Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2009-2010 Intel Corporation
   4 *
 
 
 
 
 
 
 
 
 
 
 
 
   5 * Authors:
   6 *	Jesse Barnes <jbarnes@virtuousgeek.org>
   7 */
   8
   9/*
  10 * Some Intel Ibex Peak based platforms support so-called "intelligent
  11 * power sharing", which allows the CPU and GPU to cooperate to maximize
  12 * performance within a given TDP (thermal design point).  This driver
  13 * performs the coordination between the CPU and GPU, monitors thermal and
  14 * power statistics in the platform, and initializes power monitoring
  15 * hardware.  It also provides a few tunables to control behavior.  Its
  16 * primary purpose is to safely allow CPU and GPU turbo modes to be enabled
  17 * by tracking power and thermal budget; secondarily it can boost turbo
  18 * performance by allocating more power or thermal budget to the CPU or GPU
  19 * based on available headroom and activity.
  20 *
  21 * The basic algorithm is driven by a 5s moving average of temperature.  If
  22 * thermal headroom is available, the CPU and/or GPU power clamps may be
  23 * adjusted upwards.  If we hit the thermal ceiling or a thermal trigger,
  24 * we scale back the clamp.  Aside from trigger events (when we're critically
  25 * close or over our TDP) we don't adjust the clamps more than once every
  26 * five seconds.
  27 *
  28 * The thermal device (device 31, function 6) has a set of registers that
  29 * are updated by the ME firmware.  The ME should also take the clamp values
  30 * written to those registers and write them to the CPU, but we currently
  31 * bypass that functionality and write the CPU MSR directly.
  32 *
  33 * UNSUPPORTED:
  34 *   - dual MCP configs
  35 *
  36 * TODO:
  37 *   - handle CPU hotplug
  38 *   - provide turbo enable/disable api
  39 *
  40 * Related documents:
  41 *   - CDI 403777, 403778 - Auburndale EDS vol 1 & 2
  42 *   - CDI 401376 - Ibex Peak EDS
  43 *   - ref 26037, 26641 - IPS BIOS spec
  44 *   - ref 26489 - Nehalem BIOS writer's guide
  45 *   - ref 26921 - Ibex Peak BIOS Specification
  46 */
  47
  48#include <linux/debugfs.h>
  49#include <linux/delay.h>
  50#include <linux/interrupt.h>
  51#include <linux/kernel.h>
  52#include <linux/kthread.h>
  53#include <linux/module.h>
  54#include <linux/pci.h>
  55#include <linux/sched.h>
  56#include <linux/sched/loadavg.h>
  57#include <linux/seq_file.h>
  58#include <linux/string.h>
  59#include <linux/tick.h>
  60#include <linux/timer.h>
  61#include <linux/dmi.h>
  62#include <drm/intel/i915_drm.h>
  63#include <asm/msr.h>
  64#include <asm/processor.h>
  65#include <asm/cpu_device_id.h>
  66#include "intel_ips.h"
  67
  68#include <linux/io-64-nonatomic-lo-hi.h>
  69
  70#define PCI_DEVICE_ID_INTEL_THERMAL_SENSOR 0x3b32
  71
  72/*
  73 * Package level MSRs for monitor/control
  74 */
  75#define PLATFORM_INFO	0xce
  76#define   PLATFORM_TDP		(1<<29)
  77#define   PLATFORM_RATIO	(1<<28)
  78
  79#define IA32_MISC_ENABLE	0x1a0
  80#define   IA32_MISC_TURBO_EN	(1ULL<<38)
  81
  82#define TURBO_POWER_CURRENT_LIMIT	0x1ac
  83#define   TURBO_TDC_OVR_EN	(1UL<<31)
  84#define   TURBO_TDC_MASK	(0x000000007fff0000UL)
  85#define   TURBO_TDC_SHIFT	(16)
  86#define   TURBO_TDP_OVR_EN	(1UL<<15)
  87#define   TURBO_TDP_MASK	(0x0000000000003fffUL)
  88
  89/*
  90 * Core/thread MSRs for monitoring
  91 */
  92#define IA32_PERF_CTL		0x199
  93#define   IA32_PERF_TURBO_DIS	(1ULL<<32)
  94
  95/*
  96 * Thermal PCI device regs
  97 */
  98#define THM_CFG_TBAR	0x10
  99#define THM_CFG_TBAR_HI	0x14
 100
 101#define THM_TSIU	0x00
 102#define THM_TSE		0x01
 103#define   TSE_EN	0xb8
 104#define THM_TSS		0x02
 105#define THM_TSTR	0x03
 106#define THM_TSTTP	0x04
 107#define THM_TSCO	0x08
 108#define THM_TSES	0x0c
 109#define THM_TSGPEN	0x0d
 110#define   TSGPEN_HOT_LOHI	(1<<1)
 111#define   TSGPEN_CRIT_LOHI	(1<<2)
 112#define THM_TSPC	0x0e
 113#define THM_PPEC	0x10
 114#define THM_CTA		0x12
 115#define THM_PTA		0x14
 116#define   PTA_SLOPE_MASK	(0xff00)
 117#define   PTA_SLOPE_SHIFT	8
 118#define   PTA_OFFSET_MASK	(0x00ff)
 119#define THM_MGTA	0x16
 120#define   MGTA_SLOPE_MASK	(0xff00)
 121#define   MGTA_SLOPE_SHIFT	8
 122#define   MGTA_OFFSET_MASK	(0x00ff)
 123#define THM_TRC		0x1a
 124#define   TRC_CORE2_EN	(1<<15)
 125#define   TRC_THM_EN	(1<<12)
 126#define   TRC_C6_WAR	(1<<8)
 127#define   TRC_CORE1_EN	(1<<7)
 128#define   TRC_CORE_PWR	(1<<6)
 129#define   TRC_PCH_EN	(1<<5)
 130#define   TRC_MCH_EN	(1<<4)
 131#define   TRC_DIMM4	(1<<3)
 132#define   TRC_DIMM3	(1<<2)
 133#define   TRC_DIMM2	(1<<1)
 134#define   TRC_DIMM1	(1<<0)
 135#define THM_TES		0x20
 136#define THM_TEN		0x21
 137#define   TEN_UPDATE_EN	1
 138#define THM_PSC		0x24
 139#define   PSC_NTG	(1<<0) /* No GFX turbo support */
 140#define   PSC_NTPC	(1<<1) /* No CPU turbo support */
 141#define   PSC_PP_DEF	(0<<2) /* Perf policy up to driver */
 142#define   PSP_PP_PC	(1<<2) /* BIOS prefers CPU perf */
 143#define   PSP_PP_BAL	(2<<2) /* BIOS wants balanced perf */
 144#define   PSP_PP_GFX	(3<<2) /* BIOS prefers GFX perf */
 145#define   PSP_PBRT	(1<<4) /* BIOS run time support */
 146#define THM_CTV1	0x30
 147#define   CTV_TEMP_ERROR (1<<15)
 148#define   CTV_TEMP_MASK	0x3f
 149#define   CTV_
 150#define THM_CTV2	0x32
 151#define THM_CEC		0x34 /* undocumented power accumulator in joules */
 152#define THM_AE		0x3f
 153#define THM_HTS		0x50 /* 32 bits */
 154#define   HTS_PCPL_MASK	(0x7fe00000)
 155#define   HTS_PCPL_SHIFT 21
 156#define   HTS_GPL_MASK  (0x001ff000)
 157#define   HTS_GPL_SHIFT 12
 158#define   HTS_PP_MASK	(0x00000c00)
 159#define   HTS_PP_SHIFT  10
 160#define   HTS_PP_DEF	0
 161#define   HTS_PP_PROC	1
 162#define   HTS_PP_BAL	2
 163#define   HTS_PP_GFX	3
 164#define   HTS_PCTD_DIS	(1<<9)
 165#define   HTS_GTD_DIS	(1<<8)
 166#define   HTS_PTL_MASK  (0x000000fe)
 167#define   HTS_PTL_SHIFT 1
 168#define   HTS_NVV	(1<<0)
 169#define THM_HTSHI	0x54 /* 16 bits */
 170#define   HTS2_PPL_MASK		(0x03ff)
 171#define   HTS2_PRST_MASK	(0x3c00)
 172#define   HTS2_PRST_SHIFT	10
 173#define   HTS2_PRST_UNLOADED	0
 174#define   HTS2_PRST_RUNNING	1
 175#define   HTS2_PRST_TDISOP	2 /* turbo disabled due to power */
 176#define   HTS2_PRST_TDISHT	3 /* turbo disabled due to high temp */
 177#define   HTS2_PRST_TDISUSR	4 /* user disabled turbo */
 178#define   HTS2_PRST_TDISPLAT	5 /* platform disabled turbo */
 179#define   HTS2_PRST_TDISPM	6 /* power management disabled turbo */
 180#define   HTS2_PRST_TDISERR	7 /* some kind of error disabled turbo */
 181#define THM_PTL		0x56
 182#define THM_MGTV	0x58
 183#define   TV_MASK	0x000000000000ff00
 184#define   TV_SHIFT	8
 185#define THM_PTV		0x60
 186#define   PTV_MASK	0x00ff
 187#define THM_MMGPC	0x64
 188#define THM_MPPC	0x66
 189#define THM_MPCPC	0x68
 190#define THM_TSPIEN	0x82
 191#define   TSPIEN_AUX_LOHI	(1<<0)
 192#define   TSPIEN_HOT_LOHI	(1<<1)
 193#define   TSPIEN_CRIT_LOHI	(1<<2)
 194#define   TSPIEN_AUX2_LOHI	(1<<3)
 195#define THM_TSLOCK	0x83
 196#define THM_ATR		0x84
 197#define THM_TOF		0x87
 198#define THM_STS		0x98
 199#define   STS_PCPL_MASK		(0x7fe00000)
 200#define   STS_PCPL_SHIFT	21
 201#define   STS_GPL_MASK		(0x001ff000)
 202#define   STS_GPL_SHIFT		12
 203#define   STS_PP_MASK		(0x00000c00)
 204#define   STS_PP_SHIFT		10
 205#define   STS_PP_DEF		0
 206#define   STS_PP_PROC		1
 207#define   STS_PP_BAL		2
 208#define   STS_PP_GFX		3
 209#define   STS_PCTD_DIS		(1<<9)
 210#define   STS_GTD_DIS		(1<<8)
 211#define   STS_PTL_MASK		(0x000000fe)
 212#define   STS_PTL_SHIFT		1
 213#define   STS_NVV		(1<<0)
 214#define THM_SEC		0x9c
 215#define   SEC_ACK	(1<<0)
 216#define THM_TC3		0xa4
 217#define THM_TC1		0xa8
 218#define   STS_PPL_MASK		(0x0003ff00)
 219#define   STS_PPL_SHIFT		16
 220#define THM_TC2		0xac
 221#define THM_DTV		0xb0
 222#define THM_ITV		0xd8
 223#define   ITV_ME_SEQNO_MASK 0x00ff0000 /* ME should update every ~200ms */
 224#define   ITV_ME_SEQNO_SHIFT (16)
 225#define   ITV_MCH_TEMP_MASK 0x0000ff00
 226#define   ITV_MCH_TEMP_SHIFT (8)
 227#define   ITV_PCH_TEMP_MASK 0x000000ff
 228
 229#define thm_readb(off) readb(ips->regmap + (off))
 230#define thm_readw(off) readw(ips->regmap + (off))
 231#define thm_readl(off) readl(ips->regmap + (off))
 232#define thm_readq(off) readq(ips->regmap + (off))
 233
 234#define thm_writeb(off, val) writeb((val), ips->regmap + (off))
 235#define thm_writew(off, val) writew((val), ips->regmap + (off))
 236#define thm_writel(off, val) writel((val), ips->regmap + (off))
 237
 238static const int IPS_ADJUST_PERIOD = 5000; /* ms */
 239static bool late_i915_load = false;
 240
 241/* For initial average collection */
 242static const int IPS_SAMPLE_PERIOD = 200; /* ms */
 243static const int IPS_SAMPLE_WINDOW = 5000; /* 5s moving window of samples */
 244#define IPS_SAMPLE_COUNT (IPS_SAMPLE_WINDOW / IPS_SAMPLE_PERIOD)
 245
 246/* Per-SKU limits */
 247struct ips_mcp_limits {
 248	int mcp_power_limit; /* mW units */
 249	int core_power_limit;
 250	int mch_power_limit;
 251	int core_temp_limit; /* degrees C */
 252	int mch_temp_limit;
 253};
 254
 255/* Max temps are -10 degrees C to avoid PROCHOT# */
 256
 257static struct ips_mcp_limits ips_sv_limits = {
 258	.mcp_power_limit = 35000,
 259	.core_power_limit = 29000,
 260	.mch_power_limit = 20000,
 261	.core_temp_limit = 95,
 262	.mch_temp_limit = 90
 263};
 264
 265static struct ips_mcp_limits ips_lv_limits = {
 266	.mcp_power_limit = 25000,
 267	.core_power_limit = 21000,
 268	.mch_power_limit = 13000,
 269	.core_temp_limit = 95,
 270	.mch_temp_limit = 90
 271};
 272
 273static struct ips_mcp_limits ips_ulv_limits = {
 274	.mcp_power_limit = 18000,
 275	.core_power_limit = 14000,
 276	.mch_power_limit = 11000,
 277	.core_temp_limit = 95,
 278	.mch_temp_limit = 90
 279};
 280
 281struct ips_driver {
 282	struct device *dev;
 283	void __iomem *regmap;
 284	int irq;
 285
 286	struct task_struct *monitor;
 287	struct task_struct *adjust;
 288	struct dentry *debug_root;
 289	struct timer_list timer;
 290
 291	/* Average CPU core temps (all averages in .01 degrees C for precision) */
 292	u16 ctv1_avg_temp;
 293	u16 ctv2_avg_temp;
 294	/* GMCH average */
 295	u16 mch_avg_temp;
 296	/* Average for the CPU (both cores?) */
 297	u16 mcp_avg_temp;
 298	/* Average power consumption (in mW) */
 299	u32 cpu_avg_power;
 300	u32 mch_avg_power;
 301
 302	/* Offset values */
 303	u16 cta_val;
 304	u16 pta_val;
 305	u16 mgta_val;
 306
 307	/* Maximums & prefs, protected by turbo status lock */
 308	spinlock_t turbo_status_lock;
 309	u16 mcp_temp_limit;
 310	u16 mcp_power_limit;
 311	u16 core_power_limit;
 312	u16 mch_power_limit;
 313	bool cpu_turbo_enabled;
 314	bool __cpu_turbo_on;
 315	bool gpu_turbo_enabled;
 316	bool __gpu_turbo_on;
 317	bool gpu_preferred;
 318	bool poll_turbo_status;
 319	bool second_cpu;
 320	bool turbo_toggle_allowed;
 321	struct ips_mcp_limits *limits;
 322
 323	/* Optional MCH interfaces for if i915 is in use */
 324	unsigned long (*read_mch_val)(void);
 325	bool (*gpu_raise)(void);
 326	bool (*gpu_lower)(void);
 327	bool (*gpu_busy)(void);
 328	bool (*gpu_turbo_disable)(void);
 329
 330	/* For restoration at unload */
 331	u64 orig_turbo_limit;
 332	u64 orig_turbo_ratios;
 333};
 334
 335static bool
 336ips_gpu_turbo_enabled(struct ips_driver *ips);
 337
 338/**
 339 * ips_cpu_busy - is CPU busy?
 340 * @ips: IPS driver struct
 341 *
 342 * Check CPU for load to see whether we should increase its thermal budget.
 343 *
 344 * RETURNS:
 345 * True if the CPU could use more power, false otherwise.
 346 */
 347static bool ips_cpu_busy(struct ips_driver *ips)
 348{
 349	if ((avenrun[0] >> FSHIFT) > 1)
 350		return true;
 351
 352	return false;
 353}
 354
 355/**
 356 * ips_cpu_raise - raise CPU power clamp
 357 * @ips: IPS driver struct
 358 *
 359 * Raise the CPU power clamp by %IPS_CPU_STEP, in accordance with TDP for
 360 * this platform.
 361 *
 362 * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR upwards (as
 363 * long as we haven't hit the TDP limit for the SKU).
 364 */
 365static void ips_cpu_raise(struct ips_driver *ips)
 366{
 367	u64 turbo_override;
 368	u16 cur_tdp_limit, new_tdp_limit;
 369
 370	if (!ips->cpu_turbo_enabled)
 371		return;
 372
 373	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
 374
 375	cur_tdp_limit = turbo_override & TURBO_TDP_MASK;
 376	new_tdp_limit = cur_tdp_limit + 8; /* 1W increase */
 377
 378	/* Clamp to SKU TDP limit */
 379	if (((new_tdp_limit * 10) / 8) > ips->core_power_limit)
 380		new_tdp_limit = cur_tdp_limit;
 381
 382	thm_writew(THM_MPCPC, (new_tdp_limit * 10) / 8);
 383
 384	turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN;
 385	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
 386
 387	turbo_override &= ~TURBO_TDP_MASK;
 388	turbo_override |= new_tdp_limit;
 389
 390	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
 391}
 392
 393/**
 394 * ips_cpu_lower - lower CPU power clamp
 395 * @ips: IPS driver struct
 396 *
 397 * Lower CPU power clamp b %IPS_CPU_STEP if possible.
 398 *
 399 * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR down, going
 400 * as low as the platform limits will allow (though we could go lower there
 401 * wouldn't be much point).
 402 */
 403static void ips_cpu_lower(struct ips_driver *ips)
 404{
 405	u64 turbo_override;
 406	u16 cur_limit, new_limit;
 407
 408	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
 409
 410	cur_limit = turbo_override & TURBO_TDP_MASK;
 411	new_limit = cur_limit - 8; /* 1W decrease */
 412
 413	/* Clamp to SKU TDP limit */
 414	if (new_limit  < (ips->orig_turbo_limit & TURBO_TDP_MASK))
 415		new_limit = ips->orig_turbo_limit & TURBO_TDP_MASK;
 416
 417	thm_writew(THM_MPCPC, (new_limit * 10) / 8);
 418
 419	turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN;
 420	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
 421
 422	turbo_override &= ~TURBO_TDP_MASK;
 423	turbo_override |= new_limit;
 424
 425	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
 426}
 427
 428/**
 429 * do_enable_cpu_turbo - internal turbo enable function
 430 * @data: unused
 431 *
 432 * Internal function for actually updating MSRs.  When we enable/disable
 433 * turbo, we need to do it on each CPU; this function is the one called
 434 * by on_each_cpu() when needed.
 435 */
 436static void do_enable_cpu_turbo(void *data)
 437{
 438	u64 perf_ctl;
 439
 440	rdmsrl(IA32_PERF_CTL, perf_ctl);
 441	if (perf_ctl & IA32_PERF_TURBO_DIS) {
 442		perf_ctl &= ~IA32_PERF_TURBO_DIS;
 443		wrmsrl(IA32_PERF_CTL, perf_ctl);
 444	}
 445}
 446
 447/**
 448 * ips_enable_cpu_turbo - enable turbo mode on all CPUs
 449 * @ips: IPS driver struct
 450 *
 451 * Enable turbo mode by clearing the disable bit in IA32_PERF_CTL on
 452 * all logical threads.
 453 */
 454static void ips_enable_cpu_turbo(struct ips_driver *ips)
 455{
 456	/* Already on, no need to mess with MSRs */
 457	if (ips->__cpu_turbo_on)
 458		return;
 459
 460	if (ips->turbo_toggle_allowed)
 461		on_each_cpu(do_enable_cpu_turbo, ips, 1);
 462
 463	ips->__cpu_turbo_on = true;
 464}
 465
 466/**
 467 * do_disable_cpu_turbo - internal turbo disable function
 468 * @data: unused
 469 *
 470 * Internal function for actually updating MSRs.  When we enable/disable
 471 * turbo, we need to do it on each CPU; this function is the one called
 472 * by on_each_cpu() when needed.
 473 */
 474static void do_disable_cpu_turbo(void *data)
 475{
 476	u64 perf_ctl;
 477
 478	rdmsrl(IA32_PERF_CTL, perf_ctl);
 479	if (!(perf_ctl & IA32_PERF_TURBO_DIS)) {
 480		perf_ctl |= IA32_PERF_TURBO_DIS;
 481		wrmsrl(IA32_PERF_CTL, perf_ctl);
 482	}
 483}
 484
 485/**
 486 * ips_disable_cpu_turbo - disable turbo mode on all CPUs
 487 * @ips: IPS driver struct
 488 *
 489 * Disable turbo mode by setting the disable bit in IA32_PERF_CTL on
 490 * all logical threads.
 491 */
 492static void ips_disable_cpu_turbo(struct ips_driver *ips)
 493{
 494	/* Already off, leave it */
 495	if (!ips->__cpu_turbo_on)
 496		return;
 497
 498	if (ips->turbo_toggle_allowed)
 499		on_each_cpu(do_disable_cpu_turbo, ips, 1);
 500
 501	ips->__cpu_turbo_on = false;
 502}
 503
 504/**
 505 * ips_gpu_busy - is GPU busy?
 506 * @ips: IPS driver struct
 507 *
 508 * Check GPU for load to see whether we should increase its thermal budget.
 509 * We need to call into the i915 driver in this case.
 510 *
 511 * RETURNS:
 512 * True if the GPU could use more power, false otherwise.
 513 */
 514static bool ips_gpu_busy(struct ips_driver *ips)
 515{
 516	if (!ips_gpu_turbo_enabled(ips))
 517		return false;
 518
 519	return ips->gpu_busy();
 520}
 521
 522/**
 523 * ips_gpu_raise - raise GPU power clamp
 524 * @ips: IPS driver struct
 525 *
 526 * Raise the GPU frequency/power if possible.  We need to call into the
 527 * i915 driver in this case.
 528 */
 529static void ips_gpu_raise(struct ips_driver *ips)
 530{
 531	if (!ips_gpu_turbo_enabled(ips))
 532		return;
 533
 534	if (!ips->gpu_raise())
 535		ips->gpu_turbo_enabled = false;
 536
 537	return;
 538}
 539
 540/**
 541 * ips_gpu_lower - lower GPU power clamp
 542 * @ips: IPS driver struct
 543 *
 544 * Lower GPU frequency/power if possible.  Need to call i915.
 545 */
 546static void ips_gpu_lower(struct ips_driver *ips)
 547{
 548	if (!ips_gpu_turbo_enabled(ips))
 549		return;
 550
 551	if (!ips->gpu_lower())
 552		ips->gpu_turbo_enabled = false;
 553
 554	return;
 555}
 556
 557/**
 558 * ips_enable_gpu_turbo - notify the gfx driver turbo is available
 559 * @ips: IPS driver struct
 560 *
 561 * Call into the graphics driver indicating that it can safely use
 562 * turbo mode.
 563 */
 564static void ips_enable_gpu_turbo(struct ips_driver *ips)
 565{
 566	if (ips->__gpu_turbo_on)
 567		return;
 568	ips->__gpu_turbo_on = true;
 569}
 570
 571/**
 572 * ips_disable_gpu_turbo - notify the gfx driver to disable turbo mode
 573 * @ips: IPS driver struct
 574 *
 575 * Request that the graphics driver disable turbo mode.
 576 */
 577static void ips_disable_gpu_turbo(struct ips_driver *ips)
 578{
 579	/* Avoid calling i915 if turbo is already disabled */
 580	if (!ips->__gpu_turbo_on)
 581		return;
 582
 583	if (!ips->gpu_turbo_disable())
 584		dev_err(ips->dev, "failed to disable graphics turbo\n");
 585	else
 586		ips->__gpu_turbo_on = false;
 587}
 588
 589/**
 590 * mcp_exceeded - check whether we're outside our thermal & power limits
 591 * @ips: IPS driver struct
 592 *
 593 * Check whether the MCP is over its thermal or power budget.
 594 *
 595 * Returns: %true if the temp or power has exceeded its maximum, else %false
 596 */
 597static bool mcp_exceeded(struct ips_driver *ips)
 598{
 599	unsigned long flags;
 600	bool ret = false;
 601	u32 temp_limit;
 602	u32 avg_power;
 603
 604	spin_lock_irqsave(&ips->turbo_status_lock, flags);
 605
 606	temp_limit = ips->mcp_temp_limit * 100;
 607	if (ips->mcp_avg_temp > temp_limit)
 608		ret = true;
 609
 610	avg_power = ips->cpu_avg_power + ips->mch_avg_power;
 611	if (avg_power > ips->mcp_power_limit)
 612		ret = true;
 613
 614	spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
 615
 616	return ret;
 617}
 618
 619/**
 620 * cpu_exceeded - check whether a CPU core is outside its limits
 621 * @ips: IPS driver struct
 622 * @cpu: CPU number to check
 623 *
 624 * Check a given CPU's average temp or power is over its limit.
 625 *
 626 * Returns: %true if the temp or power has exceeded its maximum, else %false
 627 */
 628static bool cpu_exceeded(struct ips_driver *ips, int cpu)
 629{
 630	unsigned long flags;
 631	int avg;
 632	bool ret = false;
 633
 634	spin_lock_irqsave(&ips->turbo_status_lock, flags);
 635	avg = cpu ? ips->ctv2_avg_temp : ips->ctv1_avg_temp;
 636	if (avg > (ips->limits->core_temp_limit * 100))
 637		ret = true;
 638	if (ips->cpu_avg_power > ips->core_power_limit * 100)
 639		ret = true;
 640	spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
 641
 642	if (ret)
 643		dev_info(ips->dev, "CPU power or thermal limit exceeded\n");
 644
 645	return ret;
 646}
 647
 648/**
 649 * mch_exceeded - check whether the GPU is over budget
 650 * @ips: IPS driver struct
 651 *
 652 * Check the MCH temp & power against their maximums.
 653 *
 654 * Returns: %true if the temp or power has exceeded its maximum, else %false
 655 */
 656static bool mch_exceeded(struct ips_driver *ips)
 657{
 658	unsigned long flags;
 659	bool ret = false;
 660
 661	spin_lock_irqsave(&ips->turbo_status_lock, flags);
 662	if (ips->mch_avg_temp > (ips->limits->mch_temp_limit * 100))
 663		ret = true;
 664	if (ips->mch_avg_power > ips->mch_power_limit)
 665		ret = true;
 666	spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
 667
 668	return ret;
 669}
 670
 671/**
 672 * verify_limits - verify BIOS provided limits
 673 * @ips: IPS structure
 674 *
 675 * BIOS can optionally provide non-default limits for power and temp.  Check
 676 * them here and use the defaults if the BIOS values are not provided or
 677 * are otherwise unusable.
 678 */
 679static void verify_limits(struct ips_driver *ips)
 680{
 681	if (ips->mcp_power_limit < ips->limits->mcp_power_limit ||
 682	    ips->mcp_power_limit > 35000)
 683		ips->mcp_power_limit = ips->limits->mcp_power_limit;
 684
 685	if (ips->mcp_temp_limit < ips->limits->core_temp_limit ||
 686	    ips->mcp_temp_limit < ips->limits->mch_temp_limit ||
 687	    ips->mcp_temp_limit > 150)
 688		ips->mcp_temp_limit = min(ips->limits->core_temp_limit,
 689					  ips->limits->mch_temp_limit);
 690}
 691
 692/**
 693 * update_turbo_limits - get various limits & settings from regs
 694 * @ips: IPS driver struct
 695 *
 696 * Update the IPS power & temp limits, along with turbo enable flags,
 697 * based on latest register contents.
 698 *
 699 * Used at init time and for runtime BIOS support, which requires polling
 700 * the regs for updates (as a result of AC->DC transition for example).
 701 *
 702 * LOCKING:
 703 * Caller must hold turbo_status_lock (outside of init)
 704 */
 705static void update_turbo_limits(struct ips_driver *ips)
 706{
 707	u32 hts = thm_readl(THM_HTS);
 708
 709	ips->cpu_turbo_enabled = !(hts & HTS_PCTD_DIS);
 710	/* 
 711	 * Disable turbo for now, until we can figure out why the power figures
 712	 * are wrong
 713	 */
 714	ips->cpu_turbo_enabled = false;
 715
 716	if (ips->gpu_busy)
 717		ips->gpu_turbo_enabled = !(hts & HTS_GTD_DIS);
 718
 719	ips->core_power_limit = thm_readw(THM_MPCPC);
 720	ips->mch_power_limit = thm_readw(THM_MMGPC);
 721	ips->mcp_temp_limit = thm_readw(THM_PTL);
 722	ips->mcp_power_limit = thm_readw(THM_MPPC);
 723
 724	verify_limits(ips);
 725	/* Ignore BIOS CPU vs GPU pref */
 726}
 727
 728/**
 729 * ips_adjust - adjust power clamp based on thermal state
 730 * @data: ips driver structure
 731 *
 732 * Wake up every 5s or so and check whether we should adjust the power clamp.
 733 * Check CPU and GPU load to determine which needs adjustment.  There are
 734 * several things to consider here:
 735 *   - do we need to adjust up or down?
 736 *   - is CPU busy?
 737 *   - is GPU busy?
 738 *   - is CPU in turbo?
 739 *   - is GPU in turbo?
 740 *   - is CPU or GPU preferred? (CPU is default)
 741 *
 742 * So, given the above, we do the following:
 743 *   - up (TDP available)
 744 *     - CPU not busy, GPU not busy - nothing
 745 *     - CPU busy, GPU not busy - adjust CPU up
 746 *     - CPU not busy, GPU busy - adjust GPU up
 747 *     - CPU busy, GPU busy - adjust preferred unit up, taking headroom from
 748 *       non-preferred unit if necessary
 749 *   - down (at TDP limit)
 750 *     - adjust both CPU and GPU down if possible
 751 *
 752 *              |cpu+ gpu+      cpu+gpu-        cpu-gpu+        cpu-gpu-
 753 * cpu < gpu <  |cpu+gpu+       cpu+            gpu+            nothing
 754 * cpu < gpu >= |cpu+gpu-(mcp<) cpu+gpu-(mcp<)  gpu-            gpu-
 755 * cpu >= gpu < |cpu-gpu+(mcp<) cpu-            cpu-gpu+(mcp<)  cpu-
 756 * cpu >= gpu >=|cpu-gpu-       cpu-gpu-        cpu-gpu-        cpu-gpu-
 757 *
 758 * Returns: %0
 759 */
 760static int ips_adjust(void *data)
 761{
 762	struct ips_driver *ips = data;
 763	unsigned long flags;
 764
 765	dev_dbg(ips->dev, "starting ips-adjust thread\n");
 766
 767	/*
 768	 * Adjust CPU and GPU clamps every 5s if needed.  Doing it more
 769	 * often isn't recommended due to ME interaction.
 770	 */
 771	do {
 772		bool cpu_busy = ips_cpu_busy(ips);
 773		bool gpu_busy = ips_gpu_busy(ips);
 774
 775		spin_lock_irqsave(&ips->turbo_status_lock, flags);
 776		if (ips->poll_turbo_status)
 777			update_turbo_limits(ips);
 778		spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
 779
 780		/* Update turbo status if necessary */
 781		if (ips->cpu_turbo_enabled)
 782			ips_enable_cpu_turbo(ips);
 783		else
 784			ips_disable_cpu_turbo(ips);
 785
 786		if (ips->gpu_turbo_enabled)
 787			ips_enable_gpu_turbo(ips);
 788		else
 789			ips_disable_gpu_turbo(ips);
 790
 791		/* We're outside our comfort zone, crank them down */
 792		if (mcp_exceeded(ips)) {
 793			ips_cpu_lower(ips);
 794			ips_gpu_lower(ips);
 795			goto sleep;
 796		}
 797
 798		if (!cpu_exceeded(ips, 0) && cpu_busy)
 799			ips_cpu_raise(ips);
 800		else
 801			ips_cpu_lower(ips);
 802
 803		if (!mch_exceeded(ips) && gpu_busy)
 804			ips_gpu_raise(ips);
 805		else
 806			ips_gpu_lower(ips);
 807
 808sleep:
 809		schedule_timeout_interruptible(msecs_to_jiffies(IPS_ADJUST_PERIOD));
 810	} while (!kthread_should_stop());
 811
 812	dev_dbg(ips->dev, "ips-adjust thread stopped\n");
 813
 814	return 0;
 815}
 816
 817/*
 818 * Helpers for reading out temp/power values and calculating their
 819 * averages for the decision making and monitoring functions.
 820 */
 821
 822static u16 calc_avg_temp(struct ips_driver *ips, u16 *array)
 823{
 824	u64 total = 0;
 825	int i;
 826	u16 avg;
 827
 828	for (i = 0; i < IPS_SAMPLE_COUNT; i++)
 829		total += (u64)(array[i] * 100);
 830
 831	do_div(total, IPS_SAMPLE_COUNT);
 832
 833	avg = (u16)total;
 834
 835	return avg;
 836}
 837
 838static u16 read_mgtv(struct ips_driver *ips)
 839{
 840	u16 __maybe_unused ret;
 841	u64 slope, offset;
 842	u64 val;
 843
 844	val = thm_readq(THM_MGTV);
 845	val = (val & TV_MASK) >> TV_SHIFT;
 846
 847	slope = offset = thm_readw(THM_MGTA);
 848	slope = (slope & MGTA_SLOPE_MASK) >> MGTA_SLOPE_SHIFT;
 849	offset = offset & MGTA_OFFSET_MASK;
 850
 851	ret = ((val * slope + 0x40) >> 7) + offset;
 852
 853	return 0; /* MCH temp reporting buggy */
 854}
 855
 856static u16 read_ptv(struct ips_driver *ips)
 857{
 858	u16 val;
 
 
 
 859
 860	val = thm_readw(THM_PTV) & PTV_MASK;
 861
 862	return val;
 863}
 864
 865static u16 read_ctv(struct ips_driver *ips, int cpu)
 866{
 867	int reg = cpu ? THM_CTV2 : THM_CTV1;
 868	u16 val;
 869
 870	val = thm_readw(reg);
 871	if (!(val & CTV_TEMP_ERROR))
 872		val = (val) >> 6; /* discard fractional component */
 873	else
 874		val = 0;
 875
 876	return val;
 877}
 878
 879static u32 get_cpu_power(struct ips_driver *ips, u32 *last, int period)
 880{
 881	u32 val;
 882	u32 ret;
 883
 884	/*
 885	 * CEC is in joules/65535.  Take difference over time to
 886	 * get watts.
 887	 */
 888	val = thm_readl(THM_CEC);
 889
 890	/* period is in ms and we want mW */
 891	ret = (((val - *last) * 1000) / period);
 892	ret = (ret * 1000) / 65535;
 893	*last = val;
 894
 895	return 0;
 896}
 897
 898static const u16 temp_decay_factor = 2;
 899static u16 update_average_temp(u16 avg, u16 val)
 900{
 901	u16 ret;
 902
 903	/* Multiply by 100 for extra precision */
 904	ret = (val * 100 / temp_decay_factor) +
 905		(((temp_decay_factor - 1) * avg) / temp_decay_factor);
 906	return ret;
 907}
 908
 909static const u16 power_decay_factor = 2;
 910static u16 update_average_power(u32 avg, u32 val)
 911{
 912	u32 ret;
 913
 914	ret = (val / power_decay_factor) +
 915		(((power_decay_factor - 1) * avg) / power_decay_factor);
 916
 917	return ret;
 918}
 919
 920static u32 calc_avg_power(struct ips_driver *ips, u32 *array)
 921{
 922	u64 total = 0;
 923	u32 avg;
 924	int i;
 925
 926	for (i = 0; i < IPS_SAMPLE_COUNT; i++)
 927		total += array[i];
 928
 929	do_div(total, IPS_SAMPLE_COUNT);
 930	avg = (u32)total;
 931
 932	return avg;
 933}
 934
 935static void monitor_timeout(struct timer_list *t)
 936{
 937	struct ips_driver *ips = from_timer(ips, t, timer);
 938	wake_up_process(ips->monitor);
 939}
 940
 941/**
 942 * ips_monitor - temp/power monitoring thread
 943 * @data: ips driver structure
 944 *
 945 * This is the main function for the IPS driver.  It monitors power and
 946 * temperature in the MCP and adjusts CPU and GPU power clamps accordingly.
 947 *
 948 * We keep a 5s moving average of power consumption and temperature.  Using
 949 * that data, along with CPU vs GPU preference, we adjust the power clamps
 950 * up or down.
 951 *
 952 * Returns: %0 on success or -errno on error
 953 */
 954static int ips_monitor(void *data)
 955{
 956	struct ips_driver *ips = data;
 957	unsigned long seqno_timestamp, expire, last_msecs, last_sample_period;
 958	int i;
 959	u32 *cpu_samples, *mchp_samples, old_cpu_power;
 960	u16 *mcp_samples, *ctv1_samples, *ctv2_samples, *mch_samples;
 961	u8 cur_seqno, last_seqno;
 962
 963	mcp_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u16), GFP_KERNEL);
 964	ctv1_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u16), GFP_KERNEL);
 965	ctv2_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u16), GFP_KERNEL);
 966	mch_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u16), GFP_KERNEL);
 967	cpu_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u32), GFP_KERNEL);
 968	mchp_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u32), GFP_KERNEL);
 969	if (!mcp_samples || !ctv1_samples || !ctv2_samples || !mch_samples ||
 970			!cpu_samples || !mchp_samples) {
 971		dev_err(ips->dev,
 972			"failed to allocate sample array, ips disabled\n");
 973		kfree(mcp_samples);
 974		kfree(ctv1_samples);
 975		kfree(ctv2_samples);
 976		kfree(mch_samples);
 977		kfree(cpu_samples);
 978		kfree(mchp_samples);
 979		return -ENOMEM;
 980	}
 981
 982	last_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
 983		ITV_ME_SEQNO_SHIFT;
 984	seqno_timestamp = get_jiffies_64();
 985
 986	old_cpu_power = thm_readl(THM_CEC);
 987	schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
 988
 989	/* Collect an initial average */
 990	for (i = 0; i < IPS_SAMPLE_COUNT; i++) {
 991		u32 mchp, cpu_power;
 992		u16 val;
 993
 994		mcp_samples[i] = read_ptv(ips);
 995
 996		val = read_ctv(ips, 0);
 997		ctv1_samples[i] = val;
 998
 999		val = read_ctv(ips, 1);
1000		ctv2_samples[i] = val;
1001
1002		val = read_mgtv(ips);
1003		mch_samples[i] = val;
1004
1005		cpu_power = get_cpu_power(ips, &old_cpu_power,
1006					  IPS_SAMPLE_PERIOD);
1007		cpu_samples[i] = cpu_power;
1008
1009		if (ips->read_mch_val) {
1010			mchp = ips->read_mch_val();
1011			mchp_samples[i] = mchp;
1012		}
1013
1014		schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1015		if (kthread_should_stop())
1016			break;
1017	}
1018
1019	ips->mcp_avg_temp = calc_avg_temp(ips, mcp_samples);
1020	ips->ctv1_avg_temp = calc_avg_temp(ips, ctv1_samples);
1021	ips->ctv2_avg_temp = calc_avg_temp(ips, ctv2_samples);
1022	ips->mch_avg_temp = calc_avg_temp(ips, mch_samples);
1023	ips->cpu_avg_power = calc_avg_power(ips, cpu_samples);
1024	ips->mch_avg_power = calc_avg_power(ips, mchp_samples);
1025	kfree(mcp_samples);
1026	kfree(ctv1_samples);
1027	kfree(ctv2_samples);
1028	kfree(mch_samples);
1029	kfree(cpu_samples);
1030	kfree(mchp_samples);
1031
1032	/* Start the adjustment thread now that we have data */
1033	wake_up_process(ips->adjust);
1034
1035	/*
1036	 * Ok, now we have an initial avg.  From here on out, we track the
1037	 * running avg using a decaying average calculation.  This allows
1038	 * us to reduce the sample frequency if the CPU and GPU are idle.
1039	 */
1040	old_cpu_power = thm_readl(THM_CEC);
1041	schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1042	last_sample_period = IPS_SAMPLE_PERIOD;
1043
1044	timer_setup(&ips->timer, monitor_timeout, TIMER_DEFERRABLE);
1045	do {
1046		u32 cpu_val, mch_val;
1047		u16 val;
1048
1049		/* MCP itself */
1050		val = read_ptv(ips);
1051		ips->mcp_avg_temp = update_average_temp(ips->mcp_avg_temp, val);
1052
1053		/* Processor 0 */
1054		val = read_ctv(ips, 0);
1055		ips->ctv1_avg_temp =
1056			update_average_temp(ips->ctv1_avg_temp, val);
1057		/* Power */
1058		cpu_val = get_cpu_power(ips, &old_cpu_power,
1059					last_sample_period);
1060		ips->cpu_avg_power =
1061			update_average_power(ips->cpu_avg_power, cpu_val);
1062
1063		if (ips->second_cpu) {
1064			/* Processor 1 */
1065			val = read_ctv(ips, 1);
1066			ips->ctv2_avg_temp =
1067				update_average_temp(ips->ctv2_avg_temp, val);
1068		}
1069
1070		/* MCH */
1071		val = read_mgtv(ips);
1072		ips->mch_avg_temp = update_average_temp(ips->mch_avg_temp, val);
1073		/* Power */
1074		if (ips->read_mch_val) {
1075			mch_val = ips->read_mch_val();
1076			ips->mch_avg_power =
1077				update_average_power(ips->mch_avg_power,
1078						     mch_val);
1079		}
1080
1081		/*
1082		 * Make sure ME is updating thermal regs.
1083		 * Note:
1084		 * If it's been more than a second since the last update,
1085		 * the ME is probably hung.
1086		 */
1087		cur_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
1088			ITV_ME_SEQNO_SHIFT;
1089		if (cur_seqno == last_seqno &&
1090		    time_after(jiffies, seqno_timestamp + HZ)) {
1091			dev_warn(ips->dev,
1092				 "ME failed to update for more than 1s, likely hung\n");
1093		} else {
1094			seqno_timestamp = get_jiffies_64();
1095			last_seqno = cur_seqno;
1096		}
1097
1098		last_msecs = jiffies_to_msecs(jiffies);
1099		expire = jiffies + msecs_to_jiffies(IPS_SAMPLE_PERIOD);
1100
1101		__set_current_state(TASK_INTERRUPTIBLE);
1102		mod_timer(&ips->timer, expire);
1103		schedule();
1104
1105		/* Calculate actual sample period for power averaging */
1106		last_sample_period = jiffies_to_msecs(jiffies) - last_msecs;
1107		if (!last_sample_period)
1108			last_sample_period = 1;
1109	} while (!kthread_should_stop());
1110
1111	del_timer_sync(&ips->timer);
1112
1113	dev_dbg(ips->dev, "ips-monitor thread stopped\n");
1114
1115	return 0;
1116}
1117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1118/**
1119 * ips_irq_handler - handle temperature triggers and other IPS events
1120 * @irq: irq number
1121 * @arg: unused
1122 *
1123 * Handle temperature limit trigger events, generally by lowering the clamps.
1124 * If we're at a critical limit, we clamp back to the lowest possible value
1125 * to prevent emergency shutdown.
1126 *
1127 * Returns: IRQ_NONE or IRQ_HANDLED
1128 */
1129static irqreturn_t ips_irq_handler(int irq, void *arg)
1130{
1131	struct ips_driver *ips = arg;
1132	u8 tses = thm_readb(THM_TSES);
1133	u8 tes = thm_readb(THM_TES);
1134
1135	if (!tses && !tes)
1136		return IRQ_NONE;
1137
1138	dev_info(ips->dev, "TSES: 0x%02x\n", tses);
1139	dev_info(ips->dev, "TES: 0x%02x\n", tes);
1140
1141	/* STS update from EC? */
1142	if (tes & 1) {
1143		u32 sts, tc1;
1144
1145		sts = thm_readl(THM_STS);
1146		tc1 = thm_readl(THM_TC1);
1147
1148		if (sts & STS_NVV) {
1149			spin_lock(&ips->turbo_status_lock);
1150			ips->core_power_limit = (sts & STS_PCPL_MASK) >>
1151				STS_PCPL_SHIFT;
1152			ips->mch_power_limit = (sts & STS_GPL_MASK) >>
1153				STS_GPL_SHIFT;
1154			/* ignore EC CPU vs GPU pref */
1155			ips->cpu_turbo_enabled = !(sts & STS_PCTD_DIS);
1156			/* 
1157			 * Disable turbo for now, until we can figure
1158			 * out why the power figures are wrong
1159			 */
1160			ips->cpu_turbo_enabled = false;
1161			if (ips->gpu_busy)
1162				ips->gpu_turbo_enabled = !(sts & STS_GTD_DIS);
1163			ips->mcp_temp_limit = (sts & STS_PTL_MASK) >>
1164				STS_PTL_SHIFT;
1165			ips->mcp_power_limit = (tc1 & STS_PPL_MASK) >>
1166				STS_PPL_SHIFT;
1167			verify_limits(ips);
1168			spin_unlock(&ips->turbo_status_lock);
1169
1170			thm_writeb(THM_SEC, SEC_ACK);
1171		}
1172		thm_writeb(THM_TES, tes);
1173	}
1174
1175	/* Thermal trip */
1176	if (tses) {
1177		dev_warn(ips->dev, "thermal trip occurred, tses: 0x%04x\n",
1178			 tses);
1179		thm_writeb(THM_TSES, tses);
1180	}
1181
1182	return IRQ_HANDLED;
1183}
1184
1185#ifndef CONFIG_DEBUG_FS
1186static void ips_debugfs_init(struct ips_driver *ips) { return; }
1187static void ips_debugfs_cleanup(struct ips_driver *ips) { return; }
1188#else
1189
1190/* Expose current state and limits in debugfs if possible */
1191
1192static int cpu_temp_show(struct seq_file *m, void *data)
 
 
 
 
 
 
1193{
1194	struct ips_driver *ips = m->private;
1195
1196	seq_printf(m, "%d.%02d\n", ips->ctv1_avg_temp / 100,
1197		   ips->ctv1_avg_temp % 100);
1198
1199	return 0;
1200}
1201DEFINE_SHOW_ATTRIBUTE(cpu_temp);
1202
1203static int cpu_power_show(struct seq_file *m, void *data)
1204{
1205	struct ips_driver *ips = m->private;
1206
1207	seq_printf(m, "%dmW\n", ips->cpu_avg_power);
1208
1209	return 0;
1210}
1211DEFINE_SHOW_ATTRIBUTE(cpu_power);
1212
1213static int cpu_clamp_show(struct seq_file *m, void *data)
1214{
1215	u64 turbo_override;
1216	int tdp, tdc;
1217
1218	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1219
1220	tdp = (int)(turbo_override & TURBO_TDP_MASK);
1221	tdc = (int)((turbo_override & TURBO_TDC_MASK) >> TURBO_TDC_SHIFT);
1222
1223	/* Convert to .1W/A units */
1224	tdp = tdp * 10 / 8;
1225	tdc = tdc * 10 / 8;
1226
1227	/* Watts Amperes */
1228	seq_printf(m, "%d.%dW %d.%dA\n", tdp / 10, tdp % 10,
1229		   tdc / 10, tdc % 10);
1230
1231	return 0;
1232}
1233DEFINE_SHOW_ATTRIBUTE(cpu_clamp);
1234
1235static int mch_temp_show(struct seq_file *m, void *data)
1236{
1237	struct ips_driver *ips = m->private;
1238
1239	seq_printf(m, "%d.%02d\n", ips->mch_avg_temp / 100,
1240		   ips->mch_avg_temp % 100);
1241
1242	return 0;
1243}
1244DEFINE_SHOW_ATTRIBUTE(mch_temp);
1245
1246static int mch_power_show(struct seq_file *m, void *data)
1247{
1248	struct ips_driver *ips = m->private;
1249
1250	seq_printf(m, "%dmW\n", ips->mch_avg_power);
1251
1252	return 0;
1253}
1254DEFINE_SHOW_ATTRIBUTE(mch_power);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1255
1256static void ips_debugfs_cleanup(struct ips_driver *ips)
1257{
1258	debugfs_remove_recursive(ips->debug_root);
 
 
1259}
1260
1261static void ips_debugfs_init(struct ips_driver *ips)
1262{
 
 
1263	ips->debug_root = debugfs_create_dir("ips", NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1264
1265	debugfs_create_file("cpu_temp", 0444, ips->debug_root, ips, &cpu_temp_fops);
1266	debugfs_create_file("cpu_power", 0444, ips->debug_root, ips, &cpu_power_fops);
1267	debugfs_create_file("cpu_clamp", 0444, ips->debug_root, ips, &cpu_clamp_fops);
1268	debugfs_create_file("mch_temp", 0444, ips->debug_root, ips, &mch_temp_fops);
1269	debugfs_create_file("mch_power", 0444, ips->debug_root, ips, &mch_power_fops);
1270}
1271#endif /* CONFIG_DEBUG_FS */
1272
1273/**
1274 * ips_detect_cpu - detect whether CPU supports IPS
1275 * @ips: IPS driver struct
1276 *
1277 * Walk our list and see if we're on a supported CPU.  If we find one,
1278 * return the limits for it.
1279 *
1280 * Returns: the &ips_mcp_limits struct that matches the boot CPU or %NULL
1281 */
1282static struct ips_mcp_limits *ips_detect_cpu(struct ips_driver *ips)
1283{
1284	u64 turbo_power, misc_en;
1285	struct ips_mcp_limits *limits = NULL;
1286	u16 tdp;
1287
1288	if (!(boot_cpu_data.x86_vfm == INTEL_WESTMERE)) {
1289		dev_info(ips->dev, "Non-IPS CPU detected.\n");
1290		return NULL;
1291	}
1292
1293	rdmsrl(IA32_MISC_ENABLE, misc_en);
1294	/*
1295	 * If the turbo enable bit isn't set, we shouldn't try to enable/disable
1296	 * turbo manually or we'll get an illegal MSR access, even though
1297	 * turbo will still be available.
1298	 */
1299	if (misc_en & IA32_MISC_TURBO_EN)
1300		ips->turbo_toggle_allowed = true;
1301	else
1302		ips->turbo_toggle_allowed = false;
1303
1304	if (strstr(boot_cpu_data.x86_model_id, "CPU       M"))
1305		limits = &ips_sv_limits;
1306	else if (strstr(boot_cpu_data.x86_model_id, "CPU       L"))
1307		limits = &ips_lv_limits;
1308	else if (strstr(boot_cpu_data.x86_model_id, "CPU       U"))
1309		limits = &ips_ulv_limits;
1310	else {
1311		dev_info(ips->dev, "No CPUID match found.\n");
1312		return NULL;
1313	}
1314
1315	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_power);
1316	tdp = turbo_power & TURBO_TDP_MASK;
1317
1318	/* Sanity check TDP against CPU */
1319	if (limits->core_power_limit != (tdp / 8) * 1000) {
1320		dev_info(ips->dev,
1321			 "CPU TDP doesn't match expected value (found %d, expected %d)\n",
1322			 tdp / 8, limits->core_power_limit / 1000);
1323		limits->core_power_limit = (tdp / 8) * 1000;
1324	}
1325
1326	return limits;
1327}
1328
1329/**
1330 * ips_get_i915_syms - try to get GPU control methods from i915 driver
1331 * @ips: IPS driver
1332 *
1333 * The i915 driver exports several interfaces to allow the IPS driver to
1334 * monitor and control graphics turbo mode.  If we can find them, we can
1335 * enable graphics turbo, otherwise we must disable it to avoid exceeding
1336 * thermal and power limits in the MCP.
1337 *
1338 * Returns: %true if the required symbols are found, else %false
1339 */
1340static bool ips_get_i915_syms(struct ips_driver *ips)
1341{
1342	ips->read_mch_val = symbol_get(i915_read_mch_val);
1343	if (!ips->read_mch_val)
1344		goto out_err;
1345	ips->gpu_raise = symbol_get(i915_gpu_raise);
1346	if (!ips->gpu_raise)
1347		goto out_put_mch;
1348	ips->gpu_lower = symbol_get(i915_gpu_lower);
1349	if (!ips->gpu_lower)
1350		goto out_put_raise;
1351	ips->gpu_busy = symbol_get(i915_gpu_busy);
1352	if (!ips->gpu_busy)
1353		goto out_put_lower;
1354	ips->gpu_turbo_disable = symbol_get(i915_gpu_turbo_disable);
1355	if (!ips->gpu_turbo_disable)
1356		goto out_put_busy;
1357
1358	return true;
1359
1360out_put_busy:
1361	symbol_put(i915_gpu_busy);
1362out_put_lower:
1363	symbol_put(i915_gpu_lower);
1364out_put_raise:
1365	symbol_put(i915_gpu_raise);
1366out_put_mch:
1367	symbol_put(i915_read_mch_val);
1368out_err:
1369	return false;
1370}
1371
1372static bool
1373ips_gpu_turbo_enabled(struct ips_driver *ips)
1374{
1375	if (!ips->gpu_busy && late_i915_load) {
1376		if (ips_get_i915_syms(ips)) {
1377			dev_info(ips->dev,
1378				 "i915 driver attached, reenabling gpu turbo\n");
1379			ips->gpu_turbo_enabled = !(thm_readl(THM_HTS) & HTS_GTD_DIS);
1380		}
1381	}
1382
1383	return ips->gpu_turbo_enabled;
1384}
1385
1386void
1387ips_link_to_i915_driver(void)
1388{
1389	/* We can't cleanly get at the various ips_driver structs from
1390	 * this caller (the i915 driver), so just set a flag saying
1391	 * that it's time to try getting the symbols again.
1392	 */
1393	late_i915_load = true;
1394}
1395EXPORT_SYMBOL_GPL(ips_link_to_i915_driver);
1396
1397static const struct pci_device_id ips_id_table[] = {
1398	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_THERMAL_SENSOR), },
1399	{ 0, }
1400};
1401
1402MODULE_DEVICE_TABLE(pci, ips_id_table);
1403
1404static int ips_blacklist_callback(const struct dmi_system_id *id)
1405{
1406	pr_info("Blacklisted intel_ips for %s\n", id->ident);
1407	return 1;
1408}
1409
1410static const struct dmi_system_id ips_blacklist[] = {
1411	{
1412		.callback = ips_blacklist_callback,
1413		.ident = "HP ProBook",
1414		.matches = {
1415			DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
1416			DMI_MATCH(DMI_PRODUCT_NAME, "HP ProBook"),
1417		},
1418	},
1419	{ }	/* terminating entry */
1420};
1421
1422static int ips_probe(struct pci_dev *dev, const struct pci_device_id *id)
1423{
1424	u64 platform_info;
1425	struct ips_driver *ips;
1426	u32 hts;
1427	int ret = 0;
1428	u16 htshi, trc, trc_required_mask;
1429	u8 tse;
1430
1431	if (dmi_check_system(ips_blacklist))
1432		return -ENODEV;
1433
1434	ips = devm_kzalloc(&dev->dev, sizeof(*ips), GFP_KERNEL);
1435	if (!ips)
1436		return -ENOMEM;
1437
1438	spin_lock_init(&ips->turbo_status_lock);
1439	ips->dev = &dev->dev;
1440
1441	ips->limits = ips_detect_cpu(ips);
1442	if (!ips->limits) {
1443		dev_info(&dev->dev, "IPS not supported on this CPU\n");
1444		return -ENXIO;
1445	}
1446
1447	ret = pcim_enable_device(dev);
1448	if (ret) {
1449		dev_err(&dev->dev, "can't enable PCI device, aborting\n");
1450		return ret;
1451	}
1452
1453	ret = pcim_iomap_regions(dev, 1 << 0, pci_name(dev));
1454	if (ret) {
1455		dev_err(&dev->dev, "failed to map thermal regs, aborting\n");
1456		return ret;
1457	}
1458	ips->regmap = pcim_iomap_table(dev)[0];
1459
1460	pci_set_drvdata(dev, ips);
1461
1462	tse = thm_readb(THM_TSE);
1463	if (tse != TSE_EN) {
1464		dev_err(&dev->dev, "thermal device not enabled (0x%02x), aborting\n", tse);
1465		return -ENXIO;
1466	}
1467
1468	trc = thm_readw(THM_TRC);
1469	trc_required_mask = TRC_CORE1_EN | TRC_CORE_PWR | TRC_MCH_EN;
1470	if ((trc & trc_required_mask) != trc_required_mask) {
1471		dev_err(&dev->dev, "thermal reporting for required devices not enabled, aborting\n");
1472		return -ENXIO;
1473	}
1474
1475	if (trc & TRC_CORE2_EN)
1476		ips->second_cpu = true;
1477
1478	update_turbo_limits(ips);
1479	dev_dbg(&dev->dev, "max cpu power clamp: %dW\n",
1480		ips->mcp_power_limit / 10);
1481	dev_dbg(&dev->dev, "max core power clamp: %dW\n",
1482		ips->core_power_limit / 10);
1483	/* BIOS may update limits at runtime */
1484	if (thm_readl(THM_PSC) & PSP_PBRT)
1485		ips->poll_turbo_status = true;
1486
1487	if (!ips_get_i915_syms(ips)) {
1488		dev_info(&dev->dev, "failed to get i915 symbols, graphics turbo disabled until i915 loads\n");
1489		ips->gpu_turbo_enabled = false;
1490	} else {
1491		dev_dbg(&dev->dev, "graphics turbo enabled\n");
1492		ips->gpu_turbo_enabled = true;
1493	}
1494
1495	/*
1496	 * Check PLATFORM_INFO MSR to make sure this chip is
1497	 * turbo capable.
1498	 */
1499	rdmsrl(PLATFORM_INFO, platform_info);
1500	if (!(platform_info & PLATFORM_TDP)) {
1501		dev_err(&dev->dev, "platform indicates TDP override unavailable, aborting\n");
1502		return -ENODEV;
1503	}
1504
1505	/*
1506	 * IRQ handler for ME interaction
1507	 * Note: don't use MSI here as the PCH has bugs.
1508	 */
1509	ret = pci_alloc_irq_vectors(dev, 1, 1, PCI_IRQ_INTX);
1510	if (ret < 0)
1511		return ret;
1512
1513	ips->irq = pci_irq_vector(dev, 0);
1514
1515	ret = request_irq(ips->irq, ips_irq_handler, IRQF_SHARED, "ips", ips);
1516	if (ret) {
1517		dev_err(&dev->dev, "request irq failed, aborting\n");
1518		return ret;
1519	}
1520
1521	/* Enable aux, hot & critical interrupts */
1522	thm_writeb(THM_TSPIEN, TSPIEN_AUX2_LOHI | TSPIEN_CRIT_LOHI |
1523		   TSPIEN_HOT_LOHI | TSPIEN_AUX_LOHI);
1524	thm_writeb(THM_TEN, TEN_UPDATE_EN);
1525
1526	/* Collect adjustment values */
1527	ips->cta_val = thm_readw(THM_CTA);
1528	ips->pta_val = thm_readw(THM_PTA);
1529	ips->mgta_val = thm_readw(THM_MGTA);
1530
1531	/* Save turbo limits & ratios */
1532	rdmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1533
1534	ips_disable_cpu_turbo(ips);
1535	ips->cpu_turbo_enabled = false;
1536
1537	/* Create thermal adjust thread */
1538	ips->adjust = kthread_create(ips_adjust, ips, "ips-adjust");
1539	if (IS_ERR(ips->adjust)) {
1540		dev_err(&dev->dev,
1541			"failed to create thermal adjust thread, aborting\n");
1542		ret = -ENOMEM;
1543		goto error_free_irq;
1544
1545	}
1546
1547	/*
1548	 * Set up the work queue and monitor thread. The monitor thread
1549	 * will wake up ips_adjust thread.
1550	 */
1551	ips->monitor = kthread_run(ips_monitor, ips, "ips-monitor");
1552	if (IS_ERR(ips->monitor)) {
1553		dev_err(&dev->dev,
1554			"failed to create thermal monitor thread, aborting\n");
1555		ret = -ENOMEM;
1556		goto error_thread_cleanup;
1557	}
1558
1559	hts = (ips->core_power_limit << HTS_PCPL_SHIFT) |
1560		(ips->mcp_temp_limit << HTS_PTL_SHIFT) | HTS_NVV;
1561	htshi = HTS2_PRST_RUNNING << HTS2_PRST_SHIFT;
1562
1563	thm_writew(THM_HTSHI, htshi);
1564	thm_writel(THM_HTS, hts);
1565
1566	ips_debugfs_init(ips);
1567
1568	dev_info(&dev->dev, "IPS driver initialized, MCP temp limit %d\n",
1569		 ips->mcp_temp_limit);
1570	return ret;
1571
1572error_thread_cleanup:
1573	kthread_stop(ips->adjust);
1574error_free_irq:
1575	free_irq(ips->irq, ips);
1576	pci_free_irq_vectors(dev);
1577	return ret;
1578}
1579
1580static void ips_remove(struct pci_dev *dev)
1581{
1582	struct ips_driver *ips = pci_get_drvdata(dev);
1583	u64 turbo_override;
1584
 
 
 
1585	ips_debugfs_cleanup(ips);
1586
1587	/* Release i915 driver */
1588	if (ips->read_mch_val)
1589		symbol_put(i915_read_mch_val);
1590	if (ips->gpu_raise)
1591		symbol_put(i915_gpu_raise);
1592	if (ips->gpu_lower)
1593		symbol_put(i915_gpu_lower);
1594	if (ips->gpu_busy)
1595		symbol_put(i915_gpu_busy);
1596	if (ips->gpu_turbo_disable)
1597		symbol_put(i915_gpu_turbo_disable);
1598
1599	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1600	turbo_override &= ~(TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN);
1601	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1602	wrmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1603
1604	free_irq(ips->irq, ips);
1605	pci_free_irq_vectors(dev);
1606	if (ips->adjust)
1607		kthread_stop(ips->adjust);
1608	if (ips->monitor)
1609		kthread_stop(ips->monitor);
1610	dev_dbg(&dev->dev, "IPS driver removed\n");
1611}
1612
1613static struct pci_driver ips_pci_driver = {
1614	.name = "intel ips",
1615	.id_table = ips_id_table,
1616	.probe = ips_probe,
1617	.remove = ips_remove,
1618};
1619
1620module_pci_driver(ips_pci_driver);
1621
1622MODULE_LICENSE("GPL v2");
1623MODULE_AUTHOR("Jesse Barnes <jbarnes@virtuousgeek.org>");
1624MODULE_DESCRIPTION("Intelligent Power Sharing Driver");
v4.17
 
   1/*
   2 * Copyright (c) 2009-2010 Intel Corporation
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * The full GNU General Public License is included in this distribution in
  14 * the file called "COPYING".
  15 *
  16 * Authors:
  17 *	Jesse Barnes <jbarnes@virtuousgeek.org>
  18 */
  19
  20/*
  21 * Some Intel Ibex Peak based platforms support so-called "intelligent
  22 * power sharing", which allows the CPU and GPU to cooperate to maximize
  23 * performance within a given TDP (thermal design point).  This driver
  24 * performs the coordination between the CPU and GPU, monitors thermal and
  25 * power statistics in the platform, and initializes power monitoring
  26 * hardware.  It also provides a few tunables to control behavior.  Its
  27 * primary purpose is to safely allow CPU and GPU turbo modes to be enabled
  28 * by tracking power and thermal budget; secondarily it can boost turbo
  29 * performance by allocating more power or thermal budget to the CPU or GPU
  30 * based on available headroom and activity.
  31 *
  32 * The basic algorithm is driven by a 5s moving average of temperature.  If
  33 * thermal headroom is available, the CPU and/or GPU power clamps may be
  34 * adjusted upwards.  If we hit the thermal ceiling or a thermal trigger,
  35 * we scale back the clamp.  Aside from trigger events (when we're critically
  36 * close or over our TDP) we don't adjust the clamps more than once every
  37 * five seconds.
  38 *
  39 * The thermal device (device 31, function 6) has a set of registers that
  40 * are updated by the ME firmware.  The ME should also take the clamp values
  41 * written to those registers and write them to the CPU, but we currently
  42 * bypass that functionality and write the CPU MSR directly.
  43 *
  44 * UNSUPPORTED:
  45 *   - dual MCP configs
  46 *
  47 * TODO:
  48 *   - handle CPU hotplug
  49 *   - provide turbo enable/disable api
  50 *
  51 * Related documents:
  52 *   - CDI 403777, 403778 - Auburndale EDS vol 1 & 2
  53 *   - CDI 401376 - Ibex Peak EDS
  54 *   - ref 26037, 26641 - IPS BIOS spec
  55 *   - ref 26489 - Nehalem BIOS writer's guide
  56 *   - ref 26921 - Ibex Peak BIOS Specification
  57 */
  58
  59#include <linux/debugfs.h>
  60#include <linux/delay.h>
  61#include <linux/interrupt.h>
  62#include <linux/kernel.h>
  63#include <linux/kthread.h>
  64#include <linux/module.h>
  65#include <linux/pci.h>
  66#include <linux/sched.h>
  67#include <linux/sched/loadavg.h>
  68#include <linux/seq_file.h>
  69#include <linux/string.h>
  70#include <linux/tick.h>
  71#include <linux/timer.h>
  72#include <linux/dmi.h>
  73#include <drm/i915_drm.h>
  74#include <asm/msr.h>
  75#include <asm/processor.h>
 
  76#include "intel_ips.h"
  77
  78#include <linux/io-64-nonatomic-lo-hi.h>
  79
  80#define PCI_DEVICE_ID_INTEL_THERMAL_SENSOR 0x3b32
  81
  82/*
  83 * Package level MSRs for monitor/control
  84 */
  85#define PLATFORM_INFO	0xce
  86#define   PLATFORM_TDP		(1<<29)
  87#define   PLATFORM_RATIO	(1<<28)
  88
  89#define IA32_MISC_ENABLE	0x1a0
  90#define   IA32_MISC_TURBO_EN	(1ULL<<38)
  91
  92#define TURBO_POWER_CURRENT_LIMIT	0x1ac
  93#define   TURBO_TDC_OVR_EN	(1UL<<31)
  94#define   TURBO_TDC_MASK	(0x000000007fff0000UL)
  95#define   TURBO_TDC_SHIFT	(16)
  96#define   TURBO_TDP_OVR_EN	(1UL<<15)
  97#define   TURBO_TDP_MASK	(0x0000000000003fffUL)
  98
  99/*
 100 * Core/thread MSRs for monitoring
 101 */
 102#define IA32_PERF_CTL		0x199
 103#define   IA32_PERF_TURBO_DIS	(1ULL<<32)
 104
 105/*
 106 * Thermal PCI device regs
 107 */
 108#define THM_CFG_TBAR	0x10
 109#define THM_CFG_TBAR_HI	0x14
 110
 111#define THM_TSIU	0x00
 112#define THM_TSE		0x01
 113#define   TSE_EN	0xb8
 114#define THM_TSS		0x02
 115#define THM_TSTR	0x03
 116#define THM_TSTTP	0x04
 117#define THM_TSCO	0x08
 118#define THM_TSES	0x0c
 119#define THM_TSGPEN	0x0d
 120#define   TSGPEN_HOT_LOHI	(1<<1)
 121#define   TSGPEN_CRIT_LOHI	(1<<2)
 122#define THM_TSPC	0x0e
 123#define THM_PPEC	0x10
 124#define THM_CTA		0x12
 125#define THM_PTA		0x14
 126#define   PTA_SLOPE_MASK	(0xff00)
 127#define   PTA_SLOPE_SHIFT	8
 128#define   PTA_OFFSET_MASK	(0x00ff)
 129#define THM_MGTA	0x16
 130#define   MGTA_SLOPE_MASK	(0xff00)
 131#define   MGTA_SLOPE_SHIFT	8
 132#define   MGTA_OFFSET_MASK	(0x00ff)
 133#define THM_TRC		0x1a
 134#define   TRC_CORE2_EN	(1<<15)
 135#define   TRC_THM_EN	(1<<12)
 136#define   TRC_C6_WAR	(1<<8)
 137#define   TRC_CORE1_EN	(1<<7)
 138#define   TRC_CORE_PWR	(1<<6)
 139#define   TRC_PCH_EN	(1<<5)
 140#define   TRC_MCH_EN	(1<<4)
 141#define   TRC_DIMM4	(1<<3)
 142#define   TRC_DIMM3	(1<<2)
 143#define   TRC_DIMM2	(1<<1)
 144#define   TRC_DIMM1	(1<<0)
 145#define THM_TES		0x20
 146#define THM_TEN		0x21
 147#define   TEN_UPDATE_EN	1
 148#define THM_PSC		0x24
 149#define   PSC_NTG	(1<<0) /* No GFX turbo support */
 150#define   PSC_NTPC	(1<<1) /* No CPU turbo support */
 151#define   PSC_PP_DEF	(0<<2) /* Perf policy up to driver */
 152#define   PSP_PP_PC	(1<<2) /* BIOS prefers CPU perf */
 153#define   PSP_PP_BAL	(2<<2) /* BIOS wants balanced perf */
 154#define   PSP_PP_GFX	(3<<2) /* BIOS prefers GFX perf */
 155#define   PSP_PBRT	(1<<4) /* BIOS run time support */
 156#define THM_CTV1	0x30
 157#define   CTV_TEMP_ERROR (1<<15)
 158#define   CTV_TEMP_MASK	0x3f
 159#define   CTV_
 160#define THM_CTV2	0x32
 161#define THM_CEC		0x34 /* undocumented power accumulator in joules */
 162#define THM_AE		0x3f
 163#define THM_HTS		0x50 /* 32 bits */
 164#define   HTS_PCPL_MASK	(0x7fe00000)
 165#define   HTS_PCPL_SHIFT 21
 166#define   HTS_GPL_MASK  (0x001ff000)
 167#define   HTS_GPL_SHIFT 12
 168#define   HTS_PP_MASK	(0x00000c00)
 169#define   HTS_PP_SHIFT  10
 170#define   HTS_PP_DEF	0
 171#define   HTS_PP_PROC	1
 172#define   HTS_PP_BAL	2
 173#define   HTS_PP_GFX	3
 174#define   HTS_PCTD_DIS	(1<<9)
 175#define   HTS_GTD_DIS	(1<<8)
 176#define   HTS_PTL_MASK  (0x000000fe)
 177#define   HTS_PTL_SHIFT 1
 178#define   HTS_NVV	(1<<0)
 179#define THM_HTSHI	0x54 /* 16 bits */
 180#define   HTS2_PPL_MASK		(0x03ff)
 181#define   HTS2_PRST_MASK	(0x3c00)
 182#define   HTS2_PRST_SHIFT	10
 183#define   HTS2_PRST_UNLOADED	0
 184#define   HTS2_PRST_RUNNING	1
 185#define   HTS2_PRST_TDISOP	2 /* turbo disabled due to power */
 186#define   HTS2_PRST_TDISHT	3 /* turbo disabled due to high temp */
 187#define   HTS2_PRST_TDISUSR	4 /* user disabled turbo */
 188#define   HTS2_PRST_TDISPLAT	5 /* platform disabled turbo */
 189#define   HTS2_PRST_TDISPM	6 /* power management disabled turbo */
 190#define   HTS2_PRST_TDISERR	7 /* some kind of error disabled turbo */
 191#define THM_PTL		0x56
 192#define THM_MGTV	0x58
 193#define   TV_MASK	0x000000000000ff00
 194#define   TV_SHIFT	8
 195#define THM_PTV		0x60
 196#define   PTV_MASK	0x00ff
 197#define THM_MMGPC	0x64
 198#define THM_MPPC	0x66
 199#define THM_MPCPC	0x68
 200#define THM_TSPIEN	0x82
 201#define   TSPIEN_AUX_LOHI	(1<<0)
 202#define   TSPIEN_HOT_LOHI	(1<<1)
 203#define   TSPIEN_CRIT_LOHI	(1<<2)
 204#define   TSPIEN_AUX2_LOHI	(1<<3)
 205#define THM_TSLOCK	0x83
 206#define THM_ATR		0x84
 207#define THM_TOF		0x87
 208#define THM_STS		0x98
 209#define   STS_PCPL_MASK		(0x7fe00000)
 210#define   STS_PCPL_SHIFT	21
 211#define   STS_GPL_MASK		(0x001ff000)
 212#define   STS_GPL_SHIFT		12
 213#define   STS_PP_MASK		(0x00000c00)
 214#define   STS_PP_SHIFT		10
 215#define   STS_PP_DEF		0
 216#define   STS_PP_PROC		1
 217#define   STS_PP_BAL		2
 218#define   STS_PP_GFX		3
 219#define   STS_PCTD_DIS		(1<<9)
 220#define   STS_GTD_DIS		(1<<8)
 221#define   STS_PTL_MASK		(0x000000fe)
 222#define   STS_PTL_SHIFT		1
 223#define   STS_NVV		(1<<0)
 224#define THM_SEC		0x9c
 225#define   SEC_ACK	(1<<0)
 226#define THM_TC3		0xa4
 227#define THM_TC1		0xa8
 228#define   STS_PPL_MASK		(0x0003ff00)
 229#define   STS_PPL_SHIFT		16
 230#define THM_TC2		0xac
 231#define THM_DTV		0xb0
 232#define THM_ITV		0xd8
 233#define   ITV_ME_SEQNO_MASK 0x00ff0000 /* ME should update every ~200ms */
 234#define   ITV_ME_SEQNO_SHIFT (16)
 235#define   ITV_MCH_TEMP_MASK 0x0000ff00
 236#define   ITV_MCH_TEMP_SHIFT (8)
 237#define   ITV_PCH_TEMP_MASK 0x000000ff
 238
 239#define thm_readb(off) readb(ips->regmap + (off))
 240#define thm_readw(off) readw(ips->regmap + (off))
 241#define thm_readl(off) readl(ips->regmap + (off))
 242#define thm_readq(off) readq(ips->regmap + (off))
 243
 244#define thm_writeb(off, val) writeb((val), ips->regmap + (off))
 245#define thm_writew(off, val) writew((val), ips->regmap + (off))
 246#define thm_writel(off, val) writel((val), ips->regmap + (off))
 247
 248static const int IPS_ADJUST_PERIOD = 5000; /* ms */
 249static bool late_i915_load = false;
 250
 251/* For initial average collection */
 252static const int IPS_SAMPLE_PERIOD = 200; /* ms */
 253static const int IPS_SAMPLE_WINDOW = 5000; /* 5s moving window of samples */
 254#define IPS_SAMPLE_COUNT (IPS_SAMPLE_WINDOW / IPS_SAMPLE_PERIOD)
 255
 256/* Per-SKU limits */
 257struct ips_mcp_limits {
 258	int mcp_power_limit; /* mW units */
 259	int core_power_limit;
 260	int mch_power_limit;
 261	int core_temp_limit; /* degrees C */
 262	int mch_temp_limit;
 263};
 264
 265/* Max temps are -10 degrees C to avoid PROCHOT# */
 266
 267static struct ips_mcp_limits ips_sv_limits = {
 268	.mcp_power_limit = 35000,
 269	.core_power_limit = 29000,
 270	.mch_power_limit = 20000,
 271	.core_temp_limit = 95,
 272	.mch_temp_limit = 90
 273};
 274
 275static struct ips_mcp_limits ips_lv_limits = {
 276	.mcp_power_limit = 25000,
 277	.core_power_limit = 21000,
 278	.mch_power_limit = 13000,
 279	.core_temp_limit = 95,
 280	.mch_temp_limit = 90
 281};
 282
 283static struct ips_mcp_limits ips_ulv_limits = {
 284	.mcp_power_limit = 18000,
 285	.core_power_limit = 14000,
 286	.mch_power_limit = 11000,
 287	.core_temp_limit = 95,
 288	.mch_temp_limit = 90
 289};
 290
 291struct ips_driver {
 292	struct device *dev;
 293	void __iomem *regmap;
 294	int irq;
 295
 296	struct task_struct *monitor;
 297	struct task_struct *adjust;
 298	struct dentry *debug_root;
 299	struct timer_list timer;
 300
 301	/* Average CPU core temps (all averages in .01 degrees C for precision) */
 302	u16 ctv1_avg_temp;
 303	u16 ctv2_avg_temp;
 304	/* GMCH average */
 305	u16 mch_avg_temp;
 306	/* Average for the CPU (both cores?) */
 307	u16 mcp_avg_temp;
 308	/* Average power consumption (in mW) */
 309	u32 cpu_avg_power;
 310	u32 mch_avg_power;
 311
 312	/* Offset values */
 313	u16 cta_val;
 314	u16 pta_val;
 315	u16 mgta_val;
 316
 317	/* Maximums & prefs, protected by turbo status lock */
 318	spinlock_t turbo_status_lock;
 319	u16 mcp_temp_limit;
 320	u16 mcp_power_limit;
 321	u16 core_power_limit;
 322	u16 mch_power_limit;
 323	bool cpu_turbo_enabled;
 324	bool __cpu_turbo_on;
 325	bool gpu_turbo_enabled;
 326	bool __gpu_turbo_on;
 327	bool gpu_preferred;
 328	bool poll_turbo_status;
 329	bool second_cpu;
 330	bool turbo_toggle_allowed;
 331	struct ips_mcp_limits *limits;
 332
 333	/* Optional MCH interfaces for if i915 is in use */
 334	unsigned long (*read_mch_val)(void);
 335	bool (*gpu_raise)(void);
 336	bool (*gpu_lower)(void);
 337	bool (*gpu_busy)(void);
 338	bool (*gpu_turbo_disable)(void);
 339
 340	/* For restoration at unload */
 341	u64 orig_turbo_limit;
 342	u64 orig_turbo_ratios;
 343};
 344
 345static bool
 346ips_gpu_turbo_enabled(struct ips_driver *ips);
 347
 348/**
 349 * ips_cpu_busy - is CPU busy?
 350 * @ips: IPS driver struct
 351 *
 352 * Check CPU for load to see whether we should increase its thermal budget.
 353 *
 354 * RETURNS:
 355 * True if the CPU could use more power, false otherwise.
 356 */
 357static bool ips_cpu_busy(struct ips_driver *ips)
 358{
 359	if ((avenrun[0] >> FSHIFT) > 1)
 360		return true;
 361
 362	return false;
 363}
 364
 365/**
 366 * ips_cpu_raise - raise CPU power clamp
 367 * @ips: IPS driver struct
 368 *
 369 * Raise the CPU power clamp by %IPS_CPU_STEP, in accordance with TDP for
 370 * this platform.
 371 *
 372 * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR upwards (as
 373 * long as we haven't hit the TDP limit for the SKU).
 374 */
 375static void ips_cpu_raise(struct ips_driver *ips)
 376{
 377	u64 turbo_override;
 378	u16 cur_tdp_limit, new_tdp_limit;
 379
 380	if (!ips->cpu_turbo_enabled)
 381		return;
 382
 383	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
 384
 385	cur_tdp_limit = turbo_override & TURBO_TDP_MASK;
 386	new_tdp_limit = cur_tdp_limit + 8; /* 1W increase */
 387
 388	/* Clamp to SKU TDP limit */
 389	if (((new_tdp_limit * 10) / 8) > ips->core_power_limit)
 390		new_tdp_limit = cur_tdp_limit;
 391
 392	thm_writew(THM_MPCPC, (new_tdp_limit * 10) / 8);
 393
 394	turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN;
 395	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
 396
 397	turbo_override &= ~TURBO_TDP_MASK;
 398	turbo_override |= new_tdp_limit;
 399
 400	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
 401}
 402
 403/**
 404 * ips_cpu_lower - lower CPU power clamp
 405 * @ips: IPS driver struct
 406 *
 407 * Lower CPU power clamp b %IPS_CPU_STEP if possible.
 408 *
 409 * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR down, going
 410 * as low as the platform limits will allow (though we could go lower there
 411 * wouldn't be much point).
 412 */
 413static void ips_cpu_lower(struct ips_driver *ips)
 414{
 415	u64 turbo_override;
 416	u16 cur_limit, new_limit;
 417
 418	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
 419
 420	cur_limit = turbo_override & TURBO_TDP_MASK;
 421	new_limit = cur_limit - 8; /* 1W decrease */
 422
 423	/* Clamp to SKU TDP limit */
 424	if (new_limit  < (ips->orig_turbo_limit & TURBO_TDP_MASK))
 425		new_limit = ips->orig_turbo_limit & TURBO_TDP_MASK;
 426
 427	thm_writew(THM_MPCPC, (new_limit * 10) / 8);
 428
 429	turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN;
 430	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
 431
 432	turbo_override &= ~TURBO_TDP_MASK;
 433	turbo_override |= new_limit;
 434
 435	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
 436}
 437
 438/**
 439 * do_enable_cpu_turbo - internal turbo enable function
 440 * @data: unused
 441 *
 442 * Internal function for actually updating MSRs.  When we enable/disable
 443 * turbo, we need to do it on each CPU; this function is the one called
 444 * by on_each_cpu() when needed.
 445 */
 446static void do_enable_cpu_turbo(void *data)
 447{
 448	u64 perf_ctl;
 449
 450	rdmsrl(IA32_PERF_CTL, perf_ctl);
 451	if (perf_ctl & IA32_PERF_TURBO_DIS) {
 452		perf_ctl &= ~IA32_PERF_TURBO_DIS;
 453		wrmsrl(IA32_PERF_CTL, perf_ctl);
 454	}
 455}
 456
 457/**
 458 * ips_enable_cpu_turbo - enable turbo mode on all CPUs
 459 * @ips: IPS driver struct
 460 *
 461 * Enable turbo mode by clearing the disable bit in IA32_PERF_CTL on
 462 * all logical threads.
 463 */
 464static void ips_enable_cpu_turbo(struct ips_driver *ips)
 465{
 466	/* Already on, no need to mess with MSRs */
 467	if (ips->__cpu_turbo_on)
 468		return;
 469
 470	if (ips->turbo_toggle_allowed)
 471		on_each_cpu(do_enable_cpu_turbo, ips, 1);
 472
 473	ips->__cpu_turbo_on = true;
 474}
 475
 476/**
 477 * do_disable_cpu_turbo - internal turbo disable function
 478 * @data: unused
 479 *
 480 * Internal function for actually updating MSRs.  When we enable/disable
 481 * turbo, we need to do it on each CPU; this function is the one called
 482 * by on_each_cpu() when needed.
 483 */
 484static void do_disable_cpu_turbo(void *data)
 485{
 486	u64 perf_ctl;
 487
 488	rdmsrl(IA32_PERF_CTL, perf_ctl);
 489	if (!(perf_ctl & IA32_PERF_TURBO_DIS)) {
 490		perf_ctl |= IA32_PERF_TURBO_DIS;
 491		wrmsrl(IA32_PERF_CTL, perf_ctl);
 492	}
 493}
 494
 495/**
 496 * ips_disable_cpu_turbo - disable turbo mode on all CPUs
 497 * @ips: IPS driver struct
 498 *
 499 * Disable turbo mode by setting the disable bit in IA32_PERF_CTL on
 500 * all logical threads.
 501 */
 502static void ips_disable_cpu_turbo(struct ips_driver *ips)
 503{
 504	/* Already off, leave it */
 505	if (!ips->__cpu_turbo_on)
 506		return;
 507
 508	if (ips->turbo_toggle_allowed)
 509		on_each_cpu(do_disable_cpu_turbo, ips, 1);
 510
 511	ips->__cpu_turbo_on = false;
 512}
 513
 514/**
 515 * ips_gpu_busy - is GPU busy?
 516 * @ips: IPS driver struct
 517 *
 518 * Check GPU for load to see whether we should increase its thermal budget.
 519 * We need to call into the i915 driver in this case.
 520 *
 521 * RETURNS:
 522 * True if the GPU could use more power, false otherwise.
 523 */
 524static bool ips_gpu_busy(struct ips_driver *ips)
 525{
 526	if (!ips_gpu_turbo_enabled(ips))
 527		return false;
 528
 529	return ips->gpu_busy();
 530}
 531
 532/**
 533 * ips_gpu_raise - raise GPU power clamp
 534 * @ips: IPS driver struct
 535 *
 536 * Raise the GPU frequency/power if possible.  We need to call into the
 537 * i915 driver in this case.
 538 */
 539static void ips_gpu_raise(struct ips_driver *ips)
 540{
 541	if (!ips_gpu_turbo_enabled(ips))
 542		return;
 543
 544	if (!ips->gpu_raise())
 545		ips->gpu_turbo_enabled = false;
 546
 547	return;
 548}
 549
 550/**
 551 * ips_gpu_lower - lower GPU power clamp
 552 * @ips: IPS driver struct
 553 *
 554 * Lower GPU frequency/power if possible.  Need to call i915.
 555 */
 556static void ips_gpu_lower(struct ips_driver *ips)
 557{
 558	if (!ips_gpu_turbo_enabled(ips))
 559		return;
 560
 561	if (!ips->gpu_lower())
 562		ips->gpu_turbo_enabled = false;
 563
 564	return;
 565}
 566
 567/**
 568 * ips_enable_gpu_turbo - notify the gfx driver turbo is available
 569 * @ips: IPS driver struct
 570 *
 571 * Call into the graphics driver indicating that it can safely use
 572 * turbo mode.
 573 */
 574static void ips_enable_gpu_turbo(struct ips_driver *ips)
 575{
 576	if (ips->__gpu_turbo_on)
 577		return;
 578	ips->__gpu_turbo_on = true;
 579}
 580
 581/**
 582 * ips_disable_gpu_turbo - notify the gfx driver to disable turbo mode
 583 * @ips: IPS driver struct
 584 *
 585 * Request that the graphics driver disable turbo mode.
 586 */
 587static void ips_disable_gpu_turbo(struct ips_driver *ips)
 588{
 589	/* Avoid calling i915 if turbo is already disabled */
 590	if (!ips->__gpu_turbo_on)
 591		return;
 592
 593	if (!ips->gpu_turbo_disable())
 594		dev_err(ips->dev, "failed to disable graphics turbo\n");
 595	else
 596		ips->__gpu_turbo_on = false;
 597}
 598
 599/**
 600 * mcp_exceeded - check whether we're outside our thermal & power limits
 601 * @ips: IPS driver struct
 602 *
 603 * Check whether the MCP is over its thermal or power budget.
 
 
 604 */
 605static bool mcp_exceeded(struct ips_driver *ips)
 606{
 607	unsigned long flags;
 608	bool ret = false;
 609	u32 temp_limit;
 610	u32 avg_power;
 611
 612	spin_lock_irqsave(&ips->turbo_status_lock, flags);
 613
 614	temp_limit = ips->mcp_temp_limit * 100;
 615	if (ips->mcp_avg_temp > temp_limit)
 616		ret = true;
 617
 618	avg_power = ips->cpu_avg_power + ips->mch_avg_power;
 619	if (avg_power > ips->mcp_power_limit)
 620		ret = true;
 621
 622	spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
 623
 624	return ret;
 625}
 626
 627/**
 628 * cpu_exceeded - check whether a CPU core is outside its limits
 629 * @ips: IPS driver struct
 630 * @cpu: CPU number to check
 631 *
 632 * Check a given CPU's average temp or power is over its limit.
 
 
 633 */
 634static bool cpu_exceeded(struct ips_driver *ips, int cpu)
 635{
 636	unsigned long flags;
 637	int avg;
 638	bool ret = false;
 639
 640	spin_lock_irqsave(&ips->turbo_status_lock, flags);
 641	avg = cpu ? ips->ctv2_avg_temp : ips->ctv1_avg_temp;
 642	if (avg > (ips->limits->core_temp_limit * 100))
 643		ret = true;
 644	if (ips->cpu_avg_power > ips->core_power_limit * 100)
 645		ret = true;
 646	spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
 647
 648	if (ret)
 649		dev_info(ips->dev, "CPU power or thermal limit exceeded\n");
 650
 651	return ret;
 652}
 653
 654/**
 655 * mch_exceeded - check whether the GPU is over budget
 656 * @ips: IPS driver struct
 657 *
 658 * Check the MCH temp & power against their maximums.
 
 
 659 */
 660static bool mch_exceeded(struct ips_driver *ips)
 661{
 662	unsigned long flags;
 663	bool ret = false;
 664
 665	spin_lock_irqsave(&ips->turbo_status_lock, flags);
 666	if (ips->mch_avg_temp > (ips->limits->mch_temp_limit * 100))
 667		ret = true;
 668	if (ips->mch_avg_power > ips->mch_power_limit)
 669		ret = true;
 670	spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
 671
 672	return ret;
 673}
 674
 675/**
 676 * verify_limits - verify BIOS provided limits
 677 * @ips: IPS structure
 678 *
 679 * BIOS can optionally provide non-default limits for power and temp.  Check
 680 * them here and use the defaults if the BIOS values are not provided or
 681 * are otherwise unusable.
 682 */
 683static void verify_limits(struct ips_driver *ips)
 684{
 685	if (ips->mcp_power_limit < ips->limits->mcp_power_limit ||
 686	    ips->mcp_power_limit > 35000)
 687		ips->mcp_power_limit = ips->limits->mcp_power_limit;
 688
 689	if (ips->mcp_temp_limit < ips->limits->core_temp_limit ||
 690	    ips->mcp_temp_limit < ips->limits->mch_temp_limit ||
 691	    ips->mcp_temp_limit > 150)
 692		ips->mcp_temp_limit = min(ips->limits->core_temp_limit,
 693					  ips->limits->mch_temp_limit);
 694}
 695
 696/**
 697 * update_turbo_limits - get various limits & settings from regs
 698 * @ips: IPS driver struct
 699 *
 700 * Update the IPS power & temp limits, along with turbo enable flags,
 701 * based on latest register contents.
 702 *
 703 * Used at init time and for runtime BIOS support, which requires polling
 704 * the regs for updates (as a result of AC->DC transition for example).
 705 *
 706 * LOCKING:
 707 * Caller must hold turbo_status_lock (outside of init)
 708 */
 709static void update_turbo_limits(struct ips_driver *ips)
 710{
 711	u32 hts = thm_readl(THM_HTS);
 712
 713	ips->cpu_turbo_enabled = !(hts & HTS_PCTD_DIS);
 714	/* 
 715	 * Disable turbo for now, until we can figure out why the power figures
 716	 * are wrong
 717	 */
 718	ips->cpu_turbo_enabled = false;
 719
 720	if (ips->gpu_busy)
 721		ips->gpu_turbo_enabled = !(hts & HTS_GTD_DIS);
 722
 723	ips->core_power_limit = thm_readw(THM_MPCPC);
 724	ips->mch_power_limit = thm_readw(THM_MMGPC);
 725	ips->mcp_temp_limit = thm_readw(THM_PTL);
 726	ips->mcp_power_limit = thm_readw(THM_MPPC);
 727
 728	verify_limits(ips);
 729	/* Ignore BIOS CPU vs GPU pref */
 730}
 731
 732/**
 733 * ips_adjust - adjust power clamp based on thermal state
 734 * @data: ips driver structure
 735 *
 736 * Wake up every 5s or so and check whether we should adjust the power clamp.
 737 * Check CPU and GPU load to determine which needs adjustment.  There are
 738 * several things to consider here:
 739 *   - do we need to adjust up or down?
 740 *   - is CPU busy?
 741 *   - is GPU busy?
 742 *   - is CPU in turbo?
 743 *   - is GPU in turbo?
 744 *   - is CPU or GPU preferred? (CPU is default)
 745 *
 746 * So, given the above, we do the following:
 747 *   - up (TDP available)
 748 *     - CPU not busy, GPU not busy - nothing
 749 *     - CPU busy, GPU not busy - adjust CPU up
 750 *     - CPU not busy, GPU busy - adjust GPU up
 751 *     - CPU busy, GPU busy - adjust preferred unit up, taking headroom from
 752 *       non-preferred unit if necessary
 753 *   - down (at TDP limit)
 754 *     - adjust both CPU and GPU down if possible
 755 *
 756		cpu+ gpu+	cpu+gpu-	cpu-gpu+	cpu-gpu-
 757cpu < gpu <	cpu+gpu+	cpu+		gpu+		nothing
 758cpu < gpu >=	cpu+gpu-(mcp<)	cpu+gpu-(mcp<)	gpu-		gpu-
 759cpu >= gpu <	cpu-gpu+(mcp<)	cpu-		cpu-gpu+(mcp<)	cpu-
 760cpu >= gpu >=	cpu-gpu-	cpu-gpu-	cpu-gpu-	cpu-gpu-
 761 *
 
 762 */
 763static int ips_adjust(void *data)
 764{
 765	struct ips_driver *ips = data;
 766	unsigned long flags;
 767
 768	dev_dbg(ips->dev, "starting ips-adjust thread\n");
 769
 770	/*
 771	 * Adjust CPU and GPU clamps every 5s if needed.  Doing it more
 772	 * often isn't recommended due to ME interaction.
 773	 */
 774	do {
 775		bool cpu_busy = ips_cpu_busy(ips);
 776		bool gpu_busy = ips_gpu_busy(ips);
 777
 778		spin_lock_irqsave(&ips->turbo_status_lock, flags);
 779		if (ips->poll_turbo_status)
 780			update_turbo_limits(ips);
 781		spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
 782
 783		/* Update turbo status if necessary */
 784		if (ips->cpu_turbo_enabled)
 785			ips_enable_cpu_turbo(ips);
 786		else
 787			ips_disable_cpu_turbo(ips);
 788
 789		if (ips->gpu_turbo_enabled)
 790			ips_enable_gpu_turbo(ips);
 791		else
 792			ips_disable_gpu_turbo(ips);
 793
 794		/* We're outside our comfort zone, crank them down */
 795		if (mcp_exceeded(ips)) {
 796			ips_cpu_lower(ips);
 797			ips_gpu_lower(ips);
 798			goto sleep;
 799		}
 800
 801		if (!cpu_exceeded(ips, 0) && cpu_busy)
 802			ips_cpu_raise(ips);
 803		else
 804			ips_cpu_lower(ips);
 805
 806		if (!mch_exceeded(ips) && gpu_busy)
 807			ips_gpu_raise(ips);
 808		else
 809			ips_gpu_lower(ips);
 810
 811sleep:
 812		schedule_timeout_interruptible(msecs_to_jiffies(IPS_ADJUST_PERIOD));
 813	} while (!kthread_should_stop());
 814
 815	dev_dbg(ips->dev, "ips-adjust thread stopped\n");
 816
 817	return 0;
 818}
 819
 820/*
 821 * Helpers for reading out temp/power values and calculating their
 822 * averages for the decision making and monitoring functions.
 823 */
 824
 825static u16 calc_avg_temp(struct ips_driver *ips, u16 *array)
 826{
 827	u64 total = 0;
 828	int i;
 829	u16 avg;
 830
 831	for (i = 0; i < IPS_SAMPLE_COUNT; i++)
 832		total += (u64)(array[i] * 100);
 833
 834	do_div(total, IPS_SAMPLE_COUNT);
 835
 836	avg = (u16)total;
 837
 838	return avg;
 839}
 840
 841static u16 read_mgtv(struct ips_driver *ips)
 842{
 843	u16 ret;
 844	u64 slope, offset;
 845	u64 val;
 846
 847	val = thm_readq(THM_MGTV);
 848	val = (val & TV_MASK) >> TV_SHIFT;
 849
 850	slope = offset = thm_readw(THM_MGTA);
 851	slope = (slope & MGTA_SLOPE_MASK) >> MGTA_SLOPE_SHIFT;
 852	offset = offset & MGTA_OFFSET_MASK;
 853
 854	ret = ((val * slope + 0x40) >> 7) + offset;
 855
 856	return 0; /* MCH temp reporting buggy */
 857}
 858
 859static u16 read_ptv(struct ips_driver *ips)
 860{
 861	u16 val, slope, offset;
 862
 863	slope = (ips->pta_val & PTA_SLOPE_MASK) >> PTA_SLOPE_SHIFT;
 864	offset = ips->pta_val & PTA_OFFSET_MASK;
 865
 866	val = thm_readw(THM_PTV) & PTV_MASK;
 867
 868	return val;
 869}
 870
 871static u16 read_ctv(struct ips_driver *ips, int cpu)
 872{
 873	int reg = cpu ? THM_CTV2 : THM_CTV1;
 874	u16 val;
 875
 876	val = thm_readw(reg);
 877	if (!(val & CTV_TEMP_ERROR))
 878		val = (val) >> 6; /* discard fractional component */
 879	else
 880		val = 0;
 881
 882	return val;
 883}
 884
 885static u32 get_cpu_power(struct ips_driver *ips, u32 *last, int period)
 886{
 887	u32 val;
 888	u32 ret;
 889
 890	/*
 891	 * CEC is in joules/65535.  Take difference over time to
 892	 * get watts.
 893	 */
 894	val = thm_readl(THM_CEC);
 895
 896	/* period is in ms and we want mW */
 897	ret = (((val - *last) * 1000) / period);
 898	ret = (ret * 1000) / 65535;
 899	*last = val;
 900
 901	return 0;
 902}
 903
 904static const u16 temp_decay_factor = 2;
 905static u16 update_average_temp(u16 avg, u16 val)
 906{
 907	u16 ret;
 908
 909	/* Multiply by 100 for extra precision */
 910	ret = (val * 100 / temp_decay_factor) +
 911		(((temp_decay_factor - 1) * avg) / temp_decay_factor);
 912	return ret;
 913}
 914
 915static const u16 power_decay_factor = 2;
 916static u16 update_average_power(u32 avg, u32 val)
 917{
 918	u32 ret;
 919
 920	ret = (val / power_decay_factor) +
 921		(((power_decay_factor - 1) * avg) / power_decay_factor);
 922
 923	return ret;
 924}
 925
 926static u32 calc_avg_power(struct ips_driver *ips, u32 *array)
 927{
 928	u64 total = 0;
 929	u32 avg;
 930	int i;
 931
 932	for (i = 0; i < IPS_SAMPLE_COUNT; i++)
 933		total += array[i];
 934
 935	do_div(total, IPS_SAMPLE_COUNT);
 936	avg = (u32)total;
 937
 938	return avg;
 939}
 940
 941static void monitor_timeout(struct timer_list *t)
 942{
 943	struct ips_driver *ips = from_timer(ips, t, timer);
 944	wake_up_process(ips->monitor);
 945}
 946
 947/**
 948 * ips_monitor - temp/power monitoring thread
 949 * @data: ips driver structure
 950 *
 951 * This is the main function for the IPS driver.  It monitors power and
 952 * tempurature in the MCP and adjusts CPU and GPU power clams accordingly.
 953 *
 954 * We keep a 5s moving average of power consumption and tempurature.  Using
 955 * that data, along with CPU vs GPU preference, we adjust the power clamps
 956 * up or down.
 
 
 957 */
 958static int ips_monitor(void *data)
 959{
 960	struct ips_driver *ips = data;
 961	unsigned long seqno_timestamp, expire, last_msecs, last_sample_period;
 962	int i;
 963	u32 *cpu_samples, *mchp_samples, old_cpu_power;
 964	u16 *mcp_samples, *ctv1_samples, *ctv2_samples, *mch_samples;
 965	u8 cur_seqno, last_seqno;
 966
 967	mcp_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
 968	ctv1_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
 969	ctv2_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
 970	mch_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
 971	cpu_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL);
 972	mchp_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL);
 973	if (!mcp_samples || !ctv1_samples || !ctv2_samples || !mch_samples ||
 974			!cpu_samples || !mchp_samples) {
 975		dev_err(ips->dev,
 976			"failed to allocate sample array, ips disabled\n");
 977		kfree(mcp_samples);
 978		kfree(ctv1_samples);
 979		kfree(ctv2_samples);
 980		kfree(mch_samples);
 981		kfree(cpu_samples);
 982		kfree(mchp_samples);
 983		return -ENOMEM;
 984	}
 985
 986	last_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
 987		ITV_ME_SEQNO_SHIFT;
 988	seqno_timestamp = get_jiffies_64();
 989
 990	old_cpu_power = thm_readl(THM_CEC);
 991	schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
 992
 993	/* Collect an initial average */
 994	for (i = 0; i < IPS_SAMPLE_COUNT; i++) {
 995		u32 mchp, cpu_power;
 996		u16 val;
 997
 998		mcp_samples[i] = read_ptv(ips);
 999
1000		val = read_ctv(ips, 0);
1001		ctv1_samples[i] = val;
1002
1003		val = read_ctv(ips, 1);
1004		ctv2_samples[i] = val;
1005
1006		val = read_mgtv(ips);
1007		mch_samples[i] = val;
1008
1009		cpu_power = get_cpu_power(ips, &old_cpu_power,
1010					  IPS_SAMPLE_PERIOD);
1011		cpu_samples[i] = cpu_power;
1012
1013		if (ips->read_mch_val) {
1014			mchp = ips->read_mch_val();
1015			mchp_samples[i] = mchp;
1016		}
1017
1018		schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1019		if (kthread_should_stop())
1020			break;
1021	}
1022
1023	ips->mcp_avg_temp = calc_avg_temp(ips, mcp_samples);
1024	ips->ctv1_avg_temp = calc_avg_temp(ips, ctv1_samples);
1025	ips->ctv2_avg_temp = calc_avg_temp(ips, ctv2_samples);
1026	ips->mch_avg_temp = calc_avg_temp(ips, mch_samples);
1027	ips->cpu_avg_power = calc_avg_power(ips, cpu_samples);
1028	ips->mch_avg_power = calc_avg_power(ips, mchp_samples);
1029	kfree(mcp_samples);
1030	kfree(ctv1_samples);
1031	kfree(ctv2_samples);
1032	kfree(mch_samples);
1033	kfree(cpu_samples);
1034	kfree(mchp_samples);
1035
1036	/* Start the adjustment thread now that we have data */
1037	wake_up_process(ips->adjust);
1038
1039	/*
1040	 * Ok, now we have an initial avg.  From here on out, we track the
1041	 * running avg using a decaying average calculation.  This allows
1042	 * us to reduce the sample frequency if the CPU and GPU are idle.
1043	 */
1044	old_cpu_power = thm_readl(THM_CEC);
1045	schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1046	last_sample_period = IPS_SAMPLE_PERIOD;
1047
1048	timer_setup(&ips->timer, monitor_timeout, TIMER_DEFERRABLE);
1049	do {
1050		u32 cpu_val, mch_val;
1051		u16 val;
1052
1053		/* MCP itself */
1054		val = read_ptv(ips);
1055		ips->mcp_avg_temp = update_average_temp(ips->mcp_avg_temp, val);
1056
1057		/* Processor 0 */
1058		val = read_ctv(ips, 0);
1059		ips->ctv1_avg_temp =
1060			update_average_temp(ips->ctv1_avg_temp, val);
1061		/* Power */
1062		cpu_val = get_cpu_power(ips, &old_cpu_power,
1063					last_sample_period);
1064		ips->cpu_avg_power =
1065			update_average_power(ips->cpu_avg_power, cpu_val);
1066
1067		if (ips->second_cpu) {
1068			/* Processor 1 */
1069			val = read_ctv(ips, 1);
1070			ips->ctv2_avg_temp =
1071				update_average_temp(ips->ctv2_avg_temp, val);
1072		}
1073
1074		/* MCH */
1075		val = read_mgtv(ips);
1076		ips->mch_avg_temp = update_average_temp(ips->mch_avg_temp, val);
1077		/* Power */
1078		if (ips->read_mch_val) {
1079			mch_val = ips->read_mch_val();
1080			ips->mch_avg_power =
1081				update_average_power(ips->mch_avg_power,
1082						     mch_val);
1083		}
1084
1085		/*
1086		 * Make sure ME is updating thermal regs.
1087		 * Note:
1088		 * If it's been more than a second since the last update,
1089		 * the ME is probably hung.
1090		 */
1091		cur_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
1092			ITV_ME_SEQNO_SHIFT;
1093		if (cur_seqno == last_seqno &&
1094		    time_after(jiffies, seqno_timestamp + HZ)) {
1095			dev_warn(ips->dev,
1096				 "ME failed to update for more than 1s, likely hung\n");
1097		} else {
1098			seqno_timestamp = get_jiffies_64();
1099			last_seqno = cur_seqno;
1100		}
1101
1102		last_msecs = jiffies_to_msecs(jiffies);
1103		expire = jiffies + msecs_to_jiffies(IPS_SAMPLE_PERIOD);
1104
1105		__set_current_state(TASK_INTERRUPTIBLE);
1106		mod_timer(&ips->timer, expire);
1107		schedule();
1108
1109		/* Calculate actual sample period for power averaging */
1110		last_sample_period = jiffies_to_msecs(jiffies) - last_msecs;
1111		if (!last_sample_period)
1112			last_sample_period = 1;
1113	} while (!kthread_should_stop());
1114
1115	del_timer_sync(&ips->timer);
1116
1117	dev_dbg(ips->dev, "ips-monitor thread stopped\n");
1118
1119	return 0;
1120}
1121
1122#if 0
1123#define THM_DUMPW(reg) \
1124	{ \
1125	u16 val = thm_readw(reg); \
1126	dev_dbg(ips->dev, #reg ": 0x%04x\n", val); \
1127	}
1128#define THM_DUMPL(reg) \
1129	{ \
1130	u32 val = thm_readl(reg); \
1131	dev_dbg(ips->dev, #reg ": 0x%08x\n", val); \
1132	}
1133#define THM_DUMPQ(reg) \
1134	{ \
1135	u64 val = thm_readq(reg); \
1136	dev_dbg(ips->dev, #reg ": 0x%016x\n", val); \
1137	}
1138
1139static void dump_thermal_info(struct ips_driver *ips)
1140{
1141	u16 ptl;
1142
1143	ptl = thm_readw(THM_PTL);
1144	dev_dbg(ips->dev, "Processor temp limit: %d\n", ptl);
1145
1146	THM_DUMPW(THM_CTA);
1147	THM_DUMPW(THM_TRC);
1148	THM_DUMPW(THM_CTV1);
1149	THM_DUMPL(THM_STS);
1150	THM_DUMPW(THM_PTV);
1151	THM_DUMPQ(THM_MGTV);
1152}
1153#endif
1154
1155/**
1156 * ips_irq_handler - handle temperature triggers and other IPS events
1157 * @irq: irq number
1158 * @arg: unused
1159 *
1160 * Handle temperature limit trigger events, generally by lowering the clamps.
1161 * If we're at a critical limit, we clamp back to the lowest possible value
1162 * to prevent emergency shutdown.
 
 
1163 */
1164static irqreturn_t ips_irq_handler(int irq, void *arg)
1165{
1166	struct ips_driver *ips = arg;
1167	u8 tses = thm_readb(THM_TSES);
1168	u8 tes = thm_readb(THM_TES);
1169
1170	if (!tses && !tes)
1171		return IRQ_NONE;
1172
1173	dev_info(ips->dev, "TSES: 0x%02x\n", tses);
1174	dev_info(ips->dev, "TES: 0x%02x\n", tes);
1175
1176	/* STS update from EC? */
1177	if (tes & 1) {
1178		u32 sts, tc1;
1179
1180		sts = thm_readl(THM_STS);
1181		tc1 = thm_readl(THM_TC1);
1182
1183		if (sts & STS_NVV) {
1184			spin_lock(&ips->turbo_status_lock);
1185			ips->core_power_limit = (sts & STS_PCPL_MASK) >>
1186				STS_PCPL_SHIFT;
1187			ips->mch_power_limit = (sts & STS_GPL_MASK) >>
1188				STS_GPL_SHIFT;
1189			/* ignore EC CPU vs GPU pref */
1190			ips->cpu_turbo_enabled = !(sts & STS_PCTD_DIS);
1191			/* 
1192			 * Disable turbo for now, until we can figure
1193			 * out why the power figures are wrong
1194			 */
1195			ips->cpu_turbo_enabled = false;
1196			if (ips->gpu_busy)
1197				ips->gpu_turbo_enabled = !(sts & STS_GTD_DIS);
1198			ips->mcp_temp_limit = (sts & STS_PTL_MASK) >>
1199				STS_PTL_SHIFT;
1200			ips->mcp_power_limit = (tc1 & STS_PPL_MASK) >>
1201				STS_PPL_SHIFT;
1202			verify_limits(ips);
1203			spin_unlock(&ips->turbo_status_lock);
1204
1205			thm_writeb(THM_SEC, SEC_ACK);
1206		}
1207		thm_writeb(THM_TES, tes);
1208	}
1209
1210	/* Thermal trip */
1211	if (tses) {
1212		dev_warn(ips->dev, "thermal trip occurred, tses: 0x%04x\n",
1213			 tses);
1214		thm_writeb(THM_TSES, tses);
1215	}
1216
1217	return IRQ_HANDLED;
1218}
1219
1220#ifndef CONFIG_DEBUG_FS
1221static void ips_debugfs_init(struct ips_driver *ips) { return; }
1222static void ips_debugfs_cleanup(struct ips_driver *ips) { return; }
1223#else
1224
1225/* Expose current state and limits in debugfs if possible */
1226
1227struct ips_debugfs_node {
1228	struct ips_driver *ips;
1229	char *name;
1230	int (*show)(struct seq_file *m, void *data);
1231};
1232
1233static int show_cpu_temp(struct seq_file *m, void *data)
1234{
1235	struct ips_driver *ips = m->private;
1236
1237	seq_printf(m, "%d.%02d\n", ips->ctv1_avg_temp / 100,
1238		   ips->ctv1_avg_temp % 100);
1239
1240	return 0;
1241}
 
1242
1243static int show_cpu_power(struct seq_file *m, void *data)
1244{
1245	struct ips_driver *ips = m->private;
1246
1247	seq_printf(m, "%dmW\n", ips->cpu_avg_power);
1248
1249	return 0;
1250}
 
1251
1252static int show_cpu_clamp(struct seq_file *m, void *data)
1253{
1254	u64 turbo_override;
1255	int tdp, tdc;
1256
1257	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1258
1259	tdp = (int)(turbo_override & TURBO_TDP_MASK);
1260	tdc = (int)((turbo_override & TURBO_TDC_MASK) >> TURBO_TDC_SHIFT);
1261
1262	/* Convert to .1W/A units */
1263	tdp = tdp * 10 / 8;
1264	tdc = tdc * 10 / 8;
1265
1266	/* Watts Amperes */
1267	seq_printf(m, "%d.%dW %d.%dA\n", tdp / 10, tdp % 10,
1268		   tdc / 10, tdc % 10);
1269
1270	return 0;
1271}
 
1272
1273static int show_mch_temp(struct seq_file *m, void *data)
1274{
1275	struct ips_driver *ips = m->private;
1276
1277	seq_printf(m, "%d.%02d\n", ips->mch_avg_temp / 100,
1278		   ips->mch_avg_temp % 100);
1279
1280	return 0;
1281}
 
1282
1283static int show_mch_power(struct seq_file *m, void *data)
1284{
1285	struct ips_driver *ips = m->private;
1286
1287	seq_printf(m, "%dmW\n", ips->mch_avg_power);
1288
1289	return 0;
1290}
1291
1292static struct ips_debugfs_node ips_debug_files[] = {
1293	{ NULL, "cpu_temp", show_cpu_temp },
1294	{ NULL, "cpu_power", show_cpu_power },
1295	{ NULL, "cpu_clamp", show_cpu_clamp },
1296	{ NULL, "mch_temp", show_mch_temp },
1297	{ NULL, "mch_power", show_mch_power },
1298};
1299
1300static int ips_debugfs_open(struct inode *inode, struct file *file)
1301{
1302	struct ips_debugfs_node *node = inode->i_private;
1303
1304	return single_open(file, node->show, node->ips);
1305}
1306
1307static const struct file_operations ips_debugfs_ops = {
1308	.owner = THIS_MODULE,
1309	.open = ips_debugfs_open,
1310	.read = seq_read,
1311	.llseek = seq_lseek,
1312	.release = single_release,
1313};
1314
1315static void ips_debugfs_cleanup(struct ips_driver *ips)
1316{
1317	if (ips->debug_root)
1318		debugfs_remove_recursive(ips->debug_root);
1319	return;
1320}
1321
1322static void ips_debugfs_init(struct ips_driver *ips)
1323{
1324	int i;
1325
1326	ips->debug_root = debugfs_create_dir("ips", NULL);
1327	if (!ips->debug_root) {
1328		dev_err(ips->dev, "failed to create debugfs entries: %ld\n",
1329			PTR_ERR(ips->debug_root));
1330		return;
1331	}
1332
1333	for (i = 0; i < ARRAY_SIZE(ips_debug_files); i++) {
1334		struct dentry *ent;
1335		struct ips_debugfs_node *node = &ips_debug_files[i];
1336
1337		node->ips = ips;
1338		ent = debugfs_create_file(node->name, S_IFREG | S_IRUGO,
1339					  ips->debug_root, node,
1340					  &ips_debugfs_ops);
1341		if (!ent) {
1342			dev_err(ips->dev, "failed to create debug file: %ld\n",
1343				PTR_ERR(ent));
1344			goto err_cleanup;
1345		}
1346	}
1347
1348	return;
1349
1350err_cleanup:
1351	ips_debugfs_cleanup(ips);
1352	return;
 
 
1353}
1354#endif /* CONFIG_DEBUG_FS */
1355
1356/**
1357 * ips_detect_cpu - detect whether CPU supports IPS
 
1358 *
1359 * Walk our list and see if we're on a supported CPU.  If we find one,
1360 * return the limits for it.
 
 
1361 */
1362static struct ips_mcp_limits *ips_detect_cpu(struct ips_driver *ips)
1363{
1364	u64 turbo_power, misc_en;
1365	struct ips_mcp_limits *limits = NULL;
1366	u16 tdp;
1367
1368	if (!(boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 37)) {
1369		dev_info(ips->dev, "Non-IPS CPU detected.\n");
1370		return NULL;
1371	}
1372
1373	rdmsrl(IA32_MISC_ENABLE, misc_en);
1374	/*
1375	 * If the turbo enable bit isn't set, we shouldn't try to enable/disable
1376	 * turbo manually or we'll get an illegal MSR access, even though
1377	 * turbo will still be available.
1378	 */
1379	if (misc_en & IA32_MISC_TURBO_EN)
1380		ips->turbo_toggle_allowed = true;
1381	else
1382		ips->turbo_toggle_allowed = false;
1383
1384	if (strstr(boot_cpu_data.x86_model_id, "CPU       M"))
1385		limits = &ips_sv_limits;
1386	else if (strstr(boot_cpu_data.x86_model_id, "CPU       L"))
1387		limits = &ips_lv_limits;
1388	else if (strstr(boot_cpu_data.x86_model_id, "CPU       U"))
1389		limits = &ips_ulv_limits;
1390	else {
1391		dev_info(ips->dev, "No CPUID match found.\n");
1392		return NULL;
1393	}
1394
1395	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_power);
1396	tdp = turbo_power & TURBO_TDP_MASK;
1397
1398	/* Sanity check TDP against CPU */
1399	if (limits->core_power_limit != (tdp / 8) * 1000) {
1400		dev_info(ips->dev,
1401			 "CPU TDP doesn't match expected value (found %d, expected %d)\n",
1402			 tdp / 8, limits->core_power_limit / 1000);
1403		limits->core_power_limit = (tdp / 8) * 1000;
1404	}
1405
1406	return limits;
1407}
1408
1409/**
1410 * ips_get_i915_syms - try to get GPU control methods from i915 driver
1411 * @ips: IPS driver
1412 *
1413 * The i915 driver exports several interfaces to allow the IPS driver to
1414 * monitor and control graphics turbo mode.  If we can find them, we can
1415 * enable graphics turbo, otherwise we must disable it to avoid exceeding
1416 * thermal and power limits in the MCP.
 
 
1417 */
1418static bool ips_get_i915_syms(struct ips_driver *ips)
1419{
1420	ips->read_mch_val = symbol_get(i915_read_mch_val);
1421	if (!ips->read_mch_val)
1422		goto out_err;
1423	ips->gpu_raise = symbol_get(i915_gpu_raise);
1424	if (!ips->gpu_raise)
1425		goto out_put_mch;
1426	ips->gpu_lower = symbol_get(i915_gpu_lower);
1427	if (!ips->gpu_lower)
1428		goto out_put_raise;
1429	ips->gpu_busy = symbol_get(i915_gpu_busy);
1430	if (!ips->gpu_busy)
1431		goto out_put_lower;
1432	ips->gpu_turbo_disable = symbol_get(i915_gpu_turbo_disable);
1433	if (!ips->gpu_turbo_disable)
1434		goto out_put_busy;
1435
1436	return true;
1437
1438out_put_busy:
1439	symbol_put(i915_gpu_busy);
1440out_put_lower:
1441	symbol_put(i915_gpu_lower);
1442out_put_raise:
1443	symbol_put(i915_gpu_raise);
1444out_put_mch:
1445	symbol_put(i915_read_mch_val);
1446out_err:
1447	return false;
1448}
1449
1450static bool
1451ips_gpu_turbo_enabled(struct ips_driver *ips)
1452{
1453	if (!ips->gpu_busy && late_i915_load) {
1454		if (ips_get_i915_syms(ips)) {
1455			dev_info(ips->dev,
1456				 "i915 driver attached, reenabling gpu turbo\n");
1457			ips->gpu_turbo_enabled = !(thm_readl(THM_HTS) & HTS_GTD_DIS);
1458		}
1459	}
1460
1461	return ips->gpu_turbo_enabled;
1462}
1463
1464void
1465ips_link_to_i915_driver(void)
1466{
1467	/* We can't cleanly get at the various ips_driver structs from
1468	 * this caller (the i915 driver), so just set a flag saying
1469	 * that it's time to try getting the symbols again.
1470	 */
1471	late_i915_load = true;
1472}
1473EXPORT_SYMBOL_GPL(ips_link_to_i915_driver);
1474
1475static const struct pci_device_id ips_id_table[] = {
1476	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_THERMAL_SENSOR), },
1477	{ 0, }
1478};
1479
1480MODULE_DEVICE_TABLE(pci, ips_id_table);
1481
1482static int ips_blacklist_callback(const struct dmi_system_id *id)
1483{
1484	pr_info("Blacklisted intel_ips for %s\n", id->ident);
1485	return 1;
1486}
1487
1488static const struct dmi_system_id ips_blacklist[] = {
1489	{
1490		.callback = ips_blacklist_callback,
1491		.ident = "HP ProBook",
1492		.matches = {
1493			DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
1494			DMI_MATCH(DMI_PRODUCT_NAME, "HP ProBook"),
1495		},
1496	},
1497	{ }	/* terminating entry */
1498};
1499
1500static int ips_probe(struct pci_dev *dev, const struct pci_device_id *id)
1501{
1502	u64 platform_info;
1503	struct ips_driver *ips;
1504	u32 hts;
1505	int ret = 0;
1506	u16 htshi, trc, trc_required_mask;
1507	u8 tse;
1508
1509	if (dmi_check_system(ips_blacklist))
1510		return -ENODEV;
1511
1512	ips = devm_kzalloc(&dev->dev, sizeof(*ips), GFP_KERNEL);
1513	if (!ips)
1514		return -ENOMEM;
1515
1516	spin_lock_init(&ips->turbo_status_lock);
1517	ips->dev = &dev->dev;
1518
1519	ips->limits = ips_detect_cpu(ips);
1520	if (!ips->limits) {
1521		dev_info(&dev->dev, "IPS not supported on this CPU\n");
1522		return -ENXIO;
1523	}
1524
1525	ret = pcim_enable_device(dev);
1526	if (ret) {
1527		dev_err(&dev->dev, "can't enable PCI device, aborting\n");
1528		return ret;
1529	}
1530
1531	ret = pcim_iomap_regions(dev, 1 << 0, pci_name(dev));
1532	if (ret) {
1533		dev_err(&dev->dev, "failed to map thermal regs, aborting\n");
1534		return ret;
1535	}
1536	ips->regmap = pcim_iomap_table(dev)[0];
1537
1538	pci_set_drvdata(dev, ips);
1539
1540	tse = thm_readb(THM_TSE);
1541	if (tse != TSE_EN) {
1542		dev_err(&dev->dev, "thermal device not enabled (0x%02x), aborting\n", tse);
1543		return -ENXIO;
1544	}
1545
1546	trc = thm_readw(THM_TRC);
1547	trc_required_mask = TRC_CORE1_EN | TRC_CORE_PWR | TRC_MCH_EN;
1548	if ((trc & trc_required_mask) != trc_required_mask) {
1549		dev_err(&dev->dev, "thermal reporting for required devices not enabled, aborting\n");
1550		return -ENXIO;
1551	}
1552
1553	if (trc & TRC_CORE2_EN)
1554		ips->second_cpu = true;
1555
1556	update_turbo_limits(ips);
1557	dev_dbg(&dev->dev, "max cpu power clamp: %dW\n",
1558		ips->mcp_power_limit / 10);
1559	dev_dbg(&dev->dev, "max core power clamp: %dW\n",
1560		ips->core_power_limit / 10);
1561	/* BIOS may update limits at runtime */
1562	if (thm_readl(THM_PSC) & PSP_PBRT)
1563		ips->poll_turbo_status = true;
1564
1565	if (!ips_get_i915_syms(ips)) {
1566		dev_info(&dev->dev, "failed to get i915 symbols, graphics turbo disabled until i915 loads\n");
1567		ips->gpu_turbo_enabled = false;
1568	} else {
1569		dev_dbg(&dev->dev, "graphics turbo enabled\n");
1570		ips->gpu_turbo_enabled = true;
1571	}
1572
1573	/*
1574	 * Check PLATFORM_INFO MSR to make sure this chip is
1575	 * turbo capable.
1576	 */
1577	rdmsrl(PLATFORM_INFO, platform_info);
1578	if (!(platform_info & PLATFORM_TDP)) {
1579		dev_err(&dev->dev, "platform indicates TDP override unavailable, aborting\n");
1580		return -ENODEV;
1581	}
1582
1583	/*
1584	 * IRQ handler for ME interaction
1585	 * Note: don't use MSI here as the PCH has bugs.
1586	 */
1587	ret = pci_alloc_irq_vectors(dev, 1, 1, PCI_IRQ_LEGACY);
1588	if (ret < 0)
1589		return ret;
1590
1591	ips->irq = pci_irq_vector(dev, 0);
1592
1593	ret = request_irq(ips->irq, ips_irq_handler, IRQF_SHARED, "ips", ips);
1594	if (ret) {
1595		dev_err(&dev->dev, "request irq failed, aborting\n");
1596		return ret;
1597	}
1598
1599	/* Enable aux, hot & critical interrupts */
1600	thm_writeb(THM_TSPIEN, TSPIEN_AUX2_LOHI | TSPIEN_CRIT_LOHI |
1601		   TSPIEN_HOT_LOHI | TSPIEN_AUX_LOHI);
1602	thm_writeb(THM_TEN, TEN_UPDATE_EN);
1603
1604	/* Collect adjustment values */
1605	ips->cta_val = thm_readw(THM_CTA);
1606	ips->pta_val = thm_readw(THM_PTA);
1607	ips->mgta_val = thm_readw(THM_MGTA);
1608
1609	/* Save turbo limits & ratios */
1610	rdmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1611
1612	ips_disable_cpu_turbo(ips);
1613	ips->cpu_turbo_enabled = false;
1614
1615	/* Create thermal adjust thread */
1616	ips->adjust = kthread_create(ips_adjust, ips, "ips-adjust");
1617	if (IS_ERR(ips->adjust)) {
1618		dev_err(&dev->dev,
1619			"failed to create thermal adjust thread, aborting\n");
1620		ret = -ENOMEM;
1621		goto error_free_irq;
1622
1623	}
1624
1625	/*
1626	 * Set up the work queue and monitor thread. The monitor thread
1627	 * will wake up ips_adjust thread.
1628	 */
1629	ips->monitor = kthread_run(ips_monitor, ips, "ips-monitor");
1630	if (IS_ERR(ips->monitor)) {
1631		dev_err(&dev->dev,
1632			"failed to create thermal monitor thread, aborting\n");
1633		ret = -ENOMEM;
1634		goto error_thread_cleanup;
1635	}
1636
1637	hts = (ips->core_power_limit << HTS_PCPL_SHIFT) |
1638		(ips->mcp_temp_limit << HTS_PTL_SHIFT) | HTS_NVV;
1639	htshi = HTS2_PRST_RUNNING << HTS2_PRST_SHIFT;
1640
1641	thm_writew(THM_HTSHI, htshi);
1642	thm_writel(THM_HTS, hts);
1643
1644	ips_debugfs_init(ips);
1645
1646	dev_info(&dev->dev, "IPS driver initialized, MCP temp limit %d\n",
1647		 ips->mcp_temp_limit);
1648	return ret;
1649
1650error_thread_cleanup:
1651	kthread_stop(ips->adjust);
1652error_free_irq:
1653	free_irq(ips->irq, ips);
1654	pci_free_irq_vectors(dev);
1655	return ret;
1656}
1657
1658static void ips_remove(struct pci_dev *dev)
1659{
1660	struct ips_driver *ips = pci_get_drvdata(dev);
1661	u64 turbo_override;
1662
1663	if (!ips)
1664		return;
1665
1666	ips_debugfs_cleanup(ips);
1667
1668	/* Release i915 driver */
1669	if (ips->read_mch_val)
1670		symbol_put(i915_read_mch_val);
1671	if (ips->gpu_raise)
1672		symbol_put(i915_gpu_raise);
1673	if (ips->gpu_lower)
1674		symbol_put(i915_gpu_lower);
1675	if (ips->gpu_busy)
1676		symbol_put(i915_gpu_busy);
1677	if (ips->gpu_turbo_disable)
1678		symbol_put(i915_gpu_turbo_disable);
1679
1680	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1681	turbo_override &= ~(TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN);
1682	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1683	wrmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1684
1685	free_irq(ips->irq, ips);
1686	pci_free_irq_vectors(dev);
1687	if (ips->adjust)
1688		kthread_stop(ips->adjust);
1689	if (ips->monitor)
1690		kthread_stop(ips->monitor);
1691	dev_dbg(&dev->dev, "IPS driver removed\n");
1692}
1693
1694static struct pci_driver ips_pci_driver = {
1695	.name = "intel ips",
1696	.id_table = ips_id_table,
1697	.probe = ips_probe,
1698	.remove = ips_remove,
1699};
1700
1701module_pci_driver(ips_pci_driver);
1702
1703MODULE_LICENSE("GPL");
1704MODULE_AUTHOR("Jesse Barnes <jbarnes@virtuousgeek.org>");
1705MODULE_DESCRIPTION("Intelligent Power Sharing Driver");