Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * linux/drivers/mmc/core/mmc_ops.h
4 *
5 * Copyright 2006-2007 Pierre Ossman
6 */
7
8#include <linux/slab.h>
9#include <linux/export.h>
10#include <linux/types.h>
11#include <linux/scatterlist.h>
12
13#include <linux/mmc/host.h>
14#include <linux/mmc/card.h>
15#include <linux/mmc/mmc.h>
16
17#include "core.h"
18#include "card.h"
19#include "host.h"
20#include "mmc_ops.h"
21
22#define MMC_BKOPS_TIMEOUT_MS (120 * 1000) /* 120s */
23#define MMC_SANITIZE_TIMEOUT_MS (240 * 1000) /* 240s */
24#define MMC_OP_COND_PERIOD_US (4 * 1000) /* 4ms */
25#define MMC_OP_COND_TIMEOUT_MS 1000 /* 1s */
26
27static const u8 tuning_blk_pattern_4bit[] = {
28 0xff, 0x0f, 0xff, 0x00, 0xff, 0xcc, 0xc3, 0xcc,
29 0xc3, 0x3c, 0xcc, 0xff, 0xfe, 0xff, 0xfe, 0xef,
30 0xff, 0xdf, 0xff, 0xdd, 0xff, 0xfb, 0xff, 0xfb,
31 0xbf, 0xff, 0x7f, 0xff, 0x77, 0xf7, 0xbd, 0xef,
32 0xff, 0xf0, 0xff, 0xf0, 0x0f, 0xfc, 0xcc, 0x3c,
33 0xcc, 0x33, 0xcc, 0xcf, 0xff, 0xef, 0xff, 0xee,
34 0xff, 0xfd, 0xff, 0xfd, 0xdf, 0xff, 0xbf, 0xff,
35 0xbb, 0xff, 0xf7, 0xff, 0xf7, 0x7f, 0x7b, 0xde,
36};
37
38static const u8 tuning_blk_pattern_8bit[] = {
39 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00,
40 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc,
41 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff,
42 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff,
43 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd,
44 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb,
45 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff,
46 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff,
47 0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00,
48 0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc,
49 0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff,
50 0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee,
51 0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd,
52 0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff,
53 0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff,
54 0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee,
55};
56
57struct mmc_busy_data {
58 struct mmc_card *card;
59 bool retry_crc_err;
60 enum mmc_busy_cmd busy_cmd;
61};
62
63struct mmc_op_cond_busy_data {
64 struct mmc_host *host;
65 u32 ocr;
66 struct mmc_command *cmd;
67};
68
69int __mmc_send_status(struct mmc_card *card, u32 *status, unsigned int retries)
70{
71 int err;
72 struct mmc_command cmd = {};
73
74 cmd.opcode = MMC_SEND_STATUS;
75 if (!mmc_host_is_spi(card->host))
76 cmd.arg = card->rca << 16;
77 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
78
79 err = mmc_wait_for_cmd(card->host, &cmd, retries);
80 if (err)
81 return err;
82
83 /* NOTE: callers are required to understand the difference
84 * between "native" and SPI format status words!
85 */
86 if (status)
87 *status = cmd.resp[0];
88
89 return 0;
90}
91EXPORT_SYMBOL_GPL(__mmc_send_status);
92
93int mmc_send_status(struct mmc_card *card, u32 *status)
94{
95 return __mmc_send_status(card, status, MMC_CMD_RETRIES);
96}
97EXPORT_SYMBOL_GPL(mmc_send_status);
98
99static int _mmc_select_card(struct mmc_host *host, struct mmc_card *card)
100{
101 struct mmc_command cmd = {};
102
103 cmd.opcode = MMC_SELECT_CARD;
104
105 if (card) {
106 cmd.arg = card->rca << 16;
107 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
108 } else {
109 cmd.arg = 0;
110 cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
111 }
112
113 return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
114}
115
116int mmc_select_card(struct mmc_card *card)
117{
118
119 return _mmc_select_card(card->host, card);
120}
121
122int mmc_deselect_cards(struct mmc_host *host)
123{
124 return _mmc_select_card(host, NULL);
125}
126
127/*
128 * Write the value specified in the device tree or board code into the optional
129 * 16 bit Driver Stage Register. This can be used to tune raise/fall times and
130 * drive strength of the DAT and CMD outputs. The actual meaning of a given
131 * value is hardware dependant.
132 * The presence of the DSR register can be determined from the CSD register,
133 * bit 76.
134 */
135int mmc_set_dsr(struct mmc_host *host)
136{
137 struct mmc_command cmd = {};
138
139 cmd.opcode = MMC_SET_DSR;
140
141 cmd.arg = (host->dsr << 16) | 0xffff;
142 cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
143
144 return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
145}
146
147int __mmc_go_idle(struct mmc_host *host)
148{
149 struct mmc_command cmd = {};
150 int err;
151
152 cmd.opcode = MMC_GO_IDLE_STATE;
153 cmd.arg = 0;
154 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_NONE | MMC_CMD_BC;
155
156 err = mmc_wait_for_cmd(host, &cmd, 0);
157 mmc_delay(1);
158
159 return err;
160}
161
162int mmc_go_idle(struct mmc_host *host)
163{
164 int err;
165
166 /*
167 * Non-SPI hosts need to prevent chipselect going active during
168 * GO_IDLE; that would put chips into SPI mode. Remind them of
169 * that in case of hardware that won't pull up DAT3/nCS otherwise.
170 *
171 * SPI hosts ignore ios.chip_select; it's managed according to
172 * rules that must accommodate non-MMC slaves which this layer
173 * won't even know about.
174 */
175 if (!mmc_host_is_spi(host)) {
176 mmc_set_chip_select(host, MMC_CS_HIGH);
177 mmc_delay(1);
178 }
179
180 err = __mmc_go_idle(host);
181
182 if (!mmc_host_is_spi(host)) {
183 mmc_set_chip_select(host, MMC_CS_DONTCARE);
184 mmc_delay(1);
185 }
186
187 host->use_spi_crc = 0;
188
189 return err;
190}
191
192static int __mmc_send_op_cond_cb(void *cb_data, bool *busy)
193{
194 struct mmc_op_cond_busy_data *data = cb_data;
195 struct mmc_host *host = data->host;
196 struct mmc_command *cmd = data->cmd;
197 u32 ocr = data->ocr;
198 int err = 0;
199
200 err = mmc_wait_for_cmd(host, cmd, 0);
201 if (err)
202 return err;
203
204 if (mmc_host_is_spi(host)) {
205 if (!(cmd->resp[0] & R1_SPI_IDLE)) {
206 *busy = false;
207 return 0;
208 }
209 } else {
210 if (cmd->resp[0] & MMC_CARD_BUSY) {
211 *busy = false;
212 return 0;
213 }
214 }
215
216 *busy = true;
217
218 /*
219 * According to eMMC specification v5.1 section 6.4.3, we
220 * should issue CMD1 repeatedly in the idle state until
221 * the eMMC is ready. Otherwise some eMMC devices seem to enter
222 * the inactive mode after mmc_init_card() issued CMD0 when
223 * the eMMC device is busy.
224 */
225 if (!ocr && !mmc_host_is_spi(host))
226 cmd->arg = cmd->resp[0] | BIT(30);
227
228 return 0;
229}
230
231int mmc_send_op_cond(struct mmc_host *host, u32 ocr, u32 *rocr)
232{
233 struct mmc_command cmd = {};
234 int err = 0;
235 struct mmc_op_cond_busy_data cb_data = {
236 .host = host,
237 .ocr = ocr,
238 .cmd = &cmd
239 };
240
241 cmd.opcode = MMC_SEND_OP_COND;
242 cmd.arg = mmc_host_is_spi(host) ? 0 : ocr;
243 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R3 | MMC_CMD_BCR;
244
245 err = __mmc_poll_for_busy(host, MMC_OP_COND_PERIOD_US,
246 MMC_OP_COND_TIMEOUT_MS,
247 &__mmc_send_op_cond_cb, &cb_data);
248 if (err)
249 return err;
250
251 if (rocr && !mmc_host_is_spi(host))
252 *rocr = cmd.resp[0];
253
254 return err;
255}
256
257int mmc_set_relative_addr(struct mmc_card *card)
258{
259 struct mmc_command cmd = {};
260
261 cmd.opcode = MMC_SET_RELATIVE_ADDR;
262 cmd.arg = card->rca << 16;
263 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
264
265 return mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES);
266}
267
268static int
269mmc_send_cxd_native(struct mmc_host *host, u32 arg, u32 *cxd, int opcode)
270{
271 int err;
272 struct mmc_command cmd = {};
273
274 cmd.opcode = opcode;
275 cmd.arg = arg;
276 cmd.flags = MMC_RSP_R2 | MMC_CMD_AC;
277
278 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
279 if (err)
280 return err;
281
282 memcpy(cxd, cmd.resp, sizeof(u32) * 4);
283
284 return 0;
285}
286
287/*
288 * NOTE: void *buf, caller for the buf is required to use DMA-capable
289 * buffer or on-stack buffer (with some overhead in callee).
290 */
291int mmc_send_adtc_data(struct mmc_card *card, struct mmc_host *host, u32 opcode,
292 u32 args, void *buf, unsigned len)
293{
294 struct mmc_request mrq = {};
295 struct mmc_command cmd = {};
296 struct mmc_data data = {};
297 struct scatterlist sg;
298
299 mrq.cmd = &cmd;
300 mrq.data = &data;
301
302 cmd.opcode = opcode;
303 cmd.arg = args;
304
305 /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we
306 * rely on callers to never use this with "native" calls for reading
307 * CSD or CID. Native versions of those commands use the R2 type,
308 * not R1 plus a data block.
309 */
310 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
311
312 data.blksz = len;
313 data.blocks = 1;
314 data.flags = MMC_DATA_READ;
315 data.sg = &sg;
316 data.sg_len = 1;
317
318 sg_init_one(&sg, buf, len);
319
320 if (opcode == MMC_SEND_CSD || opcode == MMC_SEND_CID) {
321 /*
322 * The spec states that CSR and CID accesses have a timeout
323 * of 64 clock cycles.
324 */
325 data.timeout_ns = 0;
326 data.timeout_clks = 64;
327 } else
328 mmc_set_data_timeout(&data, card);
329
330 mmc_wait_for_req(host, &mrq);
331
332 if (cmd.error)
333 return cmd.error;
334 if (data.error)
335 return data.error;
336
337 return 0;
338}
339
340static int mmc_spi_send_cxd(struct mmc_host *host, u32 *cxd, u32 opcode)
341{
342 int ret, i;
343 __be32 *cxd_tmp;
344
345 cxd_tmp = kzalloc(16, GFP_KERNEL);
346 if (!cxd_tmp)
347 return -ENOMEM;
348
349 ret = mmc_send_adtc_data(NULL, host, opcode, 0, cxd_tmp, 16);
350 if (ret)
351 goto err;
352
353 for (i = 0; i < 4; i++)
354 cxd[i] = be32_to_cpu(cxd_tmp[i]);
355
356err:
357 kfree(cxd_tmp);
358 return ret;
359}
360
361int mmc_send_csd(struct mmc_card *card, u32 *csd)
362{
363 if (mmc_host_is_spi(card->host))
364 return mmc_spi_send_cxd(card->host, csd, MMC_SEND_CSD);
365
366 return mmc_send_cxd_native(card->host, card->rca << 16, csd,
367 MMC_SEND_CSD);
368}
369
370int mmc_send_cid(struct mmc_host *host, u32 *cid)
371{
372 if (mmc_host_is_spi(host))
373 return mmc_spi_send_cxd(host, cid, MMC_SEND_CID);
374
375 return mmc_send_cxd_native(host, 0, cid, MMC_ALL_SEND_CID);
376}
377
378int mmc_get_ext_csd(struct mmc_card *card, u8 **new_ext_csd)
379{
380 int err;
381 u8 *ext_csd;
382
383 if (!card || !new_ext_csd)
384 return -EINVAL;
385
386 if (!mmc_can_ext_csd(card))
387 return -EOPNOTSUPP;
388
389 /*
390 * As the ext_csd is so large and mostly unused, we don't store the
391 * raw block in mmc_card.
392 */
393 ext_csd = kzalloc(512, GFP_KERNEL);
394 if (!ext_csd)
395 return -ENOMEM;
396
397 err = mmc_send_adtc_data(card, card->host, MMC_SEND_EXT_CSD, 0, ext_csd,
398 512);
399 if (err)
400 kfree(ext_csd);
401 else
402 *new_ext_csd = ext_csd;
403
404 return err;
405}
406EXPORT_SYMBOL_GPL(mmc_get_ext_csd);
407
408int mmc_spi_read_ocr(struct mmc_host *host, int highcap, u32 *ocrp)
409{
410 struct mmc_command cmd = {};
411 int err;
412
413 cmd.opcode = MMC_SPI_READ_OCR;
414 cmd.arg = highcap ? (1 << 30) : 0;
415 cmd.flags = MMC_RSP_SPI_R3;
416
417 err = mmc_wait_for_cmd(host, &cmd, 0);
418
419 *ocrp = cmd.resp[1];
420 return err;
421}
422
423int mmc_spi_set_crc(struct mmc_host *host, int use_crc)
424{
425 struct mmc_command cmd = {};
426 int err;
427
428 cmd.opcode = MMC_SPI_CRC_ON_OFF;
429 cmd.flags = MMC_RSP_SPI_R1;
430 cmd.arg = use_crc;
431
432 err = mmc_wait_for_cmd(host, &cmd, 0);
433 if (!err)
434 host->use_spi_crc = use_crc;
435 return err;
436}
437
438static int mmc_switch_status_error(struct mmc_host *host, u32 status)
439{
440 if (mmc_host_is_spi(host)) {
441 if (status & R1_SPI_ILLEGAL_COMMAND)
442 return -EBADMSG;
443 } else {
444 if (R1_STATUS(status))
445 pr_warn("%s: unexpected status %#x after switch\n",
446 mmc_hostname(host), status);
447 if (status & R1_SWITCH_ERROR)
448 return -EBADMSG;
449 }
450 return 0;
451}
452
453/* Caller must hold re-tuning */
454int mmc_switch_status(struct mmc_card *card, bool crc_err_fatal)
455{
456 u32 status;
457 int err;
458
459 err = mmc_send_status(card, &status);
460 if (!crc_err_fatal && err == -EILSEQ)
461 return 0;
462 if (err)
463 return err;
464
465 return mmc_switch_status_error(card->host, status);
466}
467
468static int mmc_busy_cb(void *cb_data, bool *busy)
469{
470 struct mmc_busy_data *data = cb_data;
471 struct mmc_host *host = data->card->host;
472 u32 status = 0;
473 int err;
474
475 if (data->busy_cmd != MMC_BUSY_IO && host->ops->card_busy) {
476 *busy = host->ops->card_busy(host);
477 return 0;
478 }
479
480 err = mmc_send_status(data->card, &status);
481 if (data->retry_crc_err && err == -EILSEQ) {
482 *busy = true;
483 return 0;
484 }
485 if (err)
486 return err;
487
488 switch (data->busy_cmd) {
489 case MMC_BUSY_CMD6:
490 err = mmc_switch_status_error(host, status);
491 break;
492 case MMC_BUSY_ERASE:
493 err = R1_STATUS(status) ? -EIO : 0;
494 break;
495 case MMC_BUSY_HPI:
496 case MMC_BUSY_EXTR_SINGLE:
497 case MMC_BUSY_IO:
498 break;
499 default:
500 err = -EINVAL;
501 }
502
503 if (err)
504 return err;
505
506 *busy = !mmc_ready_for_data(status);
507 return 0;
508}
509
510int __mmc_poll_for_busy(struct mmc_host *host, unsigned int period_us,
511 unsigned int timeout_ms,
512 int (*busy_cb)(void *cb_data, bool *busy),
513 void *cb_data)
514{
515 int err;
516 unsigned long timeout;
517 unsigned int udelay = period_us ? period_us : 32, udelay_max = 32768;
518 bool expired = false;
519 bool busy = false;
520
521 timeout = jiffies + msecs_to_jiffies(timeout_ms) + 1;
522 do {
523 /*
524 * Due to the possibility of being preempted while polling,
525 * check the expiration time first.
526 */
527 expired = time_after(jiffies, timeout);
528
529 err = (*busy_cb)(cb_data, &busy);
530 if (err)
531 return err;
532
533 /* Timeout if the device still remains busy. */
534 if (expired && busy) {
535 pr_err("%s: Card stuck being busy! %s\n",
536 mmc_hostname(host), __func__);
537 return -ETIMEDOUT;
538 }
539
540 /* Throttle the polling rate to avoid hogging the CPU. */
541 if (busy) {
542 usleep_range(udelay, udelay * 2);
543 if (udelay < udelay_max)
544 udelay *= 2;
545 }
546 } while (busy);
547
548 return 0;
549}
550EXPORT_SYMBOL_GPL(__mmc_poll_for_busy);
551
552int mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms,
553 bool retry_crc_err, enum mmc_busy_cmd busy_cmd)
554{
555 struct mmc_host *host = card->host;
556 struct mmc_busy_data cb_data;
557
558 cb_data.card = card;
559 cb_data.retry_crc_err = retry_crc_err;
560 cb_data.busy_cmd = busy_cmd;
561
562 return __mmc_poll_for_busy(host, 0, timeout_ms, &mmc_busy_cb, &cb_data);
563}
564EXPORT_SYMBOL_GPL(mmc_poll_for_busy);
565
566bool mmc_prepare_busy_cmd(struct mmc_host *host, struct mmc_command *cmd,
567 unsigned int timeout_ms)
568{
569 /*
570 * If the max_busy_timeout of the host is specified, make sure it's
571 * enough to fit the used timeout_ms. In case it's not, let's instruct
572 * the host to avoid HW busy detection, by converting to a R1 response
573 * instead of a R1B. Note, some hosts requires R1B, which also means
574 * they are on their own when it comes to deal with the busy timeout.
575 */
576 if (!(host->caps & MMC_CAP_NEED_RSP_BUSY) && host->max_busy_timeout &&
577 (timeout_ms > host->max_busy_timeout)) {
578 cmd->flags = MMC_CMD_AC | MMC_RSP_SPI_R1 | MMC_RSP_R1;
579 return false;
580 }
581
582 cmd->flags = MMC_CMD_AC | MMC_RSP_SPI_R1B | MMC_RSP_R1B;
583 cmd->busy_timeout = timeout_ms;
584 return true;
585}
586EXPORT_SYMBOL_GPL(mmc_prepare_busy_cmd);
587
588/**
589 * __mmc_switch - modify EXT_CSD register
590 * @card: the MMC card associated with the data transfer
591 * @set: cmd set values
592 * @index: EXT_CSD register index
593 * @value: value to program into EXT_CSD register
594 * @timeout_ms: timeout (ms) for operation performed by register write,
595 * timeout of zero implies maximum possible timeout
596 * @timing: new timing to change to
597 * @send_status: send status cmd to poll for busy
598 * @retry_crc_err: retry when CRC errors when polling with CMD13 for busy
599 * @retries: number of retries
600 *
601 * Modifies the EXT_CSD register for selected card.
602 */
603int __mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
604 unsigned int timeout_ms, unsigned char timing,
605 bool send_status, bool retry_crc_err, unsigned int retries)
606{
607 struct mmc_host *host = card->host;
608 int err;
609 struct mmc_command cmd = {};
610 bool use_r1b_resp;
611 unsigned char old_timing = host->ios.timing;
612
613 mmc_retune_hold(host);
614
615 if (!timeout_ms) {
616 pr_warn("%s: unspecified timeout for CMD6 - use generic\n",
617 mmc_hostname(host));
618 timeout_ms = card->ext_csd.generic_cmd6_time;
619 }
620
621 cmd.opcode = MMC_SWITCH;
622 cmd.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
623 (index << 16) |
624 (value << 8) |
625 set;
626 use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd, timeout_ms);
627
628 err = mmc_wait_for_cmd(host, &cmd, retries);
629 if (err)
630 goto out;
631
632 /*If SPI or used HW busy detection above, then we don't need to poll. */
633 if (((host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) ||
634 mmc_host_is_spi(host))
635 goto out_tim;
636
637 /*
638 * If the host doesn't support HW polling via the ->card_busy() ops and
639 * when it's not allowed to poll by using CMD13, then we need to rely on
640 * waiting the stated timeout to be sufficient.
641 */
642 if (!send_status && !host->ops->card_busy) {
643 mmc_delay(timeout_ms);
644 goto out_tim;
645 }
646
647 /* Let's try to poll to find out when the command is completed. */
648 err = mmc_poll_for_busy(card, timeout_ms, retry_crc_err, MMC_BUSY_CMD6);
649 if (err)
650 goto out;
651
652out_tim:
653 /* Switch to new timing before check switch status. */
654 if (timing)
655 mmc_set_timing(host, timing);
656
657 if (send_status) {
658 err = mmc_switch_status(card, true);
659 if (err && timing)
660 mmc_set_timing(host, old_timing);
661 }
662out:
663 mmc_retune_release(host);
664
665 return err;
666}
667
668int mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
669 unsigned int timeout_ms)
670{
671 return __mmc_switch(card, set, index, value, timeout_ms, 0,
672 true, false, MMC_CMD_RETRIES);
673}
674EXPORT_SYMBOL_GPL(mmc_switch);
675
676int mmc_send_tuning(struct mmc_host *host, u32 opcode, int *cmd_error)
677{
678 struct mmc_request mrq = {};
679 struct mmc_command cmd = {};
680 struct mmc_data data = {};
681 struct scatterlist sg;
682 struct mmc_ios *ios = &host->ios;
683 const u8 *tuning_block_pattern;
684 int size, err = 0;
685 u8 *data_buf;
686
687 if (ios->bus_width == MMC_BUS_WIDTH_8) {
688 tuning_block_pattern = tuning_blk_pattern_8bit;
689 size = sizeof(tuning_blk_pattern_8bit);
690 } else if (ios->bus_width == MMC_BUS_WIDTH_4) {
691 tuning_block_pattern = tuning_blk_pattern_4bit;
692 size = sizeof(tuning_blk_pattern_4bit);
693 } else
694 return -EINVAL;
695
696 data_buf = kzalloc(size, GFP_KERNEL);
697 if (!data_buf)
698 return -ENOMEM;
699
700 mrq.cmd = &cmd;
701 mrq.data = &data;
702
703 cmd.opcode = opcode;
704 cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
705
706 data.blksz = size;
707 data.blocks = 1;
708 data.flags = MMC_DATA_READ;
709
710 /*
711 * According to the tuning specs, Tuning process
712 * is normally shorter 40 executions of CMD19,
713 * and timeout value should be shorter than 150 ms
714 */
715 data.timeout_ns = 150 * NSEC_PER_MSEC;
716
717 data.sg = &sg;
718 data.sg_len = 1;
719 sg_init_one(&sg, data_buf, size);
720
721 mmc_wait_for_req(host, &mrq);
722
723 if (cmd_error)
724 *cmd_error = cmd.error;
725
726 if (cmd.error) {
727 err = cmd.error;
728 goto out;
729 }
730
731 if (data.error) {
732 err = data.error;
733 goto out;
734 }
735
736 if (memcmp(data_buf, tuning_block_pattern, size))
737 err = -EIO;
738
739out:
740 kfree(data_buf);
741 return err;
742}
743EXPORT_SYMBOL_GPL(mmc_send_tuning);
744
745int mmc_send_abort_tuning(struct mmc_host *host, u32 opcode)
746{
747 struct mmc_command cmd = {};
748
749 /*
750 * eMMC specification specifies that CMD12 can be used to stop a tuning
751 * command, but SD specification does not, so do nothing unless it is
752 * eMMC.
753 */
754 if (opcode != MMC_SEND_TUNING_BLOCK_HS200)
755 return 0;
756
757 cmd.opcode = MMC_STOP_TRANSMISSION;
758 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
759
760 /*
761 * For drivers that override R1 to R1b, set an arbitrary timeout based
762 * on the tuning timeout i.e. 150ms.
763 */
764 cmd.busy_timeout = 150;
765
766 return mmc_wait_for_cmd(host, &cmd, 0);
767}
768EXPORT_SYMBOL_GPL(mmc_send_abort_tuning);
769
770static int
771mmc_send_bus_test(struct mmc_card *card, struct mmc_host *host, u8 opcode,
772 u8 len)
773{
774 struct mmc_request mrq = {};
775 struct mmc_command cmd = {};
776 struct mmc_data data = {};
777 struct scatterlist sg;
778 u8 *data_buf;
779 u8 *test_buf;
780 int i, err;
781 static u8 testdata_8bit[8] = { 0x55, 0xaa, 0, 0, 0, 0, 0, 0 };
782 static u8 testdata_4bit[4] = { 0x5a, 0, 0, 0 };
783
784 /* dma onto stack is unsafe/nonportable, but callers to this
785 * routine normally provide temporary on-stack buffers ...
786 */
787 data_buf = kmalloc(len, GFP_KERNEL);
788 if (!data_buf)
789 return -ENOMEM;
790
791 if (len == 8)
792 test_buf = testdata_8bit;
793 else if (len == 4)
794 test_buf = testdata_4bit;
795 else {
796 pr_err("%s: Invalid bus_width %d\n",
797 mmc_hostname(host), len);
798 kfree(data_buf);
799 return -EINVAL;
800 }
801
802 if (opcode == MMC_BUS_TEST_W)
803 memcpy(data_buf, test_buf, len);
804
805 mrq.cmd = &cmd;
806 mrq.data = &data;
807 cmd.opcode = opcode;
808 cmd.arg = 0;
809
810 /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we
811 * rely on callers to never use this with "native" calls for reading
812 * CSD or CID. Native versions of those commands use the R2 type,
813 * not R1 plus a data block.
814 */
815 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
816
817 data.blksz = len;
818 data.blocks = 1;
819 if (opcode == MMC_BUS_TEST_R)
820 data.flags = MMC_DATA_READ;
821 else
822 data.flags = MMC_DATA_WRITE;
823
824 data.sg = &sg;
825 data.sg_len = 1;
826 mmc_set_data_timeout(&data, card);
827 sg_init_one(&sg, data_buf, len);
828 mmc_wait_for_req(host, &mrq);
829 err = 0;
830 if (opcode == MMC_BUS_TEST_R) {
831 for (i = 0; i < len / 4; i++)
832 if ((test_buf[i] ^ data_buf[i]) != 0xff) {
833 err = -EIO;
834 break;
835 }
836 }
837 kfree(data_buf);
838
839 if (cmd.error)
840 return cmd.error;
841 if (data.error)
842 return data.error;
843
844 return err;
845}
846
847int mmc_bus_test(struct mmc_card *card, u8 bus_width)
848{
849 int width;
850
851 if (bus_width == MMC_BUS_WIDTH_8)
852 width = 8;
853 else if (bus_width == MMC_BUS_WIDTH_4)
854 width = 4;
855 else if (bus_width == MMC_BUS_WIDTH_1)
856 return 0; /* no need for test */
857 else
858 return -EINVAL;
859
860 /*
861 * Ignore errors from BUS_TEST_W. BUS_TEST_R will fail if there
862 * is a problem. This improves chances that the test will work.
863 */
864 mmc_send_bus_test(card, card->host, MMC_BUS_TEST_W, width);
865 return mmc_send_bus_test(card, card->host, MMC_BUS_TEST_R, width);
866}
867
868static int mmc_send_hpi_cmd(struct mmc_card *card)
869{
870 unsigned int busy_timeout_ms = card->ext_csd.out_of_int_time;
871 struct mmc_host *host = card->host;
872 bool use_r1b_resp = false;
873 struct mmc_command cmd = {};
874 int err;
875
876 cmd.opcode = card->ext_csd.hpi_cmd;
877 cmd.arg = card->rca << 16 | 1;
878 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
879
880 if (cmd.opcode == MMC_STOP_TRANSMISSION)
881 use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd,
882 busy_timeout_ms);
883
884 err = mmc_wait_for_cmd(host, &cmd, 0);
885 if (err) {
886 pr_warn("%s: HPI error %d. Command response %#x\n",
887 mmc_hostname(host), err, cmd.resp[0]);
888 return err;
889 }
890
891 /* No need to poll when using HW busy detection. */
892 if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp)
893 return 0;
894
895 /* Let's poll to find out when the HPI request completes. */
896 return mmc_poll_for_busy(card, busy_timeout_ms, false, MMC_BUSY_HPI);
897}
898
899/**
900 * mmc_interrupt_hpi - Issue for High priority Interrupt
901 * @card: the MMC card associated with the HPI transfer
902 *
903 * Issued High Priority Interrupt, and check for card status
904 * until out-of prg-state.
905 */
906static int mmc_interrupt_hpi(struct mmc_card *card)
907{
908 int err;
909 u32 status;
910
911 if (!card->ext_csd.hpi_en) {
912 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
913 return 1;
914 }
915
916 err = mmc_send_status(card, &status);
917 if (err) {
918 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
919 goto out;
920 }
921
922 switch (R1_CURRENT_STATE(status)) {
923 case R1_STATE_IDLE:
924 case R1_STATE_READY:
925 case R1_STATE_STBY:
926 case R1_STATE_TRAN:
927 /*
928 * In idle and transfer states, HPI is not needed and the caller
929 * can issue the next intended command immediately
930 */
931 goto out;
932 case R1_STATE_PRG:
933 break;
934 default:
935 /* In all other states, it's illegal to issue HPI */
936 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
937 mmc_hostname(card->host), R1_CURRENT_STATE(status));
938 err = -EINVAL;
939 goto out;
940 }
941
942 err = mmc_send_hpi_cmd(card);
943out:
944 return err;
945}
946
947int mmc_can_ext_csd(struct mmc_card *card)
948{
949 return (card && card->csd.mmca_vsn > CSD_SPEC_VER_3);
950}
951
952static int mmc_read_bkops_status(struct mmc_card *card)
953{
954 int err;
955 u8 *ext_csd;
956
957 err = mmc_get_ext_csd(card, &ext_csd);
958 if (err)
959 return err;
960
961 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
962 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
963 kfree(ext_csd);
964 return 0;
965}
966
967/**
968 * mmc_run_bkops - Run BKOPS for supported cards
969 * @card: MMC card to run BKOPS for
970 *
971 * Run background operations synchronously for cards having manual BKOPS
972 * enabled and in case it reports urgent BKOPS level.
973*/
974void mmc_run_bkops(struct mmc_card *card)
975{
976 int err;
977
978 if (!card->ext_csd.man_bkops_en)
979 return;
980
981 err = mmc_read_bkops_status(card);
982 if (err) {
983 pr_err("%s: Failed to read bkops status: %d\n",
984 mmc_hostname(card->host), err);
985 return;
986 }
987
988 if (!card->ext_csd.raw_bkops_status ||
989 card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2)
990 return;
991
992 mmc_retune_hold(card->host);
993
994 /*
995 * For urgent BKOPS status, LEVEL_2 and higher, let's execute
996 * synchronously. Future wise, we may consider to start BKOPS, for less
997 * urgent levels by using an asynchronous background task, when idle.
998 */
999 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1000 EXT_CSD_BKOPS_START, 1, MMC_BKOPS_TIMEOUT_MS);
1001 /*
1002 * If the BKOPS timed out, the card is probably still busy in the
1003 * R1_STATE_PRG. Rather than continue to wait, let's try to abort
1004 * it with a HPI command to get back into R1_STATE_TRAN.
1005 */
1006 if (err == -ETIMEDOUT && !mmc_interrupt_hpi(card))
1007 pr_warn("%s: BKOPS aborted\n", mmc_hostname(card->host));
1008 else if (err)
1009 pr_warn("%s: Error %d running bkops\n",
1010 mmc_hostname(card->host), err);
1011
1012 mmc_retune_release(card->host);
1013}
1014EXPORT_SYMBOL(mmc_run_bkops);
1015
1016static int mmc_cmdq_switch(struct mmc_card *card, bool enable)
1017{
1018 u8 val = enable ? EXT_CSD_CMDQ_MODE_ENABLED : 0;
1019 int err;
1020
1021 if (!card->ext_csd.cmdq_support)
1022 return -EOPNOTSUPP;
1023
1024 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CMDQ_MODE_EN,
1025 val, card->ext_csd.generic_cmd6_time);
1026 if (!err)
1027 card->ext_csd.cmdq_en = enable;
1028
1029 return err;
1030}
1031
1032int mmc_cmdq_enable(struct mmc_card *card)
1033{
1034 return mmc_cmdq_switch(card, true);
1035}
1036EXPORT_SYMBOL_GPL(mmc_cmdq_enable);
1037
1038int mmc_cmdq_disable(struct mmc_card *card)
1039{
1040 return mmc_cmdq_switch(card, false);
1041}
1042EXPORT_SYMBOL_GPL(mmc_cmdq_disable);
1043
1044int mmc_sanitize(struct mmc_card *card, unsigned int timeout_ms)
1045{
1046 struct mmc_host *host = card->host;
1047 int err;
1048
1049 if (!mmc_can_sanitize(card)) {
1050 pr_warn("%s: Sanitize not supported\n", mmc_hostname(host));
1051 return -EOPNOTSUPP;
1052 }
1053
1054 if (!timeout_ms)
1055 timeout_ms = MMC_SANITIZE_TIMEOUT_MS;
1056
1057 pr_debug("%s: Sanitize in progress...\n", mmc_hostname(host));
1058
1059 mmc_retune_hold(host);
1060
1061 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_SANITIZE_START,
1062 1, timeout_ms, 0, true, false, 0);
1063 if (err)
1064 pr_err("%s: Sanitize failed err=%d\n", mmc_hostname(host), err);
1065
1066 /*
1067 * If the sanitize operation timed out, the card is probably still busy
1068 * in the R1_STATE_PRG. Rather than continue to wait, let's try to abort
1069 * it with a HPI command to get back into R1_STATE_TRAN.
1070 */
1071 if (err == -ETIMEDOUT && !mmc_interrupt_hpi(card))
1072 pr_warn("%s: Sanitize aborted\n", mmc_hostname(host));
1073
1074 mmc_retune_release(host);
1075
1076 pr_debug("%s: Sanitize completed\n", mmc_hostname(host));
1077 return err;
1078}
1079EXPORT_SYMBOL_GPL(mmc_sanitize);
1/*
2 * linux/drivers/mmc/core/mmc_ops.h
3 *
4 * Copyright 2006-2007 Pierre Ossman
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or (at
9 * your option) any later version.
10 */
11
12#include <linux/slab.h>
13#include <linux/export.h>
14#include <linux/types.h>
15#include <linux/scatterlist.h>
16
17#include <linux/mmc/host.h>
18#include <linux/mmc/card.h>
19#include <linux/mmc/mmc.h>
20
21#include "core.h"
22#include "card.h"
23#include "host.h"
24#include "mmc_ops.h"
25
26#define MMC_OPS_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
27
28static const u8 tuning_blk_pattern_4bit[] = {
29 0xff, 0x0f, 0xff, 0x00, 0xff, 0xcc, 0xc3, 0xcc,
30 0xc3, 0x3c, 0xcc, 0xff, 0xfe, 0xff, 0xfe, 0xef,
31 0xff, 0xdf, 0xff, 0xdd, 0xff, 0xfb, 0xff, 0xfb,
32 0xbf, 0xff, 0x7f, 0xff, 0x77, 0xf7, 0xbd, 0xef,
33 0xff, 0xf0, 0xff, 0xf0, 0x0f, 0xfc, 0xcc, 0x3c,
34 0xcc, 0x33, 0xcc, 0xcf, 0xff, 0xef, 0xff, 0xee,
35 0xff, 0xfd, 0xff, 0xfd, 0xdf, 0xff, 0xbf, 0xff,
36 0xbb, 0xff, 0xf7, 0xff, 0xf7, 0x7f, 0x7b, 0xde,
37};
38
39static const u8 tuning_blk_pattern_8bit[] = {
40 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00,
41 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc,
42 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff,
43 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff,
44 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd,
45 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb,
46 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff,
47 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff,
48 0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00,
49 0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc,
50 0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff,
51 0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee,
52 0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd,
53 0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff,
54 0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff,
55 0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee,
56};
57
58int __mmc_send_status(struct mmc_card *card, u32 *status, unsigned int retries)
59{
60 int err;
61 struct mmc_command cmd = {};
62
63 cmd.opcode = MMC_SEND_STATUS;
64 if (!mmc_host_is_spi(card->host))
65 cmd.arg = card->rca << 16;
66 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
67
68 err = mmc_wait_for_cmd(card->host, &cmd, retries);
69 if (err)
70 return err;
71
72 /* NOTE: callers are required to understand the difference
73 * between "native" and SPI format status words!
74 */
75 if (status)
76 *status = cmd.resp[0];
77
78 return 0;
79}
80EXPORT_SYMBOL_GPL(__mmc_send_status);
81
82int mmc_send_status(struct mmc_card *card, u32 *status)
83{
84 return __mmc_send_status(card, status, MMC_CMD_RETRIES);
85}
86EXPORT_SYMBOL_GPL(mmc_send_status);
87
88static int _mmc_select_card(struct mmc_host *host, struct mmc_card *card)
89{
90 struct mmc_command cmd = {};
91
92 cmd.opcode = MMC_SELECT_CARD;
93
94 if (card) {
95 cmd.arg = card->rca << 16;
96 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
97 } else {
98 cmd.arg = 0;
99 cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
100 }
101
102 return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
103}
104
105int mmc_select_card(struct mmc_card *card)
106{
107
108 return _mmc_select_card(card->host, card);
109}
110
111int mmc_deselect_cards(struct mmc_host *host)
112{
113 return _mmc_select_card(host, NULL);
114}
115
116/*
117 * Write the value specified in the device tree or board code into the optional
118 * 16 bit Driver Stage Register. This can be used to tune raise/fall times and
119 * drive strength of the DAT and CMD outputs. The actual meaning of a given
120 * value is hardware dependant.
121 * The presence of the DSR register can be determined from the CSD register,
122 * bit 76.
123 */
124int mmc_set_dsr(struct mmc_host *host)
125{
126 struct mmc_command cmd = {};
127
128 cmd.opcode = MMC_SET_DSR;
129
130 cmd.arg = (host->dsr << 16) | 0xffff;
131 cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
132
133 return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
134}
135
136int mmc_go_idle(struct mmc_host *host)
137{
138 int err;
139 struct mmc_command cmd = {};
140
141 /*
142 * Non-SPI hosts need to prevent chipselect going active during
143 * GO_IDLE; that would put chips into SPI mode. Remind them of
144 * that in case of hardware that won't pull up DAT3/nCS otherwise.
145 *
146 * SPI hosts ignore ios.chip_select; it's managed according to
147 * rules that must accommodate non-MMC slaves which this layer
148 * won't even know about.
149 */
150 if (!mmc_host_is_spi(host)) {
151 mmc_set_chip_select(host, MMC_CS_HIGH);
152 mmc_delay(1);
153 }
154
155 cmd.opcode = MMC_GO_IDLE_STATE;
156 cmd.arg = 0;
157 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_NONE | MMC_CMD_BC;
158
159 err = mmc_wait_for_cmd(host, &cmd, 0);
160
161 mmc_delay(1);
162
163 if (!mmc_host_is_spi(host)) {
164 mmc_set_chip_select(host, MMC_CS_DONTCARE);
165 mmc_delay(1);
166 }
167
168 host->use_spi_crc = 0;
169
170 return err;
171}
172
173int mmc_send_op_cond(struct mmc_host *host, u32 ocr, u32 *rocr)
174{
175 struct mmc_command cmd = {};
176 int i, err = 0;
177
178 cmd.opcode = MMC_SEND_OP_COND;
179 cmd.arg = mmc_host_is_spi(host) ? 0 : ocr;
180 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R3 | MMC_CMD_BCR;
181
182 for (i = 100; i; i--) {
183 err = mmc_wait_for_cmd(host, &cmd, 0);
184 if (err)
185 break;
186
187 /* if we're just probing, do a single pass */
188 if (ocr == 0)
189 break;
190
191 /* otherwise wait until reset completes */
192 if (mmc_host_is_spi(host)) {
193 if (!(cmd.resp[0] & R1_SPI_IDLE))
194 break;
195 } else {
196 if (cmd.resp[0] & MMC_CARD_BUSY)
197 break;
198 }
199
200 err = -ETIMEDOUT;
201
202 mmc_delay(10);
203 }
204
205 if (rocr && !mmc_host_is_spi(host))
206 *rocr = cmd.resp[0];
207
208 return err;
209}
210
211int mmc_set_relative_addr(struct mmc_card *card)
212{
213 struct mmc_command cmd = {};
214
215 cmd.opcode = MMC_SET_RELATIVE_ADDR;
216 cmd.arg = card->rca << 16;
217 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
218
219 return mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES);
220}
221
222static int
223mmc_send_cxd_native(struct mmc_host *host, u32 arg, u32 *cxd, int opcode)
224{
225 int err;
226 struct mmc_command cmd = {};
227
228 cmd.opcode = opcode;
229 cmd.arg = arg;
230 cmd.flags = MMC_RSP_R2 | MMC_CMD_AC;
231
232 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
233 if (err)
234 return err;
235
236 memcpy(cxd, cmd.resp, sizeof(u32) * 4);
237
238 return 0;
239}
240
241/*
242 * NOTE: void *buf, caller for the buf is required to use DMA-capable
243 * buffer or on-stack buffer (with some overhead in callee).
244 */
245static int
246mmc_send_cxd_data(struct mmc_card *card, struct mmc_host *host,
247 u32 opcode, void *buf, unsigned len)
248{
249 struct mmc_request mrq = {};
250 struct mmc_command cmd = {};
251 struct mmc_data data = {};
252 struct scatterlist sg;
253
254 mrq.cmd = &cmd;
255 mrq.data = &data;
256
257 cmd.opcode = opcode;
258 cmd.arg = 0;
259
260 /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we
261 * rely on callers to never use this with "native" calls for reading
262 * CSD or CID. Native versions of those commands use the R2 type,
263 * not R1 plus a data block.
264 */
265 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
266
267 data.blksz = len;
268 data.blocks = 1;
269 data.flags = MMC_DATA_READ;
270 data.sg = &sg;
271 data.sg_len = 1;
272
273 sg_init_one(&sg, buf, len);
274
275 if (opcode == MMC_SEND_CSD || opcode == MMC_SEND_CID) {
276 /*
277 * The spec states that CSR and CID accesses have a timeout
278 * of 64 clock cycles.
279 */
280 data.timeout_ns = 0;
281 data.timeout_clks = 64;
282 } else
283 mmc_set_data_timeout(&data, card);
284
285 mmc_wait_for_req(host, &mrq);
286
287 if (cmd.error)
288 return cmd.error;
289 if (data.error)
290 return data.error;
291
292 return 0;
293}
294
295static int mmc_spi_send_csd(struct mmc_card *card, u32 *csd)
296{
297 int ret, i;
298 __be32 *csd_tmp;
299
300 csd_tmp = kzalloc(16, GFP_KERNEL);
301 if (!csd_tmp)
302 return -ENOMEM;
303
304 ret = mmc_send_cxd_data(card, card->host, MMC_SEND_CSD, csd_tmp, 16);
305 if (ret)
306 goto err;
307
308 for (i = 0; i < 4; i++)
309 csd[i] = be32_to_cpu(csd_tmp[i]);
310
311err:
312 kfree(csd_tmp);
313 return ret;
314}
315
316int mmc_send_csd(struct mmc_card *card, u32 *csd)
317{
318 if (mmc_host_is_spi(card->host))
319 return mmc_spi_send_csd(card, csd);
320
321 return mmc_send_cxd_native(card->host, card->rca << 16, csd,
322 MMC_SEND_CSD);
323}
324
325static int mmc_spi_send_cid(struct mmc_host *host, u32 *cid)
326{
327 int ret, i;
328 __be32 *cid_tmp;
329
330 cid_tmp = kzalloc(16, GFP_KERNEL);
331 if (!cid_tmp)
332 return -ENOMEM;
333
334 ret = mmc_send_cxd_data(NULL, host, MMC_SEND_CID, cid_tmp, 16);
335 if (ret)
336 goto err;
337
338 for (i = 0; i < 4; i++)
339 cid[i] = be32_to_cpu(cid_tmp[i]);
340
341err:
342 kfree(cid_tmp);
343 return ret;
344}
345
346int mmc_send_cid(struct mmc_host *host, u32 *cid)
347{
348 if (mmc_host_is_spi(host))
349 return mmc_spi_send_cid(host, cid);
350
351 return mmc_send_cxd_native(host, 0, cid, MMC_ALL_SEND_CID);
352}
353
354int mmc_get_ext_csd(struct mmc_card *card, u8 **new_ext_csd)
355{
356 int err;
357 u8 *ext_csd;
358
359 if (!card || !new_ext_csd)
360 return -EINVAL;
361
362 if (!mmc_can_ext_csd(card))
363 return -EOPNOTSUPP;
364
365 /*
366 * As the ext_csd is so large and mostly unused, we don't store the
367 * raw block in mmc_card.
368 */
369 ext_csd = kzalloc(512, GFP_KERNEL);
370 if (!ext_csd)
371 return -ENOMEM;
372
373 err = mmc_send_cxd_data(card, card->host, MMC_SEND_EXT_CSD, ext_csd,
374 512);
375 if (err)
376 kfree(ext_csd);
377 else
378 *new_ext_csd = ext_csd;
379
380 return err;
381}
382EXPORT_SYMBOL_GPL(mmc_get_ext_csd);
383
384int mmc_spi_read_ocr(struct mmc_host *host, int highcap, u32 *ocrp)
385{
386 struct mmc_command cmd = {};
387 int err;
388
389 cmd.opcode = MMC_SPI_READ_OCR;
390 cmd.arg = highcap ? (1 << 30) : 0;
391 cmd.flags = MMC_RSP_SPI_R3;
392
393 err = mmc_wait_for_cmd(host, &cmd, 0);
394
395 *ocrp = cmd.resp[1];
396 return err;
397}
398
399int mmc_spi_set_crc(struct mmc_host *host, int use_crc)
400{
401 struct mmc_command cmd = {};
402 int err;
403
404 cmd.opcode = MMC_SPI_CRC_ON_OFF;
405 cmd.flags = MMC_RSP_SPI_R1;
406 cmd.arg = use_crc;
407
408 err = mmc_wait_for_cmd(host, &cmd, 0);
409 if (!err)
410 host->use_spi_crc = use_crc;
411 return err;
412}
413
414static int mmc_switch_status_error(struct mmc_host *host, u32 status)
415{
416 if (mmc_host_is_spi(host)) {
417 if (status & R1_SPI_ILLEGAL_COMMAND)
418 return -EBADMSG;
419 } else {
420 if (status & 0xFDFFA000)
421 pr_warn("%s: unexpected status %#x after switch\n",
422 mmc_hostname(host), status);
423 if (status & R1_SWITCH_ERROR)
424 return -EBADMSG;
425 }
426 return 0;
427}
428
429/* Caller must hold re-tuning */
430int __mmc_switch_status(struct mmc_card *card, bool crc_err_fatal)
431{
432 u32 status;
433 int err;
434
435 err = mmc_send_status(card, &status);
436 if (!crc_err_fatal && err == -EILSEQ)
437 return 0;
438 if (err)
439 return err;
440
441 return mmc_switch_status_error(card->host, status);
442}
443
444int mmc_switch_status(struct mmc_card *card)
445{
446 return __mmc_switch_status(card, true);
447}
448
449static int mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms,
450 bool send_status, bool retry_crc_err)
451{
452 struct mmc_host *host = card->host;
453 int err;
454 unsigned long timeout;
455 u32 status = 0;
456 bool expired = false;
457 bool busy = false;
458
459 /* We have an unspecified cmd timeout, use the fallback value. */
460 if (!timeout_ms)
461 timeout_ms = MMC_OPS_TIMEOUT_MS;
462
463 /*
464 * In cases when not allowed to poll by using CMD13 or because we aren't
465 * capable of polling by using ->card_busy(), then rely on waiting the
466 * stated timeout to be sufficient.
467 */
468 if (!send_status && !host->ops->card_busy) {
469 mmc_delay(timeout_ms);
470 return 0;
471 }
472
473 timeout = jiffies + msecs_to_jiffies(timeout_ms) + 1;
474 do {
475 /*
476 * Due to the possibility of being preempted while polling,
477 * check the expiration time first.
478 */
479 expired = time_after(jiffies, timeout);
480
481 if (host->ops->card_busy) {
482 busy = host->ops->card_busy(host);
483 } else {
484 err = mmc_send_status(card, &status);
485 if (retry_crc_err && err == -EILSEQ) {
486 busy = true;
487 } else if (err) {
488 return err;
489 } else {
490 err = mmc_switch_status_error(host, status);
491 if (err)
492 return err;
493 busy = R1_CURRENT_STATE(status) == R1_STATE_PRG;
494 }
495 }
496
497 /* Timeout if the device still remains busy. */
498 if (expired && busy) {
499 pr_err("%s: Card stuck being busy! %s\n",
500 mmc_hostname(host), __func__);
501 return -ETIMEDOUT;
502 }
503 } while (busy);
504
505 return 0;
506}
507
508/**
509 * __mmc_switch - modify EXT_CSD register
510 * @card: the MMC card associated with the data transfer
511 * @set: cmd set values
512 * @index: EXT_CSD register index
513 * @value: value to program into EXT_CSD register
514 * @timeout_ms: timeout (ms) for operation performed by register write,
515 * timeout of zero implies maximum possible timeout
516 * @timing: new timing to change to
517 * @use_busy_signal: use the busy signal as response type
518 * @send_status: send status cmd to poll for busy
519 * @retry_crc_err: retry when CRC errors when polling with CMD13 for busy
520 *
521 * Modifies the EXT_CSD register for selected card.
522 */
523int __mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
524 unsigned int timeout_ms, unsigned char timing,
525 bool use_busy_signal, bool send_status, bool retry_crc_err)
526{
527 struct mmc_host *host = card->host;
528 int err;
529 struct mmc_command cmd = {};
530 bool use_r1b_resp = use_busy_signal;
531 unsigned char old_timing = host->ios.timing;
532
533 mmc_retune_hold(host);
534
535 /*
536 * If the cmd timeout and the max_busy_timeout of the host are both
537 * specified, let's validate them. A failure means we need to prevent
538 * the host from doing hw busy detection, which is done by converting
539 * to a R1 response instead of a R1B.
540 */
541 if (timeout_ms && host->max_busy_timeout &&
542 (timeout_ms > host->max_busy_timeout))
543 use_r1b_resp = false;
544
545 cmd.opcode = MMC_SWITCH;
546 cmd.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
547 (index << 16) |
548 (value << 8) |
549 set;
550 cmd.flags = MMC_CMD_AC;
551 if (use_r1b_resp) {
552 cmd.flags |= MMC_RSP_SPI_R1B | MMC_RSP_R1B;
553 /*
554 * A busy_timeout of zero means the host can decide to use
555 * whatever value it finds suitable.
556 */
557 cmd.busy_timeout = timeout_ms;
558 } else {
559 cmd.flags |= MMC_RSP_SPI_R1 | MMC_RSP_R1;
560 }
561
562 if (index == EXT_CSD_SANITIZE_START)
563 cmd.sanitize_busy = true;
564
565 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
566 if (err)
567 goto out;
568
569 /* No need to check card status in case of unblocking command */
570 if (!use_busy_signal)
571 goto out;
572
573 /*If SPI or used HW busy detection above, then we don't need to poll. */
574 if (((host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) ||
575 mmc_host_is_spi(host))
576 goto out_tim;
577
578 /* Let's try to poll to find out when the command is completed. */
579 err = mmc_poll_for_busy(card, timeout_ms, send_status, retry_crc_err);
580 if (err)
581 goto out;
582
583out_tim:
584 /* Switch to new timing before check switch status. */
585 if (timing)
586 mmc_set_timing(host, timing);
587
588 if (send_status) {
589 err = mmc_switch_status(card);
590 if (err && timing)
591 mmc_set_timing(host, old_timing);
592 }
593out:
594 mmc_retune_release(host);
595
596 return err;
597}
598
599int mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
600 unsigned int timeout_ms)
601{
602 return __mmc_switch(card, set, index, value, timeout_ms, 0,
603 true, true, false);
604}
605EXPORT_SYMBOL_GPL(mmc_switch);
606
607int mmc_send_tuning(struct mmc_host *host, u32 opcode, int *cmd_error)
608{
609 struct mmc_request mrq = {};
610 struct mmc_command cmd = {};
611 struct mmc_data data = {};
612 struct scatterlist sg;
613 struct mmc_ios *ios = &host->ios;
614 const u8 *tuning_block_pattern;
615 int size, err = 0;
616 u8 *data_buf;
617
618 if (ios->bus_width == MMC_BUS_WIDTH_8) {
619 tuning_block_pattern = tuning_blk_pattern_8bit;
620 size = sizeof(tuning_blk_pattern_8bit);
621 } else if (ios->bus_width == MMC_BUS_WIDTH_4) {
622 tuning_block_pattern = tuning_blk_pattern_4bit;
623 size = sizeof(tuning_blk_pattern_4bit);
624 } else
625 return -EINVAL;
626
627 data_buf = kzalloc(size, GFP_KERNEL);
628 if (!data_buf)
629 return -ENOMEM;
630
631 mrq.cmd = &cmd;
632 mrq.data = &data;
633
634 cmd.opcode = opcode;
635 cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
636
637 data.blksz = size;
638 data.blocks = 1;
639 data.flags = MMC_DATA_READ;
640
641 /*
642 * According to the tuning specs, Tuning process
643 * is normally shorter 40 executions of CMD19,
644 * and timeout value should be shorter than 150 ms
645 */
646 data.timeout_ns = 150 * NSEC_PER_MSEC;
647
648 data.sg = &sg;
649 data.sg_len = 1;
650 sg_init_one(&sg, data_buf, size);
651
652 mmc_wait_for_req(host, &mrq);
653
654 if (cmd_error)
655 *cmd_error = cmd.error;
656
657 if (cmd.error) {
658 err = cmd.error;
659 goto out;
660 }
661
662 if (data.error) {
663 err = data.error;
664 goto out;
665 }
666
667 if (memcmp(data_buf, tuning_block_pattern, size))
668 err = -EIO;
669
670out:
671 kfree(data_buf);
672 return err;
673}
674EXPORT_SYMBOL_GPL(mmc_send_tuning);
675
676int mmc_abort_tuning(struct mmc_host *host, u32 opcode)
677{
678 struct mmc_command cmd = {};
679
680 /*
681 * eMMC specification specifies that CMD12 can be used to stop a tuning
682 * command, but SD specification does not, so do nothing unless it is
683 * eMMC.
684 */
685 if (opcode != MMC_SEND_TUNING_BLOCK_HS200)
686 return 0;
687
688 cmd.opcode = MMC_STOP_TRANSMISSION;
689 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
690
691 /*
692 * For drivers that override R1 to R1b, set an arbitrary timeout based
693 * on the tuning timeout i.e. 150ms.
694 */
695 cmd.busy_timeout = 150;
696
697 return mmc_wait_for_cmd(host, &cmd, 0);
698}
699EXPORT_SYMBOL_GPL(mmc_abort_tuning);
700
701static int
702mmc_send_bus_test(struct mmc_card *card, struct mmc_host *host, u8 opcode,
703 u8 len)
704{
705 struct mmc_request mrq = {};
706 struct mmc_command cmd = {};
707 struct mmc_data data = {};
708 struct scatterlist sg;
709 u8 *data_buf;
710 u8 *test_buf;
711 int i, err;
712 static u8 testdata_8bit[8] = { 0x55, 0xaa, 0, 0, 0, 0, 0, 0 };
713 static u8 testdata_4bit[4] = { 0x5a, 0, 0, 0 };
714
715 /* dma onto stack is unsafe/nonportable, but callers to this
716 * routine normally provide temporary on-stack buffers ...
717 */
718 data_buf = kmalloc(len, GFP_KERNEL);
719 if (!data_buf)
720 return -ENOMEM;
721
722 if (len == 8)
723 test_buf = testdata_8bit;
724 else if (len == 4)
725 test_buf = testdata_4bit;
726 else {
727 pr_err("%s: Invalid bus_width %d\n",
728 mmc_hostname(host), len);
729 kfree(data_buf);
730 return -EINVAL;
731 }
732
733 if (opcode == MMC_BUS_TEST_W)
734 memcpy(data_buf, test_buf, len);
735
736 mrq.cmd = &cmd;
737 mrq.data = &data;
738 cmd.opcode = opcode;
739 cmd.arg = 0;
740
741 /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we
742 * rely on callers to never use this with "native" calls for reading
743 * CSD or CID. Native versions of those commands use the R2 type,
744 * not R1 plus a data block.
745 */
746 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
747
748 data.blksz = len;
749 data.blocks = 1;
750 if (opcode == MMC_BUS_TEST_R)
751 data.flags = MMC_DATA_READ;
752 else
753 data.flags = MMC_DATA_WRITE;
754
755 data.sg = &sg;
756 data.sg_len = 1;
757 mmc_set_data_timeout(&data, card);
758 sg_init_one(&sg, data_buf, len);
759 mmc_wait_for_req(host, &mrq);
760 err = 0;
761 if (opcode == MMC_BUS_TEST_R) {
762 for (i = 0; i < len / 4; i++)
763 if ((test_buf[i] ^ data_buf[i]) != 0xff) {
764 err = -EIO;
765 break;
766 }
767 }
768 kfree(data_buf);
769
770 if (cmd.error)
771 return cmd.error;
772 if (data.error)
773 return data.error;
774
775 return err;
776}
777
778int mmc_bus_test(struct mmc_card *card, u8 bus_width)
779{
780 int width;
781
782 if (bus_width == MMC_BUS_WIDTH_8)
783 width = 8;
784 else if (bus_width == MMC_BUS_WIDTH_4)
785 width = 4;
786 else if (bus_width == MMC_BUS_WIDTH_1)
787 return 0; /* no need for test */
788 else
789 return -EINVAL;
790
791 /*
792 * Ignore errors from BUS_TEST_W. BUS_TEST_R will fail if there
793 * is a problem. This improves chances that the test will work.
794 */
795 mmc_send_bus_test(card, card->host, MMC_BUS_TEST_W, width);
796 return mmc_send_bus_test(card, card->host, MMC_BUS_TEST_R, width);
797}
798
799static int mmc_send_hpi_cmd(struct mmc_card *card, u32 *status)
800{
801 struct mmc_command cmd = {};
802 unsigned int opcode;
803 int err;
804
805 if (!card->ext_csd.hpi) {
806 pr_warn("%s: Card didn't support HPI command\n",
807 mmc_hostname(card->host));
808 return -EINVAL;
809 }
810
811 opcode = card->ext_csd.hpi_cmd;
812 if (opcode == MMC_STOP_TRANSMISSION)
813 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
814 else if (opcode == MMC_SEND_STATUS)
815 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
816
817 cmd.opcode = opcode;
818 cmd.arg = card->rca << 16 | 1;
819
820 err = mmc_wait_for_cmd(card->host, &cmd, 0);
821 if (err) {
822 pr_warn("%s: error %d interrupting operation. "
823 "HPI command response %#x\n", mmc_hostname(card->host),
824 err, cmd.resp[0]);
825 return err;
826 }
827 if (status)
828 *status = cmd.resp[0];
829
830 return 0;
831}
832
833/**
834 * mmc_interrupt_hpi - Issue for High priority Interrupt
835 * @card: the MMC card associated with the HPI transfer
836 *
837 * Issued High Priority Interrupt, and check for card status
838 * until out-of prg-state.
839 */
840int mmc_interrupt_hpi(struct mmc_card *card)
841{
842 int err;
843 u32 status;
844 unsigned long prg_wait;
845
846 if (!card->ext_csd.hpi_en) {
847 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
848 return 1;
849 }
850
851 err = mmc_send_status(card, &status);
852 if (err) {
853 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
854 goto out;
855 }
856
857 switch (R1_CURRENT_STATE(status)) {
858 case R1_STATE_IDLE:
859 case R1_STATE_READY:
860 case R1_STATE_STBY:
861 case R1_STATE_TRAN:
862 /*
863 * In idle and transfer states, HPI is not needed and the caller
864 * can issue the next intended command immediately
865 */
866 goto out;
867 case R1_STATE_PRG:
868 break;
869 default:
870 /* In all other states, it's illegal to issue HPI */
871 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
872 mmc_hostname(card->host), R1_CURRENT_STATE(status));
873 err = -EINVAL;
874 goto out;
875 }
876
877 err = mmc_send_hpi_cmd(card, &status);
878 if (err)
879 goto out;
880
881 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
882 do {
883 err = mmc_send_status(card, &status);
884
885 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
886 break;
887 if (time_after(jiffies, prg_wait))
888 err = -ETIMEDOUT;
889 } while (!err);
890
891out:
892 return err;
893}
894
895int mmc_can_ext_csd(struct mmc_card *card)
896{
897 return (card && card->csd.mmca_vsn > CSD_SPEC_VER_3);
898}
899
900/**
901 * mmc_stop_bkops - stop ongoing BKOPS
902 * @card: MMC card to check BKOPS
903 *
904 * Send HPI command to stop ongoing background operations to
905 * allow rapid servicing of foreground operations, e.g. read/
906 * writes. Wait until the card comes out of the programming state
907 * to avoid errors in servicing read/write requests.
908 */
909int mmc_stop_bkops(struct mmc_card *card)
910{
911 int err = 0;
912
913 err = mmc_interrupt_hpi(card);
914
915 /*
916 * If err is EINVAL, we can't issue an HPI.
917 * It should complete the BKOPS.
918 */
919 if (!err || (err == -EINVAL)) {
920 mmc_card_clr_doing_bkops(card);
921 mmc_retune_release(card->host);
922 err = 0;
923 }
924
925 return err;
926}
927
928static int mmc_read_bkops_status(struct mmc_card *card)
929{
930 int err;
931 u8 *ext_csd;
932
933 err = mmc_get_ext_csd(card, &ext_csd);
934 if (err)
935 return err;
936
937 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
938 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
939 kfree(ext_csd);
940 return 0;
941}
942
943/**
944 * mmc_start_bkops - start BKOPS for supported cards
945 * @card: MMC card to start BKOPS
946 * @from_exception: A flag to indicate if this function was
947 * called due to an exception raised by the card
948 *
949 * Start background operations whenever requested.
950 * When the urgent BKOPS bit is set in a R1 command response
951 * then background operations should be started immediately.
952*/
953void mmc_start_bkops(struct mmc_card *card, bool from_exception)
954{
955 int err;
956 int timeout;
957 bool use_busy_signal;
958
959 if (!card->ext_csd.man_bkops_en || mmc_card_doing_bkops(card))
960 return;
961
962 err = mmc_read_bkops_status(card);
963 if (err) {
964 pr_err("%s: Failed to read bkops status: %d\n",
965 mmc_hostname(card->host), err);
966 return;
967 }
968
969 if (!card->ext_csd.raw_bkops_status)
970 return;
971
972 if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
973 from_exception)
974 return;
975
976 if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
977 timeout = MMC_OPS_TIMEOUT_MS;
978 use_busy_signal = true;
979 } else {
980 timeout = 0;
981 use_busy_signal = false;
982 }
983
984 mmc_retune_hold(card->host);
985
986 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
987 EXT_CSD_BKOPS_START, 1, timeout, 0,
988 use_busy_signal, true, false);
989 if (err) {
990 pr_warn("%s: Error %d starting bkops\n",
991 mmc_hostname(card->host), err);
992 mmc_retune_release(card->host);
993 return;
994 }
995
996 /*
997 * For urgent bkops status (LEVEL_2 and more)
998 * bkops executed synchronously, otherwise
999 * the operation is in progress
1000 */
1001 if (!use_busy_signal)
1002 mmc_card_set_doing_bkops(card);
1003 else
1004 mmc_retune_release(card->host);
1005}
1006EXPORT_SYMBOL(mmc_start_bkops);
1007
1008/*
1009 * Flush the cache to the non-volatile storage.
1010 */
1011int mmc_flush_cache(struct mmc_card *card)
1012{
1013 int err = 0;
1014
1015 if (mmc_card_mmc(card) &&
1016 (card->ext_csd.cache_size > 0) &&
1017 (card->ext_csd.cache_ctrl & 1)) {
1018 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1019 EXT_CSD_FLUSH_CACHE, 1, 0);
1020 if (err)
1021 pr_err("%s: cache flush error %d\n",
1022 mmc_hostname(card->host), err);
1023 }
1024
1025 return err;
1026}
1027EXPORT_SYMBOL(mmc_flush_cache);
1028
1029static int mmc_cmdq_switch(struct mmc_card *card, bool enable)
1030{
1031 u8 val = enable ? EXT_CSD_CMDQ_MODE_ENABLED : 0;
1032 int err;
1033
1034 if (!card->ext_csd.cmdq_support)
1035 return -EOPNOTSUPP;
1036
1037 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CMDQ_MODE_EN,
1038 val, card->ext_csd.generic_cmd6_time);
1039 if (!err)
1040 card->ext_csd.cmdq_en = enable;
1041
1042 return err;
1043}
1044
1045int mmc_cmdq_enable(struct mmc_card *card)
1046{
1047 return mmc_cmdq_switch(card, true);
1048}
1049EXPORT_SYMBOL_GPL(mmc_cmdq_enable);
1050
1051int mmc_cmdq_disable(struct mmc_card *card)
1052{
1053 return mmc_cmdq_switch(card, false);
1054}
1055EXPORT_SYMBOL_GPL(mmc_cmdq_disable);