Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Apr 14-17, 2025
Register
Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2011-2012 Red Hat UK.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-thin-metadata.h"
   9#include "dm-bio-prison-v1.h"
  10#include "dm.h"
  11
  12#include <linux/device-mapper.h>
  13#include <linux/dm-io.h>
  14#include <linux/dm-kcopyd.h>
  15#include <linux/jiffies.h>
  16#include <linux/log2.h>
  17#include <linux/list.h>
  18#include <linux/rculist.h>
  19#include <linux/init.h>
  20#include <linux/module.h>
  21#include <linux/slab.h>
  22#include <linux/vmalloc.h>
  23#include <linux/sort.h>
  24#include <linux/rbtree.h>
  25
  26#define	DM_MSG_PREFIX	"thin"
  27
  28/*
  29 * Tunable constants
  30 */
  31#define ENDIO_HOOK_POOL_SIZE 1024
  32#define MAPPING_POOL_SIZE 1024
  33#define COMMIT_PERIOD HZ
  34#define NO_SPACE_TIMEOUT_SECS 60
  35
  36static unsigned int no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
  37
  38DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
  39		"A percentage of time allocated for copy on write");
  40
  41/*
  42 * The block size of the device holding pool data must be
  43 * between 64KB and 1GB.
  44 */
  45#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
  46#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
  47
  48/*
  49 * Device id is restricted to 24 bits.
  50 */
  51#define MAX_DEV_ID ((1 << 24) - 1)
  52
  53/*
  54 * How do we handle breaking sharing of data blocks?
  55 * =================================================
  56 *
  57 * We use a standard copy-on-write btree to store the mappings for the
  58 * devices (note I'm talking about copy-on-write of the metadata here, not
  59 * the data).  When you take an internal snapshot you clone the root node
  60 * of the origin btree.  After this there is no concept of an origin or a
  61 * snapshot.  They are just two device trees that happen to point to the
  62 * same data blocks.
  63 *
  64 * When we get a write in we decide if it's to a shared data block using
  65 * some timestamp magic.  If it is, we have to break sharing.
  66 *
  67 * Let's say we write to a shared block in what was the origin.  The
  68 * steps are:
  69 *
  70 * i) plug io further to this physical block. (see bio_prison code).
  71 *
  72 * ii) quiesce any read io to that shared data block.  Obviously
  73 * including all devices that share this block.  (see dm_deferred_set code)
  74 *
  75 * iii) copy the data block to a newly allocate block.  This step can be
  76 * missed out if the io covers the block. (schedule_copy).
  77 *
  78 * iv) insert the new mapping into the origin's btree
  79 * (process_prepared_mapping).  This act of inserting breaks some
  80 * sharing of btree nodes between the two devices.  Breaking sharing only
  81 * effects the btree of that specific device.  Btrees for the other
  82 * devices that share the block never change.  The btree for the origin
  83 * device as it was after the last commit is untouched, ie. we're using
  84 * persistent data structures in the functional programming sense.
  85 *
  86 * v) unplug io to this physical block, including the io that triggered
  87 * the breaking of sharing.
  88 *
  89 * Steps (ii) and (iii) occur in parallel.
  90 *
  91 * The metadata _doesn't_ need to be committed before the io continues.  We
  92 * get away with this because the io is always written to a _new_ block.
  93 * If there's a crash, then:
  94 *
  95 * - The origin mapping will point to the old origin block (the shared
  96 * one).  This will contain the data as it was before the io that triggered
  97 * the breaking of sharing came in.
  98 *
  99 * - The snap mapping still points to the old block.  As it would after
 100 * the commit.
 101 *
 102 * The downside of this scheme is the timestamp magic isn't perfect, and
 103 * will continue to think that data block in the snapshot device is shared
 104 * even after the write to the origin has broken sharing.  I suspect data
 105 * blocks will typically be shared by many different devices, so we're
 106 * breaking sharing n + 1 times, rather than n, where n is the number of
 107 * devices that reference this data block.  At the moment I think the
 108 * benefits far, far outweigh the disadvantages.
 109 */
 110
 111/*----------------------------------------------------------------*/
 112
 113/*
 114 * Key building.
 115 */
 116enum lock_space {
 117	VIRTUAL,
 118	PHYSICAL
 119};
 120
 121static bool build_key(struct dm_thin_device *td, enum lock_space ls,
 122		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
 123{
 124	key->virtual = (ls == VIRTUAL);
 125	key->dev = dm_thin_dev_id(td);
 126	key->block_begin = b;
 127	key->block_end = e;
 128
 129	return dm_cell_key_has_valid_range(key);
 130}
 131
 132static void build_data_key(struct dm_thin_device *td, dm_block_t b,
 133			   struct dm_cell_key *key)
 134{
 135	(void) build_key(td, PHYSICAL, b, b + 1llu, key);
 136}
 137
 138static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
 139			      struct dm_cell_key *key)
 140{
 141	(void) build_key(td, VIRTUAL, b, b + 1llu, key);
 142}
 143
 144/*----------------------------------------------------------------*/
 145
 146#define THROTTLE_THRESHOLD (1 * HZ)
 147
 148struct throttle {
 149	struct rw_semaphore lock;
 150	unsigned long threshold;
 151	bool throttle_applied;
 152};
 153
 154static void throttle_init(struct throttle *t)
 155{
 156	init_rwsem(&t->lock);
 157	t->throttle_applied = false;
 158}
 159
 160static void throttle_work_start(struct throttle *t)
 161{
 162	t->threshold = jiffies + THROTTLE_THRESHOLD;
 163}
 164
 165static void throttle_work_update(struct throttle *t)
 166{
 167	if (!t->throttle_applied && time_is_before_jiffies(t->threshold)) {
 168		down_write(&t->lock);
 169		t->throttle_applied = true;
 170	}
 171}
 172
 173static void throttle_work_complete(struct throttle *t)
 174{
 175	if (t->throttle_applied) {
 176		t->throttle_applied = false;
 177		up_write(&t->lock);
 178	}
 179}
 180
 181static void throttle_lock(struct throttle *t)
 182{
 183	down_read(&t->lock);
 184}
 185
 186static void throttle_unlock(struct throttle *t)
 187{
 188	up_read(&t->lock);
 189}
 190
 191/*----------------------------------------------------------------*/
 192
 193/*
 194 * A pool device ties together a metadata device and a data device.  It
 195 * also provides the interface for creating and destroying internal
 196 * devices.
 197 */
 198struct dm_thin_new_mapping;
 199
 200/*
 201 * The pool runs in various modes.  Ordered in degraded order for comparisons.
 202 */
 203enum pool_mode {
 204	PM_WRITE,		/* metadata may be changed */
 205	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
 206
 207	/*
 208	 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
 209	 */
 210	PM_OUT_OF_METADATA_SPACE,
 211	PM_READ_ONLY,		/* metadata may not be changed */
 212
 213	PM_FAIL,		/* all I/O fails */
 214};
 215
 216struct pool_features {
 217	enum pool_mode mode;
 218
 219	bool zero_new_blocks:1;
 220	bool discard_enabled:1;
 221	bool discard_passdown:1;
 222	bool error_if_no_space:1;
 223};
 224
 225struct thin_c;
 226typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
 227typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
 228typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
 229
 230#define CELL_SORT_ARRAY_SIZE 8192
 231
 232struct pool {
 233	struct list_head list;
 234	struct dm_target *ti;	/* Only set if a pool target is bound */
 235
 236	struct mapped_device *pool_md;
 237	struct block_device *data_dev;
 238	struct block_device *md_dev;
 239	struct dm_pool_metadata *pmd;
 240
 241	dm_block_t low_water_blocks;
 242	uint32_t sectors_per_block;
 243	int sectors_per_block_shift;
 244
 245	struct pool_features pf;
 246	bool low_water_triggered:1;	/* A dm event has been sent */
 247	bool suspended:1;
 248	bool out_of_data_space:1;
 249
 250	struct dm_bio_prison *prison;
 251	struct dm_kcopyd_client *copier;
 252
 253	struct work_struct worker;
 254	struct workqueue_struct *wq;
 255	struct throttle throttle;
 
 256	struct delayed_work waker;
 257	struct delayed_work no_space_timeout;
 258
 259	unsigned long last_commit_jiffies;
 260	unsigned int ref_count;
 261
 262	spinlock_t lock;
 263	struct bio_list deferred_flush_bios;
 264	struct bio_list deferred_flush_completions;
 265	struct list_head prepared_mappings;
 266	struct list_head prepared_discards;
 267	struct list_head prepared_discards_pt2;
 268	struct list_head active_thins;
 269
 270	struct dm_deferred_set *shared_read_ds;
 271	struct dm_deferred_set *all_io_ds;
 272
 273	struct dm_thin_new_mapping *next_mapping;
 
 274
 275	process_bio_fn process_bio;
 276	process_bio_fn process_discard;
 277
 278	process_cell_fn process_cell;
 279	process_cell_fn process_discard_cell;
 280
 281	process_mapping_fn process_prepared_mapping;
 282	process_mapping_fn process_prepared_discard;
 283	process_mapping_fn process_prepared_discard_pt2;
 284
 285	struct dm_bio_prison_cell **cell_sort_array;
 286
 287	mempool_t mapping_pool;
 288};
 289
 
 290static void metadata_operation_failed(struct pool *pool, const char *op, int r);
 291
 292static enum pool_mode get_pool_mode(struct pool *pool)
 293{
 294	return pool->pf.mode;
 295}
 296
 297static void notify_of_pool_mode_change(struct pool *pool)
 298{
 299	static const char *descs[] = {
 300		"write",
 301		"out-of-data-space",
 302		"read-only",
 303		"read-only",
 304		"fail"
 305	};
 306	const char *extra_desc = NULL;
 307	enum pool_mode mode = get_pool_mode(pool);
 308
 309	if (mode == PM_OUT_OF_DATA_SPACE) {
 310		if (!pool->pf.error_if_no_space)
 311			extra_desc = " (queue IO)";
 312		else
 313			extra_desc = " (error IO)";
 314	}
 315
 316	dm_table_event(pool->ti->table);
 317	DMINFO("%s: switching pool to %s%s mode",
 318	       dm_device_name(pool->pool_md),
 319	       descs[(int)mode], extra_desc ? : "");
 320}
 321
 322/*
 323 * Target context for a pool.
 324 */
 325struct pool_c {
 326	struct dm_target *ti;
 327	struct pool *pool;
 328	struct dm_dev *data_dev;
 329	struct dm_dev *metadata_dev;
 
 330
 331	dm_block_t low_water_blocks;
 332	struct pool_features requested_pf; /* Features requested during table load */
 333	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
 334};
 335
 336/*
 337 * Target context for a thin.
 338 */
 339struct thin_c {
 340	struct list_head list;
 341	struct dm_dev *pool_dev;
 342	struct dm_dev *origin_dev;
 343	sector_t origin_size;
 344	dm_thin_id dev_id;
 345
 346	struct pool *pool;
 347	struct dm_thin_device *td;
 348	struct mapped_device *thin_md;
 349
 350	bool requeue_mode:1;
 351	spinlock_t lock;
 352	struct list_head deferred_cells;
 353	struct bio_list deferred_bio_list;
 354	struct bio_list retry_on_resume_list;
 355	struct rb_root sort_bio_list; /* sorted list of deferred bios */
 356
 357	/*
 358	 * Ensures the thin is not destroyed until the worker has finished
 359	 * iterating the active_thins list.
 360	 */
 361	refcount_t refcount;
 362	struct completion can_destroy;
 363};
 364
 365/*----------------------------------------------------------------*/
 366
 367static bool block_size_is_power_of_two(struct pool *pool)
 368{
 369	return pool->sectors_per_block_shift >= 0;
 370}
 371
 372static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
 373{
 374	return block_size_is_power_of_two(pool) ?
 375		(b << pool->sectors_per_block_shift) :
 376		(b * pool->sectors_per_block);
 377}
 378
 379/*----------------------------------------------------------------*/
 380
 381struct discard_op {
 382	struct thin_c *tc;
 383	struct blk_plug plug;
 384	struct bio *parent_bio;
 385	struct bio *bio;
 386};
 387
 388static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
 389{
 390	BUG_ON(!parent);
 391
 392	op->tc = tc;
 393	blk_start_plug(&op->plug);
 394	op->parent_bio = parent;
 395	op->bio = NULL;
 396}
 397
 398static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
 399{
 400	struct thin_c *tc = op->tc;
 401	sector_t s = block_to_sectors(tc->pool, data_b);
 402	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
 403
 404	return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, GFP_NOIO, &op->bio);
 
 405}
 406
 407static void end_discard(struct discard_op *op, int r)
 408{
 409	if (op->bio) {
 410		/*
 411		 * Even if one of the calls to issue_discard failed, we
 412		 * need to wait for the chain to complete.
 413		 */
 414		bio_chain(op->bio, op->parent_bio);
 415		op->bio->bi_opf = REQ_OP_DISCARD;
 416		submit_bio(op->bio);
 417	}
 418
 419	blk_finish_plug(&op->plug);
 420
 421	/*
 422	 * Even if r is set, there could be sub discards in flight that we
 423	 * need to wait for.
 424	 */
 425	if (r && !op->parent_bio->bi_status)
 426		op->parent_bio->bi_status = errno_to_blk_status(r);
 427	bio_endio(op->parent_bio);
 428}
 429
 430/*----------------------------------------------------------------*/
 431
 432/*
 433 * wake_worker() is used when new work is queued and when pool_resume is
 434 * ready to continue deferred IO processing.
 435 */
 436static void wake_worker(struct pool *pool)
 437{
 438	queue_work(pool->wq, &pool->worker);
 439}
 440
 441/*----------------------------------------------------------------*/
 442
 443static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
 444		      struct dm_bio_prison_cell **cell_result)
 445{
 446	int r;
 447	struct dm_bio_prison_cell *cell_prealloc;
 448
 449	/*
 450	 * Allocate a cell from the prison's mempool.
 451	 * This might block but it can't fail.
 452	 */
 453	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
 454
 455	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
 456	if (r) {
 457		/*
 458		 * We reused an old cell; we can get rid of
 459		 * the new one.
 460		 */
 461		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
 462	}
 463
 464	return r;
 465}
 466
 467static void cell_release(struct pool *pool,
 468			 struct dm_bio_prison_cell *cell,
 469			 struct bio_list *bios)
 470{
 471	dm_cell_release(pool->prison, cell, bios);
 472	dm_bio_prison_free_cell(pool->prison, cell);
 473}
 474
 475static void cell_visit_release(struct pool *pool,
 476			       void (*fn)(void *, struct dm_bio_prison_cell *),
 477			       void *context,
 478			       struct dm_bio_prison_cell *cell)
 479{
 480	dm_cell_visit_release(pool->prison, fn, context, cell);
 481	dm_bio_prison_free_cell(pool->prison, cell);
 482}
 483
 484static void cell_release_no_holder(struct pool *pool,
 485				   struct dm_bio_prison_cell *cell,
 486				   struct bio_list *bios)
 487{
 488	dm_cell_release_no_holder(pool->prison, cell, bios);
 489	dm_bio_prison_free_cell(pool->prison, cell);
 490}
 491
 492static void cell_error_with_code(struct pool *pool,
 493		struct dm_bio_prison_cell *cell, blk_status_t error_code)
 494{
 495	dm_cell_error(pool->prison, cell, error_code);
 496	dm_bio_prison_free_cell(pool->prison, cell);
 497}
 498
 499static blk_status_t get_pool_io_error_code(struct pool *pool)
 500{
 501	return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
 502}
 503
 504static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
 505{
 506	cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
 507}
 508
 509static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
 510{
 511	cell_error_with_code(pool, cell, 0);
 512}
 513
 514static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
 515{
 516	cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
 517}
 518
 519/*----------------------------------------------------------------*/
 520
 521/*
 522 * A global list of pools that uses a struct mapped_device as a key.
 523 */
 524static struct dm_thin_pool_table {
 525	struct mutex mutex;
 526	struct list_head pools;
 527} dm_thin_pool_table;
 528
 529static void pool_table_init(void)
 530{
 531	mutex_init(&dm_thin_pool_table.mutex);
 532	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
 533}
 534
 535static void pool_table_exit(void)
 536{
 537	mutex_destroy(&dm_thin_pool_table.mutex);
 538}
 539
 540static void __pool_table_insert(struct pool *pool)
 541{
 542	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 543	list_add(&pool->list, &dm_thin_pool_table.pools);
 544}
 545
 546static void __pool_table_remove(struct pool *pool)
 547{
 548	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 549	list_del(&pool->list);
 550}
 551
 552static struct pool *__pool_table_lookup(struct mapped_device *md)
 553{
 554	struct pool *pool = NULL, *tmp;
 555
 556	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 557
 558	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 559		if (tmp->pool_md == md) {
 560			pool = tmp;
 561			break;
 562		}
 563	}
 564
 565	return pool;
 566}
 567
 568static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
 569{
 570	struct pool *pool = NULL, *tmp;
 571
 572	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 573
 574	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 575		if (tmp->md_dev == md_dev) {
 576			pool = tmp;
 577			break;
 578		}
 579	}
 580
 581	return pool;
 582}
 583
 584/*----------------------------------------------------------------*/
 585
 586struct dm_thin_endio_hook {
 587	struct thin_c *tc;
 588	struct dm_deferred_entry *shared_read_entry;
 589	struct dm_deferred_entry *all_io_entry;
 590	struct dm_thin_new_mapping *overwrite_mapping;
 591	struct rb_node rb_node;
 592	struct dm_bio_prison_cell *cell;
 593};
 594
 
 
 
 
 
 
 595static void error_bio_list(struct bio_list *bios, blk_status_t error)
 596{
 597	struct bio *bio;
 598
 599	while ((bio = bio_list_pop(bios))) {
 600		bio->bi_status = error;
 601		bio_endio(bio);
 602	}
 603}
 604
 605static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
 606		blk_status_t error)
 607{
 608	struct bio_list bios;
 
 609
 610	bio_list_init(&bios);
 611
 612	spin_lock_irq(&tc->lock);
 613	bio_list_merge_init(&bios, master);
 614	spin_unlock_irq(&tc->lock);
 615
 616	error_bio_list(&bios, error);
 617}
 618
 619static void requeue_deferred_cells(struct thin_c *tc)
 620{
 621	struct pool *pool = tc->pool;
 
 622	struct list_head cells;
 623	struct dm_bio_prison_cell *cell, *tmp;
 624
 625	INIT_LIST_HEAD(&cells);
 626
 627	spin_lock_irq(&tc->lock);
 628	list_splice_init(&tc->deferred_cells, &cells);
 629	spin_unlock_irq(&tc->lock);
 630
 631	list_for_each_entry_safe(cell, tmp, &cells, user_list)
 632		cell_requeue(pool, cell);
 633}
 634
 635static void requeue_io(struct thin_c *tc)
 636{
 637	struct bio_list bios;
 
 638
 639	bio_list_init(&bios);
 640
 641	spin_lock_irq(&tc->lock);
 642	bio_list_merge_init(&bios, &tc->deferred_bio_list);
 643	bio_list_merge_init(&bios, &tc->retry_on_resume_list);
 644	spin_unlock_irq(&tc->lock);
 645
 646	error_bio_list(&bios, BLK_STS_DM_REQUEUE);
 647	requeue_deferred_cells(tc);
 648}
 649
 650static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
 651{
 652	struct thin_c *tc;
 653
 654	rcu_read_lock();
 655	list_for_each_entry_rcu(tc, &pool->active_thins, list)
 656		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
 657	rcu_read_unlock();
 658}
 659
 660static void error_retry_list(struct pool *pool)
 661{
 662	error_retry_list_with_code(pool, get_pool_io_error_code(pool));
 663}
 664
 665/*
 666 * This section of code contains the logic for processing a thin device's IO.
 667 * Much of the code depends on pool object resources (lists, workqueues, etc)
 668 * but most is exclusively called from the thin target rather than the thin-pool
 669 * target.
 670 */
 671
 672static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
 673{
 674	struct pool *pool = tc->pool;
 675	sector_t block_nr = bio->bi_iter.bi_sector;
 676
 677	if (block_size_is_power_of_two(pool))
 678		block_nr >>= pool->sectors_per_block_shift;
 679	else
 680		(void) sector_div(block_nr, pool->sectors_per_block);
 681
 682	return block_nr;
 683}
 684
 685/*
 686 * Returns the _complete_ blocks that this bio covers.
 687 */
 688static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
 689				dm_block_t *begin, dm_block_t *end)
 690{
 691	struct pool *pool = tc->pool;
 692	sector_t b = bio->bi_iter.bi_sector;
 693	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
 694
 695	b += pool->sectors_per_block - 1ull; /* so we round up */
 696
 697	if (block_size_is_power_of_two(pool)) {
 698		b >>= pool->sectors_per_block_shift;
 699		e >>= pool->sectors_per_block_shift;
 700	} else {
 701		(void) sector_div(b, pool->sectors_per_block);
 702		(void) sector_div(e, pool->sectors_per_block);
 703	}
 704
 705	if (e < b) {
 706		/* Can happen if the bio is within a single block. */
 707		e = b;
 708	}
 709
 710	*begin = b;
 711	*end = e;
 712}
 713
 714static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
 715{
 716	struct pool *pool = tc->pool;
 717	sector_t bi_sector = bio->bi_iter.bi_sector;
 718
 719	bio_set_dev(bio, tc->pool_dev->bdev);
 720	if (block_size_is_power_of_two(pool)) {
 721		bio->bi_iter.bi_sector =
 722			(block << pool->sectors_per_block_shift) |
 723			(bi_sector & (pool->sectors_per_block - 1));
 724	} else {
 725		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
 726				 sector_div(bi_sector, pool->sectors_per_block);
 727	}
 728}
 729
 730static void remap_to_origin(struct thin_c *tc, struct bio *bio)
 731{
 732	bio_set_dev(bio, tc->origin_dev->bdev);
 733}
 734
 735static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
 736{
 737	return op_is_flush(bio->bi_opf) &&
 738		dm_thin_changed_this_transaction(tc->td);
 739}
 740
 741static void inc_all_io_entry(struct pool *pool, struct bio *bio)
 742{
 743	struct dm_thin_endio_hook *h;
 744
 745	if (bio_op(bio) == REQ_OP_DISCARD)
 746		return;
 747
 748	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 749	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
 750}
 751
 752static void issue(struct thin_c *tc, struct bio *bio)
 753{
 754	struct pool *pool = tc->pool;
 
 755
 756	if (!bio_triggers_commit(tc, bio)) {
 757		dm_submit_bio_remap(bio, NULL);
 758		return;
 759	}
 760
 761	/*
 762	 * Complete bio with an error if earlier I/O caused changes to
 763	 * the metadata that can't be committed e.g, due to I/O errors
 764	 * on the metadata device.
 765	 */
 766	if (dm_thin_aborted_changes(tc->td)) {
 767		bio_io_error(bio);
 768		return;
 769	}
 770
 771	/*
 772	 * Batch together any bios that trigger commits and then issue a
 773	 * single commit for them in process_deferred_bios().
 774	 */
 775	spin_lock_irq(&pool->lock);
 776	bio_list_add(&pool->deferred_flush_bios, bio);
 777	spin_unlock_irq(&pool->lock);
 778}
 779
 780static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
 781{
 782	remap_to_origin(tc, bio);
 783	issue(tc, bio);
 784}
 785
 786static void remap_and_issue(struct thin_c *tc, struct bio *bio,
 787			    dm_block_t block)
 788{
 789	remap(tc, bio, block);
 790	issue(tc, bio);
 791}
 792
 793/*----------------------------------------------------------------*/
 794
 795/*
 796 * Bio endio functions.
 797 */
 798struct dm_thin_new_mapping {
 799	struct list_head list;
 800
 801	bool pass_discard:1;
 802	bool maybe_shared:1;
 803
 804	/*
 805	 * Track quiescing, copying and zeroing preparation actions.  When this
 806	 * counter hits zero the block is prepared and can be inserted into the
 807	 * btree.
 808	 */
 809	atomic_t prepare_actions;
 810
 811	blk_status_t status;
 812	struct thin_c *tc;
 813	dm_block_t virt_begin, virt_end;
 814	dm_block_t data_block;
 815	struct dm_bio_prison_cell *cell;
 816
 817	/*
 818	 * If the bio covers the whole area of a block then we can avoid
 819	 * zeroing or copying.  Instead this bio is hooked.  The bio will
 820	 * still be in the cell, so care has to be taken to avoid issuing
 821	 * the bio twice.
 822	 */
 823	struct bio *bio;
 824	bio_end_io_t *saved_bi_end_io;
 825};
 826
 827static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
 828{
 829	struct pool *pool = m->tc->pool;
 830
 831	if (atomic_dec_and_test(&m->prepare_actions)) {
 832		list_add_tail(&m->list, &pool->prepared_mappings);
 833		wake_worker(pool);
 834	}
 835}
 836
 837static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
 838{
 839	unsigned long flags;
 840	struct pool *pool = m->tc->pool;
 841
 842	spin_lock_irqsave(&pool->lock, flags);
 843	__complete_mapping_preparation(m);
 844	spin_unlock_irqrestore(&pool->lock, flags);
 845}
 846
 847static void copy_complete(int read_err, unsigned long write_err, void *context)
 848{
 849	struct dm_thin_new_mapping *m = context;
 850
 851	m->status = read_err || write_err ? BLK_STS_IOERR : 0;
 852	complete_mapping_preparation(m);
 853}
 854
 855static void overwrite_endio(struct bio *bio)
 856{
 857	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 858	struct dm_thin_new_mapping *m = h->overwrite_mapping;
 859
 860	bio->bi_end_io = m->saved_bi_end_io;
 861
 862	m->status = bio->bi_status;
 863	complete_mapping_preparation(m);
 864}
 865
 866/*----------------------------------------------------------------*/
 867
 868/*
 869 * Workqueue.
 870 */
 871
 872/*
 873 * Prepared mapping jobs.
 874 */
 875
 876/*
 877 * This sends the bios in the cell, except the original holder, back
 878 * to the deferred_bios list.
 879 */
 880static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
 881{
 882	struct pool *pool = tc->pool;
 883	unsigned long flags;
 884	struct bio_list bios;
 885
 886	bio_list_init(&bios);
 887	cell_release_no_holder(pool, cell, &bios);
 
 888
 889	if (!bio_list_empty(&bios)) {
 890		spin_lock_irqsave(&tc->lock, flags);
 891		bio_list_merge(&tc->deferred_bio_list, &bios);
 892		spin_unlock_irqrestore(&tc->lock, flags);
 893		wake_worker(pool);
 894	}
 895}
 896
 897static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
 898
 899struct remap_info {
 900	struct thin_c *tc;
 901	struct bio_list defer_bios;
 902	struct bio_list issue_bios;
 903};
 904
 905static void __inc_remap_and_issue_cell(void *context,
 906				       struct dm_bio_prison_cell *cell)
 907{
 908	struct remap_info *info = context;
 909	struct bio *bio;
 910
 911	while ((bio = bio_list_pop(&cell->bios))) {
 912		if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
 913			bio_list_add(&info->defer_bios, bio);
 914		else {
 915			inc_all_io_entry(info->tc->pool, bio);
 916
 917			/*
 918			 * We can't issue the bios with the bio prison lock
 919			 * held, so we add them to a list to issue on
 920			 * return from this function.
 921			 */
 922			bio_list_add(&info->issue_bios, bio);
 923		}
 924	}
 925}
 926
 927static void inc_remap_and_issue_cell(struct thin_c *tc,
 928				     struct dm_bio_prison_cell *cell,
 929				     dm_block_t block)
 930{
 931	struct bio *bio;
 932	struct remap_info info;
 933
 934	info.tc = tc;
 935	bio_list_init(&info.defer_bios);
 936	bio_list_init(&info.issue_bios);
 937
 938	/*
 939	 * We have to be careful to inc any bios we're about to issue
 940	 * before the cell is released, and avoid a race with new bios
 941	 * being added to the cell.
 942	 */
 943	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
 944			   &info, cell);
 945
 946	while ((bio = bio_list_pop(&info.defer_bios)))
 947		thin_defer_bio(tc, bio);
 948
 949	while ((bio = bio_list_pop(&info.issue_bios)))
 950		remap_and_issue(info.tc, bio, block);
 951}
 952
 953static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
 954{
 955	cell_error(m->tc->pool, m->cell);
 956	list_del(&m->list);
 957	mempool_free(m, &m->tc->pool->mapping_pool);
 958}
 959
 960static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
 961{
 962	struct pool *pool = tc->pool;
 963
 964	/*
 965	 * If the bio has the REQ_FUA flag set we must commit the metadata
 966	 * before signaling its completion.
 967	 */
 968	if (!bio_triggers_commit(tc, bio)) {
 969		bio_endio(bio);
 970		return;
 971	}
 972
 973	/*
 974	 * Complete bio with an error if earlier I/O caused changes to the
 975	 * metadata that can't be committed, e.g, due to I/O errors on the
 976	 * metadata device.
 977	 */
 978	if (dm_thin_aborted_changes(tc->td)) {
 979		bio_io_error(bio);
 980		return;
 981	}
 982
 983	/*
 984	 * Batch together any bios that trigger commits and then issue a
 985	 * single commit for them in process_deferred_bios().
 986	 */
 987	spin_lock_irq(&pool->lock);
 988	bio_list_add(&pool->deferred_flush_completions, bio);
 989	spin_unlock_irq(&pool->lock);
 990}
 991
 992static void process_prepared_mapping(struct dm_thin_new_mapping *m)
 993{
 994	struct thin_c *tc = m->tc;
 995	struct pool *pool = tc->pool;
 996	struct bio *bio = m->bio;
 997	int r;
 998
 999	if (m->status) {
1000		cell_error(pool, m->cell);
1001		goto out;
1002	}
1003
1004	/*
1005	 * Commit the prepared block into the mapping btree.
1006	 * Any I/O for this block arriving after this point will get
1007	 * remapped to it directly.
1008	 */
1009	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1010	if (r) {
1011		metadata_operation_failed(pool, "dm_thin_insert_block", r);
1012		cell_error(pool, m->cell);
1013		goto out;
1014	}
1015
1016	/*
1017	 * Release any bios held while the block was being provisioned.
1018	 * If we are processing a write bio that completely covers the block,
1019	 * we already processed it so can ignore it now when processing
1020	 * the bios in the cell.
1021	 */
1022	if (bio) {
1023		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1024		complete_overwrite_bio(tc, bio);
1025	} else {
1026		inc_all_io_entry(tc->pool, m->cell->holder);
1027		remap_and_issue(tc, m->cell->holder, m->data_block);
1028		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1029	}
1030
1031out:
1032	list_del(&m->list);
1033	mempool_free(m, &pool->mapping_pool);
1034}
1035
1036/*----------------------------------------------------------------*/
1037
1038static void free_discard_mapping(struct dm_thin_new_mapping *m)
1039{
1040	struct thin_c *tc = m->tc;
1041
1042	if (m->cell)
1043		cell_defer_no_holder(tc, m->cell);
1044	mempool_free(m, &tc->pool->mapping_pool);
1045}
1046
1047static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1048{
1049	bio_io_error(m->bio);
1050	free_discard_mapping(m);
1051}
1052
1053static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1054{
1055	bio_endio(m->bio);
1056	free_discard_mapping(m);
1057}
1058
1059static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1060{
1061	int r;
1062	struct thin_c *tc = m->tc;
1063
1064	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1065	if (r) {
1066		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1067		bio_io_error(m->bio);
1068	} else
1069		bio_endio(m->bio);
1070
1071	cell_defer_no_holder(tc, m->cell);
1072	mempool_free(m, &tc->pool->mapping_pool);
1073}
1074
1075/*----------------------------------------------------------------*/
1076
1077static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1078						   struct bio *discard_parent)
1079{
1080	/*
1081	 * We've already unmapped this range of blocks, but before we
1082	 * passdown we have to check that these blocks are now unused.
1083	 */
1084	int r = 0;
1085	bool shared = true;
1086	struct thin_c *tc = m->tc;
1087	struct pool *pool = tc->pool;
1088	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1089	struct discard_op op;
1090
1091	begin_discard(&op, tc, discard_parent);
1092	while (b != end) {
1093		/* find start of unmapped run */
1094		for (; b < end; b++) {
1095			r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1096			if (r)
1097				goto out;
1098
1099			if (!shared)
1100				break;
1101		}
1102
1103		if (b == end)
1104			break;
1105
1106		/* find end of run */
1107		for (e = b + 1; e != end; e++) {
1108			r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1109			if (r)
1110				goto out;
1111
1112			if (shared)
1113				break;
1114		}
1115
1116		r = issue_discard(&op, b, e);
1117		if (r)
1118			goto out;
1119
1120		b = e;
1121	}
1122out:
1123	end_discard(&op, r);
1124}
1125
1126static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1127{
1128	unsigned long flags;
1129	struct pool *pool = m->tc->pool;
1130
1131	spin_lock_irqsave(&pool->lock, flags);
1132	list_add_tail(&m->list, &pool->prepared_discards_pt2);
1133	spin_unlock_irqrestore(&pool->lock, flags);
1134	wake_worker(pool);
1135}
1136
1137static void passdown_endio(struct bio *bio)
1138{
1139	/*
1140	 * It doesn't matter if the passdown discard failed, we still want
1141	 * to unmap (we ignore err).
1142	 */
1143	queue_passdown_pt2(bio->bi_private);
1144	bio_put(bio);
1145}
1146
1147static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1148{
1149	int r;
1150	struct thin_c *tc = m->tc;
1151	struct pool *pool = tc->pool;
1152	struct bio *discard_parent;
1153	dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1154
1155	/*
1156	 * Only this thread allocates blocks, so we can be sure that the
1157	 * newly unmapped blocks will not be allocated before the end of
1158	 * the function.
1159	 */
1160	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1161	if (r) {
1162		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1163		bio_io_error(m->bio);
1164		cell_defer_no_holder(tc, m->cell);
1165		mempool_free(m, &pool->mapping_pool);
1166		return;
1167	}
1168
1169	/*
1170	 * Increment the unmapped blocks.  This prevents a race between the
1171	 * passdown io and reallocation of freed blocks.
1172	 */
1173	r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1174	if (r) {
1175		metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1176		bio_io_error(m->bio);
1177		cell_defer_no_holder(tc, m->cell);
1178		mempool_free(m, &pool->mapping_pool);
1179		return;
1180	}
1181
1182	discard_parent = bio_alloc(NULL, 1, 0, GFP_NOIO);
1183	discard_parent->bi_end_io = passdown_endio;
1184	discard_parent->bi_private = m;
1185	if (m->maybe_shared)
1186		passdown_double_checking_shared_status(m, discard_parent);
1187	else {
1188		struct discard_op op;
 
 
1189
1190		begin_discard(&op, tc, discard_parent);
1191		r = issue_discard(&op, m->data_block, data_end);
1192		end_discard(&op, r);
 
 
 
 
 
 
1193	}
1194}
1195
1196static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1197{
1198	int r;
1199	struct thin_c *tc = m->tc;
1200	struct pool *pool = tc->pool;
1201
1202	/*
1203	 * The passdown has completed, so now we can decrement all those
1204	 * unmapped blocks.
1205	 */
1206	r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1207				   m->data_block + (m->virt_end - m->virt_begin));
1208	if (r) {
1209		metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1210		bio_io_error(m->bio);
1211	} else
1212		bio_endio(m->bio);
1213
1214	cell_defer_no_holder(tc, m->cell);
1215	mempool_free(m, &pool->mapping_pool);
1216}
1217
1218static void process_prepared(struct pool *pool, struct list_head *head,
1219			     process_mapping_fn *fn)
1220{
 
1221	struct list_head maps;
1222	struct dm_thin_new_mapping *m, *tmp;
1223
1224	INIT_LIST_HEAD(&maps);
1225	spin_lock_irq(&pool->lock);
1226	list_splice_init(head, &maps);
1227	spin_unlock_irq(&pool->lock);
1228
1229	list_for_each_entry_safe(m, tmp, &maps, list)
1230		(*fn)(m);
1231}
1232
1233/*
1234 * Deferred bio jobs.
1235 */
1236static int io_overlaps_block(struct pool *pool, struct bio *bio)
1237{
1238	return bio->bi_iter.bi_size ==
1239		(pool->sectors_per_block << SECTOR_SHIFT);
1240}
1241
1242static int io_overwrites_block(struct pool *pool, struct bio *bio)
1243{
1244	return (bio_data_dir(bio) == WRITE) &&
1245		io_overlaps_block(pool, bio);
1246}
1247
1248static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1249			       bio_end_io_t *fn)
1250{
1251	*save = bio->bi_end_io;
1252	bio->bi_end_io = fn;
1253}
1254
1255static int ensure_next_mapping(struct pool *pool)
1256{
1257	if (pool->next_mapping)
1258		return 0;
1259
1260	pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1261
1262	return pool->next_mapping ? 0 : -ENOMEM;
1263}
1264
1265static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1266{
1267	struct dm_thin_new_mapping *m = pool->next_mapping;
1268
1269	BUG_ON(!pool->next_mapping);
1270
1271	memset(m, 0, sizeof(struct dm_thin_new_mapping));
1272	INIT_LIST_HEAD(&m->list);
1273	m->bio = NULL;
1274
1275	pool->next_mapping = NULL;
1276
1277	return m;
1278}
1279
1280static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1281		    sector_t begin, sector_t end)
1282{
 
1283	struct dm_io_region to;
1284
1285	to.bdev = tc->pool_dev->bdev;
1286	to.sector = begin;
1287	to.count = end - begin;
1288
1289	dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
 
 
 
 
1290}
1291
1292static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1293				      dm_block_t data_begin,
1294				      struct dm_thin_new_mapping *m)
1295{
1296	struct pool *pool = tc->pool;
1297	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1298
1299	h->overwrite_mapping = m;
1300	m->bio = bio;
1301	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1302	inc_all_io_entry(pool, bio);
1303	remap_and_issue(tc, bio, data_begin);
1304}
1305
1306/*
1307 * A partial copy also needs to zero the uncopied region.
1308 */
1309static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1310			  struct dm_dev *origin, dm_block_t data_origin,
1311			  dm_block_t data_dest,
1312			  struct dm_bio_prison_cell *cell, struct bio *bio,
1313			  sector_t len)
1314{
 
1315	struct pool *pool = tc->pool;
1316	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1317
1318	m->tc = tc;
1319	m->virt_begin = virt_block;
1320	m->virt_end = virt_block + 1u;
1321	m->data_block = data_dest;
1322	m->cell = cell;
1323
1324	/*
1325	 * quiesce action + copy action + an extra reference held for the
1326	 * duration of this function (we may need to inc later for a
1327	 * partial zero).
1328	 */
1329	atomic_set(&m->prepare_actions, 3);
1330
1331	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1332		complete_mapping_preparation(m); /* already quiesced */
1333
1334	/*
1335	 * IO to pool_dev remaps to the pool target's data_dev.
1336	 *
1337	 * If the whole block of data is being overwritten, we can issue the
1338	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1339	 */
1340	if (io_overwrites_block(pool, bio))
1341		remap_and_issue_overwrite(tc, bio, data_dest, m);
1342	else {
1343		struct dm_io_region from, to;
1344
1345		from.bdev = origin->bdev;
1346		from.sector = data_origin * pool->sectors_per_block;
1347		from.count = len;
1348
1349		to.bdev = tc->pool_dev->bdev;
1350		to.sector = data_dest * pool->sectors_per_block;
1351		to.count = len;
1352
1353		dm_kcopyd_copy(pool->copier, &from, 1, &to,
1354			       0, copy_complete, m);
 
 
 
 
 
 
 
 
 
 
 
1355
1356		/*
1357		 * Do we need to zero a tail region?
1358		 */
1359		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1360			atomic_inc(&m->prepare_actions);
1361			ll_zero(tc, m,
1362				data_dest * pool->sectors_per_block + len,
1363				(data_dest + 1) * pool->sectors_per_block);
1364		}
1365	}
1366
1367	complete_mapping_preparation(m); /* drop our ref */
1368}
1369
1370static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1371				   dm_block_t data_origin, dm_block_t data_dest,
1372				   struct dm_bio_prison_cell *cell, struct bio *bio)
1373{
1374	schedule_copy(tc, virt_block, tc->pool_dev,
1375		      data_origin, data_dest, cell, bio,
1376		      tc->pool->sectors_per_block);
1377}
1378
1379static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1380			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1381			  struct bio *bio)
1382{
1383	struct pool *pool = tc->pool;
1384	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1385
1386	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1387	m->tc = tc;
1388	m->virt_begin = virt_block;
1389	m->virt_end = virt_block + 1u;
1390	m->data_block = data_block;
1391	m->cell = cell;
1392
1393	/*
1394	 * If the whole block of data is being overwritten or we are not
1395	 * zeroing pre-existing data, we can issue the bio immediately.
1396	 * Otherwise we use kcopyd to zero the data first.
1397	 */
1398	if (pool->pf.zero_new_blocks) {
1399		if (io_overwrites_block(pool, bio))
1400			remap_and_issue_overwrite(tc, bio, data_block, m);
1401		else {
1402			ll_zero(tc, m, data_block * pool->sectors_per_block,
1403				(data_block + 1) * pool->sectors_per_block);
1404		}
1405	} else
1406		process_prepared_mapping(m);
1407}
1408
1409static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1410				   dm_block_t data_dest,
1411				   struct dm_bio_prison_cell *cell, struct bio *bio)
1412{
1413	struct pool *pool = tc->pool;
1414	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1415	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1416
1417	if (virt_block_end <= tc->origin_size) {
1418		schedule_copy(tc, virt_block, tc->origin_dev,
1419			      virt_block, data_dest, cell, bio,
1420			      pool->sectors_per_block);
1421
1422	} else if (virt_block_begin < tc->origin_size) {
1423		schedule_copy(tc, virt_block, tc->origin_dev,
1424			      virt_block, data_dest, cell, bio,
1425			      tc->origin_size - virt_block_begin);
1426
1427	} else
1428		schedule_zero(tc, virt_block, data_dest, cell, bio);
1429}
1430
1431static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1432
1433static void requeue_bios(struct pool *pool);
1434
1435static bool is_read_only_pool_mode(enum pool_mode mode)
1436{
1437	return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1438}
1439
1440static bool is_read_only(struct pool *pool)
1441{
1442	return is_read_only_pool_mode(get_pool_mode(pool));
1443}
1444
1445static void check_for_metadata_space(struct pool *pool)
1446{
1447	int r;
1448	const char *ooms_reason = NULL;
1449	dm_block_t nr_free;
1450
1451	r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1452	if (r)
1453		ooms_reason = "Could not get free metadata blocks";
1454	else if (!nr_free)
1455		ooms_reason = "No free metadata blocks";
1456
1457	if (ooms_reason && !is_read_only(pool)) {
1458		DMERR("%s", ooms_reason);
1459		set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1460	}
1461}
1462
1463static void check_for_data_space(struct pool *pool)
1464{
1465	int r;
1466	dm_block_t nr_free;
1467
1468	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1469		return;
1470
1471	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1472	if (r)
1473		return;
1474
1475	if (nr_free) {
1476		set_pool_mode(pool, PM_WRITE);
1477		requeue_bios(pool);
1478	}
1479}
1480
1481/*
1482 * A non-zero return indicates read_only or fail_io mode.
1483 * Many callers don't care about the return value.
1484 */
1485static int commit(struct pool *pool)
1486{
1487	int r;
1488
1489	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1490		return -EINVAL;
1491
1492	r = dm_pool_commit_metadata(pool->pmd);
1493	if (r)
1494		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1495	else {
1496		check_for_metadata_space(pool);
1497		check_for_data_space(pool);
1498	}
1499
1500	return r;
1501}
1502
1503static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1504{
 
 
1505	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1506		DMWARN("%s: reached low water mark for data device: sending event.",
1507		       dm_device_name(pool->pool_md));
1508		spin_lock_irq(&pool->lock);
1509		pool->low_water_triggered = true;
1510		spin_unlock_irq(&pool->lock);
1511		dm_table_event(pool->ti->table);
1512	}
1513}
1514
1515static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1516{
1517	int r;
1518	dm_block_t free_blocks;
1519	struct pool *pool = tc->pool;
1520
1521	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1522		return -EINVAL;
1523
1524	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1525	if (r) {
1526		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1527		return r;
1528	}
1529
1530	check_low_water_mark(pool, free_blocks);
1531
1532	if (!free_blocks) {
1533		/*
1534		 * Try to commit to see if that will free up some
1535		 * more space.
1536		 */
1537		r = commit(pool);
1538		if (r)
1539			return r;
1540
1541		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1542		if (r) {
1543			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1544			return r;
1545		}
1546
1547		if (!free_blocks) {
1548			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1549			return -ENOSPC;
1550		}
1551	}
1552
1553	r = dm_pool_alloc_data_block(pool->pmd, result);
1554	if (r) {
1555		if (r == -ENOSPC)
1556			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1557		else
1558			metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1559		return r;
1560	}
1561
1562	r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1563	if (r) {
1564		metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1565		return r;
1566	}
1567
1568	if (!free_blocks) {
1569		/* Let's commit before we use up the metadata reserve. */
1570		r = commit(pool);
1571		if (r)
1572			return r;
1573	}
1574
1575	return 0;
1576}
1577
1578/*
1579 * If we have run out of space, queue bios until the device is
1580 * resumed, presumably after having been reloaded with more space.
1581 */
1582static void retry_on_resume(struct bio *bio)
1583{
1584	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1585	struct thin_c *tc = h->tc;
 
1586
1587	spin_lock_irq(&tc->lock);
1588	bio_list_add(&tc->retry_on_resume_list, bio);
1589	spin_unlock_irq(&tc->lock);
1590}
1591
1592static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1593{
1594	enum pool_mode m = get_pool_mode(pool);
1595
1596	switch (m) {
1597	case PM_WRITE:
1598		/* Shouldn't get here */
1599		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1600		return BLK_STS_IOERR;
1601
1602	case PM_OUT_OF_DATA_SPACE:
1603		return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1604
1605	case PM_OUT_OF_METADATA_SPACE:
1606	case PM_READ_ONLY:
1607	case PM_FAIL:
1608		return BLK_STS_IOERR;
1609	default:
1610		/* Shouldn't get here */
1611		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1612		return BLK_STS_IOERR;
1613	}
1614}
1615
1616static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1617{
1618	blk_status_t error = should_error_unserviceable_bio(pool);
1619
1620	if (error) {
1621		bio->bi_status = error;
1622		bio_endio(bio);
1623	} else
1624		retry_on_resume(bio);
1625}
1626
1627static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1628{
1629	struct bio *bio;
1630	struct bio_list bios;
1631	blk_status_t error;
1632
1633	error = should_error_unserviceable_bio(pool);
1634	if (error) {
1635		cell_error_with_code(pool, cell, error);
1636		return;
1637	}
1638
1639	bio_list_init(&bios);
1640	cell_release(pool, cell, &bios);
1641
1642	while ((bio = bio_list_pop(&bios)))
1643		retry_on_resume(bio);
1644}
1645
1646static void process_discard_cell_no_passdown(struct thin_c *tc,
1647					     struct dm_bio_prison_cell *virt_cell)
1648{
1649	struct pool *pool = tc->pool;
1650	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1651
1652	/*
1653	 * We don't need to lock the data blocks, since there's no
1654	 * passdown.  We only lock data blocks for allocation and breaking sharing.
1655	 */
1656	m->tc = tc;
1657	m->virt_begin = virt_cell->key.block_begin;
1658	m->virt_end = virt_cell->key.block_end;
1659	m->cell = virt_cell;
1660	m->bio = virt_cell->holder;
1661
1662	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1663		pool->process_prepared_discard(m);
1664}
1665
1666static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1667				 struct bio *bio)
1668{
1669	struct pool *pool = tc->pool;
1670
1671	int r;
1672	bool maybe_shared;
1673	struct dm_cell_key data_key;
1674	struct dm_bio_prison_cell *data_cell;
1675	struct dm_thin_new_mapping *m;
1676	dm_block_t virt_begin, virt_end, data_begin, data_end;
1677	dm_block_t len, next_boundary;
1678
1679	while (begin != end) {
 
 
 
 
 
1680		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1681					      &data_begin, &maybe_shared);
1682		if (r) {
1683			/*
1684			 * Silently fail, letting any mappings we've
1685			 * created complete.
1686			 */
1687			break;
1688		}
1689
1690		data_end = data_begin + (virt_end - virt_begin);
 
 
 
 
 
1691
1692		/*
1693		 * Make sure the data region obeys the bio prison restrictions.
 
1694		 */
1695		while (data_begin < data_end) {
1696			r = ensure_next_mapping(pool);
1697			if (r)
1698				return; /* we did our best */
1699
1700			next_boundary = ((data_begin >> BIO_PRISON_MAX_RANGE_SHIFT) + 1)
1701				<< BIO_PRISON_MAX_RANGE_SHIFT;
1702			len = min_t(sector_t, data_end - data_begin, next_boundary - data_begin);
1703
1704			/* This key is certainly within range given the above splitting */
1705			(void) build_key(tc->td, PHYSICAL, data_begin, data_begin + len, &data_key);
1706			if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1707				/* contention, we'll give up with this range */
1708				data_begin += len;
1709				continue;
1710			}
1711
1712			/*
1713			 * IO may still be going to the destination block.  We must
1714			 * quiesce before we can do the removal.
1715			 */
1716			m = get_next_mapping(pool);
1717			m->tc = tc;
1718			m->maybe_shared = maybe_shared;
1719			m->virt_begin = virt_begin;
1720			m->virt_end = virt_begin + len;
1721			m->data_block = data_begin;
1722			m->cell = data_cell;
1723			m->bio = bio;
1724
1725			/*
1726			 * The parent bio must not complete before sub discard bios are
1727			 * chained to it (see end_discard's bio_chain)!
1728			 *
1729			 * This per-mapping bi_remaining increment is paired with
1730			 * the implicit decrement that occurs via bio_endio() in
1731			 * end_discard().
1732			 */
1733			bio_inc_remaining(bio);
1734			if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1735				pool->process_prepared_discard(m);
1736
1737			virt_begin += len;
1738			data_begin += len;
1739		}
1740
1741		begin = virt_end;
1742	}
1743}
1744
1745static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1746{
1747	struct bio *bio = virt_cell->holder;
1748	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1749
1750	/*
1751	 * The virt_cell will only get freed once the origin bio completes.
1752	 * This means it will remain locked while all the individual
1753	 * passdown bios are in flight.
1754	 */
1755	h->cell = virt_cell;
1756	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1757
1758	/*
1759	 * We complete the bio now, knowing that the bi_remaining field
1760	 * will prevent completion until the sub range discards have
1761	 * completed.
1762	 */
1763	bio_endio(bio);
1764}
1765
1766static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1767{
1768	dm_block_t begin, end;
1769	struct dm_cell_key virt_key;
1770	struct dm_bio_prison_cell *virt_cell;
1771
1772	get_bio_block_range(tc, bio, &begin, &end);
1773	if (begin == end) {
1774		/*
1775		 * The discard covers less than a block.
1776		 */
1777		bio_endio(bio);
1778		return;
1779	}
1780
1781	if (unlikely(!build_key(tc->td, VIRTUAL, begin, end, &virt_key))) {
1782		DMERR_LIMIT("Discard doesn't respect bio prison limits");
1783		bio_endio(bio);
1784		return;
1785	}
1786
1787	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell)) {
1788		/*
1789		 * Potential starvation issue: We're relying on the
1790		 * fs/application being well behaved, and not trying to
1791		 * send IO to a region at the same time as discarding it.
1792		 * If they do this persistently then it's possible this
1793		 * cell will never be granted.
1794		 */
1795		return;
1796	}
1797
1798	tc->pool->process_discard_cell(tc, virt_cell);
1799}
1800
1801static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1802			  struct dm_cell_key *key,
1803			  struct dm_thin_lookup_result *lookup_result,
1804			  struct dm_bio_prison_cell *cell)
1805{
1806	int r;
1807	dm_block_t data_block;
1808	struct pool *pool = tc->pool;
1809
1810	r = alloc_data_block(tc, &data_block);
1811	switch (r) {
1812	case 0:
1813		schedule_internal_copy(tc, block, lookup_result->block,
1814				       data_block, cell, bio);
1815		break;
1816
1817	case -ENOSPC:
1818		retry_bios_on_resume(pool, cell);
1819		break;
1820
1821	default:
1822		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1823			    __func__, r);
1824		cell_error(pool, cell);
1825		break;
1826	}
1827}
1828
1829static void __remap_and_issue_shared_cell(void *context,
1830					  struct dm_bio_prison_cell *cell)
1831{
1832	struct remap_info *info = context;
1833	struct bio *bio;
1834
1835	while ((bio = bio_list_pop(&cell->bios))) {
1836		if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1837		    bio_op(bio) == REQ_OP_DISCARD)
1838			bio_list_add(&info->defer_bios, bio);
1839		else {
1840			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1841
1842			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1843			inc_all_io_entry(info->tc->pool, bio);
1844			bio_list_add(&info->issue_bios, bio);
1845		}
1846	}
1847}
1848
1849static void remap_and_issue_shared_cell(struct thin_c *tc,
1850					struct dm_bio_prison_cell *cell,
1851					dm_block_t block)
1852{
1853	struct bio *bio;
1854	struct remap_info info;
1855
1856	info.tc = tc;
1857	bio_list_init(&info.defer_bios);
1858	bio_list_init(&info.issue_bios);
1859
1860	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1861			   &info, cell);
1862
1863	while ((bio = bio_list_pop(&info.defer_bios)))
1864		thin_defer_bio(tc, bio);
1865
1866	while ((bio = bio_list_pop(&info.issue_bios)))
1867		remap_and_issue(tc, bio, block);
1868}
1869
1870static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1871			       dm_block_t block,
1872			       struct dm_thin_lookup_result *lookup_result,
1873			       struct dm_bio_prison_cell *virt_cell)
1874{
1875	struct dm_bio_prison_cell *data_cell;
1876	struct pool *pool = tc->pool;
1877	struct dm_cell_key key;
1878
1879	/*
1880	 * If cell is already occupied, then sharing is already in the process
1881	 * of being broken so we have nothing further to do here.
1882	 */
1883	build_data_key(tc->td, lookup_result->block, &key);
1884	if (bio_detain(pool, &key, bio, &data_cell)) {
1885		cell_defer_no_holder(tc, virt_cell);
1886		return;
1887	}
1888
1889	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1890		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1891		cell_defer_no_holder(tc, virt_cell);
1892	} else {
1893		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1894
1895		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1896		inc_all_io_entry(pool, bio);
1897		remap_and_issue(tc, bio, lookup_result->block);
1898
1899		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1900		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1901	}
1902}
1903
1904static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1905			    struct dm_bio_prison_cell *cell)
1906{
1907	int r;
1908	dm_block_t data_block;
1909	struct pool *pool = tc->pool;
1910
1911	/*
1912	 * Remap empty bios (flushes) immediately, without provisioning.
1913	 */
1914	if (!bio->bi_iter.bi_size) {
1915		inc_all_io_entry(pool, bio);
1916		cell_defer_no_holder(tc, cell);
1917
1918		remap_and_issue(tc, bio, 0);
1919		return;
1920	}
1921
1922	/*
1923	 * Fill read bios with zeroes and complete them immediately.
1924	 */
1925	if (bio_data_dir(bio) == READ) {
1926		zero_fill_bio(bio);
1927		cell_defer_no_holder(tc, cell);
1928		bio_endio(bio);
1929		return;
1930	}
1931
1932	r = alloc_data_block(tc, &data_block);
1933	switch (r) {
1934	case 0:
1935		if (tc->origin_dev)
1936			schedule_external_copy(tc, block, data_block, cell, bio);
1937		else
1938			schedule_zero(tc, block, data_block, cell, bio);
1939		break;
1940
1941	case -ENOSPC:
1942		retry_bios_on_resume(pool, cell);
1943		break;
1944
1945	default:
1946		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1947			    __func__, r);
1948		cell_error(pool, cell);
1949		break;
1950	}
1951}
1952
1953static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1954{
1955	int r;
1956	struct pool *pool = tc->pool;
1957	struct bio *bio = cell->holder;
1958	dm_block_t block = get_bio_block(tc, bio);
1959	struct dm_thin_lookup_result lookup_result;
1960
1961	if (tc->requeue_mode) {
1962		cell_requeue(pool, cell);
1963		return;
1964	}
1965
1966	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1967	switch (r) {
1968	case 0:
1969		if (lookup_result.shared)
1970			process_shared_bio(tc, bio, block, &lookup_result, cell);
1971		else {
1972			inc_all_io_entry(pool, bio);
1973			remap_and_issue(tc, bio, lookup_result.block);
1974			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1975		}
1976		break;
1977
1978	case -ENODATA:
1979		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1980			inc_all_io_entry(pool, bio);
1981			cell_defer_no_holder(tc, cell);
1982
1983			if (bio_end_sector(bio) <= tc->origin_size)
1984				remap_to_origin_and_issue(tc, bio);
1985
1986			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1987				zero_fill_bio(bio);
1988				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1989				remap_to_origin_and_issue(tc, bio);
1990
1991			} else {
1992				zero_fill_bio(bio);
1993				bio_endio(bio);
1994			}
1995		} else
1996			provision_block(tc, bio, block, cell);
1997		break;
1998
1999	default:
2000		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2001			    __func__, r);
2002		cell_defer_no_holder(tc, cell);
2003		bio_io_error(bio);
2004		break;
2005	}
2006}
2007
2008static void process_bio(struct thin_c *tc, struct bio *bio)
2009{
2010	struct pool *pool = tc->pool;
2011	dm_block_t block = get_bio_block(tc, bio);
2012	struct dm_bio_prison_cell *cell;
2013	struct dm_cell_key key;
2014
2015	/*
2016	 * If cell is already occupied, then the block is already
2017	 * being provisioned so we have nothing further to do here.
2018	 */
2019	build_virtual_key(tc->td, block, &key);
2020	if (bio_detain(pool, &key, bio, &cell))
2021		return;
2022
2023	process_cell(tc, cell);
2024}
2025
2026static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2027				    struct dm_bio_prison_cell *cell)
2028{
2029	int r;
2030	int rw = bio_data_dir(bio);
2031	dm_block_t block = get_bio_block(tc, bio);
2032	struct dm_thin_lookup_result lookup_result;
2033
2034	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2035	switch (r) {
2036	case 0:
2037		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2038			handle_unserviceable_bio(tc->pool, bio);
2039			if (cell)
2040				cell_defer_no_holder(tc, cell);
2041		} else {
2042			inc_all_io_entry(tc->pool, bio);
2043			remap_and_issue(tc, bio, lookup_result.block);
2044			if (cell)
2045				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2046		}
2047		break;
2048
2049	case -ENODATA:
2050		if (cell)
2051			cell_defer_no_holder(tc, cell);
2052		if (rw != READ) {
2053			handle_unserviceable_bio(tc->pool, bio);
2054			break;
2055		}
2056
2057		if (tc->origin_dev) {
2058			inc_all_io_entry(tc->pool, bio);
2059			remap_to_origin_and_issue(tc, bio);
2060			break;
2061		}
2062
2063		zero_fill_bio(bio);
2064		bio_endio(bio);
2065		break;
2066
2067	default:
2068		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2069			    __func__, r);
2070		if (cell)
2071			cell_defer_no_holder(tc, cell);
2072		bio_io_error(bio);
2073		break;
2074	}
2075}
2076
2077static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2078{
2079	__process_bio_read_only(tc, bio, NULL);
2080}
2081
2082static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2083{
2084	__process_bio_read_only(tc, cell->holder, cell);
2085}
2086
2087static void process_bio_success(struct thin_c *tc, struct bio *bio)
2088{
2089	bio_endio(bio);
2090}
2091
2092static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2093{
2094	bio_io_error(bio);
2095}
2096
2097static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2098{
2099	cell_success(tc->pool, cell);
2100}
2101
2102static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2103{
2104	cell_error(tc->pool, cell);
2105}
2106
2107/*
2108 * FIXME: should we also commit due to size of transaction, measured in
2109 * metadata blocks?
2110 */
2111static int need_commit_due_to_time(struct pool *pool)
2112{
2113	return !time_in_range(jiffies, pool->last_commit_jiffies,
2114			      pool->last_commit_jiffies + COMMIT_PERIOD);
2115}
2116
2117#define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2118#define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2119
2120static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2121{
2122	struct rb_node **rbp, *parent;
2123	struct dm_thin_endio_hook *pbd;
2124	sector_t bi_sector = bio->bi_iter.bi_sector;
2125
2126	rbp = &tc->sort_bio_list.rb_node;
2127	parent = NULL;
2128	while (*rbp) {
2129		parent = *rbp;
2130		pbd = thin_pbd(parent);
2131
2132		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2133			rbp = &(*rbp)->rb_left;
2134		else
2135			rbp = &(*rbp)->rb_right;
2136	}
2137
2138	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2139	rb_link_node(&pbd->rb_node, parent, rbp);
2140	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2141}
2142
2143static void __extract_sorted_bios(struct thin_c *tc)
2144{
2145	struct rb_node *node;
2146	struct dm_thin_endio_hook *pbd;
2147	struct bio *bio;
2148
2149	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2150		pbd = thin_pbd(node);
2151		bio = thin_bio(pbd);
2152
2153		bio_list_add(&tc->deferred_bio_list, bio);
2154		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2155	}
2156
2157	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2158}
2159
2160static void __sort_thin_deferred_bios(struct thin_c *tc)
2161{
2162	struct bio *bio;
2163	struct bio_list bios;
2164
2165	bio_list_init(&bios);
2166	bio_list_merge(&bios, &tc->deferred_bio_list);
2167	bio_list_init(&tc->deferred_bio_list);
2168
2169	/* Sort deferred_bio_list using rb-tree */
2170	while ((bio = bio_list_pop(&bios)))
2171		__thin_bio_rb_add(tc, bio);
2172
2173	/*
2174	 * Transfer the sorted bios in sort_bio_list back to
2175	 * deferred_bio_list to allow lockless submission of
2176	 * all bios.
2177	 */
2178	__extract_sorted_bios(tc);
2179}
2180
2181static void process_thin_deferred_bios(struct thin_c *tc)
2182{
2183	struct pool *pool = tc->pool;
 
2184	struct bio *bio;
2185	struct bio_list bios;
2186	struct blk_plug plug;
2187	unsigned int count = 0;
2188
2189	if (tc->requeue_mode) {
2190		error_thin_bio_list(tc, &tc->deferred_bio_list,
2191				BLK_STS_DM_REQUEUE);
2192		return;
2193	}
2194
2195	bio_list_init(&bios);
2196
2197	spin_lock_irq(&tc->lock);
2198
2199	if (bio_list_empty(&tc->deferred_bio_list)) {
2200		spin_unlock_irq(&tc->lock);
2201		return;
2202	}
2203
2204	__sort_thin_deferred_bios(tc);
2205
2206	bio_list_merge(&bios, &tc->deferred_bio_list);
2207	bio_list_init(&tc->deferred_bio_list);
2208
2209	spin_unlock_irq(&tc->lock);
2210
2211	blk_start_plug(&plug);
2212	while ((bio = bio_list_pop(&bios))) {
2213		/*
2214		 * If we've got no free new_mapping structs, and processing
2215		 * this bio might require one, we pause until there are some
2216		 * prepared mappings to process.
2217		 */
2218		if (ensure_next_mapping(pool)) {
2219			spin_lock_irq(&tc->lock);
2220			bio_list_add(&tc->deferred_bio_list, bio);
2221			bio_list_merge(&tc->deferred_bio_list, &bios);
2222			spin_unlock_irq(&tc->lock);
2223			break;
2224		}
2225
2226		if (bio_op(bio) == REQ_OP_DISCARD)
2227			pool->process_discard(tc, bio);
2228		else
2229			pool->process_bio(tc, bio);
2230
2231		if ((count++ & 127) == 0) {
2232			throttle_work_update(&pool->throttle);
2233			dm_pool_issue_prefetches(pool->pmd);
2234		}
2235		cond_resched();
2236	}
2237	blk_finish_plug(&plug);
2238}
2239
2240static int cmp_cells(const void *lhs, const void *rhs)
2241{
2242	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2243	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2244
2245	BUG_ON(!lhs_cell->holder);
2246	BUG_ON(!rhs_cell->holder);
2247
2248	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2249		return -1;
2250
2251	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2252		return 1;
2253
2254	return 0;
2255}
2256
2257static unsigned int sort_cells(struct pool *pool, struct list_head *cells)
2258{
2259	unsigned int count = 0;
2260	struct dm_bio_prison_cell *cell, *tmp;
2261
2262	list_for_each_entry_safe(cell, tmp, cells, user_list) {
2263		if (count >= CELL_SORT_ARRAY_SIZE)
2264			break;
2265
2266		pool->cell_sort_array[count++] = cell;
2267		list_del(&cell->user_list);
2268	}
2269
2270	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2271
2272	return count;
2273}
2274
2275static void process_thin_deferred_cells(struct thin_c *tc)
2276{
2277	struct pool *pool = tc->pool;
 
2278	struct list_head cells;
2279	struct dm_bio_prison_cell *cell;
2280	unsigned int i, j, count;
2281
2282	INIT_LIST_HEAD(&cells);
2283
2284	spin_lock_irq(&tc->lock);
2285	list_splice_init(&tc->deferred_cells, &cells);
2286	spin_unlock_irq(&tc->lock);
2287
2288	if (list_empty(&cells))
2289		return;
2290
2291	do {
2292		count = sort_cells(tc->pool, &cells);
2293
2294		for (i = 0; i < count; i++) {
2295			cell = pool->cell_sort_array[i];
2296			BUG_ON(!cell->holder);
2297
2298			/*
2299			 * If we've got no free new_mapping structs, and processing
2300			 * this bio might require one, we pause until there are some
2301			 * prepared mappings to process.
2302			 */
2303			if (ensure_next_mapping(pool)) {
2304				for (j = i; j < count; j++)
2305					list_add(&pool->cell_sort_array[j]->user_list, &cells);
2306
2307				spin_lock_irq(&tc->lock);
2308				list_splice(&cells, &tc->deferred_cells);
2309				spin_unlock_irq(&tc->lock);
2310				return;
2311			}
2312
2313			if (bio_op(cell->holder) == REQ_OP_DISCARD)
2314				pool->process_discard_cell(tc, cell);
2315			else
2316				pool->process_cell(tc, cell);
2317		}
2318		cond_resched();
2319	} while (!list_empty(&cells));
2320}
2321
2322static void thin_get(struct thin_c *tc);
2323static void thin_put(struct thin_c *tc);
2324
2325/*
2326 * We can't hold rcu_read_lock() around code that can block.  So we
2327 * find a thin with the rcu lock held; bump a refcount; then drop
2328 * the lock.
2329 */
2330static struct thin_c *get_first_thin(struct pool *pool)
2331{
2332	struct thin_c *tc = NULL;
2333
2334	rcu_read_lock();
2335	tc = list_first_or_null_rcu(&pool->active_thins, struct thin_c, list);
2336	if (tc)
2337		thin_get(tc);
 
2338	rcu_read_unlock();
2339
2340	return tc;
2341}
2342
2343static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2344{
2345	struct thin_c *old_tc = tc;
2346
2347	rcu_read_lock();
2348	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2349		thin_get(tc);
2350		thin_put(old_tc);
2351		rcu_read_unlock();
2352		return tc;
2353	}
2354	thin_put(old_tc);
2355	rcu_read_unlock();
2356
2357	return NULL;
2358}
2359
2360static void process_deferred_bios(struct pool *pool)
2361{
 
2362	struct bio *bio;
2363	struct bio_list bios, bio_completions;
2364	struct thin_c *tc;
2365
2366	tc = get_first_thin(pool);
2367	while (tc) {
2368		process_thin_deferred_cells(tc);
2369		process_thin_deferred_bios(tc);
2370		tc = get_next_thin(pool, tc);
2371	}
2372
2373	/*
2374	 * If there are any deferred flush bios, we must commit the metadata
2375	 * before issuing them or signaling their completion.
2376	 */
2377	bio_list_init(&bios);
2378	bio_list_init(&bio_completions);
2379
2380	spin_lock_irq(&pool->lock);
2381	bio_list_merge(&bios, &pool->deferred_flush_bios);
2382	bio_list_init(&pool->deferred_flush_bios);
 
2383
2384	bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2385	bio_list_init(&pool->deferred_flush_completions);
2386	spin_unlock_irq(&pool->lock);
2387
2388	if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2389	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2390		return;
2391
2392	if (commit(pool)) {
2393		bio_list_merge(&bios, &bio_completions);
2394
2395		while ((bio = bio_list_pop(&bios)))
2396			bio_io_error(bio);
2397		return;
2398	}
2399	pool->last_commit_jiffies = jiffies;
2400
2401	while ((bio = bio_list_pop(&bio_completions)))
2402		bio_endio(bio);
2403
2404	while ((bio = bio_list_pop(&bios))) {
2405		/*
2406		 * The data device was flushed as part of metadata commit,
2407		 * so complete redundant flushes immediately.
2408		 */
2409		if (bio->bi_opf & REQ_PREFLUSH)
2410			bio_endio(bio);
2411		else
2412			dm_submit_bio_remap(bio, NULL);
2413	}
2414}
2415
2416static void do_worker(struct work_struct *ws)
2417{
2418	struct pool *pool = container_of(ws, struct pool, worker);
2419
2420	throttle_work_start(&pool->throttle);
2421	dm_pool_issue_prefetches(pool->pmd);
2422	throttle_work_update(&pool->throttle);
2423	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2424	throttle_work_update(&pool->throttle);
2425	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2426	throttle_work_update(&pool->throttle);
2427	process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2428	throttle_work_update(&pool->throttle);
2429	process_deferred_bios(pool);
2430	throttle_work_complete(&pool->throttle);
2431}
2432
2433/*
2434 * We want to commit periodically so that not too much
2435 * unwritten data builds up.
2436 */
2437static void do_waker(struct work_struct *ws)
2438{
2439	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2440
2441	wake_worker(pool);
2442	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2443}
2444
 
 
2445/*
2446 * We're holding onto IO to allow userland time to react.  After the
2447 * timeout either the pool will have been resized (and thus back in
2448 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2449 */
2450static void do_no_space_timeout(struct work_struct *ws)
2451{
2452	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2453					 no_space_timeout);
2454
2455	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2456		pool->pf.error_if_no_space = true;
2457		notify_of_pool_mode_change(pool);
2458		error_retry_list_with_code(pool, BLK_STS_NOSPC);
2459	}
2460}
2461
2462/*----------------------------------------------------------------*/
2463
2464struct pool_work {
2465	struct work_struct worker;
2466	struct completion complete;
2467};
2468
2469static struct pool_work *to_pool_work(struct work_struct *ws)
2470{
2471	return container_of(ws, struct pool_work, worker);
2472}
2473
2474static void pool_work_complete(struct pool_work *pw)
2475{
2476	complete(&pw->complete);
2477}
2478
2479static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2480			   void (*fn)(struct work_struct *))
2481{
2482	INIT_WORK_ONSTACK(&pw->worker, fn);
2483	init_completion(&pw->complete);
2484	queue_work(pool->wq, &pw->worker);
2485	wait_for_completion(&pw->complete);
2486	destroy_work_on_stack(&pw->worker);
2487}
2488
2489/*----------------------------------------------------------------*/
2490
2491struct noflush_work {
2492	struct pool_work pw;
2493	struct thin_c *tc;
2494};
2495
2496static struct noflush_work *to_noflush(struct work_struct *ws)
2497{
2498	return container_of(to_pool_work(ws), struct noflush_work, pw);
2499}
2500
2501static void do_noflush_start(struct work_struct *ws)
2502{
2503	struct noflush_work *w = to_noflush(ws);
2504
2505	w->tc->requeue_mode = true;
2506	requeue_io(w->tc);
2507	pool_work_complete(&w->pw);
2508}
2509
2510static void do_noflush_stop(struct work_struct *ws)
2511{
2512	struct noflush_work *w = to_noflush(ws);
2513
2514	w->tc->requeue_mode = false;
2515	pool_work_complete(&w->pw);
2516}
2517
2518static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2519{
2520	struct noflush_work w;
2521
2522	w.tc = tc;
2523	pool_work_wait(&w.pw, tc->pool, fn);
2524}
2525
2526/*----------------------------------------------------------------*/
2527
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2528static void set_discard_callbacks(struct pool *pool)
2529{
2530	struct pool_c *pt = pool->ti->private;
2531
2532	if (pt->adjusted_pf.discard_passdown) {
2533		pool->process_discard_cell = process_discard_cell_passdown;
2534		pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2535		pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2536	} else {
2537		pool->process_discard_cell = process_discard_cell_no_passdown;
2538		pool->process_prepared_discard = process_prepared_discard_no_passdown;
2539	}
2540}
2541
2542static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2543{
2544	struct pool_c *pt = pool->ti->private;
2545	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2546	enum pool_mode old_mode = get_pool_mode(pool);
2547	unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2548
2549	/*
2550	 * Never allow the pool to transition to PM_WRITE mode if user
2551	 * intervention is required to verify metadata and data consistency.
2552	 */
2553	if (new_mode == PM_WRITE && needs_check) {
2554		DMERR("%s: unable to switch pool to write mode until repaired.",
2555		      dm_device_name(pool->pool_md));
2556		if (old_mode != new_mode)
2557			new_mode = old_mode;
2558		else
2559			new_mode = PM_READ_ONLY;
2560	}
2561	/*
2562	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2563	 * not going to recover without a thin_repair.	So we never let the
2564	 * pool move out of the old mode.
2565	 */
2566	if (old_mode == PM_FAIL)
2567		new_mode = old_mode;
2568
2569	switch (new_mode) {
2570	case PM_FAIL:
 
 
2571		dm_pool_metadata_read_only(pool->pmd);
2572		pool->process_bio = process_bio_fail;
2573		pool->process_discard = process_bio_fail;
2574		pool->process_cell = process_cell_fail;
2575		pool->process_discard_cell = process_cell_fail;
2576		pool->process_prepared_mapping = process_prepared_mapping_fail;
2577		pool->process_prepared_discard = process_prepared_discard_fail;
2578
2579		error_retry_list(pool);
2580		break;
2581
2582	case PM_OUT_OF_METADATA_SPACE:
2583	case PM_READ_ONLY:
 
 
2584		dm_pool_metadata_read_only(pool->pmd);
2585		pool->process_bio = process_bio_read_only;
2586		pool->process_discard = process_bio_success;
2587		pool->process_cell = process_cell_read_only;
2588		pool->process_discard_cell = process_cell_success;
2589		pool->process_prepared_mapping = process_prepared_mapping_fail;
2590		pool->process_prepared_discard = process_prepared_discard_success;
2591
2592		error_retry_list(pool);
2593		break;
2594
2595	case PM_OUT_OF_DATA_SPACE:
2596		/*
2597		 * Ideally we'd never hit this state; the low water mark
2598		 * would trigger userland to extend the pool before we
2599		 * completely run out of data space.  However, many small
2600		 * IOs to unprovisioned space can consume data space at an
2601		 * alarming rate.  Adjust your low water mark if you're
2602		 * frequently seeing this mode.
2603		 */
 
 
2604		pool->out_of_data_space = true;
2605		pool->process_bio = process_bio_read_only;
2606		pool->process_discard = process_discard_bio;
2607		pool->process_cell = process_cell_read_only;
2608		pool->process_prepared_mapping = process_prepared_mapping;
2609		set_discard_callbacks(pool);
2610
2611		if (!pool->pf.error_if_no_space && no_space_timeout)
2612			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2613		break;
2614
2615	case PM_WRITE:
2616		if (old_mode == PM_OUT_OF_DATA_SPACE)
2617			cancel_delayed_work_sync(&pool->no_space_timeout);
2618		pool->out_of_data_space = false;
2619		pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2620		dm_pool_metadata_read_write(pool->pmd);
2621		pool->process_bio = process_bio;
2622		pool->process_discard = process_discard_bio;
2623		pool->process_cell = process_cell;
2624		pool->process_prepared_mapping = process_prepared_mapping;
2625		set_discard_callbacks(pool);
2626		break;
2627	}
2628
2629	pool->pf.mode = new_mode;
2630	/*
2631	 * The pool mode may have changed, sync it so bind_control_target()
2632	 * doesn't cause an unexpected mode transition on resume.
2633	 */
2634	pt->adjusted_pf.mode = new_mode;
2635
2636	if (old_mode != new_mode)
2637		notify_of_pool_mode_change(pool);
2638}
2639
2640static void abort_transaction(struct pool *pool)
2641{
2642	const char *dev_name = dm_device_name(pool->pool_md);
2643
2644	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2645	if (dm_pool_abort_metadata(pool->pmd)) {
2646		DMERR("%s: failed to abort metadata transaction", dev_name);
2647		set_pool_mode(pool, PM_FAIL);
2648	}
2649
2650	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2651		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2652		set_pool_mode(pool, PM_FAIL);
2653	}
2654}
2655
2656static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2657{
2658	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2659		    dm_device_name(pool->pool_md), op, r);
2660
2661	abort_transaction(pool);
2662	set_pool_mode(pool, PM_READ_ONLY);
2663}
2664
2665/*----------------------------------------------------------------*/
2666
2667/*
2668 * Mapping functions.
2669 */
2670
2671/*
2672 * Called only while mapping a thin bio to hand it over to the workqueue.
2673 */
2674static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2675{
 
2676	struct pool *pool = tc->pool;
2677
2678	spin_lock_irq(&tc->lock);
2679	bio_list_add(&tc->deferred_bio_list, bio);
2680	spin_unlock_irq(&tc->lock);
2681
2682	wake_worker(pool);
2683}
2684
2685static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2686{
2687	struct pool *pool = tc->pool;
2688
2689	throttle_lock(&pool->throttle);
2690	thin_defer_bio(tc, bio);
2691	throttle_unlock(&pool->throttle);
2692}
2693
2694static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2695{
 
2696	struct pool *pool = tc->pool;
2697
2698	throttle_lock(&pool->throttle);
2699	spin_lock_irq(&tc->lock);
2700	list_add_tail(&cell->user_list, &tc->deferred_cells);
2701	spin_unlock_irq(&tc->lock);
2702	throttle_unlock(&pool->throttle);
2703
2704	wake_worker(pool);
2705}
2706
2707static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2708{
2709	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2710
2711	h->tc = tc;
2712	h->shared_read_entry = NULL;
2713	h->all_io_entry = NULL;
2714	h->overwrite_mapping = NULL;
2715	h->cell = NULL;
2716}
2717
2718/*
2719 * Non-blocking function called from the thin target's map function.
2720 */
2721static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2722{
2723	int r;
2724	struct thin_c *tc = ti->private;
2725	dm_block_t block = get_bio_block(tc, bio);
2726	struct dm_thin_device *td = tc->td;
2727	struct dm_thin_lookup_result result;
2728	struct dm_bio_prison_cell *virt_cell, *data_cell;
2729	struct dm_cell_key key;
2730
2731	thin_hook_bio(tc, bio);
2732
2733	if (tc->requeue_mode) {
2734		bio->bi_status = BLK_STS_DM_REQUEUE;
2735		bio_endio(bio);
2736		return DM_MAPIO_SUBMITTED;
2737	}
2738
2739	if (get_pool_mode(tc->pool) == PM_FAIL) {
2740		bio_io_error(bio);
2741		return DM_MAPIO_SUBMITTED;
2742	}
2743
2744	if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2745		thin_defer_bio_with_throttle(tc, bio);
2746		return DM_MAPIO_SUBMITTED;
2747	}
2748
2749	/*
2750	 * We must hold the virtual cell before doing the lookup, otherwise
2751	 * there's a race with discard.
2752	 */
2753	build_virtual_key(tc->td, block, &key);
2754	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2755		return DM_MAPIO_SUBMITTED;
2756
2757	r = dm_thin_find_block(td, block, 0, &result);
2758
2759	/*
2760	 * Note that we defer readahead too.
2761	 */
2762	switch (r) {
2763	case 0:
2764		if (unlikely(result.shared)) {
2765			/*
2766			 * We have a race condition here between the
2767			 * result.shared value returned by the lookup and
2768			 * snapshot creation, which may cause new
2769			 * sharing.
2770			 *
2771			 * To avoid this always quiesce the origin before
2772			 * taking the snap.  You want to do this anyway to
2773			 * ensure a consistent application view
2774			 * (i.e. lockfs).
2775			 *
2776			 * More distant ancestors are irrelevant. The
2777			 * shared flag will be set in their case.
2778			 */
2779			thin_defer_cell(tc, virt_cell);
2780			return DM_MAPIO_SUBMITTED;
2781		}
2782
2783		build_data_key(tc->td, result.block, &key);
2784		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2785			cell_defer_no_holder(tc, virt_cell);
2786			return DM_MAPIO_SUBMITTED;
2787		}
2788
2789		inc_all_io_entry(tc->pool, bio);
2790		cell_defer_no_holder(tc, data_cell);
2791		cell_defer_no_holder(tc, virt_cell);
2792
2793		remap(tc, bio, result.block);
2794		return DM_MAPIO_REMAPPED;
2795
2796	case -ENODATA:
2797	case -EWOULDBLOCK:
2798		thin_defer_cell(tc, virt_cell);
2799		return DM_MAPIO_SUBMITTED;
2800
2801	default:
2802		/*
2803		 * Must always call bio_io_error on failure.
2804		 * dm_thin_find_block can fail with -EINVAL if the
2805		 * pool is switched to fail-io mode.
2806		 */
2807		bio_io_error(bio);
2808		cell_defer_no_holder(tc, virt_cell);
2809		return DM_MAPIO_SUBMITTED;
2810	}
2811}
2812
 
 
 
 
 
 
 
 
 
 
 
 
2813static void requeue_bios(struct pool *pool)
2814{
 
2815	struct thin_c *tc;
2816
2817	rcu_read_lock();
2818	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2819		spin_lock_irq(&tc->lock);
2820		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2821		bio_list_init(&tc->retry_on_resume_list);
2822		spin_unlock_irq(&tc->lock);
2823	}
2824	rcu_read_unlock();
2825}
2826
2827/*
2828 *--------------------------------------------------------------
2829 * Binding of control targets to a pool object
2830 *--------------------------------------------------------------
2831 */
 
 
 
 
 
 
2832static bool is_factor(sector_t block_size, uint32_t n)
2833{
2834	return !sector_div(block_size, n);
2835}
2836
2837/*
2838 * If discard_passdown was enabled verify that the data device
2839 * supports discards.  Disable discard_passdown if not.
2840 */
2841static void disable_discard_passdown_if_not_supported(struct pool_c *pt)
2842{
2843	struct pool *pool = pt->pool;
2844	struct block_device *data_bdev = pt->data_dev->bdev;
2845	struct queue_limits *data_limits = bdev_limits(data_bdev);
2846	const char *reason = NULL;
 
2847
2848	if (!pt->adjusted_pf.discard_passdown)
2849		return;
2850
2851	if (!bdev_max_discard_sectors(pt->data_dev->bdev))
2852		reason = "discard unsupported";
2853
2854	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2855		reason = "max discard sectors smaller than a block";
2856
2857	if (reason) {
2858		DMWARN("Data device (%pg) %s: Disabling discard passdown.", data_bdev, reason);
2859		pt->adjusted_pf.discard_passdown = false;
2860	}
2861}
2862
2863static int bind_control_target(struct pool *pool, struct dm_target *ti)
2864{
2865	struct pool_c *pt = ti->private;
2866
2867	/*
2868	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2869	 */
2870	enum pool_mode old_mode = get_pool_mode(pool);
2871	enum pool_mode new_mode = pt->adjusted_pf.mode;
2872
2873	/*
2874	 * Don't change the pool's mode until set_pool_mode() below.
2875	 * Otherwise the pool's process_* function pointers may
2876	 * not match the desired pool mode.
2877	 */
2878	pt->adjusted_pf.mode = old_mode;
2879
2880	pool->ti = ti;
2881	pool->pf = pt->adjusted_pf;
2882	pool->low_water_blocks = pt->low_water_blocks;
2883
2884	set_pool_mode(pool, new_mode);
2885
2886	return 0;
2887}
2888
2889static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2890{
2891	if (pool->ti == ti)
2892		pool->ti = NULL;
2893}
2894
2895/*
2896 *--------------------------------------------------------------
2897 * Pool creation
2898 *--------------------------------------------------------------
2899 */
2900/* Initialize pool features. */
2901static void pool_features_init(struct pool_features *pf)
2902{
2903	pf->mode = PM_WRITE;
2904	pf->zero_new_blocks = true;
2905	pf->discard_enabled = true;
2906	pf->discard_passdown = true;
2907	pf->error_if_no_space = false;
2908}
2909
2910static void __pool_destroy(struct pool *pool)
2911{
2912	__pool_table_remove(pool);
2913
2914	vfree(pool->cell_sort_array);
2915	if (dm_pool_metadata_close(pool->pmd) < 0)
2916		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2917
2918	dm_bio_prison_destroy(pool->prison);
2919	dm_kcopyd_client_destroy(pool->copier);
2920
2921	cancel_delayed_work_sync(&pool->waker);
2922	cancel_delayed_work_sync(&pool->no_space_timeout);
2923	if (pool->wq)
2924		destroy_workqueue(pool->wq);
2925
2926	if (pool->next_mapping)
2927		mempool_free(pool->next_mapping, &pool->mapping_pool);
2928	mempool_exit(&pool->mapping_pool);
2929	dm_deferred_set_destroy(pool->shared_read_ds);
2930	dm_deferred_set_destroy(pool->all_io_ds);
2931	kfree(pool);
2932}
2933
2934static struct kmem_cache *_new_mapping_cache;
2935
2936static struct pool *pool_create(struct mapped_device *pool_md,
2937				struct block_device *metadata_dev,
2938				struct block_device *data_dev,
2939				unsigned long block_size,
2940				int read_only, char **error)
2941{
2942	int r;
2943	void *err_p;
2944	struct pool *pool;
2945	struct dm_pool_metadata *pmd;
2946	bool format_device = read_only ? false : true;
2947
2948	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2949	if (IS_ERR(pmd)) {
2950		*error = "Error creating metadata object";
2951		return ERR_CAST(pmd);
2952	}
2953
2954	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2955	if (!pool) {
2956		*error = "Error allocating memory for pool";
2957		err_p = ERR_PTR(-ENOMEM);
2958		goto bad_pool;
2959	}
2960
2961	pool->pmd = pmd;
2962	pool->sectors_per_block = block_size;
2963	if (block_size & (block_size - 1))
2964		pool->sectors_per_block_shift = -1;
2965	else
2966		pool->sectors_per_block_shift = __ffs(block_size);
2967	pool->low_water_blocks = 0;
2968	pool_features_init(&pool->pf);
2969	pool->prison = dm_bio_prison_create();
2970	if (!pool->prison) {
2971		*error = "Error creating pool's bio prison";
2972		err_p = ERR_PTR(-ENOMEM);
2973		goto bad_prison;
2974	}
2975
2976	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2977	if (IS_ERR(pool->copier)) {
2978		r = PTR_ERR(pool->copier);
2979		*error = "Error creating pool's kcopyd client";
2980		err_p = ERR_PTR(r);
2981		goto bad_kcopyd_client;
2982	}
2983
2984	/*
2985	 * Create singlethreaded workqueue that will service all devices
2986	 * that use this metadata.
2987	 */
2988	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2989	if (!pool->wq) {
2990		*error = "Error creating pool's workqueue";
2991		err_p = ERR_PTR(-ENOMEM);
2992		goto bad_wq;
2993	}
2994
2995	throttle_init(&pool->throttle);
2996	INIT_WORK(&pool->worker, do_worker);
2997	INIT_DELAYED_WORK(&pool->waker, do_waker);
2998	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2999	spin_lock_init(&pool->lock);
3000	bio_list_init(&pool->deferred_flush_bios);
3001	bio_list_init(&pool->deferred_flush_completions);
3002	INIT_LIST_HEAD(&pool->prepared_mappings);
3003	INIT_LIST_HEAD(&pool->prepared_discards);
3004	INIT_LIST_HEAD(&pool->prepared_discards_pt2);
3005	INIT_LIST_HEAD(&pool->active_thins);
3006	pool->low_water_triggered = false;
3007	pool->suspended = true;
3008	pool->out_of_data_space = false;
3009
3010	pool->shared_read_ds = dm_deferred_set_create();
3011	if (!pool->shared_read_ds) {
3012		*error = "Error creating pool's shared read deferred set";
3013		err_p = ERR_PTR(-ENOMEM);
3014		goto bad_shared_read_ds;
3015	}
3016
3017	pool->all_io_ds = dm_deferred_set_create();
3018	if (!pool->all_io_ds) {
3019		*error = "Error creating pool's all io deferred set";
3020		err_p = ERR_PTR(-ENOMEM);
3021		goto bad_all_io_ds;
3022	}
3023
3024	pool->next_mapping = NULL;
3025	r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
3026				   _new_mapping_cache);
3027	if (r) {
3028		*error = "Error creating pool's mapping mempool";
3029		err_p = ERR_PTR(r);
3030		goto bad_mapping_pool;
3031	}
3032
3033	pool->cell_sort_array =
3034		vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3035				   sizeof(*pool->cell_sort_array)));
3036	if (!pool->cell_sort_array) {
3037		*error = "Error allocating cell sort array";
3038		err_p = ERR_PTR(-ENOMEM);
3039		goto bad_sort_array;
3040	}
3041
3042	pool->ref_count = 1;
3043	pool->last_commit_jiffies = jiffies;
3044	pool->pool_md = pool_md;
3045	pool->md_dev = metadata_dev;
3046	pool->data_dev = data_dev;
3047	__pool_table_insert(pool);
3048
3049	return pool;
3050
3051bad_sort_array:
3052	mempool_exit(&pool->mapping_pool);
3053bad_mapping_pool:
3054	dm_deferred_set_destroy(pool->all_io_ds);
3055bad_all_io_ds:
3056	dm_deferred_set_destroy(pool->shared_read_ds);
3057bad_shared_read_ds:
3058	destroy_workqueue(pool->wq);
3059bad_wq:
3060	dm_kcopyd_client_destroy(pool->copier);
3061bad_kcopyd_client:
3062	dm_bio_prison_destroy(pool->prison);
3063bad_prison:
3064	kfree(pool);
3065bad_pool:
3066	if (dm_pool_metadata_close(pmd))
3067		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3068
3069	return err_p;
3070}
3071
3072static void __pool_inc(struct pool *pool)
3073{
3074	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3075	pool->ref_count++;
3076}
3077
3078static void __pool_dec(struct pool *pool)
3079{
3080	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3081	BUG_ON(!pool->ref_count);
3082	if (!--pool->ref_count)
3083		__pool_destroy(pool);
3084}
3085
3086static struct pool *__pool_find(struct mapped_device *pool_md,
3087				struct block_device *metadata_dev,
3088				struct block_device *data_dev,
3089				unsigned long block_size, int read_only,
3090				char **error, int *created)
3091{
3092	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3093
3094	if (pool) {
3095		if (pool->pool_md != pool_md) {
3096			*error = "metadata device already in use by a pool";
3097			return ERR_PTR(-EBUSY);
3098		}
3099		if (pool->data_dev != data_dev) {
3100			*error = "data device already in use by a pool";
3101			return ERR_PTR(-EBUSY);
3102		}
3103		__pool_inc(pool);
3104
3105	} else {
3106		pool = __pool_table_lookup(pool_md);
3107		if (pool) {
3108			if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
3109				*error = "different pool cannot replace a pool";
3110				return ERR_PTR(-EINVAL);
3111			}
3112			__pool_inc(pool);
3113
3114		} else {
3115			pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
3116			*created = 1;
3117		}
3118	}
3119
3120	return pool;
3121}
3122
3123/*
3124 *--------------------------------------------------------------
3125 * Pool target methods
3126 *--------------------------------------------------------------
3127 */
3128static void pool_dtr(struct dm_target *ti)
3129{
3130	struct pool_c *pt = ti->private;
3131
3132	mutex_lock(&dm_thin_pool_table.mutex);
3133
3134	unbind_control_target(pt->pool, ti);
3135	__pool_dec(pt->pool);
3136	dm_put_device(ti, pt->metadata_dev);
3137	dm_put_device(ti, pt->data_dev);
3138	kfree(pt);
3139
3140	mutex_unlock(&dm_thin_pool_table.mutex);
3141}
3142
3143static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3144			       struct dm_target *ti)
3145{
3146	int r;
3147	unsigned int argc;
3148	const char *arg_name;
3149
3150	static const struct dm_arg _args[] = {
3151		{0, 4, "Invalid number of pool feature arguments"},
3152	};
3153
3154	/*
3155	 * No feature arguments supplied.
3156	 */
3157	if (!as->argc)
3158		return 0;
3159
3160	r = dm_read_arg_group(_args, as, &argc, &ti->error);
3161	if (r)
3162		return -EINVAL;
3163
3164	while (argc && !r) {
3165		arg_name = dm_shift_arg(as);
3166		argc--;
3167
3168		if (!strcasecmp(arg_name, "skip_block_zeroing"))
3169			pf->zero_new_blocks = false;
3170
3171		else if (!strcasecmp(arg_name, "ignore_discard"))
3172			pf->discard_enabled = false;
3173
3174		else if (!strcasecmp(arg_name, "no_discard_passdown"))
3175			pf->discard_passdown = false;
3176
3177		else if (!strcasecmp(arg_name, "read_only"))
3178			pf->mode = PM_READ_ONLY;
3179
3180		else if (!strcasecmp(arg_name, "error_if_no_space"))
3181			pf->error_if_no_space = true;
3182
3183		else {
3184			ti->error = "Unrecognised pool feature requested";
3185			r = -EINVAL;
3186			break;
3187		}
3188	}
3189
3190	return r;
3191}
3192
3193static void metadata_low_callback(void *context)
3194{
3195	struct pool *pool = context;
3196
3197	DMWARN("%s: reached low water mark for metadata device: sending event.",
3198	       dm_device_name(pool->pool_md));
3199
3200	dm_table_event(pool->ti->table);
3201}
3202
3203/*
3204 * We need to flush the data device **before** committing the metadata.
3205 *
3206 * This ensures that the data blocks of any newly inserted mappings are
3207 * properly written to non-volatile storage and won't be lost in case of a
3208 * crash.
3209 *
3210 * Failure to do so can result in data corruption in the case of internal or
3211 * external snapshots and in the case of newly provisioned blocks, when block
3212 * zeroing is enabled.
3213 */
3214static int metadata_pre_commit_callback(void *context)
3215{
3216	struct pool *pool = context;
3217
3218	return blkdev_issue_flush(pool->data_dev);
3219}
3220
3221static sector_t get_dev_size(struct block_device *bdev)
3222{
3223	return bdev_nr_sectors(bdev);
3224}
3225
3226static void warn_if_metadata_device_too_big(struct block_device *bdev)
3227{
3228	sector_t metadata_dev_size = get_dev_size(bdev);
 
3229
3230	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3231		DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
3232		       bdev, THIN_METADATA_MAX_SECTORS);
3233}
3234
3235static sector_t get_metadata_dev_size(struct block_device *bdev)
3236{
3237	sector_t metadata_dev_size = get_dev_size(bdev);
3238
3239	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3240		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3241
3242	return metadata_dev_size;
3243}
3244
3245static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3246{
3247	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3248
3249	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3250
3251	return metadata_dev_size;
3252}
3253
3254/*
3255 * When a metadata threshold is crossed a dm event is triggered, and
3256 * userland should respond by growing the metadata device.  We could let
3257 * userland set the threshold, like we do with the data threshold, but I'm
3258 * not sure they know enough to do this well.
3259 */
3260static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3261{
3262	/*
3263	 * 4M is ample for all ops with the possible exception of thin
3264	 * device deletion which is harmless if it fails (just retry the
3265	 * delete after you've grown the device).
3266	 */
3267	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3268
3269	return min((dm_block_t)1024ULL /* 4M */, quarter);
3270}
3271
3272/*
3273 * thin-pool <metadata dev> <data dev>
3274 *	     <data block size (sectors)>
3275 *	     <low water mark (blocks)>
3276 *	     [<#feature args> [<arg>]*]
3277 *
3278 * Optional feature arguments are:
3279 *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3280 *	     ignore_discard: disable discard
3281 *	     no_discard_passdown: don't pass discards down to the data device
3282 *	     read_only: Don't allow any changes to be made to the pool metadata.
3283 *	     error_if_no_space: error IOs, instead of queueing, if no space.
3284 */
3285static int pool_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3286{
3287	int r, pool_created = 0;
3288	struct pool_c *pt;
3289	struct pool *pool;
3290	struct pool_features pf;
3291	struct dm_arg_set as;
3292	struct dm_dev *data_dev;
3293	unsigned long block_size;
3294	dm_block_t low_water_blocks;
3295	struct dm_dev *metadata_dev;
3296	blk_mode_t metadata_mode;
3297
3298	/*
3299	 * FIXME Remove validation from scope of lock.
3300	 */
3301	mutex_lock(&dm_thin_pool_table.mutex);
3302
3303	if (argc < 4) {
3304		ti->error = "Invalid argument count";
3305		r = -EINVAL;
3306		goto out_unlock;
3307	}
3308
3309	as.argc = argc;
3310	as.argv = argv;
3311
3312	/* make sure metadata and data are different devices */
3313	if (!strcmp(argv[0], argv[1])) {
3314		ti->error = "Error setting metadata or data device";
3315		r = -EINVAL;
3316		goto out_unlock;
3317	}
3318
3319	/*
3320	 * Set default pool features.
3321	 */
3322	pool_features_init(&pf);
3323
3324	dm_consume_args(&as, 4);
3325	r = parse_pool_features(&as, &pf, ti);
3326	if (r)
3327		goto out_unlock;
3328
3329	metadata_mode = BLK_OPEN_READ |
3330		((pf.mode == PM_READ_ONLY) ? 0 : BLK_OPEN_WRITE);
3331	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3332	if (r) {
3333		ti->error = "Error opening metadata block device";
3334		goto out_unlock;
3335	}
3336	warn_if_metadata_device_too_big(metadata_dev->bdev);
3337
3338	r = dm_get_device(ti, argv[1], BLK_OPEN_READ | BLK_OPEN_WRITE, &data_dev);
3339	if (r) {
3340		ti->error = "Error getting data device";
3341		goto out_metadata;
3342	}
3343
3344	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3345	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3346	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3347	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3348		ti->error = "Invalid block size";
3349		r = -EINVAL;
3350		goto out;
3351	}
3352
3353	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3354		ti->error = "Invalid low water mark";
3355		r = -EINVAL;
3356		goto out;
3357	}
3358
3359	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3360	if (!pt) {
3361		r = -ENOMEM;
3362		goto out;
3363	}
3364
3365	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev,
3366			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3367	if (IS_ERR(pool)) {
3368		r = PTR_ERR(pool);
3369		goto out_free_pt;
3370	}
3371
3372	/*
3373	 * 'pool_created' reflects whether this is the first table load.
3374	 * Top level discard support is not allowed to be changed after
3375	 * initial load.  This would require a pool reload to trigger thin
3376	 * device changes.
3377	 */
3378	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3379		ti->error = "Discard support cannot be disabled once enabled";
3380		r = -EINVAL;
3381		goto out_flags_changed;
3382	}
3383
3384	pt->pool = pool;
3385	pt->ti = ti;
3386	pt->metadata_dev = metadata_dev;
3387	pt->data_dev = data_dev;
3388	pt->low_water_blocks = low_water_blocks;
3389	pt->adjusted_pf = pt->requested_pf = pf;
3390	ti->num_flush_bios = 1;
3391	ti->limit_swap_bios = true;
3392
3393	/*
3394	 * Only need to enable discards if the pool should pass
3395	 * them down to the data device.  The thin device's discard
3396	 * processing will cause mappings to be removed from the btree.
3397	 */
3398	if (pf.discard_enabled && pf.discard_passdown) {
3399		ti->num_discard_bios = 1;
 
3400		/*
3401		 * Setting 'discards_supported' circumvents the normal
3402		 * stacking of discard limits (this keeps the pool and
3403		 * thin devices' discard limits consistent).
3404		 */
3405		ti->discards_supported = true;
3406		ti->max_discard_granularity = true;
3407	}
3408	ti->private = pt;
3409
3410	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3411						calc_metadata_threshold(pt),
3412						metadata_low_callback,
3413						pool);
3414	if (r) {
3415		ti->error = "Error registering metadata threshold";
3416		goto out_flags_changed;
3417	}
3418
3419	dm_pool_register_pre_commit_callback(pool->pmd,
3420					     metadata_pre_commit_callback, pool);
3421
3422	mutex_unlock(&dm_thin_pool_table.mutex);
3423
3424	return 0;
3425
3426out_flags_changed:
3427	__pool_dec(pool);
3428out_free_pt:
3429	kfree(pt);
3430out:
3431	dm_put_device(ti, data_dev);
3432out_metadata:
3433	dm_put_device(ti, metadata_dev);
3434out_unlock:
3435	mutex_unlock(&dm_thin_pool_table.mutex);
3436
3437	return r;
3438}
3439
3440static int pool_map(struct dm_target *ti, struct bio *bio)
3441{
 
3442	struct pool_c *pt = ti->private;
3443	struct pool *pool = pt->pool;
 
3444
3445	/*
3446	 * As this is a singleton target, ti->begin is always zero.
3447	 */
3448	spin_lock_irq(&pool->lock);
3449	bio_set_dev(bio, pt->data_dev->bdev);
3450	spin_unlock_irq(&pool->lock);
 
3451
3452	return DM_MAPIO_REMAPPED;
3453}
3454
3455static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3456{
3457	int r;
3458	struct pool_c *pt = ti->private;
3459	struct pool *pool = pt->pool;
3460	sector_t data_size = ti->len;
3461	dm_block_t sb_data_size;
3462
3463	*need_commit = false;
3464
3465	(void) sector_div(data_size, pool->sectors_per_block);
3466
3467	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3468	if (r) {
3469		DMERR("%s: failed to retrieve data device size",
3470		      dm_device_name(pool->pool_md));
3471		return r;
3472	}
3473
3474	if (data_size < sb_data_size) {
3475		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3476		      dm_device_name(pool->pool_md),
3477		      (unsigned long long)data_size, sb_data_size);
3478		return -EINVAL;
3479
3480	} else if (data_size > sb_data_size) {
3481		if (dm_pool_metadata_needs_check(pool->pmd)) {
3482			DMERR("%s: unable to grow the data device until repaired.",
3483			      dm_device_name(pool->pool_md));
3484			return 0;
3485		}
3486
3487		if (sb_data_size)
3488			DMINFO("%s: growing the data device from %llu to %llu blocks",
3489			       dm_device_name(pool->pool_md),
3490			       sb_data_size, (unsigned long long)data_size);
3491		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3492		if (r) {
3493			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3494			return r;
3495		}
3496
3497		*need_commit = true;
3498	}
3499
3500	return 0;
3501}
3502
3503static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3504{
3505	int r;
3506	struct pool_c *pt = ti->private;
3507	struct pool *pool = pt->pool;
3508	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3509
3510	*need_commit = false;
3511
3512	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3513
3514	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3515	if (r) {
3516		DMERR("%s: failed to retrieve metadata device size",
3517		      dm_device_name(pool->pool_md));
3518		return r;
3519	}
3520
3521	if (metadata_dev_size < sb_metadata_dev_size) {
3522		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3523		      dm_device_name(pool->pool_md),
3524		      metadata_dev_size, sb_metadata_dev_size);
3525		return -EINVAL;
3526
3527	} else if (metadata_dev_size > sb_metadata_dev_size) {
3528		if (dm_pool_metadata_needs_check(pool->pmd)) {
3529			DMERR("%s: unable to grow the metadata device until repaired.",
3530			      dm_device_name(pool->pool_md));
3531			return 0;
3532		}
3533
3534		warn_if_metadata_device_too_big(pool->md_dev);
3535		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3536		       dm_device_name(pool->pool_md),
3537		       sb_metadata_dev_size, metadata_dev_size);
3538
3539		if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3540			set_pool_mode(pool, PM_WRITE);
3541
3542		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3543		if (r) {
3544			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3545			return r;
3546		}
3547
3548		*need_commit = true;
3549	}
3550
3551	return 0;
3552}
3553
3554/*
3555 * Retrieves the number of blocks of the data device from
3556 * the superblock and compares it to the actual device size,
3557 * thus resizing the data device in case it has grown.
3558 *
3559 * This both copes with opening preallocated data devices in the ctr
3560 * being followed by a resume
3561 * -and-
3562 * calling the resume method individually after userspace has
3563 * grown the data device in reaction to a table event.
3564 */
3565static int pool_preresume(struct dm_target *ti)
3566{
3567	int r;
3568	bool need_commit1, need_commit2;
3569	struct pool_c *pt = ti->private;
3570	struct pool *pool = pt->pool;
3571
3572	/*
3573	 * Take control of the pool object.
3574	 */
3575	r = bind_control_target(pool, ti);
3576	if (r)
3577		goto out;
3578
3579	r = maybe_resize_data_dev(ti, &need_commit1);
3580	if (r)
3581		goto out;
3582
3583	r = maybe_resize_metadata_dev(ti, &need_commit2);
3584	if (r)
3585		goto out;
3586
3587	if (need_commit1 || need_commit2)
3588		(void) commit(pool);
3589out:
3590	/*
3591	 * When a thin-pool is PM_FAIL, it cannot be rebuilt if
3592	 * bio is in deferred list. Therefore need to return 0
3593	 * to allow pool_resume() to flush IO.
3594	 */
3595	if (r && get_pool_mode(pool) == PM_FAIL)
3596		r = 0;
3597
3598	return r;
3599}
3600
3601static void pool_suspend_active_thins(struct pool *pool)
3602{
3603	struct thin_c *tc;
3604
3605	/* Suspend all active thin devices */
3606	tc = get_first_thin(pool);
3607	while (tc) {
3608		dm_internal_suspend_noflush(tc->thin_md);
3609		tc = get_next_thin(pool, tc);
3610	}
3611}
3612
3613static void pool_resume_active_thins(struct pool *pool)
3614{
3615	struct thin_c *tc;
3616
3617	/* Resume all active thin devices */
3618	tc = get_first_thin(pool);
3619	while (tc) {
3620		dm_internal_resume(tc->thin_md);
3621		tc = get_next_thin(pool, tc);
3622	}
3623}
3624
3625static void pool_resume(struct dm_target *ti)
3626{
3627	struct pool_c *pt = ti->private;
3628	struct pool *pool = pt->pool;
 
3629
3630	/*
3631	 * Must requeue active_thins' bios and then resume
3632	 * active_thins _before_ clearing 'suspend' flag.
3633	 */
3634	requeue_bios(pool);
3635	pool_resume_active_thins(pool);
3636
3637	spin_lock_irq(&pool->lock);
3638	pool->low_water_triggered = false;
3639	pool->suspended = false;
3640	spin_unlock_irq(&pool->lock);
3641
3642	do_waker(&pool->waker.work);
3643}
3644
3645static void pool_presuspend(struct dm_target *ti)
3646{
3647	struct pool_c *pt = ti->private;
3648	struct pool *pool = pt->pool;
 
3649
3650	spin_lock_irq(&pool->lock);
3651	pool->suspended = true;
3652	spin_unlock_irq(&pool->lock);
3653
3654	pool_suspend_active_thins(pool);
3655}
3656
3657static void pool_presuspend_undo(struct dm_target *ti)
3658{
3659	struct pool_c *pt = ti->private;
3660	struct pool *pool = pt->pool;
 
3661
3662	pool_resume_active_thins(pool);
3663
3664	spin_lock_irq(&pool->lock);
3665	pool->suspended = false;
3666	spin_unlock_irq(&pool->lock);
3667}
3668
3669static void pool_postsuspend(struct dm_target *ti)
3670{
3671	struct pool_c *pt = ti->private;
3672	struct pool *pool = pt->pool;
3673
3674	cancel_delayed_work_sync(&pool->waker);
3675	cancel_delayed_work_sync(&pool->no_space_timeout);
3676	flush_workqueue(pool->wq);
3677	(void) commit(pool);
3678}
3679
3680static int check_arg_count(unsigned int argc, unsigned int args_required)
3681{
3682	if (argc != args_required) {
3683		DMWARN("Message received with %u arguments instead of %u.",
3684		       argc, args_required);
3685		return -EINVAL;
3686	}
3687
3688	return 0;
3689}
3690
3691static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3692{
3693	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3694	    *dev_id <= MAX_DEV_ID)
3695		return 0;
3696
3697	if (warning)
3698		DMWARN("Message received with invalid device id: %s", arg);
3699
3700	return -EINVAL;
3701}
3702
3703static int process_create_thin_mesg(unsigned int argc, char **argv, struct pool *pool)
3704{
3705	dm_thin_id dev_id;
3706	int r;
3707
3708	r = check_arg_count(argc, 2);
3709	if (r)
3710		return r;
3711
3712	r = read_dev_id(argv[1], &dev_id, 1);
3713	if (r)
3714		return r;
3715
3716	r = dm_pool_create_thin(pool->pmd, dev_id);
3717	if (r) {
3718		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3719		       argv[1]);
3720		return r;
3721	}
3722
3723	return 0;
3724}
3725
3726static int process_create_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3727{
3728	dm_thin_id dev_id;
3729	dm_thin_id origin_dev_id;
3730	int r;
3731
3732	r = check_arg_count(argc, 3);
3733	if (r)
3734		return r;
3735
3736	r = read_dev_id(argv[1], &dev_id, 1);
3737	if (r)
3738		return r;
3739
3740	r = read_dev_id(argv[2], &origin_dev_id, 1);
3741	if (r)
3742		return r;
3743
3744	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3745	if (r) {
3746		DMWARN("Creation of new snapshot %s of device %s failed.",
3747		       argv[1], argv[2]);
3748		return r;
3749	}
3750
3751	return 0;
3752}
3753
3754static int process_delete_mesg(unsigned int argc, char **argv, struct pool *pool)
3755{
3756	dm_thin_id dev_id;
3757	int r;
3758
3759	r = check_arg_count(argc, 2);
3760	if (r)
3761		return r;
3762
3763	r = read_dev_id(argv[1], &dev_id, 1);
3764	if (r)
3765		return r;
3766
3767	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3768	if (r)
3769		DMWARN("Deletion of thin device %s failed.", argv[1]);
3770
3771	return r;
3772}
3773
3774static int process_set_transaction_id_mesg(unsigned int argc, char **argv, struct pool *pool)
3775{
3776	dm_thin_id old_id, new_id;
3777	int r;
3778
3779	r = check_arg_count(argc, 3);
3780	if (r)
3781		return r;
3782
3783	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3784		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3785		return -EINVAL;
3786	}
3787
3788	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3789		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3790		return -EINVAL;
3791	}
3792
3793	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3794	if (r) {
3795		DMWARN("Failed to change transaction id from %s to %s.",
3796		       argv[1], argv[2]);
3797		return r;
3798	}
3799
3800	return 0;
3801}
3802
3803static int process_reserve_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3804{
3805	int r;
3806
3807	r = check_arg_count(argc, 1);
3808	if (r)
3809		return r;
3810
3811	(void) commit(pool);
3812
3813	r = dm_pool_reserve_metadata_snap(pool->pmd);
3814	if (r)
3815		DMWARN("reserve_metadata_snap message failed.");
3816
3817	return r;
3818}
3819
3820static int process_release_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3821{
3822	int r;
3823
3824	r = check_arg_count(argc, 1);
3825	if (r)
3826		return r;
3827
3828	r = dm_pool_release_metadata_snap(pool->pmd);
3829	if (r)
3830		DMWARN("release_metadata_snap message failed.");
3831
3832	return r;
3833}
3834
3835/*
3836 * Messages supported:
3837 *   create_thin	<dev_id>
3838 *   create_snap	<dev_id> <origin_id>
3839 *   delete		<dev_id>
3840 *   set_transaction_id <current_trans_id> <new_trans_id>
3841 *   reserve_metadata_snap
3842 *   release_metadata_snap
3843 */
3844static int pool_message(struct dm_target *ti, unsigned int argc, char **argv,
3845			char *result, unsigned int maxlen)
3846{
3847	int r = -EINVAL;
3848	struct pool_c *pt = ti->private;
3849	struct pool *pool = pt->pool;
3850
3851	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3852		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3853		      dm_device_name(pool->pool_md));
3854		return -EOPNOTSUPP;
3855	}
3856
3857	if (!strcasecmp(argv[0], "create_thin"))
3858		r = process_create_thin_mesg(argc, argv, pool);
3859
3860	else if (!strcasecmp(argv[0], "create_snap"))
3861		r = process_create_snap_mesg(argc, argv, pool);
3862
3863	else if (!strcasecmp(argv[0], "delete"))
3864		r = process_delete_mesg(argc, argv, pool);
3865
3866	else if (!strcasecmp(argv[0], "set_transaction_id"))
3867		r = process_set_transaction_id_mesg(argc, argv, pool);
3868
3869	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3870		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3871
3872	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3873		r = process_release_metadata_snap_mesg(argc, argv, pool);
3874
3875	else
3876		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3877
3878	if (!r)
3879		(void) commit(pool);
3880
3881	return r;
3882}
3883
3884static void emit_flags(struct pool_features *pf, char *result,
3885		       unsigned int sz, unsigned int maxlen)
3886{
3887	unsigned int count = !pf->zero_new_blocks + !pf->discard_enabled +
3888		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3889		pf->error_if_no_space;
3890	DMEMIT("%u ", count);
3891
3892	if (!pf->zero_new_blocks)
3893		DMEMIT("skip_block_zeroing ");
3894
3895	if (!pf->discard_enabled)
3896		DMEMIT("ignore_discard ");
3897
3898	if (!pf->discard_passdown)
3899		DMEMIT("no_discard_passdown ");
3900
3901	if (pf->mode == PM_READ_ONLY)
3902		DMEMIT("read_only ");
3903
3904	if (pf->error_if_no_space)
3905		DMEMIT("error_if_no_space ");
3906}
3907
3908/*
3909 * Status line is:
3910 *    <transaction id> <used metadata sectors>/<total metadata sectors>
3911 *    <used data sectors>/<total data sectors> <held metadata root>
3912 *    <pool mode> <discard config> <no space config> <needs_check>
3913 */
3914static void pool_status(struct dm_target *ti, status_type_t type,
3915			unsigned int status_flags, char *result, unsigned int maxlen)
3916{
3917	int r;
3918	unsigned int sz = 0;
3919	uint64_t transaction_id;
3920	dm_block_t nr_free_blocks_data;
3921	dm_block_t nr_free_blocks_metadata;
3922	dm_block_t nr_blocks_data;
3923	dm_block_t nr_blocks_metadata;
3924	dm_block_t held_root;
3925	enum pool_mode mode;
3926	char buf[BDEVNAME_SIZE];
3927	char buf2[BDEVNAME_SIZE];
3928	struct pool_c *pt = ti->private;
3929	struct pool *pool = pt->pool;
3930
3931	switch (type) {
3932	case STATUSTYPE_INFO:
3933		if (get_pool_mode(pool) == PM_FAIL) {
3934			DMEMIT("Fail");
3935			break;
3936		}
3937
3938		/* Commit to ensure statistics aren't out-of-date */
3939		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3940			(void) commit(pool);
3941
3942		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3943		if (r) {
3944			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3945			      dm_device_name(pool->pool_md), r);
3946			goto err;
3947		}
3948
3949		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3950		if (r) {
3951			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3952			      dm_device_name(pool->pool_md), r);
3953			goto err;
3954		}
3955
3956		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3957		if (r) {
3958			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3959			      dm_device_name(pool->pool_md), r);
3960			goto err;
3961		}
3962
3963		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3964		if (r) {
3965			DMERR("%s: dm_pool_get_free_block_count returned %d",
3966			      dm_device_name(pool->pool_md), r);
3967			goto err;
3968		}
3969
3970		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3971		if (r) {
3972			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3973			      dm_device_name(pool->pool_md), r);
3974			goto err;
3975		}
3976
3977		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3978		if (r) {
3979			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3980			      dm_device_name(pool->pool_md), r);
3981			goto err;
3982		}
3983
3984		DMEMIT("%llu %llu/%llu %llu/%llu ",
3985		       (unsigned long long)transaction_id,
3986		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3987		       (unsigned long long)nr_blocks_metadata,
3988		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3989		       (unsigned long long)nr_blocks_data);
3990
3991		if (held_root)
3992			DMEMIT("%llu ", held_root);
3993		else
3994			DMEMIT("- ");
3995
3996		mode = get_pool_mode(pool);
3997		if (mode == PM_OUT_OF_DATA_SPACE)
3998			DMEMIT("out_of_data_space ");
3999		else if (is_read_only_pool_mode(mode))
4000			DMEMIT("ro ");
4001		else
4002			DMEMIT("rw ");
4003
4004		if (!pool->pf.discard_enabled)
4005			DMEMIT("ignore_discard ");
4006		else if (pool->pf.discard_passdown)
4007			DMEMIT("discard_passdown ");
4008		else
4009			DMEMIT("no_discard_passdown ");
4010
4011		if (pool->pf.error_if_no_space)
4012			DMEMIT("error_if_no_space ");
4013		else
4014			DMEMIT("queue_if_no_space ");
4015
4016		if (dm_pool_metadata_needs_check(pool->pmd))
4017			DMEMIT("needs_check ");
4018		else
4019			DMEMIT("- ");
4020
4021		DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
4022
4023		break;
4024
4025	case STATUSTYPE_TABLE:
4026		DMEMIT("%s %s %lu %llu ",
4027		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
4028		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
4029		       (unsigned long)pool->sectors_per_block,
4030		       (unsigned long long)pt->low_water_blocks);
4031		emit_flags(&pt->requested_pf, result, sz, maxlen);
4032		break;
4033
4034	case STATUSTYPE_IMA:
4035		*result = '\0';
4036		break;
4037	}
4038	return;
4039
4040err:
4041	DMEMIT("Error");
4042}
4043
4044static int pool_iterate_devices(struct dm_target *ti,
4045				iterate_devices_callout_fn fn, void *data)
4046{
4047	struct pool_c *pt = ti->private;
4048
4049	return fn(ti, pt->data_dev, 0, ti->len, data);
4050}
4051
4052static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4053{
4054	struct pool_c *pt = ti->private;
4055	struct pool *pool = pt->pool;
4056	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4057
4058	/*
4059	 * If max_sectors is smaller than pool->sectors_per_block adjust it
4060	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
4061	 * This is especially beneficial when the pool's data device is a RAID
4062	 * device that has a full stripe width that matches pool->sectors_per_block
4063	 * -- because even though partial RAID stripe-sized IOs will be issued to a
4064	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
4065	 *    boundary.. which avoids additional partial RAID stripe writes cascading
4066	 */
4067	if (limits->max_sectors < pool->sectors_per_block) {
4068		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4069			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4070				limits->max_sectors--;
4071			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4072		}
4073	}
4074
4075	/*
4076	 * If the system-determined stacked limits are compatible with the
4077	 * pool's blocksize (io_opt is a factor) do not override them.
4078	 */
4079	if (io_opt_sectors < pool->sectors_per_block ||
4080	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4081		if (is_factor(pool->sectors_per_block, limits->max_sectors))
4082			limits->io_min = limits->max_sectors << SECTOR_SHIFT;
4083		else
4084			limits->io_min = pool->sectors_per_block << SECTOR_SHIFT;
4085		limits->io_opt = pool->sectors_per_block << SECTOR_SHIFT;
4086	}
4087
4088	/*
4089	 * pt->adjusted_pf is a staging area for the actual features to use.
4090	 * They get transferred to the live pool in bind_control_target()
4091	 * called from pool_preresume().
4092	 */
4093
4094	if (pt->adjusted_pf.discard_enabled) {
4095		disable_discard_passdown_if_not_supported(pt);
4096		if (!pt->adjusted_pf.discard_passdown)
4097			limits->max_hw_discard_sectors = 0;
4098		/*
4099		 * The pool uses the same discard limits as the underlying data
4100		 * device.  DM core has already set this up.
4101		 */
4102	} else {
4103		/*
4104		 * Must explicitly disallow stacking discard limits otherwise the
4105		 * block layer will stack them if pool's data device has support.
 
 
4106		 */
4107		limits->discard_granularity = 0;
 
4108	}
 
 
 
 
 
 
 
4109}
4110
4111static struct target_type pool_target = {
4112	.name = "thin-pool",
4113	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4114		    DM_TARGET_IMMUTABLE,
4115	.version = {1, 23, 0},
4116	.module = THIS_MODULE,
4117	.ctr = pool_ctr,
4118	.dtr = pool_dtr,
4119	.map = pool_map,
4120	.presuspend = pool_presuspend,
4121	.presuspend_undo = pool_presuspend_undo,
4122	.postsuspend = pool_postsuspend,
4123	.preresume = pool_preresume,
4124	.resume = pool_resume,
4125	.message = pool_message,
4126	.status = pool_status,
4127	.iterate_devices = pool_iterate_devices,
4128	.io_hints = pool_io_hints,
4129};
4130
4131/*
4132 *--------------------------------------------------------------
4133 * Thin target methods
4134 *--------------------------------------------------------------
4135 */
4136static void thin_get(struct thin_c *tc)
4137{
4138	refcount_inc(&tc->refcount);
4139}
4140
4141static void thin_put(struct thin_c *tc)
4142{
4143	if (refcount_dec_and_test(&tc->refcount))
4144		complete(&tc->can_destroy);
4145}
4146
4147static void thin_dtr(struct dm_target *ti)
4148{
4149	struct thin_c *tc = ti->private;
 
4150
4151	spin_lock_irq(&tc->pool->lock);
4152	list_del_rcu(&tc->list);
4153	spin_unlock_irq(&tc->pool->lock);
4154	synchronize_rcu();
4155
4156	thin_put(tc);
4157	wait_for_completion(&tc->can_destroy);
4158
4159	mutex_lock(&dm_thin_pool_table.mutex);
4160
4161	__pool_dec(tc->pool);
4162	dm_pool_close_thin_device(tc->td);
4163	dm_put_device(ti, tc->pool_dev);
4164	if (tc->origin_dev)
4165		dm_put_device(ti, tc->origin_dev);
4166	kfree(tc);
4167
4168	mutex_unlock(&dm_thin_pool_table.mutex);
4169}
4170
4171/*
4172 * Thin target parameters:
4173 *
4174 * <pool_dev> <dev_id> [origin_dev]
4175 *
4176 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4177 * dev_id: the internal device identifier
4178 * origin_dev: a device external to the pool that should act as the origin
4179 *
4180 * If the pool device has discards disabled, they get disabled for the thin
4181 * device as well.
4182 */
4183static int thin_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4184{
4185	int r;
4186	struct thin_c *tc;
4187	struct dm_dev *pool_dev, *origin_dev;
4188	struct mapped_device *pool_md;
 
4189
4190	mutex_lock(&dm_thin_pool_table.mutex);
4191
4192	if (argc != 2 && argc != 3) {
4193		ti->error = "Invalid argument count";
4194		r = -EINVAL;
4195		goto out_unlock;
4196	}
4197
4198	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4199	if (!tc) {
4200		ti->error = "Out of memory";
4201		r = -ENOMEM;
4202		goto out_unlock;
4203	}
4204	tc->thin_md = dm_table_get_md(ti->table);
4205	spin_lock_init(&tc->lock);
4206	INIT_LIST_HEAD(&tc->deferred_cells);
4207	bio_list_init(&tc->deferred_bio_list);
4208	bio_list_init(&tc->retry_on_resume_list);
4209	tc->sort_bio_list = RB_ROOT;
4210
4211	if (argc == 3) {
4212		if (!strcmp(argv[0], argv[2])) {
4213			ti->error = "Error setting origin device";
4214			r = -EINVAL;
4215			goto bad_origin_dev;
4216		}
4217
4218		r = dm_get_device(ti, argv[2], BLK_OPEN_READ, &origin_dev);
4219		if (r) {
4220			ti->error = "Error opening origin device";
4221			goto bad_origin_dev;
4222		}
4223		tc->origin_dev = origin_dev;
4224	}
4225
4226	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4227	if (r) {
4228		ti->error = "Error opening pool device";
4229		goto bad_pool_dev;
4230	}
4231	tc->pool_dev = pool_dev;
4232
4233	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4234		ti->error = "Invalid device id";
4235		r = -EINVAL;
4236		goto bad_common;
4237	}
4238
4239	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4240	if (!pool_md) {
4241		ti->error = "Couldn't get pool mapped device";
4242		r = -EINVAL;
4243		goto bad_common;
4244	}
4245
4246	tc->pool = __pool_table_lookup(pool_md);
4247	if (!tc->pool) {
4248		ti->error = "Couldn't find pool object";
4249		r = -EINVAL;
4250		goto bad_pool_lookup;
4251	}
4252	__pool_inc(tc->pool);
4253
4254	if (get_pool_mode(tc->pool) == PM_FAIL) {
4255		ti->error = "Couldn't open thin device, Pool is in fail mode";
4256		r = -EINVAL;
4257		goto bad_pool;
4258	}
4259
4260	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4261	if (r) {
4262		ti->error = "Couldn't open thin internal device";
4263		goto bad_pool;
4264	}
4265
4266	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4267	if (r)
4268		goto bad;
4269
4270	ti->num_flush_bios = 1;
4271	ti->limit_swap_bios = true;
4272	ti->flush_supported = true;
4273	ti->accounts_remapped_io = true;
4274	ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4275
4276	/* In case the pool supports discards, pass them on. */
4277	if (tc->pool->pf.discard_enabled) {
4278		ti->discards_supported = true;
4279		ti->num_discard_bios = 1;
4280		ti->max_discard_granularity = true;
4281	}
4282
4283	mutex_unlock(&dm_thin_pool_table.mutex);
4284
4285	spin_lock_irq(&tc->pool->lock);
4286	if (tc->pool->suspended) {
4287		spin_unlock_irq(&tc->pool->lock);
4288		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4289		ti->error = "Unable to activate thin device while pool is suspended";
4290		r = -EINVAL;
4291		goto bad;
4292	}
4293	refcount_set(&tc->refcount, 1);
4294	init_completion(&tc->can_destroy);
4295	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4296	spin_unlock_irq(&tc->pool->lock);
4297	/*
4298	 * This synchronize_rcu() call is needed here otherwise we risk a
4299	 * wake_worker() call finding no bios to process (because the newly
4300	 * added tc isn't yet visible).  So this reduces latency since we
4301	 * aren't then dependent on the periodic commit to wake_worker().
4302	 */
4303	synchronize_rcu();
4304
4305	dm_put(pool_md);
4306
4307	return 0;
4308
4309bad:
4310	dm_pool_close_thin_device(tc->td);
4311bad_pool:
4312	__pool_dec(tc->pool);
4313bad_pool_lookup:
4314	dm_put(pool_md);
4315bad_common:
4316	dm_put_device(ti, tc->pool_dev);
4317bad_pool_dev:
4318	if (tc->origin_dev)
4319		dm_put_device(ti, tc->origin_dev);
4320bad_origin_dev:
4321	kfree(tc);
4322out_unlock:
4323	mutex_unlock(&dm_thin_pool_table.mutex);
4324
4325	return r;
4326}
4327
4328static int thin_map(struct dm_target *ti, struct bio *bio)
4329{
4330	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4331
4332	return thin_bio_map(ti, bio);
4333}
4334
4335static int thin_endio(struct dm_target *ti, struct bio *bio,
4336		blk_status_t *err)
4337{
4338	unsigned long flags;
4339	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4340	struct list_head work;
4341	struct dm_thin_new_mapping *m, *tmp;
4342	struct pool *pool = h->tc->pool;
4343
4344	if (h->shared_read_entry) {
4345		INIT_LIST_HEAD(&work);
4346		dm_deferred_entry_dec(h->shared_read_entry, &work);
4347
4348		spin_lock_irqsave(&pool->lock, flags);
4349		list_for_each_entry_safe(m, tmp, &work, list) {
4350			list_del(&m->list);
4351			__complete_mapping_preparation(m);
4352		}
4353		spin_unlock_irqrestore(&pool->lock, flags);
4354	}
4355
4356	if (h->all_io_entry) {
4357		INIT_LIST_HEAD(&work);
4358		dm_deferred_entry_dec(h->all_io_entry, &work);
4359		if (!list_empty(&work)) {
4360			spin_lock_irqsave(&pool->lock, flags);
4361			list_for_each_entry_safe(m, tmp, &work, list)
4362				list_add_tail(&m->list, &pool->prepared_discards);
4363			spin_unlock_irqrestore(&pool->lock, flags);
4364			wake_worker(pool);
4365		}
4366	}
4367
4368	if (h->cell)
4369		cell_defer_no_holder(h->tc, h->cell);
4370
4371	return DM_ENDIO_DONE;
4372}
4373
4374static void thin_presuspend(struct dm_target *ti)
4375{
4376	struct thin_c *tc = ti->private;
4377
4378	if (dm_noflush_suspending(ti))
4379		noflush_work(tc, do_noflush_start);
4380}
4381
4382static void thin_postsuspend(struct dm_target *ti)
4383{
4384	struct thin_c *tc = ti->private;
4385
4386	/*
4387	 * The dm_noflush_suspending flag has been cleared by now, so
4388	 * unfortunately we must always run this.
4389	 */
4390	noflush_work(tc, do_noflush_stop);
4391}
4392
4393static int thin_preresume(struct dm_target *ti)
4394{
4395	struct thin_c *tc = ti->private;
4396
4397	if (tc->origin_dev)
4398		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4399
4400	return 0;
4401}
4402
4403/*
4404 * <nr mapped sectors> <highest mapped sector>
4405 */
4406static void thin_status(struct dm_target *ti, status_type_t type,
4407			unsigned int status_flags, char *result, unsigned int maxlen)
4408{
4409	int r;
4410	ssize_t sz = 0;
4411	dm_block_t mapped, highest;
4412	char buf[BDEVNAME_SIZE];
4413	struct thin_c *tc = ti->private;
4414
4415	if (get_pool_mode(tc->pool) == PM_FAIL) {
4416		DMEMIT("Fail");
4417		return;
4418	}
4419
4420	if (!tc->td)
4421		DMEMIT("-");
4422	else {
4423		switch (type) {
4424		case STATUSTYPE_INFO:
4425			r = dm_thin_get_mapped_count(tc->td, &mapped);
4426			if (r) {
4427				DMERR("dm_thin_get_mapped_count returned %d", r);
4428				goto err;
4429			}
4430
4431			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4432			if (r < 0) {
4433				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4434				goto err;
4435			}
4436
4437			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4438			if (r)
4439				DMEMIT("%llu", ((highest + 1) *
4440						tc->pool->sectors_per_block) - 1);
4441			else
4442				DMEMIT("-");
4443			break;
4444
4445		case STATUSTYPE_TABLE:
4446			DMEMIT("%s %lu",
4447			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4448			       (unsigned long) tc->dev_id);
4449			if (tc->origin_dev)
4450				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4451			break;
4452
4453		case STATUSTYPE_IMA:
4454			*result = '\0';
4455			break;
4456		}
4457	}
4458
4459	return;
4460
4461err:
4462	DMEMIT("Error");
4463}
4464
4465static int thin_iterate_devices(struct dm_target *ti,
4466				iterate_devices_callout_fn fn, void *data)
4467{
4468	sector_t blocks;
4469	struct thin_c *tc = ti->private;
4470	struct pool *pool = tc->pool;
4471
4472	/*
4473	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4474	 * we follow a more convoluted path through to the pool's target.
4475	 */
4476	if (!pool->ti)
4477		return 0;	/* nothing is bound */
4478
4479	blocks = pool->ti->len;
4480	(void) sector_div(blocks, pool->sectors_per_block);
4481	if (blocks)
4482		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4483
4484	return 0;
4485}
4486
4487static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4488{
4489	struct thin_c *tc = ti->private;
4490	struct pool *pool = tc->pool;
4491
4492	if (pool->pf.discard_enabled) {
4493		limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4494		limits->max_hw_discard_sectors = pool->sectors_per_block * BIO_PRISON_MAX_RANGE;
4495	}
 
4496}
4497
4498static struct target_type thin_target = {
4499	.name = "thin",
4500	.version = {1, 23, 0},
4501	.module	= THIS_MODULE,
4502	.ctr = thin_ctr,
4503	.dtr = thin_dtr,
4504	.map = thin_map,
4505	.end_io = thin_endio,
4506	.preresume = thin_preresume,
4507	.presuspend = thin_presuspend,
4508	.postsuspend = thin_postsuspend,
4509	.status = thin_status,
4510	.iterate_devices = thin_iterate_devices,
4511	.io_hints = thin_io_hints,
4512};
4513
4514/*----------------------------------------------------------------*/
4515
4516static int __init dm_thin_init(void)
4517{
4518	int r = -ENOMEM;
4519
4520	pool_table_init();
4521
4522	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4523	if (!_new_mapping_cache)
4524		return r;
4525
4526	r = dm_register_target(&thin_target);
4527	if (r)
4528		goto bad_new_mapping_cache;
4529
4530	r = dm_register_target(&pool_target);
4531	if (r)
4532		goto bad_thin_target;
4533
4534	return 0;
4535
4536bad_thin_target:
4537	dm_unregister_target(&thin_target);
4538bad_new_mapping_cache:
4539	kmem_cache_destroy(_new_mapping_cache);
4540
4541	return r;
4542}
4543
4544static void dm_thin_exit(void)
4545{
4546	dm_unregister_target(&thin_target);
4547	dm_unregister_target(&pool_target);
4548
4549	kmem_cache_destroy(_new_mapping_cache);
4550
4551	pool_table_exit();
4552}
4553
4554module_init(dm_thin_init);
4555module_exit(dm_thin_exit);
4556
4557module_param_named(no_space_timeout, no_space_timeout_secs, uint, 0644);
4558MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4559
4560MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4561MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>");
4562MODULE_LICENSE("GPL");
v4.17
 
   1/*
   2 * Copyright (C) 2011-2012 Red Hat UK.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm-thin-metadata.h"
   8#include "dm-bio-prison-v1.h"
   9#include "dm.h"
  10
  11#include <linux/device-mapper.h>
  12#include <linux/dm-io.h>
  13#include <linux/dm-kcopyd.h>
  14#include <linux/jiffies.h>
  15#include <linux/log2.h>
  16#include <linux/list.h>
  17#include <linux/rculist.h>
  18#include <linux/init.h>
  19#include <linux/module.h>
  20#include <linux/slab.h>
  21#include <linux/vmalloc.h>
  22#include <linux/sort.h>
  23#include <linux/rbtree.h>
  24
  25#define	DM_MSG_PREFIX	"thin"
  26
  27/*
  28 * Tunable constants
  29 */
  30#define ENDIO_HOOK_POOL_SIZE 1024
  31#define MAPPING_POOL_SIZE 1024
  32#define COMMIT_PERIOD HZ
  33#define NO_SPACE_TIMEOUT_SECS 60
  34
  35static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
  36
  37DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
  38		"A percentage of time allocated for copy on write");
  39
  40/*
  41 * The block size of the device holding pool data must be
  42 * between 64KB and 1GB.
  43 */
  44#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
  45#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
  46
  47/*
  48 * Device id is restricted to 24 bits.
  49 */
  50#define MAX_DEV_ID ((1 << 24) - 1)
  51
  52/*
  53 * How do we handle breaking sharing of data blocks?
  54 * =================================================
  55 *
  56 * We use a standard copy-on-write btree to store the mappings for the
  57 * devices (note I'm talking about copy-on-write of the metadata here, not
  58 * the data).  When you take an internal snapshot you clone the root node
  59 * of the origin btree.  After this there is no concept of an origin or a
  60 * snapshot.  They are just two device trees that happen to point to the
  61 * same data blocks.
  62 *
  63 * When we get a write in we decide if it's to a shared data block using
  64 * some timestamp magic.  If it is, we have to break sharing.
  65 *
  66 * Let's say we write to a shared block in what was the origin.  The
  67 * steps are:
  68 *
  69 * i) plug io further to this physical block. (see bio_prison code).
  70 *
  71 * ii) quiesce any read io to that shared data block.  Obviously
  72 * including all devices that share this block.  (see dm_deferred_set code)
  73 *
  74 * iii) copy the data block to a newly allocate block.  This step can be
  75 * missed out if the io covers the block. (schedule_copy).
  76 *
  77 * iv) insert the new mapping into the origin's btree
  78 * (process_prepared_mapping).  This act of inserting breaks some
  79 * sharing of btree nodes between the two devices.  Breaking sharing only
  80 * effects the btree of that specific device.  Btrees for the other
  81 * devices that share the block never change.  The btree for the origin
  82 * device as it was after the last commit is untouched, ie. we're using
  83 * persistent data structures in the functional programming sense.
  84 *
  85 * v) unplug io to this physical block, including the io that triggered
  86 * the breaking of sharing.
  87 *
  88 * Steps (ii) and (iii) occur in parallel.
  89 *
  90 * The metadata _doesn't_ need to be committed before the io continues.  We
  91 * get away with this because the io is always written to a _new_ block.
  92 * If there's a crash, then:
  93 *
  94 * - The origin mapping will point to the old origin block (the shared
  95 * one).  This will contain the data as it was before the io that triggered
  96 * the breaking of sharing came in.
  97 *
  98 * - The snap mapping still points to the old block.  As it would after
  99 * the commit.
 100 *
 101 * The downside of this scheme is the timestamp magic isn't perfect, and
 102 * will continue to think that data block in the snapshot device is shared
 103 * even after the write to the origin has broken sharing.  I suspect data
 104 * blocks will typically be shared by many different devices, so we're
 105 * breaking sharing n + 1 times, rather than n, where n is the number of
 106 * devices that reference this data block.  At the moment I think the
 107 * benefits far, far outweigh the disadvantages.
 108 */
 109
 110/*----------------------------------------------------------------*/
 111
 112/*
 113 * Key building.
 114 */
 115enum lock_space {
 116	VIRTUAL,
 117	PHYSICAL
 118};
 119
 120static void build_key(struct dm_thin_device *td, enum lock_space ls,
 121		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
 122{
 123	key->virtual = (ls == VIRTUAL);
 124	key->dev = dm_thin_dev_id(td);
 125	key->block_begin = b;
 126	key->block_end = e;
 
 
 127}
 128
 129static void build_data_key(struct dm_thin_device *td, dm_block_t b,
 130			   struct dm_cell_key *key)
 131{
 132	build_key(td, PHYSICAL, b, b + 1llu, key);
 133}
 134
 135static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
 136			      struct dm_cell_key *key)
 137{
 138	build_key(td, VIRTUAL, b, b + 1llu, key);
 139}
 140
 141/*----------------------------------------------------------------*/
 142
 143#define THROTTLE_THRESHOLD (1 * HZ)
 144
 145struct throttle {
 146	struct rw_semaphore lock;
 147	unsigned long threshold;
 148	bool throttle_applied;
 149};
 150
 151static void throttle_init(struct throttle *t)
 152{
 153	init_rwsem(&t->lock);
 154	t->throttle_applied = false;
 155}
 156
 157static void throttle_work_start(struct throttle *t)
 158{
 159	t->threshold = jiffies + THROTTLE_THRESHOLD;
 160}
 161
 162static void throttle_work_update(struct throttle *t)
 163{
 164	if (!t->throttle_applied && jiffies > t->threshold) {
 165		down_write(&t->lock);
 166		t->throttle_applied = true;
 167	}
 168}
 169
 170static void throttle_work_complete(struct throttle *t)
 171{
 172	if (t->throttle_applied) {
 173		t->throttle_applied = false;
 174		up_write(&t->lock);
 175	}
 176}
 177
 178static void throttle_lock(struct throttle *t)
 179{
 180	down_read(&t->lock);
 181}
 182
 183static void throttle_unlock(struct throttle *t)
 184{
 185	up_read(&t->lock);
 186}
 187
 188/*----------------------------------------------------------------*/
 189
 190/*
 191 * A pool device ties together a metadata device and a data device.  It
 192 * also provides the interface for creating and destroying internal
 193 * devices.
 194 */
 195struct dm_thin_new_mapping;
 196
 197/*
 198 * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
 199 */
 200enum pool_mode {
 201	PM_WRITE,		/* metadata may be changed */
 202	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
 
 
 
 
 
 203	PM_READ_ONLY,		/* metadata may not be changed */
 
 204	PM_FAIL,		/* all I/O fails */
 205};
 206
 207struct pool_features {
 208	enum pool_mode mode;
 209
 210	bool zero_new_blocks:1;
 211	bool discard_enabled:1;
 212	bool discard_passdown:1;
 213	bool error_if_no_space:1;
 214};
 215
 216struct thin_c;
 217typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
 218typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
 219typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
 220
 221#define CELL_SORT_ARRAY_SIZE 8192
 222
 223struct pool {
 224	struct list_head list;
 225	struct dm_target *ti;	/* Only set if a pool target is bound */
 226
 227	struct mapped_device *pool_md;
 
 228	struct block_device *md_dev;
 229	struct dm_pool_metadata *pmd;
 230
 231	dm_block_t low_water_blocks;
 232	uint32_t sectors_per_block;
 233	int sectors_per_block_shift;
 234
 235	struct pool_features pf;
 236	bool low_water_triggered:1;	/* A dm event has been sent */
 237	bool suspended:1;
 238	bool out_of_data_space:1;
 239
 240	struct dm_bio_prison *prison;
 241	struct dm_kcopyd_client *copier;
 242
 
 243	struct workqueue_struct *wq;
 244	struct throttle throttle;
 245	struct work_struct worker;
 246	struct delayed_work waker;
 247	struct delayed_work no_space_timeout;
 248
 249	unsigned long last_commit_jiffies;
 250	unsigned ref_count;
 251
 252	spinlock_t lock;
 253	struct bio_list deferred_flush_bios;
 
 254	struct list_head prepared_mappings;
 255	struct list_head prepared_discards;
 256	struct list_head prepared_discards_pt2;
 257	struct list_head active_thins;
 258
 259	struct dm_deferred_set *shared_read_ds;
 260	struct dm_deferred_set *all_io_ds;
 261
 262	struct dm_thin_new_mapping *next_mapping;
 263	mempool_t *mapping_pool;
 264
 265	process_bio_fn process_bio;
 266	process_bio_fn process_discard;
 267
 268	process_cell_fn process_cell;
 269	process_cell_fn process_discard_cell;
 270
 271	process_mapping_fn process_prepared_mapping;
 272	process_mapping_fn process_prepared_discard;
 273	process_mapping_fn process_prepared_discard_pt2;
 274
 275	struct dm_bio_prison_cell **cell_sort_array;
 
 
 276};
 277
 278static enum pool_mode get_pool_mode(struct pool *pool);
 279static void metadata_operation_failed(struct pool *pool, const char *op, int r);
 280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 281/*
 282 * Target context for a pool.
 283 */
 284struct pool_c {
 285	struct dm_target *ti;
 286	struct pool *pool;
 287	struct dm_dev *data_dev;
 288	struct dm_dev *metadata_dev;
 289	struct dm_target_callbacks callbacks;
 290
 291	dm_block_t low_water_blocks;
 292	struct pool_features requested_pf; /* Features requested during table load */
 293	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
 294};
 295
 296/*
 297 * Target context for a thin.
 298 */
 299struct thin_c {
 300	struct list_head list;
 301	struct dm_dev *pool_dev;
 302	struct dm_dev *origin_dev;
 303	sector_t origin_size;
 304	dm_thin_id dev_id;
 305
 306	struct pool *pool;
 307	struct dm_thin_device *td;
 308	struct mapped_device *thin_md;
 309
 310	bool requeue_mode:1;
 311	spinlock_t lock;
 312	struct list_head deferred_cells;
 313	struct bio_list deferred_bio_list;
 314	struct bio_list retry_on_resume_list;
 315	struct rb_root sort_bio_list; /* sorted list of deferred bios */
 316
 317	/*
 318	 * Ensures the thin is not destroyed until the worker has finished
 319	 * iterating the active_thins list.
 320	 */
 321	atomic_t refcount;
 322	struct completion can_destroy;
 323};
 324
 325/*----------------------------------------------------------------*/
 326
 327static bool block_size_is_power_of_two(struct pool *pool)
 328{
 329	return pool->sectors_per_block_shift >= 0;
 330}
 331
 332static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
 333{
 334	return block_size_is_power_of_two(pool) ?
 335		(b << pool->sectors_per_block_shift) :
 336		(b * pool->sectors_per_block);
 337}
 338
 339/*----------------------------------------------------------------*/
 340
 341struct discard_op {
 342	struct thin_c *tc;
 343	struct blk_plug plug;
 344	struct bio *parent_bio;
 345	struct bio *bio;
 346};
 347
 348static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
 349{
 350	BUG_ON(!parent);
 351
 352	op->tc = tc;
 353	blk_start_plug(&op->plug);
 354	op->parent_bio = parent;
 355	op->bio = NULL;
 356}
 357
 358static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
 359{
 360	struct thin_c *tc = op->tc;
 361	sector_t s = block_to_sectors(tc->pool, data_b);
 362	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
 363
 364	return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
 365				      GFP_NOWAIT, 0, &op->bio);
 366}
 367
 368static void end_discard(struct discard_op *op, int r)
 369{
 370	if (op->bio) {
 371		/*
 372		 * Even if one of the calls to issue_discard failed, we
 373		 * need to wait for the chain to complete.
 374		 */
 375		bio_chain(op->bio, op->parent_bio);
 376		bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
 377		submit_bio(op->bio);
 378	}
 379
 380	blk_finish_plug(&op->plug);
 381
 382	/*
 383	 * Even if r is set, there could be sub discards in flight that we
 384	 * need to wait for.
 385	 */
 386	if (r && !op->parent_bio->bi_status)
 387		op->parent_bio->bi_status = errno_to_blk_status(r);
 388	bio_endio(op->parent_bio);
 389}
 390
 391/*----------------------------------------------------------------*/
 392
 393/*
 394 * wake_worker() is used when new work is queued and when pool_resume is
 395 * ready to continue deferred IO processing.
 396 */
 397static void wake_worker(struct pool *pool)
 398{
 399	queue_work(pool->wq, &pool->worker);
 400}
 401
 402/*----------------------------------------------------------------*/
 403
 404static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
 405		      struct dm_bio_prison_cell **cell_result)
 406{
 407	int r;
 408	struct dm_bio_prison_cell *cell_prealloc;
 409
 410	/*
 411	 * Allocate a cell from the prison's mempool.
 412	 * This might block but it can't fail.
 413	 */
 414	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
 415
 416	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
 417	if (r)
 418		/*
 419		 * We reused an old cell; we can get rid of
 420		 * the new one.
 421		 */
 422		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
 
 423
 424	return r;
 425}
 426
 427static void cell_release(struct pool *pool,
 428			 struct dm_bio_prison_cell *cell,
 429			 struct bio_list *bios)
 430{
 431	dm_cell_release(pool->prison, cell, bios);
 432	dm_bio_prison_free_cell(pool->prison, cell);
 433}
 434
 435static void cell_visit_release(struct pool *pool,
 436			       void (*fn)(void *, struct dm_bio_prison_cell *),
 437			       void *context,
 438			       struct dm_bio_prison_cell *cell)
 439{
 440	dm_cell_visit_release(pool->prison, fn, context, cell);
 441	dm_bio_prison_free_cell(pool->prison, cell);
 442}
 443
 444static void cell_release_no_holder(struct pool *pool,
 445				   struct dm_bio_prison_cell *cell,
 446				   struct bio_list *bios)
 447{
 448	dm_cell_release_no_holder(pool->prison, cell, bios);
 449	dm_bio_prison_free_cell(pool->prison, cell);
 450}
 451
 452static void cell_error_with_code(struct pool *pool,
 453		struct dm_bio_prison_cell *cell, blk_status_t error_code)
 454{
 455	dm_cell_error(pool->prison, cell, error_code);
 456	dm_bio_prison_free_cell(pool->prison, cell);
 457}
 458
 459static blk_status_t get_pool_io_error_code(struct pool *pool)
 460{
 461	return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
 462}
 463
 464static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
 465{
 466	cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
 467}
 468
 469static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
 470{
 471	cell_error_with_code(pool, cell, 0);
 472}
 473
 474static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
 475{
 476	cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
 477}
 478
 479/*----------------------------------------------------------------*/
 480
 481/*
 482 * A global list of pools that uses a struct mapped_device as a key.
 483 */
 484static struct dm_thin_pool_table {
 485	struct mutex mutex;
 486	struct list_head pools;
 487} dm_thin_pool_table;
 488
 489static void pool_table_init(void)
 490{
 491	mutex_init(&dm_thin_pool_table.mutex);
 492	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
 493}
 494
 495static void pool_table_exit(void)
 496{
 497	mutex_destroy(&dm_thin_pool_table.mutex);
 498}
 499
 500static void __pool_table_insert(struct pool *pool)
 501{
 502	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 503	list_add(&pool->list, &dm_thin_pool_table.pools);
 504}
 505
 506static void __pool_table_remove(struct pool *pool)
 507{
 508	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 509	list_del(&pool->list);
 510}
 511
 512static struct pool *__pool_table_lookup(struct mapped_device *md)
 513{
 514	struct pool *pool = NULL, *tmp;
 515
 516	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 517
 518	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 519		if (tmp->pool_md == md) {
 520			pool = tmp;
 521			break;
 522		}
 523	}
 524
 525	return pool;
 526}
 527
 528static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
 529{
 530	struct pool *pool = NULL, *tmp;
 531
 532	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 533
 534	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 535		if (tmp->md_dev == md_dev) {
 536			pool = tmp;
 537			break;
 538		}
 539	}
 540
 541	return pool;
 542}
 543
 544/*----------------------------------------------------------------*/
 545
 546struct dm_thin_endio_hook {
 547	struct thin_c *tc;
 548	struct dm_deferred_entry *shared_read_entry;
 549	struct dm_deferred_entry *all_io_entry;
 550	struct dm_thin_new_mapping *overwrite_mapping;
 551	struct rb_node rb_node;
 552	struct dm_bio_prison_cell *cell;
 553};
 554
 555static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
 556{
 557	bio_list_merge(bios, master);
 558	bio_list_init(master);
 559}
 560
 561static void error_bio_list(struct bio_list *bios, blk_status_t error)
 562{
 563	struct bio *bio;
 564
 565	while ((bio = bio_list_pop(bios))) {
 566		bio->bi_status = error;
 567		bio_endio(bio);
 568	}
 569}
 570
 571static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
 572		blk_status_t error)
 573{
 574	struct bio_list bios;
 575	unsigned long flags;
 576
 577	bio_list_init(&bios);
 578
 579	spin_lock_irqsave(&tc->lock, flags);
 580	__merge_bio_list(&bios, master);
 581	spin_unlock_irqrestore(&tc->lock, flags);
 582
 583	error_bio_list(&bios, error);
 584}
 585
 586static void requeue_deferred_cells(struct thin_c *tc)
 587{
 588	struct pool *pool = tc->pool;
 589	unsigned long flags;
 590	struct list_head cells;
 591	struct dm_bio_prison_cell *cell, *tmp;
 592
 593	INIT_LIST_HEAD(&cells);
 594
 595	spin_lock_irqsave(&tc->lock, flags);
 596	list_splice_init(&tc->deferred_cells, &cells);
 597	spin_unlock_irqrestore(&tc->lock, flags);
 598
 599	list_for_each_entry_safe(cell, tmp, &cells, user_list)
 600		cell_requeue(pool, cell);
 601}
 602
 603static void requeue_io(struct thin_c *tc)
 604{
 605	struct bio_list bios;
 606	unsigned long flags;
 607
 608	bio_list_init(&bios);
 609
 610	spin_lock_irqsave(&tc->lock, flags);
 611	__merge_bio_list(&bios, &tc->deferred_bio_list);
 612	__merge_bio_list(&bios, &tc->retry_on_resume_list);
 613	spin_unlock_irqrestore(&tc->lock, flags);
 614
 615	error_bio_list(&bios, BLK_STS_DM_REQUEUE);
 616	requeue_deferred_cells(tc);
 617}
 618
 619static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
 620{
 621	struct thin_c *tc;
 622
 623	rcu_read_lock();
 624	list_for_each_entry_rcu(tc, &pool->active_thins, list)
 625		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
 626	rcu_read_unlock();
 627}
 628
 629static void error_retry_list(struct pool *pool)
 630{
 631	error_retry_list_with_code(pool, get_pool_io_error_code(pool));
 632}
 633
 634/*
 635 * This section of code contains the logic for processing a thin device's IO.
 636 * Much of the code depends on pool object resources (lists, workqueues, etc)
 637 * but most is exclusively called from the thin target rather than the thin-pool
 638 * target.
 639 */
 640
 641static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
 642{
 643	struct pool *pool = tc->pool;
 644	sector_t block_nr = bio->bi_iter.bi_sector;
 645
 646	if (block_size_is_power_of_two(pool))
 647		block_nr >>= pool->sectors_per_block_shift;
 648	else
 649		(void) sector_div(block_nr, pool->sectors_per_block);
 650
 651	return block_nr;
 652}
 653
 654/*
 655 * Returns the _complete_ blocks that this bio covers.
 656 */
 657static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
 658				dm_block_t *begin, dm_block_t *end)
 659{
 660	struct pool *pool = tc->pool;
 661	sector_t b = bio->bi_iter.bi_sector;
 662	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
 663
 664	b += pool->sectors_per_block - 1ull; /* so we round up */
 665
 666	if (block_size_is_power_of_two(pool)) {
 667		b >>= pool->sectors_per_block_shift;
 668		e >>= pool->sectors_per_block_shift;
 669	} else {
 670		(void) sector_div(b, pool->sectors_per_block);
 671		(void) sector_div(e, pool->sectors_per_block);
 672	}
 673
 674	if (e < b)
 675		/* Can happen if the bio is within a single block. */
 676		e = b;
 
 677
 678	*begin = b;
 679	*end = e;
 680}
 681
 682static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
 683{
 684	struct pool *pool = tc->pool;
 685	sector_t bi_sector = bio->bi_iter.bi_sector;
 686
 687	bio_set_dev(bio, tc->pool_dev->bdev);
 688	if (block_size_is_power_of_two(pool))
 689		bio->bi_iter.bi_sector =
 690			(block << pool->sectors_per_block_shift) |
 691			(bi_sector & (pool->sectors_per_block - 1));
 692	else
 693		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
 694				 sector_div(bi_sector, pool->sectors_per_block);
 
 695}
 696
 697static void remap_to_origin(struct thin_c *tc, struct bio *bio)
 698{
 699	bio_set_dev(bio, tc->origin_dev->bdev);
 700}
 701
 702static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
 703{
 704	return op_is_flush(bio->bi_opf) &&
 705		dm_thin_changed_this_transaction(tc->td);
 706}
 707
 708static void inc_all_io_entry(struct pool *pool, struct bio *bio)
 709{
 710	struct dm_thin_endio_hook *h;
 711
 712	if (bio_op(bio) == REQ_OP_DISCARD)
 713		return;
 714
 715	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 716	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
 717}
 718
 719static void issue(struct thin_c *tc, struct bio *bio)
 720{
 721	struct pool *pool = tc->pool;
 722	unsigned long flags;
 723
 724	if (!bio_triggers_commit(tc, bio)) {
 725		generic_make_request(bio);
 726		return;
 727	}
 728
 729	/*
 730	 * Complete bio with an error if earlier I/O caused changes to
 731	 * the metadata that can't be committed e.g, due to I/O errors
 732	 * on the metadata device.
 733	 */
 734	if (dm_thin_aborted_changes(tc->td)) {
 735		bio_io_error(bio);
 736		return;
 737	}
 738
 739	/*
 740	 * Batch together any bios that trigger commits and then issue a
 741	 * single commit for them in process_deferred_bios().
 742	 */
 743	spin_lock_irqsave(&pool->lock, flags);
 744	bio_list_add(&pool->deferred_flush_bios, bio);
 745	spin_unlock_irqrestore(&pool->lock, flags);
 746}
 747
 748static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
 749{
 750	remap_to_origin(tc, bio);
 751	issue(tc, bio);
 752}
 753
 754static void remap_and_issue(struct thin_c *tc, struct bio *bio,
 755			    dm_block_t block)
 756{
 757	remap(tc, bio, block);
 758	issue(tc, bio);
 759}
 760
 761/*----------------------------------------------------------------*/
 762
 763/*
 764 * Bio endio functions.
 765 */
 766struct dm_thin_new_mapping {
 767	struct list_head list;
 768
 769	bool pass_discard:1;
 770	bool maybe_shared:1;
 771
 772	/*
 773	 * Track quiescing, copying and zeroing preparation actions.  When this
 774	 * counter hits zero the block is prepared and can be inserted into the
 775	 * btree.
 776	 */
 777	atomic_t prepare_actions;
 778
 779	blk_status_t status;
 780	struct thin_c *tc;
 781	dm_block_t virt_begin, virt_end;
 782	dm_block_t data_block;
 783	struct dm_bio_prison_cell *cell;
 784
 785	/*
 786	 * If the bio covers the whole area of a block then we can avoid
 787	 * zeroing or copying.  Instead this bio is hooked.  The bio will
 788	 * still be in the cell, so care has to be taken to avoid issuing
 789	 * the bio twice.
 790	 */
 791	struct bio *bio;
 792	bio_end_io_t *saved_bi_end_io;
 793};
 794
 795static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
 796{
 797	struct pool *pool = m->tc->pool;
 798
 799	if (atomic_dec_and_test(&m->prepare_actions)) {
 800		list_add_tail(&m->list, &pool->prepared_mappings);
 801		wake_worker(pool);
 802	}
 803}
 804
 805static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
 806{
 807	unsigned long flags;
 808	struct pool *pool = m->tc->pool;
 809
 810	spin_lock_irqsave(&pool->lock, flags);
 811	__complete_mapping_preparation(m);
 812	spin_unlock_irqrestore(&pool->lock, flags);
 813}
 814
 815static void copy_complete(int read_err, unsigned long write_err, void *context)
 816{
 817	struct dm_thin_new_mapping *m = context;
 818
 819	m->status = read_err || write_err ? BLK_STS_IOERR : 0;
 820	complete_mapping_preparation(m);
 821}
 822
 823static void overwrite_endio(struct bio *bio)
 824{
 825	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 826	struct dm_thin_new_mapping *m = h->overwrite_mapping;
 827
 828	bio->bi_end_io = m->saved_bi_end_io;
 829
 830	m->status = bio->bi_status;
 831	complete_mapping_preparation(m);
 832}
 833
 834/*----------------------------------------------------------------*/
 835
 836/*
 837 * Workqueue.
 838 */
 839
 840/*
 841 * Prepared mapping jobs.
 842 */
 843
 844/*
 845 * This sends the bios in the cell, except the original holder, back
 846 * to the deferred_bios list.
 847 */
 848static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
 849{
 850	struct pool *pool = tc->pool;
 851	unsigned long flags;
 
 852
 853	spin_lock_irqsave(&tc->lock, flags);
 854	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
 855	spin_unlock_irqrestore(&tc->lock, flags);
 856
 857	wake_worker(pool);
 
 
 
 
 
 858}
 859
 860static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
 861
 862struct remap_info {
 863	struct thin_c *tc;
 864	struct bio_list defer_bios;
 865	struct bio_list issue_bios;
 866};
 867
 868static void __inc_remap_and_issue_cell(void *context,
 869				       struct dm_bio_prison_cell *cell)
 870{
 871	struct remap_info *info = context;
 872	struct bio *bio;
 873
 874	while ((bio = bio_list_pop(&cell->bios))) {
 875		if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
 876			bio_list_add(&info->defer_bios, bio);
 877		else {
 878			inc_all_io_entry(info->tc->pool, bio);
 879
 880			/*
 881			 * We can't issue the bios with the bio prison lock
 882			 * held, so we add them to a list to issue on
 883			 * return from this function.
 884			 */
 885			bio_list_add(&info->issue_bios, bio);
 886		}
 887	}
 888}
 889
 890static void inc_remap_and_issue_cell(struct thin_c *tc,
 891				     struct dm_bio_prison_cell *cell,
 892				     dm_block_t block)
 893{
 894	struct bio *bio;
 895	struct remap_info info;
 896
 897	info.tc = tc;
 898	bio_list_init(&info.defer_bios);
 899	bio_list_init(&info.issue_bios);
 900
 901	/*
 902	 * We have to be careful to inc any bios we're about to issue
 903	 * before the cell is released, and avoid a race with new bios
 904	 * being added to the cell.
 905	 */
 906	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
 907			   &info, cell);
 908
 909	while ((bio = bio_list_pop(&info.defer_bios)))
 910		thin_defer_bio(tc, bio);
 911
 912	while ((bio = bio_list_pop(&info.issue_bios)))
 913		remap_and_issue(info.tc, bio, block);
 914}
 915
 916static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
 917{
 918	cell_error(m->tc->pool, m->cell);
 919	list_del(&m->list);
 920	mempool_free(m, m->tc->pool->mapping_pool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 921}
 922
 923static void process_prepared_mapping(struct dm_thin_new_mapping *m)
 924{
 925	struct thin_c *tc = m->tc;
 926	struct pool *pool = tc->pool;
 927	struct bio *bio = m->bio;
 928	int r;
 929
 930	if (m->status) {
 931		cell_error(pool, m->cell);
 932		goto out;
 933	}
 934
 935	/*
 936	 * Commit the prepared block into the mapping btree.
 937	 * Any I/O for this block arriving after this point will get
 938	 * remapped to it directly.
 939	 */
 940	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
 941	if (r) {
 942		metadata_operation_failed(pool, "dm_thin_insert_block", r);
 943		cell_error(pool, m->cell);
 944		goto out;
 945	}
 946
 947	/*
 948	 * Release any bios held while the block was being provisioned.
 949	 * If we are processing a write bio that completely covers the block,
 950	 * we already processed it so can ignore it now when processing
 951	 * the bios in the cell.
 952	 */
 953	if (bio) {
 954		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
 955		bio_endio(bio);
 956	} else {
 957		inc_all_io_entry(tc->pool, m->cell->holder);
 958		remap_and_issue(tc, m->cell->holder, m->data_block);
 959		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
 960	}
 961
 962out:
 963	list_del(&m->list);
 964	mempool_free(m, pool->mapping_pool);
 965}
 966
 967/*----------------------------------------------------------------*/
 968
 969static void free_discard_mapping(struct dm_thin_new_mapping *m)
 970{
 971	struct thin_c *tc = m->tc;
 
 972	if (m->cell)
 973		cell_defer_no_holder(tc, m->cell);
 974	mempool_free(m, tc->pool->mapping_pool);
 975}
 976
 977static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
 978{
 979	bio_io_error(m->bio);
 980	free_discard_mapping(m);
 981}
 982
 983static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
 984{
 985	bio_endio(m->bio);
 986	free_discard_mapping(m);
 987}
 988
 989static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
 990{
 991	int r;
 992	struct thin_c *tc = m->tc;
 993
 994	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
 995	if (r) {
 996		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
 997		bio_io_error(m->bio);
 998	} else
 999		bio_endio(m->bio);
1000
1001	cell_defer_no_holder(tc, m->cell);
1002	mempool_free(m, tc->pool->mapping_pool);
1003}
1004
1005/*----------------------------------------------------------------*/
1006
1007static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1008						   struct bio *discard_parent)
1009{
1010	/*
1011	 * We've already unmapped this range of blocks, but before we
1012	 * passdown we have to check that these blocks are now unused.
1013	 */
1014	int r = 0;
1015	bool used = true;
1016	struct thin_c *tc = m->tc;
1017	struct pool *pool = tc->pool;
1018	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1019	struct discard_op op;
1020
1021	begin_discard(&op, tc, discard_parent);
1022	while (b != end) {
1023		/* find start of unmapped run */
1024		for (; b < end; b++) {
1025			r = dm_pool_block_is_used(pool->pmd, b, &used);
1026			if (r)
1027				goto out;
1028
1029			if (!used)
1030				break;
1031		}
1032
1033		if (b == end)
1034			break;
1035
1036		/* find end of run */
1037		for (e = b + 1; e != end; e++) {
1038			r = dm_pool_block_is_used(pool->pmd, e, &used);
1039			if (r)
1040				goto out;
1041
1042			if (used)
1043				break;
1044		}
1045
1046		r = issue_discard(&op, b, e);
1047		if (r)
1048			goto out;
1049
1050		b = e;
1051	}
1052out:
1053	end_discard(&op, r);
1054}
1055
1056static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1057{
1058	unsigned long flags;
1059	struct pool *pool = m->tc->pool;
1060
1061	spin_lock_irqsave(&pool->lock, flags);
1062	list_add_tail(&m->list, &pool->prepared_discards_pt2);
1063	spin_unlock_irqrestore(&pool->lock, flags);
1064	wake_worker(pool);
1065}
1066
1067static void passdown_endio(struct bio *bio)
1068{
1069	/*
1070	 * It doesn't matter if the passdown discard failed, we still want
1071	 * to unmap (we ignore err).
1072	 */
1073	queue_passdown_pt2(bio->bi_private);
1074	bio_put(bio);
1075}
1076
1077static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1078{
1079	int r;
1080	struct thin_c *tc = m->tc;
1081	struct pool *pool = tc->pool;
1082	struct bio *discard_parent;
1083	dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1084
1085	/*
1086	 * Only this thread allocates blocks, so we can be sure that the
1087	 * newly unmapped blocks will not be allocated before the end of
1088	 * the function.
1089	 */
1090	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1091	if (r) {
1092		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1093		bio_io_error(m->bio);
1094		cell_defer_no_holder(tc, m->cell);
1095		mempool_free(m, pool->mapping_pool);
1096		return;
1097	}
1098
1099	/*
1100	 * Increment the unmapped blocks.  This prevents a race between the
1101	 * passdown io and reallocation of freed blocks.
1102	 */
1103	r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1104	if (r) {
1105		metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1106		bio_io_error(m->bio);
1107		cell_defer_no_holder(tc, m->cell);
1108		mempool_free(m, pool->mapping_pool);
1109		return;
1110	}
1111
1112	discard_parent = bio_alloc(GFP_NOIO, 1);
1113	if (!discard_parent) {
1114		DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1115		       dm_device_name(tc->pool->pool_md));
1116		queue_passdown_pt2(m);
1117
1118	} else {
1119		discard_parent->bi_end_io = passdown_endio;
1120		discard_parent->bi_private = m;
1121
1122		if (m->maybe_shared)
1123			passdown_double_checking_shared_status(m, discard_parent);
1124		else {
1125			struct discard_op op;
1126
1127			begin_discard(&op, tc, discard_parent);
1128			r = issue_discard(&op, m->data_block, data_end);
1129			end_discard(&op, r);
1130		}
1131	}
1132}
1133
1134static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1135{
1136	int r;
1137	struct thin_c *tc = m->tc;
1138	struct pool *pool = tc->pool;
1139
1140	/*
1141	 * The passdown has completed, so now we can decrement all those
1142	 * unmapped blocks.
1143	 */
1144	r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1145				   m->data_block + (m->virt_end - m->virt_begin));
1146	if (r) {
1147		metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1148		bio_io_error(m->bio);
1149	} else
1150		bio_endio(m->bio);
1151
1152	cell_defer_no_holder(tc, m->cell);
1153	mempool_free(m, pool->mapping_pool);
1154}
1155
1156static void process_prepared(struct pool *pool, struct list_head *head,
1157			     process_mapping_fn *fn)
1158{
1159	unsigned long flags;
1160	struct list_head maps;
1161	struct dm_thin_new_mapping *m, *tmp;
1162
1163	INIT_LIST_HEAD(&maps);
1164	spin_lock_irqsave(&pool->lock, flags);
1165	list_splice_init(head, &maps);
1166	spin_unlock_irqrestore(&pool->lock, flags);
1167
1168	list_for_each_entry_safe(m, tmp, &maps, list)
1169		(*fn)(m);
1170}
1171
1172/*
1173 * Deferred bio jobs.
1174 */
1175static int io_overlaps_block(struct pool *pool, struct bio *bio)
1176{
1177	return bio->bi_iter.bi_size ==
1178		(pool->sectors_per_block << SECTOR_SHIFT);
1179}
1180
1181static int io_overwrites_block(struct pool *pool, struct bio *bio)
1182{
1183	return (bio_data_dir(bio) == WRITE) &&
1184		io_overlaps_block(pool, bio);
1185}
1186
1187static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1188			       bio_end_io_t *fn)
1189{
1190	*save = bio->bi_end_io;
1191	bio->bi_end_io = fn;
1192}
1193
1194static int ensure_next_mapping(struct pool *pool)
1195{
1196	if (pool->next_mapping)
1197		return 0;
1198
1199	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1200
1201	return pool->next_mapping ? 0 : -ENOMEM;
1202}
1203
1204static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1205{
1206	struct dm_thin_new_mapping *m = pool->next_mapping;
1207
1208	BUG_ON(!pool->next_mapping);
1209
1210	memset(m, 0, sizeof(struct dm_thin_new_mapping));
1211	INIT_LIST_HEAD(&m->list);
1212	m->bio = NULL;
1213
1214	pool->next_mapping = NULL;
1215
1216	return m;
1217}
1218
1219static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1220		    sector_t begin, sector_t end)
1221{
1222	int r;
1223	struct dm_io_region to;
1224
1225	to.bdev = tc->pool_dev->bdev;
1226	to.sector = begin;
1227	to.count = end - begin;
1228
1229	r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1230	if (r < 0) {
1231		DMERR_LIMIT("dm_kcopyd_zero() failed");
1232		copy_complete(1, 1, m);
1233	}
1234}
1235
1236static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1237				      dm_block_t data_begin,
1238				      struct dm_thin_new_mapping *m)
1239{
1240	struct pool *pool = tc->pool;
1241	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1242
1243	h->overwrite_mapping = m;
1244	m->bio = bio;
1245	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1246	inc_all_io_entry(pool, bio);
1247	remap_and_issue(tc, bio, data_begin);
1248}
1249
1250/*
1251 * A partial copy also needs to zero the uncopied region.
1252 */
1253static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1254			  struct dm_dev *origin, dm_block_t data_origin,
1255			  dm_block_t data_dest,
1256			  struct dm_bio_prison_cell *cell, struct bio *bio,
1257			  sector_t len)
1258{
1259	int r;
1260	struct pool *pool = tc->pool;
1261	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1262
1263	m->tc = tc;
1264	m->virt_begin = virt_block;
1265	m->virt_end = virt_block + 1u;
1266	m->data_block = data_dest;
1267	m->cell = cell;
1268
1269	/*
1270	 * quiesce action + copy action + an extra reference held for the
1271	 * duration of this function (we may need to inc later for a
1272	 * partial zero).
1273	 */
1274	atomic_set(&m->prepare_actions, 3);
1275
1276	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1277		complete_mapping_preparation(m); /* already quiesced */
1278
1279	/*
1280	 * IO to pool_dev remaps to the pool target's data_dev.
1281	 *
1282	 * If the whole block of data is being overwritten, we can issue the
1283	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1284	 */
1285	if (io_overwrites_block(pool, bio))
1286		remap_and_issue_overwrite(tc, bio, data_dest, m);
1287	else {
1288		struct dm_io_region from, to;
1289
1290		from.bdev = origin->bdev;
1291		from.sector = data_origin * pool->sectors_per_block;
1292		from.count = len;
1293
1294		to.bdev = tc->pool_dev->bdev;
1295		to.sector = data_dest * pool->sectors_per_block;
1296		to.count = len;
1297
1298		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1299				   0, copy_complete, m);
1300		if (r < 0) {
1301			DMERR_LIMIT("dm_kcopyd_copy() failed");
1302			copy_complete(1, 1, m);
1303
1304			/*
1305			 * We allow the zero to be issued, to simplify the
1306			 * error path.  Otherwise we'd need to start
1307			 * worrying about decrementing the prepare_actions
1308			 * counter.
1309			 */
1310		}
1311
1312		/*
1313		 * Do we need to zero a tail region?
1314		 */
1315		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1316			atomic_inc(&m->prepare_actions);
1317			ll_zero(tc, m,
1318				data_dest * pool->sectors_per_block + len,
1319				(data_dest + 1) * pool->sectors_per_block);
1320		}
1321	}
1322
1323	complete_mapping_preparation(m); /* drop our ref */
1324}
1325
1326static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1327				   dm_block_t data_origin, dm_block_t data_dest,
1328				   struct dm_bio_prison_cell *cell, struct bio *bio)
1329{
1330	schedule_copy(tc, virt_block, tc->pool_dev,
1331		      data_origin, data_dest, cell, bio,
1332		      tc->pool->sectors_per_block);
1333}
1334
1335static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1336			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1337			  struct bio *bio)
1338{
1339	struct pool *pool = tc->pool;
1340	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1341
1342	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1343	m->tc = tc;
1344	m->virt_begin = virt_block;
1345	m->virt_end = virt_block + 1u;
1346	m->data_block = data_block;
1347	m->cell = cell;
1348
1349	/*
1350	 * If the whole block of data is being overwritten or we are not
1351	 * zeroing pre-existing data, we can issue the bio immediately.
1352	 * Otherwise we use kcopyd to zero the data first.
1353	 */
1354	if (pool->pf.zero_new_blocks) {
1355		if (io_overwrites_block(pool, bio))
1356			remap_and_issue_overwrite(tc, bio, data_block, m);
1357		else
1358			ll_zero(tc, m, data_block * pool->sectors_per_block,
1359				(data_block + 1) * pool->sectors_per_block);
 
1360	} else
1361		process_prepared_mapping(m);
1362}
1363
1364static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1365				   dm_block_t data_dest,
1366				   struct dm_bio_prison_cell *cell, struct bio *bio)
1367{
1368	struct pool *pool = tc->pool;
1369	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1370	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1371
1372	if (virt_block_end <= tc->origin_size)
1373		schedule_copy(tc, virt_block, tc->origin_dev,
1374			      virt_block, data_dest, cell, bio,
1375			      pool->sectors_per_block);
1376
1377	else if (virt_block_begin < tc->origin_size)
1378		schedule_copy(tc, virt_block, tc->origin_dev,
1379			      virt_block, data_dest, cell, bio,
1380			      tc->origin_size - virt_block_begin);
1381
1382	else
1383		schedule_zero(tc, virt_block, data_dest, cell, bio);
1384}
1385
1386static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1387
1388static void check_for_space(struct pool *pool)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1389{
1390	int r;
1391	dm_block_t nr_free;
1392
1393	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1394		return;
1395
1396	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1397	if (r)
1398		return;
1399
1400	if (nr_free)
1401		set_pool_mode(pool, PM_WRITE);
 
 
1402}
1403
1404/*
1405 * A non-zero return indicates read_only or fail_io mode.
1406 * Many callers don't care about the return value.
1407 */
1408static int commit(struct pool *pool)
1409{
1410	int r;
1411
1412	if (get_pool_mode(pool) >= PM_READ_ONLY)
1413		return -EINVAL;
1414
1415	r = dm_pool_commit_metadata(pool->pmd);
1416	if (r)
1417		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1418	else
1419		check_for_space(pool);
 
 
1420
1421	return r;
1422}
1423
1424static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1425{
1426	unsigned long flags;
1427
1428	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1429		DMWARN("%s: reached low water mark for data device: sending event.",
1430		       dm_device_name(pool->pool_md));
1431		spin_lock_irqsave(&pool->lock, flags);
1432		pool->low_water_triggered = true;
1433		spin_unlock_irqrestore(&pool->lock, flags);
1434		dm_table_event(pool->ti->table);
1435	}
1436}
1437
1438static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1439{
1440	int r;
1441	dm_block_t free_blocks;
1442	struct pool *pool = tc->pool;
1443
1444	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1445		return -EINVAL;
1446
1447	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1448	if (r) {
1449		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1450		return r;
1451	}
1452
1453	check_low_water_mark(pool, free_blocks);
1454
1455	if (!free_blocks) {
1456		/*
1457		 * Try to commit to see if that will free up some
1458		 * more space.
1459		 */
1460		r = commit(pool);
1461		if (r)
1462			return r;
1463
1464		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1465		if (r) {
1466			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1467			return r;
1468		}
1469
1470		if (!free_blocks) {
1471			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1472			return -ENOSPC;
1473		}
1474	}
1475
1476	r = dm_pool_alloc_data_block(pool->pmd, result);
1477	if (r) {
1478		metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
 
 
 
1479		return r;
1480	}
1481
 
 
 
 
 
 
 
 
 
 
 
 
 
1482	return 0;
1483}
1484
1485/*
1486 * If we have run out of space, queue bios until the device is
1487 * resumed, presumably after having been reloaded with more space.
1488 */
1489static void retry_on_resume(struct bio *bio)
1490{
1491	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1492	struct thin_c *tc = h->tc;
1493	unsigned long flags;
1494
1495	spin_lock_irqsave(&tc->lock, flags);
1496	bio_list_add(&tc->retry_on_resume_list, bio);
1497	spin_unlock_irqrestore(&tc->lock, flags);
1498}
1499
1500static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1501{
1502	enum pool_mode m = get_pool_mode(pool);
1503
1504	switch (m) {
1505	case PM_WRITE:
1506		/* Shouldn't get here */
1507		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1508		return BLK_STS_IOERR;
1509
1510	case PM_OUT_OF_DATA_SPACE:
1511		return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1512
 
1513	case PM_READ_ONLY:
1514	case PM_FAIL:
1515		return BLK_STS_IOERR;
1516	default:
1517		/* Shouldn't get here */
1518		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1519		return BLK_STS_IOERR;
1520	}
1521}
1522
1523static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1524{
1525	blk_status_t error = should_error_unserviceable_bio(pool);
1526
1527	if (error) {
1528		bio->bi_status = error;
1529		bio_endio(bio);
1530	} else
1531		retry_on_resume(bio);
1532}
1533
1534static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1535{
1536	struct bio *bio;
1537	struct bio_list bios;
1538	blk_status_t error;
1539
1540	error = should_error_unserviceable_bio(pool);
1541	if (error) {
1542		cell_error_with_code(pool, cell, error);
1543		return;
1544	}
1545
1546	bio_list_init(&bios);
1547	cell_release(pool, cell, &bios);
1548
1549	while ((bio = bio_list_pop(&bios)))
1550		retry_on_resume(bio);
1551}
1552
1553static void process_discard_cell_no_passdown(struct thin_c *tc,
1554					     struct dm_bio_prison_cell *virt_cell)
1555{
1556	struct pool *pool = tc->pool;
1557	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1558
1559	/*
1560	 * We don't need to lock the data blocks, since there's no
1561	 * passdown.  We only lock data blocks for allocation and breaking sharing.
1562	 */
1563	m->tc = tc;
1564	m->virt_begin = virt_cell->key.block_begin;
1565	m->virt_end = virt_cell->key.block_end;
1566	m->cell = virt_cell;
1567	m->bio = virt_cell->holder;
1568
1569	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1570		pool->process_prepared_discard(m);
1571}
1572
1573static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1574				 struct bio *bio)
1575{
1576	struct pool *pool = tc->pool;
1577
1578	int r;
1579	bool maybe_shared;
1580	struct dm_cell_key data_key;
1581	struct dm_bio_prison_cell *data_cell;
1582	struct dm_thin_new_mapping *m;
1583	dm_block_t virt_begin, virt_end, data_begin;
 
1584
1585	while (begin != end) {
1586		r = ensure_next_mapping(pool);
1587		if (r)
1588			/* we did our best */
1589			return;
1590
1591		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1592					      &data_begin, &maybe_shared);
1593		if (r)
1594			/*
1595			 * Silently fail, letting any mappings we've
1596			 * created complete.
1597			 */
1598			break;
 
1599
1600		build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1601		if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1602			/* contention, we'll give up with this range */
1603			begin = virt_end;
1604			continue;
1605		}
1606
1607		/*
1608		 * IO may still be going to the destination block.  We must
1609		 * quiesce before we can do the removal.
1610		 */
1611		m = get_next_mapping(pool);
1612		m->tc = tc;
1613		m->maybe_shared = maybe_shared;
1614		m->virt_begin = virt_begin;
1615		m->virt_end = virt_end;
1616		m->data_block = data_begin;
1617		m->cell = data_cell;
1618		m->bio = bio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1619
1620		/*
1621		 * The parent bio must not complete before sub discard bios are
1622		 * chained to it (see end_discard's bio_chain)!
1623		 *
1624		 * This per-mapping bi_remaining increment is paired with
1625		 * the implicit decrement that occurs via bio_endio() in
1626		 * end_discard().
1627		 */
1628		bio_inc_remaining(bio);
1629		if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1630			pool->process_prepared_discard(m);
 
 
 
 
1631
1632		begin = virt_end;
1633	}
1634}
1635
1636static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1637{
1638	struct bio *bio = virt_cell->holder;
1639	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1640
1641	/*
1642	 * The virt_cell will only get freed once the origin bio completes.
1643	 * This means it will remain locked while all the individual
1644	 * passdown bios are in flight.
1645	 */
1646	h->cell = virt_cell;
1647	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1648
1649	/*
1650	 * We complete the bio now, knowing that the bi_remaining field
1651	 * will prevent completion until the sub range discards have
1652	 * completed.
1653	 */
1654	bio_endio(bio);
1655}
1656
1657static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1658{
1659	dm_block_t begin, end;
1660	struct dm_cell_key virt_key;
1661	struct dm_bio_prison_cell *virt_cell;
1662
1663	get_bio_block_range(tc, bio, &begin, &end);
1664	if (begin == end) {
1665		/*
1666		 * The discard covers less than a block.
1667		 */
1668		bio_endio(bio);
1669		return;
1670	}
1671
1672	build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1673	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
 
 
 
 
 
1674		/*
1675		 * Potential starvation issue: We're relying on the
1676		 * fs/application being well behaved, and not trying to
1677		 * send IO to a region at the same time as discarding it.
1678		 * If they do this persistently then it's possible this
1679		 * cell will never be granted.
1680		 */
1681		return;
 
1682
1683	tc->pool->process_discard_cell(tc, virt_cell);
1684}
1685
1686static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1687			  struct dm_cell_key *key,
1688			  struct dm_thin_lookup_result *lookup_result,
1689			  struct dm_bio_prison_cell *cell)
1690{
1691	int r;
1692	dm_block_t data_block;
1693	struct pool *pool = tc->pool;
1694
1695	r = alloc_data_block(tc, &data_block);
1696	switch (r) {
1697	case 0:
1698		schedule_internal_copy(tc, block, lookup_result->block,
1699				       data_block, cell, bio);
1700		break;
1701
1702	case -ENOSPC:
1703		retry_bios_on_resume(pool, cell);
1704		break;
1705
1706	default:
1707		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1708			    __func__, r);
1709		cell_error(pool, cell);
1710		break;
1711	}
1712}
1713
1714static void __remap_and_issue_shared_cell(void *context,
1715					  struct dm_bio_prison_cell *cell)
1716{
1717	struct remap_info *info = context;
1718	struct bio *bio;
1719
1720	while ((bio = bio_list_pop(&cell->bios))) {
1721		if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1722		    bio_op(bio) == REQ_OP_DISCARD)
1723			bio_list_add(&info->defer_bios, bio);
1724		else {
1725			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1726
1727			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1728			inc_all_io_entry(info->tc->pool, bio);
1729			bio_list_add(&info->issue_bios, bio);
1730		}
1731	}
1732}
1733
1734static void remap_and_issue_shared_cell(struct thin_c *tc,
1735					struct dm_bio_prison_cell *cell,
1736					dm_block_t block)
1737{
1738	struct bio *bio;
1739	struct remap_info info;
1740
1741	info.tc = tc;
1742	bio_list_init(&info.defer_bios);
1743	bio_list_init(&info.issue_bios);
1744
1745	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1746			   &info, cell);
1747
1748	while ((bio = bio_list_pop(&info.defer_bios)))
1749		thin_defer_bio(tc, bio);
1750
1751	while ((bio = bio_list_pop(&info.issue_bios)))
1752		remap_and_issue(tc, bio, block);
1753}
1754
1755static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1756			       dm_block_t block,
1757			       struct dm_thin_lookup_result *lookup_result,
1758			       struct dm_bio_prison_cell *virt_cell)
1759{
1760	struct dm_bio_prison_cell *data_cell;
1761	struct pool *pool = tc->pool;
1762	struct dm_cell_key key;
1763
1764	/*
1765	 * If cell is already occupied, then sharing is already in the process
1766	 * of being broken so we have nothing further to do here.
1767	 */
1768	build_data_key(tc->td, lookup_result->block, &key);
1769	if (bio_detain(pool, &key, bio, &data_cell)) {
1770		cell_defer_no_holder(tc, virt_cell);
1771		return;
1772	}
1773
1774	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1775		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1776		cell_defer_no_holder(tc, virt_cell);
1777	} else {
1778		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1779
1780		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1781		inc_all_io_entry(pool, bio);
1782		remap_and_issue(tc, bio, lookup_result->block);
1783
1784		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1785		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1786	}
1787}
1788
1789static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1790			    struct dm_bio_prison_cell *cell)
1791{
1792	int r;
1793	dm_block_t data_block;
1794	struct pool *pool = tc->pool;
1795
1796	/*
1797	 * Remap empty bios (flushes) immediately, without provisioning.
1798	 */
1799	if (!bio->bi_iter.bi_size) {
1800		inc_all_io_entry(pool, bio);
1801		cell_defer_no_holder(tc, cell);
1802
1803		remap_and_issue(tc, bio, 0);
1804		return;
1805	}
1806
1807	/*
1808	 * Fill read bios with zeroes and complete them immediately.
1809	 */
1810	if (bio_data_dir(bio) == READ) {
1811		zero_fill_bio(bio);
1812		cell_defer_no_holder(tc, cell);
1813		bio_endio(bio);
1814		return;
1815	}
1816
1817	r = alloc_data_block(tc, &data_block);
1818	switch (r) {
1819	case 0:
1820		if (tc->origin_dev)
1821			schedule_external_copy(tc, block, data_block, cell, bio);
1822		else
1823			schedule_zero(tc, block, data_block, cell, bio);
1824		break;
1825
1826	case -ENOSPC:
1827		retry_bios_on_resume(pool, cell);
1828		break;
1829
1830	default:
1831		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1832			    __func__, r);
1833		cell_error(pool, cell);
1834		break;
1835	}
1836}
1837
1838static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1839{
1840	int r;
1841	struct pool *pool = tc->pool;
1842	struct bio *bio = cell->holder;
1843	dm_block_t block = get_bio_block(tc, bio);
1844	struct dm_thin_lookup_result lookup_result;
1845
1846	if (tc->requeue_mode) {
1847		cell_requeue(pool, cell);
1848		return;
1849	}
1850
1851	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1852	switch (r) {
1853	case 0:
1854		if (lookup_result.shared)
1855			process_shared_bio(tc, bio, block, &lookup_result, cell);
1856		else {
1857			inc_all_io_entry(pool, bio);
1858			remap_and_issue(tc, bio, lookup_result.block);
1859			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1860		}
1861		break;
1862
1863	case -ENODATA:
1864		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1865			inc_all_io_entry(pool, bio);
1866			cell_defer_no_holder(tc, cell);
1867
1868			if (bio_end_sector(bio) <= tc->origin_size)
1869				remap_to_origin_and_issue(tc, bio);
1870
1871			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1872				zero_fill_bio(bio);
1873				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1874				remap_to_origin_and_issue(tc, bio);
1875
1876			} else {
1877				zero_fill_bio(bio);
1878				bio_endio(bio);
1879			}
1880		} else
1881			provision_block(tc, bio, block, cell);
1882		break;
1883
1884	default:
1885		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1886			    __func__, r);
1887		cell_defer_no_holder(tc, cell);
1888		bio_io_error(bio);
1889		break;
1890	}
1891}
1892
1893static void process_bio(struct thin_c *tc, struct bio *bio)
1894{
1895	struct pool *pool = tc->pool;
1896	dm_block_t block = get_bio_block(tc, bio);
1897	struct dm_bio_prison_cell *cell;
1898	struct dm_cell_key key;
1899
1900	/*
1901	 * If cell is already occupied, then the block is already
1902	 * being provisioned so we have nothing further to do here.
1903	 */
1904	build_virtual_key(tc->td, block, &key);
1905	if (bio_detain(pool, &key, bio, &cell))
1906		return;
1907
1908	process_cell(tc, cell);
1909}
1910
1911static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1912				    struct dm_bio_prison_cell *cell)
1913{
1914	int r;
1915	int rw = bio_data_dir(bio);
1916	dm_block_t block = get_bio_block(tc, bio);
1917	struct dm_thin_lookup_result lookup_result;
1918
1919	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1920	switch (r) {
1921	case 0:
1922		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1923			handle_unserviceable_bio(tc->pool, bio);
1924			if (cell)
1925				cell_defer_no_holder(tc, cell);
1926		} else {
1927			inc_all_io_entry(tc->pool, bio);
1928			remap_and_issue(tc, bio, lookup_result.block);
1929			if (cell)
1930				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1931		}
1932		break;
1933
1934	case -ENODATA:
1935		if (cell)
1936			cell_defer_no_holder(tc, cell);
1937		if (rw != READ) {
1938			handle_unserviceable_bio(tc->pool, bio);
1939			break;
1940		}
1941
1942		if (tc->origin_dev) {
1943			inc_all_io_entry(tc->pool, bio);
1944			remap_to_origin_and_issue(tc, bio);
1945			break;
1946		}
1947
1948		zero_fill_bio(bio);
1949		bio_endio(bio);
1950		break;
1951
1952	default:
1953		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1954			    __func__, r);
1955		if (cell)
1956			cell_defer_no_holder(tc, cell);
1957		bio_io_error(bio);
1958		break;
1959	}
1960}
1961
1962static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1963{
1964	__process_bio_read_only(tc, bio, NULL);
1965}
1966
1967static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1968{
1969	__process_bio_read_only(tc, cell->holder, cell);
1970}
1971
1972static void process_bio_success(struct thin_c *tc, struct bio *bio)
1973{
1974	bio_endio(bio);
1975}
1976
1977static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1978{
1979	bio_io_error(bio);
1980}
1981
1982static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1983{
1984	cell_success(tc->pool, cell);
1985}
1986
1987static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1988{
1989	cell_error(tc->pool, cell);
1990}
1991
1992/*
1993 * FIXME: should we also commit due to size of transaction, measured in
1994 * metadata blocks?
1995 */
1996static int need_commit_due_to_time(struct pool *pool)
1997{
1998	return !time_in_range(jiffies, pool->last_commit_jiffies,
1999			      pool->last_commit_jiffies + COMMIT_PERIOD);
2000}
2001
2002#define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2003#define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2004
2005static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2006{
2007	struct rb_node **rbp, *parent;
2008	struct dm_thin_endio_hook *pbd;
2009	sector_t bi_sector = bio->bi_iter.bi_sector;
2010
2011	rbp = &tc->sort_bio_list.rb_node;
2012	parent = NULL;
2013	while (*rbp) {
2014		parent = *rbp;
2015		pbd = thin_pbd(parent);
2016
2017		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2018			rbp = &(*rbp)->rb_left;
2019		else
2020			rbp = &(*rbp)->rb_right;
2021	}
2022
2023	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2024	rb_link_node(&pbd->rb_node, parent, rbp);
2025	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2026}
2027
2028static void __extract_sorted_bios(struct thin_c *tc)
2029{
2030	struct rb_node *node;
2031	struct dm_thin_endio_hook *pbd;
2032	struct bio *bio;
2033
2034	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2035		pbd = thin_pbd(node);
2036		bio = thin_bio(pbd);
2037
2038		bio_list_add(&tc->deferred_bio_list, bio);
2039		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2040	}
2041
2042	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2043}
2044
2045static void __sort_thin_deferred_bios(struct thin_c *tc)
2046{
2047	struct bio *bio;
2048	struct bio_list bios;
2049
2050	bio_list_init(&bios);
2051	bio_list_merge(&bios, &tc->deferred_bio_list);
2052	bio_list_init(&tc->deferred_bio_list);
2053
2054	/* Sort deferred_bio_list using rb-tree */
2055	while ((bio = bio_list_pop(&bios)))
2056		__thin_bio_rb_add(tc, bio);
2057
2058	/*
2059	 * Transfer the sorted bios in sort_bio_list back to
2060	 * deferred_bio_list to allow lockless submission of
2061	 * all bios.
2062	 */
2063	__extract_sorted_bios(tc);
2064}
2065
2066static void process_thin_deferred_bios(struct thin_c *tc)
2067{
2068	struct pool *pool = tc->pool;
2069	unsigned long flags;
2070	struct bio *bio;
2071	struct bio_list bios;
2072	struct blk_plug plug;
2073	unsigned count = 0;
2074
2075	if (tc->requeue_mode) {
2076		error_thin_bio_list(tc, &tc->deferred_bio_list,
2077				BLK_STS_DM_REQUEUE);
2078		return;
2079	}
2080
2081	bio_list_init(&bios);
2082
2083	spin_lock_irqsave(&tc->lock, flags);
2084
2085	if (bio_list_empty(&tc->deferred_bio_list)) {
2086		spin_unlock_irqrestore(&tc->lock, flags);
2087		return;
2088	}
2089
2090	__sort_thin_deferred_bios(tc);
2091
2092	bio_list_merge(&bios, &tc->deferred_bio_list);
2093	bio_list_init(&tc->deferred_bio_list);
2094
2095	spin_unlock_irqrestore(&tc->lock, flags);
2096
2097	blk_start_plug(&plug);
2098	while ((bio = bio_list_pop(&bios))) {
2099		/*
2100		 * If we've got no free new_mapping structs, and processing
2101		 * this bio might require one, we pause until there are some
2102		 * prepared mappings to process.
2103		 */
2104		if (ensure_next_mapping(pool)) {
2105			spin_lock_irqsave(&tc->lock, flags);
2106			bio_list_add(&tc->deferred_bio_list, bio);
2107			bio_list_merge(&tc->deferred_bio_list, &bios);
2108			spin_unlock_irqrestore(&tc->lock, flags);
2109			break;
2110		}
2111
2112		if (bio_op(bio) == REQ_OP_DISCARD)
2113			pool->process_discard(tc, bio);
2114		else
2115			pool->process_bio(tc, bio);
2116
2117		if ((count++ & 127) == 0) {
2118			throttle_work_update(&pool->throttle);
2119			dm_pool_issue_prefetches(pool->pmd);
2120		}
 
2121	}
2122	blk_finish_plug(&plug);
2123}
2124
2125static int cmp_cells(const void *lhs, const void *rhs)
2126{
2127	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2128	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2129
2130	BUG_ON(!lhs_cell->holder);
2131	BUG_ON(!rhs_cell->holder);
2132
2133	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2134		return -1;
2135
2136	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2137		return 1;
2138
2139	return 0;
2140}
2141
2142static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2143{
2144	unsigned count = 0;
2145	struct dm_bio_prison_cell *cell, *tmp;
2146
2147	list_for_each_entry_safe(cell, tmp, cells, user_list) {
2148		if (count >= CELL_SORT_ARRAY_SIZE)
2149			break;
2150
2151		pool->cell_sort_array[count++] = cell;
2152		list_del(&cell->user_list);
2153	}
2154
2155	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2156
2157	return count;
2158}
2159
2160static void process_thin_deferred_cells(struct thin_c *tc)
2161{
2162	struct pool *pool = tc->pool;
2163	unsigned long flags;
2164	struct list_head cells;
2165	struct dm_bio_prison_cell *cell;
2166	unsigned i, j, count;
2167
2168	INIT_LIST_HEAD(&cells);
2169
2170	spin_lock_irqsave(&tc->lock, flags);
2171	list_splice_init(&tc->deferred_cells, &cells);
2172	spin_unlock_irqrestore(&tc->lock, flags);
2173
2174	if (list_empty(&cells))
2175		return;
2176
2177	do {
2178		count = sort_cells(tc->pool, &cells);
2179
2180		for (i = 0; i < count; i++) {
2181			cell = pool->cell_sort_array[i];
2182			BUG_ON(!cell->holder);
2183
2184			/*
2185			 * If we've got no free new_mapping structs, and processing
2186			 * this bio might require one, we pause until there are some
2187			 * prepared mappings to process.
2188			 */
2189			if (ensure_next_mapping(pool)) {
2190				for (j = i; j < count; j++)
2191					list_add(&pool->cell_sort_array[j]->user_list, &cells);
2192
2193				spin_lock_irqsave(&tc->lock, flags);
2194				list_splice(&cells, &tc->deferred_cells);
2195				spin_unlock_irqrestore(&tc->lock, flags);
2196				return;
2197			}
2198
2199			if (bio_op(cell->holder) == REQ_OP_DISCARD)
2200				pool->process_discard_cell(tc, cell);
2201			else
2202				pool->process_cell(tc, cell);
2203		}
 
2204	} while (!list_empty(&cells));
2205}
2206
2207static void thin_get(struct thin_c *tc);
2208static void thin_put(struct thin_c *tc);
2209
2210/*
2211 * We can't hold rcu_read_lock() around code that can block.  So we
2212 * find a thin with the rcu lock held; bump a refcount; then drop
2213 * the lock.
2214 */
2215static struct thin_c *get_first_thin(struct pool *pool)
2216{
2217	struct thin_c *tc = NULL;
2218
2219	rcu_read_lock();
2220	if (!list_empty(&pool->active_thins)) {
2221		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2222		thin_get(tc);
2223	}
2224	rcu_read_unlock();
2225
2226	return tc;
2227}
2228
2229static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2230{
2231	struct thin_c *old_tc = tc;
2232
2233	rcu_read_lock();
2234	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2235		thin_get(tc);
2236		thin_put(old_tc);
2237		rcu_read_unlock();
2238		return tc;
2239	}
2240	thin_put(old_tc);
2241	rcu_read_unlock();
2242
2243	return NULL;
2244}
2245
2246static void process_deferred_bios(struct pool *pool)
2247{
2248	unsigned long flags;
2249	struct bio *bio;
2250	struct bio_list bios;
2251	struct thin_c *tc;
2252
2253	tc = get_first_thin(pool);
2254	while (tc) {
2255		process_thin_deferred_cells(tc);
2256		process_thin_deferred_bios(tc);
2257		tc = get_next_thin(pool, tc);
2258	}
2259
2260	/*
2261	 * If there are any deferred flush bios, we must commit
2262	 * the metadata before issuing them.
2263	 */
2264	bio_list_init(&bios);
2265	spin_lock_irqsave(&pool->lock, flags);
 
 
2266	bio_list_merge(&bios, &pool->deferred_flush_bios);
2267	bio_list_init(&pool->deferred_flush_bios);
2268	spin_unlock_irqrestore(&pool->lock, flags);
2269
2270	if (bio_list_empty(&bios) &&
 
 
 
 
2271	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2272		return;
2273
2274	if (commit(pool)) {
 
 
2275		while ((bio = bio_list_pop(&bios)))
2276			bio_io_error(bio);
2277		return;
2278	}
2279	pool->last_commit_jiffies = jiffies;
2280
2281	while ((bio = bio_list_pop(&bios)))
2282		generic_make_request(bio);
 
 
 
 
 
 
 
 
 
 
 
2283}
2284
2285static void do_worker(struct work_struct *ws)
2286{
2287	struct pool *pool = container_of(ws, struct pool, worker);
2288
2289	throttle_work_start(&pool->throttle);
2290	dm_pool_issue_prefetches(pool->pmd);
2291	throttle_work_update(&pool->throttle);
2292	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2293	throttle_work_update(&pool->throttle);
2294	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2295	throttle_work_update(&pool->throttle);
2296	process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2297	throttle_work_update(&pool->throttle);
2298	process_deferred_bios(pool);
2299	throttle_work_complete(&pool->throttle);
2300}
2301
2302/*
2303 * We want to commit periodically so that not too much
2304 * unwritten data builds up.
2305 */
2306static void do_waker(struct work_struct *ws)
2307{
2308	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
 
2309	wake_worker(pool);
2310	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2311}
2312
2313static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2314
2315/*
2316 * We're holding onto IO to allow userland time to react.  After the
2317 * timeout either the pool will have been resized (and thus back in
2318 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2319 */
2320static void do_no_space_timeout(struct work_struct *ws)
2321{
2322	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2323					 no_space_timeout);
2324
2325	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2326		pool->pf.error_if_no_space = true;
2327		notify_of_pool_mode_change_to_oods(pool);
2328		error_retry_list_with_code(pool, BLK_STS_NOSPC);
2329	}
2330}
2331
2332/*----------------------------------------------------------------*/
2333
2334struct pool_work {
2335	struct work_struct worker;
2336	struct completion complete;
2337};
2338
2339static struct pool_work *to_pool_work(struct work_struct *ws)
2340{
2341	return container_of(ws, struct pool_work, worker);
2342}
2343
2344static void pool_work_complete(struct pool_work *pw)
2345{
2346	complete(&pw->complete);
2347}
2348
2349static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2350			   void (*fn)(struct work_struct *))
2351{
2352	INIT_WORK_ONSTACK(&pw->worker, fn);
2353	init_completion(&pw->complete);
2354	queue_work(pool->wq, &pw->worker);
2355	wait_for_completion(&pw->complete);
 
2356}
2357
2358/*----------------------------------------------------------------*/
2359
2360struct noflush_work {
2361	struct pool_work pw;
2362	struct thin_c *tc;
2363};
2364
2365static struct noflush_work *to_noflush(struct work_struct *ws)
2366{
2367	return container_of(to_pool_work(ws), struct noflush_work, pw);
2368}
2369
2370static void do_noflush_start(struct work_struct *ws)
2371{
2372	struct noflush_work *w = to_noflush(ws);
 
2373	w->tc->requeue_mode = true;
2374	requeue_io(w->tc);
2375	pool_work_complete(&w->pw);
2376}
2377
2378static void do_noflush_stop(struct work_struct *ws)
2379{
2380	struct noflush_work *w = to_noflush(ws);
 
2381	w->tc->requeue_mode = false;
2382	pool_work_complete(&w->pw);
2383}
2384
2385static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2386{
2387	struct noflush_work w;
2388
2389	w.tc = tc;
2390	pool_work_wait(&w.pw, tc->pool, fn);
2391}
2392
2393/*----------------------------------------------------------------*/
2394
2395static enum pool_mode get_pool_mode(struct pool *pool)
2396{
2397	return pool->pf.mode;
2398}
2399
2400static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2401{
2402	dm_table_event(pool->ti->table);
2403	DMINFO("%s: switching pool to %s mode",
2404	       dm_device_name(pool->pool_md), new_mode);
2405}
2406
2407static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2408{
2409	if (!pool->pf.error_if_no_space)
2410		notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2411	else
2412		notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2413}
2414
2415static bool passdown_enabled(struct pool_c *pt)
2416{
2417	return pt->adjusted_pf.discard_passdown;
2418}
2419
2420static void set_discard_callbacks(struct pool *pool)
2421{
2422	struct pool_c *pt = pool->ti->private;
2423
2424	if (passdown_enabled(pt)) {
2425		pool->process_discard_cell = process_discard_cell_passdown;
2426		pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2427		pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2428	} else {
2429		pool->process_discard_cell = process_discard_cell_no_passdown;
2430		pool->process_prepared_discard = process_prepared_discard_no_passdown;
2431	}
2432}
2433
2434static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2435{
2436	struct pool_c *pt = pool->ti->private;
2437	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2438	enum pool_mode old_mode = get_pool_mode(pool);
2439	unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2440
2441	/*
2442	 * Never allow the pool to transition to PM_WRITE mode if user
2443	 * intervention is required to verify metadata and data consistency.
2444	 */
2445	if (new_mode == PM_WRITE && needs_check) {
2446		DMERR("%s: unable to switch pool to write mode until repaired.",
2447		      dm_device_name(pool->pool_md));
2448		if (old_mode != new_mode)
2449			new_mode = old_mode;
2450		else
2451			new_mode = PM_READ_ONLY;
2452	}
2453	/*
2454	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2455	 * not going to recover without a thin_repair.	So we never let the
2456	 * pool move out of the old mode.
2457	 */
2458	if (old_mode == PM_FAIL)
2459		new_mode = old_mode;
2460
2461	switch (new_mode) {
2462	case PM_FAIL:
2463		if (old_mode != new_mode)
2464			notify_of_pool_mode_change(pool, "failure");
2465		dm_pool_metadata_read_only(pool->pmd);
2466		pool->process_bio = process_bio_fail;
2467		pool->process_discard = process_bio_fail;
2468		pool->process_cell = process_cell_fail;
2469		pool->process_discard_cell = process_cell_fail;
2470		pool->process_prepared_mapping = process_prepared_mapping_fail;
2471		pool->process_prepared_discard = process_prepared_discard_fail;
2472
2473		error_retry_list(pool);
2474		break;
2475
 
2476	case PM_READ_ONLY:
2477		if (old_mode != new_mode)
2478			notify_of_pool_mode_change(pool, "read-only");
2479		dm_pool_metadata_read_only(pool->pmd);
2480		pool->process_bio = process_bio_read_only;
2481		pool->process_discard = process_bio_success;
2482		pool->process_cell = process_cell_read_only;
2483		pool->process_discard_cell = process_cell_success;
2484		pool->process_prepared_mapping = process_prepared_mapping_fail;
2485		pool->process_prepared_discard = process_prepared_discard_success;
2486
2487		error_retry_list(pool);
2488		break;
2489
2490	case PM_OUT_OF_DATA_SPACE:
2491		/*
2492		 * Ideally we'd never hit this state; the low water mark
2493		 * would trigger userland to extend the pool before we
2494		 * completely run out of data space.  However, many small
2495		 * IOs to unprovisioned space can consume data space at an
2496		 * alarming rate.  Adjust your low water mark if you're
2497		 * frequently seeing this mode.
2498		 */
2499		if (old_mode != new_mode)
2500			notify_of_pool_mode_change_to_oods(pool);
2501		pool->out_of_data_space = true;
2502		pool->process_bio = process_bio_read_only;
2503		pool->process_discard = process_discard_bio;
2504		pool->process_cell = process_cell_read_only;
2505		pool->process_prepared_mapping = process_prepared_mapping;
2506		set_discard_callbacks(pool);
2507
2508		if (!pool->pf.error_if_no_space && no_space_timeout)
2509			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2510		break;
2511
2512	case PM_WRITE:
2513		if (old_mode != new_mode)
2514			notify_of_pool_mode_change(pool, "write");
2515		pool->out_of_data_space = false;
2516		pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2517		dm_pool_metadata_read_write(pool->pmd);
2518		pool->process_bio = process_bio;
2519		pool->process_discard = process_discard_bio;
2520		pool->process_cell = process_cell;
2521		pool->process_prepared_mapping = process_prepared_mapping;
2522		set_discard_callbacks(pool);
2523		break;
2524	}
2525
2526	pool->pf.mode = new_mode;
2527	/*
2528	 * The pool mode may have changed, sync it so bind_control_target()
2529	 * doesn't cause an unexpected mode transition on resume.
2530	 */
2531	pt->adjusted_pf.mode = new_mode;
 
 
 
2532}
2533
2534static void abort_transaction(struct pool *pool)
2535{
2536	const char *dev_name = dm_device_name(pool->pool_md);
2537
2538	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2539	if (dm_pool_abort_metadata(pool->pmd)) {
2540		DMERR("%s: failed to abort metadata transaction", dev_name);
2541		set_pool_mode(pool, PM_FAIL);
2542	}
2543
2544	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2545		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2546		set_pool_mode(pool, PM_FAIL);
2547	}
2548}
2549
2550static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2551{
2552	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2553		    dm_device_name(pool->pool_md), op, r);
2554
2555	abort_transaction(pool);
2556	set_pool_mode(pool, PM_READ_ONLY);
2557}
2558
2559/*----------------------------------------------------------------*/
2560
2561/*
2562 * Mapping functions.
2563 */
2564
2565/*
2566 * Called only while mapping a thin bio to hand it over to the workqueue.
2567 */
2568static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2569{
2570	unsigned long flags;
2571	struct pool *pool = tc->pool;
2572
2573	spin_lock_irqsave(&tc->lock, flags);
2574	bio_list_add(&tc->deferred_bio_list, bio);
2575	spin_unlock_irqrestore(&tc->lock, flags);
2576
2577	wake_worker(pool);
2578}
2579
2580static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2581{
2582	struct pool *pool = tc->pool;
2583
2584	throttle_lock(&pool->throttle);
2585	thin_defer_bio(tc, bio);
2586	throttle_unlock(&pool->throttle);
2587}
2588
2589static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2590{
2591	unsigned long flags;
2592	struct pool *pool = tc->pool;
2593
2594	throttle_lock(&pool->throttle);
2595	spin_lock_irqsave(&tc->lock, flags);
2596	list_add_tail(&cell->user_list, &tc->deferred_cells);
2597	spin_unlock_irqrestore(&tc->lock, flags);
2598	throttle_unlock(&pool->throttle);
2599
2600	wake_worker(pool);
2601}
2602
2603static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2604{
2605	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2606
2607	h->tc = tc;
2608	h->shared_read_entry = NULL;
2609	h->all_io_entry = NULL;
2610	h->overwrite_mapping = NULL;
2611	h->cell = NULL;
2612}
2613
2614/*
2615 * Non-blocking function called from the thin target's map function.
2616 */
2617static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2618{
2619	int r;
2620	struct thin_c *tc = ti->private;
2621	dm_block_t block = get_bio_block(tc, bio);
2622	struct dm_thin_device *td = tc->td;
2623	struct dm_thin_lookup_result result;
2624	struct dm_bio_prison_cell *virt_cell, *data_cell;
2625	struct dm_cell_key key;
2626
2627	thin_hook_bio(tc, bio);
2628
2629	if (tc->requeue_mode) {
2630		bio->bi_status = BLK_STS_DM_REQUEUE;
2631		bio_endio(bio);
2632		return DM_MAPIO_SUBMITTED;
2633	}
2634
2635	if (get_pool_mode(tc->pool) == PM_FAIL) {
2636		bio_io_error(bio);
2637		return DM_MAPIO_SUBMITTED;
2638	}
2639
2640	if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2641		thin_defer_bio_with_throttle(tc, bio);
2642		return DM_MAPIO_SUBMITTED;
2643	}
2644
2645	/*
2646	 * We must hold the virtual cell before doing the lookup, otherwise
2647	 * there's a race with discard.
2648	 */
2649	build_virtual_key(tc->td, block, &key);
2650	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2651		return DM_MAPIO_SUBMITTED;
2652
2653	r = dm_thin_find_block(td, block, 0, &result);
2654
2655	/*
2656	 * Note that we defer readahead too.
2657	 */
2658	switch (r) {
2659	case 0:
2660		if (unlikely(result.shared)) {
2661			/*
2662			 * We have a race condition here between the
2663			 * result.shared value returned by the lookup and
2664			 * snapshot creation, which may cause new
2665			 * sharing.
2666			 *
2667			 * To avoid this always quiesce the origin before
2668			 * taking the snap.  You want to do this anyway to
2669			 * ensure a consistent application view
2670			 * (i.e. lockfs).
2671			 *
2672			 * More distant ancestors are irrelevant. The
2673			 * shared flag will be set in their case.
2674			 */
2675			thin_defer_cell(tc, virt_cell);
2676			return DM_MAPIO_SUBMITTED;
2677		}
2678
2679		build_data_key(tc->td, result.block, &key);
2680		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2681			cell_defer_no_holder(tc, virt_cell);
2682			return DM_MAPIO_SUBMITTED;
2683		}
2684
2685		inc_all_io_entry(tc->pool, bio);
2686		cell_defer_no_holder(tc, data_cell);
2687		cell_defer_no_holder(tc, virt_cell);
2688
2689		remap(tc, bio, result.block);
2690		return DM_MAPIO_REMAPPED;
2691
2692	case -ENODATA:
2693	case -EWOULDBLOCK:
2694		thin_defer_cell(tc, virt_cell);
2695		return DM_MAPIO_SUBMITTED;
2696
2697	default:
2698		/*
2699		 * Must always call bio_io_error on failure.
2700		 * dm_thin_find_block can fail with -EINVAL if the
2701		 * pool is switched to fail-io mode.
2702		 */
2703		bio_io_error(bio);
2704		cell_defer_no_holder(tc, virt_cell);
2705		return DM_MAPIO_SUBMITTED;
2706	}
2707}
2708
2709static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2710{
2711	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2712	struct request_queue *q;
2713
2714	if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2715		return 1;
2716
2717	q = bdev_get_queue(pt->data_dev->bdev);
2718	return bdi_congested(q->backing_dev_info, bdi_bits);
2719}
2720
2721static void requeue_bios(struct pool *pool)
2722{
2723	unsigned long flags;
2724	struct thin_c *tc;
2725
2726	rcu_read_lock();
2727	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2728		spin_lock_irqsave(&tc->lock, flags);
2729		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2730		bio_list_init(&tc->retry_on_resume_list);
2731		spin_unlock_irqrestore(&tc->lock, flags);
2732	}
2733	rcu_read_unlock();
2734}
2735
2736/*----------------------------------------------------------------
 
2737 * Binding of control targets to a pool object
2738 *--------------------------------------------------------------*/
2739static bool data_dev_supports_discard(struct pool_c *pt)
2740{
2741	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2742
2743	return q && blk_queue_discard(q);
2744}
2745
2746static bool is_factor(sector_t block_size, uint32_t n)
2747{
2748	return !sector_div(block_size, n);
2749}
2750
2751/*
2752 * If discard_passdown was enabled verify that the data device
2753 * supports discards.  Disable discard_passdown if not.
2754 */
2755static void disable_passdown_if_not_supported(struct pool_c *pt)
2756{
2757	struct pool *pool = pt->pool;
2758	struct block_device *data_bdev = pt->data_dev->bdev;
2759	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2760	const char *reason = NULL;
2761	char buf[BDEVNAME_SIZE];
2762
2763	if (!pt->adjusted_pf.discard_passdown)
2764		return;
2765
2766	if (!data_dev_supports_discard(pt))
2767		reason = "discard unsupported";
2768
2769	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2770		reason = "max discard sectors smaller than a block";
2771
2772	if (reason) {
2773		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2774		pt->adjusted_pf.discard_passdown = false;
2775	}
2776}
2777
2778static int bind_control_target(struct pool *pool, struct dm_target *ti)
2779{
2780	struct pool_c *pt = ti->private;
2781
2782	/*
2783	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2784	 */
2785	enum pool_mode old_mode = get_pool_mode(pool);
2786	enum pool_mode new_mode = pt->adjusted_pf.mode;
2787
2788	/*
2789	 * Don't change the pool's mode until set_pool_mode() below.
2790	 * Otherwise the pool's process_* function pointers may
2791	 * not match the desired pool mode.
2792	 */
2793	pt->adjusted_pf.mode = old_mode;
2794
2795	pool->ti = ti;
2796	pool->pf = pt->adjusted_pf;
2797	pool->low_water_blocks = pt->low_water_blocks;
2798
2799	set_pool_mode(pool, new_mode);
2800
2801	return 0;
2802}
2803
2804static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2805{
2806	if (pool->ti == ti)
2807		pool->ti = NULL;
2808}
2809
2810/*----------------------------------------------------------------
 
2811 * Pool creation
2812 *--------------------------------------------------------------*/
 
2813/* Initialize pool features. */
2814static void pool_features_init(struct pool_features *pf)
2815{
2816	pf->mode = PM_WRITE;
2817	pf->zero_new_blocks = true;
2818	pf->discard_enabled = true;
2819	pf->discard_passdown = true;
2820	pf->error_if_no_space = false;
2821}
2822
2823static void __pool_destroy(struct pool *pool)
2824{
2825	__pool_table_remove(pool);
2826
2827	vfree(pool->cell_sort_array);
2828	if (dm_pool_metadata_close(pool->pmd) < 0)
2829		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2830
2831	dm_bio_prison_destroy(pool->prison);
2832	dm_kcopyd_client_destroy(pool->copier);
2833
 
 
2834	if (pool->wq)
2835		destroy_workqueue(pool->wq);
2836
2837	if (pool->next_mapping)
2838		mempool_free(pool->next_mapping, pool->mapping_pool);
2839	mempool_destroy(pool->mapping_pool);
2840	dm_deferred_set_destroy(pool->shared_read_ds);
2841	dm_deferred_set_destroy(pool->all_io_ds);
2842	kfree(pool);
2843}
2844
2845static struct kmem_cache *_new_mapping_cache;
2846
2847static struct pool *pool_create(struct mapped_device *pool_md,
2848				struct block_device *metadata_dev,
 
2849				unsigned long block_size,
2850				int read_only, char **error)
2851{
2852	int r;
2853	void *err_p;
2854	struct pool *pool;
2855	struct dm_pool_metadata *pmd;
2856	bool format_device = read_only ? false : true;
2857
2858	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2859	if (IS_ERR(pmd)) {
2860		*error = "Error creating metadata object";
2861		return (struct pool *)pmd;
2862	}
2863
2864	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2865	if (!pool) {
2866		*error = "Error allocating memory for pool";
2867		err_p = ERR_PTR(-ENOMEM);
2868		goto bad_pool;
2869	}
2870
2871	pool->pmd = pmd;
2872	pool->sectors_per_block = block_size;
2873	if (block_size & (block_size - 1))
2874		pool->sectors_per_block_shift = -1;
2875	else
2876		pool->sectors_per_block_shift = __ffs(block_size);
2877	pool->low_water_blocks = 0;
2878	pool_features_init(&pool->pf);
2879	pool->prison = dm_bio_prison_create();
2880	if (!pool->prison) {
2881		*error = "Error creating pool's bio prison";
2882		err_p = ERR_PTR(-ENOMEM);
2883		goto bad_prison;
2884	}
2885
2886	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2887	if (IS_ERR(pool->copier)) {
2888		r = PTR_ERR(pool->copier);
2889		*error = "Error creating pool's kcopyd client";
2890		err_p = ERR_PTR(r);
2891		goto bad_kcopyd_client;
2892	}
2893
2894	/*
2895	 * Create singlethreaded workqueue that will service all devices
2896	 * that use this metadata.
2897	 */
2898	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2899	if (!pool->wq) {
2900		*error = "Error creating pool's workqueue";
2901		err_p = ERR_PTR(-ENOMEM);
2902		goto bad_wq;
2903	}
2904
2905	throttle_init(&pool->throttle);
2906	INIT_WORK(&pool->worker, do_worker);
2907	INIT_DELAYED_WORK(&pool->waker, do_waker);
2908	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2909	spin_lock_init(&pool->lock);
2910	bio_list_init(&pool->deferred_flush_bios);
 
2911	INIT_LIST_HEAD(&pool->prepared_mappings);
2912	INIT_LIST_HEAD(&pool->prepared_discards);
2913	INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2914	INIT_LIST_HEAD(&pool->active_thins);
2915	pool->low_water_triggered = false;
2916	pool->suspended = true;
2917	pool->out_of_data_space = false;
2918
2919	pool->shared_read_ds = dm_deferred_set_create();
2920	if (!pool->shared_read_ds) {
2921		*error = "Error creating pool's shared read deferred set";
2922		err_p = ERR_PTR(-ENOMEM);
2923		goto bad_shared_read_ds;
2924	}
2925
2926	pool->all_io_ds = dm_deferred_set_create();
2927	if (!pool->all_io_ds) {
2928		*error = "Error creating pool's all io deferred set";
2929		err_p = ERR_PTR(-ENOMEM);
2930		goto bad_all_io_ds;
2931	}
2932
2933	pool->next_mapping = NULL;
2934	pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2935						      _new_mapping_cache);
2936	if (!pool->mapping_pool) {
2937		*error = "Error creating pool's mapping mempool";
2938		err_p = ERR_PTR(-ENOMEM);
2939		goto bad_mapping_pool;
2940	}
2941
2942	pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE);
 
 
2943	if (!pool->cell_sort_array) {
2944		*error = "Error allocating cell sort array";
2945		err_p = ERR_PTR(-ENOMEM);
2946		goto bad_sort_array;
2947	}
2948
2949	pool->ref_count = 1;
2950	pool->last_commit_jiffies = jiffies;
2951	pool->pool_md = pool_md;
2952	pool->md_dev = metadata_dev;
 
2953	__pool_table_insert(pool);
2954
2955	return pool;
2956
2957bad_sort_array:
2958	mempool_destroy(pool->mapping_pool);
2959bad_mapping_pool:
2960	dm_deferred_set_destroy(pool->all_io_ds);
2961bad_all_io_ds:
2962	dm_deferred_set_destroy(pool->shared_read_ds);
2963bad_shared_read_ds:
2964	destroy_workqueue(pool->wq);
2965bad_wq:
2966	dm_kcopyd_client_destroy(pool->copier);
2967bad_kcopyd_client:
2968	dm_bio_prison_destroy(pool->prison);
2969bad_prison:
2970	kfree(pool);
2971bad_pool:
2972	if (dm_pool_metadata_close(pmd))
2973		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2974
2975	return err_p;
2976}
2977
2978static void __pool_inc(struct pool *pool)
2979{
2980	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2981	pool->ref_count++;
2982}
2983
2984static void __pool_dec(struct pool *pool)
2985{
2986	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2987	BUG_ON(!pool->ref_count);
2988	if (!--pool->ref_count)
2989		__pool_destroy(pool);
2990}
2991
2992static struct pool *__pool_find(struct mapped_device *pool_md,
2993				struct block_device *metadata_dev,
 
2994				unsigned long block_size, int read_only,
2995				char **error, int *created)
2996{
2997	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2998
2999	if (pool) {
3000		if (pool->pool_md != pool_md) {
3001			*error = "metadata device already in use by a pool";
3002			return ERR_PTR(-EBUSY);
3003		}
 
 
 
 
3004		__pool_inc(pool);
3005
3006	} else {
3007		pool = __pool_table_lookup(pool_md);
3008		if (pool) {
3009			if (pool->md_dev != metadata_dev) {
3010				*error = "different pool cannot replace a pool";
3011				return ERR_PTR(-EINVAL);
3012			}
3013			__pool_inc(pool);
3014
3015		} else {
3016			pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
3017			*created = 1;
3018		}
3019	}
3020
3021	return pool;
3022}
3023
3024/*----------------------------------------------------------------
 
3025 * Pool target methods
3026 *--------------------------------------------------------------*/
 
3027static void pool_dtr(struct dm_target *ti)
3028{
3029	struct pool_c *pt = ti->private;
3030
3031	mutex_lock(&dm_thin_pool_table.mutex);
3032
3033	unbind_control_target(pt->pool, ti);
3034	__pool_dec(pt->pool);
3035	dm_put_device(ti, pt->metadata_dev);
3036	dm_put_device(ti, pt->data_dev);
3037	kfree(pt);
3038
3039	mutex_unlock(&dm_thin_pool_table.mutex);
3040}
3041
3042static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3043			       struct dm_target *ti)
3044{
3045	int r;
3046	unsigned argc;
3047	const char *arg_name;
3048
3049	static const struct dm_arg _args[] = {
3050		{0, 4, "Invalid number of pool feature arguments"},
3051	};
3052
3053	/*
3054	 * No feature arguments supplied.
3055	 */
3056	if (!as->argc)
3057		return 0;
3058
3059	r = dm_read_arg_group(_args, as, &argc, &ti->error);
3060	if (r)
3061		return -EINVAL;
3062
3063	while (argc && !r) {
3064		arg_name = dm_shift_arg(as);
3065		argc--;
3066
3067		if (!strcasecmp(arg_name, "skip_block_zeroing"))
3068			pf->zero_new_blocks = false;
3069
3070		else if (!strcasecmp(arg_name, "ignore_discard"))
3071			pf->discard_enabled = false;
3072
3073		else if (!strcasecmp(arg_name, "no_discard_passdown"))
3074			pf->discard_passdown = false;
3075
3076		else if (!strcasecmp(arg_name, "read_only"))
3077			pf->mode = PM_READ_ONLY;
3078
3079		else if (!strcasecmp(arg_name, "error_if_no_space"))
3080			pf->error_if_no_space = true;
3081
3082		else {
3083			ti->error = "Unrecognised pool feature requested";
3084			r = -EINVAL;
3085			break;
3086		}
3087	}
3088
3089	return r;
3090}
3091
3092static void metadata_low_callback(void *context)
3093{
3094	struct pool *pool = context;
3095
3096	DMWARN("%s: reached low water mark for metadata device: sending event.",
3097	       dm_device_name(pool->pool_md));
3098
3099	dm_table_event(pool->ti->table);
3100}
3101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3102static sector_t get_dev_size(struct block_device *bdev)
3103{
3104	return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3105}
3106
3107static void warn_if_metadata_device_too_big(struct block_device *bdev)
3108{
3109	sector_t metadata_dev_size = get_dev_size(bdev);
3110	char buffer[BDEVNAME_SIZE];
3111
3112	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3113		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3114		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3115}
3116
3117static sector_t get_metadata_dev_size(struct block_device *bdev)
3118{
3119	sector_t metadata_dev_size = get_dev_size(bdev);
3120
3121	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3122		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3123
3124	return metadata_dev_size;
3125}
3126
3127static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3128{
3129	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3130
3131	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3132
3133	return metadata_dev_size;
3134}
3135
3136/*
3137 * When a metadata threshold is crossed a dm event is triggered, and
3138 * userland should respond by growing the metadata device.  We could let
3139 * userland set the threshold, like we do with the data threshold, but I'm
3140 * not sure they know enough to do this well.
3141 */
3142static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3143{
3144	/*
3145	 * 4M is ample for all ops with the possible exception of thin
3146	 * device deletion which is harmless if it fails (just retry the
3147	 * delete after you've grown the device).
3148	 */
3149	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
 
3150	return min((dm_block_t)1024ULL /* 4M */, quarter);
3151}
3152
3153/*
3154 * thin-pool <metadata dev> <data dev>
3155 *	     <data block size (sectors)>
3156 *	     <low water mark (blocks)>
3157 *	     [<#feature args> [<arg>]*]
3158 *
3159 * Optional feature arguments are:
3160 *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3161 *	     ignore_discard: disable discard
3162 *	     no_discard_passdown: don't pass discards down to the data device
3163 *	     read_only: Don't allow any changes to be made to the pool metadata.
3164 *	     error_if_no_space: error IOs, instead of queueing, if no space.
3165 */
3166static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3167{
3168	int r, pool_created = 0;
3169	struct pool_c *pt;
3170	struct pool *pool;
3171	struct pool_features pf;
3172	struct dm_arg_set as;
3173	struct dm_dev *data_dev;
3174	unsigned long block_size;
3175	dm_block_t low_water_blocks;
3176	struct dm_dev *metadata_dev;
3177	fmode_t metadata_mode;
3178
3179	/*
3180	 * FIXME Remove validation from scope of lock.
3181	 */
3182	mutex_lock(&dm_thin_pool_table.mutex);
3183
3184	if (argc < 4) {
3185		ti->error = "Invalid argument count";
3186		r = -EINVAL;
3187		goto out_unlock;
3188	}
3189
3190	as.argc = argc;
3191	as.argv = argv;
3192
 
 
 
 
 
 
 
3193	/*
3194	 * Set default pool features.
3195	 */
3196	pool_features_init(&pf);
3197
3198	dm_consume_args(&as, 4);
3199	r = parse_pool_features(&as, &pf, ti);
3200	if (r)
3201		goto out_unlock;
3202
3203	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
 
3204	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3205	if (r) {
3206		ti->error = "Error opening metadata block device";
3207		goto out_unlock;
3208	}
3209	warn_if_metadata_device_too_big(metadata_dev->bdev);
3210
3211	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3212	if (r) {
3213		ti->error = "Error getting data device";
3214		goto out_metadata;
3215	}
3216
3217	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3218	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3219	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3220	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3221		ti->error = "Invalid block size";
3222		r = -EINVAL;
3223		goto out;
3224	}
3225
3226	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3227		ti->error = "Invalid low water mark";
3228		r = -EINVAL;
3229		goto out;
3230	}
3231
3232	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3233	if (!pt) {
3234		r = -ENOMEM;
3235		goto out;
3236	}
3237
3238	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3239			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3240	if (IS_ERR(pool)) {
3241		r = PTR_ERR(pool);
3242		goto out_free_pt;
3243	}
3244
3245	/*
3246	 * 'pool_created' reflects whether this is the first table load.
3247	 * Top level discard support is not allowed to be changed after
3248	 * initial load.  This would require a pool reload to trigger thin
3249	 * device changes.
3250	 */
3251	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3252		ti->error = "Discard support cannot be disabled once enabled";
3253		r = -EINVAL;
3254		goto out_flags_changed;
3255	}
3256
3257	pt->pool = pool;
3258	pt->ti = ti;
3259	pt->metadata_dev = metadata_dev;
3260	pt->data_dev = data_dev;
3261	pt->low_water_blocks = low_water_blocks;
3262	pt->adjusted_pf = pt->requested_pf = pf;
3263	ti->num_flush_bios = 1;
 
3264
3265	/*
3266	 * Only need to enable discards if the pool should pass
3267	 * them down to the data device.  The thin device's discard
3268	 * processing will cause mappings to be removed from the btree.
3269	 */
3270	if (pf.discard_enabled && pf.discard_passdown) {
3271		ti->num_discard_bios = 1;
3272
3273		/*
3274		 * Setting 'discards_supported' circumvents the normal
3275		 * stacking of discard limits (this keeps the pool and
3276		 * thin devices' discard limits consistent).
3277		 */
3278		ti->discards_supported = true;
 
3279	}
3280	ti->private = pt;
3281
3282	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3283						calc_metadata_threshold(pt),
3284						metadata_low_callback,
3285						pool);
3286	if (r)
 
3287		goto out_flags_changed;
 
3288
3289	pt->callbacks.congested_fn = pool_is_congested;
3290	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3291
3292	mutex_unlock(&dm_thin_pool_table.mutex);
3293
3294	return 0;
3295
3296out_flags_changed:
3297	__pool_dec(pool);
3298out_free_pt:
3299	kfree(pt);
3300out:
3301	dm_put_device(ti, data_dev);
3302out_metadata:
3303	dm_put_device(ti, metadata_dev);
3304out_unlock:
3305	mutex_unlock(&dm_thin_pool_table.mutex);
3306
3307	return r;
3308}
3309
3310static int pool_map(struct dm_target *ti, struct bio *bio)
3311{
3312	int r;
3313	struct pool_c *pt = ti->private;
3314	struct pool *pool = pt->pool;
3315	unsigned long flags;
3316
3317	/*
3318	 * As this is a singleton target, ti->begin is always zero.
3319	 */
3320	spin_lock_irqsave(&pool->lock, flags);
3321	bio_set_dev(bio, pt->data_dev->bdev);
3322	r = DM_MAPIO_REMAPPED;
3323	spin_unlock_irqrestore(&pool->lock, flags);
3324
3325	return r;
3326}
3327
3328static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3329{
3330	int r;
3331	struct pool_c *pt = ti->private;
3332	struct pool *pool = pt->pool;
3333	sector_t data_size = ti->len;
3334	dm_block_t sb_data_size;
3335
3336	*need_commit = false;
3337
3338	(void) sector_div(data_size, pool->sectors_per_block);
3339
3340	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3341	if (r) {
3342		DMERR("%s: failed to retrieve data device size",
3343		      dm_device_name(pool->pool_md));
3344		return r;
3345	}
3346
3347	if (data_size < sb_data_size) {
3348		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3349		      dm_device_name(pool->pool_md),
3350		      (unsigned long long)data_size, sb_data_size);
3351		return -EINVAL;
3352
3353	} else if (data_size > sb_data_size) {
3354		if (dm_pool_metadata_needs_check(pool->pmd)) {
3355			DMERR("%s: unable to grow the data device until repaired.",
3356			      dm_device_name(pool->pool_md));
3357			return 0;
3358		}
3359
3360		if (sb_data_size)
3361			DMINFO("%s: growing the data device from %llu to %llu blocks",
3362			       dm_device_name(pool->pool_md),
3363			       sb_data_size, (unsigned long long)data_size);
3364		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3365		if (r) {
3366			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3367			return r;
3368		}
3369
3370		*need_commit = true;
3371	}
3372
3373	return 0;
3374}
3375
3376static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3377{
3378	int r;
3379	struct pool_c *pt = ti->private;
3380	struct pool *pool = pt->pool;
3381	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3382
3383	*need_commit = false;
3384
3385	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3386
3387	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3388	if (r) {
3389		DMERR("%s: failed to retrieve metadata device size",
3390		      dm_device_name(pool->pool_md));
3391		return r;
3392	}
3393
3394	if (metadata_dev_size < sb_metadata_dev_size) {
3395		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3396		      dm_device_name(pool->pool_md),
3397		      metadata_dev_size, sb_metadata_dev_size);
3398		return -EINVAL;
3399
3400	} else if (metadata_dev_size > sb_metadata_dev_size) {
3401		if (dm_pool_metadata_needs_check(pool->pmd)) {
3402			DMERR("%s: unable to grow the metadata device until repaired.",
3403			      dm_device_name(pool->pool_md));
3404			return 0;
3405		}
3406
3407		warn_if_metadata_device_too_big(pool->md_dev);
3408		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3409		       dm_device_name(pool->pool_md),
3410		       sb_metadata_dev_size, metadata_dev_size);
 
 
 
 
3411		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3412		if (r) {
3413			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3414			return r;
3415		}
3416
3417		*need_commit = true;
3418	}
3419
3420	return 0;
3421}
3422
3423/*
3424 * Retrieves the number of blocks of the data device from
3425 * the superblock and compares it to the actual device size,
3426 * thus resizing the data device in case it has grown.
3427 *
3428 * This both copes with opening preallocated data devices in the ctr
3429 * being followed by a resume
3430 * -and-
3431 * calling the resume method individually after userspace has
3432 * grown the data device in reaction to a table event.
3433 */
3434static int pool_preresume(struct dm_target *ti)
3435{
3436	int r;
3437	bool need_commit1, need_commit2;
3438	struct pool_c *pt = ti->private;
3439	struct pool *pool = pt->pool;
3440
3441	/*
3442	 * Take control of the pool object.
3443	 */
3444	r = bind_control_target(pool, ti);
3445	if (r)
3446		return r;
3447
3448	r = maybe_resize_data_dev(ti, &need_commit1);
3449	if (r)
3450		return r;
3451
3452	r = maybe_resize_metadata_dev(ti, &need_commit2);
3453	if (r)
3454		return r;
3455
3456	if (need_commit1 || need_commit2)
3457		(void) commit(pool);
 
 
 
 
 
 
 
 
3458
3459	return 0;
3460}
3461
3462static void pool_suspend_active_thins(struct pool *pool)
3463{
3464	struct thin_c *tc;
3465
3466	/* Suspend all active thin devices */
3467	tc = get_first_thin(pool);
3468	while (tc) {
3469		dm_internal_suspend_noflush(tc->thin_md);
3470		tc = get_next_thin(pool, tc);
3471	}
3472}
3473
3474static void pool_resume_active_thins(struct pool *pool)
3475{
3476	struct thin_c *tc;
3477
3478	/* Resume all active thin devices */
3479	tc = get_first_thin(pool);
3480	while (tc) {
3481		dm_internal_resume(tc->thin_md);
3482		tc = get_next_thin(pool, tc);
3483	}
3484}
3485
3486static void pool_resume(struct dm_target *ti)
3487{
3488	struct pool_c *pt = ti->private;
3489	struct pool *pool = pt->pool;
3490	unsigned long flags;
3491
3492	/*
3493	 * Must requeue active_thins' bios and then resume
3494	 * active_thins _before_ clearing 'suspend' flag.
3495	 */
3496	requeue_bios(pool);
3497	pool_resume_active_thins(pool);
3498
3499	spin_lock_irqsave(&pool->lock, flags);
3500	pool->low_water_triggered = false;
3501	pool->suspended = false;
3502	spin_unlock_irqrestore(&pool->lock, flags);
3503
3504	do_waker(&pool->waker.work);
3505}
3506
3507static void pool_presuspend(struct dm_target *ti)
3508{
3509	struct pool_c *pt = ti->private;
3510	struct pool *pool = pt->pool;
3511	unsigned long flags;
3512
3513	spin_lock_irqsave(&pool->lock, flags);
3514	pool->suspended = true;
3515	spin_unlock_irqrestore(&pool->lock, flags);
3516
3517	pool_suspend_active_thins(pool);
3518}
3519
3520static void pool_presuspend_undo(struct dm_target *ti)
3521{
3522	struct pool_c *pt = ti->private;
3523	struct pool *pool = pt->pool;
3524	unsigned long flags;
3525
3526	pool_resume_active_thins(pool);
3527
3528	spin_lock_irqsave(&pool->lock, flags);
3529	pool->suspended = false;
3530	spin_unlock_irqrestore(&pool->lock, flags);
3531}
3532
3533static void pool_postsuspend(struct dm_target *ti)
3534{
3535	struct pool_c *pt = ti->private;
3536	struct pool *pool = pt->pool;
3537
3538	cancel_delayed_work_sync(&pool->waker);
3539	cancel_delayed_work_sync(&pool->no_space_timeout);
3540	flush_workqueue(pool->wq);
3541	(void) commit(pool);
3542}
3543
3544static int check_arg_count(unsigned argc, unsigned args_required)
3545{
3546	if (argc != args_required) {
3547		DMWARN("Message received with %u arguments instead of %u.",
3548		       argc, args_required);
3549		return -EINVAL;
3550	}
3551
3552	return 0;
3553}
3554
3555static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3556{
3557	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3558	    *dev_id <= MAX_DEV_ID)
3559		return 0;
3560
3561	if (warning)
3562		DMWARN("Message received with invalid device id: %s", arg);
3563
3564	return -EINVAL;
3565}
3566
3567static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3568{
3569	dm_thin_id dev_id;
3570	int r;
3571
3572	r = check_arg_count(argc, 2);
3573	if (r)
3574		return r;
3575
3576	r = read_dev_id(argv[1], &dev_id, 1);
3577	if (r)
3578		return r;
3579
3580	r = dm_pool_create_thin(pool->pmd, dev_id);
3581	if (r) {
3582		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3583		       argv[1]);
3584		return r;
3585	}
3586
3587	return 0;
3588}
3589
3590static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3591{
3592	dm_thin_id dev_id;
3593	dm_thin_id origin_dev_id;
3594	int r;
3595
3596	r = check_arg_count(argc, 3);
3597	if (r)
3598		return r;
3599
3600	r = read_dev_id(argv[1], &dev_id, 1);
3601	if (r)
3602		return r;
3603
3604	r = read_dev_id(argv[2], &origin_dev_id, 1);
3605	if (r)
3606		return r;
3607
3608	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3609	if (r) {
3610		DMWARN("Creation of new snapshot %s of device %s failed.",
3611		       argv[1], argv[2]);
3612		return r;
3613	}
3614
3615	return 0;
3616}
3617
3618static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3619{
3620	dm_thin_id dev_id;
3621	int r;
3622
3623	r = check_arg_count(argc, 2);
3624	if (r)
3625		return r;
3626
3627	r = read_dev_id(argv[1], &dev_id, 1);
3628	if (r)
3629		return r;
3630
3631	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3632	if (r)
3633		DMWARN("Deletion of thin device %s failed.", argv[1]);
3634
3635	return r;
3636}
3637
3638static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3639{
3640	dm_thin_id old_id, new_id;
3641	int r;
3642
3643	r = check_arg_count(argc, 3);
3644	if (r)
3645		return r;
3646
3647	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3648		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3649		return -EINVAL;
3650	}
3651
3652	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3653		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3654		return -EINVAL;
3655	}
3656
3657	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3658	if (r) {
3659		DMWARN("Failed to change transaction id from %s to %s.",
3660		       argv[1], argv[2]);
3661		return r;
3662	}
3663
3664	return 0;
3665}
3666
3667static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3668{
3669	int r;
3670
3671	r = check_arg_count(argc, 1);
3672	if (r)
3673		return r;
3674
3675	(void) commit(pool);
3676
3677	r = dm_pool_reserve_metadata_snap(pool->pmd);
3678	if (r)
3679		DMWARN("reserve_metadata_snap message failed.");
3680
3681	return r;
3682}
3683
3684static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3685{
3686	int r;
3687
3688	r = check_arg_count(argc, 1);
3689	if (r)
3690		return r;
3691
3692	r = dm_pool_release_metadata_snap(pool->pmd);
3693	if (r)
3694		DMWARN("release_metadata_snap message failed.");
3695
3696	return r;
3697}
3698
3699/*
3700 * Messages supported:
3701 *   create_thin	<dev_id>
3702 *   create_snap	<dev_id> <origin_id>
3703 *   delete		<dev_id>
3704 *   set_transaction_id <current_trans_id> <new_trans_id>
3705 *   reserve_metadata_snap
3706 *   release_metadata_snap
3707 */
3708static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
3709			char *result, unsigned maxlen)
3710{
3711	int r = -EINVAL;
3712	struct pool_c *pt = ti->private;
3713	struct pool *pool = pt->pool;
3714
3715	if (get_pool_mode(pool) >= PM_READ_ONLY) {
3716		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3717		      dm_device_name(pool->pool_md));
3718		return -EOPNOTSUPP;
3719	}
3720
3721	if (!strcasecmp(argv[0], "create_thin"))
3722		r = process_create_thin_mesg(argc, argv, pool);
3723
3724	else if (!strcasecmp(argv[0], "create_snap"))
3725		r = process_create_snap_mesg(argc, argv, pool);
3726
3727	else if (!strcasecmp(argv[0], "delete"))
3728		r = process_delete_mesg(argc, argv, pool);
3729
3730	else if (!strcasecmp(argv[0], "set_transaction_id"))
3731		r = process_set_transaction_id_mesg(argc, argv, pool);
3732
3733	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3734		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3735
3736	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3737		r = process_release_metadata_snap_mesg(argc, argv, pool);
3738
3739	else
3740		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3741
3742	if (!r)
3743		(void) commit(pool);
3744
3745	return r;
3746}
3747
3748static void emit_flags(struct pool_features *pf, char *result,
3749		       unsigned sz, unsigned maxlen)
3750{
3751	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3752		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3753		pf->error_if_no_space;
3754	DMEMIT("%u ", count);
3755
3756	if (!pf->zero_new_blocks)
3757		DMEMIT("skip_block_zeroing ");
3758
3759	if (!pf->discard_enabled)
3760		DMEMIT("ignore_discard ");
3761
3762	if (!pf->discard_passdown)
3763		DMEMIT("no_discard_passdown ");
3764
3765	if (pf->mode == PM_READ_ONLY)
3766		DMEMIT("read_only ");
3767
3768	if (pf->error_if_no_space)
3769		DMEMIT("error_if_no_space ");
3770}
3771
3772/*
3773 * Status line is:
3774 *    <transaction id> <used metadata sectors>/<total metadata sectors>
3775 *    <used data sectors>/<total data sectors> <held metadata root>
3776 *    <pool mode> <discard config> <no space config> <needs_check>
3777 */
3778static void pool_status(struct dm_target *ti, status_type_t type,
3779			unsigned status_flags, char *result, unsigned maxlen)
3780{
3781	int r;
3782	unsigned sz = 0;
3783	uint64_t transaction_id;
3784	dm_block_t nr_free_blocks_data;
3785	dm_block_t nr_free_blocks_metadata;
3786	dm_block_t nr_blocks_data;
3787	dm_block_t nr_blocks_metadata;
3788	dm_block_t held_root;
 
3789	char buf[BDEVNAME_SIZE];
3790	char buf2[BDEVNAME_SIZE];
3791	struct pool_c *pt = ti->private;
3792	struct pool *pool = pt->pool;
3793
3794	switch (type) {
3795	case STATUSTYPE_INFO:
3796		if (get_pool_mode(pool) == PM_FAIL) {
3797			DMEMIT("Fail");
3798			break;
3799		}
3800
3801		/* Commit to ensure statistics aren't out-of-date */
3802		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3803			(void) commit(pool);
3804
3805		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3806		if (r) {
3807			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3808			      dm_device_name(pool->pool_md), r);
3809			goto err;
3810		}
3811
3812		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3813		if (r) {
3814			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3815			      dm_device_name(pool->pool_md), r);
3816			goto err;
3817		}
3818
3819		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3820		if (r) {
3821			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3822			      dm_device_name(pool->pool_md), r);
3823			goto err;
3824		}
3825
3826		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3827		if (r) {
3828			DMERR("%s: dm_pool_get_free_block_count returned %d",
3829			      dm_device_name(pool->pool_md), r);
3830			goto err;
3831		}
3832
3833		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3834		if (r) {
3835			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3836			      dm_device_name(pool->pool_md), r);
3837			goto err;
3838		}
3839
3840		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3841		if (r) {
3842			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3843			      dm_device_name(pool->pool_md), r);
3844			goto err;
3845		}
3846
3847		DMEMIT("%llu %llu/%llu %llu/%llu ",
3848		       (unsigned long long)transaction_id,
3849		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3850		       (unsigned long long)nr_blocks_metadata,
3851		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3852		       (unsigned long long)nr_blocks_data);
3853
3854		if (held_root)
3855			DMEMIT("%llu ", held_root);
3856		else
3857			DMEMIT("- ");
3858
3859		if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
 
3860			DMEMIT("out_of_data_space ");
3861		else if (pool->pf.mode == PM_READ_ONLY)
3862			DMEMIT("ro ");
3863		else
3864			DMEMIT("rw ");
3865
3866		if (!pool->pf.discard_enabled)
3867			DMEMIT("ignore_discard ");
3868		else if (pool->pf.discard_passdown)
3869			DMEMIT("discard_passdown ");
3870		else
3871			DMEMIT("no_discard_passdown ");
3872
3873		if (pool->pf.error_if_no_space)
3874			DMEMIT("error_if_no_space ");
3875		else
3876			DMEMIT("queue_if_no_space ");
3877
3878		if (dm_pool_metadata_needs_check(pool->pmd))
3879			DMEMIT("needs_check ");
3880		else
3881			DMEMIT("- ");
3882
 
 
3883		break;
3884
3885	case STATUSTYPE_TABLE:
3886		DMEMIT("%s %s %lu %llu ",
3887		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3888		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3889		       (unsigned long)pool->sectors_per_block,
3890		       (unsigned long long)pt->low_water_blocks);
3891		emit_flags(&pt->requested_pf, result, sz, maxlen);
3892		break;
 
 
 
 
3893	}
3894	return;
3895
3896err:
3897	DMEMIT("Error");
3898}
3899
3900static int pool_iterate_devices(struct dm_target *ti,
3901				iterate_devices_callout_fn fn, void *data)
3902{
3903	struct pool_c *pt = ti->private;
3904
3905	return fn(ti, pt->data_dev, 0, ti->len, data);
3906}
3907
3908static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3909{
3910	struct pool_c *pt = ti->private;
3911	struct pool *pool = pt->pool;
3912	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3913
3914	/*
3915	 * If max_sectors is smaller than pool->sectors_per_block adjust it
3916	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3917	 * This is especially beneficial when the pool's data device is a RAID
3918	 * device that has a full stripe width that matches pool->sectors_per_block
3919	 * -- because even though partial RAID stripe-sized IOs will be issued to a
3920	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
3921	 *    boundary.. which avoids additional partial RAID stripe writes cascading
3922	 */
3923	if (limits->max_sectors < pool->sectors_per_block) {
3924		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3925			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3926				limits->max_sectors--;
3927			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3928		}
3929	}
3930
3931	/*
3932	 * If the system-determined stacked limits are compatible with the
3933	 * pool's blocksize (io_opt is a factor) do not override them.
3934	 */
3935	if (io_opt_sectors < pool->sectors_per_block ||
3936	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3937		if (is_factor(pool->sectors_per_block, limits->max_sectors))
3938			blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3939		else
3940			blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3941		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3942	}
3943
3944	/*
3945	 * pt->adjusted_pf is a staging area for the actual features to use.
3946	 * They get transferred to the live pool in bind_control_target()
3947	 * called from pool_preresume().
3948	 */
3949	if (!pt->adjusted_pf.discard_enabled) {
 
 
 
 
 
 
 
 
 
3950		/*
3951		 * Must explicitly disallow stacking discard limits otherwise the
3952		 * block layer will stack them if pool's data device has support.
3953		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3954		 * user to see that, so make sure to set all discard limits to 0.
3955		 */
3956		limits->discard_granularity = 0;
3957		return;
3958	}
3959
3960	disable_passdown_if_not_supported(pt);
3961
3962	/*
3963	 * The pool uses the same discard limits as the underlying data
3964	 * device.  DM core has already set this up.
3965	 */
3966}
3967
3968static struct target_type pool_target = {
3969	.name = "thin-pool",
3970	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3971		    DM_TARGET_IMMUTABLE,
3972	.version = {1, 19, 0},
3973	.module = THIS_MODULE,
3974	.ctr = pool_ctr,
3975	.dtr = pool_dtr,
3976	.map = pool_map,
3977	.presuspend = pool_presuspend,
3978	.presuspend_undo = pool_presuspend_undo,
3979	.postsuspend = pool_postsuspend,
3980	.preresume = pool_preresume,
3981	.resume = pool_resume,
3982	.message = pool_message,
3983	.status = pool_status,
3984	.iterate_devices = pool_iterate_devices,
3985	.io_hints = pool_io_hints,
3986};
3987
3988/*----------------------------------------------------------------
 
3989 * Thin target methods
3990 *--------------------------------------------------------------*/
 
3991static void thin_get(struct thin_c *tc)
3992{
3993	atomic_inc(&tc->refcount);
3994}
3995
3996static void thin_put(struct thin_c *tc)
3997{
3998	if (atomic_dec_and_test(&tc->refcount))
3999		complete(&tc->can_destroy);
4000}
4001
4002static void thin_dtr(struct dm_target *ti)
4003{
4004	struct thin_c *tc = ti->private;
4005	unsigned long flags;
4006
4007	spin_lock_irqsave(&tc->pool->lock, flags);
4008	list_del_rcu(&tc->list);
4009	spin_unlock_irqrestore(&tc->pool->lock, flags);
4010	synchronize_rcu();
4011
4012	thin_put(tc);
4013	wait_for_completion(&tc->can_destroy);
4014
4015	mutex_lock(&dm_thin_pool_table.mutex);
4016
4017	__pool_dec(tc->pool);
4018	dm_pool_close_thin_device(tc->td);
4019	dm_put_device(ti, tc->pool_dev);
4020	if (tc->origin_dev)
4021		dm_put_device(ti, tc->origin_dev);
4022	kfree(tc);
4023
4024	mutex_unlock(&dm_thin_pool_table.mutex);
4025}
4026
4027/*
4028 * Thin target parameters:
4029 *
4030 * <pool_dev> <dev_id> [origin_dev]
4031 *
4032 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4033 * dev_id: the internal device identifier
4034 * origin_dev: a device external to the pool that should act as the origin
4035 *
4036 * If the pool device has discards disabled, they get disabled for the thin
4037 * device as well.
4038 */
4039static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4040{
4041	int r;
4042	struct thin_c *tc;
4043	struct dm_dev *pool_dev, *origin_dev;
4044	struct mapped_device *pool_md;
4045	unsigned long flags;
4046
4047	mutex_lock(&dm_thin_pool_table.mutex);
4048
4049	if (argc != 2 && argc != 3) {
4050		ti->error = "Invalid argument count";
4051		r = -EINVAL;
4052		goto out_unlock;
4053	}
4054
4055	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4056	if (!tc) {
4057		ti->error = "Out of memory";
4058		r = -ENOMEM;
4059		goto out_unlock;
4060	}
4061	tc->thin_md = dm_table_get_md(ti->table);
4062	spin_lock_init(&tc->lock);
4063	INIT_LIST_HEAD(&tc->deferred_cells);
4064	bio_list_init(&tc->deferred_bio_list);
4065	bio_list_init(&tc->retry_on_resume_list);
4066	tc->sort_bio_list = RB_ROOT;
4067
4068	if (argc == 3) {
4069		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
 
 
 
 
 
 
4070		if (r) {
4071			ti->error = "Error opening origin device";
4072			goto bad_origin_dev;
4073		}
4074		tc->origin_dev = origin_dev;
4075	}
4076
4077	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4078	if (r) {
4079		ti->error = "Error opening pool device";
4080		goto bad_pool_dev;
4081	}
4082	tc->pool_dev = pool_dev;
4083
4084	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4085		ti->error = "Invalid device id";
4086		r = -EINVAL;
4087		goto bad_common;
4088	}
4089
4090	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4091	if (!pool_md) {
4092		ti->error = "Couldn't get pool mapped device";
4093		r = -EINVAL;
4094		goto bad_common;
4095	}
4096
4097	tc->pool = __pool_table_lookup(pool_md);
4098	if (!tc->pool) {
4099		ti->error = "Couldn't find pool object";
4100		r = -EINVAL;
4101		goto bad_pool_lookup;
4102	}
4103	__pool_inc(tc->pool);
4104
4105	if (get_pool_mode(tc->pool) == PM_FAIL) {
4106		ti->error = "Couldn't open thin device, Pool is in fail mode";
4107		r = -EINVAL;
4108		goto bad_pool;
4109	}
4110
4111	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4112	if (r) {
4113		ti->error = "Couldn't open thin internal device";
4114		goto bad_pool;
4115	}
4116
4117	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4118	if (r)
4119		goto bad;
4120
4121	ti->num_flush_bios = 1;
 
4122	ti->flush_supported = true;
 
4123	ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4124
4125	/* In case the pool supports discards, pass them on. */
4126	if (tc->pool->pf.discard_enabled) {
4127		ti->discards_supported = true;
4128		ti->num_discard_bios = 1;
4129		ti->split_discard_bios = false;
4130	}
4131
4132	mutex_unlock(&dm_thin_pool_table.mutex);
4133
4134	spin_lock_irqsave(&tc->pool->lock, flags);
4135	if (tc->pool->suspended) {
4136		spin_unlock_irqrestore(&tc->pool->lock, flags);
4137		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4138		ti->error = "Unable to activate thin device while pool is suspended";
4139		r = -EINVAL;
4140		goto bad;
4141	}
4142	atomic_set(&tc->refcount, 1);
4143	init_completion(&tc->can_destroy);
4144	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4145	spin_unlock_irqrestore(&tc->pool->lock, flags);
4146	/*
4147	 * This synchronize_rcu() call is needed here otherwise we risk a
4148	 * wake_worker() call finding no bios to process (because the newly
4149	 * added tc isn't yet visible).  So this reduces latency since we
4150	 * aren't then dependent on the periodic commit to wake_worker().
4151	 */
4152	synchronize_rcu();
4153
4154	dm_put(pool_md);
4155
4156	return 0;
4157
4158bad:
4159	dm_pool_close_thin_device(tc->td);
4160bad_pool:
4161	__pool_dec(tc->pool);
4162bad_pool_lookup:
4163	dm_put(pool_md);
4164bad_common:
4165	dm_put_device(ti, tc->pool_dev);
4166bad_pool_dev:
4167	if (tc->origin_dev)
4168		dm_put_device(ti, tc->origin_dev);
4169bad_origin_dev:
4170	kfree(tc);
4171out_unlock:
4172	mutex_unlock(&dm_thin_pool_table.mutex);
4173
4174	return r;
4175}
4176
4177static int thin_map(struct dm_target *ti, struct bio *bio)
4178{
4179	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4180
4181	return thin_bio_map(ti, bio);
4182}
4183
4184static int thin_endio(struct dm_target *ti, struct bio *bio,
4185		blk_status_t *err)
4186{
4187	unsigned long flags;
4188	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4189	struct list_head work;
4190	struct dm_thin_new_mapping *m, *tmp;
4191	struct pool *pool = h->tc->pool;
4192
4193	if (h->shared_read_entry) {
4194		INIT_LIST_HEAD(&work);
4195		dm_deferred_entry_dec(h->shared_read_entry, &work);
4196
4197		spin_lock_irqsave(&pool->lock, flags);
4198		list_for_each_entry_safe(m, tmp, &work, list) {
4199			list_del(&m->list);
4200			__complete_mapping_preparation(m);
4201		}
4202		spin_unlock_irqrestore(&pool->lock, flags);
4203	}
4204
4205	if (h->all_io_entry) {
4206		INIT_LIST_HEAD(&work);
4207		dm_deferred_entry_dec(h->all_io_entry, &work);
4208		if (!list_empty(&work)) {
4209			spin_lock_irqsave(&pool->lock, flags);
4210			list_for_each_entry_safe(m, tmp, &work, list)
4211				list_add_tail(&m->list, &pool->prepared_discards);
4212			spin_unlock_irqrestore(&pool->lock, flags);
4213			wake_worker(pool);
4214		}
4215	}
4216
4217	if (h->cell)
4218		cell_defer_no_holder(h->tc, h->cell);
4219
4220	return DM_ENDIO_DONE;
4221}
4222
4223static void thin_presuspend(struct dm_target *ti)
4224{
4225	struct thin_c *tc = ti->private;
4226
4227	if (dm_noflush_suspending(ti))
4228		noflush_work(tc, do_noflush_start);
4229}
4230
4231static void thin_postsuspend(struct dm_target *ti)
4232{
4233	struct thin_c *tc = ti->private;
4234
4235	/*
4236	 * The dm_noflush_suspending flag has been cleared by now, so
4237	 * unfortunately we must always run this.
4238	 */
4239	noflush_work(tc, do_noflush_stop);
4240}
4241
4242static int thin_preresume(struct dm_target *ti)
4243{
4244	struct thin_c *tc = ti->private;
4245
4246	if (tc->origin_dev)
4247		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4248
4249	return 0;
4250}
4251
4252/*
4253 * <nr mapped sectors> <highest mapped sector>
4254 */
4255static void thin_status(struct dm_target *ti, status_type_t type,
4256			unsigned status_flags, char *result, unsigned maxlen)
4257{
4258	int r;
4259	ssize_t sz = 0;
4260	dm_block_t mapped, highest;
4261	char buf[BDEVNAME_SIZE];
4262	struct thin_c *tc = ti->private;
4263
4264	if (get_pool_mode(tc->pool) == PM_FAIL) {
4265		DMEMIT("Fail");
4266		return;
4267	}
4268
4269	if (!tc->td)
4270		DMEMIT("-");
4271	else {
4272		switch (type) {
4273		case STATUSTYPE_INFO:
4274			r = dm_thin_get_mapped_count(tc->td, &mapped);
4275			if (r) {
4276				DMERR("dm_thin_get_mapped_count returned %d", r);
4277				goto err;
4278			}
4279
4280			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4281			if (r < 0) {
4282				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4283				goto err;
4284			}
4285
4286			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4287			if (r)
4288				DMEMIT("%llu", ((highest + 1) *
4289						tc->pool->sectors_per_block) - 1);
4290			else
4291				DMEMIT("-");
4292			break;
4293
4294		case STATUSTYPE_TABLE:
4295			DMEMIT("%s %lu",
4296			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4297			       (unsigned long) tc->dev_id);
4298			if (tc->origin_dev)
4299				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4300			break;
 
 
 
 
4301		}
4302	}
4303
4304	return;
4305
4306err:
4307	DMEMIT("Error");
4308}
4309
4310static int thin_iterate_devices(struct dm_target *ti,
4311				iterate_devices_callout_fn fn, void *data)
4312{
4313	sector_t blocks;
4314	struct thin_c *tc = ti->private;
4315	struct pool *pool = tc->pool;
4316
4317	/*
4318	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4319	 * we follow a more convoluted path through to the pool's target.
4320	 */
4321	if (!pool->ti)
4322		return 0;	/* nothing is bound */
4323
4324	blocks = pool->ti->len;
4325	(void) sector_div(blocks, pool->sectors_per_block);
4326	if (blocks)
4327		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4328
4329	return 0;
4330}
4331
4332static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4333{
4334	struct thin_c *tc = ti->private;
4335	struct pool *pool = tc->pool;
4336
4337	if (!pool->pf.discard_enabled)
4338		return;
4339
4340	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4341	limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4342}
4343
4344static struct target_type thin_target = {
4345	.name = "thin",
4346	.version = {1, 19, 0},
4347	.module	= THIS_MODULE,
4348	.ctr = thin_ctr,
4349	.dtr = thin_dtr,
4350	.map = thin_map,
4351	.end_io = thin_endio,
4352	.preresume = thin_preresume,
4353	.presuspend = thin_presuspend,
4354	.postsuspend = thin_postsuspend,
4355	.status = thin_status,
4356	.iterate_devices = thin_iterate_devices,
4357	.io_hints = thin_io_hints,
4358};
4359
4360/*----------------------------------------------------------------*/
4361
4362static int __init dm_thin_init(void)
4363{
4364	int r = -ENOMEM;
4365
4366	pool_table_init();
4367
4368	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4369	if (!_new_mapping_cache)
4370		return r;
4371
4372	r = dm_register_target(&thin_target);
4373	if (r)
4374		goto bad_new_mapping_cache;
4375
4376	r = dm_register_target(&pool_target);
4377	if (r)
4378		goto bad_thin_target;
4379
4380	return 0;
4381
4382bad_thin_target:
4383	dm_unregister_target(&thin_target);
4384bad_new_mapping_cache:
4385	kmem_cache_destroy(_new_mapping_cache);
4386
4387	return r;
4388}
4389
4390static void dm_thin_exit(void)
4391{
4392	dm_unregister_target(&thin_target);
4393	dm_unregister_target(&pool_target);
4394
4395	kmem_cache_destroy(_new_mapping_cache);
4396
4397	pool_table_exit();
4398}
4399
4400module_init(dm_thin_init);
4401module_exit(dm_thin_exit);
4402
4403module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4404MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4405
4406MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4407MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4408MODULE_LICENSE("GPL");