Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * SuperH MSIOF SPI Controller Interface
4 *
5 * Copyright (c) 2009 Magnus Damm
6 * Copyright (C) 2014 Renesas Electronics Corporation
7 * Copyright (C) 2014-2017 Glider bvba
8 */
9
10#include <linux/bitmap.h>
11#include <linux/clk.h>
12#include <linux/completion.h>
13#include <linux/delay.h>
14#include <linux/dma-mapping.h>
15#include <linux/dmaengine.h>
16#include <linux/err.h>
17#include <linux/interrupt.h>
18#include <linux/io.h>
19#include <linux/iopoll.h>
20#include <linux/kernel.h>
21#include <linux/module.h>
22#include <linux/of.h>
23#include <linux/platform_device.h>
24#include <linux/pm_runtime.h>
25#include <linux/sh_dma.h>
26
27#include <linux/spi/sh_msiof.h>
28#include <linux/spi/spi.h>
29
30#include <linux/unaligned.h>
31
32#define SH_MSIOF_FLAG_FIXED_DTDL_200 BIT(0)
33
34struct sh_msiof_chipdata {
35 u32 bits_per_word_mask;
36 u16 tx_fifo_size;
37 u16 rx_fifo_size;
38 u16 ctlr_flags;
39 u16 min_div_pow;
40 u32 flags;
41};
42
43struct sh_msiof_spi_priv {
44 struct spi_controller *ctlr;
45 void __iomem *mapbase;
46 struct clk *clk;
47 struct platform_device *pdev;
48 struct sh_msiof_spi_info *info;
49 struct completion done;
50 struct completion done_txdma;
51 unsigned int tx_fifo_size;
52 unsigned int rx_fifo_size;
53 unsigned int min_div_pow;
54 void *tx_dma_page;
55 void *rx_dma_page;
56 dma_addr_t tx_dma_addr;
57 dma_addr_t rx_dma_addr;
58 bool native_cs_inited;
59 bool native_cs_high;
60 bool target_aborted;
61};
62
63#define MAX_SS 3 /* Maximum number of native chip selects */
64
65#define SITMDR1 0x00 /* Transmit Mode Register 1 */
66#define SITMDR2 0x04 /* Transmit Mode Register 2 */
67#define SITMDR3 0x08 /* Transmit Mode Register 3 */
68#define SIRMDR1 0x10 /* Receive Mode Register 1 */
69#define SIRMDR2 0x14 /* Receive Mode Register 2 */
70#define SIRMDR3 0x18 /* Receive Mode Register 3 */
71#define SITSCR 0x20 /* Transmit Clock Select Register */
72#define SIRSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */
73#define SICTR 0x28 /* Control Register */
74#define SIFCTR 0x30 /* FIFO Control Register */
75#define SISTR 0x40 /* Status Register */
76#define SIIER 0x44 /* Interrupt Enable Register */
77#define SITDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */
78#define SITDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */
79#define SITFDR 0x50 /* Transmit FIFO Data Register */
80#define SIRDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */
81#define SIRDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */
82#define SIRFDR 0x60 /* Receive FIFO Data Register */
83
84/* SITMDR1 and SIRMDR1 */
85#define SIMDR1_TRMD BIT(31) /* Transfer Mode (1 = Master mode) */
86#define SIMDR1_SYNCMD_MASK GENMASK(29, 28) /* SYNC Mode */
87#define SIMDR1_SYNCMD_SPI (2 << 28) /* Level mode/SPI */
88#define SIMDR1_SYNCMD_LR (3 << 28) /* L/R mode */
89#define SIMDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */
90#define SIMDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */
91#define SIMDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */
92#define SIMDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */
93#define SIMDR1_FLD_MASK GENMASK(3, 2) /* Frame Sync Signal Interval (0-3) */
94#define SIMDR1_FLD_SHIFT 2
95#define SIMDR1_XXSTP BIT(0) /* Transmission/Reception Stop on FIFO */
96/* SITMDR1 */
97#define SITMDR1_PCON BIT(30) /* Transfer Signal Connection */
98#define SITMDR1_SYNCCH_MASK GENMASK(27, 26) /* Sync Signal Channel Select */
99#define SITMDR1_SYNCCH_SHIFT 26 /* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */
100
101/* SITMDR2 and SIRMDR2 */
102#define SIMDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */
103#define SIMDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
104#define SIMDR2_GRPMASK1 BIT(0) /* Group Output Mask 1 (SH, A1) */
105
106/* SITSCR and SIRSCR */
107#define SISCR_BRPS_MASK GENMASK(12, 8) /* Prescaler Setting (1-32) */
108#define SISCR_BRPS(i) (((i) - 1) << 8)
109#define SISCR_BRDV_MASK GENMASK(2, 0) /* Baud Rate Generator's Division Ratio */
110#define SISCR_BRDV_DIV_2 0
111#define SISCR_BRDV_DIV_4 1
112#define SISCR_BRDV_DIV_8 2
113#define SISCR_BRDV_DIV_16 3
114#define SISCR_BRDV_DIV_32 4
115#define SISCR_BRDV_DIV_1 7
116
117/* SICTR */
118#define SICTR_TSCKIZ_MASK GENMASK(31, 30) /* Transmit Clock I/O Polarity Select */
119#define SICTR_TSCKIZ_SCK BIT(31) /* Disable SCK when TX disabled */
120#define SICTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */
121#define SICTR_RSCKIZ_MASK GENMASK(29, 28) /* Receive Clock Polarity Select */
122#define SICTR_RSCKIZ_SCK BIT(29) /* Must match CTR_TSCKIZ_SCK */
123#define SICTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */
124#define SICTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */
125#define SICTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */
126#define SICTR_TXDIZ_MASK GENMASK(23, 22) /* Pin Output When TX is Disabled */
127#define SICTR_TXDIZ_LOW (0 << 22) /* 0 */
128#define SICTR_TXDIZ_HIGH (1 << 22) /* 1 */
129#define SICTR_TXDIZ_HIZ (2 << 22) /* High-impedance */
130#define SICTR_TSCKE BIT(15) /* Transmit Serial Clock Output Enable */
131#define SICTR_TFSE BIT(14) /* Transmit Frame Sync Signal Output Enable */
132#define SICTR_TXE BIT(9) /* Transmit Enable */
133#define SICTR_RXE BIT(8) /* Receive Enable */
134#define SICTR_TXRST BIT(1) /* Transmit Reset */
135#define SICTR_RXRST BIT(0) /* Receive Reset */
136
137/* SIFCTR */
138#define SIFCTR_TFWM_MASK GENMASK(31, 29) /* Transmit FIFO Watermark */
139#define SIFCTR_TFWM_64 (0UL << 29) /* Transfer Request when 64 empty stages */
140#define SIFCTR_TFWM_32 (1UL << 29) /* Transfer Request when 32 empty stages */
141#define SIFCTR_TFWM_24 (2UL << 29) /* Transfer Request when 24 empty stages */
142#define SIFCTR_TFWM_16 (3UL << 29) /* Transfer Request when 16 empty stages */
143#define SIFCTR_TFWM_12 (4UL << 29) /* Transfer Request when 12 empty stages */
144#define SIFCTR_TFWM_8 (5UL << 29) /* Transfer Request when 8 empty stages */
145#define SIFCTR_TFWM_4 (6UL << 29) /* Transfer Request when 4 empty stages */
146#define SIFCTR_TFWM_1 (7UL << 29) /* Transfer Request when 1 empty stage */
147#define SIFCTR_TFUA_MASK GENMASK(26, 20) /* Transmit FIFO Usable Area */
148#define SIFCTR_TFUA_SHIFT 20
149#define SIFCTR_TFUA(i) ((i) << SIFCTR_TFUA_SHIFT)
150#define SIFCTR_RFWM_MASK GENMASK(15, 13) /* Receive FIFO Watermark */
151#define SIFCTR_RFWM_1 (0 << 13) /* Transfer Request when 1 valid stages */
152#define SIFCTR_RFWM_4 (1 << 13) /* Transfer Request when 4 valid stages */
153#define SIFCTR_RFWM_8 (2 << 13) /* Transfer Request when 8 valid stages */
154#define SIFCTR_RFWM_16 (3 << 13) /* Transfer Request when 16 valid stages */
155#define SIFCTR_RFWM_32 (4 << 13) /* Transfer Request when 32 valid stages */
156#define SIFCTR_RFWM_64 (5 << 13) /* Transfer Request when 64 valid stages */
157#define SIFCTR_RFWM_128 (6 << 13) /* Transfer Request when 128 valid stages */
158#define SIFCTR_RFWM_256 (7 << 13) /* Transfer Request when 256 valid stages */
159#define SIFCTR_RFUA_MASK GENMASK(12, 4) /* Receive FIFO Usable Area (0x40 = full) */
160#define SIFCTR_RFUA_SHIFT 4
161#define SIFCTR_RFUA(i) ((i) << SIFCTR_RFUA_SHIFT)
162
163/* SISTR */
164#define SISTR_TFEMP BIT(29) /* Transmit FIFO Empty */
165#define SISTR_TDREQ BIT(28) /* Transmit Data Transfer Request */
166#define SISTR_TEOF BIT(23) /* Frame Transmission End */
167#define SISTR_TFSERR BIT(21) /* Transmit Frame Synchronization Error */
168#define SISTR_TFOVF BIT(20) /* Transmit FIFO Overflow */
169#define SISTR_TFUDF BIT(19) /* Transmit FIFO Underflow */
170#define SISTR_RFFUL BIT(13) /* Receive FIFO Full */
171#define SISTR_RDREQ BIT(12) /* Receive Data Transfer Request */
172#define SISTR_REOF BIT(7) /* Frame Reception End */
173#define SISTR_RFSERR BIT(5) /* Receive Frame Synchronization Error */
174#define SISTR_RFUDF BIT(4) /* Receive FIFO Underflow */
175#define SISTR_RFOVF BIT(3) /* Receive FIFO Overflow */
176
177/* SIIER */
178#define SIIER_TDMAE BIT(31) /* Transmit Data DMA Transfer Req. Enable */
179#define SIIER_TFEMPE BIT(29) /* Transmit FIFO Empty Enable */
180#define SIIER_TDREQE BIT(28) /* Transmit Data Transfer Request Enable */
181#define SIIER_TEOFE BIT(23) /* Frame Transmission End Enable */
182#define SIIER_TFSERRE BIT(21) /* Transmit Frame Sync Error Enable */
183#define SIIER_TFOVFE BIT(20) /* Transmit FIFO Overflow Enable */
184#define SIIER_TFUDFE BIT(19) /* Transmit FIFO Underflow Enable */
185#define SIIER_RDMAE BIT(15) /* Receive Data DMA Transfer Req. Enable */
186#define SIIER_RFFULE BIT(13) /* Receive FIFO Full Enable */
187#define SIIER_RDREQE BIT(12) /* Receive Data Transfer Request Enable */
188#define SIIER_REOFE BIT(7) /* Frame Reception End Enable */
189#define SIIER_RFSERRE BIT(5) /* Receive Frame Sync Error Enable */
190#define SIIER_RFUDFE BIT(4) /* Receive FIFO Underflow Enable */
191#define SIIER_RFOVFE BIT(3) /* Receive FIFO Overflow Enable */
192
193
194static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
195{
196 switch (reg_offs) {
197 case SITSCR:
198 case SIRSCR:
199 return ioread16(p->mapbase + reg_offs);
200 default:
201 return ioread32(p->mapbase + reg_offs);
202 }
203}
204
205static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
206 u32 value)
207{
208 switch (reg_offs) {
209 case SITSCR:
210 case SIRSCR:
211 iowrite16(value, p->mapbase + reg_offs);
212 break;
213 default:
214 iowrite32(value, p->mapbase + reg_offs);
215 break;
216 }
217}
218
219static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
220 u32 clr, u32 set)
221{
222 u32 mask = clr | set;
223 u32 data;
224
225 data = sh_msiof_read(p, SICTR);
226 data &= ~clr;
227 data |= set;
228 sh_msiof_write(p, SICTR, data);
229
230 return readl_poll_timeout_atomic(p->mapbase + SICTR, data,
231 (data & mask) == set, 1, 100);
232}
233
234static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
235{
236 struct sh_msiof_spi_priv *p = data;
237
238 /* just disable the interrupt and wake up */
239 sh_msiof_write(p, SIIER, 0);
240 complete(&p->done);
241
242 return IRQ_HANDLED;
243}
244
245static void sh_msiof_spi_reset_regs(struct sh_msiof_spi_priv *p)
246{
247 u32 mask = SICTR_TXRST | SICTR_RXRST;
248 u32 data;
249
250 data = sh_msiof_read(p, SICTR);
251 data |= mask;
252 sh_msiof_write(p, SICTR, data);
253
254 readl_poll_timeout_atomic(p->mapbase + SICTR, data, !(data & mask), 1,
255 100);
256}
257
258static const u32 sh_msiof_spi_div_array[] = {
259 SISCR_BRDV_DIV_1, SISCR_BRDV_DIV_2, SISCR_BRDV_DIV_4,
260 SISCR_BRDV_DIV_8, SISCR_BRDV_DIV_16, SISCR_BRDV_DIV_32,
261};
262
263static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
264 struct spi_transfer *t)
265{
266 unsigned long parent_rate = clk_get_rate(p->clk);
267 unsigned int div_pow = p->min_div_pow;
268 u32 spi_hz = t->speed_hz;
269 unsigned long div;
270 u32 brps, scr;
271
272 if (!spi_hz || !parent_rate) {
273 WARN(1, "Invalid clock rate parameters %lu and %u\n",
274 parent_rate, spi_hz);
275 return;
276 }
277
278 div = DIV_ROUND_UP(parent_rate, spi_hz);
279 if (div <= 1024) {
280 /* SISCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
281 if (!div_pow && div <= 32 && div > 2)
282 div_pow = 1;
283
284 if (div_pow)
285 brps = (div + 1) >> div_pow;
286 else
287 brps = div;
288
289 for (; brps > 32; div_pow++)
290 brps = (brps + 1) >> 1;
291 } else {
292 /* Set transfer rate composite divisor to 2^5 * 32 = 1024 */
293 dev_err(&p->pdev->dev,
294 "Requested SPI transfer rate %d is too low\n", spi_hz);
295 div_pow = 5;
296 brps = 32;
297 }
298
299 t->effective_speed_hz = parent_rate / (brps << div_pow);
300
301 scr = sh_msiof_spi_div_array[div_pow] | SISCR_BRPS(brps);
302 sh_msiof_write(p, SITSCR, scr);
303 if (!(p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
304 sh_msiof_write(p, SIRSCR, scr);
305}
306
307static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
308{
309 /*
310 * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl
311 * b'000 : 0
312 * b'001 : 100
313 * b'010 : 200
314 * b'011 (SYNCDL only) : 300
315 * b'101 : 50
316 * b'110 : 150
317 */
318 if (dtdl_or_syncdl % 100)
319 return dtdl_or_syncdl / 100 + 5;
320 else
321 return dtdl_or_syncdl / 100;
322}
323
324static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
325{
326 u32 val;
327
328 if (!p->info)
329 return 0;
330
331 /* check if DTDL and SYNCDL is allowed value */
332 if (p->info->dtdl > 200 || p->info->syncdl > 300) {
333 dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
334 return 0;
335 }
336
337 /* check if the sum of DTDL and SYNCDL becomes an integer value */
338 if ((p->info->dtdl + p->info->syncdl) % 100) {
339 dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
340 return 0;
341 }
342
343 val = sh_msiof_get_delay_bit(p->info->dtdl) << SIMDR1_DTDL_SHIFT;
344 val |= sh_msiof_get_delay_bit(p->info->syncdl) << SIMDR1_SYNCDL_SHIFT;
345
346 return val;
347}
348
349static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss,
350 u32 cpol, u32 cpha,
351 u32 tx_hi_z, u32 lsb_first, u32 cs_high)
352{
353 u32 tmp;
354 int edge;
355
356 /*
357 * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG
358 * 0 0 10 10 1 1
359 * 0 1 10 10 0 0
360 * 1 0 11 11 0 0
361 * 1 1 11 11 1 1
362 */
363 tmp = SIMDR1_SYNCMD_SPI | 1 << SIMDR1_FLD_SHIFT | SIMDR1_XXSTP;
364 tmp |= !cs_high << SIMDR1_SYNCAC_SHIFT;
365 tmp |= lsb_first << SIMDR1_BITLSB_SHIFT;
366 tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
367 if (spi_controller_is_target(p->ctlr)) {
368 sh_msiof_write(p, SITMDR1, tmp | SITMDR1_PCON);
369 } else {
370 sh_msiof_write(p, SITMDR1,
371 tmp | SIMDR1_TRMD | SITMDR1_PCON |
372 (ss < MAX_SS ? ss : 0) << SITMDR1_SYNCCH_SHIFT);
373 }
374 if (p->ctlr->flags & SPI_CONTROLLER_MUST_TX) {
375 /* These bits are reserved if RX needs TX */
376 tmp &= ~0x0000ffff;
377 }
378 sh_msiof_write(p, SIRMDR1, tmp);
379
380 tmp = 0;
381 tmp |= SICTR_TSCKIZ_SCK | cpol << SICTR_TSCKIZ_POL_SHIFT;
382 tmp |= SICTR_RSCKIZ_SCK | cpol << SICTR_RSCKIZ_POL_SHIFT;
383
384 edge = cpol ^ !cpha;
385
386 tmp |= edge << SICTR_TEDG_SHIFT;
387 tmp |= edge << SICTR_REDG_SHIFT;
388 tmp |= tx_hi_z ? SICTR_TXDIZ_HIZ : SICTR_TXDIZ_LOW;
389 sh_msiof_write(p, SICTR, tmp);
390}
391
392static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
393 const void *tx_buf, void *rx_buf,
394 u32 bits, u32 words)
395{
396 u32 dr2 = SIMDR2_BITLEN1(bits) | SIMDR2_WDLEN1(words);
397
398 if (tx_buf || (p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
399 sh_msiof_write(p, SITMDR2, dr2);
400 else
401 sh_msiof_write(p, SITMDR2, dr2 | SIMDR2_GRPMASK1);
402
403 if (rx_buf)
404 sh_msiof_write(p, SIRMDR2, dr2);
405}
406
407static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
408{
409 sh_msiof_write(p, SISTR,
410 sh_msiof_read(p, SISTR) & ~(SISTR_TDREQ | SISTR_RDREQ));
411}
412
413static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
414 const void *tx_buf, int words, int fs)
415{
416 const u8 *buf_8 = tx_buf;
417 int k;
418
419 for (k = 0; k < words; k++)
420 sh_msiof_write(p, SITFDR, buf_8[k] << fs);
421}
422
423static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
424 const void *tx_buf, int words, int fs)
425{
426 const u16 *buf_16 = tx_buf;
427 int k;
428
429 for (k = 0; k < words; k++)
430 sh_msiof_write(p, SITFDR, buf_16[k] << fs);
431}
432
433static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
434 const void *tx_buf, int words, int fs)
435{
436 const u16 *buf_16 = tx_buf;
437 int k;
438
439 for (k = 0; k < words; k++)
440 sh_msiof_write(p, SITFDR, get_unaligned(&buf_16[k]) << fs);
441}
442
443static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
444 const void *tx_buf, int words, int fs)
445{
446 const u32 *buf_32 = tx_buf;
447 int k;
448
449 for (k = 0; k < words; k++)
450 sh_msiof_write(p, SITFDR, buf_32[k] << fs);
451}
452
453static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
454 const void *tx_buf, int words, int fs)
455{
456 const u32 *buf_32 = tx_buf;
457 int k;
458
459 for (k = 0; k < words; k++)
460 sh_msiof_write(p, SITFDR, get_unaligned(&buf_32[k]) << fs);
461}
462
463static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
464 const void *tx_buf, int words, int fs)
465{
466 const u32 *buf_32 = tx_buf;
467 int k;
468
469 for (k = 0; k < words; k++)
470 sh_msiof_write(p, SITFDR, swab32(buf_32[k] << fs));
471}
472
473static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
474 const void *tx_buf, int words, int fs)
475{
476 const u32 *buf_32 = tx_buf;
477 int k;
478
479 for (k = 0; k < words; k++)
480 sh_msiof_write(p, SITFDR, swab32(get_unaligned(&buf_32[k]) << fs));
481}
482
483static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
484 void *rx_buf, int words, int fs)
485{
486 u8 *buf_8 = rx_buf;
487 int k;
488
489 for (k = 0; k < words; k++)
490 buf_8[k] = sh_msiof_read(p, SIRFDR) >> fs;
491}
492
493static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
494 void *rx_buf, int words, int fs)
495{
496 u16 *buf_16 = rx_buf;
497 int k;
498
499 for (k = 0; k < words; k++)
500 buf_16[k] = sh_msiof_read(p, SIRFDR) >> fs;
501}
502
503static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
504 void *rx_buf, int words, int fs)
505{
506 u16 *buf_16 = rx_buf;
507 int k;
508
509 for (k = 0; k < words; k++)
510 put_unaligned(sh_msiof_read(p, SIRFDR) >> fs, &buf_16[k]);
511}
512
513static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
514 void *rx_buf, int words, int fs)
515{
516 u32 *buf_32 = rx_buf;
517 int k;
518
519 for (k = 0; k < words; k++)
520 buf_32[k] = sh_msiof_read(p, SIRFDR) >> fs;
521}
522
523static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
524 void *rx_buf, int words, int fs)
525{
526 u32 *buf_32 = rx_buf;
527 int k;
528
529 for (k = 0; k < words; k++)
530 put_unaligned(sh_msiof_read(p, SIRFDR) >> fs, &buf_32[k]);
531}
532
533static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
534 void *rx_buf, int words, int fs)
535{
536 u32 *buf_32 = rx_buf;
537 int k;
538
539 for (k = 0; k < words; k++)
540 buf_32[k] = swab32(sh_msiof_read(p, SIRFDR) >> fs);
541}
542
543static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
544 void *rx_buf, int words, int fs)
545{
546 u32 *buf_32 = rx_buf;
547 int k;
548
549 for (k = 0; k < words; k++)
550 put_unaligned(swab32(sh_msiof_read(p, SIRFDR) >> fs), &buf_32[k]);
551}
552
553static int sh_msiof_spi_setup(struct spi_device *spi)
554{
555 struct sh_msiof_spi_priv *p =
556 spi_controller_get_devdata(spi->controller);
557 u32 clr, set, tmp;
558
559 if (spi_get_csgpiod(spi, 0) || spi_controller_is_target(p->ctlr))
560 return 0;
561
562 if (p->native_cs_inited &&
563 (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH)))
564 return 0;
565
566 /* Configure native chip select mode/polarity early */
567 clr = SIMDR1_SYNCMD_MASK;
568 set = SIMDR1_SYNCMD_SPI;
569 if (spi->mode & SPI_CS_HIGH)
570 clr |= BIT(SIMDR1_SYNCAC_SHIFT);
571 else
572 set |= BIT(SIMDR1_SYNCAC_SHIFT);
573 pm_runtime_get_sync(&p->pdev->dev);
574 tmp = sh_msiof_read(p, SITMDR1) & ~clr;
575 sh_msiof_write(p, SITMDR1, tmp | set | SIMDR1_TRMD | SITMDR1_PCON);
576 tmp = sh_msiof_read(p, SIRMDR1) & ~clr;
577 sh_msiof_write(p, SIRMDR1, tmp | set);
578 pm_runtime_put(&p->pdev->dev);
579 p->native_cs_high = spi->mode & SPI_CS_HIGH;
580 p->native_cs_inited = true;
581 return 0;
582}
583
584static int sh_msiof_prepare_message(struct spi_controller *ctlr,
585 struct spi_message *msg)
586{
587 struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
588 const struct spi_device *spi = msg->spi;
589 u32 ss, cs_high;
590
591 /* Configure pins before asserting CS */
592 if (spi_get_csgpiod(spi, 0)) {
593 ss = ctlr->unused_native_cs;
594 cs_high = p->native_cs_high;
595 } else {
596 ss = spi_get_chipselect(spi, 0);
597 cs_high = !!(spi->mode & SPI_CS_HIGH);
598 }
599 sh_msiof_spi_set_pin_regs(p, ss, !!(spi->mode & SPI_CPOL),
600 !!(spi->mode & SPI_CPHA),
601 !!(spi->mode & SPI_3WIRE),
602 !!(spi->mode & SPI_LSB_FIRST), cs_high);
603 return 0;
604}
605
606static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
607{
608 bool target = spi_controller_is_target(p->ctlr);
609 int ret = 0;
610
611 /* setup clock and rx/tx signals */
612 if (!target)
613 ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TSCKE);
614 if (rx_buf && !ret)
615 ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_RXE);
616 if (!ret)
617 ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TXE);
618
619 /* start by setting frame bit */
620 if (!ret && !target)
621 ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TFSE);
622
623 return ret;
624}
625
626static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
627{
628 bool target = spi_controller_is_target(p->ctlr);
629 int ret = 0;
630
631 /* shut down frame, rx/tx and clock signals */
632 if (!target)
633 ret = sh_msiof_modify_ctr_wait(p, SICTR_TFSE, 0);
634 if (!ret)
635 ret = sh_msiof_modify_ctr_wait(p, SICTR_TXE, 0);
636 if (rx_buf && !ret)
637 ret = sh_msiof_modify_ctr_wait(p, SICTR_RXE, 0);
638 if (!ret && !target)
639 ret = sh_msiof_modify_ctr_wait(p, SICTR_TSCKE, 0);
640
641 return ret;
642}
643
644static int sh_msiof_target_abort(struct spi_controller *ctlr)
645{
646 struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
647
648 p->target_aborted = true;
649 complete(&p->done);
650 complete(&p->done_txdma);
651 return 0;
652}
653
654static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p,
655 struct completion *x)
656{
657 if (spi_controller_is_target(p->ctlr)) {
658 if (wait_for_completion_interruptible(x) ||
659 p->target_aborted) {
660 dev_dbg(&p->pdev->dev, "interrupted\n");
661 return -EINTR;
662 }
663 } else {
664 if (!wait_for_completion_timeout(x, HZ)) {
665 dev_err(&p->pdev->dev, "timeout\n");
666 return -ETIMEDOUT;
667 }
668 }
669
670 return 0;
671}
672
673static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
674 void (*tx_fifo)(struct sh_msiof_spi_priv *,
675 const void *, int, int),
676 void (*rx_fifo)(struct sh_msiof_spi_priv *,
677 void *, int, int),
678 const void *tx_buf, void *rx_buf,
679 int words, int bits)
680{
681 int fifo_shift;
682 int ret;
683
684 /* limit maximum word transfer to rx/tx fifo size */
685 if (tx_buf)
686 words = min_t(int, words, p->tx_fifo_size);
687 if (rx_buf)
688 words = min_t(int, words, p->rx_fifo_size);
689
690 /* the fifo contents need shifting */
691 fifo_shift = 32 - bits;
692
693 /* default FIFO watermarks for PIO */
694 sh_msiof_write(p, SIFCTR, 0);
695
696 /* setup msiof transfer mode registers */
697 sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
698 sh_msiof_write(p, SIIER, SIIER_TEOFE | SIIER_REOFE);
699
700 /* write tx fifo */
701 if (tx_buf)
702 tx_fifo(p, tx_buf, words, fifo_shift);
703
704 reinit_completion(&p->done);
705 p->target_aborted = false;
706
707 ret = sh_msiof_spi_start(p, rx_buf);
708 if (ret) {
709 dev_err(&p->pdev->dev, "failed to start hardware\n");
710 goto stop_ier;
711 }
712
713 /* wait for tx fifo to be emptied / rx fifo to be filled */
714 ret = sh_msiof_wait_for_completion(p, &p->done);
715 if (ret)
716 goto stop_reset;
717
718 /* read rx fifo */
719 if (rx_buf)
720 rx_fifo(p, rx_buf, words, fifo_shift);
721
722 /* clear status bits */
723 sh_msiof_reset_str(p);
724
725 ret = sh_msiof_spi_stop(p, rx_buf);
726 if (ret) {
727 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
728 return ret;
729 }
730
731 return words;
732
733stop_reset:
734 sh_msiof_reset_str(p);
735 sh_msiof_spi_stop(p, rx_buf);
736stop_ier:
737 sh_msiof_write(p, SIIER, 0);
738 return ret;
739}
740
741static void sh_msiof_dma_complete(void *arg)
742{
743 complete(arg);
744}
745
746static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
747 void *rx, unsigned int len)
748{
749 u32 ier_bits = 0;
750 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
751 dma_cookie_t cookie;
752 int ret;
753
754 /* First prepare and submit the DMA request(s), as this may fail */
755 if (rx) {
756 ier_bits |= SIIER_RDREQE | SIIER_RDMAE;
757 desc_rx = dmaengine_prep_slave_single(p->ctlr->dma_rx,
758 p->rx_dma_addr, len, DMA_DEV_TO_MEM,
759 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
760 if (!desc_rx)
761 return -EAGAIN;
762
763 desc_rx->callback = sh_msiof_dma_complete;
764 desc_rx->callback_param = &p->done;
765 cookie = dmaengine_submit(desc_rx);
766 if (dma_submit_error(cookie))
767 return cookie;
768 }
769
770 if (tx) {
771 ier_bits |= SIIER_TDREQE | SIIER_TDMAE;
772 dma_sync_single_for_device(p->ctlr->dma_tx->device->dev,
773 p->tx_dma_addr, len, DMA_TO_DEVICE);
774 desc_tx = dmaengine_prep_slave_single(p->ctlr->dma_tx,
775 p->tx_dma_addr, len, DMA_MEM_TO_DEV,
776 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
777 if (!desc_tx) {
778 ret = -EAGAIN;
779 goto no_dma_tx;
780 }
781
782 desc_tx->callback = sh_msiof_dma_complete;
783 desc_tx->callback_param = &p->done_txdma;
784 cookie = dmaengine_submit(desc_tx);
785 if (dma_submit_error(cookie)) {
786 ret = cookie;
787 goto no_dma_tx;
788 }
789 }
790
791 /* 1 stage FIFO watermarks for DMA */
792 sh_msiof_write(p, SIFCTR, SIFCTR_TFWM_1 | SIFCTR_RFWM_1);
793
794 /* setup msiof transfer mode registers (32-bit words) */
795 sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
796
797 sh_msiof_write(p, SIIER, ier_bits);
798
799 reinit_completion(&p->done);
800 if (tx)
801 reinit_completion(&p->done_txdma);
802 p->target_aborted = false;
803
804 /* Now start DMA */
805 if (rx)
806 dma_async_issue_pending(p->ctlr->dma_rx);
807 if (tx)
808 dma_async_issue_pending(p->ctlr->dma_tx);
809
810 ret = sh_msiof_spi_start(p, rx);
811 if (ret) {
812 dev_err(&p->pdev->dev, "failed to start hardware\n");
813 goto stop_dma;
814 }
815
816 if (tx) {
817 /* wait for tx DMA completion */
818 ret = sh_msiof_wait_for_completion(p, &p->done_txdma);
819 if (ret)
820 goto stop_reset;
821 }
822
823 if (rx) {
824 /* wait for rx DMA completion */
825 ret = sh_msiof_wait_for_completion(p, &p->done);
826 if (ret)
827 goto stop_reset;
828
829 sh_msiof_write(p, SIIER, 0);
830 } else {
831 /* wait for tx fifo to be emptied */
832 sh_msiof_write(p, SIIER, SIIER_TEOFE);
833 ret = sh_msiof_wait_for_completion(p, &p->done);
834 if (ret)
835 goto stop_reset;
836 }
837
838 /* clear status bits */
839 sh_msiof_reset_str(p);
840
841 ret = sh_msiof_spi_stop(p, rx);
842 if (ret) {
843 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
844 return ret;
845 }
846
847 if (rx)
848 dma_sync_single_for_cpu(p->ctlr->dma_rx->device->dev,
849 p->rx_dma_addr, len, DMA_FROM_DEVICE);
850
851 return 0;
852
853stop_reset:
854 sh_msiof_reset_str(p);
855 sh_msiof_spi_stop(p, rx);
856stop_dma:
857 if (tx)
858 dmaengine_terminate_sync(p->ctlr->dma_tx);
859no_dma_tx:
860 if (rx)
861 dmaengine_terminate_sync(p->ctlr->dma_rx);
862 sh_msiof_write(p, SIIER, 0);
863 return ret;
864}
865
866static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
867{
868 /* src or dst can be unaligned, but not both */
869 if ((unsigned long)src & 3) {
870 while (words--) {
871 *dst++ = swab32(get_unaligned(src));
872 src++;
873 }
874 } else if ((unsigned long)dst & 3) {
875 while (words--) {
876 put_unaligned(swab32(*src++), dst);
877 dst++;
878 }
879 } else {
880 while (words--)
881 *dst++ = swab32(*src++);
882 }
883}
884
885static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
886{
887 /* src or dst can be unaligned, but not both */
888 if ((unsigned long)src & 3) {
889 while (words--) {
890 *dst++ = swahw32(get_unaligned(src));
891 src++;
892 }
893 } else if ((unsigned long)dst & 3) {
894 while (words--) {
895 put_unaligned(swahw32(*src++), dst);
896 dst++;
897 }
898 } else {
899 while (words--)
900 *dst++ = swahw32(*src++);
901 }
902}
903
904static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
905{
906 memcpy(dst, src, words * 4);
907}
908
909static int sh_msiof_transfer_one(struct spi_controller *ctlr,
910 struct spi_device *spi,
911 struct spi_transfer *t)
912{
913 struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
914 void (*copy32)(u32 *, const u32 *, unsigned int);
915 void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
916 void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
917 const void *tx_buf = t->tx_buf;
918 void *rx_buf = t->rx_buf;
919 unsigned int len = t->len;
920 unsigned int bits = t->bits_per_word;
921 unsigned int bytes_per_word;
922 unsigned int words;
923 int n;
924 bool swab;
925 int ret;
926
927 /* reset registers */
928 sh_msiof_spi_reset_regs(p);
929
930 /* setup clocks (clock already enabled in chipselect()) */
931 if (!spi_controller_is_target(p->ctlr))
932 sh_msiof_spi_set_clk_regs(p, t);
933
934 while (ctlr->dma_tx && len > 15) {
935 /*
936 * DMA supports 32-bit words only, hence pack 8-bit and 16-bit
937 * words, with byte resp. word swapping.
938 */
939 unsigned int l = 0;
940
941 if (tx_buf)
942 l = min(round_down(len, 4), p->tx_fifo_size * 4);
943 if (rx_buf)
944 l = min(round_down(len, 4), p->rx_fifo_size * 4);
945
946 if (bits <= 8) {
947 copy32 = copy_bswap32;
948 } else if (bits <= 16) {
949 copy32 = copy_wswap32;
950 } else {
951 copy32 = copy_plain32;
952 }
953
954 if (tx_buf)
955 copy32(p->tx_dma_page, tx_buf, l / 4);
956
957 ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
958 if (ret == -EAGAIN) {
959 dev_warn_once(&p->pdev->dev,
960 "DMA not available, falling back to PIO\n");
961 break;
962 }
963 if (ret)
964 return ret;
965
966 if (rx_buf) {
967 copy32(rx_buf, p->rx_dma_page, l / 4);
968 rx_buf += l;
969 }
970 if (tx_buf)
971 tx_buf += l;
972
973 len -= l;
974 if (!len)
975 return 0;
976 }
977
978 if (bits <= 8 && len > 15) {
979 bits = 32;
980 swab = true;
981 } else {
982 swab = false;
983 }
984
985 /* setup bytes per word and fifo read/write functions */
986 if (bits <= 8) {
987 bytes_per_word = 1;
988 tx_fifo = sh_msiof_spi_write_fifo_8;
989 rx_fifo = sh_msiof_spi_read_fifo_8;
990 } else if (bits <= 16) {
991 bytes_per_word = 2;
992 if ((unsigned long)tx_buf & 0x01)
993 tx_fifo = sh_msiof_spi_write_fifo_16u;
994 else
995 tx_fifo = sh_msiof_spi_write_fifo_16;
996
997 if ((unsigned long)rx_buf & 0x01)
998 rx_fifo = sh_msiof_spi_read_fifo_16u;
999 else
1000 rx_fifo = sh_msiof_spi_read_fifo_16;
1001 } else if (swab) {
1002 bytes_per_word = 4;
1003 if ((unsigned long)tx_buf & 0x03)
1004 tx_fifo = sh_msiof_spi_write_fifo_s32u;
1005 else
1006 tx_fifo = sh_msiof_spi_write_fifo_s32;
1007
1008 if ((unsigned long)rx_buf & 0x03)
1009 rx_fifo = sh_msiof_spi_read_fifo_s32u;
1010 else
1011 rx_fifo = sh_msiof_spi_read_fifo_s32;
1012 } else {
1013 bytes_per_word = 4;
1014 if ((unsigned long)tx_buf & 0x03)
1015 tx_fifo = sh_msiof_spi_write_fifo_32u;
1016 else
1017 tx_fifo = sh_msiof_spi_write_fifo_32;
1018
1019 if ((unsigned long)rx_buf & 0x03)
1020 rx_fifo = sh_msiof_spi_read_fifo_32u;
1021 else
1022 rx_fifo = sh_msiof_spi_read_fifo_32;
1023 }
1024
1025 /* transfer in fifo sized chunks */
1026 words = len / bytes_per_word;
1027
1028 while (words > 0) {
1029 n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
1030 words, bits);
1031 if (n < 0)
1032 return n;
1033
1034 if (tx_buf)
1035 tx_buf += n * bytes_per_word;
1036 if (rx_buf)
1037 rx_buf += n * bytes_per_word;
1038 words -= n;
1039
1040 if (words == 0 && (len % bytes_per_word)) {
1041 words = len % bytes_per_word;
1042 bits = t->bits_per_word;
1043 bytes_per_word = 1;
1044 tx_fifo = sh_msiof_spi_write_fifo_8;
1045 rx_fifo = sh_msiof_spi_read_fifo_8;
1046 }
1047 }
1048
1049 return 0;
1050}
1051
1052static const struct sh_msiof_chipdata sh_data = {
1053 .bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32),
1054 .tx_fifo_size = 64,
1055 .rx_fifo_size = 64,
1056 .ctlr_flags = 0,
1057 .min_div_pow = 0,
1058};
1059
1060static const struct sh_msiof_chipdata rcar_gen2_data = {
1061 .bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1062 SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
1063 .tx_fifo_size = 64,
1064 .rx_fifo_size = 64,
1065 .ctlr_flags = SPI_CONTROLLER_MUST_TX,
1066 .min_div_pow = 0,
1067};
1068
1069static const struct sh_msiof_chipdata rcar_gen3_data = {
1070 .bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1071 SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
1072 .tx_fifo_size = 64,
1073 .rx_fifo_size = 64,
1074 .ctlr_flags = SPI_CONTROLLER_MUST_TX,
1075 .min_div_pow = 1,
1076};
1077
1078static const struct sh_msiof_chipdata rcar_r8a7795_data = {
1079 .bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1080 SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
1081 .tx_fifo_size = 64,
1082 .rx_fifo_size = 64,
1083 .ctlr_flags = SPI_CONTROLLER_MUST_TX,
1084 .min_div_pow = 1,
1085 .flags = SH_MSIOF_FLAG_FIXED_DTDL_200,
1086};
1087
1088static const struct of_device_id sh_msiof_match[] __maybe_unused = {
1089 { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
1090 { .compatible = "renesas,msiof-r8a7743", .data = &rcar_gen2_data },
1091 { .compatible = "renesas,msiof-r8a7745", .data = &rcar_gen2_data },
1092 { .compatible = "renesas,msiof-r8a7790", .data = &rcar_gen2_data },
1093 { .compatible = "renesas,msiof-r8a7791", .data = &rcar_gen2_data },
1094 { .compatible = "renesas,msiof-r8a7792", .data = &rcar_gen2_data },
1095 { .compatible = "renesas,msiof-r8a7793", .data = &rcar_gen2_data },
1096 { .compatible = "renesas,msiof-r8a7794", .data = &rcar_gen2_data },
1097 { .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data },
1098 { .compatible = "renesas,msiof-r8a7795", .data = &rcar_r8a7795_data },
1099 { .compatible = "renesas,msiof-r8a7796", .data = &rcar_gen3_data },
1100 { .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data },
1101 { .compatible = "renesas,rcar-gen4-msiof", .data = &rcar_gen3_data },
1102 { .compatible = "renesas,sh-msiof", .data = &sh_data }, /* Deprecated */
1103 {},
1104};
1105MODULE_DEVICE_TABLE(of, sh_msiof_match);
1106
1107#ifdef CONFIG_OF
1108static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1109{
1110 struct sh_msiof_spi_info *info;
1111 struct device_node *np = dev->of_node;
1112 u32 num_cs = 1;
1113
1114 info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
1115 if (!info)
1116 return NULL;
1117
1118 info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_TARGET
1119 : MSIOF_SPI_HOST;
1120
1121 /* Parse the MSIOF properties */
1122 if (info->mode == MSIOF_SPI_HOST)
1123 of_property_read_u32(np, "num-cs", &num_cs);
1124 of_property_read_u32(np, "renesas,tx-fifo-size",
1125 &info->tx_fifo_override);
1126 of_property_read_u32(np, "renesas,rx-fifo-size",
1127 &info->rx_fifo_override);
1128 of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1129 of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
1130
1131 info->num_chipselect = num_cs;
1132
1133 return info;
1134}
1135#else
1136static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1137{
1138 return NULL;
1139}
1140#endif
1141
1142static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1143 enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1144{
1145 dma_cap_mask_t mask;
1146 struct dma_chan *chan;
1147 struct dma_slave_config cfg;
1148 int ret;
1149
1150 dma_cap_zero(mask);
1151 dma_cap_set(DMA_SLAVE, mask);
1152
1153 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1154 (void *)(unsigned long)id, dev,
1155 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1156 if (!chan) {
1157 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1158 return NULL;
1159 }
1160
1161 memset(&cfg, 0, sizeof(cfg));
1162 cfg.direction = dir;
1163 if (dir == DMA_MEM_TO_DEV) {
1164 cfg.dst_addr = port_addr;
1165 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1166 } else {
1167 cfg.src_addr = port_addr;
1168 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1169 }
1170
1171 ret = dmaengine_slave_config(chan, &cfg);
1172 if (ret) {
1173 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1174 dma_release_channel(chan);
1175 return NULL;
1176 }
1177
1178 return chan;
1179}
1180
1181static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1182{
1183 struct platform_device *pdev = p->pdev;
1184 struct device *dev = &pdev->dev;
1185 const struct sh_msiof_spi_info *info = p->info;
1186 unsigned int dma_tx_id, dma_rx_id;
1187 const struct resource *res;
1188 struct spi_controller *ctlr;
1189 struct device *tx_dev, *rx_dev;
1190
1191 if (dev->of_node) {
1192 /* In the OF case we will get the slave IDs from the DT */
1193 dma_tx_id = 0;
1194 dma_rx_id = 0;
1195 } else if (info && info->dma_tx_id && info->dma_rx_id) {
1196 dma_tx_id = info->dma_tx_id;
1197 dma_rx_id = info->dma_rx_id;
1198 } else {
1199 /* The driver assumes no error */
1200 return 0;
1201 }
1202
1203 /* The DMA engine uses the second register set, if present */
1204 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1205 if (!res)
1206 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1207
1208 ctlr = p->ctlr;
1209 ctlr->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1210 dma_tx_id, res->start + SITFDR);
1211 if (!ctlr->dma_tx)
1212 return -ENODEV;
1213
1214 ctlr->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1215 dma_rx_id, res->start + SIRFDR);
1216 if (!ctlr->dma_rx)
1217 goto free_tx_chan;
1218
1219 p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1220 if (!p->tx_dma_page)
1221 goto free_rx_chan;
1222
1223 p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1224 if (!p->rx_dma_page)
1225 goto free_tx_page;
1226
1227 tx_dev = ctlr->dma_tx->device->dev;
1228 p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1229 DMA_TO_DEVICE);
1230 if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1231 goto free_rx_page;
1232
1233 rx_dev = ctlr->dma_rx->device->dev;
1234 p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1235 DMA_FROM_DEVICE);
1236 if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1237 goto unmap_tx_page;
1238
1239 dev_info(dev, "DMA available");
1240 return 0;
1241
1242unmap_tx_page:
1243 dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1244free_rx_page:
1245 free_page((unsigned long)p->rx_dma_page);
1246free_tx_page:
1247 free_page((unsigned long)p->tx_dma_page);
1248free_rx_chan:
1249 dma_release_channel(ctlr->dma_rx);
1250free_tx_chan:
1251 dma_release_channel(ctlr->dma_tx);
1252 ctlr->dma_tx = NULL;
1253 return -ENODEV;
1254}
1255
1256static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1257{
1258 struct spi_controller *ctlr = p->ctlr;
1259
1260 if (!ctlr->dma_tx)
1261 return;
1262
1263 dma_unmap_single(ctlr->dma_rx->device->dev, p->rx_dma_addr, PAGE_SIZE,
1264 DMA_FROM_DEVICE);
1265 dma_unmap_single(ctlr->dma_tx->device->dev, p->tx_dma_addr, PAGE_SIZE,
1266 DMA_TO_DEVICE);
1267 free_page((unsigned long)p->rx_dma_page);
1268 free_page((unsigned long)p->tx_dma_page);
1269 dma_release_channel(ctlr->dma_rx);
1270 dma_release_channel(ctlr->dma_tx);
1271}
1272
1273static int sh_msiof_spi_probe(struct platform_device *pdev)
1274{
1275 struct spi_controller *ctlr;
1276 const struct sh_msiof_chipdata *chipdata;
1277 struct sh_msiof_spi_info *info;
1278 struct sh_msiof_spi_priv *p;
1279 unsigned long clksrc;
1280 int i;
1281 int ret;
1282
1283 chipdata = of_device_get_match_data(&pdev->dev);
1284 if (chipdata) {
1285 info = sh_msiof_spi_parse_dt(&pdev->dev);
1286 } else {
1287 chipdata = (const void *)pdev->id_entry->driver_data;
1288 info = dev_get_platdata(&pdev->dev);
1289 }
1290
1291 if (!info) {
1292 dev_err(&pdev->dev, "failed to obtain device info\n");
1293 return -ENXIO;
1294 }
1295
1296 if (chipdata->flags & SH_MSIOF_FLAG_FIXED_DTDL_200)
1297 info->dtdl = 200;
1298
1299 if (info->mode == MSIOF_SPI_TARGET)
1300 ctlr = spi_alloc_target(&pdev->dev,
1301 sizeof(struct sh_msiof_spi_priv));
1302 else
1303 ctlr = spi_alloc_host(&pdev->dev,
1304 sizeof(struct sh_msiof_spi_priv));
1305 if (ctlr == NULL)
1306 return -ENOMEM;
1307
1308 p = spi_controller_get_devdata(ctlr);
1309
1310 platform_set_drvdata(pdev, p);
1311 p->ctlr = ctlr;
1312 p->info = info;
1313 p->min_div_pow = chipdata->min_div_pow;
1314
1315 init_completion(&p->done);
1316 init_completion(&p->done_txdma);
1317
1318 p->clk = devm_clk_get(&pdev->dev, NULL);
1319 if (IS_ERR(p->clk)) {
1320 dev_err(&pdev->dev, "cannot get clock\n");
1321 ret = PTR_ERR(p->clk);
1322 goto err1;
1323 }
1324
1325 i = platform_get_irq(pdev, 0);
1326 if (i < 0) {
1327 ret = i;
1328 goto err1;
1329 }
1330
1331 p->mapbase = devm_platform_ioremap_resource(pdev, 0);
1332 if (IS_ERR(p->mapbase)) {
1333 ret = PTR_ERR(p->mapbase);
1334 goto err1;
1335 }
1336
1337 ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1338 dev_name(&pdev->dev), p);
1339 if (ret) {
1340 dev_err(&pdev->dev, "unable to request irq\n");
1341 goto err1;
1342 }
1343
1344 p->pdev = pdev;
1345 pm_runtime_enable(&pdev->dev);
1346
1347 /* Platform data may override FIFO sizes */
1348 p->tx_fifo_size = chipdata->tx_fifo_size;
1349 p->rx_fifo_size = chipdata->rx_fifo_size;
1350 if (p->info->tx_fifo_override)
1351 p->tx_fifo_size = p->info->tx_fifo_override;
1352 if (p->info->rx_fifo_override)
1353 p->rx_fifo_size = p->info->rx_fifo_override;
1354
1355 /* init controller code */
1356 ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1357 ctlr->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1358 clksrc = clk_get_rate(p->clk);
1359 ctlr->min_speed_hz = DIV_ROUND_UP(clksrc, 1024);
1360 ctlr->max_speed_hz = DIV_ROUND_UP(clksrc, 1 << p->min_div_pow);
1361 ctlr->flags = chipdata->ctlr_flags;
1362 ctlr->bus_num = pdev->id;
1363 ctlr->num_chipselect = p->info->num_chipselect;
1364 ctlr->dev.of_node = pdev->dev.of_node;
1365 ctlr->setup = sh_msiof_spi_setup;
1366 ctlr->prepare_message = sh_msiof_prepare_message;
1367 ctlr->target_abort = sh_msiof_target_abort;
1368 ctlr->bits_per_word_mask = chipdata->bits_per_word_mask;
1369 ctlr->auto_runtime_pm = true;
1370 ctlr->transfer_one = sh_msiof_transfer_one;
1371 ctlr->use_gpio_descriptors = true;
1372 ctlr->max_native_cs = MAX_SS;
1373
1374 ret = sh_msiof_request_dma(p);
1375 if (ret < 0)
1376 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1377
1378 ret = devm_spi_register_controller(&pdev->dev, ctlr);
1379 if (ret < 0) {
1380 dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
1381 goto err2;
1382 }
1383
1384 return 0;
1385
1386 err2:
1387 sh_msiof_release_dma(p);
1388 pm_runtime_disable(&pdev->dev);
1389 err1:
1390 spi_controller_put(ctlr);
1391 return ret;
1392}
1393
1394static void sh_msiof_spi_remove(struct platform_device *pdev)
1395{
1396 struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1397
1398 sh_msiof_release_dma(p);
1399 pm_runtime_disable(&pdev->dev);
1400}
1401
1402static const struct platform_device_id spi_driver_ids[] = {
1403 { "spi_sh_msiof", (kernel_ulong_t)&sh_data },
1404 {},
1405};
1406MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1407
1408#ifdef CONFIG_PM_SLEEP
1409static int sh_msiof_spi_suspend(struct device *dev)
1410{
1411 struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
1412
1413 return spi_controller_suspend(p->ctlr);
1414}
1415
1416static int sh_msiof_spi_resume(struct device *dev)
1417{
1418 struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
1419
1420 return spi_controller_resume(p->ctlr);
1421}
1422
1423static SIMPLE_DEV_PM_OPS(sh_msiof_spi_pm_ops, sh_msiof_spi_suspend,
1424 sh_msiof_spi_resume);
1425#define DEV_PM_OPS (&sh_msiof_spi_pm_ops)
1426#else
1427#define DEV_PM_OPS NULL
1428#endif /* CONFIG_PM_SLEEP */
1429
1430static struct platform_driver sh_msiof_spi_drv = {
1431 .probe = sh_msiof_spi_probe,
1432 .remove = sh_msiof_spi_remove,
1433 .id_table = spi_driver_ids,
1434 .driver = {
1435 .name = "spi_sh_msiof",
1436 .pm = DEV_PM_OPS,
1437 .of_match_table = of_match_ptr(sh_msiof_match),
1438 },
1439};
1440module_platform_driver(sh_msiof_spi_drv);
1441
1442MODULE_DESCRIPTION("SuperH MSIOF SPI Controller Interface Driver");
1443MODULE_AUTHOR("Magnus Damm");
1444MODULE_LICENSE("GPL v2");
1/*
2 * SuperH MSIOF SPI Master Interface
3 *
4 * Copyright (c) 2009 Magnus Damm
5 * Copyright (C) 2014 Renesas Electronics Corporation
6 * Copyright (C) 2014-2017 Glider bvba
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 */
13
14#include <linux/bitmap.h>
15#include <linux/clk.h>
16#include <linux/completion.h>
17#include <linux/delay.h>
18#include <linux/dma-mapping.h>
19#include <linux/dmaengine.h>
20#include <linux/err.h>
21#include <linux/gpio.h>
22#include <linux/gpio/consumer.h>
23#include <linux/interrupt.h>
24#include <linux/io.h>
25#include <linux/kernel.h>
26#include <linux/module.h>
27#include <linux/of.h>
28#include <linux/of_device.h>
29#include <linux/platform_device.h>
30#include <linux/pm_runtime.h>
31#include <linux/sh_dma.h>
32
33#include <linux/spi/sh_msiof.h>
34#include <linux/spi/spi.h>
35
36#include <asm/unaligned.h>
37
38struct sh_msiof_chipdata {
39 u16 tx_fifo_size;
40 u16 rx_fifo_size;
41 u16 master_flags;
42 u16 min_div;
43};
44
45struct sh_msiof_spi_priv {
46 struct spi_master *master;
47 void __iomem *mapbase;
48 struct clk *clk;
49 struct platform_device *pdev;
50 struct sh_msiof_spi_info *info;
51 struct completion done;
52 unsigned int tx_fifo_size;
53 unsigned int rx_fifo_size;
54 unsigned int min_div;
55 void *tx_dma_page;
56 void *rx_dma_page;
57 dma_addr_t tx_dma_addr;
58 dma_addr_t rx_dma_addr;
59 unsigned short unused_ss;
60 bool native_cs_inited;
61 bool native_cs_high;
62 bool slave_aborted;
63};
64
65#define MAX_SS 3 /* Maximum number of native chip selects */
66
67#define TMDR1 0x00 /* Transmit Mode Register 1 */
68#define TMDR2 0x04 /* Transmit Mode Register 2 */
69#define TMDR3 0x08 /* Transmit Mode Register 3 */
70#define RMDR1 0x10 /* Receive Mode Register 1 */
71#define RMDR2 0x14 /* Receive Mode Register 2 */
72#define RMDR3 0x18 /* Receive Mode Register 3 */
73#define TSCR 0x20 /* Transmit Clock Select Register */
74#define RSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */
75#define CTR 0x28 /* Control Register */
76#define FCTR 0x30 /* FIFO Control Register */
77#define STR 0x40 /* Status Register */
78#define IER 0x44 /* Interrupt Enable Register */
79#define TDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */
80#define TDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */
81#define TFDR 0x50 /* Transmit FIFO Data Register */
82#define RDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */
83#define RDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */
84#define RFDR 0x60 /* Receive FIFO Data Register */
85
86/* TMDR1 and RMDR1 */
87#define MDR1_TRMD 0x80000000 /* Transfer Mode (1 = Master mode) */
88#define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
89#define MDR1_SYNCMD_SPI 0x20000000 /* Level mode/SPI */
90#define MDR1_SYNCMD_LR 0x30000000 /* L/R mode */
91#define MDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */
92#define MDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */
93#define MDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */
94#define MDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */
95#define MDR1_FLD_MASK 0x0000000c /* Frame Sync Signal Interval (0-3) */
96#define MDR1_FLD_SHIFT 2
97#define MDR1_XXSTP 0x00000001 /* Transmission/Reception Stop on FIFO */
98/* TMDR1 */
99#define TMDR1_PCON 0x40000000 /* Transfer Signal Connection */
100#define TMDR1_SYNCCH_MASK 0xc000000 /* Synchronization Signal Channel Select */
101#define TMDR1_SYNCCH_SHIFT 26 /* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */
102
103/* TMDR2 and RMDR2 */
104#define MDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */
105#define MDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
106#define MDR2_GRPMASK1 0x00000001 /* Group Output Mask 1 (SH, A1) */
107
108/* TSCR and RSCR */
109#define SCR_BRPS_MASK 0x1f00 /* Prescaler Setting (1-32) */
110#define SCR_BRPS(i) (((i) - 1) << 8)
111#define SCR_BRDV_MASK 0x0007 /* Baud Rate Generator's Division Ratio */
112#define SCR_BRDV_DIV_2 0x0000
113#define SCR_BRDV_DIV_4 0x0001
114#define SCR_BRDV_DIV_8 0x0002
115#define SCR_BRDV_DIV_16 0x0003
116#define SCR_BRDV_DIV_32 0x0004
117#define SCR_BRDV_DIV_1 0x0007
118
119/* CTR */
120#define CTR_TSCKIZ_MASK 0xc0000000 /* Transmit Clock I/O Polarity Select */
121#define CTR_TSCKIZ_SCK 0x80000000 /* Disable SCK when TX disabled */
122#define CTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */
123#define CTR_RSCKIZ_MASK 0x30000000 /* Receive Clock Polarity Select */
124#define CTR_RSCKIZ_SCK 0x20000000 /* Must match CTR_TSCKIZ_SCK */
125#define CTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */
126#define CTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */
127#define CTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */
128#define CTR_TXDIZ_MASK 0x00c00000 /* Pin Output When TX is Disabled */
129#define CTR_TXDIZ_LOW 0x00000000 /* 0 */
130#define CTR_TXDIZ_HIGH 0x00400000 /* 1 */
131#define CTR_TXDIZ_HIZ 0x00800000 /* High-impedance */
132#define CTR_TSCKE 0x00008000 /* Transmit Serial Clock Output Enable */
133#define CTR_TFSE 0x00004000 /* Transmit Frame Sync Signal Output Enable */
134#define CTR_TXE 0x00000200 /* Transmit Enable */
135#define CTR_RXE 0x00000100 /* Receive Enable */
136
137/* FCTR */
138#define FCTR_TFWM_MASK 0xe0000000 /* Transmit FIFO Watermark */
139#define FCTR_TFWM_64 0x00000000 /* Transfer Request when 64 empty stages */
140#define FCTR_TFWM_32 0x20000000 /* Transfer Request when 32 empty stages */
141#define FCTR_TFWM_24 0x40000000 /* Transfer Request when 24 empty stages */
142#define FCTR_TFWM_16 0x60000000 /* Transfer Request when 16 empty stages */
143#define FCTR_TFWM_12 0x80000000 /* Transfer Request when 12 empty stages */
144#define FCTR_TFWM_8 0xa0000000 /* Transfer Request when 8 empty stages */
145#define FCTR_TFWM_4 0xc0000000 /* Transfer Request when 4 empty stages */
146#define FCTR_TFWM_1 0xe0000000 /* Transfer Request when 1 empty stage */
147#define FCTR_TFUA_MASK 0x07f00000 /* Transmit FIFO Usable Area */
148#define FCTR_TFUA_SHIFT 20
149#define FCTR_TFUA(i) ((i) << FCTR_TFUA_SHIFT)
150#define FCTR_RFWM_MASK 0x0000e000 /* Receive FIFO Watermark */
151#define FCTR_RFWM_1 0x00000000 /* Transfer Request when 1 valid stages */
152#define FCTR_RFWM_4 0x00002000 /* Transfer Request when 4 valid stages */
153#define FCTR_RFWM_8 0x00004000 /* Transfer Request when 8 valid stages */
154#define FCTR_RFWM_16 0x00006000 /* Transfer Request when 16 valid stages */
155#define FCTR_RFWM_32 0x00008000 /* Transfer Request when 32 valid stages */
156#define FCTR_RFWM_64 0x0000a000 /* Transfer Request when 64 valid stages */
157#define FCTR_RFWM_128 0x0000c000 /* Transfer Request when 128 valid stages */
158#define FCTR_RFWM_256 0x0000e000 /* Transfer Request when 256 valid stages */
159#define FCTR_RFUA_MASK 0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
160#define FCTR_RFUA_SHIFT 4
161#define FCTR_RFUA(i) ((i) << FCTR_RFUA_SHIFT)
162
163/* STR */
164#define STR_TFEMP 0x20000000 /* Transmit FIFO Empty */
165#define STR_TDREQ 0x10000000 /* Transmit Data Transfer Request */
166#define STR_TEOF 0x00800000 /* Frame Transmission End */
167#define STR_TFSERR 0x00200000 /* Transmit Frame Synchronization Error */
168#define STR_TFOVF 0x00100000 /* Transmit FIFO Overflow */
169#define STR_TFUDF 0x00080000 /* Transmit FIFO Underflow */
170#define STR_RFFUL 0x00002000 /* Receive FIFO Full */
171#define STR_RDREQ 0x00001000 /* Receive Data Transfer Request */
172#define STR_REOF 0x00000080 /* Frame Reception End */
173#define STR_RFSERR 0x00000020 /* Receive Frame Synchronization Error */
174#define STR_RFUDF 0x00000010 /* Receive FIFO Underflow */
175#define STR_RFOVF 0x00000008 /* Receive FIFO Overflow */
176
177/* IER */
178#define IER_TDMAE 0x80000000 /* Transmit Data DMA Transfer Req. Enable */
179#define IER_TFEMPE 0x20000000 /* Transmit FIFO Empty Enable */
180#define IER_TDREQE 0x10000000 /* Transmit Data Transfer Request Enable */
181#define IER_TEOFE 0x00800000 /* Frame Transmission End Enable */
182#define IER_TFSERRE 0x00200000 /* Transmit Frame Sync Error Enable */
183#define IER_TFOVFE 0x00100000 /* Transmit FIFO Overflow Enable */
184#define IER_TFUDFE 0x00080000 /* Transmit FIFO Underflow Enable */
185#define IER_RDMAE 0x00008000 /* Receive Data DMA Transfer Req. Enable */
186#define IER_RFFULE 0x00002000 /* Receive FIFO Full Enable */
187#define IER_RDREQE 0x00001000 /* Receive Data Transfer Request Enable */
188#define IER_REOFE 0x00000080 /* Frame Reception End Enable */
189#define IER_RFSERRE 0x00000020 /* Receive Frame Sync Error Enable */
190#define IER_RFUDFE 0x00000010 /* Receive FIFO Underflow Enable */
191#define IER_RFOVFE 0x00000008 /* Receive FIFO Overflow Enable */
192
193
194static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
195{
196 switch (reg_offs) {
197 case TSCR:
198 case RSCR:
199 return ioread16(p->mapbase + reg_offs);
200 default:
201 return ioread32(p->mapbase + reg_offs);
202 }
203}
204
205static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
206 u32 value)
207{
208 switch (reg_offs) {
209 case TSCR:
210 case RSCR:
211 iowrite16(value, p->mapbase + reg_offs);
212 break;
213 default:
214 iowrite32(value, p->mapbase + reg_offs);
215 break;
216 }
217}
218
219static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
220 u32 clr, u32 set)
221{
222 u32 mask = clr | set;
223 u32 data;
224 int k;
225
226 data = sh_msiof_read(p, CTR);
227 data &= ~clr;
228 data |= set;
229 sh_msiof_write(p, CTR, data);
230
231 for (k = 100; k > 0; k--) {
232 if ((sh_msiof_read(p, CTR) & mask) == set)
233 break;
234
235 udelay(10);
236 }
237
238 return k > 0 ? 0 : -ETIMEDOUT;
239}
240
241static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
242{
243 struct sh_msiof_spi_priv *p = data;
244
245 /* just disable the interrupt and wake up */
246 sh_msiof_write(p, IER, 0);
247 complete(&p->done);
248
249 return IRQ_HANDLED;
250}
251
252static struct {
253 unsigned short div;
254 unsigned short brdv;
255} const sh_msiof_spi_div_table[] = {
256 { 1, SCR_BRDV_DIV_1 },
257 { 2, SCR_BRDV_DIV_2 },
258 { 4, SCR_BRDV_DIV_4 },
259 { 8, SCR_BRDV_DIV_8 },
260 { 16, SCR_BRDV_DIV_16 },
261 { 32, SCR_BRDV_DIV_32 },
262};
263
264static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
265 unsigned long parent_rate, u32 spi_hz)
266{
267 unsigned long div = 1024;
268 u32 brps, scr;
269 size_t k;
270
271 if (!WARN_ON(!spi_hz || !parent_rate))
272 div = DIV_ROUND_UP(parent_rate, spi_hz);
273
274 div = max_t(unsigned long, div, p->min_div);
275
276 for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_div_table); k++) {
277 brps = DIV_ROUND_UP(div, sh_msiof_spi_div_table[k].div);
278 /* SCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
279 if (sh_msiof_spi_div_table[k].div == 1 && brps > 2)
280 continue;
281 if (brps <= 32) /* max of brdv is 32 */
282 break;
283 }
284
285 k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_div_table) - 1);
286 brps = min_t(int, brps, 32);
287
288 scr = sh_msiof_spi_div_table[k].brdv | SCR_BRPS(brps);
289 sh_msiof_write(p, TSCR, scr);
290 if (!(p->master->flags & SPI_MASTER_MUST_TX))
291 sh_msiof_write(p, RSCR, scr);
292}
293
294static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
295{
296 /*
297 * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl
298 * b'000 : 0
299 * b'001 : 100
300 * b'010 : 200
301 * b'011 (SYNCDL only) : 300
302 * b'101 : 50
303 * b'110 : 150
304 */
305 if (dtdl_or_syncdl % 100)
306 return dtdl_or_syncdl / 100 + 5;
307 else
308 return dtdl_or_syncdl / 100;
309}
310
311static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
312{
313 u32 val;
314
315 if (!p->info)
316 return 0;
317
318 /* check if DTDL and SYNCDL is allowed value */
319 if (p->info->dtdl > 200 || p->info->syncdl > 300) {
320 dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
321 return 0;
322 }
323
324 /* check if the sum of DTDL and SYNCDL becomes an integer value */
325 if ((p->info->dtdl + p->info->syncdl) % 100) {
326 dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
327 return 0;
328 }
329
330 val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT;
331 val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT;
332
333 return val;
334}
335
336static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss,
337 u32 cpol, u32 cpha,
338 u32 tx_hi_z, u32 lsb_first, u32 cs_high)
339{
340 u32 tmp;
341 int edge;
342
343 /*
344 * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG
345 * 0 0 10 10 1 1
346 * 0 1 10 10 0 0
347 * 1 0 11 11 0 0
348 * 1 1 11 11 1 1
349 */
350 tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
351 tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
352 tmp |= lsb_first << MDR1_BITLSB_SHIFT;
353 tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
354 if (spi_controller_is_slave(p->master)) {
355 sh_msiof_write(p, TMDR1, tmp | TMDR1_PCON);
356 } else {
357 sh_msiof_write(p, TMDR1,
358 tmp | MDR1_TRMD | TMDR1_PCON |
359 (ss < MAX_SS ? ss : 0) << TMDR1_SYNCCH_SHIFT);
360 }
361 if (p->master->flags & SPI_MASTER_MUST_TX) {
362 /* These bits are reserved if RX needs TX */
363 tmp &= ~0x0000ffff;
364 }
365 sh_msiof_write(p, RMDR1, tmp);
366
367 tmp = 0;
368 tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
369 tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
370
371 edge = cpol ^ !cpha;
372
373 tmp |= edge << CTR_TEDG_SHIFT;
374 tmp |= edge << CTR_REDG_SHIFT;
375 tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
376 sh_msiof_write(p, CTR, tmp);
377}
378
379static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
380 const void *tx_buf, void *rx_buf,
381 u32 bits, u32 words)
382{
383 u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
384
385 if (tx_buf || (p->master->flags & SPI_MASTER_MUST_TX))
386 sh_msiof_write(p, TMDR2, dr2);
387 else
388 sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
389
390 if (rx_buf)
391 sh_msiof_write(p, RMDR2, dr2);
392}
393
394static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
395{
396 sh_msiof_write(p, STR, sh_msiof_read(p, STR));
397}
398
399static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
400 const void *tx_buf, int words, int fs)
401{
402 const u8 *buf_8 = tx_buf;
403 int k;
404
405 for (k = 0; k < words; k++)
406 sh_msiof_write(p, TFDR, buf_8[k] << fs);
407}
408
409static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
410 const void *tx_buf, int words, int fs)
411{
412 const u16 *buf_16 = tx_buf;
413 int k;
414
415 for (k = 0; k < words; k++)
416 sh_msiof_write(p, TFDR, buf_16[k] << fs);
417}
418
419static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
420 const void *tx_buf, int words, int fs)
421{
422 const u16 *buf_16 = tx_buf;
423 int k;
424
425 for (k = 0; k < words; k++)
426 sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
427}
428
429static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
430 const void *tx_buf, int words, int fs)
431{
432 const u32 *buf_32 = tx_buf;
433 int k;
434
435 for (k = 0; k < words; k++)
436 sh_msiof_write(p, TFDR, buf_32[k] << fs);
437}
438
439static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
440 const void *tx_buf, int words, int fs)
441{
442 const u32 *buf_32 = tx_buf;
443 int k;
444
445 for (k = 0; k < words; k++)
446 sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
447}
448
449static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
450 const void *tx_buf, int words, int fs)
451{
452 const u32 *buf_32 = tx_buf;
453 int k;
454
455 for (k = 0; k < words; k++)
456 sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
457}
458
459static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
460 const void *tx_buf, int words, int fs)
461{
462 const u32 *buf_32 = tx_buf;
463 int k;
464
465 for (k = 0; k < words; k++)
466 sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
467}
468
469static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
470 void *rx_buf, int words, int fs)
471{
472 u8 *buf_8 = rx_buf;
473 int k;
474
475 for (k = 0; k < words; k++)
476 buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
477}
478
479static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
480 void *rx_buf, int words, int fs)
481{
482 u16 *buf_16 = rx_buf;
483 int k;
484
485 for (k = 0; k < words; k++)
486 buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
487}
488
489static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
490 void *rx_buf, int words, int fs)
491{
492 u16 *buf_16 = rx_buf;
493 int k;
494
495 for (k = 0; k < words; k++)
496 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
497}
498
499static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
500 void *rx_buf, int words, int fs)
501{
502 u32 *buf_32 = rx_buf;
503 int k;
504
505 for (k = 0; k < words; k++)
506 buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
507}
508
509static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
510 void *rx_buf, int words, int fs)
511{
512 u32 *buf_32 = rx_buf;
513 int k;
514
515 for (k = 0; k < words; k++)
516 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
517}
518
519static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
520 void *rx_buf, int words, int fs)
521{
522 u32 *buf_32 = rx_buf;
523 int k;
524
525 for (k = 0; k < words; k++)
526 buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
527}
528
529static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
530 void *rx_buf, int words, int fs)
531{
532 u32 *buf_32 = rx_buf;
533 int k;
534
535 for (k = 0; k < words; k++)
536 put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
537}
538
539static int sh_msiof_spi_setup(struct spi_device *spi)
540{
541 struct device_node *np = spi->master->dev.of_node;
542 struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
543 u32 clr, set, tmp;
544
545 if (!np) {
546 /*
547 * Use spi->controller_data for CS (same strategy as spi_gpio),
548 * if any. otherwise let HW control CS
549 */
550 spi->cs_gpio = (uintptr_t)spi->controller_data;
551 }
552
553 if (gpio_is_valid(spi->cs_gpio)) {
554 gpio_direction_output(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
555 return 0;
556 }
557
558 if (spi_controller_is_slave(p->master))
559 return 0;
560
561 if (p->native_cs_inited &&
562 (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH)))
563 return 0;
564
565 /* Configure native chip select mode/polarity early */
566 clr = MDR1_SYNCMD_MASK;
567 set = MDR1_TRMD | TMDR1_PCON | MDR1_SYNCMD_SPI;
568 if (spi->mode & SPI_CS_HIGH)
569 clr |= BIT(MDR1_SYNCAC_SHIFT);
570 else
571 set |= BIT(MDR1_SYNCAC_SHIFT);
572 pm_runtime_get_sync(&p->pdev->dev);
573 tmp = sh_msiof_read(p, TMDR1) & ~clr;
574 sh_msiof_write(p, TMDR1, tmp | set);
575 pm_runtime_put(&p->pdev->dev);
576 p->native_cs_high = spi->mode & SPI_CS_HIGH;
577 p->native_cs_inited = true;
578 return 0;
579}
580
581static int sh_msiof_prepare_message(struct spi_master *master,
582 struct spi_message *msg)
583{
584 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
585 const struct spi_device *spi = msg->spi;
586 u32 ss, cs_high;
587
588 /* Configure pins before asserting CS */
589 if (gpio_is_valid(spi->cs_gpio)) {
590 ss = p->unused_ss;
591 cs_high = p->native_cs_high;
592 } else {
593 ss = spi->chip_select;
594 cs_high = !!(spi->mode & SPI_CS_HIGH);
595 }
596 sh_msiof_spi_set_pin_regs(p, ss, !!(spi->mode & SPI_CPOL),
597 !!(spi->mode & SPI_CPHA),
598 !!(spi->mode & SPI_3WIRE),
599 !!(spi->mode & SPI_LSB_FIRST), cs_high);
600 return 0;
601}
602
603static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
604{
605 bool slave = spi_controller_is_slave(p->master);
606 int ret = 0;
607
608 /* setup clock and rx/tx signals */
609 if (!slave)
610 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
611 if (rx_buf && !ret)
612 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
613 if (!ret)
614 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
615
616 /* start by setting frame bit */
617 if (!ret && !slave)
618 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
619
620 return ret;
621}
622
623static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
624{
625 bool slave = spi_controller_is_slave(p->master);
626 int ret = 0;
627
628 /* shut down frame, rx/tx and clock signals */
629 if (!slave)
630 ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
631 if (!ret)
632 ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
633 if (rx_buf && !ret)
634 ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
635 if (!ret && !slave)
636 ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
637
638 return ret;
639}
640
641static int sh_msiof_slave_abort(struct spi_master *master)
642{
643 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
644
645 p->slave_aborted = true;
646 complete(&p->done);
647 return 0;
648}
649
650static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p)
651{
652 if (spi_controller_is_slave(p->master)) {
653 if (wait_for_completion_interruptible(&p->done) ||
654 p->slave_aborted) {
655 dev_dbg(&p->pdev->dev, "interrupted\n");
656 return -EINTR;
657 }
658 } else {
659 if (!wait_for_completion_timeout(&p->done, HZ)) {
660 dev_err(&p->pdev->dev, "timeout\n");
661 return -ETIMEDOUT;
662 }
663 }
664
665 return 0;
666}
667
668static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
669 void (*tx_fifo)(struct sh_msiof_spi_priv *,
670 const void *, int, int),
671 void (*rx_fifo)(struct sh_msiof_spi_priv *,
672 void *, int, int),
673 const void *tx_buf, void *rx_buf,
674 int words, int bits)
675{
676 int fifo_shift;
677 int ret;
678
679 /* limit maximum word transfer to rx/tx fifo size */
680 if (tx_buf)
681 words = min_t(int, words, p->tx_fifo_size);
682 if (rx_buf)
683 words = min_t(int, words, p->rx_fifo_size);
684
685 /* the fifo contents need shifting */
686 fifo_shift = 32 - bits;
687
688 /* default FIFO watermarks for PIO */
689 sh_msiof_write(p, FCTR, 0);
690
691 /* setup msiof transfer mode registers */
692 sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
693 sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
694
695 /* write tx fifo */
696 if (tx_buf)
697 tx_fifo(p, tx_buf, words, fifo_shift);
698
699 reinit_completion(&p->done);
700 p->slave_aborted = false;
701
702 ret = sh_msiof_spi_start(p, rx_buf);
703 if (ret) {
704 dev_err(&p->pdev->dev, "failed to start hardware\n");
705 goto stop_ier;
706 }
707
708 /* wait for tx fifo to be emptied / rx fifo to be filled */
709 ret = sh_msiof_wait_for_completion(p);
710 if (ret)
711 goto stop_reset;
712
713 /* read rx fifo */
714 if (rx_buf)
715 rx_fifo(p, rx_buf, words, fifo_shift);
716
717 /* clear status bits */
718 sh_msiof_reset_str(p);
719
720 ret = sh_msiof_spi_stop(p, rx_buf);
721 if (ret) {
722 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
723 return ret;
724 }
725
726 return words;
727
728stop_reset:
729 sh_msiof_reset_str(p);
730 sh_msiof_spi_stop(p, rx_buf);
731stop_ier:
732 sh_msiof_write(p, IER, 0);
733 return ret;
734}
735
736static void sh_msiof_dma_complete(void *arg)
737{
738 struct sh_msiof_spi_priv *p = arg;
739
740 sh_msiof_write(p, IER, 0);
741 complete(&p->done);
742}
743
744static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
745 void *rx, unsigned int len)
746{
747 u32 ier_bits = 0;
748 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
749 dma_cookie_t cookie;
750 int ret;
751
752 /* First prepare and submit the DMA request(s), as this may fail */
753 if (rx) {
754 ier_bits |= IER_RDREQE | IER_RDMAE;
755 desc_rx = dmaengine_prep_slave_single(p->master->dma_rx,
756 p->rx_dma_addr, len, DMA_DEV_TO_MEM,
757 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
758 if (!desc_rx)
759 return -EAGAIN;
760
761 desc_rx->callback = sh_msiof_dma_complete;
762 desc_rx->callback_param = p;
763 cookie = dmaengine_submit(desc_rx);
764 if (dma_submit_error(cookie))
765 return cookie;
766 }
767
768 if (tx) {
769 ier_bits |= IER_TDREQE | IER_TDMAE;
770 dma_sync_single_for_device(p->master->dma_tx->device->dev,
771 p->tx_dma_addr, len, DMA_TO_DEVICE);
772 desc_tx = dmaengine_prep_slave_single(p->master->dma_tx,
773 p->tx_dma_addr, len, DMA_MEM_TO_DEV,
774 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
775 if (!desc_tx) {
776 ret = -EAGAIN;
777 goto no_dma_tx;
778 }
779
780 if (rx) {
781 /* No callback */
782 desc_tx->callback = NULL;
783 } else {
784 desc_tx->callback = sh_msiof_dma_complete;
785 desc_tx->callback_param = p;
786 }
787 cookie = dmaengine_submit(desc_tx);
788 if (dma_submit_error(cookie)) {
789 ret = cookie;
790 goto no_dma_tx;
791 }
792 }
793
794 /* 1 stage FIFO watermarks for DMA */
795 sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
796
797 /* setup msiof transfer mode registers (32-bit words) */
798 sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
799
800 sh_msiof_write(p, IER, ier_bits);
801
802 reinit_completion(&p->done);
803 p->slave_aborted = false;
804
805 /* Now start DMA */
806 if (rx)
807 dma_async_issue_pending(p->master->dma_rx);
808 if (tx)
809 dma_async_issue_pending(p->master->dma_tx);
810
811 ret = sh_msiof_spi_start(p, rx);
812 if (ret) {
813 dev_err(&p->pdev->dev, "failed to start hardware\n");
814 goto stop_dma;
815 }
816
817 /* wait for tx/rx DMA completion */
818 ret = sh_msiof_wait_for_completion(p);
819 if (ret)
820 goto stop_reset;
821
822 if (!rx) {
823 reinit_completion(&p->done);
824 sh_msiof_write(p, IER, IER_TEOFE);
825
826 /* wait for tx fifo to be emptied */
827 ret = sh_msiof_wait_for_completion(p);
828 if (ret)
829 goto stop_reset;
830 }
831
832 /* clear status bits */
833 sh_msiof_reset_str(p);
834
835 ret = sh_msiof_spi_stop(p, rx);
836 if (ret) {
837 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
838 return ret;
839 }
840
841 if (rx)
842 dma_sync_single_for_cpu(p->master->dma_rx->device->dev,
843 p->rx_dma_addr, len,
844 DMA_FROM_DEVICE);
845
846 return 0;
847
848stop_reset:
849 sh_msiof_reset_str(p);
850 sh_msiof_spi_stop(p, rx);
851stop_dma:
852 if (tx)
853 dmaengine_terminate_all(p->master->dma_tx);
854no_dma_tx:
855 if (rx)
856 dmaengine_terminate_all(p->master->dma_rx);
857 sh_msiof_write(p, IER, 0);
858 return ret;
859}
860
861static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
862{
863 /* src or dst can be unaligned, but not both */
864 if ((unsigned long)src & 3) {
865 while (words--) {
866 *dst++ = swab32(get_unaligned(src));
867 src++;
868 }
869 } else if ((unsigned long)dst & 3) {
870 while (words--) {
871 put_unaligned(swab32(*src++), dst);
872 dst++;
873 }
874 } else {
875 while (words--)
876 *dst++ = swab32(*src++);
877 }
878}
879
880static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
881{
882 /* src or dst can be unaligned, but not both */
883 if ((unsigned long)src & 3) {
884 while (words--) {
885 *dst++ = swahw32(get_unaligned(src));
886 src++;
887 }
888 } else if ((unsigned long)dst & 3) {
889 while (words--) {
890 put_unaligned(swahw32(*src++), dst);
891 dst++;
892 }
893 } else {
894 while (words--)
895 *dst++ = swahw32(*src++);
896 }
897}
898
899static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
900{
901 memcpy(dst, src, words * 4);
902}
903
904static int sh_msiof_transfer_one(struct spi_master *master,
905 struct spi_device *spi,
906 struct spi_transfer *t)
907{
908 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
909 void (*copy32)(u32 *, const u32 *, unsigned int);
910 void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
911 void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
912 const void *tx_buf = t->tx_buf;
913 void *rx_buf = t->rx_buf;
914 unsigned int len = t->len;
915 unsigned int bits = t->bits_per_word;
916 unsigned int bytes_per_word;
917 unsigned int words;
918 int n;
919 bool swab;
920 int ret;
921
922 /* setup clocks (clock already enabled in chipselect()) */
923 if (!spi_controller_is_slave(p->master))
924 sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
925
926 while (master->dma_tx && len > 15) {
927 /*
928 * DMA supports 32-bit words only, hence pack 8-bit and 16-bit
929 * words, with byte resp. word swapping.
930 */
931 unsigned int l = 0;
932
933 if (tx_buf)
934 l = min(len, p->tx_fifo_size * 4);
935 if (rx_buf)
936 l = min(len, p->rx_fifo_size * 4);
937
938 if (bits <= 8) {
939 if (l & 3)
940 break;
941 copy32 = copy_bswap32;
942 } else if (bits <= 16) {
943 if (l & 3)
944 break;
945 copy32 = copy_wswap32;
946 } else {
947 copy32 = copy_plain32;
948 }
949
950 if (tx_buf)
951 copy32(p->tx_dma_page, tx_buf, l / 4);
952
953 ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
954 if (ret == -EAGAIN) {
955 dev_warn_once(&p->pdev->dev,
956 "DMA not available, falling back to PIO\n");
957 break;
958 }
959 if (ret)
960 return ret;
961
962 if (rx_buf) {
963 copy32(rx_buf, p->rx_dma_page, l / 4);
964 rx_buf += l;
965 }
966 if (tx_buf)
967 tx_buf += l;
968
969 len -= l;
970 if (!len)
971 return 0;
972 }
973
974 if (bits <= 8 && len > 15 && !(len & 3)) {
975 bits = 32;
976 swab = true;
977 } else {
978 swab = false;
979 }
980
981 /* setup bytes per word and fifo read/write functions */
982 if (bits <= 8) {
983 bytes_per_word = 1;
984 tx_fifo = sh_msiof_spi_write_fifo_8;
985 rx_fifo = sh_msiof_spi_read_fifo_8;
986 } else if (bits <= 16) {
987 bytes_per_word = 2;
988 if ((unsigned long)tx_buf & 0x01)
989 tx_fifo = sh_msiof_spi_write_fifo_16u;
990 else
991 tx_fifo = sh_msiof_spi_write_fifo_16;
992
993 if ((unsigned long)rx_buf & 0x01)
994 rx_fifo = sh_msiof_spi_read_fifo_16u;
995 else
996 rx_fifo = sh_msiof_spi_read_fifo_16;
997 } else if (swab) {
998 bytes_per_word = 4;
999 if ((unsigned long)tx_buf & 0x03)
1000 tx_fifo = sh_msiof_spi_write_fifo_s32u;
1001 else
1002 tx_fifo = sh_msiof_spi_write_fifo_s32;
1003
1004 if ((unsigned long)rx_buf & 0x03)
1005 rx_fifo = sh_msiof_spi_read_fifo_s32u;
1006 else
1007 rx_fifo = sh_msiof_spi_read_fifo_s32;
1008 } else {
1009 bytes_per_word = 4;
1010 if ((unsigned long)tx_buf & 0x03)
1011 tx_fifo = sh_msiof_spi_write_fifo_32u;
1012 else
1013 tx_fifo = sh_msiof_spi_write_fifo_32;
1014
1015 if ((unsigned long)rx_buf & 0x03)
1016 rx_fifo = sh_msiof_spi_read_fifo_32u;
1017 else
1018 rx_fifo = sh_msiof_spi_read_fifo_32;
1019 }
1020
1021 /* transfer in fifo sized chunks */
1022 words = len / bytes_per_word;
1023
1024 while (words > 0) {
1025 n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
1026 words, bits);
1027 if (n < 0)
1028 return n;
1029
1030 if (tx_buf)
1031 tx_buf += n * bytes_per_word;
1032 if (rx_buf)
1033 rx_buf += n * bytes_per_word;
1034 words -= n;
1035 }
1036
1037 return 0;
1038}
1039
1040static const struct sh_msiof_chipdata sh_data = {
1041 .tx_fifo_size = 64,
1042 .rx_fifo_size = 64,
1043 .master_flags = 0,
1044 .min_div = 1,
1045};
1046
1047static const struct sh_msiof_chipdata rcar_gen2_data = {
1048 .tx_fifo_size = 64,
1049 .rx_fifo_size = 64,
1050 .master_flags = SPI_MASTER_MUST_TX,
1051 .min_div = 1,
1052};
1053
1054static const struct sh_msiof_chipdata rcar_gen3_data = {
1055 .tx_fifo_size = 64,
1056 .rx_fifo_size = 64,
1057 .master_flags = SPI_MASTER_MUST_TX,
1058 .min_div = 2,
1059};
1060
1061static const struct of_device_id sh_msiof_match[] = {
1062 { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
1063 { .compatible = "renesas,msiof-r8a7743", .data = &rcar_gen2_data },
1064 { .compatible = "renesas,msiof-r8a7745", .data = &rcar_gen2_data },
1065 { .compatible = "renesas,msiof-r8a7790", .data = &rcar_gen2_data },
1066 { .compatible = "renesas,msiof-r8a7791", .data = &rcar_gen2_data },
1067 { .compatible = "renesas,msiof-r8a7792", .data = &rcar_gen2_data },
1068 { .compatible = "renesas,msiof-r8a7793", .data = &rcar_gen2_data },
1069 { .compatible = "renesas,msiof-r8a7794", .data = &rcar_gen2_data },
1070 { .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data },
1071 { .compatible = "renesas,msiof-r8a7796", .data = &rcar_gen3_data },
1072 { .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data },
1073 { .compatible = "renesas,sh-msiof", .data = &sh_data }, /* Deprecated */
1074 {},
1075};
1076MODULE_DEVICE_TABLE(of, sh_msiof_match);
1077
1078#ifdef CONFIG_OF
1079static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1080{
1081 struct sh_msiof_spi_info *info;
1082 struct device_node *np = dev->of_node;
1083 u32 num_cs = 1;
1084
1085 info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
1086 if (!info)
1087 return NULL;
1088
1089 info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE
1090 : MSIOF_SPI_MASTER;
1091
1092 /* Parse the MSIOF properties */
1093 if (info->mode == MSIOF_SPI_MASTER)
1094 of_property_read_u32(np, "num-cs", &num_cs);
1095 of_property_read_u32(np, "renesas,tx-fifo-size",
1096 &info->tx_fifo_override);
1097 of_property_read_u32(np, "renesas,rx-fifo-size",
1098 &info->rx_fifo_override);
1099 of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1100 of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
1101
1102 info->num_chipselect = num_cs;
1103
1104 return info;
1105}
1106#else
1107static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1108{
1109 return NULL;
1110}
1111#endif
1112
1113static int sh_msiof_get_cs_gpios(struct sh_msiof_spi_priv *p)
1114{
1115 struct device *dev = &p->pdev->dev;
1116 unsigned int used_ss_mask = 0;
1117 unsigned int cs_gpios = 0;
1118 unsigned int num_cs, i;
1119 int ret;
1120
1121 ret = gpiod_count(dev, "cs");
1122 if (ret <= 0)
1123 return 0;
1124
1125 num_cs = max_t(unsigned int, ret, p->master->num_chipselect);
1126 for (i = 0; i < num_cs; i++) {
1127 struct gpio_desc *gpiod;
1128
1129 gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1130 if (!IS_ERR(gpiod)) {
1131 cs_gpios++;
1132 continue;
1133 }
1134
1135 if (PTR_ERR(gpiod) != -ENOENT)
1136 return PTR_ERR(gpiod);
1137
1138 if (i >= MAX_SS) {
1139 dev_err(dev, "Invalid native chip select %d\n", i);
1140 return -EINVAL;
1141 }
1142 used_ss_mask |= BIT(i);
1143 }
1144 p->unused_ss = ffz(used_ss_mask);
1145 if (cs_gpios && p->unused_ss >= MAX_SS) {
1146 dev_err(dev, "No unused native chip select available\n");
1147 return -EINVAL;
1148 }
1149 return 0;
1150}
1151
1152static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1153 enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1154{
1155 dma_cap_mask_t mask;
1156 struct dma_chan *chan;
1157 struct dma_slave_config cfg;
1158 int ret;
1159
1160 dma_cap_zero(mask);
1161 dma_cap_set(DMA_SLAVE, mask);
1162
1163 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1164 (void *)(unsigned long)id, dev,
1165 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1166 if (!chan) {
1167 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1168 return NULL;
1169 }
1170
1171 memset(&cfg, 0, sizeof(cfg));
1172 cfg.direction = dir;
1173 if (dir == DMA_MEM_TO_DEV) {
1174 cfg.dst_addr = port_addr;
1175 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1176 } else {
1177 cfg.src_addr = port_addr;
1178 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1179 }
1180
1181 ret = dmaengine_slave_config(chan, &cfg);
1182 if (ret) {
1183 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1184 dma_release_channel(chan);
1185 return NULL;
1186 }
1187
1188 return chan;
1189}
1190
1191static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1192{
1193 struct platform_device *pdev = p->pdev;
1194 struct device *dev = &pdev->dev;
1195 const struct sh_msiof_spi_info *info = dev_get_platdata(dev);
1196 unsigned int dma_tx_id, dma_rx_id;
1197 const struct resource *res;
1198 struct spi_master *master;
1199 struct device *tx_dev, *rx_dev;
1200
1201 if (dev->of_node) {
1202 /* In the OF case we will get the slave IDs from the DT */
1203 dma_tx_id = 0;
1204 dma_rx_id = 0;
1205 } else if (info && info->dma_tx_id && info->dma_rx_id) {
1206 dma_tx_id = info->dma_tx_id;
1207 dma_rx_id = info->dma_rx_id;
1208 } else {
1209 /* The driver assumes no error */
1210 return 0;
1211 }
1212
1213 /* The DMA engine uses the second register set, if present */
1214 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1215 if (!res)
1216 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1217
1218 master = p->master;
1219 master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1220 dma_tx_id,
1221 res->start + TFDR);
1222 if (!master->dma_tx)
1223 return -ENODEV;
1224
1225 master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1226 dma_rx_id,
1227 res->start + RFDR);
1228 if (!master->dma_rx)
1229 goto free_tx_chan;
1230
1231 p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1232 if (!p->tx_dma_page)
1233 goto free_rx_chan;
1234
1235 p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1236 if (!p->rx_dma_page)
1237 goto free_tx_page;
1238
1239 tx_dev = master->dma_tx->device->dev;
1240 p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1241 DMA_TO_DEVICE);
1242 if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1243 goto free_rx_page;
1244
1245 rx_dev = master->dma_rx->device->dev;
1246 p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1247 DMA_FROM_DEVICE);
1248 if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1249 goto unmap_tx_page;
1250
1251 dev_info(dev, "DMA available");
1252 return 0;
1253
1254unmap_tx_page:
1255 dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1256free_rx_page:
1257 free_page((unsigned long)p->rx_dma_page);
1258free_tx_page:
1259 free_page((unsigned long)p->tx_dma_page);
1260free_rx_chan:
1261 dma_release_channel(master->dma_rx);
1262free_tx_chan:
1263 dma_release_channel(master->dma_tx);
1264 master->dma_tx = NULL;
1265 return -ENODEV;
1266}
1267
1268static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1269{
1270 struct spi_master *master = p->master;
1271
1272 if (!master->dma_tx)
1273 return;
1274
1275 dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr,
1276 PAGE_SIZE, DMA_FROM_DEVICE);
1277 dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr,
1278 PAGE_SIZE, DMA_TO_DEVICE);
1279 free_page((unsigned long)p->rx_dma_page);
1280 free_page((unsigned long)p->tx_dma_page);
1281 dma_release_channel(master->dma_rx);
1282 dma_release_channel(master->dma_tx);
1283}
1284
1285static int sh_msiof_spi_probe(struct platform_device *pdev)
1286{
1287 struct resource *r;
1288 struct spi_master *master;
1289 const struct sh_msiof_chipdata *chipdata;
1290 struct sh_msiof_spi_info *info;
1291 struct sh_msiof_spi_priv *p;
1292 int i;
1293 int ret;
1294
1295 chipdata = of_device_get_match_data(&pdev->dev);
1296 if (chipdata) {
1297 info = sh_msiof_spi_parse_dt(&pdev->dev);
1298 } else {
1299 chipdata = (const void *)pdev->id_entry->driver_data;
1300 info = dev_get_platdata(&pdev->dev);
1301 }
1302
1303 if (!info) {
1304 dev_err(&pdev->dev, "failed to obtain device info\n");
1305 return -ENXIO;
1306 }
1307
1308 if (info->mode == MSIOF_SPI_SLAVE)
1309 master = spi_alloc_slave(&pdev->dev,
1310 sizeof(struct sh_msiof_spi_priv));
1311 else
1312 master = spi_alloc_master(&pdev->dev,
1313 sizeof(struct sh_msiof_spi_priv));
1314 if (master == NULL)
1315 return -ENOMEM;
1316
1317 p = spi_master_get_devdata(master);
1318
1319 platform_set_drvdata(pdev, p);
1320 p->master = master;
1321 p->info = info;
1322 p->min_div = chipdata->min_div;
1323
1324 init_completion(&p->done);
1325
1326 p->clk = devm_clk_get(&pdev->dev, NULL);
1327 if (IS_ERR(p->clk)) {
1328 dev_err(&pdev->dev, "cannot get clock\n");
1329 ret = PTR_ERR(p->clk);
1330 goto err1;
1331 }
1332
1333 i = platform_get_irq(pdev, 0);
1334 if (i < 0) {
1335 dev_err(&pdev->dev, "cannot get platform IRQ\n");
1336 ret = -ENOENT;
1337 goto err1;
1338 }
1339
1340 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1341 p->mapbase = devm_ioremap_resource(&pdev->dev, r);
1342 if (IS_ERR(p->mapbase)) {
1343 ret = PTR_ERR(p->mapbase);
1344 goto err1;
1345 }
1346
1347 ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1348 dev_name(&pdev->dev), p);
1349 if (ret) {
1350 dev_err(&pdev->dev, "unable to request irq\n");
1351 goto err1;
1352 }
1353
1354 p->pdev = pdev;
1355 pm_runtime_enable(&pdev->dev);
1356
1357 /* Platform data may override FIFO sizes */
1358 p->tx_fifo_size = chipdata->tx_fifo_size;
1359 p->rx_fifo_size = chipdata->rx_fifo_size;
1360 if (p->info->tx_fifo_override)
1361 p->tx_fifo_size = p->info->tx_fifo_override;
1362 if (p->info->rx_fifo_override)
1363 p->rx_fifo_size = p->info->rx_fifo_override;
1364
1365 /* Setup GPIO chip selects */
1366 master->num_chipselect = p->info->num_chipselect;
1367 ret = sh_msiof_get_cs_gpios(p);
1368 if (ret)
1369 goto err1;
1370
1371 /* init master code */
1372 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1373 master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1374 master->flags = chipdata->master_flags;
1375 master->bus_num = pdev->id;
1376 master->dev.of_node = pdev->dev.of_node;
1377 master->setup = sh_msiof_spi_setup;
1378 master->prepare_message = sh_msiof_prepare_message;
1379 master->slave_abort = sh_msiof_slave_abort;
1380 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
1381 master->auto_runtime_pm = true;
1382 master->transfer_one = sh_msiof_transfer_one;
1383
1384 ret = sh_msiof_request_dma(p);
1385 if (ret < 0)
1386 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1387
1388 ret = devm_spi_register_master(&pdev->dev, master);
1389 if (ret < 0) {
1390 dev_err(&pdev->dev, "spi_register_master error.\n");
1391 goto err2;
1392 }
1393
1394 return 0;
1395
1396 err2:
1397 sh_msiof_release_dma(p);
1398 pm_runtime_disable(&pdev->dev);
1399 err1:
1400 spi_master_put(master);
1401 return ret;
1402}
1403
1404static int sh_msiof_spi_remove(struct platform_device *pdev)
1405{
1406 struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1407
1408 sh_msiof_release_dma(p);
1409 pm_runtime_disable(&pdev->dev);
1410 return 0;
1411}
1412
1413static const struct platform_device_id spi_driver_ids[] = {
1414 { "spi_sh_msiof", (kernel_ulong_t)&sh_data },
1415 {},
1416};
1417MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1418
1419static struct platform_driver sh_msiof_spi_drv = {
1420 .probe = sh_msiof_spi_probe,
1421 .remove = sh_msiof_spi_remove,
1422 .id_table = spi_driver_ids,
1423 .driver = {
1424 .name = "spi_sh_msiof",
1425 .of_match_table = of_match_ptr(sh_msiof_match),
1426 },
1427};
1428module_platform_driver(sh_msiof_spi_drv);
1429
1430MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
1431MODULE_AUTHOR("Magnus Damm");
1432MODULE_LICENSE("GPL v2");
1433MODULE_ALIAS("platform:spi_sh_msiof");