item->atime));
1906
1907 inode_set_mtime(inode, btrfs_stack_timespec_sec(&inode_item->mtime),
1908 btrfs_stack_timespec_nsec(&inode_item->mtime));
1909
1910 inode_set_ctime(inode, btrfs_stack_timespec_sec(&inode_item->ctime),
1911 btrfs_stack_timespec_nsec(&inode_item->ctime));
1912
1913 BTRFS_I(inode)->i_otime_sec = btrfs_stack_timespec_sec(&inode_item->otime);
1914 BTRFS_I(inode)->i_otime_nsec = btrfs_stack_timespec_nsec(&inode_item->otime);
1915
1916 inode->i_generation = BTRFS_I(inode)->generation;
1917 if (S_ISDIR(inode->i_mode))
1918 BTRFS_I(inode)->index_cnt = (u64)-1;
1919
1920 mutex_unlock(&delayed_node->mutex);
1921 btrfs_release_delayed_node(delayed_node);
1922 return 0;
1923}
1924
1925int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1926 struct btrfs_inode *inode)
1927{
1928 struct btrfs_root *root = inode->root;
1929 struct btrfs_delayed_node *delayed_node;
1930 int ret = 0;
1931
1932 delayed_node = btrfs_get_or_create_delayed_node(inode);
1933 if (IS_ERR(delayed_node))
1934 return PTR_ERR(delayed_node);
1935
1936 mutex_lock(&delayed_node->mutex);
1937 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1938 fill_stack_inode_item(trans, &delayed_node->inode_item,
1939 &inode->vfs_inode);
1940 goto release_node;
1941 }
1942
1943 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1944 if (ret)
1945 goto release_node;
1946
1947 fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
1948 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1949 delayed_node->count++;
1950 atomic_inc(&root->fs_info->delayed_root->items);
1951release_node:
1952 mutex_unlock(&delayed_node->mutex);
1953 btrfs_release_delayed_node(delayed_node);
1954 return ret;
1955}
1956
1957int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1958{
1959 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1960 struct btrfs_delayed_node *delayed_node;
1961
1962 /*
1963 * we don't do delayed inode updates during log recovery because it
1964 * leads to enospc problems. This means we also can't do
1965 * delayed inode refs
1966 */
1967 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1968 return -EAGAIN;
1969
1970 delayed_node = btrfs_get_or_create_delayed_node(inode);
1971 if (IS_ERR(delayed_node))
1972 return PTR_ERR(delayed_node);
1973
1974 /*
1975 * We don't reserve space for inode ref deletion is because:
1976 * - We ONLY do async inode ref deletion for the inode who has only
1977 * one link(i_nlink == 1), it means there is only one inode ref.
1978 * And in most case, the inode ref and the inode item are in the
1979 * same leaf, and we will deal with them at the same time.
1980 * Since we are sure we will reserve the space for the inode item,
1981 * it is unnecessary to reserve space for inode ref deletion.
1982 * - If the inode ref and the inode item are not in the same leaf,
1983 * We also needn't worry about enospc problem, because we reserve
1984 * much more space for the inode update than it needs.
1985 * - At the worst, we can steal some space from the global reservation.
1986 * It is very rare.
1987 */
1988 mutex_lock(&delayed_node->mutex);
1989 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1990 goto release_node;
1991
1992 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1993 delayed_node->count++;
1994 atomic_inc(&fs_info->delayed_root->items);
1995release_node:
1996 mutex_unlock(&delayed_node->mutex);
1997 btrfs_release_delayed_node(delayed_node);
1998 return 0;
1999}
2000
2001static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
2002{
2003 struct btrfs_root *root = delayed_node->root;
2004 struct btrfs_fs_info *fs_info = root->fs_info;
2005 struct btrfs_delayed_item *curr_item, *prev_item;
2006
2007 mutex_lock(&delayed_node->mutex);
2008 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
2009 while (curr_item) {
2010 prev_item = curr_item;
2011 curr_item = __btrfs_next_delayed_item(prev_item);
2012 btrfs_release_delayed_item(prev_item);
2013 }
2014
2015 if (delayed_node->index_item_leaves > 0) {
2016 btrfs_delayed_item_release_leaves(delayed_node,
2017 delayed_node->index_item_leaves);
2018 delayed_node->index_item_leaves = 0;
2019 }
2020
2021 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
2022 while (curr_item) {
2023 btrfs_delayed_item_release_metadata(root, curr_item);
2024 prev_item = curr_item;
2025 curr_item = __btrfs_next_delayed_item(prev_item);
2026 btrfs_release_delayed_item(prev_item);
2027 }
2028
2029 btrfs_release_delayed_iref(delayed_node);
2030
2031 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
2032 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
2033 btrfs_release_delayed_inode(delayed_node);
2034 }
2035 mutex_unlock(&delayed_node->mutex);
2036}
2037
2038void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
2039{
2040 struct btrfs_delayed_node *delayed_node;
2041
2042 delayed_node = btrfs_get_delayed_node(inode);
2043 if (!delayed_node)
2044 return;
2045
2046 __btrfs_kill_delayed_node(delayed_node);
2047 btrfs_release_delayed_node(delayed_node);
2048}
2049
2050void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
2051{
2052 unsigned long index = 0;
2053 struct btrfs_delayed_node *delayed_nodes[8];
2054
2055 while (1) {
2056 struct btrfs_delayed_node *node;
2057 int count;
2058
2059 xa_lock(&root->delayed_nodes);
2060 if (xa_empty(&root->delayed_nodes)) {
2061 xa_unlock(&root->delayed_nodes);
2062 return;
2063 }
2064
2065 count = 0;
2066 xa_for_each_start(&root->delayed_nodes, index, node, index) {
2067 /*
2068 * Don't increase refs in case the node is dead and
2069 * about to be removed from the tree in the loop below
2070 */
2071 if (refcount_inc_not_zero(&node->refs)) {
2072 delayed_nodes[count] = node;
2073 count++;
2074 }
2075 if (count >= ARRAY_SIZE(delayed_nodes))
2076 break;
2077 }
2078 xa_unlock(&root->delayed_nodes);
2079 index++;
2080
2081 for (int i = 0; i < count; i++) {
2082 __btrfs_kill_delayed_node(delayed_nodes[i]);
2083 btrfs_release_delayed_node(delayed_nodes[i]);
2084 }
2085 }
2086}
2087
2088void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
2089{
2090 struct btrfs_delayed_node *curr_node, *prev_node;
2091
2092 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
2093 while (curr_node) {
2094 __btrfs_kill_delayed_node(curr_node);
2095
2096 prev_node = curr_node;
2097 curr_node = btrfs_next_delayed_node(curr_node);
2098 btrfs_release_delayed_node(prev_node);
2099 }
2100}
2101
2102void btrfs_log_get_delayed_items(struct btrfs_inode *inode,
2103 struct list_head *ins_list,
2104 struct list_head *del_list)
2105{
2106 struct btrfs_delayed_node *node;
2107 struct btrfs_delayed_item *item;
2108
2109 node = btrfs_get_delayed_node(inode);
2110 if (!node)
2111 return;
2112
2113 mutex_lock(&node->mutex);
2114 item = __btrfs_first_delayed_insertion_item(node);
2115 while (item) {
2116 /*
2117 * It's possible that the item is already in a log list. This
2118 * can happen in case two tasks are trying to log the same
2119 * directory. For example if we have tasks A and task B:
2120 *
2121 * Task A collected the delayed items into a log list while
2122 * under the inode's log_mutex (at btrfs_log_inode()), but it
2123 * only releases the items after logging the inodes they point
2124 * to (if they are new inodes), which happens after unlocking
2125 * the log mutex;
2126 *
2127 * Task B enters btrfs_log_inode() and acquires the log_mutex
2128 * of the same directory inode, before task B releases the
2129 * delayed items. This can happen for example when logging some
2130 * inode we need to trigger logging of its parent directory, so
2131 * logging two files that have the same parent directory can
2132 * lead to this.
2133 *
2134 * If this happens, just ignore delayed items already in a log
2135 * list. All the tasks logging the directory are under a log
2136 * transaction and whichever finishes first can not sync the log
2137 * before the other completes and leaves the log transaction.
2138 */
2139 if (!item->logged && list_empty(&item->log_list)) {
2140 refcount_inc(&item->refs);
2141 list_add_tail(&item->log_list, ins_list);
2142 }
2143 item = __btrfs_next_delayed_item(item);
2144 }
2145
2146 item = __btrfs_first_delayed_deletion_item(node);
2147 while (item) {
2148 /* It may be non-empty, for the same reason mentioned above. */
2149 if (!item->logged && list_empty(&item->log_list)) {
2150 refcount_inc(&item->refs);
2151 list_add_tail(&item->log_list, del_list);
2152 }
2153 item = __btrfs_next_delayed_item(item);
2154 }
2155 mutex_unlock(&node->mutex);
2156
2157 /*
2158 * We are called during inode logging, which means the inode is in use
2159 * and can not be evicted before we finish logging the inode. So we never
2160 * have the last reference on the delayed inode.
2161 * Also, we don't use btrfs_release_delayed_node() because that would
2162 * requeue the delayed inode (change its order in the list of prepared
2163 * nodes) and we don't want to do such change because we don't create or
2164 * delete delayed items.
2165 */
2166 ASSERT(refcount_read(&node->refs) > 1);
2167 refcount_dec(&node->refs);
2168}
2169
2170void btrfs_log_put_delayed_items(struct btrfs_inode *inode,
2171 struct list_head *ins_list,
2172 struct list_head *del_list)
2173{
2174 struct btrfs_delayed_node *node;
2175 struct btrfs_delayed_item *item;
2176 struct btrfs_delayed_item *next;
2177
2178 node = btrfs_get_delayed_node(inode);
2179 if (!node)
2180 return;
2181
2182 mutex_lock(&node->mutex);
2183
2184 list_for_each_entry_safe(item, next, ins_list, log_list) {
2185 item->logged = true;
2186 list_del_init(&item->log_list);
2187 if (refcount_dec_and_test(&item->refs))
2188 kfree(item);
2189 }
2190
2191 list_for_each_entry_safe(item, next, del_list, log_list) {
2192 item->logged = true;
2193 list_del_init(&item->log_list);
2194 if (refcount_dec_and_test(&item->refs))
2195 kfree(item);
2196 }
2197
2198 mutex_unlock(&node->mutex);
2199
2200 /*
2201 * We are called during inode logging, which means the inode is in use
2202 * and can not be evicted before we finish logging the inode. So we never
2203 * have the last reference on the delayed inode.
2204 * Also, we don't use btrfs_release_delayed_node() because that would
2205 * requeue the delayed inode (change its order in the list of prepared
2206 * nodes) and we don't want to do such change because we don't create or
2207 * delete delayed items.
2208 */
2209 ASSERT(refcount_read(&node->refs) > 1);
2210 refcount_dec(&node->refs);
2211}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2011 Fujitsu. All rights reserved.
4 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 */
6
7#include <linux/slab.h>
8#include <linux/iversion.h>
9#include "delayed-inode.h"
10#include "disk-io.h"
11#include "transaction.h"
12#include "ctree.h"
13#include "qgroup.h"
14
15#define BTRFS_DELAYED_WRITEBACK 512
16#define BTRFS_DELAYED_BACKGROUND 128
17#define BTRFS_DELAYED_BATCH 16
18
19static struct kmem_cache *delayed_node_cache;
20
21int __init btrfs_delayed_inode_init(void)
22{
23 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
24 sizeof(struct btrfs_delayed_node),
25 0,
26 SLAB_MEM_SPREAD,
27 NULL);
28 if (!delayed_node_cache)
29 return -ENOMEM;
30 return 0;
31}
32
33void __cold btrfs_delayed_inode_exit(void)
34{
35 kmem_cache_destroy(delayed_node_cache);
36}
37
38static inline void btrfs_init_delayed_node(
39 struct btrfs_delayed_node *delayed_node,
40 struct btrfs_root *root, u64 inode_id)
41{
42 delayed_node->root = root;
43 delayed_node->inode_id = inode_id;
44 refcount_set(&delayed_node->refs, 0);
45 delayed_node->ins_root = RB_ROOT;
46 delayed_node->del_root = RB_ROOT;
47 mutex_init(&delayed_node->mutex);
48 INIT_LIST_HEAD(&delayed_node->n_list);
49 INIT_LIST_HEAD(&delayed_node->p_list);
50}
51
52static inline int btrfs_is_continuous_delayed_item(
53 struct btrfs_delayed_item *item1,
54 struct btrfs_delayed_item *item2)
55{
56 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
57 item1->key.objectid == item2->key.objectid &&
58 item1->key.type == item2->key.type &&
59 item1->key.offset + 1 == item2->key.offset)
60 return 1;
61 return 0;
62}
63
64static struct btrfs_delayed_node *btrfs_get_delayed_node(
65 struct btrfs_inode *btrfs_inode)
66{
67 struct btrfs_root *root = btrfs_inode->root;
68 u64 ino = btrfs_ino(btrfs_inode);
69 struct btrfs_delayed_node *node;
70
71 node = READ_ONCE(btrfs_inode->delayed_node);
72 if (node) {
73 refcount_inc(&node->refs);
74 return node;
75 }
76
77 spin_lock(&root->inode_lock);
78 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
79
80 if (node) {
81 if (btrfs_inode->delayed_node) {
82 refcount_inc(&node->refs); /* can be accessed */
83 BUG_ON(btrfs_inode->delayed_node != node);
84 spin_unlock(&root->inode_lock);
85 return node;
86 }
87
88 /*
89 * It's possible that we're racing into the middle of removing
90 * this node from the radix tree. In this case, the refcount
91 * was zero and it should never go back to one. Just return
92 * NULL like it was never in the radix at all; our release
93 * function is in the process of removing it.
94 *
95 * Some implementations of refcount_inc refuse to bump the
96 * refcount once it has hit zero. If we don't do this dance
97 * here, refcount_inc() may decide to just WARN_ONCE() instead
98 * of actually bumping the refcount.
99 *
100 * If this node is properly in the radix, we want to bump the
101 * refcount twice, once for the inode and once for this get
102 * operation.
103 */
104 if (refcount_inc_not_zero(&node->refs)) {
105 refcount_inc(&node->refs);
106 btrfs_inode->delayed_node = node;
107 } else {
108 node = NULL;
109 }
110
111 spin_unlock(&root->inode_lock);
112 return node;
113 }
114 spin_unlock(&root->inode_lock);
115
116 return NULL;
117}
118
119/* Will return either the node or PTR_ERR(-ENOMEM) */
120static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
121 struct btrfs_inode *btrfs_inode)
122{
123 struct btrfs_delayed_node *node;
124 struct btrfs_root *root = btrfs_inode->root;
125 u64 ino = btrfs_ino(btrfs_inode);
126 int ret;
127
128again:
129 node = btrfs_get_delayed_node(btrfs_inode);
130 if (node)
131 return node;
132
133 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
134 if (!node)
135 return ERR_PTR(-ENOMEM);
136 btrfs_init_delayed_node(node, root, ino);
137
138 /* cached in the btrfs inode and can be accessed */
139 refcount_set(&node->refs, 2);
140
141 ret = radix_tree_preload(GFP_NOFS);
142 if (ret) {
143 kmem_cache_free(delayed_node_cache, node);
144 return ERR_PTR(ret);
145 }
146
147 spin_lock(&root->inode_lock);
148 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
149 if (ret == -EEXIST) {
150 spin_unlock(&root->inode_lock);
151 kmem_cache_free(delayed_node_cache, node);
152 radix_tree_preload_end();
153 goto again;
154 }
155 btrfs_inode->delayed_node = node;
156 spin_unlock(&root->inode_lock);
157 radix_tree_preload_end();
158
159 return node;
160}
161
162/*
163 * Call it when holding delayed_node->mutex
164 *
165 * If mod = 1, add this node into the prepared list.
166 */
167static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
168 struct btrfs_delayed_node *node,
169 int mod)
170{
171 spin_lock(&root->lock);
172 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
173 if (!list_empty(&node->p_list))
174 list_move_tail(&node->p_list, &root->prepare_list);
175 else if (mod)
176 list_add_tail(&node->p_list, &root->prepare_list);
177 } else {
178 list_add_tail(&node->n_list, &root->node_list);
179 list_add_tail(&node->p_list, &root->prepare_list);
180 refcount_inc(&node->refs); /* inserted into list */
181 root->nodes++;
182 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
183 }
184 spin_unlock(&root->lock);
185}
186
187/* Call it when holding delayed_node->mutex */
188static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
189 struct btrfs_delayed_node *node)
190{
191 spin_lock(&root->lock);
192 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
193 root->nodes--;
194 refcount_dec(&node->refs); /* not in the list */
195 list_del_init(&node->n_list);
196 if (!list_empty(&node->p_list))
197 list_del_init(&node->p_list);
198 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
199 }
200 spin_unlock(&root->lock);
201}
202
203static struct btrfs_delayed_node *btrfs_first_delayed_node(
204 struct btrfs_delayed_root *delayed_root)
205{
206 struct list_head *p;
207 struct btrfs_delayed_node *node = NULL;
208
209 spin_lock(&delayed_root->lock);
210 if (list_empty(&delayed_root->node_list))
211 goto out;
212
213 p = delayed_root->node_list.next;
214 node = list_entry(p, struct btrfs_delayed_node, n_list);
215 refcount_inc(&node->refs);
216out:
217 spin_unlock(&delayed_root->lock);
218
219 return node;
220}
221
222static struct btrfs_delayed_node *btrfs_next_delayed_node(
223 struct btrfs_delayed_node *node)
224{
225 struct btrfs_delayed_root *delayed_root;
226 struct list_head *p;
227 struct btrfs_delayed_node *next = NULL;
228
229 delayed_root = node->root->fs_info->delayed_root;
230 spin_lock(&delayed_root->lock);
231 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
232 /* not in the list */
233 if (list_empty(&delayed_root->node_list))
234 goto out;
235 p = delayed_root->node_list.next;
236 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
237 goto out;
238 else
239 p = node->n_list.next;
240
241 next = list_entry(p, struct btrfs_delayed_node, n_list);
242 refcount_inc(&next->refs);
243out:
244 spin_unlock(&delayed_root->lock);
245
246 return next;
247}
248
249static void __btrfs_release_delayed_node(
250 struct btrfs_delayed_node *delayed_node,
251 int mod)
252{
253 struct btrfs_delayed_root *delayed_root;
254
255 if (!delayed_node)
256 return;
257
258 delayed_root = delayed_node->root->fs_info->delayed_root;
259
260 mutex_lock(&delayed_node->mutex);
261 if (delayed_node->count)
262 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
263 else
264 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
265 mutex_unlock(&delayed_node->mutex);
266
267 if (refcount_dec_and_test(&delayed_node->refs)) {
268 struct btrfs_root *root = delayed_node->root;
269
270 spin_lock(&root->inode_lock);
271 /*
272 * Once our refcount goes to zero, nobody is allowed to bump it
273 * back up. We can delete it now.
274 */
275 ASSERT(refcount_read(&delayed_node->refs) == 0);
276 radix_tree_delete(&root->delayed_nodes_tree,
277 delayed_node->inode_id);
278 spin_unlock(&root->inode_lock);
279 kmem_cache_free(delayed_node_cache, delayed_node);
280 }
281}
282
283static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
284{
285 __btrfs_release_delayed_node(node, 0);
286}
287
288static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
289 struct btrfs_delayed_root *delayed_root)
290{
291 struct list_head *p;
292 struct btrfs_delayed_node *node = NULL;
293
294 spin_lock(&delayed_root->lock);
295 if (list_empty(&delayed_root->prepare_list))
296 goto out;
297
298 p = delayed_root->prepare_list.next;
299 list_del_init(p);
300 node = list_entry(p, struct btrfs_delayed_node, p_list);
301 refcount_inc(&node->refs);
302out:
303 spin_unlock(&delayed_root->lock);
304
305 return node;
306}
307
308static inline void btrfs_release_prepared_delayed_node(
309 struct btrfs_delayed_node *node)
310{
311 __btrfs_release_delayed_node(node, 1);
312}
313
314static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
315{
316 struct btrfs_delayed_item *item;
317 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
318 if (item) {
319 item->data_len = data_len;
320 item->ins_or_del = 0;
321 item->bytes_reserved = 0;
322 item->delayed_node = NULL;
323 refcount_set(&item->refs, 1);
324 }
325 return item;
326}
327
328/*
329 * __btrfs_lookup_delayed_item - look up the delayed item by key
330 * @delayed_node: pointer to the delayed node
331 * @key: the key to look up
332 * @prev: used to store the prev item if the right item isn't found
333 * @next: used to store the next item if the right item isn't found
334 *
335 * Note: if we don't find the right item, we will return the prev item and
336 * the next item.
337 */
338static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
339 struct rb_root *root,
340 struct btrfs_key *key,
341 struct btrfs_delayed_item **prev,
342 struct btrfs_delayed_item **next)
343{
344 struct rb_node *node, *prev_node = NULL;
345 struct btrfs_delayed_item *delayed_item = NULL;
346 int ret = 0;
347
348 node = root->rb_node;
349
350 while (node) {
351 delayed_item = rb_entry(node, struct btrfs_delayed_item,
352 rb_node);
353 prev_node = node;
354 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
355 if (ret < 0)
356 node = node->rb_right;
357 else if (ret > 0)
358 node = node->rb_left;
359 else
360 return delayed_item;
361 }
362
363 if (prev) {
364 if (!prev_node)
365 *prev = NULL;
366 else if (ret < 0)
367 *prev = delayed_item;
368 else if ((node = rb_prev(prev_node)) != NULL) {
369 *prev = rb_entry(node, struct btrfs_delayed_item,
370 rb_node);
371 } else
372 *prev = NULL;
373 }
374
375 if (next) {
376 if (!prev_node)
377 *next = NULL;
378 else if (ret > 0)
379 *next = delayed_item;
380 else if ((node = rb_next(prev_node)) != NULL) {
381 *next = rb_entry(node, struct btrfs_delayed_item,
382 rb_node);
383 } else
384 *next = NULL;
385 }
386 return NULL;
387}
388
389static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
390 struct btrfs_delayed_node *delayed_node,
391 struct btrfs_key *key)
392{
393 return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
394 NULL, NULL);
395}
396
397static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
398 struct btrfs_delayed_item *ins,
399 int action)
400{
401 struct rb_node **p, *node;
402 struct rb_node *parent_node = NULL;
403 struct rb_root *root;
404 struct btrfs_delayed_item *item;
405 int cmp;
406
407 if (action == BTRFS_DELAYED_INSERTION_ITEM)
408 root = &delayed_node->ins_root;
409 else if (action == BTRFS_DELAYED_DELETION_ITEM)
410 root = &delayed_node->del_root;
411 else
412 BUG();
413 p = &root->rb_node;
414 node = &ins->rb_node;
415
416 while (*p) {
417 parent_node = *p;
418 item = rb_entry(parent_node, struct btrfs_delayed_item,
419 rb_node);
420
421 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
422 if (cmp < 0)
423 p = &(*p)->rb_right;
424 else if (cmp > 0)
425 p = &(*p)->rb_left;
426 else
427 return -EEXIST;
428 }
429
430 rb_link_node(node, parent_node, p);
431 rb_insert_color(node, root);
432 ins->delayed_node = delayed_node;
433 ins->ins_or_del = action;
434
435 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
436 action == BTRFS_DELAYED_INSERTION_ITEM &&
437 ins->key.offset >= delayed_node->index_cnt)
438 delayed_node->index_cnt = ins->key.offset + 1;
439
440 delayed_node->count++;
441 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
442 return 0;
443}
444
445static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
446 struct btrfs_delayed_item *item)
447{
448 return __btrfs_add_delayed_item(node, item,
449 BTRFS_DELAYED_INSERTION_ITEM);
450}
451
452static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
453 struct btrfs_delayed_item *item)
454{
455 return __btrfs_add_delayed_item(node, item,
456 BTRFS_DELAYED_DELETION_ITEM);
457}
458
459static void finish_one_item(struct btrfs_delayed_root *delayed_root)
460{
461 int seq = atomic_inc_return(&delayed_root->items_seq);
462
463 /*
464 * atomic_dec_return implies a barrier for waitqueue_active
465 */
466 if ((atomic_dec_return(&delayed_root->items) <
467 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
468 waitqueue_active(&delayed_root->wait))
469 wake_up(&delayed_root->wait);
470}
471
472static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
473{
474 struct rb_root *root;
475 struct btrfs_delayed_root *delayed_root;
476
477 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
478
479 BUG_ON(!delayed_root);
480 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
481 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
482
483 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
484 root = &delayed_item->delayed_node->ins_root;
485 else
486 root = &delayed_item->delayed_node->del_root;
487
488 rb_erase(&delayed_item->rb_node, root);
489 delayed_item->delayed_node->count--;
490
491 finish_one_item(delayed_root);
492}
493
494static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
495{
496 if (item) {
497 __btrfs_remove_delayed_item(item);
498 if (refcount_dec_and_test(&item->refs))
499 kfree(item);
500 }
501}
502
503static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
504 struct btrfs_delayed_node *delayed_node)
505{
506 struct rb_node *p;
507 struct btrfs_delayed_item *item = NULL;
508
509 p = rb_first(&delayed_node->ins_root);
510 if (p)
511 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
512
513 return item;
514}
515
516static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
517 struct btrfs_delayed_node *delayed_node)
518{
519 struct rb_node *p;
520 struct btrfs_delayed_item *item = NULL;
521
522 p = rb_first(&delayed_node->del_root);
523 if (p)
524 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
525
526 return item;
527}
528
529static struct btrfs_delayed_item *__btrfs_next_delayed_item(
530 struct btrfs_delayed_item *item)
531{
532 struct rb_node *p;
533 struct btrfs_delayed_item *next = NULL;
534
535 p = rb_next(&item->rb_node);
536 if (p)
537 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
538
539 return next;
540}
541
542static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
543 struct btrfs_root *root,
544 struct btrfs_delayed_item *item)
545{
546 struct btrfs_block_rsv *src_rsv;
547 struct btrfs_block_rsv *dst_rsv;
548 struct btrfs_fs_info *fs_info = root->fs_info;
549 u64 num_bytes;
550 int ret;
551
552 if (!trans->bytes_reserved)
553 return 0;
554
555 src_rsv = trans->block_rsv;
556 dst_rsv = &fs_info->delayed_block_rsv;
557
558 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
559
560 /*
561 * Here we migrate space rsv from transaction rsv, since have already
562 * reserved space when starting a transaction. So no need to reserve
563 * qgroup space here.
564 */
565 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
566 if (!ret) {
567 trace_btrfs_space_reservation(fs_info, "delayed_item",
568 item->key.objectid,
569 num_bytes, 1);
570 item->bytes_reserved = num_bytes;
571 }
572
573 return ret;
574}
575
576static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
577 struct btrfs_delayed_item *item)
578{
579 struct btrfs_block_rsv *rsv;
580 struct btrfs_fs_info *fs_info = root->fs_info;
581
582 if (!item->bytes_reserved)
583 return;
584
585 rsv = &fs_info->delayed_block_rsv;
586 /*
587 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
588 * to release/reserve qgroup space.
589 */
590 trace_btrfs_space_reservation(fs_info, "delayed_item",
591 item->key.objectid, item->bytes_reserved,
592 0);
593 btrfs_block_rsv_release(fs_info, rsv,
594 item->bytes_reserved);
595}
596
597static int btrfs_delayed_inode_reserve_metadata(
598 struct btrfs_trans_handle *trans,
599 struct btrfs_root *root,
600 struct btrfs_inode *inode,
601 struct btrfs_delayed_node *node)
602{
603 struct btrfs_fs_info *fs_info = root->fs_info;
604 struct btrfs_block_rsv *src_rsv;
605 struct btrfs_block_rsv *dst_rsv;
606 u64 num_bytes;
607 int ret;
608
609 src_rsv = trans->block_rsv;
610 dst_rsv = &fs_info->delayed_block_rsv;
611
612 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
613
614 /*
615 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
616 * which doesn't reserve space for speed. This is a problem since we
617 * still need to reserve space for this update, so try to reserve the
618 * space.
619 *
620 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
621 * we always reserve enough to update the inode item.
622 */
623 if (!src_rsv || (!trans->bytes_reserved &&
624 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
625 ret = btrfs_qgroup_reserve_meta_prealloc(root,
626 fs_info->nodesize, true);
627 if (ret < 0)
628 return ret;
629 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
630 BTRFS_RESERVE_NO_FLUSH);
631 /*
632 * Since we're under a transaction reserve_metadata_bytes could
633 * try to commit the transaction which will make it return
634 * EAGAIN to make us stop the transaction we have, so return
635 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
636 */
637 if (ret == -EAGAIN) {
638 ret = -ENOSPC;
639 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
640 }
641 if (!ret) {
642 node->bytes_reserved = num_bytes;
643 trace_btrfs_space_reservation(fs_info,
644 "delayed_inode",
645 btrfs_ino(inode),
646 num_bytes, 1);
647 } else {
648 btrfs_qgroup_free_meta_prealloc(root, fs_info->nodesize);
649 }
650 return ret;
651 }
652
653 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
654 if (!ret) {
655 trace_btrfs_space_reservation(fs_info, "delayed_inode",
656 btrfs_ino(inode), num_bytes, 1);
657 node->bytes_reserved = num_bytes;
658 }
659
660 return ret;
661}
662
663static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
664 struct btrfs_delayed_node *node,
665 bool qgroup_free)
666{
667 struct btrfs_block_rsv *rsv;
668
669 if (!node->bytes_reserved)
670 return;
671
672 rsv = &fs_info->delayed_block_rsv;
673 trace_btrfs_space_reservation(fs_info, "delayed_inode",
674 node->inode_id, node->bytes_reserved, 0);
675 btrfs_block_rsv_release(fs_info, rsv,
676 node->bytes_reserved);
677 if (qgroup_free)
678 btrfs_qgroup_free_meta_prealloc(node->root,
679 node->bytes_reserved);
680 else
681 btrfs_qgroup_convert_reserved_meta(node->root,
682 node->bytes_reserved);
683 node->bytes_reserved = 0;
684}
685
686/*
687 * This helper will insert some continuous items into the same leaf according
688 * to the free space of the leaf.
689 */
690static int btrfs_batch_insert_items(struct btrfs_root *root,
691 struct btrfs_path *path,
692 struct btrfs_delayed_item *item)
693{
694 struct btrfs_fs_info *fs_info = root->fs_info;
695 struct btrfs_delayed_item *curr, *next;
696 int free_space;
697 int total_data_size = 0, total_size = 0;
698 struct extent_buffer *leaf;
699 char *data_ptr;
700 struct btrfs_key *keys;
701 u32 *data_size;
702 struct list_head head;
703 int slot;
704 int nitems;
705 int i;
706 int ret = 0;
707
708 BUG_ON(!path->nodes[0]);
709
710 leaf = path->nodes[0];
711 free_space = btrfs_leaf_free_space(fs_info, leaf);
712 INIT_LIST_HEAD(&head);
713
714 next = item;
715 nitems = 0;
716
717 /*
718 * count the number of the continuous items that we can insert in batch
719 */
720 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
721 free_space) {
722 total_data_size += next->data_len;
723 total_size += next->data_len + sizeof(struct btrfs_item);
724 list_add_tail(&next->tree_list, &head);
725 nitems++;
726
727 curr = next;
728 next = __btrfs_next_delayed_item(curr);
729 if (!next)
730 break;
731
732 if (!btrfs_is_continuous_delayed_item(curr, next))
733 break;
734 }
735
736 if (!nitems) {
737 ret = 0;
738 goto out;
739 }
740
741 /*
742 * we need allocate some memory space, but it might cause the task
743 * to sleep, so we set all locked nodes in the path to blocking locks
744 * first.
745 */
746 btrfs_set_path_blocking(path);
747
748 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
749 if (!keys) {
750 ret = -ENOMEM;
751 goto out;
752 }
753
754 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
755 if (!data_size) {
756 ret = -ENOMEM;
757 goto error;
758 }
759
760 /* get keys of all the delayed items */
761 i = 0;
762 list_for_each_entry(next, &head, tree_list) {
763 keys[i] = next->key;
764 data_size[i] = next->data_len;
765 i++;
766 }
767
768 /* reset all the locked nodes in the patch to spinning locks. */
769 btrfs_clear_path_blocking(path, NULL, 0);
770
771 /* insert the keys of the items */
772 setup_items_for_insert(root, path, keys, data_size,
773 total_data_size, total_size, nitems);
774
775 /* insert the dir index items */
776 slot = path->slots[0];
777 list_for_each_entry_safe(curr, next, &head, tree_list) {
778 data_ptr = btrfs_item_ptr(leaf, slot, char);
779 write_extent_buffer(leaf, &curr->data,
780 (unsigned long)data_ptr,
781 curr->data_len);
782 slot++;
783
784 btrfs_delayed_item_release_metadata(root, curr);
785
786 list_del(&curr->tree_list);
787 btrfs_release_delayed_item(curr);
788 }
789
790error:
791 kfree(data_size);
792 kfree(keys);
793out:
794 return ret;
795}
796
797/*
798 * This helper can just do simple insertion that needn't extend item for new
799 * data, such as directory name index insertion, inode insertion.
800 */
801static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
802 struct btrfs_root *root,
803 struct btrfs_path *path,
804 struct btrfs_delayed_item *delayed_item)
805{
806 struct extent_buffer *leaf;
807 char *ptr;
808 int ret;
809
810 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
811 delayed_item->data_len);
812 if (ret < 0 && ret != -EEXIST)
813 return ret;
814
815 leaf = path->nodes[0];
816
817 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
818
819 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
820 delayed_item->data_len);
821 btrfs_mark_buffer_dirty(leaf);
822
823 btrfs_delayed_item_release_metadata(root, delayed_item);
824 return 0;
825}
826
827/*
828 * we insert an item first, then if there are some continuous items, we try
829 * to insert those items into the same leaf.
830 */
831static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
832 struct btrfs_path *path,
833 struct btrfs_root *root,
834 struct btrfs_delayed_node *node)
835{
836 struct btrfs_delayed_item *curr, *prev;
837 int ret = 0;
838
839do_again:
840 mutex_lock(&node->mutex);
841 curr = __btrfs_first_delayed_insertion_item(node);
842 if (!curr)
843 goto insert_end;
844
845 ret = btrfs_insert_delayed_item(trans, root, path, curr);
846 if (ret < 0) {
847 btrfs_release_path(path);
848 goto insert_end;
849 }
850
851 prev = curr;
852 curr = __btrfs_next_delayed_item(prev);
853 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
854 /* insert the continuous items into the same leaf */
855 path->slots[0]++;
856 btrfs_batch_insert_items(root, path, curr);
857 }
858 btrfs_release_delayed_item(prev);
859 btrfs_mark_buffer_dirty(path->nodes[0]);
860
861 btrfs_release_path(path);
862 mutex_unlock(&node->mutex);
863 goto do_again;
864
865insert_end:
866 mutex_unlock(&node->mutex);
867 return ret;
868}
869
870static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
871 struct btrfs_root *root,
872 struct btrfs_path *path,
873 struct btrfs_delayed_item *item)
874{
875 struct btrfs_delayed_item *curr, *next;
876 struct extent_buffer *leaf;
877 struct btrfs_key key;
878 struct list_head head;
879 int nitems, i, last_item;
880 int ret = 0;
881
882 BUG_ON(!path->nodes[0]);
883
884 leaf = path->nodes[0];
885
886 i = path->slots[0];
887 last_item = btrfs_header_nritems(leaf) - 1;
888 if (i > last_item)
889 return -ENOENT; /* FIXME: Is errno suitable? */
890
891 next = item;
892 INIT_LIST_HEAD(&head);
893 btrfs_item_key_to_cpu(leaf, &key, i);
894 nitems = 0;
895 /*
896 * count the number of the dir index items that we can delete in batch
897 */
898 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
899 list_add_tail(&next->tree_list, &head);
900 nitems++;
901
902 curr = next;
903 next = __btrfs_next_delayed_item(curr);
904 if (!next)
905 break;
906
907 if (!btrfs_is_continuous_delayed_item(curr, next))
908 break;
909
910 i++;
911 if (i > last_item)
912 break;
913 btrfs_item_key_to_cpu(leaf, &key, i);
914 }
915
916 if (!nitems)
917 return 0;
918
919 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
920 if (ret)
921 goto out;
922
923 list_for_each_entry_safe(curr, next, &head, tree_list) {
924 btrfs_delayed_item_release_metadata(root, curr);
925 list_del(&curr->tree_list);
926 btrfs_release_delayed_item(curr);
927 }
928
929out:
930 return ret;
931}
932
933static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
934 struct btrfs_path *path,
935 struct btrfs_root *root,
936 struct btrfs_delayed_node *node)
937{
938 struct btrfs_delayed_item *curr, *prev;
939 int ret = 0;
940
941do_again:
942 mutex_lock(&node->mutex);
943 curr = __btrfs_first_delayed_deletion_item(node);
944 if (!curr)
945 goto delete_fail;
946
947 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
948 if (ret < 0)
949 goto delete_fail;
950 else if (ret > 0) {
951 /*
952 * can't find the item which the node points to, so this node
953 * is invalid, just drop it.
954 */
955 prev = curr;
956 curr = __btrfs_next_delayed_item(prev);
957 btrfs_release_delayed_item(prev);
958 ret = 0;
959 btrfs_release_path(path);
960 if (curr) {
961 mutex_unlock(&node->mutex);
962 goto do_again;
963 } else
964 goto delete_fail;
965 }
966
967 btrfs_batch_delete_items(trans, root, path, curr);
968 btrfs_release_path(path);
969 mutex_unlock(&node->mutex);
970 goto do_again;
971
972delete_fail:
973 btrfs_release_path(path);
974 mutex_unlock(&node->mutex);
975 return ret;
976}
977
978static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
979{
980 struct btrfs_delayed_root *delayed_root;
981
982 if (delayed_node &&
983 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
984 BUG_ON(!delayed_node->root);
985 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
986 delayed_node->count--;
987
988 delayed_root = delayed_node->root->fs_info->delayed_root;
989 finish_one_item(delayed_root);
990 }
991}
992
993static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
994{
995 struct btrfs_delayed_root *delayed_root;
996
997 ASSERT(delayed_node->root);
998 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
999 delayed_node->count--;
1000
1001 delayed_root = delayed_node->root->fs_info->delayed_root;
1002 finish_one_item(delayed_root);
1003}
1004
1005static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1006 struct btrfs_root *root,
1007 struct btrfs_path *path,
1008 struct btrfs_delayed_node *node)
1009{
1010 struct btrfs_fs_info *fs_info = root->fs_info;
1011 struct btrfs_key key;
1012 struct btrfs_inode_item *inode_item;
1013 struct extent_buffer *leaf;
1014 int mod;
1015 int ret;
1016
1017 key.objectid = node->inode_id;
1018 key.type = BTRFS_INODE_ITEM_KEY;
1019 key.offset = 0;
1020
1021 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1022 mod = -1;
1023 else
1024 mod = 1;
1025
1026 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1027 if (ret > 0) {
1028 btrfs_release_path(path);
1029 return -ENOENT;
1030 } else if (ret < 0) {
1031 return ret;
1032 }
1033
1034 leaf = path->nodes[0];
1035 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1036 struct btrfs_inode_item);
1037 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1038 sizeof(struct btrfs_inode_item));
1039 btrfs_mark_buffer_dirty(leaf);
1040
1041 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1042 goto no_iref;
1043
1044 path->slots[0]++;
1045 if (path->slots[0] >= btrfs_header_nritems(leaf))
1046 goto search;
1047again:
1048 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1049 if (key.objectid != node->inode_id)
1050 goto out;
1051
1052 if (key.type != BTRFS_INODE_REF_KEY &&
1053 key.type != BTRFS_INODE_EXTREF_KEY)
1054 goto out;
1055
1056 /*
1057 * Delayed iref deletion is for the inode who has only one link,
1058 * so there is only one iref. The case that several irefs are
1059 * in the same item doesn't exist.
1060 */
1061 btrfs_del_item(trans, root, path);
1062out:
1063 btrfs_release_delayed_iref(node);
1064no_iref:
1065 btrfs_release_path(path);
1066err_out:
1067 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1068 btrfs_release_delayed_inode(node);
1069
1070 return ret;
1071
1072search:
1073 btrfs_release_path(path);
1074
1075 key.type = BTRFS_INODE_EXTREF_KEY;
1076 key.offset = -1;
1077 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1078 if (ret < 0)
1079 goto err_out;
1080 ASSERT(ret);
1081
1082 ret = 0;
1083 leaf = path->nodes[0];
1084 path->slots[0]--;
1085 goto again;
1086}
1087
1088static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1089 struct btrfs_root *root,
1090 struct btrfs_path *path,
1091 struct btrfs_delayed_node *node)
1092{
1093 int ret;
1094
1095 mutex_lock(&node->mutex);
1096 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1097 mutex_unlock(&node->mutex);
1098 return 0;
1099 }
1100
1101 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1102 mutex_unlock(&node->mutex);
1103 return ret;
1104}
1105
1106static inline int
1107__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1108 struct btrfs_path *path,
1109 struct btrfs_delayed_node *node)
1110{
1111 int ret;
1112
1113 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1114 if (ret)
1115 return ret;
1116
1117 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1118 if (ret)
1119 return ret;
1120
1121 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1122 return ret;
1123}
1124
1125/*
1126 * Called when committing the transaction.
1127 * Returns 0 on success.
1128 * Returns < 0 on error and returns with an aborted transaction with any
1129 * outstanding delayed items cleaned up.
1130 */
1131static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1132{
1133 struct btrfs_fs_info *fs_info = trans->fs_info;
1134 struct btrfs_delayed_root *delayed_root;
1135 struct btrfs_delayed_node *curr_node, *prev_node;
1136 struct btrfs_path *path;
1137 struct btrfs_block_rsv *block_rsv;
1138 int ret = 0;
1139 bool count = (nr > 0);
1140
1141 if (trans->aborted)
1142 return -EIO;
1143
1144 path = btrfs_alloc_path();
1145 if (!path)
1146 return -ENOMEM;
1147 path->leave_spinning = 1;
1148
1149 block_rsv = trans->block_rsv;
1150 trans->block_rsv = &fs_info->delayed_block_rsv;
1151
1152 delayed_root = fs_info->delayed_root;
1153
1154 curr_node = btrfs_first_delayed_node(delayed_root);
1155 while (curr_node && (!count || (count && nr--))) {
1156 ret = __btrfs_commit_inode_delayed_items(trans, path,
1157 curr_node);
1158 if (ret) {
1159 btrfs_release_delayed_node(curr_node);
1160 curr_node = NULL;
1161 btrfs_abort_transaction(trans, ret);
1162 break;
1163 }
1164
1165 prev_node = curr_node;
1166 curr_node = btrfs_next_delayed_node(curr_node);
1167 btrfs_release_delayed_node(prev_node);
1168 }
1169
1170 if (curr_node)
1171 btrfs_release_delayed_node(curr_node);
1172 btrfs_free_path(path);
1173 trans->block_rsv = block_rsv;
1174
1175 return ret;
1176}
1177
1178int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1179{
1180 return __btrfs_run_delayed_items(trans, -1);
1181}
1182
1183int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1184{
1185 return __btrfs_run_delayed_items(trans, nr);
1186}
1187
1188int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1189 struct btrfs_inode *inode)
1190{
1191 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1192 struct btrfs_path *path;
1193 struct btrfs_block_rsv *block_rsv;
1194 int ret;
1195
1196 if (!delayed_node)
1197 return 0;
1198
1199 mutex_lock(&delayed_node->mutex);
1200 if (!delayed_node->count) {
1201 mutex_unlock(&delayed_node->mutex);
1202 btrfs_release_delayed_node(delayed_node);
1203 return 0;
1204 }
1205 mutex_unlock(&delayed_node->mutex);
1206
1207 path = btrfs_alloc_path();
1208 if (!path) {
1209 btrfs_release_delayed_node(delayed_node);
1210 return -ENOMEM;
1211 }
1212 path->leave_spinning = 1;
1213
1214 block_rsv = trans->block_rsv;
1215 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1216
1217 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1218
1219 btrfs_release_delayed_node(delayed_node);
1220 btrfs_free_path(path);
1221 trans->block_rsv = block_rsv;
1222
1223 return ret;
1224}
1225
1226int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1227{
1228 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1229 struct btrfs_trans_handle *trans;
1230 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1231 struct btrfs_path *path;
1232 struct btrfs_block_rsv *block_rsv;
1233 int ret;
1234
1235 if (!delayed_node)
1236 return 0;
1237
1238 mutex_lock(&delayed_node->mutex);
1239 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1240 mutex_unlock(&delayed_node->mutex);
1241 btrfs_release_delayed_node(delayed_node);
1242 return 0;
1243 }
1244 mutex_unlock(&delayed_node->mutex);
1245
1246 trans = btrfs_join_transaction(delayed_node->root);
1247 if (IS_ERR(trans)) {
1248 ret = PTR_ERR(trans);
1249 goto out;
1250 }
1251
1252 path = btrfs_alloc_path();
1253 if (!path) {
1254 ret = -ENOMEM;
1255 goto trans_out;
1256 }
1257 path->leave_spinning = 1;
1258
1259 block_rsv = trans->block_rsv;
1260 trans->block_rsv = &fs_info->delayed_block_rsv;
1261
1262 mutex_lock(&delayed_node->mutex);
1263 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1264 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1265 path, delayed_node);
1266 else
1267 ret = 0;
1268 mutex_unlock(&delayed_node->mutex);
1269
1270 btrfs_free_path(path);
1271 trans->block_rsv = block_rsv;
1272trans_out:
1273 btrfs_end_transaction(trans);
1274 btrfs_btree_balance_dirty(fs_info);
1275out:
1276 btrfs_release_delayed_node(delayed_node);
1277
1278 return ret;
1279}
1280
1281void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1282{
1283 struct btrfs_delayed_node *delayed_node;
1284
1285 delayed_node = READ_ONCE(inode->delayed_node);
1286 if (!delayed_node)
1287 return;
1288
1289 inode->delayed_node = NULL;
1290 btrfs_release_delayed_node(delayed_node);
1291}
1292
1293struct btrfs_async_delayed_work {
1294 struct btrfs_delayed_root *delayed_root;
1295 int nr;
1296 struct btrfs_work work;
1297};
1298
1299static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1300{
1301 struct btrfs_async_delayed_work *async_work;
1302 struct btrfs_delayed_root *delayed_root;
1303 struct btrfs_trans_handle *trans;
1304 struct btrfs_path *path;
1305 struct btrfs_delayed_node *delayed_node = NULL;
1306 struct btrfs_root *root;
1307 struct btrfs_block_rsv *block_rsv;
1308 int total_done = 0;
1309
1310 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1311 delayed_root = async_work->delayed_root;
1312
1313 path = btrfs_alloc_path();
1314 if (!path)
1315 goto out;
1316
1317 do {
1318 if (atomic_read(&delayed_root->items) <
1319 BTRFS_DELAYED_BACKGROUND / 2)
1320 break;
1321
1322 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1323 if (!delayed_node)
1324 break;
1325
1326 path->leave_spinning = 1;
1327 root = delayed_node->root;
1328
1329 trans = btrfs_join_transaction(root);
1330 if (IS_ERR(trans)) {
1331 btrfs_release_path(path);
1332 btrfs_release_prepared_delayed_node(delayed_node);
1333 total_done++;
1334 continue;
1335 }
1336
1337 block_rsv = trans->block_rsv;
1338 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1339
1340 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1341
1342 trans->block_rsv = block_rsv;
1343 btrfs_end_transaction(trans);
1344 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1345
1346 btrfs_release_path(path);
1347 btrfs_release_prepared_delayed_node(delayed_node);
1348 total_done++;
1349
1350 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1351 || total_done < async_work->nr);
1352
1353 btrfs_free_path(path);
1354out:
1355 wake_up(&delayed_root->wait);
1356 kfree(async_work);
1357}
1358
1359
1360static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1361 struct btrfs_fs_info *fs_info, int nr)
1362{
1363 struct btrfs_async_delayed_work *async_work;
1364
1365 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1366 if (!async_work)
1367 return -ENOMEM;
1368
1369 async_work->delayed_root = delayed_root;
1370 btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1371 btrfs_async_run_delayed_root, NULL, NULL);
1372 async_work->nr = nr;
1373
1374 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1375 return 0;
1376}
1377
1378void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1379{
1380 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1381}
1382
1383static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1384{
1385 int val = atomic_read(&delayed_root->items_seq);
1386
1387 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1388 return 1;
1389
1390 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1391 return 1;
1392
1393 return 0;
1394}
1395
1396void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1397{
1398 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1399
1400 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1401 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1402 return;
1403
1404 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1405 int seq;
1406 int ret;
1407
1408 seq = atomic_read(&delayed_root->items_seq);
1409
1410 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1411 if (ret)
1412 return;
1413
1414 wait_event_interruptible(delayed_root->wait,
1415 could_end_wait(delayed_root, seq));
1416 return;
1417 }
1418
1419 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1420}
1421
1422/* Will return 0 or -ENOMEM */
1423int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1424 struct btrfs_fs_info *fs_info,
1425 const char *name, int name_len,
1426 struct btrfs_inode *dir,
1427 struct btrfs_disk_key *disk_key, u8 type,
1428 u64 index)
1429{
1430 struct btrfs_delayed_node *delayed_node;
1431 struct btrfs_delayed_item *delayed_item;
1432 struct btrfs_dir_item *dir_item;
1433 int ret;
1434
1435 delayed_node = btrfs_get_or_create_delayed_node(dir);
1436 if (IS_ERR(delayed_node))
1437 return PTR_ERR(delayed_node);
1438
1439 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1440 if (!delayed_item) {
1441 ret = -ENOMEM;
1442 goto release_node;
1443 }
1444
1445 delayed_item->key.objectid = btrfs_ino(dir);
1446 delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1447 delayed_item->key.offset = index;
1448
1449 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1450 dir_item->location = *disk_key;
1451 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1452 btrfs_set_stack_dir_data_len(dir_item, 0);
1453 btrfs_set_stack_dir_name_len(dir_item, name_len);
1454 btrfs_set_stack_dir_type(dir_item, type);
1455 memcpy((char *)(dir_item + 1), name, name_len);
1456
1457 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1458 /*
1459 * we have reserved enough space when we start a new transaction,
1460 * so reserving metadata failure is impossible
1461 */
1462 BUG_ON(ret);
1463
1464
1465 mutex_lock(&delayed_node->mutex);
1466 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1467 if (unlikely(ret)) {
1468 btrfs_err(fs_info,
1469 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1470 name_len, name, delayed_node->root->objectid,
1471 delayed_node->inode_id, ret);
1472 BUG();
1473 }
1474 mutex_unlock(&delayed_node->mutex);
1475
1476release_node:
1477 btrfs_release_delayed_node(delayed_node);
1478 return ret;
1479}
1480
1481static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1482 struct btrfs_delayed_node *node,
1483 struct btrfs_key *key)
1484{
1485 struct btrfs_delayed_item *item;
1486
1487 mutex_lock(&node->mutex);
1488 item = __btrfs_lookup_delayed_insertion_item(node, key);
1489 if (!item) {
1490 mutex_unlock(&node->mutex);
1491 return 1;
1492 }
1493
1494 btrfs_delayed_item_release_metadata(node->root, item);
1495 btrfs_release_delayed_item(item);
1496 mutex_unlock(&node->mutex);
1497 return 0;
1498}
1499
1500int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1501 struct btrfs_fs_info *fs_info,
1502 struct btrfs_inode *dir, u64 index)
1503{
1504 struct btrfs_delayed_node *node;
1505 struct btrfs_delayed_item *item;
1506 struct btrfs_key item_key;
1507 int ret;
1508
1509 node = btrfs_get_or_create_delayed_node(dir);
1510 if (IS_ERR(node))
1511 return PTR_ERR(node);
1512
1513 item_key.objectid = btrfs_ino(dir);
1514 item_key.type = BTRFS_DIR_INDEX_KEY;
1515 item_key.offset = index;
1516
1517 ret = btrfs_delete_delayed_insertion_item(fs_info, node, &item_key);
1518 if (!ret)
1519 goto end;
1520
1521 item = btrfs_alloc_delayed_item(0);
1522 if (!item) {
1523 ret = -ENOMEM;
1524 goto end;
1525 }
1526
1527 item->key = item_key;
1528
1529 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1530 /*
1531 * we have reserved enough space when we start a new transaction,
1532 * so reserving metadata failure is impossible.
1533 */
1534 BUG_ON(ret);
1535
1536 mutex_lock(&node->mutex);
1537 ret = __btrfs_add_delayed_deletion_item(node, item);
1538 if (unlikely(ret)) {
1539 btrfs_err(fs_info,
1540 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1541 index, node->root->objectid, node->inode_id, ret);
1542 BUG();
1543 }
1544 mutex_unlock(&node->mutex);
1545end:
1546 btrfs_release_delayed_node(node);
1547 return ret;
1548}
1549
1550int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1551{
1552 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1553
1554 if (!delayed_node)
1555 return -ENOENT;
1556
1557 /*
1558 * Since we have held i_mutex of this directory, it is impossible that
1559 * a new directory index is added into the delayed node and index_cnt
1560 * is updated now. So we needn't lock the delayed node.
1561 */
1562 if (!delayed_node->index_cnt) {
1563 btrfs_release_delayed_node(delayed_node);
1564 return -EINVAL;
1565 }
1566
1567 inode->index_cnt = delayed_node->index_cnt;
1568 btrfs_release_delayed_node(delayed_node);
1569 return 0;
1570}
1571
1572bool btrfs_readdir_get_delayed_items(struct inode *inode,
1573 struct list_head *ins_list,
1574 struct list_head *del_list)
1575{
1576 struct btrfs_delayed_node *delayed_node;
1577 struct btrfs_delayed_item *item;
1578
1579 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1580 if (!delayed_node)
1581 return false;
1582
1583 /*
1584 * We can only do one readdir with delayed items at a time because of
1585 * item->readdir_list.
1586 */
1587 inode_unlock_shared(inode);
1588 inode_lock(inode);
1589
1590 mutex_lock(&delayed_node->mutex);
1591 item = __btrfs_first_delayed_insertion_item(delayed_node);
1592 while (item) {
1593 refcount_inc(&item->refs);
1594 list_add_tail(&item->readdir_list, ins_list);
1595 item = __btrfs_next_delayed_item(item);
1596 }
1597
1598 item = __btrfs_first_delayed_deletion_item(delayed_node);
1599 while (item) {
1600 refcount_inc(&item->refs);
1601 list_add_tail(&item->readdir_list, del_list);
1602 item = __btrfs_next_delayed_item(item);
1603 }
1604 mutex_unlock(&delayed_node->mutex);
1605 /*
1606 * This delayed node is still cached in the btrfs inode, so refs
1607 * must be > 1 now, and we needn't check it is going to be freed
1608 * or not.
1609 *
1610 * Besides that, this function is used to read dir, we do not
1611 * insert/delete delayed items in this period. So we also needn't
1612 * requeue or dequeue this delayed node.
1613 */
1614 refcount_dec(&delayed_node->refs);
1615
1616 return true;
1617}
1618
1619void btrfs_readdir_put_delayed_items(struct inode *inode,
1620 struct list_head *ins_list,
1621 struct list_head *del_list)
1622{
1623 struct btrfs_delayed_item *curr, *next;
1624
1625 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1626 list_del(&curr->readdir_list);
1627 if (refcount_dec_and_test(&curr->refs))
1628 kfree(curr);
1629 }
1630
1631 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1632 list_del(&curr->readdir_list);
1633 if (refcount_dec_and_test(&curr->refs))
1634 kfree(curr);
1635 }
1636
1637 /*
1638 * The VFS is going to do up_read(), so we need to downgrade back to a
1639 * read lock.
1640 */
1641 downgrade_write(&inode->i_rwsem);
1642}
1643
1644int btrfs_should_delete_dir_index(struct list_head *del_list,
1645 u64 index)
1646{
1647 struct btrfs_delayed_item *curr;
1648 int ret = 0;
1649
1650 list_for_each_entry(curr, del_list, readdir_list) {
1651 if (curr->key.offset > index)
1652 break;
1653 if (curr->key.offset == index) {
1654 ret = 1;
1655 break;
1656 }
1657 }
1658 return ret;
1659}
1660
1661/*
1662 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1663 *
1664 */
1665int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1666 struct list_head *ins_list)
1667{
1668 struct btrfs_dir_item *di;
1669 struct btrfs_delayed_item *curr, *next;
1670 struct btrfs_key location;
1671 char *name;
1672 int name_len;
1673 int over = 0;
1674 unsigned char d_type;
1675
1676 if (list_empty(ins_list))
1677 return 0;
1678
1679 /*
1680 * Changing the data of the delayed item is impossible. So
1681 * we needn't lock them. And we have held i_mutex of the
1682 * directory, nobody can delete any directory indexes now.
1683 */
1684 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1685 list_del(&curr->readdir_list);
1686
1687 if (curr->key.offset < ctx->pos) {
1688 if (refcount_dec_and_test(&curr->refs))
1689 kfree(curr);
1690 continue;
1691 }
1692
1693 ctx->pos = curr->key.offset;
1694
1695 di = (struct btrfs_dir_item *)curr->data;
1696 name = (char *)(di + 1);
1697 name_len = btrfs_stack_dir_name_len(di);
1698
1699 d_type = btrfs_filetype_table[di->type];
1700 btrfs_disk_key_to_cpu(&location, &di->location);
1701
1702 over = !dir_emit(ctx, name, name_len,
1703 location.objectid, d_type);
1704
1705 if (refcount_dec_and_test(&curr->refs))
1706 kfree(curr);
1707
1708 if (over)
1709 return 1;
1710 ctx->pos++;
1711 }
1712 return 0;
1713}
1714
1715static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1716 struct btrfs_inode_item *inode_item,
1717 struct inode *inode)
1718{
1719 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1720 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1721 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1722 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1723 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1724 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1725 btrfs_set_stack_inode_generation(inode_item,
1726 BTRFS_I(inode)->generation);
1727 btrfs_set_stack_inode_sequence(inode_item,
1728 inode_peek_iversion(inode));
1729 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1730 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1731 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1732 btrfs_set_stack_inode_block_group(inode_item, 0);
1733
1734 btrfs_set_stack_timespec_sec(&inode_item->atime,
1735 inode->i_atime.tv_sec);
1736 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1737 inode->i_atime.tv_nsec);
1738
1739 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1740 inode->i_mtime.tv_sec);
1741 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1742 inode->i_mtime.tv_nsec);
1743
1744 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1745 inode->i_ctime.tv_sec);
1746 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1747 inode->i_ctime.tv_nsec);
1748
1749 btrfs_set_stack_timespec_sec(&inode_item->otime,
1750 BTRFS_I(inode)->i_otime.tv_sec);
1751 btrfs_set_stack_timespec_nsec(&inode_item->otime,
1752 BTRFS_I(inode)->i_otime.tv_nsec);
1753}
1754
1755int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1756{
1757 struct btrfs_delayed_node *delayed_node;
1758 struct btrfs_inode_item *inode_item;
1759
1760 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1761 if (!delayed_node)
1762 return -ENOENT;
1763
1764 mutex_lock(&delayed_node->mutex);
1765 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1766 mutex_unlock(&delayed_node->mutex);
1767 btrfs_release_delayed_node(delayed_node);
1768 return -ENOENT;
1769 }
1770
1771 inode_item = &delayed_node->inode_item;
1772
1773 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1774 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1775 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1776 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1777 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1778 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1779 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1780 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1781
1782 inode_set_iversion_queried(inode,
1783 btrfs_stack_inode_sequence(inode_item));
1784 inode->i_rdev = 0;
1785 *rdev = btrfs_stack_inode_rdev(inode_item);
1786 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1787
1788 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1789 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1790
1791 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1792 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1793
1794 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1795 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1796
1797 BTRFS_I(inode)->i_otime.tv_sec =
1798 btrfs_stack_timespec_sec(&inode_item->otime);
1799 BTRFS_I(inode)->i_otime.tv_nsec =
1800 btrfs_stack_timespec_nsec(&inode_item->otime);
1801
1802 inode->i_generation = BTRFS_I(inode)->generation;
1803 BTRFS_I(inode)->index_cnt = (u64)-1;
1804
1805 mutex_unlock(&delayed_node->mutex);
1806 btrfs_release_delayed_node(delayed_node);
1807 return 0;
1808}
1809
1810int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1811 struct btrfs_root *root, struct inode *inode)
1812{
1813 struct btrfs_delayed_node *delayed_node;
1814 int ret = 0;
1815
1816 delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1817 if (IS_ERR(delayed_node))
1818 return PTR_ERR(delayed_node);
1819
1820 mutex_lock(&delayed_node->mutex);
1821 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1822 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1823 goto release_node;
1824 }
1825
1826 ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
1827 delayed_node);
1828 if (ret)
1829 goto release_node;
1830
1831 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1832 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1833 delayed_node->count++;
1834 atomic_inc(&root->fs_info->delayed_root->items);
1835release_node:
1836 mutex_unlock(&delayed_node->mutex);
1837 btrfs_release_delayed_node(delayed_node);
1838 return ret;
1839}
1840
1841int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1842{
1843 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1844 struct btrfs_delayed_node *delayed_node;
1845
1846 /*
1847 * we don't do delayed inode updates during log recovery because it
1848 * leads to enospc problems. This means we also can't do
1849 * delayed inode refs
1850 */
1851 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1852 return -EAGAIN;
1853
1854 delayed_node = btrfs_get_or_create_delayed_node(inode);
1855 if (IS_ERR(delayed_node))
1856 return PTR_ERR(delayed_node);
1857
1858 /*
1859 * We don't reserve space for inode ref deletion is because:
1860 * - We ONLY do async inode ref deletion for the inode who has only
1861 * one link(i_nlink == 1), it means there is only one inode ref.
1862 * And in most case, the inode ref and the inode item are in the
1863 * same leaf, and we will deal with them at the same time.
1864 * Since we are sure we will reserve the space for the inode item,
1865 * it is unnecessary to reserve space for inode ref deletion.
1866 * - If the inode ref and the inode item are not in the same leaf,
1867 * We also needn't worry about enospc problem, because we reserve
1868 * much more space for the inode update than it needs.
1869 * - At the worst, we can steal some space from the global reservation.
1870 * It is very rare.
1871 */
1872 mutex_lock(&delayed_node->mutex);
1873 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1874 goto release_node;
1875
1876 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1877 delayed_node->count++;
1878 atomic_inc(&fs_info->delayed_root->items);
1879release_node:
1880 mutex_unlock(&delayed_node->mutex);
1881 btrfs_release_delayed_node(delayed_node);
1882 return 0;
1883}
1884
1885static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1886{
1887 struct btrfs_root *root = delayed_node->root;
1888 struct btrfs_fs_info *fs_info = root->fs_info;
1889 struct btrfs_delayed_item *curr_item, *prev_item;
1890
1891 mutex_lock(&delayed_node->mutex);
1892 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1893 while (curr_item) {
1894 btrfs_delayed_item_release_metadata(root, curr_item);
1895 prev_item = curr_item;
1896 curr_item = __btrfs_next_delayed_item(prev_item);
1897 btrfs_release_delayed_item(prev_item);
1898 }
1899
1900 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1901 while (curr_item) {
1902 btrfs_delayed_item_release_metadata(root, curr_item);
1903 prev_item = curr_item;
1904 curr_item = __btrfs_next_delayed_item(prev_item);
1905 btrfs_release_delayed_item(prev_item);
1906 }
1907
1908 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1909 btrfs_release_delayed_iref(delayed_node);
1910
1911 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1912 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1913 btrfs_release_delayed_inode(delayed_node);
1914 }
1915 mutex_unlock(&delayed_node->mutex);
1916}
1917
1918void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1919{
1920 struct btrfs_delayed_node *delayed_node;
1921
1922 delayed_node = btrfs_get_delayed_node(inode);
1923 if (!delayed_node)
1924 return;
1925
1926 __btrfs_kill_delayed_node(delayed_node);
1927 btrfs_release_delayed_node(delayed_node);
1928}
1929
1930void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1931{
1932 u64 inode_id = 0;
1933 struct btrfs_delayed_node *delayed_nodes[8];
1934 int i, n;
1935
1936 while (1) {
1937 spin_lock(&root->inode_lock);
1938 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1939 (void **)delayed_nodes, inode_id,
1940 ARRAY_SIZE(delayed_nodes));
1941 if (!n) {
1942 spin_unlock(&root->inode_lock);
1943 break;
1944 }
1945
1946 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1947
1948 for (i = 0; i < n; i++)
1949 refcount_inc(&delayed_nodes[i]->refs);
1950 spin_unlock(&root->inode_lock);
1951
1952 for (i = 0; i < n; i++) {
1953 __btrfs_kill_delayed_node(delayed_nodes[i]);
1954 btrfs_release_delayed_node(delayed_nodes[i]);
1955 }
1956 }
1957}
1958
1959void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1960{
1961 struct btrfs_delayed_node *curr_node, *prev_node;
1962
1963 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1964 while (curr_node) {
1965 __btrfs_kill_delayed_node(curr_node);
1966
1967 prev_node = curr_node;
1968 curr_node = btrfs_next_delayed_node(curr_node);
1969 btrfs_release_delayed_node(prev_node);
1970 }
1971}
1972