Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/drivers/mmc/core/mmc.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 */
9
10#include <linux/err.h>
11#include <linux/of.h>
12#include <linux/slab.h>
13#include <linux/stat.h>
14#include <linux/pm_runtime.h>
15#include <linux/random.h>
16#include <linux/sysfs.h>
17
18#include <linux/mmc/host.h>
19#include <linux/mmc/card.h>
20#include <linux/mmc/mmc.h>
21
22#include "core.h"
23#include "card.h"
24#include "host.h"
25#include "bus.h"
26#include "mmc_ops.h"
27#include "quirks.h"
28#include "sd_ops.h"
29#include "pwrseq.h"
30
31#define DEFAULT_CMD6_TIMEOUT_MS 500
32#define MIN_CACHE_EN_TIMEOUT_MS 1600
33#define CACHE_FLUSH_TIMEOUT_MS 30000 /* 30s */
34
35static const unsigned int tran_exp[] = {
36 10000, 100000, 1000000, 10000000,
37 0, 0, 0, 0
38};
39
40static const unsigned char tran_mant[] = {
41 0, 10, 12, 13, 15, 20, 25, 30,
42 35, 40, 45, 50, 55, 60, 70, 80,
43};
44
45static const unsigned int taac_exp[] = {
46 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
47};
48
49static const unsigned int taac_mant[] = {
50 0, 10, 12, 13, 15, 20, 25, 30,
51 35, 40, 45, 50, 55, 60, 70, 80,
52};
53
54/*
55 * Given the decoded CSD structure, decode the raw CID to our CID structure.
56 */
57static int mmc_decode_cid(struct mmc_card *card)
58{
59 u32 *resp = card->raw_cid;
60
61 /*
62 * Add the raw card ID (cid) data to the entropy pool. It doesn't
63 * matter that not all of it is unique, it's just bonus entropy.
64 */
65 add_device_randomness(&card->raw_cid, sizeof(card->raw_cid));
66
67 /*
68 * The selection of the format here is based upon published
69 * specs from sandisk and from what people have reported.
70 */
71 switch (card->csd.mmca_vsn) {
72 case 0: /* MMC v1.0 - v1.2 */
73 case 1: /* MMC v1.4 */
74 card->cid.manfid = unstuff_bits(resp, 104, 24);
75 card->cid.prod_name[0] = unstuff_bits(resp, 96, 8);
76 card->cid.prod_name[1] = unstuff_bits(resp, 88, 8);
77 card->cid.prod_name[2] = unstuff_bits(resp, 80, 8);
78 card->cid.prod_name[3] = unstuff_bits(resp, 72, 8);
79 card->cid.prod_name[4] = unstuff_bits(resp, 64, 8);
80 card->cid.prod_name[5] = unstuff_bits(resp, 56, 8);
81 card->cid.prod_name[6] = unstuff_bits(resp, 48, 8);
82 card->cid.hwrev = unstuff_bits(resp, 44, 4);
83 card->cid.fwrev = unstuff_bits(resp, 40, 4);
84 card->cid.serial = unstuff_bits(resp, 16, 24);
85 card->cid.month = unstuff_bits(resp, 12, 4);
86 card->cid.year = unstuff_bits(resp, 8, 4) + 1997;
87 break;
88
89 case 2: /* MMC v2.0 - v2.2 */
90 case 3: /* MMC v3.1 - v3.3 */
91 case 4: /* MMC v4 */
92 card->cid.manfid = unstuff_bits(resp, 120, 8);
93 card->cid.oemid = unstuff_bits(resp, 104, 16);
94 card->cid.prod_name[0] = unstuff_bits(resp, 96, 8);
95 card->cid.prod_name[1] = unstuff_bits(resp, 88, 8);
96 card->cid.prod_name[2] = unstuff_bits(resp, 80, 8);
97 card->cid.prod_name[3] = unstuff_bits(resp, 72, 8);
98 card->cid.prod_name[4] = unstuff_bits(resp, 64, 8);
99 card->cid.prod_name[5] = unstuff_bits(resp, 56, 8);
100 card->cid.prv = unstuff_bits(resp, 48, 8);
101 card->cid.serial = unstuff_bits(resp, 16, 32);
102 card->cid.month = unstuff_bits(resp, 12, 4);
103 card->cid.year = unstuff_bits(resp, 8, 4) + 1997;
104 break;
105
106 default:
107 pr_err("%s: card has unknown MMCA version %d\n",
108 mmc_hostname(card->host), card->csd.mmca_vsn);
109 return -EINVAL;
110 }
111
112 return 0;
113}
114
115static void mmc_set_erase_size(struct mmc_card *card)
116{
117 if (card->ext_csd.erase_group_def & 1)
118 card->erase_size = card->ext_csd.hc_erase_size;
119 else
120 card->erase_size = card->csd.erase_size;
121
122 mmc_init_erase(card);
123}
124
125
126static void mmc_set_wp_grp_size(struct mmc_card *card)
127{
128 if (card->ext_csd.erase_group_def & 1)
129 card->wp_grp_size = card->ext_csd.hc_erase_size *
130 card->ext_csd.raw_hc_erase_gap_size;
131 else
132 card->wp_grp_size = card->csd.erase_size *
133 (card->csd.wp_grp_size + 1);
134}
135
136/*
137 * Given a 128-bit response, decode to our card CSD structure.
138 */
139static int mmc_decode_csd(struct mmc_card *card)
140{
141 struct mmc_csd *csd = &card->csd;
142 unsigned int e, m, a, b;
143 u32 *resp = card->raw_csd;
144
145 /*
146 * We only understand CSD structure v1.1 and v1.2.
147 * v1.2 has extra information in bits 15, 11 and 10.
148 * We also support eMMC v4.4 & v4.41.
149 */
150 csd->structure = unstuff_bits(resp, 126, 2);
151 if (csd->structure == 0) {
152 pr_err("%s: unrecognised CSD structure version %d\n",
153 mmc_hostname(card->host), csd->structure);
154 return -EINVAL;
155 }
156
157 csd->mmca_vsn = unstuff_bits(resp, 122, 4);
158 m = unstuff_bits(resp, 115, 4);
159 e = unstuff_bits(resp, 112, 3);
160 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10;
161 csd->taac_clks = unstuff_bits(resp, 104, 8) * 100;
162
163 m = unstuff_bits(resp, 99, 4);
164 e = unstuff_bits(resp, 96, 3);
165 csd->max_dtr = tran_exp[e] * tran_mant[m];
166 csd->cmdclass = unstuff_bits(resp, 84, 12);
167
168 e = unstuff_bits(resp, 47, 3);
169 m = unstuff_bits(resp, 62, 12);
170 csd->capacity = (1 + m) << (e + 2);
171
172 csd->read_blkbits = unstuff_bits(resp, 80, 4);
173 csd->read_partial = unstuff_bits(resp, 79, 1);
174 csd->write_misalign = unstuff_bits(resp, 78, 1);
175 csd->read_misalign = unstuff_bits(resp, 77, 1);
176 csd->dsr_imp = unstuff_bits(resp, 76, 1);
177 csd->r2w_factor = unstuff_bits(resp, 26, 3);
178 csd->write_blkbits = unstuff_bits(resp, 22, 4);
179 csd->write_partial = unstuff_bits(resp, 21, 1);
180
181 if (csd->write_blkbits >= 9) {
182 a = unstuff_bits(resp, 42, 5);
183 b = unstuff_bits(resp, 37, 5);
184 csd->erase_size = (a + 1) * (b + 1);
185 csd->erase_size <<= csd->write_blkbits - 9;
186 csd->wp_grp_size = unstuff_bits(resp, 32, 5);
187 }
188
189 return 0;
190}
191
192static void mmc_select_card_type(struct mmc_card *card)
193{
194 struct mmc_host *host = card->host;
195 u8 card_type = card->ext_csd.raw_card_type;
196 u32 caps = host->caps, caps2 = host->caps2;
197 unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
198 unsigned int avail_type = 0;
199
200 if (caps & MMC_CAP_MMC_HIGHSPEED &&
201 card_type & EXT_CSD_CARD_TYPE_HS_26) {
202 hs_max_dtr = MMC_HIGH_26_MAX_DTR;
203 avail_type |= EXT_CSD_CARD_TYPE_HS_26;
204 }
205
206 if (caps & MMC_CAP_MMC_HIGHSPEED &&
207 card_type & EXT_CSD_CARD_TYPE_HS_52) {
208 hs_max_dtr = MMC_HIGH_52_MAX_DTR;
209 avail_type |= EXT_CSD_CARD_TYPE_HS_52;
210 }
211
212 if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
213 card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
214 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
215 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
216 }
217
218 if (caps & MMC_CAP_1_2V_DDR &&
219 card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
220 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
221 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
222 }
223
224 if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
225 card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
226 hs200_max_dtr = MMC_HS200_MAX_DTR;
227 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
228 }
229
230 if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
231 card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
232 hs200_max_dtr = MMC_HS200_MAX_DTR;
233 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
234 }
235
236 if (caps2 & MMC_CAP2_HS400_1_8V &&
237 card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
238 hs200_max_dtr = MMC_HS200_MAX_DTR;
239 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
240 }
241
242 if (caps2 & MMC_CAP2_HS400_1_2V &&
243 card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
244 hs200_max_dtr = MMC_HS200_MAX_DTR;
245 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
246 }
247
248 if ((caps2 & MMC_CAP2_HS400_ES) &&
249 card->ext_csd.strobe_support &&
250 (avail_type & EXT_CSD_CARD_TYPE_HS400))
251 avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
252
253 card->ext_csd.hs_max_dtr = hs_max_dtr;
254 card->ext_csd.hs200_max_dtr = hs200_max_dtr;
255 card->mmc_avail_type = avail_type;
256}
257
258static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
259{
260 u8 hc_erase_grp_sz, hc_wp_grp_sz;
261
262 /*
263 * Disable these attributes by default
264 */
265 card->ext_csd.enhanced_area_offset = -EINVAL;
266 card->ext_csd.enhanced_area_size = -EINVAL;
267
268 /*
269 * Enhanced area feature support -- check whether the eMMC
270 * card has the Enhanced area enabled. If so, export enhanced
271 * area offset and size to user by adding sysfs interface.
272 */
273 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
274 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
275 if (card->ext_csd.partition_setting_completed) {
276 hc_erase_grp_sz =
277 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
278 hc_wp_grp_sz =
279 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
280
281 /*
282 * calculate the enhanced data area offset, in bytes
283 */
284 card->ext_csd.enhanced_area_offset =
285 (((unsigned long long)ext_csd[139]) << 24) +
286 (((unsigned long long)ext_csd[138]) << 16) +
287 (((unsigned long long)ext_csd[137]) << 8) +
288 (((unsigned long long)ext_csd[136]));
289 if (mmc_card_blockaddr(card))
290 card->ext_csd.enhanced_area_offset <<= 9;
291 /*
292 * calculate the enhanced data area size, in kilobytes
293 */
294 card->ext_csd.enhanced_area_size =
295 (ext_csd[142] << 16) + (ext_csd[141] << 8) +
296 ext_csd[140];
297 card->ext_csd.enhanced_area_size *=
298 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
299 card->ext_csd.enhanced_area_size <<= 9;
300 } else {
301 pr_warn("%s: defines enhanced area without partition setting complete\n",
302 mmc_hostname(card->host));
303 }
304 }
305}
306
307static void mmc_part_add(struct mmc_card *card, u64 size,
308 unsigned int part_cfg, char *name, int idx, bool ro,
309 int area_type)
310{
311 card->part[card->nr_parts].size = size;
312 card->part[card->nr_parts].part_cfg = part_cfg;
313 sprintf(card->part[card->nr_parts].name, name, idx);
314 card->part[card->nr_parts].force_ro = ro;
315 card->part[card->nr_parts].area_type = area_type;
316 card->nr_parts++;
317}
318
319static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
320{
321 int idx;
322 u8 hc_erase_grp_sz, hc_wp_grp_sz;
323 u64 part_size;
324
325 /*
326 * General purpose partition feature support --
327 * If ext_csd has the size of general purpose partitions,
328 * set size, part_cfg, partition name in mmc_part.
329 */
330 if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
331 EXT_CSD_PART_SUPPORT_PART_EN) {
332 hc_erase_grp_sz =
333 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
334 hc_wp_grp_sz =
335 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
336
337 for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
338 if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
339 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
340 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
341 continue;
342 if (card->ext_csd.partition_setting_completed == 0) {
343 pr_warn("%s: has partition size defined without partition complete\n",
344 mmc_hostname(card->host));
345 break;
346 }
347 part_size =
348 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
349 << 16) +
350 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
351 << 8) +
352 ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
353 part_size *= (hc_erase_grp_sz * hc_wp_grp_sz);
354 mmc_part_add(card, part_size << 19,
355 EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
356 "gp%d", idx, false,
357 MMC_BLK_DATA_AREA_GP);
358 }
359 }
360}
361
362/* Minimum partition switch timeout in milliseconds */
363#define MMC_MIN_PART_SWITCH_TIME 300
364
365/*
366 * Decode extended CSD.
367 */
368static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
369{
370 int err = 0, idx;
371 u64 part_size;
372 struct device_node *np;
373 bool broken_hpi = false;
374
375 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
376 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
377 if (card->csd.structure == 3) {
378 if (card->ext_csd.raw_ext_csd_structure > 2) {
379 pr_err("%s: unrecognised EXT_CSD structure "
380 "version %d\n", mmc_hostname(card->host),
381 card->ext_csd.raw_ext_csd_structure);
382 err = -EINVAL;
383 goto out;
384 }
385 }
386
387 np = mmc_of_find_child_device(card->host, 0);
388 if (np && of_device_is_compatible(np, "mmc-card"))
389 broken_hpi = of_property_read_bool(np, "broken-hpi");
390 of_node_put(np);
391
392 /*
393 * The EXT_CSD format is meant to be forward compatible. As long
394 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
395 * are authorized, see JEDEC JESD84-B50 section B.8.
396 */
397 card->ext_csd.rev = ext_csd[EXT_CSD_REV];
398
399 /* fixup device after ext_csd revision field is updated */
400 mmc_fixup_device(card, mmc_ext_csd_fixups);
401
402 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
403 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
404 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
405 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
406 if (card->ext_csd.rev >= 2) {
407 card->ext_csd.sectors =
408 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
409 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
410 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
411 ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
412
413 /* Cards with density > 2GiB are sector addressed */
414 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
415 mmc_card_set_blockaddr(card);
416 }
417
418 card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
419 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
420
421 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
422 card->ext_csd.raw_erase_timeout_mult =
423 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
424 card->ext_csd.raw_hc_erase_grp_size =
425 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
426 card->ext_csd.raw_boot_mult =
427 ext_csd[EXT_CSD_BOOT_MULT];
428 if (card->ext_csd.rev >= 3) {
429 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
430 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
431
432 /* EXT_CSD value is in units of 10ms, but we store in ms */
433 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
434
435 /* Sleep / awake timeout in 100ns units */
436 if (sa_shift > 0 && sa_shift <= 0x17)
437 card->ext_csd.sa_timeout =
438 1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
439 card->ext_csd.erase_group_def =
440 ext_csd[EXT_CSD_ERASE_GROUP_DEF];
441 card->ext_csd.hc_erase_timeout = 300 *
442 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
443 card->ext_csd.hc_erase_size =
444 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
445
446 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
447
448 /*
449 * There are two boot regions of equal size, defined in
450 * multiples of 128K.
451 */
452 if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
453 for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
454 part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
455 mmc_part_add(card, part_size,
456 EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
457 "boot%d", idx, true,
458 MMC_BLK_DATA_AREA_BOOT);
459 }
460 }
461 }
462
463 card->ext_csd.raw_hc_erase_gap_size =
464 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
465 card->ext_csd.raw_sec_trim_mult =
466 ext_csd[EXT_CSD_SEC_TRIM_MULT];
467 card->ext_csd.raw_sec_erase_mult =
468 ext_csd[EXT_CSD_SEC_ERASE_MULT];
469 card->ext_csd.raw_sec_feature_support =
470 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
471 card->ext_csd.raw_trim_mult =
472 ext_csd[EXT_CSD_TRIM_MULT];
473 card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
474 card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
475 if (card->ext_csd.rev >= 4) {
476 if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
477 EXT_CSD_PART_SETTING_COMPLETED)
478 card->ext_csd.partition_setting_completed = 1;
479 else
480 card->ext_csd.partition_setting_completed = 0;
481
482 mmc_manage_enhanced_area(card, ext_csd);
483
484 mmc_manage_gp_partitions(card, ext_csd);
485
486 card->ext_csd.sec_trim_mult =
487 ext_csd[EXT_CSD_SEC_TRIM_MULT];
488 card->ext_csd.sec_erase_mult =
489 ext_csd[EXT_CSD_SEC_ERASE_MULT];
490 card->ext_csd.sec_feature_support =
491 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
492 card->ext_csd.trim_timeout = 300 *
493 ext_csd[EXT_CSD_TRIM_MULT];
494
495 /*
496 * Note that the call to mmc_part_add above defaults to read
497 * only. If this default assumption is changed, the call must
498 * take into account the value of boot_locked below.
499 */
500 card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
501 card->ext_csd.boot_ro_lockable = true;
502
503 /* Save power class values */
504 card->ext_csd.raw_pwr_cl_52_195 =
505 ext_csd[EXT_CSD_PWR_CL_52_195];
506 card->ext_csd.raw_pwr_cl_26_195 =
507 ext_csd[EXT_CSD_PWR_CL_26_195];
508 card->ext_csd.raw_pwr_cl_52_360 =
509 ext_csd[EXT_CSD_PWR_CL_52_360];
510 card->ext_csd.raw_pwr_cl_26_360 =
511 ext_csd[EXT_CSD_PWR_CL_26_360];
512 card->ext_csd.raw_pwr_cl_200_195 =
513 ext_csd[EXT_CSD_PWR_CL_200_195];
514 card->ext_csd.raw_pwr_cl_200_360 =
515 ext_csd[EXT_CSD_PWR_CL_200_360];
516 card->ext_csd.raw_pwr_cl_ddr_52_195 =
517 ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
518 card->ext_csd.raw_pwr_cl_ddr_52_360 =
519 ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
520 card->ext_csd.raw_pwr_cl_ddr_200_360 =
521 ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
522 }
523
524 if (card->ext_csd.rev >= 5) {
525 /* Adjust production date as per JEDEC JESD84-B451 */
526 if (card->cid.year < 2010)
527 card->cid.year += 16;
528
529 /* check whether the eMMC card supports BKOPS */
530 if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
531 card->ext_csd.bkops = 1;
532 card->ext_csd.man_bkops_en =
533 (ext_csd[EXT_CSD_BKOPS_EN] &
534 EXT_CSD_MANUAL_BKOPS_MASK);
535 card->ext_csd.raw_bkops_status =
536 ext_csd[EXT_CSD_BKOPS_STATUS];
537 if (card->ext_csd.man_bkops_en)
538 pr_debug("%s: MAN_BKOPS_EN bit is set\n",
539 mmc_hostname(card->host));
540 card->ext_csd.auto_bkops_en =
541 (ext_csd[EXT_CSD_BKOPS_EN] &
542 EXT_CSD_AUTO_BKOPS_MASK);
543 if (card->ext_csd.auto_bkops_en)
544 pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
545 mmc_hostname(card->host));
546 }
547
548 /* check whether the eMMC card supports HPI */
549 if (!mmc_card_broken_hpi(card) &&
550 !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
551 card->ext_csd.hpi = 1;
552 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
553 card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION;
554 else
555 card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
556 /*
557 * Indicate the maximum timeout to close
558 * a command interrupted by HPI
559 */
560 card->ext_csd.out_of_int_time =
561 ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
562 }
563
564 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
565 card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
566
567 /*
568 * RPMB regions are defined in multiples of 128K.
569 */
570 card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
571 if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
572 mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
573 EXT_CSD_PART_CONFIG_ACC_RPMB,
574 "rpmb", 0, false,
575 MMC_BLK_DATA_AREA_RPMB);
576 }
577 }
578
579 card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
580 if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
581 card->erased_byte = 0xFF;
582 else
583 card->erased_byte = 0x0;
584
585 /* eMMC v4.5 or later */
586 card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
587 if (card->ext_csd.rev >= 6) {
588 card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
589
590 card->ext_csd.generic_cmd6_time = 10 *
591 ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
592 card->ext_csd.power_off_longtime = 10 *
593 ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
594
595 card->ext_csd.cache_size =
596 ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
597 ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
598 ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
599 ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
600
601 if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
602 card->ext_csd.data_sector_size = 4096;
603 else
604 card->ext_csd.data_sector_size = 512;
605
606 if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
607 (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
608 card->ext_csd.data_tag_unit_size =
609 ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
610 (card->ext_csd.data_sector_size);
611 } else {
612 card->ext_csd.data_tag_unit_size = 0;
613 }
614 } else {
615 card->ext_csd.data_sector_size = 512;
616 }
617
618 /*
619 * GENERIC_CMD6_TIME is to be used "unless a specific timeout is defined
620 * when accessing a specific field", so use it here if there is no
621 * PARTITION_SWITCH_TIME.
622 */
623 if (!card->ext_csd.part_time)
624 card->ext_csd.part_time = card->ext_csd.generic_cmd6_time;
625 /* Some eMMC set the value too low so set a minimum */
626 if (card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
627 card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
628
629 /* eMMC v5 or later */
630 if (card->ext_csd.rev >= 7) {
631 memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
632 MMC_FIRMWARE_LEN);
633 card->ext_csd.ffu_capable =
634 (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
635 !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
636
637 card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
638 card->ext_csd.device_life_time_est_typ_a =
639 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
640 card->ext_csd.device_life_time_est_typ_b =
641 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
642 }
643
644 /* eMMC v5.1 or later */
645 if (card->ext_csd.rev >= 8) {
646 card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
647 EXT_CSD_CMDQ_SUPPORTED;
648 card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
649 EXT_CSD_CMDQ_DEPTH_MASK) + 1;
650 /* Exclude inefficiently small queue depths */
651 if (card->ext_csd.cmdq_depth <= 2) {
652 card->ext_csd.cmdq_support = false;
653 card->ext_csd.cmdq_depth = 0;
654 }
655 if (card->ext_csd.cmdq_support) {
656 pr_debug("%s: Command Queue supported depth %u\n",
657 mmc_hostname(card->host),
658 card->ext_csd.cmdq_depth);
659 }
660 card->ext_csd.enhanced_rpmb_supported =
661 (card->ext_csd.rel_param &
662 EXT_CSD_WR_REL_PARAM_EN_RPMB_REL_WR);
663 }
664out:
665 return err;
666}
667
668static int mmc_read_ext_csd(struct mmc_card *card)
669{
670 u8 *ext_csd;
671 int err;
672
673 if (!mmc_can_ext_csd(card))
674 return 0;
675
676 err = mmc_get_ext_csd(card, &ext_csd);
677 if (err) {
678 /* If the host or the card can't do the switch,
679 * fail more gracefully. */
680 if ((err != -EINVAL)
681 && (err != -ENOSYS)
682 && (err != -EFAULT))
683 return err;
684
685 /*
686 * High capacity cards should have this "magic" size
687 * stored in their CSD.
688 */
689 if (card->csd.capacity == (4096 * 512)) {
690 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
691 mmc_hostname(card->host));
692 } else {
693 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
694 mmc_hostname(card->host));
695 err = 0;
696 }
697
698 return err;
699 }
700
701 err = mmc_decode_ext_csd(card, ext_csd);
702 kfree(ext_csd);
703 return err;
704}
705
706static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
707{
708 u8 *bw_ext_csd;
709 int err;
710
711 if (bus_width == MMC_BUS_WIDTH_1)
712 return 0;
713
714 err = mmc_get_ext_csd(card, &bw_ext_csd);
715 if (err)
716 return err;
717
718 /* only compare read only fields */
719 err = !((card->ext_csd.raw_partition_support ==
720 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
721 (card->ext_csd.raw_erased_mem_count ==
722 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
723 (card->ext_csd.rev ==
724 bw_ext_csd[EXT_CSD_REV]) &&
725 (card->ext_csd.raw_ext_csd_structure ==
726 bw_ext_csd[EXT_CSD_STRUCTURE]) &&
727 (card->ext_csd.raw_card_type ==
728 bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
729 (card->ext_csd.raw_s_a_timeout ==
730 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
731 (card->ext_csd.raw_hc_erase_gap_size ==
732 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
733 (card->ext_csd.raw_erase_timeout_mult ==
734 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
735 (card->ext_csd.raw_hc_erase_grp_size ==
736 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
737 (card->ext_csd.raw_sec_trim_mult ==
738 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
739 (card->ext_csd.raw_sec_erase_mult ==
740 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
741 (card->ext_csd.raw_sec_feature_support ==
742 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
743 (card->ext_csd.raw_trim_mult ==
744 bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
745 (card->ext_csd.raw_sectors[0] ==
746 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
747 (card->ext_csd.raw_sectors[1] ==
748 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
749 (card->ext_csd.raw_sectors[2] ==
750 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
751 (card->ext_csd.raw_sectors[3] ==
752 bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
753 (card->ext_csd.raw_pwr_cl_52_195 ==
754 bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
755 (card->ext_csd.raw_pwr_cl_26_195 ==
756 bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
757 (card->ext_csd.raw_pwr_cl_52_360 ==
758 bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
759 (card->ext_csd.raw_pwr_cl_26_360 ==
760 bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
761 (card->ext_csd.raw_pwr_cl_200_195 ==
762 bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
763 (card->ext_csd.raw_pwr_cl_200_360 ==
764 bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
765 (card->ext_csd.raw_pwr_cl_ddr_52_195 ==
766 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
767 (card->ext_csd.raw_pwr_cl_ddr_52_360 ==
768 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
769 (card->ext_csd.raw_pwr_cl_ddr_200_360 ==
770 bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
771
772 if (err)
773 err = -EINVAL;
774
775 kfree(bw_ext_csd);
776 return err;
777}
778
779MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
780 card->raw_cid[2], card->raw_cid[3]);
781MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
782 card->raw_csd[2], card->raw_csd[3]);
783MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
784MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
785MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
786MMC_DEV_ATTR(wp_grp_size, "%u\n", card->wp_grp_size << 9);
787MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
788MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
789MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
790MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
791MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
792MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
793MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev);
794MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info);
795MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
796 card->ext_csd.device_life_time_est_typ_a,
797 card->ext_csd.device_life_time_est_typ_b);
798MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
799MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
800 card->ext_csd.enhanced_area_offset);
801MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
802MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
803MMC_DEV_ATTR(enhanced_rpmb_supported, "%#x\n",
804 card->ext_csd.enhanced_rpmb_supported);
805MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
806MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
807MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
808MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en);
809
810static ssize_t mmc_fwrev_show(struct device *dev,
811 struct device_attribute *attr,
812 char *buf)
813{
814 struct mmc_card *card = mmc_dev_to_card(dev);
815
816 if (card->ext_csd.rev < 7)
817 return sysfs_emit(buf, "0x%x\n", card->cid.fwrev);
818 else
819 return sysfs_emit(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
820 card->ext_csd.fwrev);
821}
822
823static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
824
825static ssize_t mmc_dsr_show(struct device *dev,
826 struct device_attribute *attr,
827 char *buf)
828{
829 struct mmc_card *card = mmc_dev_to_card(dev);
830 struct mmc_host *host = card->host;
831
832 if (card->csd.dsr_imp && host->dsr_req)
833 return sysfs_emit(buf, "0x%x\n", host->dsr);
834 else
835 /* return default DSR value */
836 return sysfs_emit(buf, "0x%x\n", 0x404);
837}
838
839static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
840
841static struct attribute *mmc_std_attrs[] = {
842 &dev_attr_cid.attr,
843 &dev_attr_csd.attr,
844 &dev_attr_date.attr,
845 &dev_attr_erase_size.attr,
846 &dev_attr_preferred_erase_size.attr,
847 &dev_attr_wp_grp_size.attr,
848 &dev_attr_fwrev.attr,
849 &dev_attr_ffu_capable.attr,
850 &dev_attr_hwrev.attr,
851 &dev_attr_manfid.attr,
852 &dev_attr_name.attr,
853 &dev_attr_oemid.attr,
854 &dev_attr_prv.attr,
855 &dev_attr_rev.attr,
856 &dev_attr_pre_eol_info.attr,
857 &dev_attr_life_time.attr,
858 &dev_attr_serial.attr,
859 &dev_attr_enhanced_area_offset.attr,
860 &dev_attr_enhanced_area_size.attr,
861 &dev_attr_raw_rpmb_size_mult.attr,
862 &dev_attr_enhanced_rpmb_supported.attr,
863 &dev_attr_rel_sectors.attr,
864 &dev_attr_ocr.attr,
865 &dev_attr_rca.attr,
866 &dev_attr_dsr.attr,
867 &dev_attr_cmdq_en.attr,
868 NULL,
869};
870ATTRIBUTE_GROUPS(mmc_std);
871
872static const struct device_type mmc_type = {
873 .groups = mmc_std_groups,
874};
875
876/*
877 * Select the PowerClass for the current bus width
878 * If power class is defined for 4/8 bit bus in the
879 * extended CSD register, select it by executing the
880 * mmc_switch command.
881 */
882static int __mmc_select_powerclass(struct mmc_card *card,
883 unsigned int bus_width)
884{
885 struct mmc_host *host = card->host;
886 struct mmc_ext_csd *ext_csd = &card->ext_csd;
887 unsigned int pwrclass_val = 0;
888 int err = 0;
889
890 switch (1 << host->ios.vdd) {
891 case MMC_VDD_165_195:
892 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
893 pwrclass_val = ext_csd->raw_pwr_cl_26_195;
894 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
895 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
896 ext_csd->raw_pwr_cl_52_195 :
897 ext_csd->raw_pwr_cl_ddr_52_195;
898 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
899 pwrclass_val = ext_csd->raw_pwr_cl_200_195;
900 break;
901 case MMC_VDD_27_28:
902 case MMC_VDD_28_29:
903 case MMC_VDD_29_30:
904 case MMC_VDD_30_31:
905 case MMC_VDD_31_32:
906 case MMC_VDD_32_33:
907 case MMC_VDD_33_34:
908 case MMC_VDD_34_35:
909 case MMC_VDD_35_36:
910 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
911 pwrclass_val = ext_csd->raw_pwr_cl_26_360;
912 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
913 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
914 ext_csd->raw_pwr_cl_52_360 :
915 ext_csd->raw_pwr_cl_ddr_52_360;
916 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
917 pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
918 ext_csd->raw_pwr_cl_ddr_200_360 :
919 ext_csd->raw_pwr_cl_200_360;
920 break;
921 default:
922 pr_warn("%s: Voltage range not supported for power class\n",
923 mmc_hostname(host));
924 return -EINVAL;
925 }
926
927 if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
928 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
929 EXT_CSD_PWR_CL_8BIT_SHIFT;
930 else
931 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
932 EXT_CSD_PWR_CL_4BIT_SHIFT;
933
934 /* If the power class is different from the default value */
935 if (pwrclass_val > 0) {
936 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
937 EXT_CSD_POWER_CLASS,
938 pwrclass_val,
939 card->ext_csd.generic_cmd6_time);
940 }
941
942 return err;
943}
944
945static int mmc_select_powerclass(struct mmc_card *card)
946{
947 struct mmc_host *host = card->host;
948 u32 bus_width, ext_csd_bits;
949 int err, ddr;
950
951 /* Power class selection is supported for versions >= 4.0 */
952 if (!mmc_can_ext_csd(card))
953 return 0;
954
955 bus_width = host->ios.bus_width;
956 /* Power class values are defined only for 4/8 bit bus */
957 if (bus_width == MMC_BUS_WIDTH_1)
958 return 0;
959
960 ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
961 if (ddr)
962 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
963 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
964 else
965 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
966 EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4;
967
968 err = __mmc_select_powerclass(card, ext_csd_bits);
969 if (err)
970 pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
971 mmc_hostname(host), 1 << bus_width, ddr);
972
973 return err;
974}
975
976/*
977 * Set the bus speed for the selected speed mode.
978 */
979static void mmc_set_bus_speed(struct mmc_card *card)
980{
981 unsigned int max_dtr = (unsigned int)-1;
982
983 if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
984 max_dtr > card->ext_csd.hs200_max_dtr)
985 max_dtr = card->ext_csd.hs200_max_dtr;
986 else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
987 max_dtr = card->ext_csd.hs_max_dtr;
988 else if (max_dtr > card->csd.max_dtr)
989 max_dtr = card->csd.max_dtr;
990
991 mmc_set_clock(card->host, max_dtr);
992}
993
994/*
995 * Select the bus width amoung 4-bit and 8-bit(SDR).
996 * If the bus width is changed successfully, return the selected width value.
997 * Zero is returned instead of error value if the wide width is not supported.
998 */
999static int mmc_select_bus_width(struct mmc_card *card)
1000{
1001 static unsigned ext_csd_bits[] = {
1002 EXT_CSD_BUS_WIDTH_8,
1003 EXT_CSD_BUS_WIDTH_4,
1004 EXT_CSD_BUS_WIDTH_1,
1005 };
1006 static unsigned bus_widths[] = {
1007 MMC_BUS_WIDTH_8,
1008 MMC_BUS_WIDTH_4,
1009 MMC_BUS_WIDTH_1,
1010 };
1011 struct mmc_host *host = card->host;
1012 unsigned idx, bus_width = 0;
1013 int err = 0;
1014
1015 if (!mmc_can_ext_csd(card) ||
1016 !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
1017 return 0;
1018
1019 idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
1020
1021 /*
1022 * Unlike SD, MMC cards dont have a configuration register to notify
1023 * supported bus width. So bus test command should be run to identify
1024 * the supported bus width or compare the ext csd values of current
1025 * bus width and ext csd values of 1 bit mode read earlier.
1026 */
1027 for (; idx < ARRAY_SIZE(bus_widths); idx++) {
1028 /*
1029 * Host is capable of 8bit transfer, then switch
1030 * the device to work in 8bit transfer mode. If the
1031 * mmc switch command returns error then switch to
1032 * 4bit transfer mode. On success set the corresponding
1033 * bus width on the host.
1034 */
1035 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1036 EXT_CSD_BUS_WIDTH,
1037 ext_csd_bits[idx],
1038 card->ext_csd.generic_cmd6_time);
1039 if (err)
1040 continue;
1041
1042 bus_width = bus_widths[idx];
1043 mmc_set_bus_width(host, bus_width);
1044
1045 /*
1046 * If controller can't handle bus width test,
1047 * compare ext_csd previously read in 1 bit mode
1048 * against ext_csd at new bus width
1049 */
1050 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1051 err = mmc_compare_ext_csds(card, bus_width);
1052 else
1053 err = mmc_bus_test(card, bus_width);
1054
1055 if (!err) {
1056 err = bus_width;
1057 break;
1058 } else {
1059 pr_warn("%s: switch to bus width %d failed\n",
1060 mmc_hostname(host), 1 << bus_width);
1061 }
1062 }
1063
1064 return err;
1065}
1066
1067/*
1068 * Switch to the high-speed mode
1069 */
1070static int mmc_select_hs(struct mmc_card *card)
1071{
1072 int err;
1073
1074 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1075 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1076 card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1077 true, true, MMC_CMD_RETRIES);
1078 if (err)
1079 pr_warn("%s: switch to high-speed failed, err:%d\n",
1080 mmc_hostname(card->host), err);
1081
1082 return err;
1083}
1084
1085/*
1086 * Activate wide bus and DDR if supported.
1087 */
1088static int mmc_select_hs_ddr(struct mmc_card *card)
1089{
1090 struct mmc_host *host = card->host;
1091 u32 bus_width, ext_csd_bits;
1092 int err = 0;
1093
1094 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1095 return 0;
1096
1097 bus_width = host->ios.bus_width;
1098 if (bus_width == MMC_BUS_WIDTH_1)
1099 return 0;
1100
1101 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1102 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1103
1104 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1105 EXT_CSD_BUS_WIDTH,
1106 ext_csd_bits,
1107 card->ext_csd.generic_cmd6_time,
1108 MMC_TIMING_MMC_DDR52,
1109 true, true, MMC_CMD_RETRIES);
1110 if (err) {
1111 pr_err("%s: switch to bus width %d ddr failed\n",
1112 mmc_hostname(host), 1 << bus_width);
1113 return err;
1114 }
1115
1116 /*
1117 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1118 * signaling.
1119 *
1120 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1121 *
1122 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1123 * in the JEDEC spec for DDR.
1124 *
1125 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1126 * host controller can support this, like some of the SDHCI
1127 * controller which connect to an eMMC device. Some of these
1128 * host controller still needs to use 1.8v vccq for supporting
1129 * DDR mode.
1130 *
1131 * So the sequence will be:
1132 * if (host and device can both support 1.2v IO)
1133 * use 1.2v IO;
1134 * else if (host and device can both support 1.8v IO)
1135 * use 1.8v IO;
1136 * so if host and device can only support 3.3v IO, this is the
1137 * last choice.
1138 *
1139 * WARNING: eMMC rules are NOT the same as SD DDR
1140 */
1141 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
1142 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1143 if (!err)
1144 return 0;
1145 }
1146
1147 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
1148 host->caps & MMC_CAP_1_8V_DDR)
1149 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1150
1151 /* make sure vccq is 3.3v after switching disaster */
1152 if (err)
1153 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1154
1155 return err;
1156}
1157
1158static int mmc_select_hs400(struct mmc_card *card)
1159{
1160 struct mmc_host *host = card->host;
1161 unsigned int max_dtr;
1162 int err = 0;
1163 u8 val;
1164
1165 /*
1166 * HS400 mode requires 8-bit bus width
1167 */
1168 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1169 host->ios.bus_width == MMC_BUS_WIDTH_8))
1170 return 0;
1171
1172 /* Switch card to HS mode */
1173 val = EXT_CSD_TIMING_HS;
1174 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1175 EXT_CSD_HS_TIMING, val,
1176 card->ext_csd.generic_cmd6_time, 0,
1177 false, true, MMC_CMD_RETRIES);
1178 if (err) {
1179 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1180 mmc_hostname(host), err);
1181 return err;
1182 }
1183
1184 /* Prepare host to downgrade to HS timing */
1185 if (host->ops->hs400_downgrade)
1186 host->ops->hs400_downgrade(host);
1187
1188 /* Set host controller to HS timing */
1189 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1190
1191 /* Reduce frequency to HS frequency */
1192 max_dtr = card->ext_csd.hs_max_dtr;
1193 mmc_set_clock(host, max_dtr);
1194
1195 err = mmc_switch_status(card, true);
1196 if (err)
1197 goto out_err;
1198
1199 if (host->ops->hs400_prepare_ddr)
1200 host->ops->hs400_prepare_ddr(host);
1201
1202 /* Switch card to DDR */
1203 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1204 EXT_CSD_BUS_WIDTH,
1205 EXT_CSD_DDR_BUS_WIDTH_8,
1206 card->ext_csd.generic_cmd6_time);
1207 if (err) {
1208 pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1209 mmc_hostname(host), err);
1210 return err;
1211 }
1212
1213 /* Switch card to HS400 */
1214 val = EXT_CSD_TIMING_HS400 |
1215 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1216 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1217 EXT_CSD_HS_TIMING, val,
1218 card->ext_csd.generic_cmd6_time, 0,
1219 false, true, MMC_CMD_RETRIES);
1220 if (err) {
1221 pr_err("%s: switch to hs400 failed, err:%d\n",
1222 mmc_hostname(host), err);
1223 return err;
1224 }
1225
1226 /* Set host controller to HS400 timing and frequency */
1227 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1228 mmc_set_bus_speed(card);
1229
1230 if (host->ops->execute_hs400_tuning) {
1231 mmc_retune_disable(host);
1232 err = host->ops->execute_hs400_tuning(host, card);
1233 mmc_retune_enable(host);
1234 if (err)
1235 goto out_err;
1236 }
1237
1238 if (host->ops->hs400_complete)
1239 host->ops->hs400_complete(host);
1240
1241 err = mmc_switch_status(card, true);
1242 if (err)
1243 goto out_err;
1244
1245 return 0;
1246
1247out_err:
1248 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1249 __func__, err);
1250 return err;
1251}
1252
1253int mmc_hs200_to_hs400(struct mmc_card *card)
1254{
1255 return mmc_select_hs400(card);
1256}
1257
1258int mmc_hs400_to_hs200(struct mmc_card *card)
1259{
1260 struct mmc_host *host = card->host;
1261 unsigned int max_dtr;
1262 int err;
1263 u8 val;
1264
1265 /* Reduce frequency to HS */
1266 max_dtr = card->ext_csd.hs_max_dtr;
1267 mmc_set_clock(host, max_dtr);
1268
1269 /* Switch HS400 to HS DDR */
1270 val = EXT_CSD_TIMING_HS;
1271 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1272 val, card->ext_csd.generic_cmd6_time, 0,
1273 false, true, MMC_CMD_RETRIES);
1274 if (err)
1275 goto out_err;
1276
1277 if (host->ops->hs400_downgrade)
1278 host->ops->hs400_downgrade(host);
1279
1280 mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1281
1282 err = mmc_switch_status(card, true);
1283 if (err)
1284 goto out_err;
1285
1286 /* Switch HS DDR to HS */
1287 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1288 EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1289 0, false, true, MMC_CMD_RETRIES);
1290 if (err)
1291 goto out_err;
1292
1293 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1294
1295 err = mmc_switch_status(card, true);
1296 if (err)
1297 goto out_err;
1298
1299 /* Switch HS to HS200 */
1300 val = EXT_CSD_TIMING_HS200 |
1301 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1302 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1303 val, card->ext_csd.generic_cmd6_time, 0,
1304 false, true, MMC_CMD_RETRIES);
1305 if (err)
1306 goto out_err;
1307
1308 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1309
1310 /*
1311 * For HS200, CRC errors are not a reliable way to know the switch
1312 * failed. If there really is a problem, we would expect tuning will
1313 * fail and the result ends up the same.
1314 */
1315 err = mmc_switch_status(card, false);
1316 if (err)
1317 goto out_err;
1318
1319 mmc_set_bus_speed(card);
1320
1321 /* Prepare tuning for HS400 mode. */
1322 if (host->ops->prepare_hs400_tuning)
1323 host->ops->prepare_hs400_tuning(host, &host->ios);
1324
1325 return 0;
1326
1327out_err:
1328 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1329 __func__, err);
1330 return err;
1331}
1332
1333static void mmc_select_driver_type(struct mmc_card *card)
1334{
1335 int card_drv_type, drive_strength, drv_type = 0;
1336 int fixed_drv_type = card->host->fixed_drv_type;
1337
1338 card_drv_type = card->ext_csd.raw_driver_strength |
1339 mmc_driver_type_mask(0);
1340
1341 if (fixed_drv_type >= 0)
1342 drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type)
1343 ? fixed_drv_type : 0;
1344 else
1345 drive_strength = mmc_select_drive_strength(card,
1346 card->ext_csd.hs200_max_dtr,
1347 card_drv_type, &drv_type);
1348
1349 card->drive_strength = drive_strength;
1350
1351 if (drv_type)
1352 mmc_set_driver_type(card->host, drv_type);
1353}
1354
1355static int mmc_select_hs400es(struct mmc_card *card)
1356{
1357 struct mmc_host *host = card->host;
1358 int err = -EINVAL;
1359 u8 val;
1360
1361 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1362 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1363
1364 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1365 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1366
1367 /* If fails try again during next card power cycle */
1368 if (err)
1369 goto out_err;
1370
1371 err = mmc_select_bus_width(card);
1372 if (err != MMC_BUS_WIDTH_8) {
1373 pr_err("%s: switch to 8bit bus width failed, err:%d\n",
1374 mmc_hostname(host), err);
1375 err = err < 0 ? err : -ENOTSUPP;
1376 goto out_err;
1377 }
1378
1379 /* Switch card to HS mode */
1380 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1381 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1382 card->ext_csd.generic_cmd6_time, 0,
1383 false, true, MMC_CMD_RETRIES);
1384 if (err) {
1385 pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1386 mmc_hostname(host), err);
1387 goto out_err;
1388 }
1389
1390 /*
1391 * Bump to HS timing and frequency. Some cards don't handle
1392 * SEND_STATUS reliably at the initial frequency.
1393 */
1394 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1395 mmc_set_bus_speed(card);
1396
1397 err = mmc_switch_status(card, true);
1398 if (err)
1399 goto out_err;
1400
1401 /* Switch card to DDR with strobe bit */
1402 val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1403 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1404 EXT_CSD_BUS_WIDTH,
1405 val,
1406 card->ext_csd.generic_cmd6_time);
1407 if (err) {
1408 pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1409 mmc_hostname(host), err);
1410 goto out_err;
1411 }
1412
1413 mmc_select_driver_type(card);
1414
1415 /* Switch card to HS400 */
1416 val = EXT_CSD_TIMING_HS400 |
1417 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1418 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1419 EXT_CSD_HS_TIMING, val,
1420 card->ext_csd.generic_cmd6_time, 0,
1421 false, true, MMC_CMD_RETRIES);
1422 if (err) {
1423 pr_err("%s: switch to hs400es failed, err:%d\n",
1424 mmc_hostname(host), err);
1425 goto out_err;
1426 }
1427
1428 /* Set host controller to HS400 timing and frequency */
1429 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1430
1431 /* Controller enable enhanced strobe function */
1432 host->ios.enhanced_strobe = true;
1433 if (host->ops->hs400_enhanced_strobe)
1434 host->ops->hs400_enhanced_strobe(host, &host->ios);
1435
1436 err = mmc_switch_status(card, true);
1437 if (err)
1438 goto out_err;
1439
1440 return 0;
1441
1442out_err:
1443 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1444 __func__, err);
1445 return err;
1446}
1447
1448/*
1449 * For device supporting HS200 mode, the following sequence
1450 * should be done before executing the tuning process.
1451 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1452 * 2. switch to HS200 mode
1453 * 3. set the clock to > 52Mhz and <=200MHz
1454 */
1455static int mmc_select_hs200(struct mmc_card *card)
1456{
1457 struct mmc_host *host = card->host;
1458 unsigned int old_timing, old_signal_voltage, old_clock;
1459 int err = -EINVAL;
1460 u8 val;
1461
1462 old_signal_voltage = host->ios.signal_voltage;
1463 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1464 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1465
1466 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1467 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1468
1469 /* If fails try again during next card power cycle */
1470 if (err)
1471 return err;
1472
1473 mmc_select_driver_type(card);
1474
1475 /*
1476 * Set the bus width(4 or 8) with host's support and
1477 * switch to HS200 mode if bus width is set successfully.
1478 */
1479 err = mmc_select_bus_width(card);
1480 if (err > 0) {
1481 val = EXT_CSD_TIMING_HS200 |
1482 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1483 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1484 EXT_CSD_HS_TIMING, val,
1485 card->ext_csd.generic_cmd6_time, 0,
1486 false, true, MMC_CMD_RETRIES);
1487 if (err)
1488 goto err;
1489
1490 /*
1491 * Bump to HS timing and frequency. Some cards don't handle
1492 * SEND_STATUS reliably at the initial frequency.
1493 * NB: We can't move to full (HS200) speeds until after we've
1494 * successfully switched over.
1495 */
1496 old_timing = host->ios.timing;
1497 old_clock = host->ios.clock;
1498 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1499 mmc_set_clock(card->host, card->ext_csd.hs_max_dtr);
1500
1501 /*
1502 * For HS200, CRC errors are not a reliable way to know the
1503 * switch failed. If there really is a problem, we would expect
1504 * tuning will fail and the result ends up the same.
1505 */
1506 err = mmc_switch_status(card, false);
1507
1508 /*
1509 * mmc_select_timing() assumes timing has not changed if
1510 * it is a switch error.
1511 */
1512 if (err == -EBADMSG) {
1513 mmc_set_clock(host, old_clock);
1514 mmc_set_timing(host, old_timing);
1515 }
1516 }
1517err:
1518 if (err) {
1519 /* fall back to the old signal voltage, if fails report error */
1520 if (mmc_set_signal_voltage(host, old_signal_voltage))
1521 err = -EIO;
1522
1523 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1524 __func__, err);
1525 }
1526 return err;
1527}
1528
1529/*
1530 * Activate High Speed, HS200 or HS400ES mode if supported.
1531 */
1532static int mmc_select_timing(struct mmc_card *card)
1533{
1534 int err = 0;
1535
1536 if (!mmc_can_ext_csd(card))
1537 goto bus_speed;
1538
1539 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES) {
1540 err = mmc_select_hs400es(card);
1541 goto out;
1542 }
1543
1544 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200) {
1545 err = mmc_select_hs200(card);
1546 if (err == -EBADMSG)
1547 card->mmc_avail_type &= ~EXT_CSD_CARD_TYPE_HS200;
1548 else
1549 goto out;
1550 }
1551
1552 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1553 err = mmc_select_hs(card);
1554
1555out:
1556 if (err && err != -EBADMSG)
1557 return err;
1558
1559bus_speed:
1560 /*
1561 * Set the bus speed to the selected bus timing.
1562 * If timing is not selected, backward compatible is the default.
1563 */
1564 mmc_set_bus_speed(card);
1565 return 0;
1566}
1567
1568/*
1569 * Execute tuning sequence to seek the proper bus operating
1570 * conditions for HS200 and HS400, which sends CMD21 to the device.
1571 */
1572static int mmc_hs200_tuning(struct mmc_card *card)
1573{
1574 struct mmc_host *host = card->host;
1575
1576 /*
1577 * Timing should be adjusted to the HS400 target
1578 * operation frequency for tuning process
1579 */
1580 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1581 host->ios.bus_width == MMC_BUS_WIDTH_8)
1582 if (host->ops->prepare_hs400_tuning)
1583 host->ops->prepare_hs400_tuning(host, &host->ios);
1584
1585 return mmc_execute_tuning(card);
1586}
1587
1588/*
1589 * Handle the detection and initialisation of a card.
1590 *
1591 * In the case of a resume, "oldcard" will contain the card
1592 * we're trying to reinitialise.
1593 */
1594static int mmc_init_card(struct mmc_host *host, u32 ocr,
1595 struct mmc_card *oldcard)
1596{
1597 struct mmc_card *card;
1598 int err;
1599 u32 cid[4];
1600 u32 rocr;
1601
1602 WARN_ON(!host->claimed);
1603
1604 /* Set correct bus mode for MMC before attempting init */
1605 if (!mmc_host_is_spi(host))
1606 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1607
1608 /*
1609 * Since we're changing the OCR value, we seem to
1610 * need to tell some cards to go back to the idle
1611 * state. We wait 1ms to give cards time to
1612 * respond.
1613 * mmc_go_idle is needed for eMMC that are asleep
1614 */
1615 mmc_go_idle(host);
1616
1617 /* The extra bit indicates that we support high capacity */
1618 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1619 if (err)
1620 goto err;
1621
1622 /*
1623 * For SPI, enable CRC as appropriate.
1624 */
1625 if (mmc_host_is_spi(host)) {
1626 err = mmc_spi_set_crc(host, use_spi_crc);
1627 if (err)
1628 goto err;
1629 }
1630
1631 /*
1632 * Fetch CID from card.
1633 */
1634 err = mmc_send_cid(host, cid);
1635 if (err)
1636 goto err;
1637
1638 if (oldcard) {
1639 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1640 pr_debug("%s: Perhaps the card was replaced\n",
1641 mmc_hostname(host));
1642 err = -ENOENT;
1643 goto err;
1644 }
1645
1646 card = oldcard;
1647 } else {
1648 /*
1649 * Allocate card structure.
1650 */
1651 card = mmc_alloc_card(host, &mmc_type);
1652 if (IS_ERR(card)) {
1653 err = PTR_ERR(card);
1654 goto err;
1655 }
1656
1657 card->ocr = ocr;
1658 card->type = MMC_TYPE_MMC;
1659 card->rca = 1;
1660 memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1661 }
1662
1663 /*
1664 * Call the optional HC's init_card function to handle quirks.
1665 */
1666 if (host->ops->init_card)
1667 host->ops->init_card(host, card);
1668
1669 /*
1670 * For native busses: set card RCA and quit open drain mode.
1671 */
1672 if (!mmc_host_is_spi(host)) {
1673 err = mmc_set_relative_addr(card);
1674 if (err)
1675 goto free_card;
1676
1677 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1678 }
1679
1680 if (!oldcard) {
1681 /*
1682 * Fetch CSD from card.
1683 */
1684 err = mmc_send_csd(card, card->raw_csd);
1685 if (err)
1686 goto free_card;
1687
1688 err = mmc_decode_csd(card);
1689 if (err)
1690 goto free_card;
1691 err = mmc_decode_cid(card);
1692 if (err)
1693 goto free_card;
1694 }
1695
1696 /*
1697 * handling only for cards supporting DSR and hosts requesting
1698 * DSR configuration
1699 */
1700 if (card->csd.dsr_imp && host->dsr_req)
1701 mmc_set_dsr(host);
1702
1703 /*
1704 * Select card, as all following commands rely on that.
1705 */
1706 if (!mmc_host_is_spi(host)) {
1707 err = mmc_select_card(card);
1708 if (err)
1709 goto free_card;
1710 }
1711
1712 if (!oldcard) {
1713 /* Read extended CSD. */
1714 err = mmc_read_ext_csd(card);
1715 if (err)
1716 goto free_card;
1717
1718 /*
1719 * If doing byte addressing, check if required to do sector
1720 * addressing. Handle the case of <2GB cards needing sector
1721 * addressing. See section 8.1 JEDEC Standard JED84-A441;
1722 * ocr register has bit 30 set for sector addressing.
1723 */
1724 if (rocr & BIT(30))
1725 mmc_card_set_blockaddr(card);
1726
1727 /* Erase size depends on CSD and Extended CSD */
1728 mmc_set_erase_size(card);
1729 }
1730
1731 /*
1732 * Reselect the card type since host caps could have been changed when
1733 * debugging even if the card is not new.
1734 */
1735 mmc_select_card_type(card);
1736
1737 /* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
1738 if (card->ext_csd.rev >= 3) {
1739 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1740 EXT_CSD_ERASE_GROUP_DEF, 1,
1741 card->ext_csd.generic_cmd6_time);
1742
1743 if (err && err != -EBADMSG)
1744 goto free_card;
1745
1746 if (err) {
1747 /*
1748 * Just disable enhanced area off & sz
1749 * will try to enable ERASE_GROUP_DEF
1750 * during next time reinit
1751 */
1752 card->ext_csd.enhanced_area_offset = -EINVAL;
1753 card->ext_csd.enhanced_area_size = -EINVAL;
1754 } else {
1755 card->ext_csd.erase_group_def = 1;
1756 /*
1757 * enable ERASE_GRP_DEF successfully.
1758 * This will affect the erase size, so
1759 * here need to reset erase size
1760 */
1761 mmc_set_erase_size(card);
1762 }
1763 }
1764 mmc_set_wp_grp_size(card);
1765 /*
1766 * Ensure eMMC user default partition is enabled
1767 */
1768 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1769 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1770 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1771 card->ext_csd.part_config,
1772 card->ext_csd.part_time);
1773 if (err && err != -EBADMSG)
1774 goto free_card;
1775 }
1776
1777 /*
1778 * Enable power_off_notification byte in the ext_csd register
1779 */
1780 if (card->ext_csd.rev >= 6) {
1781 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1782 EXT_CSD_POWER_OFF_NOTIFICATION,
1783 EXT_CSD_POWER_ON,
1784 card->ext_csd.generic_cmd6_time);
1785 if (err && err != -EBADMSG)
1786 goto free_card;
1787
1788 /*
1789 * The err can be -EBADMSG or 0,
1790 * so check for success and update the flag
1791 */
1792 if (!err)
1793 card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1794 }
1795
1796 /* set erase_arg */
1797 if (mmc_can_discard(card))
1798 card->erase_arg = MMC_DISCARD_ARG;
1799 else if (mmc_can_trim(card))
1800 card->erase_arg = MMC_TRIM_ARG;
1801 else
1802 card->erase_arg = MMC_ERASE_ARG;
1803
1804 /*
1805 * Select timing interface
1806 */
1807 err = mmc_select_timing(card);
1808 if (err)
1809 goto free_card;
1810
1811 if (mmc_card_hs200(card)) {
1812 host->doing_init_tune = 1;
1813
1814 err = mmc_hs200_tuning(card);
1815 if (!err)
1816 err = mmc_select_hs400(card);
1817
1818 host->doing_init_tune = 0;
1819
1820 if (err)
1821 goto free_card;
1822 } else if (mmc_card_hs400es(card)) {
1823 if (host->ops->execute_hs400_tuning) {
1824 err = host->ops->execute_hs400_tuning(host, card);
1825 if (err)
1826 goto free_card;
1827 }
1828 } else {
1829 /* Select the desired bus width optionally */
1830 err = mmc_select_bus_width(card);
1831 if (err > 0 && mmc_card_hs(card)) {
1832 err = mmc_select_hs_ddr(card);
1833 if (err)
1834 goto free_card;
1835 }
1836 }
1837
1838 /*
1839 * Choose the power class with selected bus interface
1840 */
1841 mmc_select_powerclass(card);
1842
1843 /*
1844 * Enable HPI feature (if supported)
1845 */
1846 if (card->ext_csd.hpi) {
1847 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1848 EXT_CSD_HPI_MGMT, 1,
1849 card->ext_csd.generic_cmd6_time);
1850 if (err && err != -EBADMSG)
1851 goto free_card;
1852 if (err) {
1853 pr_warn("%s: Enabling HPI failed\n",
1854 mmc_hostname(card->host));
1855 card->ext_csd.hpi_en = 0;
1856 } else {
1857 card->ext_csd.hpi_en = 1;
1858 }
1859 }
1860
1861 /*
1862 * If cache size is higher than 0, this indicates the existence of cache
1863 * and it can be turned on. Note that some eMMCs from Micron has been
1864 * reported to need ~800 ms timeout, while enabling the cache after
1865 * sudden power failure tests. Let's extend the timeout to a minimum of
1866 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards.
1867 */
1868 if (card->ext_csd.cache_size > 0) {
1869 unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS;
1870
1871 timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms);
1872 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1873 EXT_CSD_CACHE_CTRL, 1, timeout_ms);
1874 if (err && err != -EBADMSG)
1875 goto free_card;
1876
1877 /*
1878 * Only if no error, cache is turned on successfully.
1879 */
1880 if (err) {
1881 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1882 mmc_hostname(card->host), err);
1883 card->ext_csd.cache_ctrl = 0;
1884 } else {
1885 card->ext_csd.cache_ctrl = 1;
1886 }
1887 }
1888
1889 /*
1890 * Enable Command Queue if supported. Note that Packed Commands cannot
1891 * be used with Command Queue.
1892 */
1893 card->ext_csd.cmdq_en = false;
1894 if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) {
1895 err = mmc_cmdq_enable(card);
1896 if (err && err != -EBADMSG)
1897 goto free_card;
1898 if (err) {
1899 pr_warn("%s: Enabling CMDQ failed\n",
1900 mmc_hostname(card->host));
1901 card->ext_csd.cmdq_support = false;
1902 card->ext_csd.cmdq_depth = 0;
1903 }
1904 }
1905 /*
1906 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1907 * disabled for a time, so a flag is needed to indicate to re-enable the
1908 * Command Queue.
1909 */
1910 card->reenable_cmdq = card->ext_csd.cmdq_en;
1911
1912 if (host->cqe_ops && !host->cqe_enabled) {
1913 err = host->cqe_ops->cqe_enable(host, card);
1914 if (!err) {
1915 host->cqe_enabled = true;
1916
1917 if (card->ext_csd.cmdq_en) {
1918 pr_info("%s: Command Queue Engine enabled\n",
1919 mmc_hostname(host));
1920 } else {
1921 host->hsq_enabled = true;
1922 pr_info("%s: Host Software Queue enabled\n",
1923 mmc_hostname(host));
1924 }
1925 }
1926 }
1927
1928 if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1929 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1930 pr_err("%s: Host failed to negotiate down from 3.3V\n",
1931 mmc_hostname(host));
1932 err = -EINVAL;
1933 goto free_card;
1934 }
1935
1936 if (!oldcard)
1937 host->card = card;
1938
1939 return 0;
1940
1941free_card:
1942 if (!oldcard)
1943 mmc_remove_card(card);
1944err:
1945 return err;
1946}
1947
1948static int mmc_can_sleep(struct mmc_card *card)
1949{
1950 return card->ext_csd.rev >= 3;
1951}
1952
1953static int mmc_sleep_busy_cb(void *cb_data, bool *busy)
1954{
1955 struct mmc_host *host = cb_data;
1956
1957 *busy = host->ops->card_busy(host);
1958 return 0;
1959}
1960
1961static int mmc_sleep(struct mmc_host *host)
1962{
1963 struct mmc_command cmd = {};
1964 struct mmc_card *card = host->card;
1965 unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1966 bool use_r1b_resp;
1967 int err;
1968
1969 /* Re-tuning can't be done once the card is deselected */
1970 mmc_retune_hold(host);
1971
1972 err = mmc_deselect_cards(host);
1973 if (err)
1974 goto out_release;
1975
1976 cmd.opcode = MMC_SLEEP_AWAKE;
1977 cmd.arg = card->rca << 16;
1978 cmd.arg |= 1 << 15;
1979 use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd, timeout_ms);
1980
1981 err = mmc_wait_for_cmd(host, &cmd, 0);
1982 if (err)
1983 goto out_release;
1984
1985 /*
1986 * If the host does not wait while the card signals busy, then we can
1987 * try to poll, but only if the host supports HW polling, as the
1988 * SEND_STATUS cmd is not allowed. If we can't poll, then we simply need
1989 * to wait the sleep/awake timeout.
1990 */
1991 if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp)
1992 goto out_release;
1993
1994 if (!host->ops->card_busy) {
1995 mmc_delay(timeout_ms);
1996 goto out_release;
1997 }
1998
1999 err = __mmc_poll_for_busy(host, 0, timeout_ms, &mmc_sleep_busy_cb, host);
2000
2001out_release:
2002 mmc_retune_release(host);
2003 return err;
2004}
2005
2006static int mmc_can_poweroff_notify(const struct mmc_card *card)
2007{
2008 return card &&
2009 mmc_card_mmc(card) &&
2010 (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
2011}
2012
2013static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
2014{
2015 unsigned int timeout = card->ext_csd.generic_cmd6_time;
2016 int err;
2017
2018 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
2019 if (notify_type == EXT_CSD_POWER_OFF_LONG)
2020 timeout = card->ext_csd.power_off_longtime;
2021
2022 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2023 EXT_CSD_POWER_OFF_NOTIFICATION,
2024 notify_type, timeout, 0, false, false, MMC_CMD_RETRIES);
2025 if (err)
2026 pr_err("%s: Power Off Notification timed out, %u\n",
2027 mmc_hostname(card->host), timeout);
2028
2029 /* Disable the power off notification after the switch operation. */
2030 card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
2031
2032 return err;
2033}
2034
2035/*
2036 * Host is being removed. Free up the current card.
2037 */
2038static void mmc_remove(struct mmc_host *host)
2039{
2040 mmc_remove_card(host->card);
2041 host->card = NULL;
2042}
2043
2044/*
2045 * Card detection - card is alive.
2046 */
2047static int mmc_alive(struct mmc_host *host)
2048{
2049 return mmc_send_status(host->card, NULL);
2050}
2051
2052/*
2053 * Card detection callback from host.
2054 */
2055static void mmc_detect(struct mmc_host *host)
2056{
2057 int err;
2058
2059 mmc_get_card(host->card, NULL);
2060
2061 /*
2062 * Just check if our card has been removed.
2063 */
2064 err = _mmc_detect_card_removed(host);
2065
2066 mmc_put_card(host->card, NULL);
2067
2068 if (err) {
2069 mmc_remove(host);
2070
2071 mmc_claim_host(host);
2072 mmc_detach_bus(host);
2073 mmc_power_off(host);
2074 mmc_release_host(host);
2075 }
2076}
2077
2078static bool _mmc_cache_enabled(struct mmc_host *host)
2079{
2080 return host->card->ext_csd.cache_size > 0 &&
2081 host->card->ext_csd.cache_ctrl & 1;
2082}
2083
2084/*
2085 * Flush the internal cache of the eMMC to non-volatile storage.
2086 */
2087static int _mmc_flush_cache(struct mmc_host *host)
2088{
2089 int err = 0;
2090
2091 if (mmc_card_broken_cache_flush(host->card) && !host->card->written_flag)
2092 return 0;
2093
2094 if (_mmc_cache_enabled(host)) {
2095 err = mmc_switch(host->card, EXT_CSD_CMD_SET_NORMAL,
2096 EXT_CSD_FLUSH_CACHE, 1,
2097 CACHE_FLUSH_TIMEOUT_MS);
2098 if (err)
2099 pr_err("%s: cache flush error %d\n", mmc_hostname(host), err);
2100 else
2101 host->card->written_flag = false;
2102 }
2103
2104 return err;
2105}
2106
2107static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
2108{
2109 int err = 0;
2110 unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
2111 EXT_CSD_POWER_OFF_LONG;
2112
2113 mmc_claim_host(host);
2114
2115 if (mmc_card_suspended(host->card))
2116 goto out;
2117
2118 err = _mmc_flush_cache(host);
2119 if (err)
2120 goto out;
2121
2122 if (mmc_can_poweroff_notify(host->card) &&
2123 ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend ||
2124 (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE_IN_SUSPEND)))
2125 err = mmc_poweroff_notify(host->card, notify_type);
2126 else if (mmc_can_sleep(host->card))
2127 err = mmc_sleep(host);
2128 else if (!mmc_host_is_spi(host))
2129 err = mmc_deselect_cards(host);
2130
2131 if (!err) {
2132 mmc_power_off(host);
2133 mmc_card_set_suspended(host->card);
2134 }
2135out:
2136 mmc_release_host(host);
2137 return err;
2138}
2139
2140/*
2141 * Suspend callback
2142 */
2143static int mmc_suspend(struct mmc_host *host)
2144{
2145 int err;
2146
2147 err = _mmc_suspend(host, true);
2148 if (!err) {
2149 pm_runtime_disable(&host->card->dev);
2150 pm_runtime_set_suspended(&host->card->dev);
2151 }
2152
2153 return err;
2154}
2155
2156/*
2157 * This function tries to determine if the same card is still present
2158 * and, if so, restore all state to it.
2159 */
2160static int _mmc_resume(struct mmc_host *host)
2161{
2162 int err = 0;
2163
2164 mmc_claim_host(host);
2165
2166 if (!mmc_card_suspended(host->card))
2167 goto out;
2168
2169 mmc_power_up(host, host->card->ocr);
2170 err = mmc_init_card(host, host->card->ocr, host->card);
2171 mmc_card_clr_suspended(host->card);
2172
2173out:
2174 mmc_release_host(host);
2175 return err;
2176}
2177
2178/*
2179 * Shutdown callback
2180 */
2181static int mmc_shutdown(struct mmc_host *host)
2182{
2183 int err = 0;
2184
2185 /*
2186 * In a specific case for poweroff notify, we need to resume the card
2187 * before we can shutdown it properly.
2188 */
2189 if (mmc_can_poweroff_notify(host->card) &&
2190 !(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
2191 err = _mmc_resume(host);
2192
2193 if (!err)
2194 err = _mmc_suspend(host, false);
2195
2196 return err;
2197}
2198
2199/*
2200 * Callback for resume.
2201 */
2202static int mmc_resume(struct mmc_host *host)
2203{
2204 pm_runtime_enable(&host->card->dev);
2205 return 0;
2206}
2207
2208/*
2209 * Callback for runtime_suspend.
2210 */
2211static int mmc_runtime_suspend(struct mmc_host *host)
2212{
2213 int err;
2214
2215 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2216 return 0;
2217
2218 err = _mmc_suspend(host, true);
2219 if (err)
2220 pr_err("%s: error %d doing aggressive suspend\n",
2221 mmc_hostname(host), err);
2222
2223 return err;
2224}
2225
2226/*
2227 * Callback for runtime_resume.
2228 */
2229static int mmc_runtime_resume(struct mmc_host *host)
2230{
2231 int err;
2232
2233 err = _mmc_resume(host);
2234 if (err && err != -ENOMEDIUM)
2235 pr_err("%s: error %d doing runtime resume\n",
2236 mmc_hostname(host), err);
2237
2238 return 0;
2239}
2240
2241static int mmc_can_reset(struct mmc_card *card)
2242{
2243 u8 rst_n_function;
2244
2245 rst_n_function = card->ext_csd.rst_n_function;
2246 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2247 return 0;
2248 return 1;
2249}
2250
2251static int _mmc_hw_reset(struct mmc_host *host)
2252{
2253 struct mmc_card *card = host->card;
2254
2255 /*
2256 * In the case of recovery, we can't expect flushing the cache to work
2257 * always, but we have a go and ignore errors.
2258 */
2259 _mmc_flush_cache(host);
2260
2261 if ((host->caps & MMC_CAP_HW_RESET) && host->ops->card_hw_reset &&
2262 mmc_can_reset(card)) {
2263 /* If the card accept RST_n signal, send it. */
2264 mmc_set_clock(host, host->f_init);
2265 host->ops->card_hw_reset(host);
2266 /* Set initial state and call mmc_set_ios */
2267 mmc_set_initial_state(host);
2268 } else {
2269 /* Do a brute force power cycle */
2270 mmc_power_cycle(host, card->ocr);
2271 mmc_pwrseq_reset(host);
2272 }
2273 return mmc_init_card(host, card->ocr, card);
2274}
2275
2276static const struct mmc_bus_ops mmc_ops = {
2277 .remove = mmc_remove,
2278 .detect = mmc_detect,
2279 .suspend = mmc_suspend,
2280 .resume = mmc_resume,
2281 .runtime_suspend = mmc_runtime_suspend,
2282 .runtime_resume = mmc_runtime_resume,
2283 .alive = mmc_alive,
2284 .shutdown = mmc_shutdown,
2285 .hw_reset = _mmc_hw_reset,
2286 .cache_enabled = _mmc_cache_enabled,
2287 .flush_cache = _mmc_flush_cache,
2288};
2289
2290/*
2291 * Starting point for MMC card init.
2292 */
2293int mmc_attach_mmc(struct mmc_host *host)
2294{
2295 int err;
2296 u32 ocr, rocr;
2297
2298 WARN_ON(!host->claimed);
2299
2300 /* Set correct bus mode for MMC before attempting attach */
2301 if (!mmc_host_is_spi(host))
2302 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2303
2304 err = mmc_send_op_cond(host, 0, &ocr);
2305 if (err)
2306 return err;
2307
2308 mmc_attach_bus(host, &mmc_ops);
2309 if (host->ocr_avail_mmc)
2310 host->ocr_avail = host->ocr_avail_mmc;
2311
2312 /*
2313 * We need to get OCR a different way for SPI.
2314 */
2315 if (mmc_host_is_spi(host)) {
2316 err = mmc_spi_read_ocr(host, 1, &ocr);
2317 if (err)
2318 goto err;
2319 }
2320
2321 rocr = mmc_select_voltage(host, ocr);
2322
2323 /*
2324 * Can we support the voltage of the card?
2325 */
2326 if (!rocr) {
2327 err = -EINVAL;
2328 goto err;
2329 }
2330
2331 /*
2332 * Detect and init the card.
2333 */
2334 err = mmc_init_card(host, rocr, NULL);
2335 if (err)
2336 goto err;
2337
2338 mmc_release_host(host);
2339 err = mmc_add_card(host->card);
2340 if (err)
2341 goto remove_card;
2342
2343 mmc_claim_host(host);
2344 return 0;
2345
2346remove_card:
2347 mmc_remove_card(host->card);
2348 mmc_claim_host(host);
2349 host->card = NULL;
2350err:
2351 mmc_detach_bus(host);
2352
2353 pr_err("%s: error %d whilst initialising MMC card\n",
2354 mmc_hostname(host), err);
2355
2356 return err;
2357}
1/*
2 * linux/drivers/mmc/core/mmc.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
6 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/err.h>
14#include <linux/of.h>
15#include <linux/slab.h>
16#include <linux/stat.h>
17#include <linux/pm_runtime.h>
18
19#include <linux/mmc/host.h>
20#include <linux/mmc/card.h>
21#include <linux/mmc/mmc.h>
22
23#include "core.h"
24#include "card.h"
25#include "host.h"
26#include "bus.h"
27#include "mmc_ops.h"
28#include "quirks.h"
29#include "sd_ops.h"
30#include "pwrseq.h"
31
32#define DEFAULT_CMD6_TIMEOUT_MS 500
33
34static const unsigned int tran_exp[] = {
35 10000, 100000, 1000000, 10000000,
36 0, 0, 0, 0
37};
38
39static const unsigned char tran_mant[] = {
40 0, 10, 12, 13, 15, 20, 25, 30,
41 35, 40, 45, 50, 55, 60, 70, 80,
42};
43
44static const unsigned int taac_exp[] = {
45 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
46};
47
48static const unsigned int taac_mant[] = {
49 0, 10, 12, 13, 15, 20, 25, 30,
50 35, 40, 45, 50, 55, 60, 70, 80,
51};
52
53#define UNSTUFF_BITS(resp,start,size) \
54 ({ \
55 const int __size = size; \
56 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \
57 const int __off = 3 - ((start) / 32); \
58 const int __shft = (start) & 31; \
59 u32 __res; \
60 \
61 __res = resp[__off] >> __shft; \
62 if (__size + __shft > 32) \
63 __res |= resp[__off-1] << ((32 - __shft) % 32); \
64 __res & __mask; \
65 })
66
67/*
68 * Given the decoded CSD structure, decode the raw CID to our CID structure.
69 */
70static int mmc_decode_cid(struct mmc_card *card)
71{
72 u32 *resp = card->raw_cid;
73
74 /*
75 * The selection of the format here is based upon published
76 * specs from sandisk and from what people have reported.
77 */
78 switch (card->csd.mmca_vsn) {
79 case 0: /* MMC v1.0 - v1.2 */
80 case 1: /* MMC v1.4 */
81 card->cid.manfid = UNSTUFF_BITS(resp, 104, 24);
82 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
83 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
84 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
85 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
86 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
87 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
88 card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8);
89 card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4);
90 card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4);
91 card->cid.serial = UNSTUFF_BITS(resp, 16, 24);
92 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
93 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
94 break;
95
96 case 2: /* MMC v2.0 - v2.2 */
97 case 3: /* MMC v3.1 - v3.3 */
98 case 4: /* MMC v4 */
99 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8);
100 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16);
101 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
102 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
103 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
104 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
105 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
106 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
107 card->cid.prv = UNSTUFF_BITS(resp, 48, 8);
108 card->cid.serial = UNSTUFF_BITS(resp, 16, 32);
109 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
110 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
111 break;
112
113 default:
114 pr_err("%s: card has unknown MMCA version %d\n",
115 mmc_hostname(card->host), card->csd.mmca_vsn);
116 return -EINVAL;
117 }
118
119 return 0;
120}
121
122static void mmc_set_erase_size(struct mmc_card *card)
123{
124 if (card->ext_csd.erase_group_def & 1)
125 card->erase_size = card->ext_csd.hc_erase_size;
126 else
127 card->erase_size = card->csd.erase_size;
128
129 mmc_init_erase(card);
130}
131
132/*
133 * Given a 128-bit response, decode to our card CSD structure.
134 */
135static int mmc_decode_csd(struct mmc_card *card)
136{
137 struct mmc_csd *csd = &card->csd;
138 unsigned int e, m, a, b;
139 u32 *resp = card->raw_csd;
140
141 /*
142 * We only understand CSD structure v1.1 and v1.2.
143 * v1.2 has extra information in bits 15, 11 and 10.
144 * We also support eMMC v4.4 & v4.41.
145 */
146 csd->structure = UNSTUFF_BITS(resp, 126, 2);
147 if (csd->structure == 0) {
148 pr_err("%s: unrecognised CSD structure version %d\n",
149 mmc_hostname(card->host), csd->structure);
150 return -EINVAL;
151 }
152
153 csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4);
154 m = UNSTUFF_BITS(resp, 115, 4);
155 e = UNSTUFF_BITS(resp, 112, 3);
156 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10;
157 csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100;
158
159 m = UNSTUFF_BITS(resp, 99, 4);
160 e = UNSTUFF_BITS(resp, 96, 3);
161 csd->max_dtr = tran_exp[e] * tran_mant[m];
162 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
163
164 e = UNSTUFF_BITS(resp, 47, 3);
165 m = UNSTUFF_BITS(resp, 62, 12);
166 csd->capacity = (1 + m) << (e + 2);
167
168 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
169 csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
170 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
171 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
172 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
173 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
174 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
175 csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
176
177 if (csd->write_blkbits >= 9) {
178 a = UNSTUFF_BITS(resp, 42, 5);
179 b = UNSTUFF_BITS(resp, 37, 5);
180 csd->erase_size = (a + 1) * (b + 1);
181 csd->erase_size <<= csd->write_blkbits - 9;
182 }
183
184 return 0;
185}
186
187static void mmc_select_card_type(struct mmc_card *card)
188{
189 struct mmc_host *host = card->host;
190 u8 card_type = card->ext_csd.raw_card_type;
191 u32 caps = host->caps, caps2 = host->caps2;
192 unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
193 unsigned int avail_type = 0;
194
195 if (caps & MMC_CAP_MMC_HIGHSPEED &&
196 card_type & EXT_CSD_CARD_TYPE_HS_26) {
197 hs_max_dtr = MMC_HIGH_26_MAX_DTR;
198 avail_type |= EXT_CSD_CARD_TYPE_HS_26;
199 }
200
201 if (caps & MMC_CAP_MMC_HIGHSPEED &&
202 card_type & EXT_CSD_CARD_TYPE_HS_52) {
203 hs_max_dtr = MMC_HIGH_52_MAX_DTR;
204 avail_type |= EXT_CSD_CARD_TYPE_HS_52;
205 }
206
207 if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
208 card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
209 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
210 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
211 }
212
213 if (caps & MMC_CAP_1_2V_DDR &&
214 card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
215 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
216 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
217 }
218
219 if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
220 card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
221 hs200_max_dtr = MMC_HS200_MAX_DTR;
222 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
223 }
224
225 if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
226 card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
227 hs200_max_dtr = MMC_HS200_MAX_DTR;
228 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
229 }
230
231 if (caps2 & MMC_CAP2_HS400_1_8V &&
232 card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
233 hs200_max_dtr = MMC_HS200_MAX_DTR;
234 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
235 }
236
237 if (caps2 & MMC_CAP2_HS400_1_2V &&
238 card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
239 hs200_max_dtr = MMC_HS200_MAX_DTR;
240 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
241 }
242
243 if ((caps2 & MMC_CAP2_HS400_ES) &&
244 card->ext_csd.strobe_support &&
245 (avail_type & EXT_CSD_CARD_TYPE_HS400))
246 avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
247
248 card->ext_csd.hs_max_dtr = hs_max_dtr;
249 card->ext_csd.hs200_max_dtr = hs200_max_dtr;
250 card->mmc_avail_type = avail_type;
251}
252
253static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
254{
255 u8 hc_erase_grp_sz, hc_wp_grp_sz;
256
257 /*
258 * Disable these attributes by default
259 */
260 card->ext_csd.enhanced_area_offset = -EINVAL;
261 card->ext_csd.enhanced_area_size = -EINVAL;
262
263 /*
264 * Enhanced area feature support -- check whether the eMMC
265 * card has the Enhanced area enabled. If so, export enhanced
266 * area offset and size to user by adding sysfs interface.
267 */
268 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
269 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
270 if (card->ext_csd.partition_setting_completed) {
271 hc_erase_grp_sz =
272 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
273 hc_wp_grp_sz =
274 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
275
276 /*
277 * calculate the enhanced data area offset, in bytes
278 */
279 card->ext_csd.enhanced_area_offset =
280 (((unsigned long long)ext_csd[139]) << 24) +
281 (((unsigned long long)ext_csd[138]) << 16) +
282 (((unsigned long long)ext_csd[137]) << 8) +
283 (((unsigned long long)ext_csd[136]));
284 if (mmc_card_blockaddr(card))
285 card->ext_csd.enhanced_area_offset <<= 9;
286 /*
287 * calculate the enhanced data area size, in kilobytes
288 */
289 card->ext_csd.enhanced_area_size =
290 (ext_csd[142] << 16) + (ext_csd[141] << 8) +
291 ext_csd[140];
292 card->ext_csd.enhanced_area_size *=
293 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
294 card->ext_csd.enhanced_area_size <<= 9;
295 } else {
296 pr_warn("%s: defines enhanced area without partition setting complete\n",
297 mmc_hostname(card->host));
298 }
299 }
300}
301
302static void mmc_part_add(struct mmc_card *card, unsigned int size,
303 unsigned int part_cfg, char *name, int idx, bool ro,
304 int area_type)
305{
306 card->part[card->nr_parts].size = size;
307 card->part[card->nr_parts].part_cfg = part_cfg;
308 sprintf(card->part[card->nr_parts].name, name, idx);
309 card->part[card->nr_parts].force_ro = ro;
310 card->part[card->nr_parts].area_type = area_type;
311 card->nr_parts++;
312}
313
314static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
315{
316 int idx;
317 u8 hc_erase_grp_sz, hc_wp_grp_sz;
318 unsigned int part_size;
319
320 /*
321 * General purpose partition feature support --
322 * If ext_csd has the size of general purpose partitions,
323 * set size, part_cfg, partition name in mmc_part.
324 */
325 if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
326 EXT_CSD_PART_SUPPORT_PART_EN) {
327 hc_erase_grp_sz =
328 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
329 hc_wp_grp_sz =
330 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
331
332 for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
333 if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
334 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
335 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
336 continue;
337 if (card->ext_csd.partition_setting_completed == 0) {
338 pr_warn("%s: has partition size defined without partition complete\n",
339 mmc_hostname(card->host));
340 break;
341 }
342 part_size =
343 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
344 << 16) +
345 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
346 << 8) +
347 ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
348 part_size *= (size_t)(hc_erase_grp_sz *
349 hc_wp_grp_sz);
350 mmc_part_add(card, part_size << 19,
351 EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
352 "gp%d", idx, false,
353 MMC_BLK_DATA_AREA_GP);
354 }
355 }
356}
357
358/* Minimum partition switch timeout in milliseconds */
359#define MMC_MIN_PART_SWITCH_TIME 300
360
361/*
362 * Decode extended CSD.
363 */
364static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
365{
366 int err = 0, idx;
367 unsigned int part_size;
368 struct device_node *np;
369 bool broken_hpi = false;
370
371 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
372 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
373 if (card->csd.structure == 3) {
374 if (card->ext_csd.raw_ext_csd_structure > 2) {
375 pr_err("%s: unrecognised EXT_CSD structure "
376 "version %d\n", mmc_hostname(card->host),
377 card->ext_csd.raw_ext_csd_structure);
378 err = -EINVAL;
379 goto out;
380 }
381 }
382
383 np = mmc_of_find_child_device(card->host, 0);
384 if (np && of_device_is_compatible(np, "mmc-card"))
385 broken_hpi = of_property_read_bool(np, "broken-hpi");
386 of_node_put(np);
387
388 /*
389 * The EXT_CSD format is meant to be forward compatible. As long
390 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
391 * are authorized, see JEDEC JESD84-B50 section B.8.
392 */
393 card->ext_csd.rev = ext_csd[EXT_CSD_REV];
394
395 /* fixup device after ext_csd revision field is updated */
396 mmc_fixup_device(card, mmc_ext_csd_fixups);
397
398 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
399 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
400 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
401 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
402 if (card->ext_csd.rev >= 2) {
403 card->ext_csd.sectors =
404 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
405 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
406 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
407 ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
408
409 /* Cards with density > 2GiB are sector addressed */
410 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
411 mmc_card_set_blockaddr(card);
412 }
413
414 card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
415 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
416 mmc_select_card_type(card);
417
418 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
419 card->ext_csd.raw_erase_timeout_mult =
420 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
421 card->ext_csd.raw_hc_erase_grp_size =
422 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
423 if (card->ext_csd.rev >= 3) {
424 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
425 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
426
427 /* EXT_CSD value is in units of 10ms, but we store in ms */
428 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
429 /* Some eMMC set the value too low so set a minimum */
430 if (card->ext_csd.part_time &&
431 card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
432 card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
433
434 /* Sleep / awake timeout in 100ns units */
435 if (sa_shift > 0 && sa_shift <= 0x17)
436 card->ext_csd.sa_timeout =
437 1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
438 card->ext_csd.erase_group_def =
439 ext_csd[EXT_CSD_ERASE_GROUP_DEF];
440 card->ext_csd.hc_erase_timeout = 300 *
441 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
442 card->ext_csd.hc_erase_size =
443 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
444
445 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
446
447 /*
448 * There are two boot regions of equal size, defined in
449 * multiples of 128K.
450 */
451 if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
452 for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
453 part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
454 mmc_part_add(card, part_size,
455 EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
456 "boot%d", idx, true,
457 MMC_BLK_DATA_AREA_BOOT);
458 }
459 }
460 }
461
462 card->ext_csd.raw_hc_erase_gap_size =
463 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
464 card->ext_csd.raw_sec_trim_mult =
465 ext_csd[EXT_CSD_SEC_TRIM_MULT];
466 card->ext_csd.raw_sec_erase_mult =
467 ext_csd[EXT_CSD_SEC_ERASE_MULT];
468 card->ext_csd.raw_sec_feature_support =
469 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
470 card->ext_csd.raw_trim_mult =
471 ext_csd[EXT_CSD_TRIM_MULT];
472 card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
473 card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
474 if (card->ext_csd.rev >= 4) {
475 if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
476 EXT_CSD_PART_SETTING_COMPLETED)
477 card->ext_csd.partition_setting_completed = 1;
478 else
479 card->ext_csd.partition_setting_completed = 0;
480
481 mmc_manage_enhanced_area(card, ext_csd);
482
483 mmc_manage_gp_partitions(card, ext_csd);
484
485 card->ext_csd.sec_trim_mult =
486 ext_csd[EXT_CSD_SEC_TRIM_MULT];
487 card->ext_csd.sec_erase_mult =
488 ext_csd[EXT_CSD_SEC_ERASE_MULT];
489 card->ext_csd.sec_feature_support =
490 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
491 card->ext_csd.trim_timeout = 300 *
492 ext_csd[EXT_CSD_TRIM_MULT];
493
494 /*
495 * Note that the call to mmc_part_add above defaults to read
496 * only. If this default assumption is changed, the call must
497 * take into account the value of boot_locked below.
498 */
499 card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
500 card->ext_csd.boot_ro_lockable = true;
501
502 /* Save power class values */
503 card->ext_csd.raw_pwr_cl_52_195 =
504 ext_csd[EXT_CSD_PWR_CL_52_195];
505 card->ext_csd.raw_pwr_cl_26_195 =
506 ext_csd[EXT_CSD_PWR_CL_26_195];
507 card->ext_csd.raw_pwr_cl_52_360 =
508 ext_csd[EXT_CSD_PWR_CL_52_360];
509 card->ext_csd.raw_pwr_cl_26_360 =
510 ext_csd[EXT_CSD_PWR_CL_26_360];
511 card->ext_csd.raw_pwr_cl_200_195 =
512 ext_csd[EXT_CSD_PWR_CL_200_195];
513 card->ext_csd.raw_pwr_cl_200_360 =
514 ext_csd[EXT_CSD_PWR_CL_200_360];
515 card->ext_csd.raw_pwr_cl_ddr_52_195 =
516 ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
517 card->ext_csd.raw_pwr_cl_ddr_52_360 =
518 ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
519 card->ext_csd.raw_pwr_cl_ddr_200_360 =
520 ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
521 }
522
523 if (card->ext_csd.rev >= 5) {
524 /* Adjust production date as per JEDEC JESD84-B451 */
525 if (card->cid.year < 2010)
526 card->cid.year += 16;
527
528 /* check whether the eMMC card supports BKOPS */
529 if (!mmc_card_broken_hpi(card) &&
530 ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
531 card->ext_csd.bkops = 1;
532 card->ext_csd.man_bkops_en =
533 (ext_csd[EXT_CSD_BKOPS_EN] &
534 EXT_CSD_MANUAL_BKOPS_MASK);
535 card->ext_csd.raw_bkops_status =
536 ext_csd[EXT_CSD_BKOPS_STATUS];
537 if (card->ext_csd.man_bkops_en)
538 pr_debug("%s: MAN_BKOPS_EN bit is set\n",
539 mmc_hostname(card->host));
540 card->ext_csd.auto_bkops_en =
541 (ext_csd[EXT_CSD_BKOPS_EN] &
542 EXT_CSD_AUTO_BKOPS_MASK);
543 if (card->ext_csd.auto_bkops_en)
544 pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
545 mmc_hostname(card->host));
546 }
547
548 /* check whether the eMMC card supports HPI */
549 if (!mmc_card_broken_hpi(card) &&
550 !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
551 card->ext_csd.hpi = 1;
552 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
553 card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION;
554 else
555 card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
556 /*
557 * Indicate the maximum timeout to close
558 * a command interrupted by HPI
559 */
560 card->ext_csd.out_of_int_time =
561 ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
562 }
563
564 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
565 card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
566
567 /*
568 * RPMB regions are defined in multiples of 128K.
569 */
570 card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
571 if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
572 mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
573 EXT_CSD_PART_CONFIG_ACC_RPMB,
574 "rpmb", 0, false,
575 MMC_BLK_DATA_AREA_RPMB);
576 }
577 }
578
579 card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
580 if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
581 card->erased_byte = 0xFF;
582 else
583 card->erased_byte = 0x0;
584
585 /* eMMC v4.5 or later */
586 card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
587 if (card->ext_csd.rev >= 6) {
588 card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
589
590 card->ext_csd.generic_cmd6_time = 10 *
591 ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
592 card->ext_csd.power_off_longtime = 10 *
593 ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
594
595 card->ext_csd.cache_size =
596 ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
597 ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
598 ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
599 ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
600
601 if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
602 card->ext_csd.data_sector_size = 4096;
603 else
604 card->ext_csd.data_sector_size = 512;
605
606 if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
607 (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
608 card->ext_csd.data_tag_unit_size =
609 ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
610 (card->ext_csd.data_sector_size);
611 } else {
612 card->ext_csd.data_tag_unit_size = 0;
613 }
614
615 card->ext_csd.max_packed_writes =
616 ext_csd[EXT_CSD_MAX_PACKED_WRITES];
617 card->ext_csd.max_packed_reads =
618 ext_csd[EXT_CSD_MAX_PACKED_READS];
619 } else {
620 card->ext_csd.data_sector_size = 512;
621 }
622
623 /* eMMC v5 or later */
624 if (card->ext_csd.rev >= 7) {
625 memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
626 MMC_FIRMWARE_LEN);
627 card->ext_csd.ffu_capable =
628 (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
629 !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
630
631 card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
632 card->ext_csd.device_life_time_est_typ_a =
633 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
634 card->ext_csd.device_life_time_est_typ_b =
635 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
636 }
637
638 /* eMMC v5.1 or later */
639 if (card->ext_csd.rev >= 8) {
640 card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
641 EXT_CSD_CMDQ_SUPPORTED;
642 card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
643 EXT_CSD_CMDQ_DEPTH_MASK) + 1;
644 /* Exclude inefficiently small queue depths */
645 if (card->ext_csd.cmdq_depth <= 2) {
646 card->ext_csd.cmdq_support = false;
647 card->ext_csd.cmdq_depth = 0;
648 }
649 if (card->ext_csd.cmdq_support) {
650 pr_debug("%s: Command Queue supported depth %u\n",
651 mmc_hostname(card->host),
652 card->ext_csd.cmdq_depth);
653 }
654 }
655out:
656 return err;
657}
658
659static int mmc_read_ext_csd(struct mmc_card *card)
660{
661 u8 *ext_csd;
662 int err;
663
664 if (!mmc_can_ext_csd(card))
665 return 0;
666
667 err = mmc_get_ext_csd(card, &ext_csd);
668 if (err) {
669 /* If the host or the card can't do the switch,
670 * fail more gracefully. */
671 if ((err != -EINVAL)
672 && (err != -ENOSYS)
673 && (err != -EFAULT))
674 return err;
675
676 /*
677 * High capacity cards should have this "magic" size
678 * stored in their CSD.
679 */
680 if (card->csd.capacity == (4096 * 512)) {
681 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
682 mmc_hostname(card->host));
683 } else {
684 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
685 mmc_hostname(card->host));
686 err = 0;
687 }
688
689 return err;
690 }
691
692 err = mmc_decode_ext_csd(card, ext_csd);
693 kfree(ext_csd);
694 return err;
695}
696
697static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
698{
699 u8 *bw_ext_csd;
700 int err;
701
702 if (bus_width == MMC_BUS_WIDTH_1)
703 return 0;
704
705 err = mmc_get_ext_csd(card, &bw_ext_csd);
706 if (err)
707 return err;
708
709 /* only compare read only fields */
710 err = !((card->ext_csd.raw_partition_support ==
711 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
712 (card->ext_csd.raw_erased_mem_count ==
713 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
714 (card->ext_csd.rev ==
715 bw_ext_csd[EXT_CSD_REV]) &&
716 (card->ext_csd.raw_ext_csd_structure ==
717 bw_ext_csd[EXT_CSD_STRUCTURE]) &&
718 (card->ext_csd.raw_card_type ==
719 bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
720 (card->ext_csd.raw_s_a_timeout ==
721 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
722 (card->ext_csd.raw_hc_erase_gap_size ==
723 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
724 (card->ext_csd.raw_erase_timeout_mult ==
725 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
726 (card->ext_csd.raw_hc_erase_grp_size ==
727 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
728 (card->ext_csd.raw_sec_trim_mult ==
729 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
730 (card->ext_csd.raw_sec_erase_mult ==
731 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
732 (card->ext_csd.raw_sec_feature_support ==
733 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
734 (card->ext_csd.raw_trim_mult ==
735 bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
736 (card->ext_csd.raw_sectors[0] ==
737 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
738 (card->ext_csd.raw_sectors[1] ==
739 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
740 (card->ext_csd.raw_sectors[2] ==
741 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
742 (card->ext_csd.raw_sectors[3] ==
743 bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
744 (card->ext_csd.raw_pwr_cl_52_195 ==
745 bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
746 (card->ext_csd.raw_pwr_cl_26_195 ==
747 bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
748 (card->ext_csd.raw_pwr_cl_52_360 ==
749 bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
750 (card->ext_csd.raw_pwr_cl_26_360 ==
751 bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
752 (card->ext_csd.raw_pwr_cl_200_195 ==
753 bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
754 (card->ext_csd.raw_pwr_cl_200_360 ==
755 bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
756 (card->ext_csd.raw_pwr_cl_ddr_52_195 ==
757 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
758 (card->ext_csd.raw_pwr_cl_ddr_52_360 ==
759 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
760 (card->ext_csd.raw_pwr_cl_ddr_200_360 ==
761 bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
762
763 if (err)
764 err = -EINVAL;
765
766 kfree(bw_ext_csd);
767 return err;
768}
769
770MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
771 card->raw_cid[2], card->raw_cid[3]);
772MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
773 card->raw_csd[2], card->raw_csd[3]);
774MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
775MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
776MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
777MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
778MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
779MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
780MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
781MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
782MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
783MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev);
784MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info);
785MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
786 card->ext_csd.device_life_time_est_typ_a,
787 card->ext_csd.device_life_time_est_typ_b);
788MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
789MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
790 card->ext_csd.enhanced_area_offset);
791MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
792MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
793MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
794MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
795MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
796MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en);
797
798static ssize_t mmc_fwrev_show(struct device *dev,
799 struct device_attribute *attr,
800 char *buf)
801{
802 struct mmc_card *card = mmc_dev_to_card(dev);
803
804 if (card->ext_csd.rev < 7) {
805 return sprintf(buf, "0x%x\n", card->cid.fwrev);
806 } else {
807 return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
808 card->ext_csd.fwrev);
809 }
810}
811
812static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
813
814static ssize_t mmc_dsr_show(struct device *dev,
815 struct device_attribute *attr,
816 char *buf)
817{
818 struct mmc_card *card = mmc_dev_to_card(dev);
819 struct mmc_host *host = card->host;
820
821 if (card->csd.dsr_imp && host->dsr_req)
822 return sprintf(buf, "0x%x\n", host->dsr);
823 else
824 /* return default DSR value */
825 return sprintf(buf, "0x%x\n", 0x404);
826}
827
828static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
829
830static struct attribute *mmc_std_attrs[] = {
831 &dev_attr_cid.attr,
832 &dev_attr_csd.attr,
833 &dev_attr_date.attr,
834 &dev_attr_erase_size.attr,
835 &dev_attr_preferred_erase_size.attr,
836 &dev_attr_fwrev.attr,
837 &dev_attr_ffu_capable.attr,
838 &dev_attr_hwrev.attr,
839 &dev_attr_manfid.attr,
840 &dev_attr_name.attr,
841 &dev_attr_oemid.attr,
842 &dev_attr_prv.attr,
843 &dev_attr_rev.attr,
844 &dev_attr_pre_eol_info.attr,
845 &dev_attr_life_time.attr,
846 &dev_attr_serial.attr,
847 &dev_attr_enhanced_area_offset.attr,
848 &dev_attr_enhanced_area_size.attr,
849 &dev_attr_raw_rpmb_size_mult.attr,
850 &dev_attr_rel_sectors.attr,
851 &dev_attr_ocr.attr,
852 &dev_attr_rca.attr,
853 &dev_attr_dsr.attr,
854 &dev_attr_cmdq_en.attr,
855 NULL,
856};
857ATTRIBUTE_GROUPS(mmc_std);
858
859static struct device_type mmc_type = {
860 .groups = mmc_std_groups,
861};
862
863/*
864 * Select the PowerClass for the current bus width
865 * If power class is defined for 4/8 bit bus in the
866 * extended CSD register, select it by executing the
867 * mmc_switch command.
868 */
869static int __mmc_select_powerclass(struct mmc_card *card,
870 unsigned int bus_width)
871{
872 struct mmc_host *host = card->host;
873 struct mmc_ext_csd *ext_csd = &card->ext_csd;
874 unsigned int pwrclass_val = 0;
875 int err = 0;
876
877 switch (1 << host->ios.vdd) {
878 case MMC_VDD_165_195:
879 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
880 pwrclass_val = ext_csd->raw_pwr_cl_26_195;
881 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
882 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
883 ext_csd->raw_pwr_cl_52_195 :
884 ext_csd->raw_pwr_cl_ddr_52_195;
885 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
886 pwrclass_val = ext_csd->raw_pwr_cl_200_195;
887 break;
888 case MMC_VDD_27_28:
889 case MMC_VDD_28_29:
890 case MMC_VDD_29_30:
891 case MMC_VDD_30_31:
892 case MMC_VDD_31_32:
893 case MMC_VDD_32_33:
894 case MMC_VDD_33_34:
895 case MMC_VDD_34_35:
896 case MMC_VDD_35_36:
897 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
898 pwrclass_val = ext_csd->raw_pwr_cl_26_360;
899 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
900 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
901 ext_csd->raw_pwr_cl_52_360 :
902 ext_csd->raw_pwr_cl_ddr_52_360;
903 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
904 pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
905 ext_csd->raw_pwr_cl_ddr_200_360 :
906 ext_csd->raw_pwr_cl_200_360;
907 break;
908 default:
909 pr_warn("%s: Voltage range not supported for power class\n",
910 mmc_hostname(host));
911 return -EINVAL;
912 }
913
914 if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
915 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
916 EXT_CSD_PWR_CL_8BIT_SHIFT;
917 else
918 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
919 EXT_CSD_PWR_CL_4BIT_SHIFT;
920
921 /* If the power class is different from the default value */
922 if (pwrclass_val > 0) {
923 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
924 EXT_CSD_POWER_CLASS,
925 pwrclass_val,
926 card->ext_csd.generic_cmd6_time);
927 }
928
929 return err;
930}
931
932static int mmc_select_powerclass(struct mmc_card *card)
933{
934 struct mmc_host *host = card->host;
935 u32 bus_width, ext_csd_bits;
936 int err, ddr;
937
938 /* Power class selection is supported for versions >= 4.0 */
939 if (!mmc_can_ext_csd(card))
940 return 0;
941
942 bus_width = host->ios.bus_width;
943 /* Power class values are defined only for 4/8 bit bus */
944 if (bus_width == MMC_BUS_WIDTH_1)
945 return 0;
946
947 ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
948 if (ddr)
949 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
950 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
951 else
952 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
953 EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4;
954
955 err = __mmc_select_powerclass(card, ext_csd_bits);
956 if (err)
957 pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
958 mmc_hostname(host), 1 << bus_width, ddr);
959
960 return err;
961}
962
963/*
964 * Set the bus speed for the selected speed mode.
965 */
966static void mmc_set_bus_speed(struct mmc_card *card)
967{
968 unsigned int max_dtr = (unsigned int)-1;
969
970 if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
971 max_dtr > card->ext_csd.hs200_max_dtr)
972 max_dtr = card->ext_csd.hs200_max_dtr;
973 else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
974 max_dtr = card->ext_csd.hs_max_dtr;
975 else if (max_dtr > card->csd.max_dtr)
976 max_dtr = card->csd.max_dtr;
977
978 mmc_set_clock(card->host, max_dtr);
979}
980
981/*
982 * Select the bus width amoung 4-bit and 8-bit(SDR).
983 * If the bus width is changed successfully, return the selected width value.
984 * Zero is returned instead of error value if the wide width is not supported.
985 */
986static int mmc_select_bus_width(struct mmc_card *card)
987{
988 static unsigned ext_csd_bits[] = {
989 EXT_CSD_BUS_WIDTH_8,
990 EXT_CSD_BUS_WIDTH_4,
991 };
992 static unsigned bus_widths[] = {
993 MMC_BUS_WIDTH_8,
994 MMC_BUS_WIDTH_4,
995 };
996 struct mmc_host *host = card->host;
997 unsigned idx, bus_width = 0;
998 int err = 0;
999
1000 if (!mmc_can_ext_csd(card) ||
1001 !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
1002 return 0;
1003
1004 idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
1005
1006 /*
1007 * Unlike SD, MMC cards dont have a configuration register to notify
1008 * supported bus width. So bus test command should be run to identify
1009 * the supported bus width or compare the ext csd values of current
1010 * bus width and ext csd values of 1 bit mode read earlier.
1011 */
1012 for (; idx < ARRAY_SIZE(bus_widths); idx++) {
1013 /*
1014 * Host is capable of 8bit transfer, then switch
1015 * the device to work in 8bit transfer mode. If the
1016 * mmc switch command returns error then switch to
1017 * 4bit transfer mode. On success set the corresponding
1018 * bus width on the host.
1019 */
1020 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1021 EXT_CSD_BUS_WIDTH,
1022 ext_csd_bits[idx],
1023 card->ext_csd.generic_cmd6_time);
1024 if (err)
1025 continue;
1026
1027 bus_width = bus_widths[idx];
1028 mmc_set_bus_width(host, bus_width);
1029
1030 /*
1031 * If controller can't handle bus width test,
1032 * compare ext_csd previously read in 1 bit mode
1033 * against ext_csd at new bus width
1034 */
1035 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1036 err = mmc_compare_ext_csds(card, bus_width);
1037 else
1038 err = mmc_bus_test(card, bus_width);
1039
1040 if (!err) {
1041 err = bus_width;
1042 break;
1043 } else {
1044 pr_warn("%s: switch to bus width %d failed\n",
1045 mmc_hostname(host), 1 << bus_width);
1046 }
1047 }
1048
1049 return err;
1050}
1051
1052/*
1053 * Switch to the high-speed mode
1054 */
1055static int mmc_select_hs(struct mmc_card *card)
1056{
1057 int err;
1058
1059 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1060 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1061 card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1062 true, true, true);
1063 if (err)
1064 pr_warn("%s: switch to high-speed failed, err:%d\n",
1065 mmc_hostname(card->host), err);
1066
1067 return err;
1068}
1069
1070/*
1071 * Activate wide bus and DDR if supported.
1072 */
1073static int mmc_select_hs_ddr(struct mmc_card *card)
1074{
1075 struct mmc_host *host = card->host;
1076 u32 bus_width, ext_csd_bits;
1077 int err = 0;
1078
1079 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1080 return 0;
1081
1082 bus_width = host->ios.bus_width;
1083 if (bus_width == MMC_BUS_WIDTH_1)
1084 return 0;
1085
1086 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1087 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1088
1089 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1090 EXT_CSD_BUS_WIDTH,
1091 ext_csd_bits,
1092 card->ext_csd.generic_cmd6_time,
1093 MMC_TIMING_MMC_DDR52,
1094 true, true, true);
1095 if (err) {
1096 pr_err("%s: switch to bus width %d ddr failed\n",
1097 mmc_hostname(host), 1 << bus_width);
1098 return err;
1099 }
1100
1101 /*
1102 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1103 * signaling.
1104 *
1105 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1106 *
1107 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1108 * in the JEDEC spec for DDR.
1109 *
1110 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1111 * host controller can support this, like some of the SDHCI
1112 * controller which connect to an eMMC device. Some of these
1113 * host controller still needs to use 1.8v vccq for supporting
1114 * DDR mode.
1115 *
1116 * So the sequence will be:
1117 * if (host and device can both support 1.2v IO)
1118 * use 1.2v IO;
1119 * else if (host and device can both support 1.8v IO)
1120 * use 1.8v IO;
1121 * so if host and device can only support 3.3v IO, this is the
1122 * last choice.
1123 *
1124 * WARNING: eMMC rules are NOT the same as SD DDR
1125 */
1126 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
1127 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1128 if (!err)
1129 return 0;
1130 }
1131
1132 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
1133 host->caps & MMC_CAP_1_8V_DDR)
1134 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1135
1136 /* make sure vccq is 3.3v after switching disaster */
1137 if (err)
1138 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1139
1140 return err;
1141}
1142
1143static int mmc_select_hs400(struct mmc_card *card)
1144{
1145 struct mmc_host *host = card->host;
1146 unsigned int max_dtr;
1147 int err = 0;
1148 u8 val;
1149
1150 /*
1151 * HS400 mode requires 8-bit bus width
1152 */
1153 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1154 host->ios.bus_width == MMC_BUS_WIDTH_8))
1155 return 0;
1156
1157 /* Switch card to HS mode */
1158 val = EXT_CSD_TIMING_HS;
1159 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1160 EXT_CSD_HS_TIMING, val,
1161 card->ext_csd.generic_cmd6_time, 0,
1162 true, false, true);
1163 if (err) {
1164 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1165 mmc_hostname(host), err);
1166 return err;
1167 }
1168
1169 /* Set host controller to HS timing */
1170 mmc_set_timing(card->host, MMC_TIMING_MMC_HS);
1171
1172 /* Reduce frequency to HS frequency */
1173 max_dtr = card->ext_csd.hs_max_dtr;
1174 mmc_set_clock(host, max_dtr);
1175
1176 err = mmc_switch_status(card);
1177 if (err)
1178 goto out_err;
1179
1180 /* Switch card to DDR */
1181 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1182 EXT_CSD_BUS_WIDTH,
1183 EXT_CSD_DDR_BUS_WIDTH_8,
1184 card->ext_csd.generic_cmd6_time);
1185 if (err) {
1186 pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1187 mmc_hostname(host), err);
1188 return err;
1189 }
1190
1191 /* Switch card to HS400 */
1192 val = EXT_CSD_TIMING_HS400 |
1193 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1194 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1195 EXT_CSD_HS_TIMING, val,
1196 card->ext_csd.generic_cmd6_time, 0,
1197 true, false, true);
1198 if (err) {
1199 pr_err("%s: switch to hs400 failed, err:%d\n",
1200 mmc_hostname(host), err);
1201 return err;
1202 }
1203
1204 /* Set host controller to HS400 timing and frequency */
1205 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1206 mmc_set_bus_speed(card);
1207
1208 err = mmc_switch_status(card);
1209 if (err)
1210 goto out_err;
1211
1212 return 0;
1213
1214out_err:
1215 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1216 __func__, err);
1217 return err;
1218}
1219
1220int mmc_hs200_to_hs400(struct mmc_card *card)
1221{
1222 return mmc_select_hs400(card);
1223}
1224
1225int mmc_hs400_to_hs200(struct mmc_card *card)
1226{
1227 struct mmc_host *host = card->host;
1228 unsigned int max_dtr;
1229 int err;
1230 u8 val;
1231
1232 /* Reduce frequency to HS */
1233 max_dtr = card->ext_csd.hs_max_dtr;
1234 mmc_set_clock(host, max_dtr);
1235
1236 /* Switch HS400 to HS DDR */
1237 val = EXT_CSD_TIMING_HS;
1238 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1239 val, card->ext_csd.generic_cmd6_time, 0,
1240 true, false, true);
1241 if (err)
1242 goto out_err;
1243
1244 mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1245
1246 err = mmc_switch_status(card);
1247 if (err)
1248 goto out_err;
1249
1250 /* Switch HS DDR to HS */
1251 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1252 EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1253 0, true, false, true);
1254 if (err)
1255 goto out_err;
1256
1257 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1258
1259 err = mmc_switch_status(card);
1260 if (err)
1261 goto out_err;
1262
1263 /* Switch HS to HS200 */
1264 val = EXT_CSD_TIMING_HS200 |
1265 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1266 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1267 val, card->ext_csd.generic_cmd6_time, 0,
1268 true, false, true);
1269 if (err)
1270 goto out_err;
1271
1272 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1273
1274 /*
1275 * For HS200, CRC errors are not a reliable way to know the switch
1276 * failed. If there really is a problem, we would expect tuning will
1277 * fail and the result ends up the same.
1278 */
1279 err = __mmc_switch_status(card, false);
1280 if (err)
1281 goto out_err;
1282
1283 mmc_set_bus_speed(card);
1284
1285 return 0;
1286
1287out_err:
1288 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1289 __func__, err);
1290 return err;
1291}
1292
1293static void mmc_select_driver_type(struct mmc_card *card)
1294{
1295 int card_drv_type, drive_strength, drv_type = 0;
1296 int fixed_drv_type = card->host->fixed_drv_type;
1297
1298 card_drv_type = card->ext_csd.raw_driver_strength |
1299 mmc_driver_type_mask(0);
1300
1301 if (fixed_drv_type >= 0)
1302 drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type)
1303 ? fixed_drv_type : 0;
1304 else
1305 drive_strength = mmc_select_drive_strength(card,
1306 card->ext_csd.hs200_max_dtr,
1307 card_drv_type, &drv_type);
1308
1309 card->drive_strength = drive_strength;
1310
1311 if (drv_type)
1312 mmc_set_driver_type(card->host, drv_type);
1313}
1314
1315static int mmc_select_hs400es(struct mmc_card *card)
1316{
1317 struct mmc_host *host = card->host;
1318 int err = -EINVAL;
1319 u8 val;
1320
1321 if (!(host->caps & MMC_CAP_8_BIT_DATA)) {
1322 err = -ENOTSUPP;
1323 goto out_err;
1324 }
1325
1326 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1327 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1328
1329 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1330 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1331
1332 /* If fails try again during next card power cycle */
1333 if (err)
1334 goto out_err;
1335
1336 err = mmc_select_bus_width(card);
1337 if (err < 0)
1338 goto out_err;
1339
1340 /* Switch card to HS mode */
1341 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1342 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1343 card->ext_csd.generic_cmd6_time, 0,
1344 true, false, true);
1345 if (err) {
1346 pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1347 mmc_hostname(host), err);
1348 goto out_err;
1349 }
1350
1351 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1352 err = mmc_switch_status(card);
1353 if (err)
1354 goto out_err;
1355
1356 mmc_set_clock(host, card->ext_csd.hs_max_dtr);
1357
1358 /* Switch card to DDR with strobe bit */
1359 val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1360 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1361 EXT_CSD_BUS_WIDTH,
1362 val,
1363 card->ext_csd.generic_cmd6_time);
1364 if (err) {
1365 pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1366 mmc_hostname(host), err);
1367 goto out_err;
1368 }
1369
1370 mmc_select_driver_type(card);
1371
1372 /* Switch card to HS400 */
1373 val = EXT_CSD_TIMING_HS400 |
1374 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1375 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1376 EXT_CSD_HS_TIMING, val,
1377 card->ext_csd.generic_cmd6_time, 0,
1378 true, false, true);
1379 if (err) {
1380 pr_err("%s: switch to hs400es failed, err:%d\n",
1381 mmc_hostname(host), err);
1382 goto out_err;
1383 }
1384
1385 /* Set host controller to HS400 timing and frequency */
1386 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1387
1388 /* Controller enable enhanced strobe function */
1389 host->ios.enhanced_strobe = true;
1390 if (host->ops->hs400_enhanced_strobe)
1391 host->ops->hs400_enhanced_strobe(host, &host->ios);
1392
1393 err = mmc_switch_status(card);
1394 if (err)
1395 goto out_err;
1396
1397 return 0;
1398
1399out_err:
1400 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1401 __func__, err);
1402 return err;
1403}
1404
1405/*
1406 * For device supporting HS200 mode, the following sequence
1407 * should be done before executing the tuning process.
1408 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1409 * 2. switch to HS200 mode
1410 * 3. set the clock to > 52Mhz and <=200MHz
1411 */
1412static int mmc_select_hs200(struct mmc_card *card)
1413{
1414 struct mmc_host *host = card->host;
1415 unsigned int old_timing, old_signal_voltage;
1416 int err = -EINVAL;
1417 u8 val;
1418
1419 old_signal_voltage = host->ios.signal_voltage;
1420 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1421 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1422
1423 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1424 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1425
1426 /* If fails try again during next card power cycle */
1427 if (err)
1428 return err;
1429
1430 mmc_select_driver_type(card);
1431
1432 /*
1433 * Set the bus width(4 or 8) with host's support and
1434 * switch to HS200 mode if bus width is set successfully.
1435 */
1436 err = mmc_select_bus_width(card);
1437 if (err > 0) {
1438 val = EXT_CSD_TIMING_HS200 |
1439 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1440 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1441 EXT_CSD_HS_TIMING, val,
1442 card->ext_csd.generic_cmd6_time, 0,
1443 true, false, true);
1444 if (err)
1445 goto err;
1446 old_timing = host->ios.timing;
1447 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1448
1449 /*
1450 * For HS200, CRC errors are not a reliable way to know the
1451 * switch failed. If there really is a problem, we would expect
1452 * tuning will fail and the result ends up the same.
1453 */
1454 err = __mmc_switch_status(card, false);
1455
1456 /*
1457 * mmc_select_timing() assumes timing has not changed if
1458 * it is a switch error.
1459 */
1460 if (err == -EBADMSG)
1461 mmc_set_timing(host, old_timing);
1462 }
1463err:
1464 if (err) {
1465 /* fall back to the old signal voltage, if fails report error */
1466 if (mmc_set_signal_voltage(host, old_signal_voltage))
1467 err = -EIO;
1468
1469 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1470 __func__, err);
1471 }
1472 return err;
1473}
1474
1475/*
1476 * Activate High Speed, HS200 or HS400ES mode if supported.
1477 */
1478static int mmc_select_timing(struct mmc_card *card)
1479{
1480 int err = 0;
1481
1482 if (!mmc_can_ext_csd(card))
1483 goto bus_speed;
1484
1485 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES)
1486 err = mmc_select_hs400es(card);
1487 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200)
1488 err = mmc_select_hs200(card);
1489 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1490 err = mmc_select_hs(card);
1491
1492 if (err && err != -EBADMSG)
1493 return err;
1494
1495bus_speed:
1496 /*
1497 * Set the bus speed to the selected bus timing.
1498 * If timing is not selected, backward compatible is the default.
1499 */
1500 mmc_set_bus_speed(card);
1501 return 0;
1502}
1503
1504/*
1505 * Execute tuning sequence to seek the proper bus operating
1506 * conditions for HS200 and HS400, which sends CMD21 to the device.
1507 */
1508static int mmc_hs200_tuning(struct mmc_card *card)
1509{
1510 struct mmc_host *host = card->host;
1511
1512 /*
1513 * Timing should be adjusted to the HS400 target
1514 * operation frequency for tuning process
1515 */
1516 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1517 host->ios.bus_width == MMC_BUS_WIDTH_8)
1518 if (host->ops->prepare_hs400_tuning)
1519 host->ops->prepare_hs400_tuning(host, &host->ios);
1520
1521 return mmc_execute_tuning(card);
1522}
1523
1524/*
1525 * Handle the detection and initialisation of a card.
1526 *
1527 * In the case of a resume, "oldcard" will contain the card
1528 * we're trying to reinitialise.
1529 */
1530static int mmc_init_card(struct mmc_host *host, u32 ocr,
1531 struct mmc_card *oldcard)
1532{
1533 struct mmc_card *card;
1534 int err;
1535 u32 cid[4];
1536 u32 rocr;
1537
1538 WARN_ON(!host->claimed);
1539
1540 /* Set correct bus mode for MMC before attempting init */
1541 if (!mmc_host_is_spi(host))
1542 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1543
1544 /*
1545 * Since we're changing the OCR value, we seem to
1546 * need to tell some cards to go back to the idle
1547 * state. We wait 1ms to give cards time to
1548 * respond.
1549 * mmc_go_idle is needed for eMMC that are asleep
1550 */
1551 mmc_go_idle(host);
1552
1553 /* The extra bit indicates that we support high capacity */
1554 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1555 if (err)
1556 goto err;
1557
1558 /*
1559 * For SPI, enable CRC as appropriate.
1560 */
1561 if (mmc_host_is_spi(host)) {
1562 err = mmc_spi_set_crc(host, use_spi_crc);
1563 if (err)
1564 goto err;
1565 }
1566
1567 /*
1568 * Fetch CID from card.
1569 */
1570 err = mmc_send_cid(host, cid);
1571 if (err)
1572 goto err;
1573
1574 if (oldcard) {
1575 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1576 err = -ENOENT;
1577 goto err;
1578 }
1579
1580 card = oldcard;
1581 } else {
1582 /*
1583 * Allocate card structure.
1584 */
1585 card = mmc_alloc_card(host, &mmc_type);
1586 if (IS_ERR(card)) {
1587 err = PTR_ERR(card);
1588 goto err;
1589 }
1590
1591 card->ocr = ocr;
1592 card->type = MMC_TYPE_MMC;
1593 card->rca = 1;
1594 memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1595 }
1596
1597 /*
1598 * Call the optional HC's init_card function to handle quirks.
1599 */
1600 if (host->ops->init_card)
1601 host->ops->init_card(host, card);
1602
1603 /*
1604 * For native busses: set card RCA and quit open drain mode.
1605 */
1606 if (!mmc_host_is_spi(host)) {
1607 err = mmc_set_relative_addr(card);
1608 if (err)
1609 goto free_card;
1610
1611 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1612 }
1613
1614 if (!oldcard) {
1615 /*
1616 * Fetch CSD from card.
1617 */
1618 err = mmc_send_csd(card, card->raw_csd);
1619 if (err)
1620 goto free_card;
1621
1622 err = mmc_decode_csd(card);
1623 if (err)
1624 goto free_card;
1625 err = mmc_decode_cid(card);
1626 if (err)
1627 goto free_card;
1628 }
1629
1630 /*
1631 * handling only for cards supporting DSR and hosts requesting
1632 * DSR configuration
1633 */
1634 if (card->csd.dsr_imp && host->dsr_req)
1635 mmc_set_dsr(host);
1636
1637 /*
1638 * Select card, as all following commands rely on that.
1639 */
1640 if (!mmc_host_is_spi(host)) {
1641 err = mmc_select_card(card);
1642 if (err)
1643 goto free_card;
1644 }
1645
1646 if (!oldcard) {
1647 /* Read extended CSD. */
1648 err = mmc_read_ext_csd(card);
1649 if (err)
1650 goto free_card;
1651
1652 /*
1653 * If doing byte addressing, check if required to do sector
1654 * addressing. Handle the case of <2GB cards needing sector
1655 * addressing. See section 8.1 JEDEC Standard JED84-A441;
1656 * ocr register has bit 30 set for sector addressing.
1657 */
1658 if (rocr & BIT(30))
1659 mmc_card_set_blockaddr(card);
1660
1661 /* Erase size depends on CSD and Extended CSD */
1662 mmc_set_erase_size(card);
1663 }
1664
1665 /* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
1666 if (card->ext_csd.rev >= 3) {
1667 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1668 EXT_CSD_ERASE_GROUP_DEF, 1,
1669 card->ext_csd.generic_cmd6_time);
1670
1671 if (err && err != -EBADMSG)
1672 goto free_card;
1673
1674 if (err) {
1675 err = 0;
1676 /*
1677 * Just disable enhanced area off & sz
1678 * will try to enable ERASE_GROUP_DEF
1679 * during next time reinit
1680 */
1681 card->ext_csd.enhanced_area_offset = -EINVAL;
1682 card->ext_csd.enhanced_area_size = -EINVAL;
1683 } else {
1684 card->ext_csd.erase_group_def = 1;
1685 /*
1686 * enable ERASE_GRP_DEF successfully.
1687 * This will affect the erase size, so
1688 * here need to reset erase size
1689 */
1690 mmc_set_erase_size(card);
1691 }
1692 }
1693
1694 /*
1695 * Ensure eMMC user default partition is enabled
1696 */
1697 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1698 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1699 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1700 card->ext_csd.part_config,
1701 card->ext_csd.part_time);
1702 if (err && err != -EBADMSG)
1703 goto free_card;
1704 }
1705
1706 /*
1707 * Enable power_off_notification byte in the ext_csd register
1708 */
1709 if (card->ext_csd.rev >= 6) {
1710 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1711 EXT_CSD_POWER_OFF_NOTIFICATION,
1712 EXT_CSD_POWER_ON,
1713 card->ext_csd.generic_cmd6_time);
1714 if (err && err != -EBADMSG)
1715 goto free_card;
1716
1717 /*
1718 * The err can be -EBADMSG or 0,
1719 * so check for success and update the flag
1720 */
1721 if (!err)
1722 card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1723 }
1724
1725 /*
1726 * Select timing interface
1727 */
1728 err = mmc_select_timing(card);
1729 if (err)
1730 goto free_card;
1731
1732 if (mmc_card_hs200(card)) {
1733 err = mmc_hs200_tuning(card);
1734 if (err)
1735 goto free_card;
1736
1737 err = mmc_select_hs400(card);
1738 if (err)
1739 goto free_card;
1740 } else if (!mmc_card_hs400es(card)) {
1741 /* Select the desired bus width optionally */
1742 err = mmc_select_bus_width(card);
1743 if (err > 0 && mmc_card_hs(card)) {
1744 err = mmc_select_hs_ddr(card);
1745 if (err)
1746 goto free_card;
1747 }
1748 }
1749
1750 /*
1751 * Choose the power class with selected bus interface
1752 */
1753 mmc_select_powerclass(card);
1754
1755 /*
1756 * Enable HPI feature (if supported)
1757 */
1758 if (card->ext_csd.hpi) {
1759 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1760 EXT_CSD_HPI_MGMT, 1,
1761 card->ext_csd.generic_cmd6_time);
1762 if (err && err != -EBADMSG)
1763 goto free_card;
1764 if (err) {
1765 pr_warn("%s: Enabling HPI failed\n",
1766 mmc_hostname(card->host));
1767 err = 0;
1768 } else
1769 card->ext_csd.hpi_en = 1;
1770 }
1771
1772 /*
1773 * If cache size is higher than 0, this indicates
1774 * the existence of cache and it can be turned on.
1775 */
1776 if (!mmc_card_broken_hpi(card) &&
1777 card->ext_csd.cache_size > 0) {
1778 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1779 EXT_CSD_CACHE_CTRL, 1,
1780 card->ext_csd.generic_cmd6_time);
1781 if (err && err != -EBADMSG)
1782 goto free_card;
1783
1784 /*
1785 * Only if no error, cache is turned on successfully.
1786 */
1787 if (err) {
1788 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1789 mmc_hostname(card->host), err);
1790 card->ext_csd.cache_ctrl = 0;
1791 err = 0;
1792 } else {
1793 card->ext_csd.cache_ctrl = 1;
1794 }
1795 }
1796
1797 /*
1798 * Enable Command Queue if supported. Note that Packed Commands cannot
1799 * be used with Command Queue.
1800 */
1801 card->ext_csd.cmdq_en = false;
1802 if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) {
1803 err = mmc_cmdq_enable(card);
1804 if (err && err != -EBADMSG)
1805 goto free_card;
1806 if (err) {
1807 pr_warn("%s: Enabling CMDQ failed\n",
1808 mmc_hostname(card->host));
1809 card->ext_csd.cmdq_support = false;
1810 card->ext_csd.cmdq_depth = 0;
1811 err = 0;
1812 }
1813 }
1814 /*
1815 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1816 * disabled for a time, so a flag is needed to indicate to re-enable the
1817 * Command Queue.
1818 */
1819 card->reenable_cmdq = card->ext_csd.cmdq_en;
1820
1821 if (card->ext_csd.cmdq_en && !host->cqe_enabled) {
1822 err = host->cqe_ops->cqe_enable(host, card);
1823 if (err) {
1824 pr_err("%s: Failed to enable CQE, error %d\n",
1825 mmc_hostname(host), err);
1826 } else {
1827 host->cqe_enabled = true;
1828 pr_info("%s: Command Queue Engine enabled\n",
1829 mmc_hostname(host));
1830 }
1831 }
1832
1833 if (!oldcard)
1834 host->card = card;
1835
1836 return 0;
1837
1838free_card:
1839 if (!oldcard)
1840 mmc_remove_card(card);
1841err:
1842 return err;
1843}
1844
1845static int mmc_can_sleep(struct mmc_card *card)
1846{
1847 return (card && card->ext_csd.rev >= 3);
1848}
1849
1850static int mmc_sleep(struct mmc_host *host)
1851{
1852 struct mmc_command cmd = {};
1853 struct mmc_card *card = host->card;
1854 unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1855 int err;
1856
1857 /* Re-tuning can't be done once the card is deselected */
1858 mmc_retune_hold(host);
1859
1860 err = mmc_deselect_cards(host);
1861 if (err)
1862 goto out_release;
1863
1864 cmd.opcode = MMC_SLEEP_AWAKE;
1865 cmd.arg = card->rca << 16;
1866 cmd.arg |= 1 << 15;
1867
1868 /*
1869 * If the max_busy_timeout of the host is specified, validate it against
1870 * the sleep cmd timeout. A failure means we need to prevent the host
1871 * from doing hw busy detection, which is done by converting to a R1
1872 * response instead of a R1B.
1873 */
1874 if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout)) {
1875 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1876 } else {
1877 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
1878 cmd.busy_timeout = timeout_ms;
1879 }
1880
1881 err = mmc_wait_for_cmd(host, &cmd, 0);
1882 if (err)
1883 goto out_release;
1884
1885 /*
1886 * If the host does not wait while the card signals busy, then we will
1887 * will have to wait the sleep/awake timeout. Note, we cannot use the
1888 * SEND_STATUS command to poll the status because that command (and most
1889 * others) is invalid while the card sleeps.
1890 */
1891 if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY))
1892 mmc_delay(timeout_ms);
1893
1894out_release:
1895 mmc_retune_release(host);
1896 return err;
1897}
1898
1899static int mmc_can_poweroff_notify(const struct mmc_card *card)
1900{
1901 return card &&
1902 mmc_card_mmc(card) &&
1903 (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
1904}
1905
1906static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
1907{
1908 unsigned int timeout = card->ext_csd.generic_cmd6_time;
1909 int err;
1910
1911 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
1912 if (notify_type == EXT_CSD_POWER_OFF_LONG)
1913 timeout = card->ext_csd.power_off_longtime;
1914
1915 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1916 EXT_CSD_POWER_OFF_NOTIFICATION,
1917 notify_type, timeout, 0, true, false, false);
1918 if (err)
1919 pr_err("%s: Power Off Notification timed out, %u\n",
1920 mmc_hostname(card->host), timeout);
1921
1922 /* Disable the power off notification after the switch operation. */
1923 card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
1924
1925 return err;
1926}
1927
1928/*
1929 * Host is being removed. Free up the current card.
1930 */
1931static void mmc_remove(struct mmc_host *host)
1932{
1933 mmc_remove_card(host->card);
1934 host->card = NULL;
1935}
1936
1937/*
1938 * Card detection - card is alive.
1939 */
1940static int mmc_alive(struct mmc_host *host)
1941{
1942 return mmc_send_status(host->card, NULL);
1943}
1944
1945/*
1946 * Card detection callback from host.
1947 */
1948static void mmc_detect(struct mmc_host *host)
1949{
1950 int err;
1951
1952 mmc_get_card(host->card, NULL);
1953
1954 /*
1955 * Just check if our card has been removed.
1956 */
1957 err = _mmc_detect_card_removed(host);
1958
1959 mmc_put_card(host->card, NULL);
1960
1961 if (err) {
1962 mmc_remove(host);
1963
1964 mmc_claim_host(host);
1965 mmc_detach_bus(host);
1966 mmc_power_off(host);
1967 mmc_release_host(host);
1968 }
1969}
1970
1971static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
1972{
1973 int err = 0;
1974 unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
1975 EXT_CSD_POWER_OFF_LONG;
1976
1977 mmc_claim_host(host);
1978
1979 if (mmc_card_suspended(host->card))
1980 goto out;
1981
1982 if (mmc_card_doing_bkops(host->card)) {
1983 err = mmc_stop_bkops(host->card);
1984 if (err)
1985 goto out;
1986 }
1987
1988 err = mmc_flush_cache(host->card);
1989 if (err)
1990 goto out;
1991
1992 if (mmc_can_poweroff_notify(host->card) &&
1993 ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend))
1994 err = mmc_poweroff_notify(host->card, notify_type);
1995 else if (mmc_can_sleep(host->card))
1996 err = mmc_sleep(host);
1997 else if (!mmc_host_is_spi(host))
1998 err = mmc_deselect_cards(host);
1999
2000 if (!err) {
2001 mmc_power_off(host);
2002 mmc_card_set_suspended(host->card);
2003 }
2004out:
2005 mmc_release_host(host);
2006 return err;
2007}
2008
2009/*
2010 * Suspend callback
2011 */
2012static int mmc_suspend(struct mmc_host *host)
2013{
2014 int err;
2015
2016 err = _mmc_suspend(host, true);
2017 if (!err) {
2018 pm_runtime_disable(&host->card->dev);
2019 pm_runtime_set_suspended(&host->card->dev);
2020 }
2021
2022 return err;
2023}
2024
2025/*
2026 * This function tries to determine if the same card is still present
2027 * and, if so, restore all state to it.
2028 */
2029static int _mmc_resume(struct mmc_host *host)
2030{
2031 int err = 0;
2032
2033 mmc_claim_host(host);
2034
2035 if (!mmc_card_suspended(host->card))
2036 goto out;
2037
2038 mmc_power_up(host, host->card->ocr);
2039 err = mmc_init_card(host, host->card->ocr, host->card);
2040 mmc_card_clr_suspended(host->card);
2041
2042out:
2043 mmc_release_host(host);
2044 return err;
2045}
2046
2047/*
2048 * Shutdown callback
2049 */
2050static int mmc_shutdown(struct mmc_host *host)
2051{
2052 int err = 0;
2053
2054 /*
2055 * In a specific case for poweroff notify, we need to resume the card
2056 * before we can shutdown it properly.
2057 */
2058 if (mmc_can_poweroff_notify(host->card) &&
2059 !(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
2060 err = _mmc_resume(host);
2061
2062 if (!err)
2063 err = _mmc_suspend(host, false);
2064
2065 return err;
2066}
2067
2068/*
2069 * Callback for resume.
2070 */
2071static int mmc_resume(struct mmc_host *host)
2072{
2073 pm_runtime_enable(&host->card->dev);
2074 return 0;
2075}
2076
2077/*
2078 * Callback for runtime_suspend.
2079 */
2080static int mmc_runtime_suspend(struct mmc_host *host)
2081{
2082 int err;
2083
2084 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2085 return 0;
2086
2087 err = _mmc_suspend(host, true);
2088 if (err)
2089 pr_err("%s: error %d doing aggressive suspend\n",
2090 mmc_hostname(host), err);
2091
2092 return err;
2093}
2094
2095/*
2096 * Callback for runtime_resume.
2097 */
2098static int mmc_runtime_resume(struct mmc_host *host)
2099{
2100 int err;
2101
2102 err = _mmc_resume(host);
2103 if (err && err != -ENOMEDIUM)
2104 pr_err("%s: error %d doing runtime resume\n",
2105 mmc_hostname(host), err);
2106
2107 return 0;
2108}
2109
2110static int mmc_can_reset(struct mmc_card *card)
2111{
2112 u8 rst_n_function;
2113
2114 rst_n_function = card->ext_csd.rst_n_function;
2115 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2116 return 0;
2117 return 1;
2118}
2119
2120static int mmc_reset(struct mmc_host *host)
2121{
2122 struct mmc_card *card = host->card;
2123
2124 /*
2125 * In the case of recovery, we can't expect flushing the cache to work
2126 * always, but we have a go and ignore errors.
2127 */
2128 mmc_flush_cache(host->card);
2129
2130 if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset &&
2131 mmc_can_reset(card)) {
2132 /* If the card accept RST_n signal, send it. */
2133 mmc_set_clock(host, host->f_init);
2134 host->ops->hw_reset(host);
2135 /* Set initial state and call mmc_set_ios */
2136 mmc_set_initial_state(host);
2137 } else {
2138 /* Do a brute force power cycle */
2139 mmc_power_cycle(host, card->ocr);
2140 mmc_pwrseq_reset(host);
2141 }
2142 return mmc_init_card(host, card->ocr, card);
2143}
2144
2145static const struct mmc_bus_ops mmc_ops = {
2146 .remove = mmc_remove,
2147 .detect = mmc_detect,
2148 .suspend = mmc_suspend,
2149 .resume = mmc_resume,
2150 .runtime_suspend = mmc_runtime_suspend,
2151 .runtime_resume = mmc_runtime_resume,
2152 .alive = mmc_alive,
2153 .shutdown = mmc_shutdown,
2154 .reset = mmc_reset,
2155};
2156
2157/*
2158 * Starting point for MMC card init.
2159 */
2160int mmc_attach_mmc(struct mmc_host *host)
2161{
2162 int err;
2163 u32 ocr, rocr;
2164
2165 WARN_ON(!host->claimed);
2166
2167 /* Set correct bus mode for MMC before attempting attach */
2168 if (!mmc_host_is_spi(host))
2169 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2170
2171 err = mmc_send_op_cond(host, 0, &ocr);
2172 if (err)
2173 return err;
2174
2175 mmc_attach_bus(host, &mmc_ops);
2176 if (host->ocr_avail_mmc)
2177 host->ocr_avail = host->ocr_avail_mmc;
2178
2179 /*
2180 * We need to get OCR a different way for SPI.
2181 */
2182 if (mmc_host_is_spi(host)) {
2183 err = mmc_spi_read_ocr(host, 1, &ocr);
2184 if (err)
2185 goto err;
2186 }
2187
2188 rocr = mmc_select_voltage(host, ocr);
2189
2190 /*
2191 * Can we support the voltage of the card?
2192 */
2193 if (!rocr) {
2194 err = -EINVAL;
2195 goto err;
2196 }
2197
2198 /*
2199 * Detect and init the card.
2200 */
2201 err = mmc_init_card(host, rocr, NULL);
2202 if (err)
2203 goto err;
2204
2205 mmc_release_host(host);
2206 err = mmc_add_card(host->card);
2207 if (err)
2208 goto remove_card;
2209
2210 mmc_claim_host(host);
2211 return 0;
2212
2213remove_card:
2214 mmc_remove_card(host->card);
2215 mmc_claim_host(host);
2216 host->card = NULL;
2217err:
2218 mmc_detach_bus(host);
2219
2220 pr_err("%s: error %d whilst initialising MMC card\n",
2221 mmc_hostname(host), err);
2222
2223 return err;
2224}